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PREFACE

Volumes II and III complete the school course including suitable 
work for university scholars in their last terms at school.

The authors have attempted to concentrate attention on the 
fundamental principles, methods and notation which furnish the 
tools necessary for more advanced work. They believe that many 
of the topics which constitute the conventional course are only of 
value in so far as they illustrate general ideas, and that much of 
what has been called ‘ higher algebra ’ in the school course should 
be scrapped. Only the requirements of certain examinations have 
prevented them from pursuing a more drastic policy than they 
have actually adopted.

The account of the difference (A) notation in Chapter X forms 
an introduction to the study of difference equations in Chapter XI, 
and taken in conjunction with the sketch of the principles of 
probability in Chapter XVIII should enable those concerned with 
actuarial work to learn the essentials of these subjects before 
taking a specialist course. Some of the examples on probability 
may appear to be remote from actual life, but the more practical 
applications do not always provide the simplest illustrations of the 
principles involved. The philosophy of probability lies outside 
the scope of this work.

Difference equations, or recurrence formulae, are of great impor­
tance in mathematics, even apart from their valuable analogy 
with differential equations. Recurring series and continued 
fractions at least have the merit of providing illustrations of 
difference methods.

In Chapter XII the distinction between theorems of real and 
complex algebra is emphasised and for this purpose the authors 
believe that the new terminology introduced on p. 253 will be
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vi PREFACE
found of real service to the student: the mature mathematician 
may find it unnecessary. The main theme of this chapter is the 
fundamental theorem about Af + Bg = 1, and special care has been 
taken to show how the theory of partial fractions can be derived 
from it. In practical decomposition into partial fractions the 
choice of the best method is a matter of experience and therefore 
the various alternatives have been copiously illustrated by 
examples in the text.

In Chapter XIII Descartes’ Rule of Signs has been treated more 
fully than usual and its special value with incomplete equations 
has been emphasised. The importance of the considerations of 
weight and order in the theory of symmetric functions of the 
roots of an equation has been stressed. Newton’s formula has 
been enunciated in a form slightly more comprehensive than is 
customary.

The early part of Chapter XIV7 is of great importance, because a 
sound understanding of the principles of convergence is essential ; 
but the developments in the later part' of the chapter should 
be left for a second reading. Although inequalities are not 
discussed systematically until Chapter XV, simple examples of 
their manipulation necessarily occur in Chapter XIV and the 
fundamental logarithmic inequality which was given on p. 108 
of Volume I is required in some of the examples.

In Chapters XV, XVI, XVII the student is introduced to sub­
jects of special significance in modern mathematics. Although he 
may be well-advised to rely at first on ab initio methods in dealing 
with inequalities, he can profitably make a start at learning the 
forms into which the simple special results can be generalised. To 
pursue this subject further he will naturally take up the study of 
Inequalities by Hardy, Littlewood, and Pólya. Attention is 
called to the introduction of the 8- and e- symbols and the use of 
dummy suffixes. Too often the young student at the university is 
plunged into some subject in which these are the normal working 
tools, although he has had no preliminary training in their use. 
The same applies with even greater force to matrices.
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The subject of Chapter XIX is a fascinating one. Any pure 

mathematician is certain to be attracted by it, even though the 
account here given does not give much indication of the lines of 
modem research in Theory of Numbers.

For the convenience of teachers, the exercises are divided into 
sections A, B, C : both the A and B questions are straightforward 
applications of the bookwork. It is suggested that all the A 
questions should be done. The B questions are intended for extra 
practice when this is necessary. The C questions are harder but 
have been carefully graded.

Short books of Hints for the solutions of any examples that are 
not immediate deductions from the bookwork have been compiled 
for Volumes II and III, and it is suggested that the student should 
have access to these books. Teachers cannot always find time to 
discuss various methods of handling a problem, and, even when 
the student has not failed to discover a solution, it will often be 
helpful to him to compare his method with another. The hints 
consist, in effect, of a very large number of illustrative examples 
solved in outline.

An index to Volumes I, II, III is given at the end of Volume III.
The thanks of the authors are due to Mr. W. Hope-Jones of 

Eton and Mr. T. A. A. Broadbent for advice on the probability 
and sequence chapters respectively, and to Mr. P. Hall of King’s 
College and Mr. W. G. Welchman of Sidney Sussex College for 
advice about matrices. They have again to thank Mr. J. C. 
Manisty for valuable assistance at the proof stage.

June, 1937
A. R.
C. V. D.
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CHAPTER X

FINITE SERIES
Some simple series associated with the binomial theorem for a 
positive integral index have been discussed in Chapter II, and 
the use of the calculus in connexion with the summation of 
series has been illustrated. Further extensions are given here.

The Multinomial Theorem
If n is a positive integer and (x1 + x2 + ... + xm)n is expanded by 

direct multiplication, every term of the expansion must be of the 
form aTj"! xtn* ... xmnm where nI+n2 +... + nm = n. Hence

(x, +' a:, + ... + xm)n = 2 (^"1 xtnt... xmnm).

The value of A depends on nl, n2, ... , nm and is the number of 
times that the term a:1”i a:2B2 ... xmnm occurs in the product

(xl + xa + ...+am)(xl + xt+...+xm)... (X1+x, + ...+xm) 

where the number of factors is n. But the term occurs once for 
each possible way of selecting x2 from n2 brackets, x2 from n2 
brackets, x3 from n3 brackets, ... , and hence (see p. 7),

A = __ra! .

(as. + *, + ...+*„)"=2 - ”! ■ a;,"! x,n*... xmnm
r<,2. ... rim.

where n1( n2,..., nm assume all positive integral and zero values 
such that n2 + na+ ... +nm = n.

This is called the multinomial theorem ; its use is illustrated 
by Example 1 which follows.

195
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Example 1. Find the coefficient of x* in the expansion of
(1 + 3a:-2®*)10.

The general term of the expansion is

1«W( - 2^)' p! ę!r!
where p + ę + r=10.

Terms in x1 are given by g + 3r=7, that is by r = 0, ę = 7, 
p = 3 ; by r= 1, ę=4, p = 5 ; and by r= 2, q= 1, p = 7.

Therefore the coefficient of x1 is

and this reduces to 24.33.5.29.

Example 2. If n is a positive integer and if
2n

(1 +x + xi)n = y,arxr,
o

prove that (i) ar = a2n_r; (ii) a0 + ax +...+ ««-i = 1(3"-“«) S 
(iii) (r+ l)ar+1 = (n-r)ar+(2n-r + l)ar_lt (0<r<2n).

(i)

ar — a2n-r
(ii) Put x=l, thus (1 + 1 + l)n = a0 + a1 + ... + a.2n. 

But a2n = a0, u2n-i= ai> ••• ’ an+i ~ an-i
3n = 2(a0 + a1 + ...+a„_x)+ «„ 

.'. a0 + at + ... +a„_1 = f(3" - an).
(iii) By differentiation,

2n 
n( 1 + x + o:a)n_1( 1 + 2x) = X rarxr~1, 

o
2n 2»

+2x')^,arxr = (\+x + x2)'^rarxr *. 
0 0

Equating coefficients of xr (0 < r < 2n),
nar + 2nar_l = (r + l)ar+1 + rar + (r- l)ar-i 

(r + l)ar+i = (n - r)ar + (2n - r + l)ar-i •
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The coefficient .of xT in the expansion of (l + z)" is usually- 

denoted by nCr or by . For brevity in this chapter it is 

denoted by cr when 1 < r < n ; also c0 stands for 1.

n
Example 3. Evaluate '£1rscrxr

1
n d

Writing N for T, and D for y, we have V,crxr = (1 + x)n,
o
2,rcrxr = xD(l + x)n = nx(l + x)n~1

and '£r3crxr = xD{nx(l+x)n~1}
and 2r3crxr = xD[xD{nx(l + x')n~1}].

Hence, performing the differentiations,
"Z,r3crxr = nx(l + x)n~3{l + (3n - l)x + n3x3}.

Series of this kind are sometimes called integro-binomial series. 
A more general result is given in Exercise Xa, No. 33.

EXERCISE Xa

Calculus methods are suitable for questions marked *.

A
1. Find the coefficients of a3bcd and a3b3 in (a + b + c + d)3.
2. Expand (a + b + c)6.
3. Find the coefficient of x3 in the expansion of

(1 + 3x + 2x2)*.

*4. Evaluate 
to n terms.

5. Find the value of £ l/(p! ?! r!), where the summation 
extends to all positive integral and zero values of p, q, r such that 
p + q + r = n.

*6. Evaluate fc0 + fc, + lca + ... to n + 1 terms.
mn

*1. If (1 +x + x3 + ... +xm)n=^arxr, prove that 
o

mn
^rar = lmn{m+ 1)”
1
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8. Prove that
(r) - C* (r- 1) +C* C-2) ~ - tO T+ 1 term8 = °-

n+1
*9. Prove that Ś (ra-2r + 2)cr_j = (n2 + n + 4)2" 3

1
10. [Vandermonde's theorem] Differentiate the product xvx11 

n times by Leibniz’ theorem and deduce that if n is any positive 
integer,

[p + ?]« = [p]B + [p]n-1 Mi + c2 [p]n_i [«]> + — 
where [m]r = m(m - l)(m- 2)... (m - r + 1).

2n
11. If (1 + x + %x2)n = Ś ar xT< Prove that

0
(i) a1 + a, + ... + a„_l=(5«-l)/2"+‘

(ii) 2(r+ l)ar+1 + 2(r-n)aT + (r - 1 - 2n)ar_1 = 0, 1 <r <2n - 1.
12. If m is a positive integer, prove that

(i) 0<(3-V7)m<l,
(ii) (3 + v/7)m+ (3 - V7)™ is an even integer,
(iii) if (3 + ^/7)m = N + F, where N is an integer and

0 <F<1, then (3 - V7)m = 2,n/(N + F)< 1.
Hence deduce that F + 2m/(N + F) = 1 and that N is odd.

B
13. Find the coefficient of abode in (a + b + c + d + e +/)*.

Find the coefficients of the named powers of a: in the expansions 
of the functions in Nos. 14-16.

14.
16.

17.

♦18.

(1 + 2x - %x2)2; x2. 15. (1 + 3x + 2a:3)’; a:1’.
(1 - 2a: + 3x2 - 4a:3)1 ; a:3.

n 1 2"
Prove that £ —----- r;=—;rto*1! (n-r)! n!

, 2n +1 „Evaluate ----- - + 32n- 1

x.

I + ... to n terms.

19. Prove that c„ - Cj
l+o: l + 2o; 1 + 3a;

1 + nx + C* (1 + nx)2 C3(l + na:)3

*20. Evaluate |c0 - |c, +|c2 - ... to n+ 1 terms. 
4n

21. If (1 + x + xt)in = '£larxr, prove that
0
+ ... 4- ain = J(9n + 1 + 2ct2n).
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22. Prove that

_1 n n(n-l) n(n - 1)... 2 ■ 1
m! C1 (w+1)! +C’(m + 2)!+ +C" (m+n)\

_ (m + n+ l)(rn + n + 2)... (m+2n)
(m + n)l

[Use (l+a:)m+»(l+x)" = (l+a:),B+,n]
*23. Sum to n+ 1 terms :

i-ic1x+lc2x2 - lc3xa+...
24. If (3>/2 +4)2”* = N + F, where m, N are positive integers 

and 0 < F< 1, prove that N = (3^2+ 4)2m + (3^2 - 4)2”1 - 1.

✓

C
25. Prove that

c02 + 2c12 + 3c,’ + ... + (n + l)c„2
(2n- l)!(n+2) 

(n - 1)! n!
26. Prove that

(*) (") + ci (”_ i) + c’ (”- 2) + "■ 40 F + 1 t6rmS = 2TCr 
(ii) (r) Mr - J + C’ C - 2) + "• to r + 1 termS^ rT((JSo!

*27. Prove that £ ( - l)r(n -r)(n - r + l)(n - r + 2)cr = 0, if n >3.
0

2n
28. If (1 - x + x2)n = *£ arxr, prove that

0
ar + clar_l + c2ar_2 + ... to r + 1 terms

equals cr/a if r is a multiple of 3, and otherwise is zero.
29. With the notation of No. 10, if n is any pdSitive integer, 

prove that

[° + b + top Mr.

where the summation extends to all positive integral and zero 
values of p, q, r such that p + q + r=n.

30. Find the sum to r + 1 terms of
f3n\ 3n/3n-2\ 3n(3n - 3) (3n - 4\\r) l\r-l)+ T72-\r-2/

3n(3n - 3)(3n - 6) /3n - 6\
1.2.3 \r 3/ + ’“

DJI.A.A. II. B
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*31. Prove that the sum to n+ 1 terms of

co_________ ci , ci______
n(n+l) (n+l)(n + 2) (n + 2)(n + 3) " 

equals J t,'a:"_,(l - a:)"+1 dx, and evaluate the integral.

*32. Sum to n + 1 terms

P(P- 1)1 + c,---- --—T + cs 7------- X/--------------- st + ... (p > n - 1)p-n+1 2 (p - n+ l)(p - n + 2)
*33. If

Fk{r, y}=at + a2ry + atr(r- l)y* + ... + akr(r - 1)... (r- k + \)yk, 
n

prove that 5 Fk{r, l}crxr = (1 + x)nFk{n, x/(l +#)}.
r=0

[Differentiate (1 + x)n =1 + c2x + c2x2 + ... + xn, k times in suc­
cession, multiply respectively by a0, alx, a2x*, ..., and add.]

Deduce from this result the values of

(ii) S (r* - rl)cTxr.
o

*34. Differentiate n times the product ex x eaxcos bx by 
Leibniz’ theorem, and deduce that the sum to n + 1 terms of

cos9 + ctr cos {0 + </>) + c2r‘cos (0 + 2</>) + ...
equals p" cos (0 +nA), where psinA = rsin^ and pcos A = rcos^ + 1.

(i) ^r3crxr 
0

Method of Differences. Some examples of the use of difference 
methods have been given in Chapter III, pp. 37-43. We add 
further exan^iles here, and shall discuss the method on more 
general lines later. See pp. 210-220.

The method of finding the sum to n terms of the series

U1 +M2 + U3 + ...
when the general term ur can be expressed in the form

/(r+l)-/(r),
was explained on pp. 37, 38. Examples 4, 5 below should be 
compared with Example 2, p. 38 and with the summations (i), 
(ii) on p. 39.
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Example 4. Sum to n terms :

1 1 1
1.4.7 + 4.7.10 + 7.10.13 + ”‘

The rth term ur is 1
(3r-2)(3r+l)(3r + 4)

But 1 1
(3r-2)(3r+l) (3r+l)(3r + 4)

6
(3r-2)(3r+l)(3r + 4)
/ 1______________ 1
I (3r - 2)(3r + 1) (3r+l)(3r + 4)

Hence, putting r = 1, 2, 3, ... , n in succession and adding, 
“* + w„ + ... + un = -J- {— - (3n+1)(3n + 4)}

Note. It follows that the sum to infinity (see p. 57) of this 
series is

Example 5. Sum to n terms :
2.5 + 5.8 + 8.11 + ...

The term ur is (3r - l)(3r + 2). .
But (3r-l)(3r + 2)(3r+5)-(3r-4)(3r-l)(3r+2)

= (3r - l)(3r + 2){(3r + 5) - (3r - 4)} = 9wr.
.-. ur = i((3r-l)(3r + 2)(3r+5)-(3r-4)(3r-l)(3r + 2)}.

Hence, putting r= 1, 2, 3, ... , n in successibn and adding, 
Wj + ws +...+w„ = |{(3n- l)(3n + 2)(3n + 5)-(- 1)(2)(5)} 

= 3n3 + 6n3 + n.*
Examples 4 and 5 illustrate two general types of series to which 

many others can be reduced. In Example 5, all terms contain 
the same number of factors which are successive terms of an a.p. 
and the initial factors are successive terms of the same a.p. In 
Example 4, the terms are the reciprocals of terms of the type illus­
trated in Example 5. The methods given above for discovering 
the required difference can be applied' similarly to all series of these 
types.

The reader should now work Exercise Xb, Nos. 1-4.
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The sums of the series £r(r + 1), Sr(r+l)(r + 2), etc. were 
. 1 i

obtained on p. 39 by the method of Example 5. Any series 
whose term is a rational integral function of r can be summed 
by reduction to this type (cf. Example 3, p. 40). "

n
Example 6. Find the value of £(4r3 - 6r2 - 4r + 3).

1
If we write 4r3 - 6r2 - 4r + 3 in the form

a0 + apr + atr(r + 1)+ a3r(r + l)(r + 2),

the required sum is

a„n + a1 £r + a2 £ {r(r+ 1)} + a3 v {r(r + l)(r + 2)}
1 1 i

and by p. 39 the sum is

a„n + jaln(n+ 1) + ga2n(n+ l)(n + 2) + |a3n(n + l)(n +2)(n+ 3).

The values of a3, a3, a3, a0 can be written down in that order 
by inspection, thus

a3 is the coefficient of r3, a3 — 4;
a3 + 3a3 is the coefficient of r2, that is - 6, a3 = - 18 ;
«i + aa + 2a3 is the coefficient of r, that is - 4, a1 = 6;
a3 is the term independent of r, a0 = 3.

Hence the sum equals
3n + 3n(n+ 1) - 6zi(n + l)(n+ 2) + n(n+ l)(n + 2)(n + 3)

which reduces to n2(n2 - 4).

Note. The values of aQ, alt a3, a3 are the remainders obtained 
by dividing 4r3 - 6r2 - 4r + 3 in succession by r, r + 1, r + 2, and 
may therefore be found by the method given on p. 161, if not
easily determined by inspection. The working would then be as
follows :

4-6 -4 +3
4 - 10 + 6
4 -18

l a, = 3, <q = 6, «3= - 18, a, = 4.

X
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The series in Example 6 can also be summed by using the 

values of S r, S r’, S r’. See pp. 38, 39. Thus

S(4r3-6r2-4r + 3) = 4Sr3-6Sr2-4Sr + 3n
1

• = na(n + l)a - n(n+ l)(2n + 1) - 2n(n+ 1) + 3n
= na(na - 4).

This method is however inconvenient for functions of higher 
degree.

The reader should now work Exercise Xb, Nos. 5-7.

Examples 7-9 illustrate other series which can be reduced to 
the type summed in Example 4.

Example 7. Sum to n terms :

2,5 8
3.7.11 + 7.11.15 + 11.15.19 + ”

m h, 3r-l i(4r-1) —£The rth term =----------------------------- =--------- ---------J-----------(4r- l)(4r+ 3)(4r + 7) (4r - l)(4r + 3)(4r + 7)
3 i_ ______ 4______ _________ 4_________

- (4r + 3)(4r + 7) “ (4r - l)(4r + 3)(4r + 7)

The two series whose terms are

(4r+3)(4r+7) &nd (4r - l)(4r+3)(4r +7)

can now be summed by the method of Example 4, and the reader 
should verify that the sums are

1 (1 1 X . , 1 (_1________ 1_____ I
4\7~4n + 7z an' 8(3.7 (4n+ 3)(4n + 7)) '

Hence the sum to n terms of the given series is

3 1/1 1X11(1 1 )
4 4 \7 4n + 7z 4-8|,3.7 (4n +3)(4n + 7)J

which reduces to 17
672

24n+ 17
32(4n + 3)(4n + 7)'

Note. The sum to infinity of the series is
17

672’
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Example 8. Sum to n terms :
3 4 5_

1.2.4 + 2.3.5 + 3.4.6+"

The rth term u. is —-----—---- . Multiply the numerator and
r r(r + l)(r+3)

denominator by r + 2 to make the factors of the denominator 
successive terms of an a.p.,

r2 + 4r + 4 r(r+l) + 3r + 4
" Mr = r(r+l)(r+2)(r+3)= r(r + l)(r + 2)(r +3)

1 3 4
~(r + 2)(r + 3)+ (r + l)(r + 2)(r + 3) + r(r + l)(r + 2)(r + 3) *

.’. continuing as in Example 7, we obtain

” _/l 1X3/1 1 1
1T \3 n+3/ 2I2.3 (n+2)(n + 3)<

4/ 1________ 1________ 1
+ 3ll.2.3 (n+l)(n + 2)(n + 3)/

6n2 + 27ra+29
6(n + l)(n + 2)(n + 3)

29which reduces to — -
36

Alternatively the series can be summed by expressing the 
general term in partial fractions as in Example 9, with which 
Example 5 (p. 116) should be compared.

Example 9. Sum to n terms :
12 3

2.4.6 + 3.5.7 + 4.6.8 + "
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„ » 17 1/1 1 5 5 \Hence ?,«.=---- F - I------- 1--------------------------- I

1 96 8 \n + 2 n + 3 n + 4 n + 5/
The reader should now work Exercise Xb, Nos. 8-10.

The general terms of the series summed in Examples 4-9 can 
each be reduced to one of the following forms :

(i) ur — {a + (r- l)d}(a + rd}... (a +(r +k - 2)d}

Mr {a+ (r - l)d){a + rd)... {a+ (r + k - 2)d) ’

where each term contains k factors which are successive terms 
of an a.p. and the initial factors are successive terms of the 
same a.p.

For type (i), see Example 5 (p. 201). The required difference 
is obtained by writing down ur and inserting the next factor at 
the end.

If vr = {a + (r - l)d}{a + rd}... {a + (r + k - 2)d}{a+ (r + k- l)d), 
vr - vr_1=ur[{a + (r + k- 1 )d} - {a + (r- 2)d}] = wr(&+ l)d 

u1+ut + ...+un = (vn-va)/{(k + l)d}.
The sum can therefore be obtained by the following rule :
Write down the nth term and insert the next factor at the end ; 

divide the result by the increased number of factors and by the common 
difference. Then subtract from it the expression obtained by putting 
0 for n.

For type (ii), see Example 4 (p. 201). The required difference 
is obtained by writing down ur and removing the first factor.

Tf „ — ____________ł____________ Z- 1
r {a + rd}... (a +(r+ k-2)d}’ ’

vr - vr_l = ur[[a + (r- l)d) ~{a + (r+k- 2)d}]= - wr(& — 1 )d;
:. «,+«, + ...+«„=- (vn - v0)K(k - l)d).

The sum can therefore be obtained by the following rule :
Write down the nth term and remove the first factor ; divide the 

result by the diminished number of factors and by the common 
difference and change the sign. Then subtract from it the expression 
obtained by putting 0 for n.
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Thus in Example 7 (p. 203) the nth term can be expressed in 
the form

1_____________i______
(4n + 3)(4n + 7) (4n - l)(4n+3)(4n +7) ’

the sum to n terms is /(n) -/(0), where

f/n} = _ J____ L_ , J_________i _ _ 24n+17
' 1.4'4n + 7 2.4 (4n+3)(4n+7) 32(4n +3)(4n+7)’

.17 24n+ 17the sum to n terms is „ _ „ -
32.3.7 32(4n + 3)(4n + 7)

No use should be made of these rules until the methods for 
obtaining the sums from first principles are fully understood and 
have been practised thoroughly. Many prefer to disregard such 
rules altogether.

Another type of series is illustrated in Examples 10, 11.

Example 10. Sum to n terms :

4 4.7 4.7.10
5 + 5.8 + 5.8.11 + ‘"

The term ur is 4.7.10.. . (3r+l)
5.8.11.. . (3r + 2)’

But for r> 2, 4.7 ... (3r+ l)(3r + 4) 4.7 ... (3r- 2)(3r+ 1)
5.8...(3r  + 2) ~ 5.8...(3r-l)

4.7.. . (3r+l)
5.8.. . (3r + 2)

{(3r + 4)-(3r+2)}=2ur.

(4.7... (3r+ l)(3r + 4) 4.7 ... (3r-2)(3r+ 1)1
I 5.8...(3r + 2) 5.8...(3r-l) J*

Hence, putting r=2, 3, ... , n in succession and adding

n
£ur = ut +
1

4.7... (3n+l)(3n + 4)
5.8... (3n+2)

4.7 ... (3n+l)(3n + 4) „
2.5 ... (3n - l)(3n +2)
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The tests given in Chapter IV are not sufficiently refined to 

determine whether this series is convergent or divergent. A 
proof that this series is in fact divergent is given on p. 350 in 
Example 16.

The method used in Example 10 would not have been successful 
if the common differences in the numerator and denominator 
had not been the same. The series in Example 11 is substantially 
of the same type. A more general form is given in Exercise Xb, 
No. 40.

Example 11. Sum to n terms :
P P(P ~ i , P(P ~ V(P ~ 2) ■„ 
2 277“ d+ 275.8

Since this series can be written in the form

/(-3^) . (-3p)(-3p + 3) ( - 3p)( - 3p+3)( - 3p +6)
1 2 2.5 2.5.8 

it is of the same type as the series in Example 10 and can be 
summed in the same way. If for simplicity a is written for - 3p, 
the rth term of the series in the brackets can be written

1 fa(a+ 3)... (<z+ 3r-3)(<z + 3r) 
a+1 I 2.5... (3r- 1)

a(a + 3)... (a + 3r-6)(a+ 3r-3)^ _ __
2.5... (3r —4) J’ r ’

and it then follows that the sum to n terms of the given series is

The reader should verify these statements.

EXERCISE Xb

A
Find the sum to n terms and the sum to infinity when it exists 

of ths series in Nos. 1-10.
1 1 1 1

1.5 + 5.9 + 9.13 + ’“
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I 1
2* 8.il.l4+il.l4.17+ 14.17.2O+"‘

3. 1.4 + 4.7 + 7.10+...
4. 2.7.12 + 7.12.17+12.17.22 + ...
5. 1.4+2.7 + 3.10+...
6. 1.3.5 + 2.4.6 + 3.5.7 + ...

7. 7-th term, r(r+ l)(2r + 1) 8. 7-th term, ——-----

9. 7-th term, ■ .r(r+2)
10. 7-th term,

7-(r+l)(r+2)
r+ 1

3 3.5 3.5.7
7-(r + 2)(r + 3)

11. Sum ton terms: - + ^ + ^^1^+...

x 1 1.3 1.3.512. Sum ton terms: + ^-^ +—^ + ...

B
Find the sum to n terms and the sum to infinity when it exists 

of the series in Nos. 13-22.

14- 1.3.5 + 3.5.7 + 5.7.9 +

15. 5.7 +7.9 + 9.11 + ...
16. 1.5.9 + 5.9.13 + 9.13.17 + ...
17. 2.4 + 5.7 + 8.10+11.13 + ...
18. 1.1 + 4.5 + 7.9+10.13 + ...

120. 7-th term,

21. 7-th term,

(2r- l)(2r + 3)
3t-+ 1

22. 7-th term,

(7-+ l)(r + 2)(r + 3)
1

t-(t-+ 1)(t-+3)

23. Sum to n terms : ? + + 2-5-8 ,
3 3.6+3.6.9 + "’

24. Sum to n terms : ?+? 3.8.13 3.8.13.18
d 0^4 +4 n 14 in + •••4.9 ‘ 4.9.14 4.9.14.19
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C
Sum to n terms the series whose rth terms are as follows :

125.

26.

27. 28.

29.
32.

30. r*
33.

35. r(r + 2)(r + 4)(r + 5) 36. r(r+2)(r + 3)(r + 4)
1 r + 1

3!37. - + ——— + - ____
P p(p + l) p(p+l)(p + 2) + ...

38 1 2! i 3!
■p-1 (p-l)(p-2) (p-l)(p-2)(p-3) 

39. P 2-Pi?—1) 23 +PiPZ1^P-^ 23 - ..
1 1.3 1.3.5

40. Write down the sum to n terms of

(Oj- lJ + aJOj- l) + aja2(a3- 1) + 1) + ...

and by substituting for a., ° + for a ... °+ for a find 
J 6 b 1 b+dl 2 b+dr_3 r

the sum to n terms of

+ ...a a(a + dx) a(a + d1)(a + d3)
b + dl (b + d3)(b + dt) (b+ d1)(b + di)(b + d3)

Deduce from the result the sums of the series in Nos. 11, 12.

41. Deduce from No. 40 the sum to n terms of
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Difference Notation. We here discuss the subject on more general 
lines than hitherto, and introduce the “ difference notation ”,

From any series
^i» ^2’ ••• » •••

may be constructed a series of differences

IZg ~ ^4 1^3 f • •• > "^y-ł-l •••
We write

ua - wa = Awj, u, -ua = Au2,..., ur+1 - ur — Aur,...

and call the series

Auj, Aw3, Au3........Aur,...

the series of first differences.
Similarly, writing A2ur for Aur+1 - Awr, we call 

A2w1, A2ua, A2w3, ..., A2ur,...

the series of second differences, and in a similar way we can form 
series of 3rd, 4th,..., fcth,... differences.

The series of first differences formed from the series of 7cth 
differences of the original series is the series of (k + l)th differences 
of the original series, that is

A(AŁur) = AŁ+,ur

and more generally
Al(Akur) = Ak+lur

It is sometimes convenient to use

A-’ttj, A-1u3, A~'tt3,.

for the series which has

^i> u3, • ••

as its series of first differences, and then

wx = A_1ws - A-1Wj 
w3 = A-1 u3 - A-1 m3
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Thus the problem of finding the sum to n terms of a series 

ut + u2 + u3+ ... is equivalent to the problem of finding A-1wn+1 
or A-1un.

We have already in effect used this method of summation in 
many examples ; e.g. in Example 5 (p. 201) un = (3n - 1) (3n + 2), 
and the ar gument amounted to showing that

A_lun+i =|(3n - l)(3n+ 2)(3n + 5).

The process of finding A-1un may be compared with that of 
integration, and just as there are many elementary functions f(x) 
of a continuous variable x such that $f(x)dx cannot be expressed 
in terms o f elementary functions, so there are many elementary 
functions /(n) of a positive integral variable n such that A_1/(n) 
cannot be expressed as an elementary function of n.

We shall consider in this chapter some general types of function 
/(n) for which A_1/(n) can easily be found. ,

contains an arbitrary constant, because if

^(n+ l)-^(n) = Mn, 

then also {<f>(n+ 1) + c) - (<£(n) + c} = wn.

EXERCISE Xe

A
Find the rth term of the first difference series of the series in 

Nos. 1-4.

1. 1.2.3, 2.3.4, 3.4.5,... 2. 1!,2!,3!,...

3> 1X3’ 2X4’ 3^5”" 4. sin9, sin 39, sin 59,...

Find the term of the second difference series of the series in 
Nos. 5, 6.

5. 1’, 2s, 3’,... 6. a, ax, ax',...

Find A-1w„ and A_1wn+1 - A-1Uj, when ur has the values given 
in Nos. 7-11, (see Examples 4-10, pp. 201-206):

7. r 8. r(r+l) 9. xr
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10- (2r+l)(2r + 3)

12. Evaluate £(r2 + l)(r!)
1

11.

13.

4.7.10... (3r+l)

n r
Evaluate S ------rr,-----1 (r+l)(r + 2)

2r

B
Find the term of the first difference series of the series in

Nos. 14, 15.
14. I2, 22, 32, ... 15. 1 2 1

Fl’ 3!’ 4!

Find the rth term of the second difference series of the series in 
Nos. 16, 17.

16. 1.2.3, 2.3.4, 3.4.5,... 17. log 1, log2, log3, ...

Find A_1mm and A_1wn+1 - A-1^, when ur has the values given 
in Nos. 18-20.

18. (4r-3)(4r+l). 19. 20. log(l+J)

n ~ n r_i_Q Z2\r
21. Evaluate £----- — 2r 22. Evaluate 2 —---- --  (- )

i(r + 2)! jr(r+l)\3/

C
23. If uT = sin B sin rff, find A-1uM and A_1wn+1 - A-1^.
Find the sum to n terms and the sum to infinity of the series 

whose rth terms are the functions in Nos. 24-26.
24. r2 + r- 1 25 -----2z + 2r-J__ _ 26. r+ 1

(r+2)! (x + r)2(x + r - l)2 (r+2)!

27. Sum to n+ 1 terms :
1 , a t a(a + d3) _ afa + djfa + d^

+d.++ d^d3 + -

28. Prove that the sum to n terms of
ai [______ di a2______ |________ dy a3___________

a2 + d2 (a2 + d2) (a2 + d2) (aq + d2) (<z2 + d2) (a3 + d3) 
equals 1 -dld2 ... dn/{(a1 + dt)(at + d2)... (a„ + d„)J

29. Sum to n terms :
2 4 6 8

1.3+1.3.5+1.3.5.7+1.3.5.7.9 + • ••
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Successive Differences

If ur = ark where a and k are constants (independent of

&ur = a{(r + l)fc - r*}

which is a polynomial of degree k - 1 in r.

Also if ur = vr + wr,

it follows from the definition on p. 210 that

Aur = At>r + Awr.

Hence if ur is a polynomial of degree k in r,

&ur is a polynomial of degree k - 1 in r,

&3ur is a polynomial of degree k - 2 in r,

and so on. Hence

Afc_1 uT is of the form ar + b where a, b are constants

and &kur is a constant.

Also A™«r = 0 if m>k.

Consider for example the series whose rth term is the cubic 
polynomial r3 + r. The series is

2, 10, 30, 68, 130, 222, 350, ...

and the successive difference series are

8, 20, 38, 62, 92, 128, ...
12, 18, 24, 30, 36,.............
6, 6, 6, 6,.....................
0, 0, 0,.............................

Thus A’wr = 6, A4wr = 0, for all values of r.
Conversely if A4wr = 0 for all values of r, it can be shown that 

A8ur is constant, A2ur is of the first degree in r, \ur is of the 
second degree in r, and ur is a cubic in r.
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For example if &aur = ar + b where a, b are constants (indepen­
dent of r), then by definition

Awr+1 - Aur = A* ur — ar + b
bur- &ur_i = a(r-\) + h

Awr_! - Aur_a = a(r - 2) + b

Awa - AUj = a + 6.

/. by addition, Aor- Au1 = o{l + 2 + 3 + ... + (r - 1)} + (r- 1)6 
= fr(r- l)o+ (r - 1)6.

&ur = cr* + dr + e

where c, d, e are constants.
The general result is proved on p. 216.

Example 12. Find by the method of differences the rth term 
of a series which has 10, 11, 14, 21, 34, for its first five terms.

The series and its successive difference series are

10 11 14 21 34
1 3 7 13
2 4 6
2 2

Thus A’u1 = 2 and Aaoa = 2, and if we assume that A3ur = 2 for 
all values of r, the previous discussion suggests that ur is a cubic 
in r. That this must in fact be so is proved later (see p. 216). 
We then have

wr=o0 + a1r + o2r8 + a2r’

and it is easy to find o0, alt av a3, such that ulf u2, u3, •ul have the 
values 10, 11, 14, 21 respectively, but it is simpler to write

wr= 6„ + 6,(r- 1) + 6,(r - l)(r - 2) + 6,(r- l)(r - 2)(r - 3).

Putting r=l, 10 = u1 = 60
r=2, ll = wa = 60 + 61, 6a = l.
r=3, 14 = ua = 60 + 26, + 26a, .’. 6a=l.
r = 4, 21=uł = 60 + 36, + 662 + 66a, 63=f

«r=10+(r-l) + (r-l)(r-2) + ł(r-l)(r-2)(r-3)
= ł(r’-3ra + 5r + 27).
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The general statement made above may be checked by noting 

that for this form of ur

w, = ł(125 - 75 + 25 + 27) = 34.

The assumption that A3ur= 2 for all values of r fixes the values 
of all the other terms of the series which begins 10, 11, 14, 21, 34. 
But if we are merely given these first five terms and do not make 
any assumption, we can continue the series in an arbitrary 
manner. For example the series determined by

ur = l(r3 - 3r2 + 5r + 27) + A(r - 1) (r - 2) (r - 3) (r - 4)(r - 5) 

for any value of A, not necessarily a constant, has also 10, 11, 14, 
21, 34 for its first five terms.

Example 13. Find by the method of differences the rth term of 
a series which has 10, 11, 14, 21 for its first four terms.

The series and its successive difference series are

10 11 14 21 .......
1 3 7................
2 4.........................

Here A2w1 = 2, A2u2 = 4 and if we assume A2ur=2r, we obtain the 
series in Example 12 for which

wr=i(r2-3r« + 5r + 27).

Alternatively we might assume that A2ur= 2r and we then have 
as on p. 214 since Aur+l - Aur = A2ur= 2r,

Aur - Aur_j = 2r_1, Am,., - Aur_2 = 2r~2,... , Au2 - Aiq = 2,
.-. Aur - Auj = 2r_2 + 2r-a + ... + 22 + 2 = 2r - 2.

But Auj = 1, .’. Nur = 2r - 1.
Hence, by the same argument,

wr-w1 = (2r_1- l) + (2r-‘-l) + ... + (2*- l) + (2-l)
= 2r-2-(r-l) /

But wI = 10, ur=2r-r + 9,

which is a solution of quite another form.
The reader should now work Exercise Xd, Nos. 1-5.
D.R.A.A. II. 0
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General Formulae
It has been pointed out that

(i) A(i>r +wr) = At-r + hw, (p. 213)
(ii) A!(A*wr) = AL+Jwr (p. 210)

and these relations show that the symbol A operates according 
to the distributive and index laws of algebra.

Now by definition

u2 = u1 + AWj and u3 — u2 + Au2

hence u3 = (ul + Aiq) + A(wx + AuJ = (u2 + Aiq) + (Awx + A2w2) 
= tq + 2Awj + A2iz2.

But since the symbol A obeys the laws of algebra, this work 
might have been written

u3 — (1 + A)u2 = (1 + A)(l + A)w2
= (1 + A)2wt = (1 + 2A + A2)u2
= u2 + 2Au1 + A2uv

Also m„+1 = (1 +A)nWj

i.e. un+i=Ui + (j^ ^ + (2) A’Uj+.-.+AnUj

where the coefficients are binomial coefficients.
This is known as Newton's Difference Formula, and it is easily 

remembered in the form (l+A)nu1.
It follows from this result that if the terms of the difference 

series are all equal (and not zero), w„+1 and therefore also un is a 
polynomial of degree k in n.

For if A*wr is constant, i.e. independent of r, 

then At+1wr = 0 = A*+,wf.= ....
Hence

un+l = u2 + axn + a2n(n - 1) + ... + akn(n- l)(n - 2) ... (n - k + 1), 

where aJ) = A’w1/p!
This is the general statement to which reference was made on 

p. 214.
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Sum to n Terms

By applying Newton’s Formula to the series

A-’Uj, A_1u2, A~*w3, ...

for which the successive difference series are

w2, w3,...
Au1( Awa, Aw3, ... 

we have
A_lwn+i = a_1mi + (i) ui + Q) Auj + ... + A"-1^.

n
But ur = A_1ur+1 - A_1?zr, .'. S“r = A-1wn+1-A-’Uj,

A |ur=(“)ul+Q^Au1+...+A»-*u1

which may be expressed symbolically in the form

' vMr = A-*{(l + A)n-1}M1.
1

If ur is a polynomial of degree k in r, we have shown that 
A4wr is a constant and that AL+1ur = O = Afc+2wr=... . The above 
relation is then a formula for the sum to n terms of the series. 
But in other cases it merely transforms one ‘ sum to n terms ’ 
into another. For example with the series 1, x, xa, ... , xn~l, it is 
easy to see that Au1 = a:- 1, A2w1 = (o:- I)2, A’u1 = (a:- l)3,... and 
hence
1 +x + x2+ ... +a>n-1=n+ ^0 (x - 1) + 1)2 + ... + (x-

In the above illustration, the values of Aiq, A2iz1, A3wi; ... 
are obtained quickly by successive calculations. It is however 
sometimes convenient to have a formula for Amw1 in terms of

...» um+1.
Since Au1=w2-w1 and Au2 = w3-u2,

A2iq = Aw2- Aw1 = (w,-w2)- (Wj-Uj),
i.e.  A2w2=w3 - 2u2 + u2.

Similarly A3u2 = (u4 - 2w3 + wa) - (w3 - 2u2 + iq)
=u4 - 3w, + 3w2 - u2
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and it is easy to see by induction that

where the coefficients are binomial coefficients.
A formal proof may also be obtained by applying Newton’s 

Difference Formula to the series

-Atq, A’Uj, -A’Wj, ...

which has for successive difference series

-u2, &u3, -A2u2, A3w3, ...
u3, -Aw3, A2w3, -A’w3> ...

so that the formula gives
( - l)mAmW1=U1 - (™) w, + (2) w3 -••• + ( -

= Um+1 - (’") Um + (1 )mW1.

Since a series may be formed by starting at any term of a 
given series, Amwr is given by

Amur = um+r - wm+r_x + Wm+r_3 ... + (- l)mwr
and in particular

A2wr = m,.+2 - 2ur+1 + ur
k3ur = ur+3 - 3ur+2 + 3wr+1 - ur 

and so on. Use is made of these results in the solution of certain 
difference equations ; see Examples 4, 6 on pp. 230, 231.

Example 14. Given that the rth term of the series
3, 4, 7, 14, 27, 48, 79, ...

is a polynomial in r, find its possible values.
The series and its successive difference series are

3 4 7 14 27 48 79...
1 3 7 13 21 31 ...........
2 4 6 8 10.
2 2 2 2 .
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Hence a possible value of ur is obtained by assuming that A’u, = 2 
for all values of r. We then have

= |(r3 - 3r2 + 5r + 6).

Hence by hypothesis ihe value which ur can take when the 
assumption about A3 ur is not made, differs from |(r3 - 3r2 + 5r + 6) 
by a polynomial in r which is zero for the values r = 1, 2, ... , 6, 7.

Therefore all possible values of ur are of the form

|(r3 _ 3r2 + 5r + 6) + (r - 1)(r - 2)(r - 3)(r - 4)(r - 5)(r - 6)(r - 7)P(r) 

where P(r) denotes a polynomial in r.

Example 15. Evaluate l3 + 23 + 33 + ... + n2.

The series is 1 8 27 64 125...
and the difference series are 7 19 37 61..............

12 18 24 .
6 6 .

Hence 0,ul = 7, A2Uj = 12, A3w1 = 6,

and it is known that A‘u1 = 0 = A5u1 = ...

= n + |n(n- 1) + 2n(n - l)(n - 2) + jn(n - l)(n - 2)(n - 3) 

which reduces to £n2(n + l)2.
Note. Other methods for summing this series are given on 

pp. 39, 40, 42.
The reader should now work Exercise Xd, Nos. 6-8.
For the g.p. a, ax, ax2, ax2, ... of common ratio x, the first 

difference series is
a(x-l), ax(x-l), ax2(x- 1),...

which is a g.p. with the same common ratio.
Hence all the difference series are geometric progressions with 

common ratio x. .
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Also A2w1 = a(a:-l)3, A3w, = a(x-l)3, ...

and (see p. 218), AmwI = a(a: - l)m, &mur = a(x - l)ma:r"t.
It is not however true that when the mth difference series is a 

g.p., the original series must also be a g.p., and in fact it follows 
from p. 216 that if

ur = ax'-1 + a0 + a, r + r3 + ... + a;. r*,

then the (&+l)th difference series and all later difference series 
are g.p.’s. It therefore follows that if the (fc+l)th difference 
series is

b, bx, bx2, bx2, ...

a possible form of ur is

6®r-1/(a:- 1)*+1 +a„ + a1r + a2r‘+ ... + akrk,

and it is easy to prove that this is the most general form.

Example 16. Find by the method of differences the term 
of a series whose first seven terms are 1, 2, 3, 6, 17, 54, 171, and 
find the smn to n terms. »

The series and the successive difference series are

1 2 3 6 17 54 171 ...

1 1 3 11 37 117..............

0 2 8 26 80.

2 6 18 54 .

Thus the determinate terms of the third difference series are 
terms of a g.p., and if we assume that A’wr = 2.3r_1 for all values 
of r, it can be proved as stated above that

ur = 2.3r_,/23 + a0 + a1r + a2r2

= }3r~2 + a +b(r - l) + c(r-l)(r-2) .....................(i)

By putting r = 1, 2, 3 in succession, we obtain

a = f, 6 = 1, c = -1,

hence ur= l(3r_1 - 2r2 + 8r - 3) .............................. (ii)
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The sum to n terms can be found from (ii), but rather more 

easily from (i) which gives (see p. 40)

|(1 + 3 + 32 +... + 3n_1) + an + $b(n - l)n + |c(n - 2)(n- l)n, 

= 1(3” - 1) - Ąn(2n» - 9n - 2).

Alternatively there exists as in Example 13, p. 215, a polynomial 
of degree six in r which takes the seven assigned values for 
r= 1, 2, 3, ... , 7 and this can be obtained from Newton’s formula 
by writing down three more of the difference series.

EXERCISE Xd

A

1. Calculate the first three difference series of the series

3, 13, 37, 81, 151, 253, 393.

2. Find by the method of differences the term of the series 
3, 7, 13, ... assuming it to be a quadratic in r.

3. Find by the method of differences the rth term of the series 
1, 7, 25, 61, ... assuming it to be a cubic in r.

In Nos. 4, 5, find the rth term assuming it to be a polynomial 
in r of as low a degree as possible :

4. 4, 10, 18, ... 5. - 4, 0, 6, ...
n

6. Evaluate S(r2 + r+ 1) by the method of differences.
1

Find the rth terms of the series in Nos. 7, 8, assuming them to 
be polynomials in r of as low a degree as possible. Find also 
the sums to n terms.

7. 1, 3, 7, 13, 21, ... 8. - 1, 4, 21, 56, 115, ...

Find the rth terms of the series in Nos. 9, 10, assuming that 
at the earliest possible stage the difference series are geometric 
progressions. Find also the sums to n terms.

9. 3, 4, 6, 10, 18, ... 10. 1, 11, 111, 1111, ...
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B
11. Calculate the first four difference series of the series

7, 14, 31, 74, 191, 526, 1511.
12. Find the rth term of the series 0, 5, 22, 57, ... assuming it 

to be a cubic in r.
13. Find the rth term of the series 1, 2, 3, 4, 6, ... assuming it 

to he a polynomial of degree 4 in r.

In Nos. 14, 15, find the rth terms assuming them to be poly­
nomials in r of as low a degree as possible.

14. 3, 8, 17, ... 15. 0, 4, 18, 48, ...
n

16. Evaluate 2 (2rs - 3r2) by the method of differences.
1

Find the terms of the series in Nos. 17, 18, assuming them 
to be polynomials in r of as low a degree as possible. Find also 
the sums to n terms.

17. 3, 15, 35, 63, ... 18. 1, 12, 45, 112, 225, 396,

Find the rth terms of the series in Nos. 19, 20, assuming that at 
the earliest possible stage the difference series are geometric 
progressions. Find also the sums to n terms.

19. 1, 4, 10, ... 20. 4, 9, 17, 31, 57, ...

C
21. If ur= 1/r, find &nur 22. If ur = 1l{r(r + 1)}, find &nut.

In Nos. 23, 24, find the rth terms assuming them to be poly­
nomials in r of as low a degree as possible.

23. 0, 0, 12, 42, ... 24. 3, 4, 6, 10, ...
n

25. Evaluate 2(r_ l)2(r_ 2)2 by the method of differences.
1

Find the terms of the series in Nos. 26, 27, assuming them 
to be polynomials in r of aS low a degree as possible. Find also 
the stun to n terms.

26. 12, 50, 126, 252, 440, ... 27. 1, 2, 4, 8, 15, 26, 42, ...

Find the rth terms of the series in Nos. 28, 29, assuming that 
at the earliest possible stage the difference series are geometric 
progressions. Find also the sums to n terms.

28. 3, 10, 27, 70, 187, ... 29. 7, 18, 46, 104, 212, 404, 742, ...
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If wr=(- l)r-1/r, prove that ^nu1 = (- l)"(2n+>_ l)/(n+ 1).

X]
30.

31. Prove that | l/r= (”) - ’ (“) +1Q -... + ( - I)—IQ •

32. If ar = r/(r-x), prove that x/(x-n) is the sum to n+1 
terms of

©al a2a3 + ...

MISCELLANEOUS EXAMPLES 
EXERCISE Xe

A
1. Find the coefficient of a2b2c in (4a + 36 + 2c + d)4 5 6 7 * 9
2. If n is a positive integer, prove that

4. Prove that 2— r H~ 3------flY = l
1 r(r+ l)(r + 2) \3/ 4

5. Sum to n terms : 1.4.7 + 4.7.10 + 7.10.13 + ....

6. Sum to n terms : -1— + —— +.—1—ł-....
1.4 4.7 7.10

7. Sum to n terms the series - 1 + 6 + 37 + 140 + ... given that 
the second difference series is a g.p.

is equal to the coefficient of xnyn in the
expansion of {(1 + x) (1 + y) (x + y)}n.

dn9. Prove by evaluating that

_ /n\ 2p+ 1
\l/2p + 2

(3n+1)^(1-^

and deduce that

‘)ndx = 3n^(l-a:»)n-»da;,

1 -

______ fir.
4 2(n + l)(n + 2)\3/

1

O3"(n!) 
— 1.4.7 ... (3n+1)’

3. If (*J2 + 1)2”‘+1 = N’ + F where m, N are positive integers 
and 0< F< 1, prove that N—l/F - F.

n Zn\
8. Prove that S

fn\ (2p+ l)(2p + 3)

equals ____ 1.3.5 ... (2n - 1) _ *
(2p + 2)(2p + 4)... (2p + 2n)

1



224 ADVANCED ALGEBRA [CH.
2n

10. If (1 + x + x2)n = "£,arxr, prove that

a02-a12 + a22-... + a2n’ = an.

B
11. Find the coefficient of x1 in (1 - 2x + a;3)*.

12. Find the sum to n + 1 terms of

2n
13. If (1 + px + x*)n = 'S,arxr, prove that 

o
(i) 1 + 3ai + 5a2 + ... + (4n + l)ct2n = (2n + 1)(2 +p)n

(ii) 2 + 3aj + 5a2 + ... + (22n + l)a2„ = (2 +p)n + (5 + 2p)».

14. Find the sum to n terms and the sum to infinity of the
r + 2 /IV

r(r+l) \2z 'series whose rth term is

15. Prove that the sum to n terms of the series

I

1 1! 2!
x+I+ (x + l)(a? + 2)+ (x + 1)(® + 2)(z + 3) +

1 n!
x x(x+ 1)... (x + n)

16. Sum to n terms : 1.52 + 5.9* + 9.132 + ...

17. Sum to n terms : , * : + _ * g+o"g~~c + •••
1.3.4 2.4.5 3.5.0

18. Sum to n terms the series 8, 4, 2, 2, 4, ... , assuming that 
the rth term is a polynomial in r of as low a degree as possible.

19. If (5 + 2s/'6)m = N + F, where m, N are positive integers and 
0< F< 1, prove that N = 1/(1 - F) - F.

20. The rth polygonal number of order n is defined to be 
r + |r(r - l)(n - 2), n>2. Prove that the sum of the first r of all 
sets of polygonal numbers of orders 2 to k inclusive is

•fjr(r + V)(k - l)(tr - 2r - k + 8).
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21.

C
„ , a a(<z-l) a(a-l)(a-2)Sum to n terms : 1 - y H---- ----------------------1.2 1.2.3 +...

n - 2
22.

23.

Sum ton terms: 1^3 + ^+3^5+-

If uT = sin (a + Zj8), prove that
&nur= (2 sin 1/?)" sin {a + |n(w + /J) + rp}.

If n = mq + r where n, m, q, r are positive integers and 
prove that the greatest coefficient in the expansion of

24.
r<m,
(x1 + xi+ ...+xm)n equals n!/{(g!)”!(g+ l)r}

25. If (1 + z)(l + xz)(l + x2z)... (1 +xn~1z) = 1 + £arzr, prove that
1

(i) ar = «,._!a;’'"1 (1 - ®"-’'+1)/(l - xr)

(ii)a

26. Prove that the sum to r terms of the series
n n(n-l) n(n - l)(n- 2)

m+ 1 + (m+ l)(m + 2) (m+ l)(m + 2)(m + 3)+ ”*

equals (m/(m + n)} x
{1 + ( - lf-’IXn - 1)... (n - r + l)]/[m(m+ 1)... (m + r- 1)]}.

27. Prove that the sum of the reciprocals of the coefficients of 
x1 for r = 0 to 2n in the expansion of (1 - x)2n where n is a positive 
integer, is (2n + l)/(n+ 1).

28. If a =# 1, find the sum to n terms of
, 1 + d (l+d)(l + 2d) (1 + d)(l + 2d)(l + 3d)

+ a + 2d + (a + 2d) (a + 3d)+ (a + 2d) (a + 3d) (a + 4d)+

29. If sr = 1 + 2 + 3 + ... + r, prove that
s, sn + s2 s„_j + s3 sn_2 + ... + snsl = iloMn + 1) (n +-2) (n + 3) (n + 4).

30. Prove that the sum to n + 1 terms of the series
, fri\a fri\a(a-l) (n\a(a - l)(a- 2)

_ \1/ b + \2/ 6(6-1) “ \3z 6(6 - 1)(6 - 2) +

is {(6- a)(b -a - 1)... (6 - a-n + l)}/{6(6 - 1)... (6 - n+ 1)}.



CHAPTER XI

DIFFERENCE EQUATIONS
Recurring Series. A method of summing the series

a + (a + d)x + (a + 2d) a:2 + ... + (a + rd)xr +...

is given on p. 44, and an alternative method of completing the 
work is indicated in Exercise IHd, No. 9, p. 46.

Consider for example the power series whose successive 
coefficients 2, 5, 8, ..., 3r- 1, ... are in a.p.

If S=2 + 5o; + 8a:2 + ...+ (3n-Y)xn~\
then -2k5= - 4x - 10x2 - ... - 2(3n- 4)x"~’ - 2(3n - l)xn, 
and x*S = 2x* + ...+ (3n - 7)®"“’+ (3n - 4)xn

+ (3n- l)zn+1.

But in the sum of these results the coefficient of xT~' for 
r= 3, 4, ... , n is evidently (3r - 1) - 2(3r - 4) + (3r - 7), that is 0, 

the sum (S') to n terms is given by

(1 - 2x + x2)S = 2 + x - (3n + 2)xn + (3n - l)o;n+1.

This method owes its success to the fact that, if pr denotes the 
coefficient of xr,

Pr~2Pr-i+Pr-i = 0, (r = 2,3, ..., n - 1)

and it can be used in all cases in which the coefficients are con­
nected by such relations.

Example 1. Sum to n terms :

3 + 4o:+6a:’ +... + (2 +2T)o:r+... .

If 5 = 3 + 4x + 6a:2 + lOz3 + ... + (2 + 2"-1)o:n-1,
then axS = 3ax + 4axa + 6axa +... + (2 + 2n~1)axn~1 + (2 + 2n~1)axn, 
and bx‘S = 36a:2 + 4bx3 +... + (2 + 2n~‘)bxn~1 + (2 + 2n~‘)bxn

+ (2 + 2n~1)bxn+l.
226
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Values can be chosen for a and b so that on addition the 

coefficients of x2 and x3 are zero. This requires that

6 + 4a + 36 = 0 and 10+6a+ 46 = 0

and these equations give a= - 3, 6 = 2.
But for these values of a, b, the coefficient of xr for

r = 4, 5, ... , n - 1 is (2 + 2T) - 3(2 + 2’--1) + 2(2 + 2r-’) 

which equals 2r_1(2 -3+1), that is 0.
.’. the sum S to n terms is given by

S( 1 - 3® + 2®2) = 3- 5® -(6+ 3.2"-1 - 4 - 2"-*)®" + (4 + 2n)®B+*.
S = (3 - 5® - (2 + 2")®n + (4 + 2n)®”+1}/( 1 - 3® + 2®2),

In order that the method of Example 1 may be employed 
successfully for the general series

5 =Po + Pix +Ptx2 + ... + p„_lxn~1,
it is necessary that after a and 6 have been chosen so that the 
coefficients of ®2 and ®3 in S(1 +ax+ 6®2) are zero, the coefficients 
of xr for r = 4, 5........ n - 1 should also be zero, that is

, * 
Pr + aPr-i + bPr-2~0’ (r = 2> 3, 4, ... ,71-1).

This equation in which a, 6 are constants is called a linear 
difference equation with constant coefficients, of order 2.

A similar method can be used if the coefficients are connected 
by the relation

Pt + aiPr-1 + aiPr-i + a>Pr-i = 0
where a,, aa, a3 are constants (see Exercise Xia, Nos. 31, 32), and 
this is called a linear difference equation with constant coefficients, 
of order 3.

The series
Po> Pl’ Pl’ Pl’

whose terms satisfy the linear difference equation with constant 
coefficients, of order k,

Pt + a, pr_, + a,pr_, + ... + akpT_k = 0, r > k,

is called a recurring series, and the difference equation is called 
the scale of relation of the series.
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We shall return to the subject of recurring series after con­
sidering the solution of some difference equations.

The reader should now work Exercise Xia, Nos. 1-3.

Linear Difference Equations. We begin by considering equations 
of the second order with constant coefficients, i.e. equations of the 
form

ur + aur_2 + bur_2 = 0, r>3.
Since wa = - au2 - bu2 and ut= - au3 - bu2,

ut = a(a/u2 + bu2) - bu2 = abu2 + (a2 - 6)w2.
Therefore w3, ut can each be expressed in the form Xut + /zu2 
where A, /z are independent of u, and w2. It follows by induction 
that ur can also be expressed in this form, so that

ur = Arw1 + prws
where Ar, /zr are functions of r but are independent of wt, w2.

Arbitrary values can be assigned to u2, u2, and therefore the 
general solution of the equation

ur + aur_1 + bur_2 = 0 
contains two arbitrary constants which occur in a linear form.

It is characteristic of all linear equations and is evident by 
direct substitution that if ur=f(r) and uT = g(r) are two solu­
tions, and if A, B are any two numbers independent of r, then 
ur = A fir) + Bg(r) is also a solution; this contains two arbitrary 
constants if f(r) and g(r) are not proportional, i.e. if their ratio 
is not independent of r, and is the general solution. If however 
f(r) and g(r) are proportional, Af(r) + Bg(r) can be expressed in 
the form (AA, + BB,)h(r), = Ch(r), where Av B2, C are indepen­
dent of r, and therefore involves only one arbitrary constant.

It can be shown similarly that a third order difference equation 
with constant coefficients

ur + aur_2 + bur_2 + cur_2 = 0, r>4,
has a general solution of the form

wr = Af(r) + Bg(r) + Ch(r)
where A, B, C are arbitrary constants.
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Also the general fctb order difference equation with constant 

coefficients has a general solution

ur ~ Cj oq + C2 4-... 4* <xk

where a,, a2, ... , ak are independent particular solutions and 
C2, C2, ... , Ck are arbitrary constants.

Note. oq, aa, ... , ak are called independent if it is impossible to 
find constants A,, A2, ... , Ak, not all zero, such that

AjOjł A2ota+ ...+Ataj. = O.

We now proceed to indicate by examples the methods of finding 
particular independent solutions and hence the general solution. 
The methods apply to equations of any order.

The reader who is familiar with the solution of linear differential 
equations of the second order with constant coefficients will 
recognise the analogies between difference equations and differ­
ential equations (see Dwell and Robson : Elem. Calculus, Vol. II, 
pp. 410-413).

Example 2. Solve the difference equation

ur - 5ur_2 + 6ur_j = 0, r > 3.

If ur = xT, then u,_l=«r“1 and ur_2 = a/-’. Hence the equation 
is satisfied if

xT - 5a:r_1 + 6a:,-a = 0,

that is if x2 - 5x 4- 6 = 0, which gives x=2 or 3.
Thus wr = 2r, ur = 3r, are two particular solutions. As they are 

independent, the general solution is

M, = 42f + B3'

where A, B are arbitrary constants.

Note. The solution of Example 2 might equally well be taken 
in the form ur = C 2r~l + D 3r_1 where C, D are arbitrary constants. 
Sometimes the use of this form effects a considerable saving in 
numerical work.
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Example 3. Find ur if w, = 8, u, = 200, and

uT = 63«r_2 - 2ur_v r > 3.

As in Example 2 the equation is satisfied by

wr = af if x2 + 2x- 63 = 0, i.e. if x = 7 or - 9.

Hence wr = C 7r_1 + D ( - 9)r_1.
Put r = 1 ; then (7 + D = ul — 8.
Put r = 2 ; then 7C -9D = ua = 200.
Thus (7=17 , D=-9, ur=17.7r~l+(-9)r.

(If ur = A7r + B(- 9)r had been used, the equations for A, B
would have been 7 A - 9B = 8 and 49*4 + 81B = 200.)

Example 4. Solve the difference equation

ur- 8wr_i + 16ur_2 = 0, r>3.

If ur = xr, we have as in Examples 2, 3,

x3-8# + 16 = 0, A (x-4)2 = 0, x = 4.

Therefore wr = A4r is a solution, but as it contains only one 
arbitrary constant it is not the general solution.

Put wr = 4ri>r ; then 4rvr-8.4r_1«r_1 + 16.4r-2u)._2 = 0.

vr-2vr_1 + vr_, = 0

by p. 218, A2vr_2 = 0 and so Aavr = 0.
by p. 216, vr = B + Cr where B, C are arbitrary constants.

Hence ur = (B + Cr)4r
and this is the general solution because it contains two arbitrary 
constants.

The reader should now work Exercise Xia, Nos. 4-10.

Example 5. Solve the difference equation

“r+s ~ 4wr+a + Ur+1 + &ur = °> r > 1 •

Put ur = xT, then the equation is satisfied if x3 - 4x2 + x + 6 = 0, 
that is if (z+ l)(a: - 2)(a; - 3) = 0.

Hence the general solution containing three arbitrary constants 
is ur=(-l)rA + 2rB + 3r(7.
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Example 6. Solve the difference equation 

ur+, - 6ur+, + 12wr+l - 8ur = 0, r > 1.

Put wr = xr, then the equation is satisfied if a;3 - 6x2 + 12a? -8 = 0, 
that is if (x - 2)3 = 0, x = 2.

Hence uT= 2r is a solution. To obtain the general solution put 
uT — 2rvr, then 8t>r+5 - 24vr+2 + 24vr+1 - 8vr = 0,

vr+s - 3vr+t + 3vr+i “ = 0.

A by p. 218, A3«r = 0.
/. by p. 216, vr = A + Br + Cr2 where A, B, C are arbitrary 

constants.
Hence the general solution is ur = 2r(A + Br + Cr2).

Example 7. Solve the difference equation

2ur+< - 15wr+, + 42ur+, - 52ur+1 + 24ur = 0, r> 1.

Put ur = xT. Then the equation is satisfied if

2x* - 15a:8 + 42a:8 - 52x + 24 = 0,

that is if (x - 2)2(2x - 3) = 0.

Hence ur = 2r and ur = (|)r are solutions. The work of Example 6 
suggests that ur=2T(A +Br + Cr2) is also a solution. This can be 
proved as follows.

The factorisation (2a: - 3) (a:8 - 6a:8 + 12a: - 8) suggests writing the 
difference equation in the form

2(wr+< - 6ur+, + 12wr+, — 8ur+1) — 3(ur+3 — 6wr+1 + 12wr+1 — 8ur) — 0, 

which shows that any value of ur which satisfies

Wr+, - 6"r4-i + 12“r+l - 8ur = 0

and which therefore satisfies

ur+4 — ~ ®Mr+i ~ ®

also satisfies the given difference equation.
Hence from Example 6, ur = 2r(A + Br + Cr2) is a solution.
Thus the general solution, containing four arbitrary constants, 

is ur = 2r(A+Br + C'r8) + (f)’'D.
D.R.A.A. II. D



232 ADVANCED ALGEBRA [ch.

The case in which the corresponding equation for x has complex 
roots is illustrated in Example 8.

Example 8. Solve the difference equation

ur - 8wr_, + 25wr_2 = 0, r> 2.

Put ur = xr. Then the equation is satisfied if x2 - Sx + 25 = 0, 
which gives x = 4 + 3i or 4 - 3i.

Hence wr = A(4 + 3i)r + B(4-3i)’-.

Choose p, a so that p cos a —4, p sin a = 3, p>0 ; then p = 5, 
and a is given by cos a : sin a : 1 = 4 : 3 : 5, and

ur = Apr cis ra + Bpr cis ( - ra)

where cis 0 denotes cos 0 + i sin 0.

Hence uT = 5r{ (A + B) cos ra + i(A - B) sin ra}

which may be expressed in the form

uT = 5r(C cos ra + D sin ra)

where C, D are arbitrary constants.
The reader should now work Exercise Xia, Nos. 11-14.

We shall not discuss the solution of linear difference equations 
with variable coefficients, but Example 9 illustrates a method 
which can sometimes be used successfully. See Exercise Xia, 
Nos. 15, 16, 38-40.

x

Example 9. Find un if = 0, us = 1 and

«r+i-r(Mr + Mr-i)» r>2’

The equation may be written

wr+i - (r+ l)w,= - (w, -

Similarly ur - rur_x = - {ur_2 - (r - l)ur_t},

and so on.
Hence ur+1 - (r + l)ur= ( - l)*{wr_i - (r- l)wr_2} =...

= (-1)’-*(u2-2u1) = (-1)’->.
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Dividing by (r+ 1)!, we have

Mr+1 ttr=(~l)r+1 
(r+1)! r! (r+1)!

and putting 1, 2, 3, ... , n - 1 in succession for r and adding, we
obtain

un *(-l)'
n! 1! 2 r!

The series within the bracket cannot be summed, but for large 
values of r its value is approximately 1/e.

EXERCISE Xia

A
1. Find the numerical values of a, b such that the expansion of

(1 + ax + bx2){3 + 5a: + 7a:2 + ... + (2n + l)zn-1}
involves no terms in a:2, a:3, ... , xn~l. Hence find the sum of the 
series in the second bracket.

Use the method of No. 1 to find the sum to n terms of the 
series in Nos. 2, 3.

2. 1 -4x + lx2- 10a:3 + ... + (- l)r(3r+l)a:r+...
3. 1 - 3a: +7a:2 — 15a:3+... + (- l)r(2r+1 - l)af+...

Solve the difference equations in Nos. 4, 5.
4. ur+2 + ur+l - 12ur = 0, r>l.
5. wr - 10ur_x + 25wr_2 = 0, r>3.

Find difference equations with numerical coefficients, whose 
general solutions are as follows :

6. ur = A + Br + Cr2. 7. uT = 3rA + TB.

Find wr in Nos. 8-10.
8. ur + 3ur_j - 4wr_2 = 0, r> 3 ; w1 = 21, wa = l.
9. ur - 6wr_! + 9*«r_2 = 0, r> 2 ; w0 = 5, wx = 9.

10. uT -uT_2 = a, r>l ; w, = 2a.
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11. Solve the difference equation ur- 2ur_1-ur_2 + 2ur_i = 0, 
r>4.

Find wr in Nos. 12-14.
12. ur+,- 6ur+a + llur+l- 6ur = 0, r>l ; tq = 2, wa = 6, w3= 20.
13. wr-12wr_, + 16wr_, = 0, r>3; w0 = 4, wa = - 8, u2 = - 12.

14. ur - 6ur_2 + 25ur_2 = 0, r> 3 ; w1 = l, w3 = 0

Find expressions for uT in Nos. 15, 16.
15. wr-ru,_i=r-1, r>2 ; u2 = 0
16. uT=(r+l)ur_l-rur_2,r>3; w3=l, w, = 3.

B
17. Find the numerical values of a, b such that the coefficients 

of x2 and x2 in the expansion of (1 + ax + 6a:a)(l + 4x + 7x2 + 10a:3) 
are zero. Hence find the 5th term of the recurring series of order 2 
whose first four terms are 1, 4, 7, 10.

Sum to n terms the series in Nos. 18, 19.
18. 1 + 2x+5x2 + 14a:3 + ... + l(3r + l)a:r-J-...
19. 1 + 4x+ 14x2 + 4:6x2 +... + (2.3r - 2r)xr +...

Solve the difference equations in Nos. 20, 21.
20. ur - &ur_2 + 8ur_a = 0, r> 3
21. ur + 3ur_1 + 2ur_, = 0, r>3

' Find difference equations with numerical coefficients, whose 
general solutions are as follows :

22. ur = A + Br. 23. ur = A + 4rB. 24. ur = A( - l)r + B(l)r.

Find ur in Nos. 25, 26.
25. ur + 2ur_1+ur_2 = 0, r>3 ; wx = l, ua = 0.
26. 2ur+a + 2wr = 5wr+1, r> 1 ; u2 = 4, wa = 5.
27. Solve the difference equation wr - 7wr_a + 6wr_a = 0, r> 4.

Find ur in Nos. 28, 29.
28. ur- 13ur_a+ 12ur_3 = 0, r>4 ; w,= - 7, u2= - 8, w3 = 24.
29. uT- 2ur_l + 2ur_t = 0, r>2 ; «0 = 0, wa = l.
30. Find an expression for ur if rur - ur_2 = r, r> 2 ; w3 = 1.
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C
31. Find the numerical values of a, b, c such that the coefficients 

of x3, x*, xs in the expansion of

(1 +ax + bx2 + ca:s)(l + z + 3x2 + 7x3 + 13x‘ + 21a:5)

are zero. Hence find the 7th term of the recurring series of 
order 3 whose first six terms are 1, 1, 3, 7, 13, 21.

32. Use the method of No. 31 to sum to n terms the series

1 + 3x + 7x2 + ... + (ra + r + l)a:r + ...

33. Find the difference equation with numerical coefficients, 
whose general solution is ur = (A + Br) 6r.

34. Find ur if uT = (a + fl)ur_x - a]Swr_2, r>3 ; ux = 1 /a, w2 = /?.

Solve the difference equations in Nos. 35, 30.
35. ur - 9ur_j + 27wr_s - 27wr_s = 0, r > 4.

36. wr+2 - 5ur+a + 7ur+1 - 3ur = 0, 1.

37. Find uT if ur - 4wr_1 + 6ur_2 - 4wr_3 + ur_t = 0, r>4, given 
that u, — w2 = - u3 — ut = 1.

Find expressions for ur in Nos. 38-40.
38. ur=(r+l)ur_j-(r-l)wr_2, r>3 ; w1 = u2=l.

39. ur-rur_x + (3r+ 6)wr_2, r>3 ; wx = l, w, = 5.

40. ur = (r+l)(ur_!-ur_2), r>3, if

(i) = 2, u2 = 3, (ii) ux = 0, w2 = 3.

. \
Recurring Series continued. The methods for solving linear 

difference equations can be applied to the problem of determining 
the general term of a recurring series whose scale of relation (see 
p. 227) is given.
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Example 10. If the scale of relation of the recurring series

1, 2, 1, -22, ...
»

is uT + aur_3 + 6ur_2 = 0, find the values of a, b, and ur.

u3 + au3 + bu3 = 0, 1 + 2a + 6 = 0 ;
ut + au3 + bu2 = 0, .'. - 22 + a + 26 = 0 ;
a=-8,6=15; ur- 8wr_j+ 15ar_2 = 0.

Hence as in Example 2, p. 229, uT = xr is a solution if
x* - 8x + 15 = 0, 

which gives x = 3 or 5.
.-. wr=3r-1A + 5r-1R

where A + B = ul = l and 3 A + 5B = w2 = 2,
A = l, B=-i ur=|(3r -

There is an unlimited number of recurring series having the 
same first four terms as the series in Example 10, but their scales 
of relation are of higher orders. Thus the reader may verify that 
the series given by

70ur = 7( - l)r+40.2r - 32r_1
whose scale of relation (order 3) is ur - 10ar_j + lur_3 + 18ur_s = 0, 
also has 1, 2, 1, - 22 for its first four terms. ,

It may also be verified that the method of Example 12, p. 214, 
gives uT— - |(10r2 - 57r2 + 98r - 54) which is the general term of 
a recurring series of order 4, and that the second process of 
Example 13, p. 215, gives ur= -■^(llr~1 - 60r + 9) which is also 
the general term of a recurring series of order 4.

Power Series. The series
u„ + ulx + u3x‘ + ... +urxr+...

whose coefficients form a recurring series is called a recurring 
power series, and the scale of relation of the coefficients is called 
the scale of relation of the power series.

The method on p. 226 for finding the sum of n terms of a recur­
ring series can be used to show that a recurring power series in x 
is, for all values of x for which it is convergent, the expansion of
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a rational function of a: in which the degree of the numerator is 
less than that of the denominator. For simplicity we consider a 
series of order 2, but the method is general.

Let the scale of relation of the power series

u0 + u2x + u2x2 + ... + urxr + ...
be ur + ax ur_x + a2 ur_2 = 0, r > 2,

and denote the sum to n terms by Sn.

Sn = ua + u2x + u2x2 + ... + un_2xn~2
:. a2xSn = a2u2x + a2u2x2 + ... + a2un_2xn~l + a2un_lxn

and

a,a:’<S„= a2u0x* + ... + a2un_3xn~1 + a2u„_2x” + a2un_1xn+t 

If these results are added, the coefficient ofa:rfor r = 2, 3........n- 1,
is wr + a1wr_1 + a2Mr_2, i.e. zero.

:. (1 + a2x + a2x‘)Sn = u0 + (ul + alu„)x
+ («1 Un-1 + a2un_2)xn + o2wn_1a:n+1.

Now for any value of x for which the given power series is 
convergent,

lim wn_1a:n~1 = 0 (seep. 64)
n->ao

hence also lim {(a1un_1+a2un_2)xn + a2un_1xn+1} = 09

" »->.<» " l + a2x + a2x2

)3z
— which is called the

for all values of x for which the given power series is convergent.
Thus, for this range of values, the power series is the expansion 

of the rational function + —
1 +atx + a2x

generating function of the recurring power series.
The expression of the generating function in partial fractions 

provides a method of expansion in powers of x, from which the 
general term of the recurring power series can be found. This is 
therefore an alternative to the method used in Example 10, p. 236.
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Example 11. Find the generating function and the rh> term of 
the recurring power series of order 2

3 + 4x + Gx* + 10®’ + ...

By hypothesis the scale of relation is of the form

ur + aur_! + bur_2 = 0, r>2.

Here 6 +4a+ 36 = 0 and 10 +6a+ 46 = 0,

.’. a= -3,b=2, and the scale of relation is ur - 3ur_x + 2ur_2 = 0.
Also if iSn = 3 + 4® + 6®’ + ... + un_2xn~2 + un_1xn~1,

(1 - 3® + 2®’)Sn = 3 - 5® + xn( - 3u„_2 + 2ufl_,) + 2u„_1®"+1;

3 — 5® 2 1
A the generating function = t =  ̂+

if | x | < |, the generating function is the sum to infinity of

2(1 + ® + ®’ + ... + ®’-> + ...) + (1 + 2® + 2’®’ + ... + 2r-1®r-1 + ...),

the rth term of the recurring power series is (2 + 2r_1)®r~1.
It is suggested that the reader should obtain this result by 

using the method of Example 10, p. 236. It will be found that 
there is little to choose between the two methods on the score of 
length.

Examples 10, 11 illustrate the fact that if only the first 4 terms 
of a recurring series are given, a scale of relation of order 2 can 
be found. If the first 2k - 1 terms or the first 2k terms are given, 
it is not in general possible to determine a scale of relation of 
lower order than k, and if 2k terms are given a scale of relation 
of order k can in general be determined uniquely.

If the scale of relation is of order k, the denominator of the 
generating function is of the &th degree. In particular if ur is a 
polynomial of degree k - 1 in r, it follows from p. 213 that Afcur = 0 
and therefore from p. 218 that the scale of relation is

«r+* - (1) «r+*-i + (2) -... + ( ~ l)*Uf = 0,

and hence the denominator of the generating function is (1 -®)*.
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Example 12. Find a scale of relation, the corresponding term, 

and the sum to n terms of the recurring power series

2 + 5x + 10x8 + 19a:’ + 36x‘ + ...

Since 5 terms are given, it is in general impossible to find a 
scale of relation of lower order than 3. Let the relation be

ur + awr_2 + bur_2 + cur_z = 0
Then 19 + 10a + 5b + 2c = 0 and 36 + 19a + 10b + 5c = 0, 

and these equations are insufficient to determine a, b, c.
If we choose arbitrarily c = - 2, we get a = - 4, b = 5, and the 

corresponding scale of relation is

ur - 4wr_1 + 5ur_2 - 2ur_, = 0.
We then find

(l-4o: + 5a:’-2a:’)<SB
= (1 - 4x + 5x2 - 2z’)(2 + 5x + 10x8 + 19x’ + ... + wn_Jo:n_1)
= 2 - 3x + xn( - 4tzn_! + 5wB_2 - 2wn_,)

the generating function =

+ xn+1(5un_1 - 2un_z) - 2un_lxn+2
2 -3x 2 -3x

1 - 4o: +5x8 - 2o:’= (1 - x)a(l - 2a:)
1 1 2

(l-o:)8 l-x+l-2x'

Hence if | x | < 1, the generating function is the sum to infinity of

(1 + 2x +... + rxr~1 + ...)- (l+a: +... + a:r_1 + ...)
+ 2(1 + 2a: + ... + 2r_1o:r_l + ...)

and so the rth term is (r - 1 + 2r)xr~1.
In the expression for (1 - 4x + 5x2 - 2x’)S„, the coefficient of xn

= - 4a„_2 + 5u„_2 - 2izb_, = - = - (n + 2"+*),
and the coefficient of xn+l

= 5“„-i “ 2“n_,
= 5(n - 1 + 2") - 2(n - 2 + 2"-*) = 3n - 1 + 2"+«,

A iSb = (2 - 3x + Pn)/(1 _ 4x+ 5x2 - 2x’)
where Rn = - (n +2n+')xn + (3n - 1+ 2n+2)xn+1 - 2(n - 1 + 2n)xn+2

Note. We can choose for c any other value except zero, and 
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then obtain a different scale of relation corresponding to another 
power series starting with the 5 given terms. But we cannot take 
c = 0, because the scale of relation would then become

ur + aur_l + bur_2 = 0,

and unless we disregard the first term, this involves the incom­
patible equations

10 + 5a + 2b = 0, 19+10a+56 = 0, 36 + 19a + 106 = 0.
If however a sixth term of the series in Example 12 had been 

given, the scale of relation of order 3 would have been determined 
uniquely.

Use of Complex Numbers. Many series are best summed by 
introducing complex numbers. The method is explained in the 
authors’ Advanced Trigonometry to which the reader is referred. 
Thus although the sum to n terms of the series

1 + x cos 0 + x2 cos 20 + ...+xr cos r0 + ...

may be found by showing that it is a recurring power series 
whose scale of relation is ur - 2 cos 0ur_1 + ur_a = 0, it is simpler to 
use De Moivre’s theorem (Adv. Trig., p. 174).

EXERCISE Xlb
A

The series in Nos. 1-3 are recurring series of order 2. Find the 
rth term and the sum to n terms.

1.- 1,0,12,84,... 2.1,3,11,43....... 3.1,2,5,11,...
The series in Nos. 4-6 are recurring power series of order 2. 

Find the generating function and the coefficient of a:r.
4. 1 + 2a: + 5x2 + 14a:3 + ... 5. 2 + 5a: + 8a:2 + 11a:3 + ...
6. 1 - 8a: + 28a:2 - 80a:3 + ...
7. Find the generating function of the recurring power series 

1 + 3a: + 2x2 - a:3 - 3x* + ... , choosing a scale of relation of as low 
an order as possible.

8. Sum to n terms the recurring power series
2 + 8a: + 18a:2 + 37a:3 + ... of order 2.
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Find the generating functions of the recurring power series 

of order 2 in Nos. 9, 10, and find the coefficient of xT by using 
De Moivre’s theorem.

9. 1 + 2o>V2 + 3x3 + x3^j2 + ...
10. sin 0 + x sin 20 + x2 sin 30 + x3 sin 40 +...

B
The series in Nos. 11-13 are recurring series of order 2. Find 

the ? term and the sum to n terms.
11. 5, 12, 30, 78, ... 12. 4, 1, 7, -5, ... 13. 1, 6, 40, 288, ...
The series in Nos. 14-16 are recurring power series of order 2. 

Find the generating function and the coefficient of xr.
14. 2 + 6a: + 20a:2 + 72a:3 + ... 15. 5 + 19a; +83a;3 + 391a:3 + ...
16. 5- 2x + 8a:2 + 4a;3 + ...
17. Find the generating function of the recurring power series

1 + 3x + 8a:2 + 20a:3 + 49a:4 + 119a;5 + ..., choosing a scale of relation 
of as low an order as possible.

18. Find the sum to n terms of the recurring power series
2 + 8a: + 34a;2 + 152a;3 + ... of order 2.

19. Find the generating function of the recurring power series 
1 + 2a: + fa:2 + fa:3 + ... of order 2 and find the coefficient of a:r by 
using De Moivre’s theorem.

C
20. Find the generating function of the recurring power series 

1 + 2x + 3x2 + 8a:3 + 9a:4 + ... , choosing a scale of relation of as low 
an order as possible.

Find the generating functions of the recurring power series in 
Nos. 21, 22.

21. 4 + 4a; + 2x2 - 8x3 - 46a:4 - 176a:5 + ... , order 3.
22. 4 - 9a: + 5a:2 - 19a;3 - 3a:4 - 47a:5 + ... , order 3.
Find the generating functions of the recurring power series of 

order 2 whose first four terms are given in Nos. 23, 24, and use 
De Moivre’s theorem to find the coefficient of xr.

23. 8- 12a: - 8a:2 -x3 + ...
24. cos ff + x cos 30 + a:2 cos 50 + x3 cos 70+...
25. Obtain the expansion of l/(l+x + xa) in powers of x by 

solving the difference equation pr+pr-i + Pr-i~®> r>2, p0 = l, 
Pi= - 1. Verify the result by another method.
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Continued Fractions. Sometimes it is desirable to evaluate a 

fraction such as
62

°l +--------------- ----------------------
a. +---------- -i—------

-----

an

from the top instead of by the usual arithmetical process from the 
bottom. For convenience the fraction is written

a 4.^? ^3 &n,
1 aa + a3 + a4 + ... + a„

a,, a. + —, ax + — —, ... may be regarded as approximations
a2 a2 + a3

to the value of the continued fraction. They are called the 
1st, 2nd, 3rd, ... convergents.

It will be shown in Example 16 that convergents can some­
times be calculated by solving a linear difference equation, but 
before explaining this method we shall show by an example how 
a rational number may be expressed in the form

1 1 1fl, H----— ---a2 + a34-...+an

where ar is a positive integer except that ax may be zero.
A fraction of this form is called a unit continued fraction.

Example 13. unit continued fraction and

calculate the convergents.

hence
13 1 1 1 1 1
31~2 + 2 + l + l + 2'
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1111 1_3
2+2+1-2+3—7

112 5

hence

DIFFERENCE EQUATIONS
112The convergents are - xj = - Z Z+

111 1_1 1
2+2+1 + 1— 2 + 2 +2 —2 +5~ 12'

In this example the approximations to ~ are 1 , |, |~ 

and these are alternately too great and too small, because the de­
nominators of the curtailed expressions 1,1 5, • ■ • are alternately

Z Z 4~ Z

less and greater than the denominator of - 1 1 - - •
6 < 2+2+1+1+2

This method is applicable to any rational number and the 
expression of such a number in the form of a unit continued 
fraction is unique.

Example. 14. Express 5/6 in the form a + 1 - - where a, b, c

are positive integers.
V6 = 2 + (5/6 - 2) = 2 + 1/p, where
p = l/(>/6 - 2) = (V6 + 2)/2 = 2 +1(5/6 - 2) = 2 + 1/(2p),

^2+l+rP
= 2 + 5 + i+^’ wherep = |(V6 + 2).

By substituting the value 2+ l/(2p) for p in the result of this 
example, it is found that

^6 = 2 + -2 + L-2 + i

and substituting again
. 1 1 1 1 1

~ + 2 + 4 + 2 + 4+p’

and so on. We shall show on p. 361 that 5/6 may be regarded as 
the value of the infinite continued fraction

2+l 1 1 1 1 1
2+4+2+4+2+4+'"’

It is evident that 5/6 cannot be expressed in the form of a 
terminated unit continued fraction since elementary arithmetic 
shows that such a fraction is rational.
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Calculation of Successive Convergents.

F, =a,, F.=a, +— > F, = a. +— —, etc.
1 12 1 a, 3 a2 + a3

Fi=^ i[p^a^ qk = \ ;
9i

„ a,a, + l p2 .. .= -----=— ifp2 = a1a2+ 1, q2 = a2 ;
ai h

F3 may be found from F2 by replacing a2 by a2 H—• •
°3

__-J r 1 = a3(g1o2+ 1) + ai _?s 

, 1 ~ a3a2 + i q3
<z2 H-----

°3
if Pi = as(Mi+1) + <Ms = a3ai+L

Let pr, qr be calculated from the difference equations 

Pr=a-rPr-i+Pr-2 Qr = ar<lr-i+qr-2 (r>2)

Let

Then

thus
ai 

F —__■*- 3
(’•4)

and suppose that Er = — for all values of r from 3 to k. Then 

Fk+1 may be found from Fk by substituting Ofc+l/ajt+i f°r

Hence Fk+1 = +
(ak + l/a*+i)?fc-i + 3fc-2

_ at+i (akPk-i + Pfc-a) + Pk-i - a*+iP* + Pk-1
ak+l(ak9k-l + 9k-l) + 9k-l ak+19k + 9k-l

Therefore F. = ~ is true also for r = k+l. But it is true for r = 3, 

therefore for r = 4, and so on. Hence it is true in general.

Example 15. Evaluate l + 5 s ~ v ,7,9

and calculate its convergents.
Pi = l, gi = l; P2 = 4, ga = 3;
p3 = 2p2+p1 = 9; gs=2g,+gi = 7;

and pt = 2p,+p2 = 22 ; qi = 2qi + h = ^ •
and Ps=Pt+P3 = 31 ; 1s = 9t + 9s = 2i;
similarly it is found thatp, = 53, <76 = 41 ; t>, = 137, q’, = 106.
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137 Therefore the value of the continued fraction is —— and its106 

, 4 9 22 31 53convergents are 1, - > - , — > —, —.

Example 16. Find the rtl> convergent of 1 + y | J-
1 + !■{*••••

Pr=Pr-i+Pr-i and ?r = ?r-i + S’r-s
But the solution of the difference equation ur - ur_l - ur_2 = 0 

is of the form ur = -4ar~1 + Bwhere a, /3 are the roots of 
x*-x- 1 = 0, i.e. 1(1 ± \/5).

pr = c (1( 1 + V5)}r-* + d(l( 1 -
9, = 0(1(1 + V6)}r-* + A(l( 1 - V5)}1-1

where c, d, g, h are constants whose values can be found from 
Pi = 1,P2 = 2, g^l,?,= 1.

Thus c + d=l, c(l + x/5)+d(l - s/5) = 4
hence c>/5 = {1(1 + >/5)}2, d^5= -{j(l - V5)}2

/. prV5 = (l(l + n/5)}r+1 - (1(1 - V5)}r+1.
Similarly gr + /i=l. <7(1 + ,y5) + ?4(1 - V5) = 2 

hence 0V5 = 1(1 + >75), h^J5 = - 1(1 - «/5)
A ?rs/5 = (l(l + ^5)}’--{l(l- V5))r

. pf_(l + ^5f+2-(1 - 5/5r+ł
•• qr 2{(l + ^5)r-(l-^/5)r}

If—is the rth convergent a, + — — — of a, + — —»
<?r 1 a2 + a3 +...+ar J 1 a3 + ... + an

then Prqr-i-Pr-iQr= ( - l)r-
ur=Pr9r-i~Pr-i<lr

= 9r-i(arPr-i +Pr-J ~ Pr-i(.ar<lr-i + Sr-J
= Qr-iPr—2~Pr-iQr-2s ~ Ur-1'

Similarly ur_x = - ur_t, etc.
uT=(-l)r~tut = (-iy(ptq1-plqi)

= (- l)r((ala,+1) - a,a,} = (- l)r.
(Thus in Example 15, p,q, -p,q,= 137.41 - 106.53= - 1.)

This result shows that pr, qT have no common factor and hence 
the convergent pTlqr calculated from the difference equations is a 
fraction in its lowest terms.
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The result will also be used in Example 17 to find integral 
solutions of an equation linear in x, y, but a more convenient 
method will be given in Chapter XIX, on p. 497.

Example 17. Find integral solutions of 137a:- 1061/= 4.
By using the method of Example 13, we find as in Example 15 

that
137 111111
106“ +3 + 2 + 2+l + l + 2

53
and that the value of — for this fraction is — •

7. 41
Hence 137.41 - 53.106 = ( -1)’= - 1

.-. 137( - 164) - 106( - 212) = 4
/. the given equation is satisfied by x = - 164, y = - 212.
Evidently it is also satisfied by

x= - 164+ 106/ y = -212+137/ 
and therefore by a: = 48+106s y = 62+137s (s = /-2) 
where s is any integer or zero.

The equation ax+by=c.
In discussing the integral non-zero solutions of this equation, 

it may be assumed that a, b, c are integers and that a, b have no 
common factor. For if A is H.c.i'. of a, b, the equation can have 
no integral solution unless A is a factor of c, and if A is a factor 
of c, each side may be divided by A.

When a, b have no common factor, a solution x = xlt y = y, 
may be found from the expression of a/b as a unit continued 
fraction as in Example 17. Also the more general solution 
x = xl + bt, y = y1-at can then be written down. There is no 
other solution ; for if

axa + by2 = c = ax2 + 6ylt 
a(o:1-a:1) = 6(y1-i/2), 

and since a, b have no common factor, a is a factor of y2 - y2; 
thus ya - ya = at where t is integral, and then by substitution 
xa- xt — bt;

xi = xl+bt, yt = yl-al.

4



XII] DIFFERENCE EQUATIONS 247
General Continued Fractions. For the continued fraction

a A h **
1 a2 + a3 + ... + a„

w/here a2, a2, ... , b2, b2, ... are positive or negative integers except 
thiat may be zero, if the rth convergent is calculated without 
ramoval of common factors and is denoted by prlqr, it can be 
piroved by the methods used on pp. 244, 245 that

Pr = arPr-l + brPr-i h = ar <lr-i + br ?r-3
amd that

Pr9r-i-Pr-iQr=(-1)rb2b3 ••• br-

Tlhe fraction prlqr will not usually be in its lowest terms.

Example 18. If — is the rth convergent of a + 7 - t -6 + a + 6 + a + ...
pirove that (i) p2r - q2r+l (ii) bp2r_2 = aq2T.

^ = a + | ^=a + , ?a’-8-----
qir b+Pir-t bPir-i + hr-t

_(ab + l)p2r_,+ a?2r_,
bPir-i + hr-t

Biut each fraction is in its lowest terms, see p. 245. Hence

Allso

And

But

Pzr ~ (ab I" 1 ^Pzr—i 4" oq2r—3

q«r ~ bPsr-t + hr—1*
§,2r = 1 + q2r—j,

P2r-2= Qir-l’ ' •• Pir~ hr+l-

p2r - aq„ = {(ab + l)ptr_, + aq2r_2} - a(bp2r_, + qtr_2)

=Pzr—2*

P^bPłr-i+Pzr-z’

D.R.A.A. II. E
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EXERCISE XIc

A

[ch.

291. Express — as a unit continued fraction.

2. Verify that J5 = 2 + - 1 1 - and find the value of x.
J v 4+4 + 4 + a;

3. A strip of paper is divided into 48 equal lengths by red 
lines and into 35 equal lengths by blue lines. Which pair of red 
and blue lines are closest together ?

4. If pTlqT is the rth convergent of aj— — prove that
= a, + a, + ...

5. Prove that the rth convergent of 2 + - - is

{(1 + V2r+1 - (1 - V2)r+1} -H(l + W - (1 - V2)r}.

6. If pTlqr is the rth convergent of ° + ^+~+£+"+ prove 

that pn+i- (ab + 2)pn + pn_t = 0 and that p„ is the coefficient of 
x* in the expansion of (1 + ax - x2) -+{1 - (ab + 2)x* + x*}

7. Solve in integers : lla:-9y = 4.

8. Find the least positive integral solution of 19a;- 117y= 11.

9. Find the number of solutions in positive integers of 
7x + 9y= 1000.

10. If pr/qr is the rth convergent of a + - - - 
Pn-1 = ?n and Pn = + 5n-i-

Find the rth convergents of the continued fractions in Nos. 11,12.

-6 ? -6 12. 1-1 1 1
1 + 1 + 1 + ... 2-2-2-...

prove that

11.

13.

14. 
of x.

B
41

Express — as a unit continued fraction.
2d

Verify that <'11 = 3 + 1 1 1 1 1 1 and find the vaue

If prlqT is the rth convergent of cq + — — prove tlat 
* • ' cf 2 4" ctg 4* • • •

15.
(Pn+1 ~Pn-i^lPn = (?n+i ~
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16. Prove that the rth convergent of 1 + x v x v is 

H(1 + ^3)'+* - (1 - V3)r+1}+{(1 + W - (1 - V3)r]

17. Solve in integers : 13a; + 1 1y = 8.

18. Find the number of solutions in positive integers of 
lla:+15y= 784.

Find the rth convergents of the continued fractions in Nos. 19, 20.
2 2 2

1 3-3-3-...19. 20.
11111
1-4-1 —4-1-..

21. 
of x.

22.

7 x - and find the value

Express 3-1416 as a unit continued fraction and find the 
first three convergents.

23. Prove that the rth convergent of 2a + - -r~ - -7- isI 1 a + 4a + a + 4a +...
double that of a + — — —

2a 4* 2a 4- 2tt 4~ • • •

24. If pJqr is the rth convergent of 0 + 7 - - 7 - -
prove that p,n73-p373n = ę3n_3. 5+c + a +6+c + a +...

25. Solve 4x 4- 7y 4- 19z = 69 in positive integers.

26. Prove that the number of positive integral or zero solutions 
of x 4- 2y = n where n is a positive integer is J{2n 4- 3 4- ( - 1)"}.

27. Prove the results stated on p. 247 for the continued fraction
CL H--- —aa + a3 + ...

Find the rth convergents of the continued fractions in Nos. 28, 29.

28 - - ? 3 3 * 29 a a a
' 1 + 2 +2 + 2 + 2+... (a - 1) + (a - 1) 4- (a - 1) +...

30. Prove that the 3nth convergent of
1111111 n— — — — — — — IQ — ■ ——■
5-2-1-5-2-1-5-... 3n+l
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1111 j r 1 1 1 131. Ifx = a + ~ - r - andw = 6 + - r - t proweb + a + b + a + ... a a + b + a + b+...
that bx = ay.

32.

33.

If PrlQr *s f'le rth convergent of a1 + — — prove thato2 + o2 + ...

(i)_£»_=a +A. h
Pn-t an_1 + ... + ai

(ii)-?2- = a„ +A. -3 
Qn-i ” a„_1 + ... + a,

Prove that | | ^|=1+2>1
2 - 3 - 4 - ...-n + 2 i

MISCELLANEOUS EXAMPLES 

EXERCISE Xld
A

1. Find wr if w0 = 1, Wj = 3 and ur - 9ur_2 + 20ur_2 = 0, r> 2.
2. Find the rth term and the sum to n terms of the recurring 

series - 1, - 1, 7, 71, ... of order 2.
3. Find ur if uY = b and ur - aur_t = b, r> 2

(ijifa^tl, (ii)ifa=l.
4. Find the generating function and the coefficient of xr for 

the recurring power series 4 + x + 7x* - 5x3 +... , order 2.
5. If ul = 3, iq=12 and if - (2r + l)ur_j + (r2 - l)wr_2 = 0, 

r> 3, find ur.
6. If 2wr+1 = ur + a-/ur, prove that

(ur - a)/(ur + a) = {(w, - «)/(wl + a)}3’ where p = 2r_1.
7. If ur — <J>(r) is any solution of ur + a1wr_1 + a2wr_,=/(r) 

where a,, a2 are independent of r, and if ur = g(r) and ur — h(r) 
are any two independent solutions of ur + a1ur_1 + a2ur_i = 0, 
prove that the general solution of the first difference equation is 
ur~<f>(r) + Bg(r) + Ch(r) where B and C are arbitrary constants. 
Hence solve the difference equations (i) ur - 5ur_2 + 6ur_2 = a, 
(ii) ur - 5ur_1 + 6ur_2 = ar.

8. Prove that the nth convergent of x— - -
x = 2cos0,is sin (n+1)0 cosec n0. x~x-x

where
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9. If prlqr and PrIQr are the rth convergents of a3 + — — 
11 a2 + as + ...

and a2 + — - prove that (i) qn = Pn_3 (ii) pn = a3qn + Qn_, 
°3 +“<+ •••

10. If n = 6N + r where N and r are positive integers, prove that 
the number of positive integral or zero solutions of 2x + 3y = n is 
N +1 unless r = 1 when it is N.

B
11. Find the rth term and the sum to n terms of the recurring 

series - 1, 1, 6, 19, 54, 151, ... of order 3.
Find the generating function and the coefficient of xr for the 

recurring power series in Nos. 12, 13.
12. 1 + 4a: + 15a;2 + 54a:3 + ... of order 2.
13. 1 - 4-r2 - 18a:3 - 64a:* - 210a:5 - 664a:3 - ... of order 3.
14. Find ur if w0 = 0, wx = 1, and ur + Mr_-j + wr_2 = 0 for r>2.
15. If uT = ur_1 + ur_3, r>3, prove that ur — 3ur_3-ur_t and 

that if u, = w2 = 1, wr2 - wr+2wr_2 = ( - l)r.

16. If pn/qn is the convergent of ai+~ + ~ + prove that 

Pn9n~l~ Pn—lQn~ ( ~ D” 1(anan— lan—2 F an + an—s)

17- If Prfar i8 the convergent of
prove that 33sn = 2p,n +p3„_2. 2 + 3 + 1 + 2 + 3 + 1 + ...

18. If pr/qr is the rth convergent of prove
that (i) bp2n = adq2nl (ii) Pn-(a + c + bd)p„_, + acpn_t = 0.

C
19. Find ur if ur - (2r + l)ur_x+ r*ur_2 = 0 for r>2, and if

(i) u„ = 1, Wj = 2, (ii) iz0 = 1, = 3.
20. Find the generating function of the recurring power series

(a - 6) + 2(a‘ -b*)x + 3(a3 - 63)a:2 + 4(a‘ - b‘)a:3 +...
21. If ur-ur_1-ur_t + ur_3 = a, r>4, express the value of 

2n
in terms of ult u2, w3, a.

1

22. If ur = a.r + + yr and if u2 = a, u2 = b*, u3 — c3, prove
that the generating function of the recurring power series 
w0 + u1a: + u2a:2 +... , is
{3- 2ax + J(a3 - 62)x3} +{l-ax + l(a3 - 62)a:2 - |(a3 - 3ab3 + 2c3)a:3} 
and express ur in terms of ur_2, ur_2, ur_3, a, b, c.
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Find the general solutions of the difference equations in 
Nos. 23, 24.

23. uT - a*ur_2 = cos br 24. wr - 4wr_2 + 4wr_s = 2r

25. If pr/qr and PrIQr are the rth convergents of oq H— —
1 1 °2 + a3

and an H------- --------- prove that
°n-i + «»-« + ■•• 
Pn=Pn-rPr+Pn-r-iPr-i = Pn for l<r<»-l.

26. Prove that 5 | | +f rA
2-3-4-...n + 1 \i ) \ i /

27. If a rational number F is expressed as a unit continued 
fraction and if pTlqr is its rth convergent, prove that

(i) |F-pr/9r|<|F-pr_1/gr_1|
(ii) l/(7r7r+i)>l-p' -PrlQr I > + ?r+i»

28. With the notation of No. 27, prove that

PrPr+i g. pi according as — § Pr±i 
Irlr+i Qr Sr+1

29. Prove that ul-u2 + u3- ... + (- l)n_1u„

+Hence express the sum to n terms of 1 - 
continued fraction.

as a

30. n equal uniform rods AtAv A2A2, ... , An_1An, each of 
mass m, are freely jointed at A,, A2, ..., An_2 and rest in a straight 
line on a horizontal table. A horizontal impulse Ia is applied at Ao 
perpendicular to A„ A2. If the instantaneous impulse at the joint 
Ar is Ir, it can be proved that IT - AIr_l + Ir_2 = 0, 2 < r < n where 
In = 0. Prove that Ir = I,sh(n-r)a/shna where a = log(2 +V3).



CHAPTER XII

FACTORS AND PARTIAL FRACTIONS
Complex Algebra. There are certain phrases in common use 

which are so misleading to the student that they ought to be 
avoided.

The ordered pairs [p, g] of real numbers which occur in complex 
algebra are usually written in the form p + qi and they are called 
complex numbers.

It has become customary to call p + qi a real number when 
q — 0 and a pure imaginary number when p = 0. This confuses a 
pair of numbers one of which is zero with a single number. Also 
complex numbers in general are sometimes called imaginary. 
This use of the words ‘ real ’ and ‘ imaginary ’ dates from a time 
when the theory of complex numbers was imperfectly understood. 
It is perhaps too much to hope that the old form of words will 
soon be discarded ; but it seems essential in dealing with certain 
fundamental parts of the subject to use words that are not open 
to misinterpretation. Accordingly we shall call the number p + qi 
an x-axal number when q = 0, a y-axal number when p = 0, and 
a non-axal number when p + 0 and q + 0. In the last sentence 
the word ‘ number ’ was used as an abbreviation for ‘ complex 
number ’. This is customary in complex algebra.

The system of real numbers is one-dimensional, that of complex 
algebra is two-dimensional. The importance of z-axal numbers 
in complex algebra is due to the exact correspondence existing 
between z-axal numbers and real numbers, and between their 
properties. This correspondence makes possible the deduction 
from any theorem about z-axal numbers of a corresponding 
theorem in real algebra. Complex algebra is in fact often of use 
to a person who is investigating properties of real numbers. For 
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example the method used at the present day to investigate the 
distribution of prime numbers depends on the theory of functions 
of a complex variable.

Factorisation. It is fundamental in the theory of factorisation 
that in complex algebra a polynomial of degree n can be written 
as the product of n linear factors. In real algebra this is not 

, necessarily true, but a polynomial is the product of factors which 
may be some linear and the others quadratic.

The proof of these statements depends on D’Alembert’s or 
Gauss’ theorem :

In complex algebra, the equation
f(z)=zn + alzn~l + ... + an = Q............................ (1)

has at least one root.
An elementary proof which itself however depends on a funda­

mental theorem in analysis on bounds will be found in Bumside 
and Panton's Theory of Equations, Vol. I, p. 260 ; but a simpler 
proof (id., p. 258) can be obtained by using Cauchy’s theorem on 
contour integration (Hardy : Pure Mathematics, Appendix I ; 
Whittaker and Watson : Modem Analysis, p. 120) ; the student 
is therefore advised to postpone reading any proof of this theorem 
until he is in a position to appreciate Cauchy’s method.

Multiple Roots. The equation (z - a)rg(z) = 0 where g(z) is a 
polynomial in z, g(a) 0, and r = 2 or 3 or 4 or ... , is said to have 
an r-fold root z = a, and it is also convenient to say that it has 
r roots z = a.

In particular if r — 2, z = a is called a double root.

Roots of the General Equation in Complex Algebra.
By using D’Alembert’s theorem and the above convention 

about multiple roots it is easy to prove that
in complex algebra the equation

f(z) = zn + a1zn~l + ...+an = Q
has exactly n roots, any r-fold root being reckoned r times.
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By D’Alembert’s theorem, there is a root z = at

a1n + a1a1n_1+ ... + an = 0.
Hence the equation is equivalent to

(zn - a/1) + a2(zn_1 - atn_1) + ... + - »i) = 0
and therefore to (z - aj/ifz) — 0
where /2(z) is a polynomial of degree n - 1 in z.

Similarly since/2(z) = 0 has a root z = <x2
/i(z) = (z - a2)/2(z).

By continuing this process it follows that

/(z) = (z-a2)(z-a2) ... (z-a„_i)/n_i(z)
where /n_2(z) is linear and must be of the form z - an because the 
coefficient of zn in f(z) is unity. Hence

f(z)^(z-ai)(z-a2)...(z-«n)............................ (2)
or using the notation for products,

/(z)=II(z-«r).
r=l

Therefore the equation /(z) = 0 has the n roots oq, aa......... ....
which need not however be distinct.

It also follows from (2) that /(z) is not zero for any value of z 
except «2, a2, ... , an. Therefore the number of roots is exactly n, 
subject to the convention about multiple roots.

Thus the polynomial zn + a1zn~1+ ... +an cannot be zero for 
more than n values of z, and the same is true for the polynomial 
a„zn + alzn~1+... +an where ao^O, since it can be written in the 
form

a0(zn + b1z"-1+... + &n)=a0(z-/?1) ... (z-/3n).
But if a0 = 0, it reduces to at z"_1 and similarly this cannot
be zero for n values of z if a2 + 0, and so on, thus

if a polynomial aozn+ aizn~1 +... + an is zero for more than 
n values of z, each coefficient is zero ;
also, if the polynomials

b„zn + b2zn-l+ ... + bn and cozn + c1zB-1+...+ c„
are equal for more than n values of z, then br = crfor r = 0,1, 2,..., n.
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If the roots of (1) are not all distinct, (2) takes the form

/(?) = («. (z-ajfc)n*= n (2............. (3)
r=l

where nk+na +... +nk = n, and this form is unique. For if also

/(Z)= n(2-ft)”*r...... w............................. (4)
r=l

then each /? must he an a because otherwise from (3)
and from (4) /(j?r) = 0. Similarly each a must be a /?. Thus (4) 

t
can be written f(z) = II (2 - ar)mr and here mr must equal nr, for 

r=l
otherwise by equating this form of J(z) to the form in (3) and 
simplifying we obtain an identity of the form

n(z-y,)”»=n(2-8t)^

where p,, pt are positive integers and each y is different from each 
8, and this has just been proved to be impossible.

Example 1. Solve the simultaneous equations 

+... 4—-1 = 0, (v = 1 to n),

for ••• f Zn.

These equations imply that I

(«, + »)(«,+ A)...(«,+A)[-Ł-i+-Ł5+...+_Ł-l
(cq 4- A ct2 4- A an 4- A

is zero for A = A1( A2, ... , An. And the expanded value of this 
expression is a polynomial of degree n in A in which the leading 
term is - An. Hence it is identical with

-(A-A1)(A-A,)...(A-An).

Putting A = - ak in the identity,

(«i - -“*)••• (a*_i - ak)(ak+l -ak)... (an - ak)zk
= ( _ l)"+1(afc + \)(aic + Aa) ... (ak + An).

This gives zk for k= 1, 2, ..., n.
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Conjugate Complex Roots. If <x +pi, where p&0, is a root of 

f(z) = O where/(z) is a polynomial with a>axal coefficients, then 
the conjugate complex a - pi is also a root.

The conditions for a + pi, a - pi to be roots are of the forms 
P+Qi — O, P - Qi = 0. These are both the same as P = Q = 0 by 
the elementary theory of complex numbers.

Also if a + pi is an r-fold root of f(z) = 0 so that

/(z) = (z - a - pi)rg(z)

where g(z) is a polynomial, it follows by the same principle 
that f(z) = (z-a + pi)rh(z)

where h(z) is another polynomial.
Hence a - pi is an s-fold root, where s>r; similarly r>s, so s=r.
Since (z - a-pi)(z - a+ pi) = (z- a)2 + /J2, any polynomial /(z) 

of degree n with a>axal coefficients can be expressed uniquely in 
the form

/(zjsa^z-pj ••• (z-P*){(2-9,i)* + ’,ił} ••• + (5)

where k+2l = n and all constants are a;-axal. The factors are not 
necessarily distinct and in special cases it will happen that all are 
linear or all quadratic.

Roots of the General Equation in Real Algebra.
If f(x) = aoxn + a,a"-1 + ... + an = 0, where a0#= 0, is the general 

equation of degree n in real algebra, there is an identity

f(x) = a„(x -pj ... (x - pk){(x - qj2 + ... {(x - q,)2 + r,2} ...(6) 

where k+2l~n, corresponding to the identity (5). This is due 
to the exact correspondence between real numbers and a:-axal 
complex numbers. If the identity (5) is verified by multiplication 
of the factors, precisely the same work (with x instead of z) will 
verify the identity (6).

Since k + 21 = n, there must be at least one factor of the form 
x - p if n is odd ; but the factors may all be quadratic if n is 
even, and no quadratic factor of the form (x - q)2 + r2 can be zero.
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Hence we have the following theorem:

in real algebra an equation of even degree has either no roots or 
an even number of roots, and an equation of odd degree has an odd 
number of roots.

It follows that an equation of odd degree has at least one root.

Binomial Equations. The equation zn—l may be solved by
De Moivre’s theorem. Writing cis 0 for cos 0 + i sin 0,

zn = cis 2&7r, z = cis (2kirln), k = 0, 1, 2, ... , n- 1.

In particular the roots of z’=l are 1, cis fir, cis fir or 1, a>, a>2 
where w = cisf?r, i.e. 1, -£±£i>/3. These are the cube roots of 
unity, and a>2 + u> +1 = 0.

Example 2. Factorise x3 + y3 + z3 - 3xyz. 
The expression =

■2 - S/z)

x y z = x + y + z y z
z x y z+x+y x y
y z x y+z + X Z X

(x + y + z) 1 y z
1 x y
1 Z X

But the expression can be written in the form, 

a;3 + (o>y)3 + (<o3z)3 - 3x(ajy)(co2z),

x+ a>y + cu3z is a factor, and similarly x + a>2y + wz is a factor.
But the coefficient of x3 in the expression is unity,

x3 + y3 + z3- 3xyz = (x + y + z) (x + u>y + w2z) (x + <u2y + wz).

EXERCISE Xlla

A
1. State the number of roots of (i) a:‘=l in real algebra, 

(ii) z‘= 1 in complex algebra.

2. Prove that 1 + + <u8 = 0

3. Prove that
(a + biu + cu>2)(a + &<u2 + ecu) = a2 + b2 + c3 - be - ca- ab.
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4. Express a:8 + y3 as the product of three factors.
5. Solve the equation z4 - 3z2 - 6z - 2 = 0, given that - 1 + i is 

a root.
6. If a + bi = (x + yi)n where a, b, x, y are a>axal, express a8 + 62 

in terms of x, y.

7. If the coefficients of the equation z*+pz3 + qz2+ rz + s = 0 
are x-axal and there is a y-axal root, prove that r2+p2s = pqr.

8. If n is a positive integer not divisible by 3, prove that 
x2n + 1 + (x + l)2” is divisible by a;2 + x + 1.

9. Find the fifth roots of unity algebraically by using the 
method of p. 163, No. 19. If two of them are 1 and e, express the 
others in terms of e.

10. Solve for x, y, z the equations
x + ay + a2z = a3 x + by + b2z = b3 x + cy + c2z = c*.

B
11. Solve z8 + 1 = (z + l)(z2 - z + 1) = 0 in complex algebra.
12. Prove that (1 - «,)(! - <o2)(l - a>‘)(l - o>4) = 9.
13. Express x3 + y3 -z3 + 3xyz as the product of three factors.
14. Solve the equation 2z4 - z3 - 3z2 - 5z - 2 = 0, given that <u is 

a root.
15. If a + bi= (c + di)2 where a, b, c, d are x-axal, form in terms 

of c, d the equations whose roots are (i) a ±bi, (ii) b ±ai.
16. Prove that the roots of z"= 1 are all distinct.

C
17. Prove that

(a + a>b + <u2c)3 - (a + <u2b + a>c)3= - 3^3(6 - c)(c - a)(a - b).
18. Find the condition that one root of the equation

z2+ 2(a + bi)z + c + di — 0
is z-axal if a, b, c, d are x-axal.

19. For what positive integral values of n is
(y - z)n + (z - x)n + (x- y)n

divisible by x2 + y2 +z2 -yz-zx-xy ?
20. Solve for x, y, z the equations

x + ay + a2z = a' x + by + b2z^=b* x + cy + c2z = c*.
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21. If A + pi is a root of z‘ + 46z + c = 0 where b and c are o>axal, 
prove that p2 = A2 + &/A and that 2A2 is a root of zs -cz - 2b2 — 0.

22. If zB + a1zn-1 + ... +<z„ = (z - aj(z - a,) ... (z - an), prove that 
(1+ «/)(!+ «,’)... (14-«„’) = (!-a, + a4 -,..)2+ (a2 - a3 + at

23. If (l+x + x2)n = a0 + alx + a1x2+... + a2nx2n, prove that
o0 4- ct2 + ct6 4- ... = al 4- cq 4- cq 4-... = <z2 4- a2 4- a8 4-...

24. If aj; . ..........xn are the roots of the equation 

prove that
/(z) =z" 4- OjZ"-14-... 4- an = 0,

Highest Common Factor. If polynomials f(x), g(x) have a 
common factor h(x), this will also be a factor of Af(x) 4- Bg(x) 
where A, B are any two polynomials or constants. If there is no 
common factor of higher degree than h(x), then h(x) is called the 
highest common factor (H.C.F.) of f(x), g(x). Numerical factors 
are regarded as irrelevant so that Ch(x) where C is any constant 
other than zero is also called the H.C.F.

The process used in arithmetic of finding an H.C.F. by repeated 
division may be applied to polynomials.

Suppose that the degree n of f(x) is not less than that of g(x) 
and let r(x) be the remainder when/(z) is divided by g(x). Then 
the degree of r(x) is not greater than n - 1, and

r(x) =f(x) + Ag(x)

where A is a polynomial or constant. Thus any common factor 
of j(x), g(x) is also a factor of r(x), and any common factor of 
r(x), g(x) is also a factor of f(x). Therefore the H.C.F. of f(x), g(x) 
is the sameas that of g(x), r(x).

Similarly if rl(x) is the remainder when y(x) is divided by r(x), 
the H.C.F. of g(x), r(x) is the same as that of r(x), r2(x) and the 
degree of r2(x) is not greater than n - 2, and so on. In this way 
after n divisions at most, a remainder rk is found which is a 
constant, possibly zero.
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If rfc = 0, rk_l(x) is a factor of rfc_a(z) and is the H.C.F. off(x),g(x).
If ’’*^0, f(x) and g(x) have no common factor since such a 

factor must also be a factor of r^.
Polynomials which have no common factor are called co-prime.

Example 3. - Find the H.C.F. of x5 - 3x3 + 5x3 + lla; - 4 and 
2x* - 5x3 + 3x3 + 10a; - 8.

It is convenient to begin by dividing 2(x3 - 3z3 + 5z2 + 11a? -4) 
by 2a:1 - 5a:3 + 3x3 + 10a: - 8 and to use detached coefficients.
(x7) 2- 5+ 3+ 10- 8 2+ 0- 6+10 + 22- 8

14-35 + 21+ 70- 56 2- 5+ 3+10- 8
14-30 + 20+ 48 5- 9+ 0 + 30- 8

( x 7) -5+1+22-56 10-18+ 0 + 60-16
-35+ 7 + 154-392 10-25+15 + 50-40
-35+75- 50- 120 7-15+10+24

(+--68) -68 + 204-272 7-21 + 28
1-3+4 6-18 + 24

6-18 + 24

Thus the H.C.F. is x3 - 3x + 4.
The introduction of the numerical factors (to avoid fractions) 

is justified by the fact that the remainders are still of the form 
Af(x) +Bg(x). Another useful device is to make the constant 
term in the remainder zero. The factor x can then be removed, 
since it will be obvious whether it should be included in the 
H.C.F. Thus the working of Example 3 might be arranged :

2- 5+ 3+10- 8 2 + 0- 6+10+22-8
6-15+ 9 + 30- 24 2-5 + 3+10- 8
6- 8- 6 + 40 5-9+ 0+30-8
- 7+15-10- 24 2-5+ 3+10-8
-21 + 45- 30- 72 3-4- 3 + 20

21-28-21 + 140 3-9+12
17-51+ 68 5-15 + 20
1-3+ 4 5-15+20

If at any stage a remainder can be factorised by inspection, it 
can be found by trial which factors belong to the H.C.F. In this 
example 3x3 - 4x3 - 3x + 20 could be factorised.
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Two theorems required in the theory of equations are added 
here.

If f(x)> (Jlx) are polynomials with rational coefficients which are 
both zero for x = a, and if g(x) cannot be expressed as a product 
of two polynomials with rational coefficients, then g(x) is a factor 
of f(x)-

Since /(a) = 0 = p(a), x-a is a common factor of fix), g(x). 
Hence the H.C.F. exists. But the process of repeated division 
shows that the coefficients of the H.C.F. must be rational. As 
g(x) has no factor with rational coefficients, the H.C.F. must be 
?(»)•

Example 4. If 1 + V2 + \/3 is a root of the equation

f(x) = aoxn + a1xn~1 + ... + an = 0

in which the coefficients are rational, prove that 1 ±<2 ±\/3 are 
also roots.

The function

(x- 1 - V2 - y/3)(x - 1 + s/2 + V3)(a: - 1 - V2 + v/3)(a: - 1 + V2 - ^3) 
= {(a»- 1)«- 5}«- 24 = p(a?)

has rational coefficients and has no two factors with rational 
coefficients. Also fix), g(x) are zero for x = 1 + \/2 + V3. Hence 
g(x) is a factor offix). Hence 1 ±V2 ±V3 are roots of/(x) = 0.

Repeated Factors. If (x-a)v is a factor of the polynomial fix), 
then lx — a)p~l is a factor of its derivative.

Also if lx - a)v is a common factor of fix) and f lx), then lx - a)v+1 
is a factor of fix).

fix) = lx- d)pglx) where g(x) is a polynomial,

A f'(*) = (x~a)»g'(x) +plx - a)p~'glx),

.•. lx - a)’-1 is a factor off'lx).
If also lx - a)v is a factor of f'lx), the last identity shows that 

it is also a factor of plx - a)p-1p(x). Therefore x - a is a factor of 
Hence (x - a)p+1 is a factor of fix).
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A similar argument shows that if (x2 + 2bx + c)v where b‘^c, is 

a common factor off(x) and f'(x), then (x2 + 2&x + c)p H is a factor 
of f(x).

In virtue of these results the H.C.F. process can be used to find 
any repeated factors of a polynomial or any multiple roots that 
may exist of a given algebraic equation.

Example 5. Solve the equation

f(x) = x2 - I6x‘+ 20x3 + 13x2 - 4x - 2 = 0

given that there are equal roots.

f(x) = 2(3x5 - 32x3 + 30x2 + 13x - 2).

The H.C.F. process shows that x2 - 2x - 1 is a common factor 
of/(x), f'(x). Hence (x* - 2x - l)2 is a factor of /(x).

Actually /(x) = (x2 - 2x - l)2(x2 + 4x - 2)

the roots are 1 ±^2 repeated and - 2 ±V6.

EXERCISE Xllb

A
Find the H.C.F. of the pairs of polynomials in Nos. 1, 2.

1. 2x3 - 3x2 - 5x + 6, 3x3 - 8x2 + 3x + 2.

2. 4x* - 8x3 - 3x2 + 7x - 2, 2x3 - 9x2 + 12x - 4.

3. Factorise 4x4 - 35x2 + 51x - 18, given that it has a repeated 
factor.

4. Given that 1 + <y2 is a root of x‘ - x3 - 4x2 + x+ 1 = 0, find 
the other roots.

5. Find the condition for x2-3Hx + G = 0 to have two equal 
roots.

6. Prove that (y — z)n + (z - x)n + (x - y)n is divisible by 
(xa + y2 + z2 - yz - zx - xy)2 if n - 1 is a positive multiple of 3.

7. Prove that if n>l, (x- l)3 is a factor of
2xn+‘ - (n+ l)(n+ 2)x2 + 2n(n + 2)x - n(n + 1)

D.H.A.A. It. S'
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B
Find the H.C.F. of the pairs of polynomials in Nos. 8-11.

8. x* - 2a;2 - 5a: - 12, as* — 7a:2 + 13a: - 4

9. 2x’ + 9a:2 + 4x - 15, 4a:3 + 8x2 + 3z + 20

10. 2x* + x3 + 2x3 + 1, x3 + 2x3 + 2x + 1

11. 3x* + 5x3 + x3 - 10a: - 14, 3a:’ + 14a:2 + 22x + 21

12. Given that ^J2 + <"5 is a root of

a:6+ 2x3 - 15a:4 - 28a;3 + 23a:2 + 18a: = 9, 

find all the roots.

13. Solve 4x* + 4a:3 - 23a;2 + 18a: — 4, given that the equation has 
two equal roots.

14. For what positive integral values of n is x3n + 1 + (x+ l)3n 
divisible by (a;2 + x + 1)’ 1

15. Prove that the equation
xn + no:"-1 + n(n - l)xn~‘+ ... + n! = 0

has no equal roots.

C
16. Find the condition that the H.C.F. of x3 + ax3 + bx + c and 

x3 + bx3 + ax + c is not a mere constant.

17. Find the condition for x* + 2px3 + 2rx + pr = 0 to have two 
equal roots.

18. Explain the necessity for the condition 62=£c in the state­
ment on p. 263.

19. If z4-4cz + 3 = 0 has two equal roots in complex algebra, 
find c and solve the equation.

20. If f(x), g(x) are co-prime polynomials in x such that 
f3 + g3 = 0 has a repeated root, prove that this root satisfies 
f'3 + g'3 = 0 where g' are the derivatives of /, g.

21. If fix, y) is a symmetrical polynomial in x and y having 
x-y as a factor, prove that (x - y)3 is a factor off(x, y).
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H.C.F. Theorems. If h(x) is the H.C.F. of two polynomials 

f(x), then co-prime polynomials A, B exist such that
Af(x) + Bg(x) = h(x).

If q(x), qfx), ... are the successive quotients and r(x), rfx), ... 
are the remainders in the process of repeated division applied 

f(x)=g(x)q(x) + r(x) 
g^sr^q^+r^x) 
r(x) = r1(x)q2(x) + rl(x)

rk-iW = rk-i (*)&(*) + rk(x)

These identities show that each of the remainders is of the form 
A/(a:) + Bg(x) where A, B are polynomials in x. For example

r = Aof+Bog where A0 = l, B„ = -q, 
ri = Atf+Bi9 where -41 = -AQq,, Bl = l-Baq1, 

and so on. But hfx) is the last remainder rk(x) which does not 
vanish; hence taking A=Ak, B = Bk, h(x) = Af(x) + Bg(x).

This may be written 1 = AF(x) + BG(x) 
where F(x), G(x) are the polynomials obtained by dividing 
fix), g(x) by their H.C.F. h(x). It follows that AF(x) + BG(x) has 
no algebraic factor, and therefore that A, B are co-prime.

In the special case when f(x), g(x) are co-prime, h(x)=rk is a 
mere constant, and both sides of the identity may be divided by 
this constant. Hence

if /(«), g(x) are co-prime polynomials, other co-prime 
polynomials A, B exist such that Af(x) + Bg(x) = 1.

The existence of A, B may be used to give a formal proof of 
the intuitive theorem ;

If F(x), G(x) are co-prime polynomials and if G is a factor of 
F(x)H(x), then G(x) is a factor of H(x).

For AF + BG = 1, therefore AFH + BGH = H.
But G is a factor of both AFH and BGH, hence it is a factor of H.
Also, if F, G are co-prime and H is any other polynomial, then 

any common factor of FH and G is a factor of H.
This also follows from the identity AFH + BGH =H.
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There is an important arithmetical theorem analogous to the 
algebraic theorem on p. 265 :

If h is the H.C.F. of two positive integers f, g, then co-prime 
positive or negative integers A, B exist such that Af + Bg — h, and 
in particular if f, g are co-prime, integers A, B exist such that 
Af+Bg=l.

This may be proved by precisely the same argument as is used 
on p. 265. The following alternative proof of the algebraic theorem 
is instructive. See also p. 282, No. 23.

Consider the set of all possible polynomials Af+Bg where A, B 
are polynomials such that Af+Bg is not identically zero, and 
denote by R any one of them A^+B/g whose degree k is not 
greater than that of any other.

The special cases A = l, B = 0 and A — 0, B—l show that k 
cannot exceed the degree of f or of g.

Let q, r be quotient and remainder when f is divided by R. 
Then the degree of r is less than k, and

r=f-qR=f- q(AJ+ B1g)=Aif+ B2g.

Hence unless r = 0 a new polynomial of the set has been found 
with degree less than k. This is inconsistent with the definition 
of k. Hence r = 0. Thus R is a factor of f. Similarly R is a 
factor of g. But the identity R = A1f + Ifg shows that any factor 
off, g is a factor of R. Therefore R is the H.C.F. off and g, that is

Example 6. Find polynomials A, B such that

A(x3 + 1) + B(x2 + x + 1) = 1.

In the method of repeated division, the work is

- a; - 1 ) x2+x+l 
x2 + x

T

Xs + 1 ( X3 - x2 + 1
Xs + X + 1

- X
hence
and

x3 + 1 = (x2 + X + 1) (x3 - x2 + 1) + (- x) 
X2+ X + x)( - X - 1) + 1.
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Eliminating the term ( - x)

(- x- l)(x64-1) = (x*4-X4- l)(x’ - x* 4- 1 ( - x - 1) + ( - x)( - x - I) 
= (x* + x+ 1)( -x‘ + x* - x - 1) + (x* + x+ 1) - 1

(x + l)(x‘+ 1)4- ( - x‘ + xa - x)(x’+X4- 1) = 1,
A =x4- 1, - x‘4- xa - x.

In the identity Af(x) + Bg(x) = h(x), the polynomials A, B are 
not unique, for evidently

fe(x) h(x) /

where C is any polynomial, are also polynomials which satisfy the 
identity.

Conversely if Af 4- Bg-=h and A'f +B'g = h, A' and B' can be 
written in the forms A 4- Cg/h, B - Cf/h, where C is a polynomial.

For (A‘- A}f=(B - B')g,
so (A' - A)f/h = (B - B')g/h.

But f/h, g/h are co-prime polynomials. Hence by the theorem 
on p. 265, f/h is a factor of B - B'.

Let B - B' = Cflh, then (A' - A)f=(B - B')g = Cfglh ; so
A' -A=Cglh.

Thus A' = A + Cglh, B' = B-Cflh.
Hence there exists at most one pair of polynomials Alt Bt of 

degrees less than those of g/h, f/h respectively, such that
Alf+Blg = h,

and it is easy to show that one such pair does exist.
For if Af 4- Bg = h and if P, A, are the quotient and remainder 

when A is divided by g/h, and if Q, Bx are the quotient and 
remainder when B is divided by f/h,

A = Pgfh + Alt B = Qf/h + Bl.
Then h = Af + Bg = (P 4- Qjfg/h 4- AJ + Btg.

But the degrees of h, Axf, Btg are each less than that offgfh, 
therefore P4- Q = 0 and AJ + Btg = h.

The functions Av Bt may also be found by equating coefficients 
in an assumed identity, but this method is usually more laborious 
than the method used in Example 6.
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EXERCISE XIIc
A

Find the simplest polynomials A, B which satisfy the identities 
in Nos. 1, 2, and give the general solution in polynomials.

1. A(x3 + 1) + B(x2 + 2.r + 2) = 1.
2. A(2xl + x3 - 16a:* - 4x + 2) + B(2a:3 + 5xa - 4x - 3) = 2x + 1

3. Find positive or negative integers A, B such that
17A + 29B=1,

and give the general solution in integers.
4. If the polynomials ax3 + bx + c and px3 + qx + r are not 

co-prime, prove that (br - eq) (aq - bp)2 = (cp- ar)3.
5. If a, b, c, d are constants such that ad =£ be, and if f, g, r, s 

are polynomials in x such that r = af+bg, s = cf+dg, prove that 
the H.C.F. of f, g is the same as the H.C.F. of r, s. What is the 
conclusion if ad = be "I

' B
Find the simplest polynomials A, B which satisfy the identities 

in Nos. 6-8.
6. A(2x3 - 4x2 + 2x - 3) + B(x2 - 2x + 3) = 1
7. A(x‘ + a:3-l) + B(a:*+l)=a:3
8. A (3a:3 - 8a:* + 19a; - 10) + B(3xl + 4x3 - 22x2 - 9a: + 14) = 3a: - 2
9. Find two integers A, B such that 106.4 + 1377?= 1.

10. Prove that the necessary and sufficient condition that two 
polynomials f(x), g(x) of degrees m, n are not co-prime is that 
polynomials r(x), s(x) of degrees less than m, n respectively exist 
such that f(x)s(x) + g(x)r(x) = 0.

C
11. Prove that px3 + qx3 + rx + s, sx3 + rx3 + qx + p have a 

common factor of degree greater than unity if p2 + qs = s2 +pr.
12. If a1ci + atc1 = 2błbt and atx3 + 2b1x + c1, a2x2 + 2b2x + c2 have a 

common factor, prove that one of these polynomials is a perfect 
square. Interpret this result geometrically.

13. If f(x), g(x) are co-prime polynomials and if r(x) is a 
polynomial of degree less than that of fg, prove that r can be 
expressed in the form Af+Bg, where A, B are polynomials of 
degrees less than those of g, f respectively. 
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Partial Fractions. A rational function of a; is a function of the 

form —— where f(x), g(x) are polynomials in x. It is called 

irreducible if f(x), g(x) are co-prime, and proper if the degree of 
f(x) is less than that of g(x).

If f(x), g(x) have the H.C.F. h(x), and

/(xj-hWf^x), g(x) = h(x)gl(x),

then fig =f1/gl for all values of x except those for which g = 0.
If fig is not proper, it can be expressed in the form q + (r/g) as 

the sum of a polynomial and a proper rational function, by 
finding the quotient' q and the remainder r when / is divided by g.

It will be assumed in the theorems that follow that the given 
rational functions are irreducible.

The process of expressing a given rational function in partial 
fractions is illustrated in Chapter V, pp. 89-93, by several numerical 
examples. The more general results which will be established in 
this chapter are required for the theory of integration.

If P2, P2 are co-prime polynomials, the rational function
A A 12can be expressed uniquely in the form B + -~ + -A where B is a 
•*i P 2

polynomial and AlIPl, A2/P, are proper and irreducible.

Since P2, P2 are co-prime, polynomials Lv L2 exist such that
L2P j + L2P, = 1,

hence A AIL^+I^PJ AL, ALt 
P.P- P2P,_ ~ P2+ P2

By division, AL2 = P1B1 + A, ALl = P2B2 + A2 where t'ne 
degrees of AIt A2 are less than those of P2, P2 respectively.

Hence = Z?! + ~ where
-*1 2

^2 are proper. 
•*2

A2IPv A2IP2 must be irreducible. If for example A1/Pl 
reduces to Af/Pf, then the identity shows that A^P^J is equal 
to a fraction with denominator PfP2, and this contradicts the 
assumption that AI(I\P2) is irreducible.
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To prove that the expression for AI(P2P2) is unique, suppose
that

D A, A2 A „ C2 C2 
B + p +/> ~pp ~D^P + P

Then (B - D)P2P2 + (A, - C2)P2 = (C, -A2)P2
/. P2 is a factor of (C2 - A,,')P1 unless this is zero. But P2 is 

of higher degree than C2, A2, and is therefore not a factor of 
Cj-ylj. Also it is prime to Pv Hence C2 =A2, similarly C2 = 
and .'. B = D.

Thus the result is proved. Repeated applications of it show 
that

if Plt P2,..., Pn are polynomials every two of which are co-prime, 
the rational function A/(P1P2... Pn) can be expressed in the form 

where B is a polynomial and A1IP1, ... , AniPn are proper and 
irreducible.

The same argument as above will prove that this expression 
for A/(P1P2 ... Pn) is unique.

Application to the general Rational Function.
From p. 257, any polynomial of real algebra can be expressed 

as the product of factors like (x- a)T, {(a - /?)2 + y2}8, any two of 
the factors being co-prime. Hence by the theorem about

A/(F1P,...P„),
the general rational function/(a:)/<ir(a:) can be expressed in the form 

B C
O + 2(x-a)’- + 2'{(x-/3)2+y’}‘ *

where a, B, C are polynomials and the degrees of B, G are less 
than r, 2s respectively.

By division, any polynomial <f>(x) of degree m can be expressed 
in the form (x - a^^x) + p0, where p„ is a constant, and then 

can be expressed in the form (x - a)<j>2(x) + p2, and so on. 
This gives

f>(x)=p0+p1(x-a)+p2(x-a), + ...+pm(x-a)m 
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where pe, plt..., pm are constants. Hence the proper fraction 

-—may be replaced by(x - a)r
P„ . Pi . . Pr—1

(x - <x)r (x - a)r—1 ‘" X - a
Similarly by division any polynomial <)>(x) can be expressed in the 

form {(x-•yi}<f>1(x) + qQx + r0 where q„, r0 are constants, and 
then (x) can be expressed in the form {(z - ^)2 + y2} ^>2(x) + x + rlt 
and so on. If <f>(x) is of degree 2s - 1 or 2s - 2, this gives

<£(x) = (,q„x + r„) + (qtx + r^x -pY+y*} + ...
+ («,->«+ »'M){(«-/S), + y»}»-*

where g0, r0, qlt i\, ... , q,_lt rs_t are constants. Hence the proper

fraction {(X_ may be replace(l by

go^ + r, gi^ + n 9,-1* +r,-i
{{x-^+ y’}* {(X - £)• + y«}-1 + ‘ ‘ ‘ + (X - py + y*

By using the argument on p. 270, it may be proved that' this 
reduction is unique. The final result

a + y y___?k + y v 9kx + rk
^^(x-a.y-k {(X- PY+y*}s-k

shows what forms should be assumed in expressing a rational 
function as the sum of partial fractions. It remains to discuss 
methods more convenient than division of obtaining the values 
of the constants in numerical examples. See also Chapter V, 
pp. 89-93.

Example 7. Express xl + 2z3 + 3z2 + 4z + 5 in the form 
Po+Pi(x-6)+p„(x- 6)a+p3(z- 6)’+p4(x- 6)‘.

Method 1. Divide repeatedly by x - 6, using the method 
explained in Chapter VIII, p. 161.

1865 + 1120(x - 6) + 255 (z - 6)a + 26(z - 6)’ + (z - 6)‘.

1 2 3 4 5
8 51 310 1865

14 135 1120
20 255
26

Hence the expression is
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Method 2. Putting x = a in

=Pa - «) + P,(x -«)* + ... + pm(x - a)m

gives </>(«) =p0, and putting x = a after differentiating r times 
gives <f>r(a.) = r!pr.

In this example, <[>(x) =xl + 2x* + 3x2 + 4x + 5,

<f>'(x) = 4a:3 + 6a:2 + 6a: + 4, <j>2(x) = 12a;2 + 12a: + 6, 
^3(o:) = 24x+12, ę64(a:j = 24.

Hence p0 = ^(6) = 64 + 2.63 + 3.62 + 4.6 + 5 = 1865,
p1 = ^'(6) = 4.63 + 6.62 + 6.6 + 4=1120,

2!p3 = ^*(6)= 12.6* + 12.6 + 6 = 510,
3!p3 = <£3(6) = 6.26, and 4!p4 = 24.

Method 3. Equate coefficients of a:4, x3, x2, xl, x9. 

l=Pt> 2= -4.6p4+p3,
3 = 6.62p4 - 3.6p3+p3, 4= -4.6’p4 + 3.62p3-2.6p,+p1,
5 = 64p4 - 63p3 + 62pa - 6p4 +p„,

and solve these equations.

Example 8. Express a:5 + 5x* + 4a:3 + 3x + 1 in the form

(qox + r„) + (qlx + r1)(x2 + x+ 1) + (qix + ri)(x2 + x + I)2.

Divide twice in succession by x2 + x +1 using detached 
coefficients.

1+4-1-3 1+3
1 + 1 + 1)14-5 + 4 + 0 + 3+1 1 + 1 + 1 ) 1+4-1-3

4+3+0 3-2-3
-1-4+3 -5-6

-3+4+1
7 + 4

Hence the expression is
(lx + 4) + ( - 5x - 6)(a:2 + a:+ 1) + (a: + 3)(a;2 + a:+ l)1

Alternatively the constants may be found by equating coefficients.

The determination of the partial fractions of f(x)/g(x) is par­
ticularly simple when there are no repeated factors in g(x).
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It is easier to deal with linear than with quadratic factors. By 

the use of complex algebra, quadratic factors can be avoided, but 
the corresponding partial fractions have to be combined in pairs 
and further reduction may be necessary.

f (.c)Consider the fraction -—, hlal&O.
(x-a)h(x) ' ’

This is expressible as ———t- ——
x-a. h(x)

where p is a constant and p = / - - lx - a) •
h(x) h(x)

Putting a for x, p=f(a)lh(a).

This result justifies the following rule for finding the numerator 
p of a partial fraction p/(x- a) when x - a is not a repeated factor 
of the denominator :

Remove x - a from the denominator and substitute a for x in 
the remaining fraction.

Note. If g(x) = (x- a)h(x), then h(a)—g'(a).
Applying the rule, the partial fractions of

________ /(a)________
a,)... (»-«„) in which <x2, ... , a„ are unequal,

are found to be
_______________/(«i)________________1

(“i - «s)(«i - «s) ••• (®i - “J «1

, /(«»)____________________1_

(“a “ “i)(«2- «3) ••• (“2 “ “n) x ~ “a

Hence, multiplying by (x - a2)(x - «2)... (a:- «„),

/(®) =
(x — at)(x — af)... (x — an) 

(“i - a,)(<x2 - a,)... (a2 -
, (x~ a,) ...(x-an)

(“a - “i)(as - “s) ••• (“a - “n)1 012

Writing Av A2, ... for /(ax), /(a2), ... , this becomes Lagrange's 
interpolation formula for a polynomial of degree n - 1 which takes 
the assigned values A,, A2, ... , An for x = av a2, ... , an.
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x + 7
tapZe 9. Express {x+l}{x_3}{x. + x + 3) ™ Partial fractions.

The expression = -—- + —7--2- + g+ r
+ + 1 x - 3 x2 + x + 3

-1+7 1 3+7 1
anf ?’*-(_i_3)(1_1 + 3)- 2 ’ P1 ~ (3 + 1)(9 + 3 + 3) ~ 6 '

Hence

a: + 7 = { - l(a: - 3) + J(a: + l)}(a?2 + x + 3) + (qx + r)(x + l)(x - 3) ; 

from coefficients of a;3, 0 = - | + q, q — i

and putting x = 0, , 7 = £+|-3r, .‘. r= - f.

the expression = - 2(a_+1) + 6(a._3) + 3(a;2 + m + 3)

Example 10. Express ------- j---------— in partial fractions.(3? — Cl) [X* 4* &“)
The given expression is an improper fraction. By division or 

by inspection it can be written as

N
x + a *■ (x _ o)(x3 + a2)

where N is of degree less than 3. Hence

x* p qx + r
(x - a)(x2 + a2) X + a +x - a x2 + a2

a* 1
By the rule, p = —-----; = ;<i2. Thus* a2 + a2 2

x* = (x2 - a2)(x2 + a2) + £a‘(x2 + a2) + (qx + r)(x - a)

- i-a2a:2 + |a4 = (qx + r)(x - a)

- %a2(x + a) = qx + r

, . a2 a2(x + a)and the expression = x + a + —------r - ,—jr1 2(»-a) 2(x2 + a2)
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EXERCISE XHd

A
1. Expregs x* - 2x2 + 3x - 1 in ascending powers of x - 2.

2. Express 8x* - a3 + x in ascending powers of 2a: + 1.

3. Express 5 - 4x + 3a:3 + 2x* - xs in the form
a + bx + (c + dx)(l -x + x2) + (e+/a;)(l - a: + a:3)8

Find the partial fractions in Nos. 4-10.

4 s"-4
' (a:-l)(a:-3)

„ 3x +1

2a:3+1
' (a3 + l)(a2 + x + 1)

11. Express a:3 + 3a:2 + 4a + 5 in ascending powers of x + 2.

12. Express a:1 in ascending powers of x - 1.

13. Express a’ + 3a6 +a + 1 in the form
a + bx + z(c + dx) + z2(e +fx) +z,(g + hx)

where z = a3 - x + 1.

Find the partial fractions in Nos. 14-22.
a:3 - x + 115. (x- l)(a*+l)

2x2 - 3a: - 418.

20.

22.

16. X*+ x'
a3 - 1

(x2- l)(x2 + 2x + 2)

x2
(a - a) (x - b)

8
a3 - 1

C
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Repeated Factors. Consider the fraction -—— - ■— where 
(x - a)rg(x)

g(a)^0. As on pp. 270, 271 this is expressible as

Po . Pi , Pr-1 , ?(*) 
(x—a)r (x —a)r_1 X-a g(x)

°nd S° ^P° +Pl(X ~ + "■ + Pr~1(X ~ “)r_1 + (X ~ “’'(Hi) ‘

Putting a for x, p0 = and so the value of pa can be written 
9'(“)

down by a similar rule to that given on p. 273 for unrepeated 
factors.

The simplified form of -—P- ,, when P0=^r is 
r (x-a^x) (x-a)' /0 g(«)

; from which by the same rule p, = ^7-7 •
(x-af-^fx) J g(a)

The values of p2, p3, ... can be found in succession in the same 
way. But it is usually convenient in a numerical example when 
r is large to proceed otherwise.

Putting x - a = z, 

and the values of p0, p2, ... , pr-1 can be found by successive 
differentiation and substitution of zero for z. This amounts to 
finding the coefficients in the expansion of/(z + a)/g(z+a) by 
Maclaurin’s theorem. The values might also be found by division.

In dealing with a repeated quadratic factor, the following method, 
due to Homer, may be used.

Q
If x-f) = y, —----- —-----— can be expressed in the form

yq(y2) + h(y2) * P +
■ , '------ where q, h are polynomials in y2 of lower

than s. If y2 = t, the expression becomes

OW h(t) 
y (<+y’)s (<+/)’

and each term can be reduced by the methods already given for 
linear factors.
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Example 11. Express — —— in partial fractions, and

find the coefficient of xr in its expansion in ascending powers of x 
when | x |< 1.

First Method
The expression = -a + , an(] a= 1 + & + 9 _ _2

x+1 (x - 2)3 (— 1 — 2)3 3
Put x - 2 = z, then

a;3-8a:+ 9 (z + 2)2 - 8(z + 2) + 9 -3-4z + z*
x+1 z+3 ~ 3~+~z

= (-l-tz + łz3)(l+łz)-1
= (- 1 - Jz + jz’){l - fz + |z3 + z’<7(z)}
— - l- z + fz2 + z3h(z).

Tr .2112Hence tne expression - -------------------------------- --------- 1----------- -
3(x+l) (x - 2)3 (x - 2)2 3(x - 2)

Second Method

x2 - 8x + 9 = A(x - 2)3 + B(x + l)(x - 2)2 + C(x + 1) (a: - 2) + D(x + 1). 
Put x = 2, D= - 1,

x2-7x + 10=A(x-2)» + B(x+l)(x-2y> + C(x+ l)(x-2), 
x - 5 = A(x - 2)‘ + B(x+ l)(x - 2) + C(x + 1).

Put x = 2, C= - 1,

2x-4 = A(x-2)2 + B(x+l)(x-2),
/. 2 = A(x-2)'+B(x+l).

Put x = 2, .'. B = f ; A= - f ; and this gives the same result 
as before. These two methods should be compared with the two 
methods given for the same example on p. 92.

In the expansion of

-1(1 + x)~2 + 1(1- lx)-3 -1(1 - fa:)-’ -1(1 - fx)->

the coefficient of xr, if | x |< 1, is

-1( - l)r +1 x 1 (r + 1 )(r + 2)2-’- - l(r + 1)2-’’ - 12"’-,
that is -1( - l)r + l(3r2 - 3r - 22)2^"’.
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Example 12. Express 

x2 - 4x + ó = (x - 2)2 + 1.
(ic-~2)(a:2 - 4a; + 5)* “ Partia’ fraCtiOn8-

Put x-2=y, then

First Method.

the expression = y + 1 
y(y2 +1)3

y+1 =P g(y) 
y(y2+l)3 y (Z/2+D3 

where p = 1

- y* - 3y3 - 3y + 1
(j/’+D*

1 
= —h 

3/

Use the method of Example 8, p. 272, to express - y* - 3y2 - 3y + 1 
in the form ay + b + (cy + d)(y2 + 1) + (ey +f)(y2 +1)’

-14-0-2 + 0 __ -1 + 0
14-04-1) -14-0-3 + 0-3+1 1 + 0+1 ) -14-0-2 + 0

0-2+0-3 0-1+°
0-1 + 1

_ yi _ 3y> _ 3y 4- 1 = ( - y + 1) + ( _ 3/)+ 1) + ( - y)(y2 + I)2’

and the expression =
1 1 - V ____ y 

i/2 + i

Second Method (Homer's).

-i.+i'FTP ’her”,tl-‘

1-3/ y.?'__
= £3 t“ t 1

1-3/ ___y 1
=^rnT’-(?/2+1)’ 2/’+i+?/
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Third Method.

Let y+ 1 = - + By + C + Dy + E + Fy + G
y(y*+W y y2+i (y2 + i)2 (3/a+i)’

then y + 1 = A (J/* + 1)’ + (Bi/ + C W + 1)* + (Dy + 2?)y(y« + 1) 
+ (Fy + G)y.

Putj/ = O, 4 = 1,
... _3/._33/«_33/» + 2/ = (i?2/ + (7)2/(3/«+1)»

+ (Dy + E)y (ya + 1) + (Fy + G)y, 
-y3-3y3-3y+l = (By + C)(y3 + 1)« + (Dy + E)(y3 + V) + Fy + G.

Put y = i, - i + l = Fi + G ; F = - 1, G = 1,

and -y3-3y3-2y = (By + C)(y3 + l)2 + (Dy + E)(y2 + 1)
/. -y3- 2y = (By + C)(y2 + \) + Dy + E.

Putj/ = i, -i = Di + E ; D= - 1, E = 0,

and -y’-y = (By + C)(y3+V), -y = By + C.

This gives the same result as before, and since x - 2 = y,

EXERCISE XHe 

A
Find partial fractions for the expressions in Nos. 1-6.

x3 - x + 1 x + 1 2x3 + 3x + 1
(x-l)a ' (x - l)2(x2 +1), ' (x-2)3(x-3)

4 x+3 5 (a? —!)(«?+ 3) 6 4
(x - l)(m2 + l)2 (x+ l)(xa +1) ’ (x + l)a(»a + l)2

Find the coefficients of xr in the expansions of the functions in 
Nos. 7-9, stating when the expansions are valid.

? 3x2 -2 3x o x3 + 2x + 3
4 -x3 (1 - 2x)(l + xa) (x2+l)(x+ l)2

10- ExpreSS (x+2)(x2 + 2x + 2)a “ partial fractions’

D.R.A.A. II. G
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B
Find partial fractions for the expressions in Nos. 11-16. 

o 2a:2 - 4a; + 1 
2‘ (a: — l)2(a? — 2)1L 13. 2a;2 - 5

(x- l)(a: + 3)(a: - 2)2

15. 16. ------—*-------
(a:2 - l)(a:3 - 1)x*(xt + I)2

Find the coefficients of xr in the expansions of the functions in 
Nos. 17, 18, stating when the expansions are valid.

(x-l)>(x-2)(x-3)
x

1 18 i-3*
(1 - 2.r)(l - a:)2

C
Find partial fractions for the expressions in Nos. 19-21.

19 ______!_____ 20 _____ —_____
' (x- l)3(a: - 2)1 ' (a:2+ 4)(a:2-l)2

o 2a:1 - 8a:3 + 3a:2 - 12a:
‘ (a:2 + l)2(a:2 + 2)2

22. Find the coefficient of xr in the expansion of the function

(1 - a:)(l - x2)(l - a:3) * 1 X *< b

23. State what method you would use for expressing
x + 3

(a:2 + 4x + 5)3(a: + l)2
in partial fractions.

24. Express  ------ ———j—----- — in partial fractions if a, b, c\X ~~ CL j \X — u) \X ~~ C)
are all unequal.

a;n+i
25. Express --------——— ----- --------- - as the sum of a polynomial

(a: — ax)(a: — a2) ... (a: — an)
and partial fractions, if a,, a2, ... are ail unequal.
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MISCELLANEOUS EXAMPLES 

EXERCISE Xllf

A
1. Find the simplest polynomials P, Q in x such that

(x* - x2 + 2x2 -3x- 3)P + (x* - x2 - 2x - 1)Q = 0.

2. Prove that xn - pxr + q = 0 has two equal roots if
{p(n - r)/(?n)}n = {(n - r)/(qr)}r

3. Prove that (x - l)4 is a factor of
x2n - n2xn+1 + 2(n2 - l)xn - n2zn_1 + 1

Express in partial fractions Nos. 4-6.
4. g> 5. 6x5____ 6. 9

(x + a)(x2 + b2) ' (x2 - l)(x2 - 4) ’ (1 - 2z)(l +x)2

7. If n is an integer greater than 3, express the fractional part 
of (1 + x)nl(2 - x)3 in partial fractions

8. Prove that £ . (7 1)"^+!)! = ~ D(^ - 2) - (x- n)
r=0(r!)2(n-r)\(x + r) x(x+ l)(a: + 2)... (x + n) 

and deduce that
(n+1)! (n + 2)!

l!2!(n-l)! 2! 3! (n-2)! +" to n terms = 1.

9. If the polynomial f(x) is divided by the product g(x) of n 
unequal factors (x - ajlx- «2)... (x - «„), prove that the remainder 
can be expressed in the form F. _&(x) .

9 («r) x - ar

B
10. Find the condition that ax2 + bx2 + c, ax2 + bx + c should 

have a common factor.

11. Find the conditions that ax2 + 36,r2 + 3cx + d = 0 should have 
three equal roots.

12. Given that - 1 + <3 is a root of x' - bx2 - 13x2 + 20a; -6 = 0, 
find the other roots.
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Express in partial fractions Nos. 13-17.
13 (x-a}(x-b) 

(x-c)(x-d)

C
15 <** 16 __________ 8_________ .

(x-l)3(o?a+ 1)’ ’ x2(x° - X* - X + 1)

(x - a)2(x2 - 2bx + c) ’ <c‘

18. Prove that if m and n are positive integers
1 / m\ 1 / »n\ 1

n+l_\l/n+2+\2/n+3 ... to m + 1 terms = m\ n!
(m + n + 1)!

19. If 1 /{(x - a)m(x - &)”}, a b, is expressed in partial fractions, 
prove that the coefficient of l/(x - a)mr is

n(n+,l)... (n + r-1)
' 1 (a-b)n + rr<.

20. If g(x) = (x- ajKx - a,)... (k - an) where no two factors are 
equal, and if f(x) is a polynomial in x of degree n - 2, prove that 
S/(ar)/j?'(«r) = O.

21. If g(x) = (x-d)2<f>(x') where ^(<z)^0, and if
/(^) Po | Pi , -Ffo) _
g(x) (x-a)2 x-a <f>(x) 

prove that
Po = 2/(a)/p2(a) and p, =|{3/'(a)g’(a)-/(a)g8(a)}/{sr’(a)}‘

where gr(x) denotes the rth derivative of g(x).
22. If n is a positive integer prove that

0 1 /n\ 1! /n\ 2!
x + n+ \2/ (x + n)(x + n - 1)+ \3/ (x + n)(x + n - l)(z + n - 2)

1 1 1+... to n terms =------ -i------ - +... -I----- —
a:+l a: + 2 x + n

23. Prove the arithmetical theorem on p. 266 by the alternative 
method given for the corresponding algebraic result, degree being 
replaced by absolute value.



CHAPTER XIII

THEORY OF EQUATIONS
Positions of the Roots of an Equation in real Algebra.
Z/ f(x) i-s a polynomial, not zero for x — x2 or x2, then the number 

of roots of the equation f(x) = 0 which lie between x2 and x2 is odd if 
f(xt) have opposite signs.

For by Chapter XII, p. 257,
/(x)sa0(a:-?,)(»-p,)... (x-pk)g(x)

where g(x) is a product of factors of the form (x-q)* + r* or else 
is unity. Since/(a:1),/(a:2) have opposite signs and g(x) is positive, 
the linear factors cannot all be absent and

... (»!-?*), (Xz-Pfl&i-Pf)...
must have opposite signs. But (xl-p), (x2-p) have the same 
sign unless p lies between xv x2. Hence an odd number of 
Pv Pi> ••• , Pk must lie between x2, x2.

Conversely when this is given, f(xl),f(x2) must have opposite 
signs. Hence

the number of roots of f(x) = Q which lie between x2 and x2 is even 
or zero iff(xf), f(x2) have the same signs.

Note. Instead of the statement f(x2), f(x2) have the same or 
opposite signs, may be substituted f(xl)f(x2) > or < 0.

If/(x) = x"+ a1xn-1 + ... + an = a:" 61 + — + ...+ a sufficiently 
x X X'*/

large number K can be chosen so that f(x) has the same sign as 
xn for x >K and for x< - K. Thus f(K), f( - K) have opposite 
signs if n is odd and the same sign if n is even. Hence an equation 
of odd degree has an odd number of roots and therefore at least 
one root; and an equation of even degree has an even number of 
roots or no roots. These results were proved by another method 
on pp. 257, 258, and they may be illustrated graphically.

283
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It should also be noted that if an is negative and n is even, the 

equation has at least one positive root and one negative root 
because the signs of f(K), /(0), /( - K) are + , - , + .

Since /(0)=a„ and f(K) is positive, the number of positive 
roots is odd if and only if an is negative. f(K), f( - K) are usually 
denoted by/(co ), /( - oo ).

Rolle’s Theorem. It is fundamental in analysis that if a 
function /(z) has a derivative at every point of the interval 
a< x< b and is continuous up to the ends of the interval, and if 
J(a) = 0 =/(&), then /'(») vanishes for at least one value of x in 
this interval.

The algebraic form of the theorem may be stated as follows.
If x2,x2 are consecutive roots off(x) — 0 where f(x) is a polynomial, 

then f'(x) = 0 has an odd number of roots between x2 and x2.
This applies even if xv x2 are multiple roots.
Let f(x) = (x- x1)v(x - x2)qg(x) where, since xv x2 are consecutive 

roots, g(x) has the same sign for the interval from x2 to x2.
By logarithmic differentiation

Hence f'(x) = (x- x1)v~1(x - x2)q~1h(x) 
where h(x) = {p(x - x2) + q(x - xl)}g(x) + (x- xf)(x - x2)g'(x).

Since h(x1)=p(xl-x2)g(xl) and h(x2)=q(x2-xl)g(x2) have 
opposite signs, it follows that h(x), and therefore/'(a:), has an odd 
number of roots between x2 and x2.

It may be deduced from Rolle’s Theorem with the help of the 
theorem on p. 283 that iff(x) is of degree n, necessary and sufficient 
conditions for f(x) = 0 to have n unequal roots are that f'(x) has 
n - 1 unequal roots say fl2, ... , /3n_2 in ascending order, and 
that the signs of the series

/(-«),/(ft),/(ft)........../(j8b_x),/(«)
which is called Rolle’s series, are alternate. The reader should 
illustrate these results graphically.
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The theorem on p. 283 shows that if there are n changes of 

sign in any series /(yj, /(y2)......... /(y„) where y,< y,< ...< yB,
fix) = 0 has n unequal roots. But if in any special case it is easy 
to find the roots of = as in Example 1, it is quicker to use 
Rolle’s series than to search for other suitable values of x.

Example 1. Find the range of values of A; if the equation 
y'(a?) = xr* — 14a:2 + 24a: - k = 0 has 4 unequal roots.

fix) = 4a:2 - 28a: + 24 = 4(a: - 2)(x + 3)(x - 1).

The roots of /(a:) = 0 must be separated by those of f'(x) = 0,
namely - 3, 1, 2. The signs in Rolle’s series

x — oo — 3 1 2
/(®) + —117 —A: 11-jfc 8-&

must be +, —, +, - , +, and 
therefore

8<*< 11.

The result may be illustrated . 
by the graph of y = x* - 14a:2 + 24a: 
(not here drawn- to scale). The 
straight line y = k meets the curve 
in four distinct points if and only 
if 8<fc< 11.

00

+

Example 2. Prove that the equation

has n roots if alt a2, ... , an are unequal.
First Method. Suppose that ax< a2< ...< a„ and consider the 

polynomial g(x) = (x- ax)(x - a2)... (x - an)fx).
The series of signs in

x -oo a, a2 ... a„_2 an oo
g(x) fc(-l)" (-1)"-* (-1)”-’ ... -1 + k

contains n changes whether k is positive or negative and therefore 
g(x) = 0 has a roots.
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Second Method. Consider the corresponding equation in 
complex algebra, a2, ... , an and k being rc-axal, and denote any 
root by p + qi, then p - qi is also a root. Therefore

1------*--------------- i----- ) = (
\p - qi - p + qi - aTJ 

CL
whence qS = 0 and therefore q = 0.^(p-ar)2 + q2

Thus all the roots are a;-axal, and therefore in real algebra 
there are n roots.

Example 3. Prove that the equation*

/(A) = (a- X)(b- A)(c- X) + 2fgh- (a- X)f'- (&-A)q2- (c- A)A2 = 0 

has three roots.
If/, g, h are all zero, a, b, c are roots. Suppose then that/^O 

and write

<t>(X) = (a - A){(6 - A)(c - A) -/«} - {(6 - A)<?2 - 2fgh + (c - A)A2}, 
^(A) = (6-A)(c-A)-/>.

Since the signs of </>(b), </>(<») are +, +, the
equation /(A) = 0 has roots A1( A2 such that X,<b< A2.

But (& - A){(6 - A)q2 - 2/qft + (c - A)A2}

thus
={(b - X)g - hf}' + A«{(& - A)(c - A) -/«}, 

thus (b - A1)^(A1) = -{(&- AJq - A/}2
(6-A.)^(Aa) = ~{(b-X2)g-hf}>.

If then /(AJ^O, /(A2)^0, the scheme of signs

A - oo Aj A2 oo 
<^(A) + - + - 

shows that /(A) = 0 has roots a, /?, y such that a< A,< /3< A2<y.
If ^(At) = 0 and <f>(X2)^0, the signs are +, 0, +, -. Hence 

there is a root greater than A2 as well as the root Ar Similarly if 
^(AjJ^O and /(A2) = 0, there is a root less than A2 as well as the 
root A2. In these two cases and also when both A, and A2 are 
roots, there must also be a third root because a cubic which has 
two roots must have a third.
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Descartes’ Rule of Signs. Some information about the number 

and position of the roots of an equation
f(x) = xn + cq a;”-1 + a2 xn~2 + ... + an = 0

can be derived fręm a consideration of the signs of the coefficients 
cq, a2, ... , a„. For convenience it is supposed that ani=0.

When two consecutive coefficients of a polynomial arranged in 
descending powers of x have the same sign there is said to be a 
permanence and when they have opposite signs there is said to 
be a variation in /(x). For example x~ - 2z5 - x* + 2x2 - 7 contains 
1 permanence and 3 variations.

According as an is positive or negative, the number of variations 
infix) is even or odd, but also from p. 284 the number of positive 
roots of /(#) = () is even or odd. Hence the number of variations 
of/(x) and the number of positive roots of f(x) = 0 are of the 
same parity, that is they differ by an even number or zero.

The theorem of Descartes states that
V f(x) a polynomial with v variations, the number of positive 

roots of f(x) — O is not greater than v and is of the same parity as v.
The last part of this theorem has just been proved. The first 

part is proved by showing that if g(x) is any polynomial and if 
k is positive, the expansion of (x - k)g(x) contains at least one 
more variation than g(x).

Arrange g(x) in descending powers bracketing the permanences 
together. Then if g(x) contains p variations,

g(x) = (xn + ... + Zox"i+») - (axa:ni +... +Zia:"»+i)
+ (- l)2(a2a;"> + ... + Z2a:’‘3+i) + ... + (_ i)P(O2)Xnp+ _. + c) 

where alt a,, ... , ap_t, c are positive and the other constants are 
positive or zero.

In the expansion of (x-k)g(x'), the coefficient of x"i+i jg 
- kl„ - cq and is negative, and the coefficient of xnr+i }las ^he 

sign of (-l)r. Hence
{x - k)g(x) = («"+i +...)_ (ftio;ni+i + ...) + (_ i)«(baa;n,+i + j

+ ... + (- I)p(bpxnv+1 + ...) + (- l)»+ifcc> 
where the constants k, c, bt, b2, ... are positive and (bpxnP+i q....) 
must be replaced by ex if a„ = 0.
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Thus whatever may be the signs of the terms not written down, 
the expansion of (x - k')g(x') contains at least p +1 variations.

Suppose that f(x) = 0 has exactly p positive roots. Then the 
equation is

f(x) = (x-a.l)(x- a2) ... (x-a„)(xm + ClXm-1 + ... + cm) = Q

where alf <x8, ... , ap are positive. Therefore by what has just 
been proved f(x) has at least p variations. Thus the number of 
positive roots of fix') = 0 cannot exceed the number of variations 
of f(x). Since a1( «2, ... , av are not necessarily unequal, an 
r-fold root must be counted as r roots in applying Descartes’ 
theorem.

By writing - x for x and applying the rule to the new equation, 
an upper limit is obtained for the number of negative roots of 
the original equation. Hence the total number of roots of f(x) = 0 
(excluding zero roots) cannot exceed the sum of the numbers of 
variations in f(x) and/( -x).

More generally if y = (a - x)/(x - 6) where a>b, then y>0 when 
a>x>b; hence if f(x) = h(y), the number of positive roots of 
/;((/) = 0 is the same as the number of roots of f(x) = 0 between a 
and 6. Thus Descartes’ rule may be used to find an upper limit 
for the number of roots between a and b.

For a generalisation of Descartes’ theorem, see Exercise XIHb, 
No. 28.

Example 4. Find the number and positions of the roots of 

f(x) = 2x6 - 4x* - 9x- - 2 = 0.

The number of variations in f(x) is obviously the same as in 
lf(x)—x& ~ 2a:4 - 4%x - 1, so it is unnecessary to make the coefficient 
of the term of highest degree unity before using Descartes’ rule.

f(x) has 1 variation, f(x) = 0 has at most 1 positive root.
/( “ x) = ~ 2a:6 - 4a:4 + Qx - 2, f( - x) has 2 variations,

f(x) = 0 has at most 2 negative roots.
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Also we have the table of values

x -2-10 2 3
f(x) -112 1 -2 -20 133

.'. there are negative roots between -2,-1 and - 1, 0, and one 
positive root between 2, 3.

Descartes’ rule shows that there are no other roots.

Incomplete Equations. The equation

f(x) ^xn + cqa:"-1 + ...,+ arx”~r + ... + an = 0

is called complete if all the constants cq, a2, ... , an are different 
from zero ; otherwise it is called incomplete.

Descartes’ rule is more effective for incomplete equations. 
When applied to a complete equation, it can never prove that 
/(a:) = 0 has loss than n roots because the permanences of f(x) 
are variations of /( - x), so that the sum of the number of varia­
tions of f(x), f(-x) is n.

Consider the incomplete equation
f(x) = xn + alxni + a1xn* +...+ avxnv + Oj)+1 = 0

where n>n1>n2>...>nJ)>0, and the system of subsidiary 
equations

g0 (x) = xn + cq = 0 gt (x) = a2 xni + a2 xn‘ = 0 
................................... gpW = a„xnP + a„+1 = 0.

If nr - nr+l is even, gr(x) = 0 has no roots or 2 roots other than 
zeros according as aT, ar+1 have the same or opposite signs, and 
in these two cases the sum of the numbers of variations in gr(x), 
gr( - x) is also 0 or 2.

If nr - nr+1 is odd, gr(x) = 0 has 1 non-zero root and the sum of 
the numbers of variations in gr(x), gT( - x) is also 1.

Hence the total number of non-zero roots of the subsidiary 
equations is equal to the sum of the numbers of variations of 
f(x), f( - x). In other words

an incomplete equation cannot have more roots than the total 
number of roots (other than zeros) of the subsidiary equations formed 
by equating each pair of consecutive terms to zero.
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Example 5. If f(x)=xn + aIx”~1+... +an and ar = ar+l — ar^t< 
prove that /(z) = 0 cannot have more than n - 2 roots.

In the product (x — l)f(x) =xn+l + b2xn + ... + b„+1, 
br+l = br+2 = 0, and therefore one of the subsidiary equations is 

brX^r^ + br+3Xn-r-t = 0> 

which has only one root other than zero.
Thus (x- l)/(a:) = 0 cannot have more than n- 1 roots, and so 

f(x) = 0 cannot have more than n - 2 roots.

«
EXERCISE XHIa

[Throughout this exercise the algebra is real]
A

Find the number of roots of the equations in Nos. 1, 2, and 
determine pairs of consecutive integers between which the roots lie.

1. x5 - 6x + 2 = 0 2. x‘ - xs — l(te + 7 = 0
3. If a1 + 4x3 - &r2 + & = 0 has 4 unequal roots, prove that 

0<fc<3.
4. Find the range of values of k for which the equation 

a:4 - 26a:2 + 48a; - k = 0 has 4 unequal roots.
5. If p3 >q and a, p are the roots of x2 - 2px + q = 0, prove that 

a:3 - 3px2 + 3qx -r = 0 has 3 roots if r lies between pq - 2«(p2 - q) 
and pq - 2/3(p2 - q).

6. If cq >a2 >a3 >at >as >ae, prove that
(x - ax)(a: - a3)(x - a5) + b2(x - a2)(x - at)(x - a,) = 0 

has 3 unequal roots, and generalise this result.
7. Prove that if m, n, p are unequal odd positive integers and 

if a, b, c are all unequal, the equation
fix) =ai2l(x - a)m + bfHx - b)n + c,’/(a: - c)” - 1 = 0 

has exactly 3 roots.
8. If fgh^f) and if two of the roots of the equation
(a — A)(b — A)(c - A) -f2(a - A) - g2(b - A) - h2(c - A) + 2fgh = 0 

are equal, prove that a - gh/f= b - hf/g = c -fgjh.
9. If f(x) =xn + axxn~l + ... + an, and if a,. = 0 and ar+lor_, >0, 

prove that f(x) — 0 has not more than n - 2 roots.
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10. Explain the fallacy in the following argument:

.’. <f>'(x) = O has no roots ; by Rolle’s theorem, <f>(x) = O 
has at most 1 root. But actually <f>(x) = 0 has 3 roots.

B
Find the number of roots of the equations in Nos. 11, 12, and 

determine pairs of consecutive integers between which the roots lie.
11. xa-7x+2 = 0 12. x* + x2- 10j;-3 = 0
13. If p^O, prove that 3z4 + 4x3+p = 0 has 2 roots or none 

according as p< 1 or p > I.
14. Prove that x(x- 3)2 = 4 sin2 a has 3 positive roots, if a^mr.
15. Prove that x3+px + q = 0 has 3 rmequal roots if and only if 

27g2 + 4p2<0.
16. Prove that if alt a2, ... , an are all unequal, the equation 

F. 1 l(x - ar) = 0 has n - 1 roots.
17. If /(z) =.xn + a2xn~l + ... + an and if n is odd and an>0, 

prove that f(x) — 0 has at least one negative root.
18. Prove that if f(x) is a polynomial, the equation/'(z) = 0 has 

an even number of ropts (or no root) greater than the greatest 
root of f(x) = 0.

19. If f(x) is a polynomial and if /3,, /?2, j33 are consecutive
roots of f'(x) = 0, and if fl2 is an r-fold root where r is even, prove 
that if /(/?2) 0, there is at most only one root of f(x) = 0 between
Pi and

C
Find the number of roots of the equations in Nos. 20, 21, and 

determine pairs of consecutive integers between which the roots lie.
20. 27a;‘-45a:2-27x + 4=0 21. x> - 3x5 - 5z2 + 2x + 9 = 0
22. If/(.r) = (x2 - 1 )n, prove that fn(x) = 0 has n unequal roots.
23. If f(x)~xn + alxn~1+ ...+an and if ar2 = ar_2ar+1, prove/ 

that/(x) = 0 has not more than n-2 roots.
24. If p(p - n) >0, prove that the equation

xn +pxn~* + łp(p - l)xn~* + a2xn~2 + ... + an = 0
has not more than n-2 roots.
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Sturm’s Theorem. This theorem determines exactly the number 

of roots of f(x)i=xn + alxn~1 + ... + an = 0 which lie between any 
two given numbers a and 0.

If {</>(x)}r is a factor of f(x) and r>2, </>(x) can be found by the 
method of p. 263, and the equation <f>(x) = 0 can be considered 
separately. It is only necessary therefore to consider an equation 
f(x) = 0 which has no multiple roots.

Let the process of finding by successive divisions the H.C.F. of 
f(x) and its derivative f'(x) be modified by changing the sign of 
each remainder before using it as a divisor, and let the remainders 
with their signs changed be/2(a:),/3(a:), ... .

For uniformity write/Jx) for /'(a:). Then the functions/(a:), 
fi(x), f2(x), ... , fm(x) are called Sturm’s functions and we denote 
by v(£) the number of variations of sign in the series of numbers 
/(f),/i(f)>/2(f)........ we proceed to show that the number
of roots off(x) = 0 between a and depends on v(a)

The division process shows that each Sturm’s function is of 
lower degree than the preceding one, so that m< n, and because 
it is assumed that there are no repeated roots, /(a:), ft(x) are 
co-prime and so the last function fm(x) is a constant and is not 
zero.

The only property of fm(x) that will be required is its invariable 
sign. If therefore an earlier function fk(x) is of invariable sign for 
x<x< ff, there is no need to calculate any function beyond fk(a:).

Let the quotients in the H.C.F. process be qlt q2, ... . Then

fr-1 — Irfr ~fr+l

— ~fk

The Sturm’s functions possess the following properties.
(i) Each of the functions/, fv f2, ... ,fk is a polynomial and can 

only change sign when x increases through a root, say x — c, 
off=0 or fr = 0. If h is sufficiently small, f or/, remains 
unaltered in sign for c - h< x< c and for c< x< c + h.
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(ii) No two consecutive functions are both zero for the same value

of x.
For if when x = c, fr_2 = 0 =fr, it follows 

from fr-i = 9rfr-fr+x that /r+l = °
and from the next identity that fr+i = 0, and so on. Thus 
fk = 0, contrary to the definition of fk.

(iii) and fT+1 have opposite signs for any value of x, say x — c, 
for which fr = 0, and if h is sufficiently small, retain these 
signs throughout the interval c - h< x< c + h.

This is proved by the identity used in (ii) and by (i).
(iv) If /(®) = 0 when x = c and if h is positive and sufficiently

small, f and f2 have opposite signs for c - h< x< c and the 
same sign for c < x < c + h.

Since x = c is not a repeated root of f(x) = 0, ffc) 0 and h can 
be chosen so small that /j(c) has the same sign throughout the 
interval c - h< x< c + h. Also if h is sufficiently small, f(x) has 
the same sign throughout c -h<x< c, and since

f(c - h) =f(c) - hffc - 0,^) = - hffc - 6ft) (0< (?,< 1, h >0) 
this sign must be opposite to that of/,(c).

Similarly f(c + h) = hf1(c + 0ih), (0< 92< 1, h >0), and therefore 
f(x) has the same sign as/1(c) in the interval c<x<c + h.

Consider now the change in the value of v(x) when x increases 
from a to /?.

By (i) there is no change in the value of v(x) except possibly 
when x passes through a root of/ = 0 or of/r = 0.

By (iii) the series fr_lt fr, fr+1 contains exactly one variation 
on both sides of a root x = c offr = 0.

Thus the value of v(x) can ordy change when x increases 
through a root a: = c of/=0 ; and by (iv), v(x) is diminished by 1 
when x increases through a root of/= 0. Hence Sturm’s theorem:

7/ fix) — 0 has no repeated roots and if a, ft (a< ft) are not roots of 
f(x) = 0, the number of roots of f(x) — 0 between a and ftisv(a)- v(ft), 
where v(x) denotes the number of variations in the series f,f1,f2,... ,fk 
of Sturm's functions.
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The reader should test his grasp of the argument used in this 
proof by showing that if fl is a root of f(x) = 0, the number of 
roots between a and fl is v(a) -v(fl) - 1 whether a is a root or not, 
and that if a is a root and )3 is not, the number is v(a) - v(fl).

In numerical applications the work can often be simplified by 
multiplying Sturm’s functions by positive constants to avoid 
fractions in the H.C.F. process, but multiplication by a negative 
constant would vitiate the result.

If the last Sturm function is a constant it often saves time to 
evaluate it or find its sign by using the remainder theorem.

Also if any function fr is of the form gr(x)hr(x) where hr(x) is 
positive throughout the interval a< x< fl, fT may be replaced by 
gr in continuing the H.C.F. process. The argument used to prove 
Sturm’s theorem is not affected if after fr_2 = qr_lfr_1-fr where 
fr = grhr and hr is positive, we continue with /,•_! =5r(7r - (7r+1, 
taking grr+1 as the next Sturm’s function, and so on.

Sturm’s theorem gives a necessary and sufficient condition for 
an equation of degree n to have n unequal roots, since there must 
be a loss of n variations as x increases from - co to + oo . This is 
only possible if the series of Sturm’s functions is complete, i.e. 
contains n + 1 terms. Also the signs must be alternate for x< - K 
and all the same for x>K, if K is sufficiently large.

Example 6. Find the number and positions of the roots of

J(x) = xl - 4a:3 + x‘ + 6x+ 2 = 0.

f'(x) = 4a:3 - 12a:2 + 2a: + 6 = 2(2x3 - 6x* + x + 3).

The H.C.F. process with detached coefficients is

2- 6+ 1+ 3 2-8 + 2+12+ 4
-2+1+ 9+ 4

-5+10+ 7
10-30+ 5+15 5-10- 7

- 10+19+15 -5-7
- 1+ 1 - 12

/,= 1-1 + 12
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the series of Sturm’s functions is

j=x3 - 4a:’ + x‘ + 6x + 2, /, = 2x3 - 6a:’ + x + 3, 
/2 = 5a:’-10a:-7, f, = x - 1, ft= 12.

For sufficiently large values of K the signs are

when x< - K, + - + v(- A) = 4,
when x = 0, + + — ” + > v(0) =2,
when x>K, + + + + + > v(K) =0.

there are 2 negative roots and 2 positive roots.

Further when x = - 1, the signs are + - + - + ,v(-l) = 4,
when a: =2, the signs are + - - + + ,t>(2) =2,
whena: = 3, the signs are + + + + + ,t>(3) =0.

Therefore 2 roots lie between - 1 and 0, and 2 roots lie between
2 and 3. It is left to the reader to separate each of these pairs of 
roots.

Note. When x = 1, we obtain +0-0 + , giving 2 variations.

EXERCISE XHIb

[Throughout this exercise the algebra is real]
Use Sturm’s theorem for Nos. 1-17.

A
1. Prove that x3 - 7x + 7 = 0 has 2 roots between 1 and 2, and 

1 root between - 3 and - 4.

Find the number of positive roots and the number of negative 
roots of the equations in Nos. 2-5.

2. x* - 22a:’ - 36x + 40 = 0 3. Xs- 5x3 + 25a: +1 = 0

4. a:* - 3a:’- 2a:’+ a: - 3 = 0 5. xn=x-l

6. Prove that x* + 4ra: + 3s = 0 has no roots if r*< s’.

7. Prove that if p >0 and q>0, 2xs — 5px3 + 3g = 0 has 1 root 
or 3 roots according as q3 > or < p3.

D.B.A.A. TT. H
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B
8. Prove that x* - 6x8 + 14x8 - iOx -7 = 0 has exactly 2 roots.

9. Find the number and positions of the roots of x5 - 5x + 1 = 0.

Find the number of positive roots and the number of negative 
roots of the equations in Nos. 10-13.

10. x’ + x8-18x+10 = 0 11. x‘ +4x’- 2x8 +8x+2 = 0

12. 3x5 + 5x8-2 = 0 13. x* - 2x3 - 2k2x + k‘= 0

C
14. Find the number of positive roots and the number of negative 

roots of 2x" - nx2 +1 = 0 where n is odd and greater than unity.

15. Prove that x4 + 2mx* - 2x/m - 1 = 0 has exactly 2 roots.

16. Prove that x5 + 5ax8 + 6 = 0 has exactly 1 root if either 
a >0 or a< 0< ft2 + 108a5.

17. Find the conditions that x" + ox + 6 = 0 has 2 roots or no 
roots, given that n is even.

18. If the equation/(x) =x" + a1xn_1 + ... +a„ = 0 has n unequal 
roots and if/,/I( ... ,fT, ... is the series of Sturm’s functions, prove 
that /r(x) = 0 has n-r unequal roots which separate the roots 
of/r-i(®) = 0.

19. If the equation /(x) = 0 of degree n has n unequal roots, 
prove that /(x) and its successive derivatives have the same 
properties as the Sturm’s functions.

[No«. 20-28 are further applications of the methods of pp. 283-293]
20. If the equation /(x)=xn + a1xn-1 +... + a„ = 0 has n un­

equal roots, prove that (i) f(x) + 6/'(x) = 0 has n unequal roots,
(ii)/(x)/ 2(a:) = {//(x)}2 has no roots.

21- (i) If /(x) = xn-UjX"-1 + a2xn_2-a3xn_a + ... =0 has n 
positive unequal roots, prove that alf a2, a3, ... are all positive.

(ii) With the same notation, if/(x) = 0 has n unequal roots, 
prove that a/ - 2a2 >0 and a28 - 2axa3 + 2a i >0.

22. If /(®)=x" + a1xn_1 + ...+aB = 0 has n roots, prove that 
ar8 >ar_1a r+1.
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23. Prove that if/(a) is a polynomial, the equation

fix') + af'(x) = 0
has at least as many roots as f(x) = 0. ,

Prove also that f(x) + leaf'IF) + Q) a2/2(a:) + ... + akfk(x) = 0 

has at least as many roots as fix) = 0.

24. If f(x) = (x-a1)(x-a2)...(x-an) where at<a2< ...<an, 
prove that/'(a:) =/(a:)Sl/(»-«,.) and deduce that (i) the root of 
f'(x) — 0, which lies between at and a2, also lies between

ax +(<z2-aj/n and ł(ax + cq),
(ii) the root of /'(®) = 0, which lies between ar and ar+1, also lies 
between ar + (ar+l - ar)/n and ar+1 - (aT+l - ar)/n.

25. If q(x) is the quotient and r(x) the remainder when the 
polynomial/(x) is divided byf'(x) and if the roots off(x) = 0 are 
unequal, prove that the roots of q(x)r(x) = 0 separate the roots 
of f(x) = 0.

Use this result to show that a:4 - 8a:2 - 16a; + 16 = 0 has no 
negative roots and to find the positions of the positive roots.

26. If f(x)=(x — al)(x — a2)... (x-an), prove that the Sturm’s
function/a (a:) is a>s ^e|ng unequal.

71 \X ~~ Otj) (»C OC2)

27. If /(a;) = (x - a)rg(x) where g(x) is a polynomial and g(a) 0, 
the signs of f(x) and its successive derivatives

/*(«),/*(®)........ /*-»(«)
alternate for x=a-e, and are all the same as the sign of fr(a) 
for x = a + e, if e is sufficiently small and positive.

28. [Fourier's Theorem] lff(x) is a polynomial of degree n and 
if fr(x) denotes its rth derivative, and if v(f) denotes the number 
of variations in the signs of the series f(x), fl(x), f*(x),...,fn(x), 
prove that the number of roots of f(x)=0 between x=a, x=p, 
(a< /?), is not greater than v(a) - v(p) and has the same parity.
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Symmetric Functions of the Roots in Complex Algebra.
In complex algebra, the equation

f(x)=a2xn + a1xn~1 + ...+an_lx + an = 0 (a0?tO) 

has n roots, and it was proved on p. 154 that the roots ap a,,... , a„ 
satisfy the relations

Si=-«i/ao St = «./«o — Sr=(-l)rar/ao
where Sr is the sum of the products of the roots taken r at a time.

Example 7. If a, fl, y, ... are the n roots of

xn + a^x21-1 + a2xn~3 +... + a„ = 0

find the values of (i) 5>2, (ii) Sa2£, (iii) £a-2, (iv)

(i) S«2 = (Sa)s-2Sa/3 = a12-2a2.

(ii) In the product (Sa)(2>j8) the term afly occurs three times : 
as a. fly, fl. ya, y. aj8, and so

(Sa)(Sa£) = S«2£ + 3£a/3y,
S«2£ = ( - Oi)(as) - 3( - a3) = 3a3 - cqa,.

(iii) -» -> ... are the roots (see p. 160) of the equation 
“ P

anxn + an_lxn~1 + ...+alx+l = 0 (an±0)

i.e.  of a:"+25=ia:’,_I + ...+ —a; + -l- = 0;
an an an

from (i) =

(iv) (Sa)(Sj3-2) = Sar‘ + 2»_1
.-. from (iii) 2>)3-2= -a1(an_12-2anan_3)/an* + an_1/a„

= + on-lan)/«n2-

Example 8. If a, fl, y are the roots of x3 + a2x2 + a2x + a3 = 0, 
find the value of '^,(a3fl2).

In the product (Sa2/3)(Sa/J), a3fly occurs as a3fl. ay and as 
a3y.afl ; also afl2y2 occurs as fl2y.ay and as fly3.afl ;

(S«2|8) (S«|8) = Sa’fl' + 2^a3fly + 2£afl2y2
.’. £a2/32= (2a’)9)(Sa/3) - 2aj3y(S«2 + Zfly)
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using the results of Example 7 (i) and (ii)

Sa3j3’ = (3<z3 - a1at)a2 - 2( - a,)^3 - a,)

= a2a2- a1a2t + 2a12a,

Weight and Order. An advantage of the suffix notation for 
the coefficients in the general equation

xn + alxn~1 + a2xn~* + ... + an = 0

is that the suffix shows the degree in all the roots of the coefficient. 
For example a,= - Z^Py and this is a symmetric function of 
degree 3 in all the roots.

Hence if a rational integral symmetric function of the roots is 
expressed in terms of the coefficients, the sum of the suffixes of 
each term is equal to the degree of the symmetric function. This 
sum is called the weight of the function.

In Example 8, £a2/?2 = a2a3 - “i®/ + Sa/flj. The weight of this 
function is 5. It is the degree of each term of £a3/?2 and is the 
sum of the suffixes of each term on the right.

A consideration of the weight provides a quick check on the 
accuracy of a result. Another such check arises as follows : each 
coefficient when expressed in terms of the roots contains each 
root to the first degree or not at all; therefore no term in the 
function of coefficients can be of greater degree than the highest 
power to which any root occurs in the corresponding symmetric 
function of roots. This highest power is called the order of the 
function.

In Example 8, the order of £a’/?2 is 3, and the degrees of 
a2o3, OjOj2, a12a3 are 2, 3, 3. Since £a3£2 is of order 3 there 
cannot be a term like a23a2 because this is of degree 4, although 
it is of the same weight as Sa3/?2.

These principles are not merely useful as checks but may be 
used to obtain the expression for a symmetric function in terms 
of the coefficients.
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Example 0. If a, fl, y, 8 are the roots of

x* + 4a, x3 + 6a2 x2 + 4a3 x + ai = 0,

express the function

(P - y)’(« - 8)« + (y - a)2(0 - 8)* + (a - 0)*(y - 8)’
in terms of a,, a2, a3, a,.

The function is of weight 4 and order 2 and is therefore of the 
form XaLa, + pa,3 + va, where A, p, v are numerical constants,

From the equation (o: + l)‘ = 0 for which

ai = a2 = a3 = a4= 1 and a = /?= y= 3= - 1, A + ^ + p = 0.

From the equation x* - x2 = 0 for which

cq — a3 = cq = 0, a2 = -1 and a = fl = 0, y=l, 8=-l, p = 72.

Similarly from the equation (x2 - I)8 = 0, Ip + v = 32.

Hence v = 24, A = - 96, and the function is

24(cq - 40,0, + 3aq2).

Note. It is assumed that the function can be expressed in 
terms of the coefficients. This is proved for the general symmetric 
function on p. 304.

Example 10. If a, p, y are the roots of x2 + 3Hx + G = 0, form 
the equation whose roots are (/3 - y)2, (y - a)2, (a - P)2, and 
evaluate (/3 - y)2(y - a)2(a - /J)2.

Put y = (p — y)2 = (/3 + y)2 — 4/3y = a* + 4G/a since a+j3 + y = 0 
and a/3y = -G.

Thus ay = a3 + 4G. But a’ + 377a + (7 = 0

ay= -3Ha + 3G, a = 3G/(y+3H) 
21G2l(y + 3H)3 + 9GHl(y + 3H) + G = 0.

Thus (/J - y)2 and similarly (y - a)2, (a - p)2 are the roots of

21G2 + 9GH(y + 3I7)2 + G(y + 3H)2 = 0

which reduces to
y3 + 1877yJ + 81772y + 27 (G2 + 4H3) = 0.

Hence (0 - y)‘(y - a)’(a -£)*=- 27(G2 + 477s).
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Example 11. If a, p, y are the roots of x3+px+ q = 0, form 

the equation whose roots are a5, /?5, y5.
Put y = a6. Then y3t3 + py113 = - q.
To rationalise this equation we use the identity

(a + b)5 = a3 + b3 + 5(a‘b + ab*) + 10(a2b2 + a2b3)
= <z5 + bs + 5ab(a + b)(a2 ~ab + b2) + 10a2b2(a + b)
= a3 + b5 + 5ab(a + b)(a2 + b(a + b)}.

Thus - q3 = y3 +p3y + 5pyi/3( - q)(y3,s -pqy1/3)
= y3 +p3y - 5pqy2 + 5p2q2y.

Therefore a5, j35, y3 are the roots of the cubic

y3 - 5pqy2 + p2(p3 + 5q2]y + q3 = Q.

EXERCISE XIIIc

[Throughout this exercise the algebra is complex]
A

1. If a, ft, y are the roots of x3+px + q = 0, form the equations 
whose roots are

(i) ft+y — 2a, y+a—2p, a+ — 2y, 
(ii)l/0+l/y, l/y+l/a, l/ct+l/p.

2. If a, ft, y are the roots of x3 + aix2 + a2x + a3 = 0, find the 
values of (i) Śa2P2, (ii) Sa()3- y)2

3. If a, p, y, 8 are the roots of x3 + a2x3 + a2x2 + a3x + at = 0, 
find the values of (i) £a2fty, (ii) ^x3ft.

4. If a, p, y, ... are the n roots of xn + a2xn~3 +... + an = 0, 
find the values of (i) S(a- P)2’ (h) ^aIP< (hi) 2a2/^-

5. If a, p, y, 8 are the roots of
x* + 4a1x3 + 6a2x2 + 4 a 3x + at = 0,

find the value of S((a - )3)2(y2 + y8 + 8*)}

B
6. If a, P, y are the roots of x3 + atx2 + a2x + a3 = 0, find the 

values of (i) (ft + y)(y + a)(a + p), (ii) S()3-y)2, (hi) ^a/p.
7. If a, p, y, ... are the n roots of xn + a,a:"-1 + ... + an = 0, find 

the values of (i) £a2/?y, (ii) Sa2j32.
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8. If a, fl, y are the roots of x3 + a3x3 + a3x + a3 = 0, form the 
equation whose roots are fl+ y, y + a, a + fl.

9. If a, fl, y are the roots of x3 +px + q = 0, form the equation 
whose roots are fl3 + y3, y* + a3, a3 + fl?.

10. If a, fl, y, 8 are the roots of x* + ia^x3 + 6a2x3 + 4a3x + a4 = 0, 
find the value of (fl + y - a- 8)(y + a - fl - 8)(a + fl - y - 8).

C
11. If a, fl, y are the roots of x3 + a3x3+ a3x + a3 = 0, find the 

value of (2a -fl - y)(2fl - y - a)(2y - a - fl).
12. If a, fl, y are the roots of z3 + pa: + g = 0, form the equations 

whose roots are
(i) fl/y + ylfl, y/a + a/y, a/fl+ fl/a‘, (ii) fl/y, ylfl, y/a, a/y, a/fl, fl/a.

13. If a, fl, y, 8 are the roots of xl + a3 x3 + a2 x3 + a3 x + a3 = 0, 
find the value of (fly+a8)(ya + fl8)(afl + y8) and form the equation 
whose roots are fly + aS, ya + fl&, afl + y8.

14. If a, fl, y, ... are the n roots of xn + a3xn~l + ... +a„ = 0, find 
the value of S,a3fl3y.

15. If a, fl, y are the roots of x3 + a3x3 + a2x + a3 = 0, form the 
equations whose roots are

(i) a2 - fly, fl3 - ya, y3 - afl,
(ii) fl3+y3-a3, y3 + a3-fl3, a3 + fl3-y3.

16. If a, /?, y, 8 are the roots of x* + 4a3x3 + 6a2 x3 + 4a3 x + a4 = 0, 
find the values of

(i)£«)3(y+8)3, (ii) (a+/3)(a + y)(a+8)()3+y)()3+a)(y+8).

Newton’s Formula for Sums of Powers of Roots.
Let eq, a2, ... , an be the roots of the equation

xn + alxn~l + a3xn~ * + ... + a„ = 0.

Denote a/ + a3 + ... + a„r by sr, and for convenience suppose 
that 0 = aB+1 =an+, =...

Then by logarithmic differentiation of
<!>(y) = 1 + + aty2 + ... + anyn = (1 - a2y)(l - a2y)... (1 - “n V)

= -(«, + s2y + ... + Spy’-1) - y^ia^^Ki - ay)}
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Thus + (sl + siy + ...+s„y^-1)<l>(y)

= b,yp + &p+i3/P+1 + - + ^+n-l’/P+B-‘
Therefore the coefficient of yr in

a2 + 2a,y + ... +nanyn~l +
(82 + 8,y + ...+ 8„yv-i)(l + aiy + a2y2 + ...+ anyn)

is zero for r = 0, 1, 2, ... , p - 1. Thus
s, + a, = 0
s2 + SjO, + 2a 2 = 0
s, + s2at + 8,a, + 3a, = 0

Sr + ®r-i °i + sr_a ai + • • • + si ar-l + rar =

and as p may be an integer as large as we please, this result is 
true for all values of r taking into account the convention

0 = an+j = an+, =...
It is called Newton's formula for the powers of the roots.

Newton’s equations give in succession the values of s2, s,, ... , 
in terms of the coefficients, and show that sr is an integral function 
of <q, a,, ... , ar.

To find sr directly, a determinant may be used to eliminate 
8,, ... , sr_1. See p. 180. For example from the first three ’

equations s, + 3a, a2 a, = 0, thus s,= 3a, a, a.
2a, a, 1 2a, a, 1
a, 1 0 a, 10

Also the value of a,_r + a,~r + ... + an~r can be found from the 
equation anxn + a„_lxn~1 + ... + a2x + 1 = 0 whose roots are a,-1, 
a,-1, ... , an'1.

Example 12. If a+/?+y+8 — 0, prove that
l(a5 + ? +»y5 + 86) = l(a2 + /32 + y2 + 82) x i(a2 + + y» + S’).

The equation whose roots are a, ft, y, 8 is of the form
x, + a2x2 + a3x + ai = 0.

From Newton’s equations since s, = 0 and a2 = 0,
«, + 2a, = 0 s, + 3a, = 0 8, + s,a, + s,a, = 0

®»= -®»(-łsS)-®2(-3»3)
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From Newton’s equations may be deduced the important 
theorem :

Every rational symmetric function of the roots of an algebraic 
equation can be expressed rationally in terms of the coefficients.

This was assumed in Example 9, p. 300.
It is sufficient to consider S(a’’/?®yT ...), since any rational 

symmetric function can be expressed as a fraction whose 
numerator and denominator are sums of terms of this type.

For the double function 'Zod’fP (pd=q)

(Sa”) (S/3Q) = Sap+a + 2ap)3«
/. 2aV = «1>se-s»+«

Next for the triple function Sap/3'7yr, p, q, r being all unequal,

(SaW (S/) = + SaJ’/3’+r +
and so the triple function can be expressed in terms of sr and 
double functions.

Similarly a quadruple function can be derived from triple 
functions, and so on. The general result then follows by induction.

Certain modifications are necessary in these formulae if the 
indices are not all unequal. For example

(Sa*)2 = Sa2* + 2Sa*^* ; thus S«P)8* = ł(s/ - s2JJ).

Similarly the formula

Sa*^9yr — sj>sqsr “ sq+rsr> ~ sr+-psq ~ sr>+q8r + ^sp+q+r 

which may be deduced from the identity given above where 
p, q, r are all unequal, is replaced by

Sa*£V = (sp*sr - 2sp+rsp - s.,psT + 2s2J)+|)/2!

and y.od’P’y1’ = (sp3 - 3s2psp + 2.s3JJ)/3!

and so on.
Newton’s equations also give in succession the values of 

a , a,, a3, ... in terms of s2, s2, s3, ... and show that ar is a 
rational integral function of sx, s2, ... , sr.
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Hence, regarding the coefficients as functions of a,, sa, s3, ...

S?=° if*<r

because av does not involve sr if p< r. And from the equation 
sr + sr_! cq + ... + Sj ar_! + rar = 0

by partial differentiation with respect to sT
, 8a_ _ 8ar 1

Ssr csr r
Similarly from the next equation,

8ar Sa,
«i + s1~ + (r+ 1)

but s, = - a, and ~ = - - >
1 1 Ssr r

And it is easy to prove by induction (see Exercise XHId, No. 12) 
that 0ar i v at ,-V±2=---- - l<k<n-r.

3sr r

r=o;

8°r+l =
Ssr r

Example 13. If a, /?, y, ... are the n roots of 
xn + alxn~l + ...+an = 0 (n>5)

find the value of Sa3/?2.
Sa3/?2 is of order 3 and weight 5. Hence by using the result of 

Example 8, p. 298, for xn~2(x3 + a2x2 + a2x + a3) = 0,
£a3/?2 = a2a3- a2 a22 + 2a32 a3 + Xa2 at + pa3.

From p. 304, Sa3/?2 = s3s2 - s5.
Differentiate in turn partially with respect to s6, s4,

and 0 = AaJ-J)+ pu1(-|) = 0, /. A=-p=-5.
S“3/32 = “2a3 - + 2a2a3 - 5a1al + 5at.

EXERCISE XHId
[Throughout this exercise the algebra is complex and sr denotes the sum of 

• the rth powers of the roots of the given equation]
A

1. Form the cubic for which s1 = 3, s2 = 5, s3 — 7 and prove 
that s4 = 9.

2. For the equation x3 + qx + r = 0, prove that
(i) s3= - 3r, (ii) ss = 5qr, (iii) s8 = 2q* - Sqr2, (iv) 6s5 = 5s2s3.



306 ADVANCED ALGEBRA [ch.

3. If (z + ajfx + a,)... (x + an) = xn + p1xn_1+...+p„, prove 
that a/ + a2s +... + ana =p2» - 3plpi + 3ps

4. If 8r = ar + br + cr + dT and if st = s2 = 0, prove that
28su = lls,s7.

5. For the equation xn + alxn~1 + ... + an — 0, prove that
(i) a, = i43e1s,-2a3-»1’)
(ii) s, = a2‘ - 40/0, + 2a22 + 4ata2 - 4at

B
6. For the equation x3 - 3x3 + 4 = 0, prove that s, = 33.
7. For the equation x‘ -x*+ 2x3 - x3 - x - 1 = 0, prove that 

st = 9.
8. For the equation a:’ + a1xt + a3 = 0, prove that s, = 4a, a3 + a/.
9. If sr = ar + br + cr and if s7 = 0, prove that s, = |s22 + ls„st.

C
In Nos. 10-14, a, p, y, ... are the roots of xn + aIarn-1 + ... + a„ = 0.
10. Express £(a + - y)2 in terms of the coefficients.
11. Prove that

■ Z(x~ a)’’ = nxp -ps1xI,_1 + 32xl’~, -••• + (- l)”sp

and deduce that £(« - [})* = nst - 4SjSs + 3s22.
Find a similar expression for S(« - £)2.

12. Assuming the formula +fc = ~~ for fc=l, 2........ p- 1,

prove that it is also true for k=p by differentiating Newton’s 
formula for sr+J> and using the formula for st.

13. Prove that Sa2)32y2 = i(s22 - 3s2s, + 2s,) and use this result 
to express £a2/32y2 in terms of the coefficients.

14. Express £(a - j3)4 in terms of the coefficients (see No. 11 and 
Example 13).

15. If f(x) = (x-a^lx-a2) ... (x-a„) where a,, a2, ... , an are
all unequal, prove that «

»
(i) 2,arm/f'(ar) = 0 if 0< m< n - 1 and m is integral

1
(ii) the sum of the homogeneous products of k dimensions of

the roots of f(x) = 0 is 'Z«Tn+k~1lf'(aT).
1
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Cubic Equations. The classical method of solving a cubic 

equation was invented by Ferro and by Tartaglia, but was first 
published in 1545 by Cardan who had obtained it from Tartaglia 
after giving a solemn promise not to reveal it. In spite of these 
facts, it is generally called Cardan’s method.

The solution of the general cubic

a0x3 + 3aa a:2 + 3<zax + aa = 0 

may be made to depend upon that of a simpler cubic by the 
substitution y = aox + a1. This gives

y’ + 3Hy + 0=0

where H s a0 a2 - a2* ; G = a„2 a3 - 3a0 a2 a2 + 2a,3.
We shall regard the equation as an equation of complex algebra 

Special interest is attached to the x-axal roots because of the 
application to real algebra. In any investigation into the nature 
of the roots it will be assumed that a„, a3, a„, a} are x-axal numbers.

Tartaglia’s Solution of y3 + 3Hy + G = 0.
The identity (see p. 258)

y’ - 3pqy + p3 + q3 =(y+p + q)(y + u>p + a>3q)(y + a>3p + wq) 

shows that if p, q are chosen so that
p3 + q3 = (7 pq= - H

the roots of the equation are -p-q, -a>p~<u2q, — a>3p-a>q. 
But p3, q3 are given as the roots of the quadratic equation 
t3 -Gt - H3 = 0, and their cube roots p, q must then be chosen so 
that pq = - H. The roots of this quadratic are

i{G±V(G'2 + 4H3)}.
If G2 + 4H3 >0 p, q are x-axal and unequal. Hence the equation 

has one x-axal root, -p-q, and two conjugate roots. Thus if 
y3 + 3Hy + G = 0 is an equation of real algebra, it has just one 
root.

If G2+4H8=0 p = q=3/(%0) and the roots are x-axal, two 
being equal. They are — 2p, p, p. The corresponding equation 
of real algebra has then three roots - 2p, p, p.
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If G24-4H3<0 which implies H<0, the value of p3 is of the 
form A + iB, = r cis 6, (By=0, nir), and g3 = A - iB = r cis ( - 6) ; 
also pq = - H. Thus p, q may be taken to be

(i/r) cis tf, (»/r)cis(-i0),

where 4/r =»/(— H), and the roots are

-p-g= - 2(^r) cos iO

-up- a>3q = - (i/r}{cis de + Jzr) + cis ( - - %-rr)}

= -2(f/r) cos($0 + i,r)

and - uAp -wq=- 2(^/r) cos (|0 - fw).

Hence the equation has three o:-axal roots, and the corresponding 
equation of real algebra has three roots.

The Irreducible Case. When the equation has three roots in 
real algebra, these cannot be found by Tartaglia’s method 
without using complex numbers. On the other hand when 
G2 + 4H3>0, the one root -p-q can be found in real algebra 
without the introduction of co, co2 by using the fact that y + p + q 
is a factor of y3 - 3pqy +p3 + g3. In the sixteenth century the 
theory of complex numbers had not been invented and the case 
G3 + 4H3< 0 came to be known as irreducible. It can however be 
solved by De Moivre’s theorem as shown above or (without 
complex numbers) by the trigonometrical method illustrated in 
Example 15. See also Advanced Trigonometry, p. 44.

Whether there is one root or three, the method of Homer 
explained on p. 165 is usually more convenient in numerical 
examples.

Nature of the Roots of the General Cubic.
Since the roots of aoa;3 + 3cqa:2 + 3a2x + <za = 0

and of y3 + 3Hy + G = Q

are connected by the relation y=aox + alt they are of the same 
nature, and this is decided by the sign of G3 + 4H3.
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Putting 6'2 + 4Hs = a03A, it follows from p. 307 that 

A = a02«32 - 6a0ala3a3 + 4aoa33 + 4a13a3 - Sa/a/, 
and then the sign of A decides the number of a>axal roots of 
either equation and therefore decides the number of roots in real 
algebra. For this reason A is called the discriminant of the cubic.

The critical case of equal roots is given by A = 0. See p. 307. 
This may also be proved by means of the theorem (p. 262) that 
f(x) = 0 has a repeated root if f(x) and f'(x) have a common 
factor.

If alt a2, a3 are the roots ofa0x3 + 3alx3 + 3a2x + a3 = 0, with the 
notation of Example 10, p. 300, a0(a2 - a3) =/? - y, etc. and so 
by the result of that example,

(aa - a3)2(a3 - aj’/oq - a,)*= - 27A/a„‘.
This explains from another standpoint why A = 0 is the con­

dition for equal roots, and why A >0 if and only if two roots are 
conjugate.

Example 14. Solve 3z3 - 6xa = 2 in real algebra.
The equation may be written

(3x--2)’-12(3x-2) - 34 = 0
or if y = 3x - 2, y3-12y-34 = 0,
and this is the same as

y3 - 3pqy + p3 + g3 = (y + p + q) (y3 + p2 + g2 - yp - - pq)
if p3 + q3 = - 34, pq = 4.

Thus p3, q3 are -2,
Hence P = -4/2

g = 4/p = - 24/4
But

■y3+P3 + q* - yp - yq - pq=l{(y - p)* + (y - q)3 + (p - q}3} 
and this is never zero in real algebra since p^q.

Therefore the equation has only one root
y=4/2 + 24/4

and the given equation has only one root
« = 1(2 + 4/2 + 24/4)
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Example 15. Solve x3 - 6x - 4 = 0 in complex algebra.
Tartaglia's Method. Choose p, q so that

p’ + 9’ = -4, 3pg=6.
p3, q3 are the roots of t2 + 4t + 8 = 0, namely - 2± 2i.
Hence the roots of x3 - 6x - 4 = 0 are

— p - q, -a>p-iu2q, -aAp-wq,
where p = H( -2 + 2i), q—2/p.

But - 2 + 2i = - 2^/2 cis ( -1 tt),
P - - \/2 cis ( - Av), q= - >J2 cis (Av),

and the roots are 2^2 cos (Aw)
% V2{cis (Aw) + cis ( - Av)} = 2y/2 cos (Av), 

«/2{cis ( - Jw) + cis (fw)} = 2^2 cos (Jw) = - 2 
i.e. - 2, 2^2 cos (Av), 2^/2 cos (Av).

Trigonometrical Method. Put x=k cos 0,
. then k3 cos’d - cos 0 = 4.

Choose k so that the left side is a multiple of 4 cos’d - 3 cosd 
i.e. a multiple of cos 3d

k3 : 6& = 4 : 3 if k = 2^/2.
'Then 16V2 cos’0-12^2 cos 0 = 4,

cos 30 = 4 cos’d - 3 cos 0 = Jv'2 = cos -}w,
0 = Av, |w, or Av, or etc.

x = 2^2 cos Av, - 2, or 2^2 cos Av
Algebraic Method. In this special case if the factor x + 2 is 

guessed, the equation is (x + 2) (a:2 - 2x - 2) = 0,
and a: = - 2, 1 ± V3.

EXERCISE XHIe
[In this exercise the algebra is complex unless otherwise stated]

A
Solve the equations in Nos. 1-4 by Tartaglia’s method.

1. a:’-9a: + 28 = 0 2. x’ + 6a:-2 = 0
3. x3 - 15a:2-33x + 847 = 0 4. x3 + a;2 - 9a: + 12 = 0
5. Solve trigonometrically x3 - 27a: - 27 = 0
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6. For what valxes of a, b can ths equation x3-ax—b be 

reduced to the form cos3fl = c where | c |< 1 by the substitution 
x = k cos 6 1

7. Prove that the equation x3 + 3Hx + 0 = 0 can be solved by
expressing it in the form p.(x + v)3- v(x + p)3 = 0, where p, v are 
the roots of Ht3 -Gt- H3 — 0 and G3 + 4H3 0.

Apply this method to the equation a:3 + 18a:+ 6 = 0 in real 
algebra.

8. If a, fl, y are the roots of a„x3 + 3atx3 + 3a2 a: + a3 = 0, prove 
that a03(2a - £ - y) (20 - y - <x)(2y - a - £) = - 27G.

9. Show that the equation a:3 - ax = b can be solved by the 
substitution x = kch<f> if 2762>4a3>0, and by the substitution 
x = ksh<f> if a<0.

B
Solve the equations in Nos. 10-13 by Tartaglia’s method.
10. x3-6a:-9 = 0 11. a:3 - 18a: - 75 = 0
12. a:3 - 18a: + 35 = 0 13. 2a:3 + 6a:2 + 1 = 0
14. Solve trigonometrically x3 + 3a:2 - 9a: - 3 = 0.
15. If a is a root of a:3 = 3a: + 1, prove that the other two roots 

are 2 - a3, a3 - a - 2.
16. Solve the equation x3 — 15a:2 + 57a: - 5 = 0 in real algebra by 

substituting y + 5 for x and reducing the equation to the form 
p(y-9)’=?(3/-p)’-

17. Show that if the roots of xn + a1xn~1 + a2xn~3 + ... = 0 are 
reduced by a suitable constant, the coefficients of the second and 
third terms in the transformed equation can both be made zero 
if 2na2 = (n- l)aj2.

18. If a, fl, y are the roots of a„x3 + 3a2x3 + 3a.x + a, = 0, prove 
that 2{(a„a + a^fl - y)3} = 18H2/a03.

C
19. Solve (r3 - a3 - b3)3 = 27a3b3x*

20. Prove that $/(2 + V<3) + ^(2 - V<3) = 2
21. Prove that the equation a„x3 + 3a2x3 + 3a2x + a3 = 0 can be 

solved by expressing it in the form A(a:-p)3 + p(a: - ?)3 = 0, where 
p, q are the roots of (a3y + a2)(a2y + a3) = (a2y + a2)3 and A^O.

Apply this method to the equation a:3 - 3.r2 + 9a: - 5 = 0 in real 
algebra.

d?r.».a. ii. I
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22. If a/^a,, prove that the equation x3 + 3a1x2 + 3a2x + a3=:0 

can be transformed by the substitution x — y + m into the form 
ya + 3py2 + 3qy + pq — O and hence that the solution may be 
written

(x - m + ^q)/(x - m - ^Jq) = {(p - ^q)l(p + V?)}’

23. If a,2#:a2, prove that the transformation y(b-x) = a-x 
will reduce the equation x3 + 3a,z2 + 3a2x + a3 = 0 to the form 
y3 = c if a and b are the roots of

(a,2 -a2)ta + (a,a2 - a3)t + a22 - a2 a3 = 0.

What transformation gives this form if al3 — a2 ?

24. Reduce the equation x3 + 3atx2 + 3a2x + a3 = 0 to the form 
y3 ±3y + m — 0 by substituting Ay + y for x, and show how to 
solve this equation by substituting zTl/z for y. Hence prove 
that the condition for equal roots is G2 + iH3 = 0.

25. Show that if a,, a2, ... are the roots of f(x) = 0 and if x is 
eliminated between f(x) = 0, f(x + s/y) = 0, the roots of the result­
ing equation, excluding zero roots, are (a, - a2)2, (a, - a3)2, etc.

Use this method to find the equation whose roots are the 
squares of the differences of the roots of x3 -I- qx + r = 0 and deduce 
the conditions for x3 + qx + r — 0 to have

(i) a single non-repeated z-axal root, (ii) two equal roots.

Quartic Equations. The algebra is supposed complex, but in 
any investigation into the nature of the roots it is assumed that 
a„, a2, a2, a3, at are ar-axal numbers.

The solution of the general quartic

a„a;4 + 4atx3 + 6a2x3 + 4a3x + at = 0

is reduced by the substitution y = aox + a1 to the simpler quartic

y* + 6Hy2 + 4Gy + K = 0

where H — aoa2~al2 G = a32a3-3a3ala2+2a*

and K = a33at + 6a3a12a2 - 4a02a,a3 - 3a,1

= a„2(a0a4 - 4a, a3 + 3a2) - 3(a0a, - a,2)2

= a2I-3H2

where I = a3al - 4a,a3 + 3a2*.
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Methods of Solution. The solution of a quartic can be reduced 

to that of a cubic. Descartes’ method depends on the determina­
tion of p, q, t such that (see Exercise Xlllf, No. 7)

yl +6Hy- + 4Gy + K = (y2- 2py + q) (y2 + 2py + r).
No general method exists for the solution of equations of 

higher degree than 4 in terms of the literal coefficients.

Ferrari’s Solution. This method like that of Descartes depends 
upon the expression of a quartic function in quadratic factors ; 
but it is easily applicable to the general form of the equation 
and therefore saves the transformation by y = a3x + a2.

aox* + 4cqa:3 + 6«2x2 + 4a3x + al = 0
can be written

(<zoa:a + 2^0: + a2 + 2A)2 = (2px + g)2
if A, p, q can be chosen so that

4a42 + 2a0(a2 + 2A) - 4p2 = 6aoa2
4a2 (a2 + 2A) - 4pg = 4a0 a3

(a2 + 2A)2-g2 = a0a4.
p2-a0 A + a2 - a„a2 ; pq = 2alX + a1a1-aaa3;

g2 = (2A + a2)2-a„a4.
Thus
(4A2 + 4a2A + a22- a0a4)(a0A + a12-a0a2) = (2alX + ala2-a0a3

4a0A3 - a0A(a0a4 -4a1a2 + 3a22) + (a22-- c^a,)^2 - aoa2)
-(a1a2-aoa2)2 = O,

4A3 - /A + J = 0, where J = a0 a2 a2 .

a2 a3 a2
This cubic for A is called the reducing cubic of the quartic 

equation. Denoting its roots by A2, A2, As, the corresponding 
values of p, = (a0 A + a22 - a0a2)3, by p2, p2, p3, and the correspond­
ing values of q, = (2alX + a1a2- a„a3)lp, by qv q2, q3, the roots 
a, p, y, 8 of a3xi + 4aix2 + Sa2x2 + 4a3x + cil-Q are given by the 
two quadratic equations

a„x2 + 2(a1 -p2)x + (a2 + 2A, - q2) = 0
a„x2 + 2(<q +p2)x + (a2 + 2A, + q2) = 0.

It is sufficient to take any one set of values A,, p1( q2.
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The Roots of the reducing Cubic.
A,, A„, A, can be expressed in terms of the differences a - p, 

a - y, ... and in this way the nature of the roots of the quartic 
can be investigated.

If p, y are the roots of the first quadratic,

Similarly 
and

Hence

P + y= -2(a1-p1)la2 «+8= - 2(o,+p1)/o0.
•/ + “ = -2(a1-p,)/a0 p+ 8= - 2 (a, + p3)/a0 
<%+£= -2(a1-p3)/a0 y+8 = - 2(a,+p3)/a„.

)3-y = 2(p3-p3)/a0 a— 8 = 2(p3+p3)/a0 
y — a = 2(p, — p3)/a„ p - 8 = 2(p, + p3)/a0
a- P = 2(p3-p1)/a0 y-8 = 2(p3+pI)/al)

and (y-a)(p- 8)- (a- p)(y- 8) = 4(2p,2 -p22 - pfffa,,2
4(2Aj - A, - A3)/a0

Thus
= 12A1/o0 since A1 + A3 + A3 = 0.

\ = ^{(y-^p-8)-(a~P)(y-&)}

similarly A3 = ^{(a-/3)(y-3)-(l8-y)(a-8)}

and As = ^{03-y)(<x-8)-(y-a)()8-8)}.

It is now possible to investigate the nature of the roots of the 
quartic. This depends as for the cubic on a discriminant A which 
is the product of the squared differences of the roots.

From what has been proved above
(y - a)(p - 8)(« - p)(y - 8) = 16(P1« -p32)(p32

A (a-pHa-y)(8-p)(8-y) = 16(Xl-\2)(Xl-X3)la02 (see p. 313) 
and by multiplication of three such results

(a - p)'(p- y)2(y - a)2(a - 8)«(0 - 8)2(y - 8)’
= 16‘(A2-A,)«(A8-A1)«(Ai-A,)*/< 

which by Example 10, p. 300, = - 16’. 27{(JJ)2 + 4( -AI)‘}/a0‘
= 256(1’ - 27 J2)/a0’.

Put I’—27 J2=A
Then a0«(a-p)2(p-Y)2(Y-a)2(a-8)2(p-8)2(Y-8)2=256A 

where A is called the discriminant of the quartic.
For an alternative method of evaluating the product of squared 

differences of the roots, see Exercise Xlllf, No. 8.
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Nature of the Roots of the Quartic.
The roots of the general quartic are of the same nature as those 

of the quartic y* + 6//y2 + 4Gy + (a0’I - 3H2) = 0 given by the 
substitution y = aox + al.

The necessary and sufficient condition for the roots to be all 
unequal is A + 0. It also follows from the formula for A that

(i) if there are 4 unequal z-axal roots, A >0,
(ii) if there are 2 unequal z-axal roots and 2 conjugate roots

{p ±qi, then A< 0,
(iii) if there are 2 pairs of conjugate roots, then A >0.
It remains to distinguish between (i) and (iii), and to discuss the 

cases arising when A = 0.
If C? = 0, the quartic is a quadratic in y2, and the reader will find 

no difficulty in investigating this special case. See Exercise Xlllf, 
No. 10. In what follows we therefore assume that G^ 0.

The elimination of A between
4A* -IA + J — 0 p.=p2 = a0\-H

gives a cubic in p whose roots are p22, p22, p32. This cubic is
4(p + W)3 - a„2I(y. + H) + a02J = 0

or 4/x3 + 12Hy.2 + (12H2 - + 4H3- a02IH + a32J = 0
and is called Euler's Cubic.

It may be verified by direct multiplication or proved by the 
method of Exercise Xlllf, No. 26, that G2 + 4H2 = a02(IH - a3J). 
Hence Euler's cubic may be written

4/x3 + 12Hy2 +(,12H2-ao2I)ii-G' = O.
Assuming that (7^0, p32, p32, and p32 are all different from 

zero. Then from relations like 4p1 = a0{(/3+ y) - (« + 3)} it follows 
that if a, fl, y, 8 are all z-axal (case i) p2, p2, p.2 are all 
positive, but if a, /?, y, 8 are 2 pairs of conjugates (case iii) one 
of p/, p22, p2 is positive and the other two are negative.

Descartes’ rule of signs applied to Euler’s cubic shows that there 
are 3 positive roots only if H<0 and \2H2 - a„2I >0. Hence if 
A>0, G^tO, the quartic has 4 unequal z-axal roots if H<0 and 
12H2 - a02I >0 and otherwise has two pairs of conjugate roots.
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Equal Roots. If A = 0, there are at least two roots equal, and 
assuming <7=#0 there can only be exactly two or exactly three 
equal roots. For if there were four, since the sum of the roots is 
zero, each would be zero and hence G — 0. Also if there are two 
pairs of equal roots, they must be of the form a, a, - a, - a and 
again G — 0.

(iv) If only two roots are equal, say <x= /?, these must be z-axal 
and the relations on p. 314 show that A2 = A2 = - |A3^0. Hence 
J =# 0, and from A = 0,1 & 0.

As before, the other roots are z-axal if Euler’s cubic has 3 
positive roots, that is if He 0 and 12H(i) 2 >a02l ; otherwise these 
remaining roots are conjugate.

(i) ar — an_r. If the equation is of odd degree, it is satisfied by 
z = - 1; and when the factor x + 1 is removed, there remains a
reciprocal equation of even degree of the form

(v) If exactly three roots are equal, they must be z-axal, and 
there must be a fourth z-axal root. Also A1 = A2 = A3 = O. Thus 
Z = <7 = 0 ; these conditions imply A = 0.

Since all the possible systems of roots have been considered and 
the conditions are mutually exclusive, the converse statements are 
also true.

The roots of the original quartic for x are of the same nature as 
those of the quartic for y.

Reciprocal Equations. An equation which is unaltered when 
x is replaced by 1/z is called a reciprocal equation.

If aaxn + OjZ"-1 + ... + an_tz + an = 0 is reciprocal, it is equivalent
to

anzn + an_lz"_1

— =

+ ... + cqz + a„ = 0,

and so either (i) ar = an_T
or (ii)ar=-an_r

an—r “o

(r = 0, 1, 2, ... , n)
(r = 0, 1, 2, ... , n).



317xm] THEORY OF EQUATIONS
This may be written

+i)+++■ • •+a™-1 G+D+=o> 

and the substitution of y for x+l/x reduces it to an equation of 
degree m in y.

If the equation is of even degree, the same substitution is used 
without the removal of a factor.

(ii) ar= - an_r. If the equation is of odd degree, it is satisfied 
by a: = 1 ; and when the factor x - 1 is removed there remains a 
reciprocal equation of even degree of type (i).

If the equation is of even degree, it is satisfied bya:=l,a:=-l; 
and when the factor xa - 1 is removed there remains a reciprocal 
equation of even degree of type (i).

Example 16. Solve 12a:5 - 8a:4 - 45a:3 + 45a:2 + 8x - 12 = 0 
Dividing by x - 1,

12a:4 + 4a:3 - 41a:2 + 4x+ 12 = 0, 
12(a:2+1/a:2) + 4(a:+1/a:) - 41 = 0 

or 12(y2-2) + 4y-41 = 0 where y=x + 1/x.
Hence y=13/6 or —5/2,

and f, -2, -|, orl.

A more general type can be solved by the substitution

y = kx+ 1/a;. See Exercise XHIf, No. 6.

EXERCISE XHIf

[Throughout this exercise the algebra is complex]
A

Solve by Ferrari’s method the equations in Nos. 1, 2.
1. x*- 12a:-5 = 0 2. a:4 + 4a:3 - 11a: - 4 = 0
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Solve the reciprocal equations in Nos. 3, 4.
3. x*~ l(te’ + 26x* - lOz + 1 = 0
4. 3x, + xs-27x* + 27x2-x-3 = 0
5. If <i2d = c8, prove that the product of two of the roots of 

xl + ax3 + bx2 +cx + d = 0 equals the product of the other two. 
Hence solve x* - 2z3 - 9a:2 + 6x + 9 = 0

6. If a : e = b2 : d2, prove that the equation

(i) if 12H2<a0,7, there are two pairs of unequal' conjugate
roots,

(ii) if 12H2 = a„2I, there are two pairs of equal roots which are
conjugate if H >0, a;-axal if H< 0, (all equal if H = 0),

(iii) if 3H2<a„2I< 12H2, there are four unequal roots which are
conjugate pairs if H >0 and a:-axal if H< 0,

(iv) if 3H2 = a02I + 0, there are two equal rr-axal roots and two
other roots which are conjugate or rr-axal according as 
H > or < 0,

(v) if 3H2 >a„2I, there are two unequal a:-axal roots and two
conjugate roots.

Under which headings are the cases H = 0,1 0 and H + 0,I = 0
included ?

ax* + bx2 + cx2 + dx + e = 0
can be solved by a substitution of the form kx + l/x = y.

7. [Descartes’ method.] If
y* + 6Hy2 + 4Gy + 1- 3H2 = (y2 - 2py + q)(y2 + 2py + r),

prove that p2 + H is a root of 4A3 - IX + J = 0, where
J=IH-G2-4H2,

and that q, r are the roots of t2 - 2(2A + H]t +1 - 3H2 = 0.
8. Prove that if the product of the squared differences of the 

roots of y* + &Hy2 + 4Gy + 1 - 3H2 = 0 is expressed in terms of the 
coefficients, G can only enter in even powers. Hence show by 
considerations of weight and order that the expression is of the 
form lI2 + mJ2, and deduce its value by considering (say) the 
equations y* — 6y2 = 0, y* - 1 = 0.

9. Examine the nature of the roots of y* + 4Gy + 1 = 0.
10. For the general quartic, prove that if (? = 0,

a„«A = (a,’J - I2H2)2(a„2l - 3H2), 
and that
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B

Solve by Ferrari’s method the equations in Nos. 11, 12.
11. x* - 18a:2 + 16a:— 3 — 0 12. x‘ + 4a:3 - 6a:2 + 20a: + 8 = 0
Solve the reciprocal equations in Nos. 13, 14.
13. 2x2-15x*+31x2-31x2+15x-2 = 0 14. x5-l = 0
15. Form the equation whose roots exceed by unity those of 

x2 - x* - lx3 + 2x2 + 10a: + 4 = 0. Hence find x.
16. Find the condition that the sum of two roots of the equation 

a:4 + mx2 + nx + p = 0 may be equal to the product of the other two. 
If this condition holds, show that the substitution y = | + 1 /x, 
reduces the equation to one in which the sum of two roots is zero.

17. Show how to transform x* + 2ax2 + 4ta2 + 8oa:+ 16 = 0, so 
that it becomes a reciprocal equation.

18. Examine the nature of the roots of
y* + 6Hy2 + 4Gy - 3H2 = 0.

C
19. Solve 4(a:2-a: + l)3 - 21x2(x - l)2 = 0.
20. Express 4a:2 + 10a: +13 and x2 - 8a: - 2 simultaneously in the 

form A(x- a)2 + B(x - 8)2 where a, /3 are the same for both.
21. Solve the equation a:6 - 5a:3 + 5a: + 1 = 0 by the substitution 

x — k cos 0.
In Nos. 22-25, a, /?, y, 8 are the roots of the quartic

aox* + 4a, as3 + 6a2x2 + 4a3x + at = 0.
22. If A is a root of the reducing cubic, prove that

a0(/3y + aS) = 4A + 2a,.
Hence find the equation whose roots are /?y + aS, ya + )38, a/? + yS.

23. Find the relation between a, /3, y, 8 if a root of the reducing 
cubic 4A3 -7A +J = 0 is (i) Hla0, (ii) ^/(Jf/12).

24. Prove that a„4S{(j3 - y)2(y - a)2(a - j3)2} = 192(3a0 J - 2HI).
25. Prove that a04£((a - )3)4(y-8)2} = - 96(3a0 J + 4HI).
26. Deduce from the product of the roots of the reducing cubic 

that J /a,,2 is a function of degree 6 of the differences between the 
roots of aox* + 4a,x2 + 6a,a:2 + 4a3x + a, = 0, and show that the same 
function of the differences between the roots of the quartic in y 
obtained by the substitution y — a„x + a, is

10 H .
OH G
11 G a„2I - 3H2

Deduce that the value of this determinant is a03.I.
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MISCELLANEOUS EXAMPLES

EXERCISE XHIg

[In this exercise the algebra is complex unless otherwise stated or implied}
A«

1. Find the conditions for the roots a, p, y of
x2 - ax2 + bx - c = 0

to be in (i) a.p., (ii) g.p.
If the roots are not in a.p. and if a + A, /8 + A, y + A are in g.p., 

prove that A is given by a cubic equation.
2. If a, b, c are positive and unequal and if d >0, prove that

1 1 1 d , .------- 1------ 7 H---------1---- Fl — 0 
x-a x-b x-c x

has 4 roots in real algebra.
3. If a, /? are the roots of x2 + bx + c = 0 and y, 8 the roots of 

x2 + (b + q)x + c + r = 0, express (a - y)(a - 8)(/? - y) (/3 — -8) in terms 
of b, c, q, r.

4. If s = x2 + 2qx + r and t = x2 + c, and if s + A« = 0 has equal 
roots in x and the two values of A are equal, prove that in real 
algebra (i) if c>0, s = i, (ii) if c< 0, s and t have a common factor.

5. If the equation xn + a, xn~2 + ... + an = 0 has n roots in real 
algebra, prove that (n- l)a12>2na1.

6. If a, fi, y are the roots of o:3 + 3a2x2 + 3a2x + a3 = 0, find the
values of (i) g -1 - i) -1) (i - J - ±) and (ii)

7. If a, /3, y, 8 are the roots of x* + 4a, x3 + 6a2 x2 + 4a3 x + at = 0, 
prove that £(a - ft)2 = 48(ax2 - a2) and deduce that

Sa2J82(y-8)3 = 48(a32-aA).
8. Find the condition that 3x* + 4px3 + q = 0 has no roots in 

real algebra.
9. If g(g’ + r3)<0, prove that x2 ~’7qx*+21q2x+15r=0 has 

only one z-axal root. Is this a necessary condition ?
10. Use Sturm’s theorem to find the number and signs of the 

roots of 2a:3 - 4a:2 - 2x + 5 = 0 in real algebra.
11. Prove that, if m(m- 1)^0, the equation xl + 2a:3 = 2mx + m 

has exactly 2 roots in real algebra.
12. If ax + cy + bz-p, cx + by + az = q, bx + ay + cz = r, prove that 

S(a2 - bcY£(x2 - yz) = S(p2 - qr).
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13. Show that the equation ax5 - bx3 + ex + d = 0 in real algebra 

can be solved by the substitution x = k cos 0 if b3 = 5ac and 
0< a/6< 4c2/(125d2).

14. If /3j, /82, |83, are successive unrepeated roots of f'(x) = 0 
in real algebra, where f(x) is a polynomial such that f(x) = 0 has a 
root between p2, ft2 and between /?3, prove that it also has a 
root between /?2, /?,.

15. If a, /3, y,... are the roots of xn + a2 xn~3 + ... + an = 0, prove
that (i) S“2£2y8 = a2a4 - 40,^ + 9aa

(ii) 'Za.3py = alai+ 2a2a3- a33a3- 5as

16. If a, 0, y, 8 are the roots of the general quartic and Ap A2, A3 
of its reducing cubic, prove that (;8 + y)(a + 8) = 4(n2 - A1)/a0, and 
deduce that £(/?+y)2(a + 8)2 = 8(6a22+ I)/a,3

B
17. Find the condition for the roots of ax3 + 26a: + c = 0 to exceed 

those of px3 + 2gx + r = 0 by equal amounts.

18. Find the number and signs of the roots of 2a:6 - 8a:5 -1 = 0 
in real algebra.

19. If ax3 + 36a:2 + 3cx + d = 0 has exactly two equal roots, prove 
that they are equal to l(6c - ad)l(ac - 62).

20. Prove that if a< b< c, the equation
1 + oa: l + 6x 1 +ex , .--------+------ r +------- + d = 0 x-a x-b x- c

in real algebra has three roots, and find their positions.

21. Solve by Tartaglia’s method, a:3 - 15a: + 30 = 0.

Use Sturm’s theorem to find the number and signs of the roots 
of the equations in Nos. 22, 23, in real algebra :

22. xs-x + 16 = 0 23. a;4 + 4a:3 + 7a:2 + 6a:-4 = 0

24. Prove that the equation (x - a}3(x - 6)3 + A = 0, A=?tO, has 
2, 1, or no roots in real algebra according as 64A < , =,>(«- 6)°.

25. If a, /?, y, 8 are the roots of x* + 4cqa;3 + 6a2x3 + 4a3x + a2 = 0, 
find the values of (i) S(« - (8)2, (ii) S«2^2> (iii) Sa/?(y + 8)3.

26. Find the condition that a:4 + px3 + qx3 + rx + s = 0 should 
have two roots whose sum is zero, and show how to solve the 
equation if this condition is satisfied.
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C
27. If a, p, y are the roots of x(x2 - Q) = k(x3 - 1), express p, y 

as rational functions of a.

28. Prove that the sum of the powers of the roots of the 
equation, xn + xn~1lll + xn~1/2l + ... + 1/n! = 0, is zero if

l<r<n+ 1.

29. Prove that in real algebra a:5 + 5ax3 + 5a2x + 6 = 0 has exactly 
one root if 4a5 + 62 >0 and has 5 roots if 4a5 + 62< 0

30. Prove that in real algebra x3 + a;2 = Xx + 1 has three roots if 
A>1 and only one root if A< 1.

31. If u=ax2 + 2bx + c, v=px2 + 2qx + r and u, v are co-prime, 
and if a, p are the roots of (ay + b)(qy + r) — (py + q)(by + c), prove 
that A, B, C, D can be found independent of x such that

w = A(a;- a)2 + B(x- p)2, v = C(x- a)2 + D(x- p)2.

32. Prove that the equation
xn + nxn~1 + jn(n ~ l)xn~2 + a3xn~3 +... + a„ = 0

has not more than n - 2 roots in real algebra.

33. If n and p are odd positive integers and n>p, prove that 
in real algebra xn + axv + 6 = 0 has exactly one root if a > 0 and 
has exactly three roots if (pa/n)n + [pb/(n - p)}n~ p< 0.

34. Iff(x) = a0(x - «])(«: - a2)... (x- an) where ap a2,..., an are all 
unequal, and if plt p2, ... , Pn_1 are the roots off'(x) = 0, prove that

- f'M=a9n’3f(pl)f(pt)... f(pn_J.

35. If a., p, y, ... are the roots of xn + alxn~1 + ... + a„ = 0, prove 
that ^a2p2y282 = at2 - 2a3as + 2a2a, - 2ala, + 2at

36. If f(x)=xn + a1xn~1+... +a„ = 0 has k unequal positive 
roots (real algebra) prove that xf'(x) + cf(x) = 0 has at least k- 1 
unequal positive roots.

37. If f(x) = xn + a1xn~1+ ...+an — 0 has n unequal roots in real 
algebra, prove that xf'(x) + (x + c2)f(x) = 0 has n + 1 roots.

38. If «, p, y, 8 are the roots of the general quartic, prove that

(i) HP - ~ «)* + £(« - PY(y ~ 8)’ = 8(a„‘l + 96ff 2)/a0‘
(ii) S(j8 + y - a - 8)2(P - y)2(a - 8)2 = 192(3a0 J - 2HI)/a,*
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39. If f(x) =■ xn + a1 xn~l + ... + an, find the condition that it may

be possible to choose b, c so that the coefficients of xn~r, in
(x -b)(x- c)f(x) are both zero.

Hence prove that if f(x) = 0 has n roots in real algebra,
(arar+a — ar+iar+^ ** “ °r®r+a)(°r+a2 ~ ^r+i^r+a)’

40. If f(x), g(x) are polynomials in real algebra such that
/(a;) = (* ~ «i) (*-«») — (* ~ «n)ff(z)

where av aa,..., a„ are unequal, prove that gr(a;) =/"(t)/n! where 
t lies between the greatest and least of av aa,..., an> x.



CHAPTER XIV

SEQUENCES
Sequences. If sn is a one-valued function of n which is defined 

for all positive integral values of n, its values

^2» ®3* ••• • •••

are said to form a sequence (sn).
Even if 8n is undefined for a finite number of positive integral 

values of n, (sn) is still called a sequence.

Convergent Sequences. A sequence (sn) is called convergent and 
is said to have limit I if lim sn = I, and, in accordance with the 

n—
definition on p. 55, this means that when an arbitrary positive 
number e is given, there always exists a number m (which usually 
depends upon e) such that | sn -11 < c for every integral value of n 
that is greater than m.

The sequence is also said to converge to the limit I.
We proceed to illustrate by examples the various ways in which 

a sequence may converge or fail to converge. There are two useful 
geometrical representations of a sequence : each term sn may be 
represented by

(a) a point x — sn on an a>axis,
(&) a point with cartesian coordinates (n, sn).

t n~ 1
1 "n~ 2n

This defines the sequence 0, J, -|, f, A, ... .
If e is a given positive number, | sn - J | =' - J- | — and this 

is less than « for all values of n greater than l/(2e).
Therefore (sn) is convergent and its limit is J.

324
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No member of the sequence is equal to The limit of a 

sequence may or may not be a term of the sequence.
In this example the least value of the number m in the definition 

is a function of e which can be calculated for any given value of e. 
It is not usually possible to find a value of m that will serve for all 
values of c.

In the representation (a) on the z-axis, there is an accumulation 
of points in the neighbourhood of x = J and in this example they 
are all to the left of x =

In the representation (&), as n increases, the points steadily 
approach the line y = | from below.

II s.= l + (-ł)n
This defines the sequence f, H, łł> ••• •
Since | sB - 1 | = 2~" < « if n> (log log 2, the sequence con­

verges to the limit 1.
Here sn > 1 if n is even and sn< 1 if n is odd. Thus successive 

terms are alternately greater and less than the limit. Each term 
is actually nearer to the limit than any previous term, but this 
property is not necessary for convergence as will be illustrated 
in III. The reader should consider the representations (a) and (6) 
in this and the following examples.

hi Sn=sAi^
n

This defines the sequence 1, 0, 0, 0,

Since | sn | < e, if n > 1/e, (s„) converges to the limit 0.

The fact that sn = 0 whenever n is even shows that the approach 
to the limit is not steady. In this example there is an unlimited 
number of terms of the sequence equal to the limit.

IV sin n

Here also («„) converges to zero and the approach to the limit 
is not steady. There is no term of the sequence equal to the limit.
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V "" (n-l)(n —2)

If n>j, | sn - 3 | = (9n - 6)/{(n - l)(n - 2)}< 12(n - 2)/(n - 2)’ 
thus 18n - 3 |< e if n>2 + 12/e, and so (sn) converges to 3.

Here the value 2+ 12/e taken for m is not the least value that 
will serve. To establish convergence it is enough to obtain 
some value of m for which the inequality is satisfied whenever 
n >m.

s, and s2 do not exist, but sn is defined for all other values of n ; 
therefore the sequence (sn) exists.

VI sn = sec (|Tr<h)
This does not define a sequence as sec is meaningless

when n is the square of any odd number.

Divergent Sequences. The sequence (sn) is called divergent 
and is said to diverge to -I- oo if when any number K whatever is 
assigned, there always exists a number m such that sn>K for 
every integral value of n that is greater than m. m usually 
depends upon K.

The divergence may be expressed by lim sn = + oo or by 
< , t. , n->oo«„-»■ + oo when n->oo .

Similarly the sequence (sn) is called divergent and is said to 
diverge to - oo if when any number K whatever is assigned, there 
always exists a number m such that sn< K for every integral value 
of n that is greater than m. This may be expressed by lim sn = - oo 
or by ‘ sn-» - oo when n->oo ’.

VII sn = \fn
Since •Jn >K whenever n >K*, (sn) diverges to + oo . Similarly 

sn= - hjn defines a sequence which diverges to - oo .

VIII >n = {l + (-l)"W»
This defines the sequence 0, 2^2, 0, 4, 0, 2^/6, ...
If n is even, sn = 2^n ; if n is odd, sn — 0.
Although sn>K whenever n is an even number greater thaM 

}K2, the sequence does not diverge to + oo because there is no
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value of m corresponding to a given positive K such that 8n >K 
for every value of n that is greater than m. Nor is the sequence 
convergent.

The two phrases :
“ for all sufficiently large values of n ”

and “ for values of n as large as we please ”
are often used and must be carefully distinguished.

Tn the definitions of convergent and divergent sequences the 
inequalities | sn -11< e and sn >K must be true for all sufficiently 
large values of n or more shortly/or all sufficiently large n.

No sequence is defined in VI because sec (iir-Jn) is meaningless 
for values of nos large as we please. Also in VIII sn >K for values 
of n as large as we please and s„< 1 for values of n as large as we 
please.

Oscillatory Sequences. A sequence which neither converges, 
nor diverges to + oo , nor diverges to - ao , is called oscillatory.

If, in an oscillatory sequence, a constant C exists such that 
| sn |< C for all values of n for which sn is defined, (sn) is said to 
oscillate finitely, and otherwise it is said to oscillate infinitely.

The sequence in VIII oscillates infinitely.

IX =

If n is odd, | sn - 11 = l/n< e for all sufficiently large n, namely 
whenever n > 1/e.

If n is even, | sn + 1 | = 1 /n< e whenever n > 1/e.
But (s„) does not converge to + 1 or to - 1. It is not enough 

that the inequality should hold for an unlimited number of values 
of n or for values of n as large as we please. No inequality 
| sn -11< e is satisfied for all sufficiently large n and therefore (sn) 
is not convergent.

Since | sn |< 3 for all values of n, the sequence is not divergent 
but oscillates finitely.
' d.r.a.a. n. K
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Upper and Lower Bounds. If there exists a constant C such 
that sn is never greater than C, the sequence (an) is said to be 
bounded above. It can then be proved that in the domain of real 
numbers (but not necessarily in that of rational numbers) a 
number M exists such that sn is never greater than M, whereas 
if M'< M there is some value of n for which sn >M'. As a matter 
of fact M is the least value of C and it is called the upper bound of 
(sn), but a proof would involve the definition of a real number.

In I (p. 324) sn< I for all values of n, but if M'< f, then sn >M' 
for some value of n (in fact here for an unlimited number of values 
of n). Therefore the upper bound M of (sn) is Here no term 
of (sn) is equal to M.

If sn = (n + 1 )/n, M = 2 and Sj = M. Here no other term of (sn) 
is greater than If.

Similarly if there exists a constant c such that sn is never less 
than c, the sequence (sn) is said to be bounded below, and the 
greatest value m of c is called the lower bound of (sn). It is evident 
that if the upper bound of (- sn) is M, the lower bound of (sn) is 
- M, and the lower bound may be so defined.

In I sn is never negative and s1 = 0. Therefore the lower bound 
m of (sn) is 0.

If sn = (n+ l)/n, then sn>l for all values of n, but if m'>l, 
sn< m' for some value of n (in fact here for an unlimited number 
of values of n). Therefore m=l. Here no term of (sn) is equal 
to m.

Upper and Lower Limits. In IX, (sn) is bounded above and 
M = 2. But for all sufficiently large n, sn is less than any assigned 
number that exceeds 1, although this is not true of 1 itself. 
Therefore 1 is called the upper limit of (s„) in that example. This 
is denoted by

A — lim sn= 1.
n-*oc

Also in IX, (sn) is bounded below and m — -If. But for all 
sufficiently large n, sn is greater than any assigned number less
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than — 1, although this is not true of - 1 itself. Therefore - 1 
is called the lower limit of (s„) in that example. This is denoted 
by

A = lim sn= - 1.
n—►«>

If A = A = I, (sB) converges to the limit I.
If A^ X, (sn) is oscillatory.

V 1 1X s„ = cos jnTT +... ,
n — 1

S; does not exist. If n > 1 and p is a positive integer, then
for n = 6p, sn = 1 l/(n - 1); for n = 6p ±1, s„ = i+ l/(n - 1) ; 
for n = 6p±2, sn = -| + l/(n- 1) ;
for n = 6p + 3, sn= - l + l/(n- 1).

Hence (sn) is represented by points on an a;-axis which accumu­
late near x=±l,a:=±|. It happens that sa = ł, s3= - i, but no 
sn is equal to ±1.

Also Jf = If, m = - 1, and A = 1, A= - 1.

XI sn = cos |n?r + sin --
n

If n is even, s„ = (- l)nl‘^n + a, where | a |< 1. Therefore for 
all sufficiently large even values of n, sn >K if jn is even and 
sn< K if jn is odd.

If n is odd, s„ = sin $nrr-— and the method used in X shows Tb
that the representative points on an o:-axis accumulate near 
x= ±1, x= which are called points of accumulation of (s„).

This sequence oscillates infinitely and we may write

lim = + ao , lim s„ = - oo .

For the sequence in VIII, p. 326, which also oscillates infinitely,

lim sn = + co , but lim sn = 0.
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Monotone Sequences. If sB+1 >sn for all values of n, the sequence 

(sB) is called monotone increasing or sn is said to increase steadily.
For example 2, 4, 8, 16, ... and |, f, f, f, f, i, f, • • • are monotone 

increasing sequences.
When the terms sn are all positive the condition sn+1>sn may 

be replaced by

i r J («+ l)(a + 2) ... («+»)For example if a >0 and sn =------- - ---- ——---- the sequence
(sn) is monotone increasing,

for sn+1/sn = (a + n+ l)/(n+ 1) >1.
Similarly if sn+1<sn for all values of n, the sequence (sB) is 

called monotone decreasing or sn is said to decrease steadily.
For example 1, f, |, |, |, J, ... is a monotone decreasing sequence.
We shall continue to assume the theorems stated on p. 62 that 

a monotone increasing sequence (sB) for which sn<C for all values 
of n, converges to a limit I such that 1<C, and that a monotone 
decreasing sequence for which sn>c for all values of n, converges 
to a limit I such that l>c. These results cannot be proved without 
first establishing a theory of real numbers. They are not in fact 
true within the domain of rational numbers.

Example I. If
s„ = l + | + i+...+--logn and tn = 1 +1 + |‘+ ... +-—--logn,• n — i
prove that (sB) is monotone decreasing and that (tn) is monotone 
increasing and that each converges to the same limit y where 
0-3< y< I.

Sn+i-Sn = ^|l-10g(n+1) + 10gre = ^-10g(1 + D’ 

<n+l-<n = ^-10g(1+D;

but from p. 108, writing - for u in equation (8),

—!-<log(l +-)<-.
n +1 \ nJ n

.*. *n+i~®n<'® and tB+1 —(B>0;
(sB) is monotone decreasing and (<„) is monotone increasing.

similarly
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1 w IAlso since — >log (n + 1) - log n, £A>log (n+ 1) >log n, 
n 1 r

Bn *s positive, and since (sB) is monotone decreasing, it 
converges to a limit y where y>0. Buts1=l, y< 1.

Also «„-<„ = — > .’. lim («n - tn) = o, .'. (/„) converges to the 
same limit y.

But t,= 1 - log 2 >0-3 (seep. 112) y>0-3.
The common limit of these two sequences is called Euler's

Constant. Its value is -5772157 ... and it is denoted by y.

Example 2. Prove that the sequence (sn) defined by 

6(1 + s )
■Sn+1 = _7+V’ S*=C>0

2. If sB= (2n +5)/(6n - 11), prove that (s„) is convergent and 
find the least integer m such that | sn -1| < 001 whenever n >m.

3. If sn~ £l(n- 2), prove that (sn) is divergent.

4. If «„ = ( - l)"(2n - l)/n, prove that (a„) oscillates finitely.

is monotone.
s _s _6<1+*n) , _6-a„-ag* (2-an)(3 + aB)
n+1 " 7 + sn " 7+s„ 7 + a„

and 2_8b+1 = 2-^±  ̂= 1<2 3 4-^.
+* 7 + s„ 7 + sb

Hence if sn< 2, so<s„+1<2, and so if c< 2,

s1<sJ<s3< ... < 2

i.e.  the sequence is monotone increasing.
Similarly if c>2 it follows that <q >s2 >s3 >... >2 and so the 

sequence is monotone decreasing.
Ifc = 2, s„ = 2.

EXERCISE XlVa

A
1. If sn = 2 + ( - f)n, prove that | s„ - 21< 001 if n >9 and find 

the least integer m such that | sn - 2 |< 10_e whenever n>m.
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Find the nature of the sequences in Nos. 5-10 and their limits 
or upper and lower limits when these exist.

5. (5n + 2)/(n-l) 6. (-1)" 7. (n’-l)/n
8. n+(-l)”n! 9. tan_1n 10. cosjnw+l/h

11. Give the upper and lower bounds and the points of accumu­
lation on an a>axis in Nos. 5, 9, 10.

12. Prove that if sn+1 = 2(1 + a„)/(3 + sn) and sx >0, the sequence 
(sn) is monotone.

B
13. If s„ = (3n2 + 5)/(4n2 - 7), prove that (sn) is convergent and 

find the least value of m if | s„ - f | < e whenever n >m.

Answer the same questions as in Nos. 5-10 for Nos. 14-24.

14.
17.

(i)n 
tan Jnw

15.
18.

16.
19.

V(n2 - n) 
(-l)"(l + l/n)

C
21. (sin n)/^n 22. (^n) cos nir

-i
n*+(- l)"2n
(cos łnw + n sin $nir)_1 24. (v'n) sin2 fnw + cos - w
Give the upper and lower bounds and the points of accumu-

20.
23.
25.

lation on an o>axis in Nos. 20, 21, 23, 24
26. Give the lower limit of the sequence in No. 24.
27. If sn+1 = 12/(1+ sn) and 0<«i<3, show that ss, s„ ... and

®2> s<> ••• are monotone sequences which are increasing and
decreasing respectively. Examine also the case >3.

28. Prove that the sequence (sn) given by s„+l= >/(6 + sn), 
s1 >0, is monotone. Examine the cases sx< 3, Sj >3.

Some important Limits.
(i) If - l<o:< + 1, lim xn = 0.

n-*<x>

(ii) For all values of x, lim —- = 0.n-.-oon!

(iii) lim’-^ = 0.
n—>ao

(iv) If a>0, lim 1^ = 0.
n’
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The first two were given on pp. 56, 76. Direct elementary 

proofs will be found in Dwell and Robson : Advanced Trigono­
metry, p. 78 ; and a proof of (iii) is given in the same book on 
p. 68. It is easy to deduce (iv) from (iii).

(v) If the sequence (sn) converges to the limit zero, then the sequence 
(tn) defined by tn = (s1 +st + ... + sn)/n also converges to zero.

First suppose then «n>0 for all values of n.
Since (sn) converges to zero, if e is any given positive number, 

m exists such that sn< whenever n>m.

Thus t„ = (^ + s, + ... + sm)/n + (sm+1 + ... + s„)/n

< (S1+s2+ ...+sm)/n + l(n-m)eln

<(sl+s2 + ...+sm)ln + le

Since m is fixed, n2 can be chosen, greater than m, so that

(s1+s, + ...+sm)lnl<&,

and then tn< = e whenever n >nt >m.

Thus (t„) converges to zero.
Now suppose that sn may be positive or negative.
Since (sn) converges to zero, so also does (| sn |).

But I I = I (»i +««+ ••• +«„)/n | <(| sx | + | s21 +... + | sn |)/n ; 
hence (| tn |) converges to zero, and ;. (tn) also does so.

(vi) If the sequence (un) converges to the limit I, then the sequence 
(vn) defined by vn = (u1 +u2 + ... + w„)/n also converges to I.

For put un — l + sn ; then (sn) converges to zero and therefore 
by (v), (si + s2 + ••• + «„)/n -*0 when n-><» .

But vn = I + (st + s2 + ... + sn)In, ;. (vn) converges to I.

It should be noted that the converses of (v) and (vi) are not 
true. The convergence of (yn) in (vi) does not imply that of (un). 
See Exercise XlVb, Nos. 1,18.
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Example 3. If | a |< 1, prove that the sequence (sn) defined by 
8n = nan is convergent and that its limit is zero.

(i) Suppose 0<a< 1 and put a=l -x.
Then 0<x< 1 and (1 - a:)(l + x) = 1 - x2< 1, .'. a< 1/(1 + x).

Thus *n+i _ (n+ l/a^ 1 + 1/n j 
sn n 1 + x when n >-.x

Hence, except possibly for a finite number of terms at the 
beginning, («„) is monotone decreasing. But sn>0 for all values 
of n, (sn) is convergent.

Since

Therefore na"->0 when n->oo .
This is also true when a = 0.

(ii) Now suppose - l<a<0.
By (i), | nan |->0 when n->oo , hence also nan->0.
Alternatively from p. 69, the series £ n\ a |n is convergent if 

|a|<l, a^O, since lim (s„/sn+1) = 1/| a | >1 ; and therefore by 
the theorem on p. 64, | s„ |->0 when n->oo .

Example 4. Prove that the sequence (ij/n) converges to the 
limit 1.

Put n]n = 1 + x. Then (1 + x)n = n, .'. x > 0.
Hence, as in Example 3, n = (l +x)n>£n(n - 1)®*.
Thus | <«/n-1 |=o:< >/{2/(n-1)} <e if n>l + 2/e*.

.". i*/n-»l when n-»oo.

Alternatively from p. 108
12 2

log "/»=- loS n=- log s/n< —e v n n >Jn
and so log «Jn< e when n >4/e2.

Hence log when n->a>

and, assuming the continuity of the logarithm, »/n->l when
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Example 5. Prove that if a >0 the sequence (■/«) converges to 

the limit 1.
(i) Suppose a> 1. Then if n >a, 1< ”/a< ’‘/n.
But by Example 4, «/n-*l when n->oo ; hence
(ii) Suppose 0<a< 1. Put ”/a = a:, then a = xn and 0<x< 1.

Thus (1-a:n)/(l-a:) = 1+»+...+®B-l>nzn
, , , , 1 - xn 1 - aand 1- "/a=l-x<---- — = —,nxn na

|1- "/a |< e whenever n>(l-a)/(ae),
%/a-+l when n-»oo .

Alternatively (ii) may be deduced from (i) by writing 1/a for a.

Example 6. Prove that the sequence (sn) is convergent if

3.5.7 ... 2n+l
5”~2.5.8 ... 3n- 1

2n +1 24 9- ------<-? = — if 20n + 10< 27n - 9 and therefore if n>3; hence
3n-l 2| 10

3/9Yn—1
I ifn>3.

But f 9 \n-t) —>0 when n-»ao ; therefore sn->0 when n->®.

Note. In this proof instead of 2|, 2|, any two numbers a, /?, 
such that 2< a< /?< 3 could be used.

Example 7. Prove that the sequence (sB) is divergent if

2.5.8 ... 3n-l
8n~ 1.4.7 ... 3n-2

Since log t >(t - 1)/S if t >0 and t 1, by p. 108,

3n-l^ 1 1
Og3n-2>3n- l>3n'

Hence log sn >| (1 + | + J +....

But 1-t-| +1+ ...+--►<» when n->® , by p. 64; therefore Tb
log«„->cc and when n-»oo .
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The convergence of a sequence can sometimes be established 

by dividing the sequence into two sub-sequences each of which is 
monotone. This is illustrated by Example 8.

Example 8. If Sj = X and sn+1 = 6/(1 + sn), prove that (s„) is a
convergent sequence with limit 2.

If Pr denotes the point (sr, sr+1), it 
lies on the curve y = 6/(l + x) for all 
values of r. The positions of P2, P2, 
P2, Pt are shown in the diagram and 
the positions of Pt, Pt, ... may be 
added in succession ; these give some 
idea of the nature of the sequence.

If it is assumed that sn->Z, then 
sn+1->Z and

sn+i~ 6/(1 + sn) gives I = 6/(1 +1),
P + l = 6, (I - 2) (Z + 3) = 0; but as sn >0, l> 0, therefore I — 2.

It is essential however to prove the existence of the limit.
If s„<2, s„+1 = 6/(l+sn)>2 ; if sn>2, sn+1<2; but s1<2, 

hence sn< 2 if n is odd, and sn >2 if n is even.

Also 5n+2
(3 + sn)(2-sw)

7 + sn
Thus sn+2 >sn if n is odd, and sn+2<s„ if n is even.
Hence slf s3, s6, ... is a monotone increasing sequence with 

positive terms all less than 2, and s2, s4, s,, ... is a monotone 
decreasing sequence with all terms greater than 2. Thus 
tends to a limit b, and s2n tends to a limit c, where 0<6< 2<c.

Since s2n+1 - ■52n-1_>0, and from the expression found
for s„+2 - sn, (3 +6)(2 - 6) = 0. But6>0, A 6 = 2.

Similarly by taking even values of n it follows that c = 2. Thus 
(s„) converges to the limit 2.

Note. The result is true for all positive values of But if 
s1>2, Sj, ss, s5, ... is monotone decreasing and s2, st, se, ... is 
monotone increasing. The point L(2, 2) in the diagram is the 
point to which Pr tends when r->oo .
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EXERCISE XlVb

A
1. If sn=(-l)" and tn=(81 + «, + ... + «„)/«, prove that (<„) 

converges although (sn) does not.

2. If s„= »/n3, prove that (sn) converges to 1.

3. If s„ = n2an, 0<a< 1, prove that (sn) converges to 0.

4. Prove directly that (log n)/Vw-*0 when n-><» >

5. Prove that (log n)lln~+l when n->ao

„ _ XT. x 4.7.10... 3n+1 . ,6. Prove that _ „ ■■ -------------»0 when n-»°o .3.8. 13 ... oti — 2,
2.4.6 ... 2n

7. Prove that the sequence (sn) defined by sn = „ _----- x----- 7
is divergent. .............n

8. If «x>0 and sn+1 = 2/(l + s„), prove that (s„) converges to 
unity.

9. If «i = l, sa = 3, s„+2 = |(sn+1 + sn), prove that the sub­
sequence st, s3, s6, ... is monotone increasing and that s2, s4, st, ... 
is monotone decreasing, and that (sn) converges to 2|.

B
10. If sn = "/a, a>0, prove that (sn) is monotone.
11. If (sn) converges to zero and f„ = 2s", prove that (fn) con­

verges to unity.
3.7.11 ...4n- 1
4.7.10... 3n+ 112. Prove that the sequence (sn) defined by sn = 

is divergent.

13. Prove that 1.3.5 ... 2n- 1
A c. o-----s-----s -»0 when n-*oo4.6.8 ... 2n + 2

14. If —n*a ”, a>l, k>0, prove that (sn) converges to zero.

15. If ns„ = l + | +1 + ... + I/n, prove that («n) converges to 
zero.

16. If s„=(l -a:n)/(l -x), Ocx< 1, verify from first principles 
that lim s„ = lim {(«2 + s2 + ... +s„)/n}

17. If s2 = 1, s, = 6, 6sn+2 = 5sfl+1 - sn, prove that (sn) converges 
to zero.
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C
18. If s„ = n( - I)"-1 and 4- s2 4-... + «„)/« and

fn=(«i + <i+ — + ««)/”> ► ’
find the nature of the sequences (tn) and (vn).

19. If s„ = n2"(14-n!)~”, prove that (sn) converges to 1.
20. Evaluate lim (V2 + ^/3 + ... + n/n)/n

n->oo
21. If lim {f(n)-f(n- 1)} = Z, prove that lim^^ = Z.

n—>x n—><» n
22. If 8n = m(m+ 1)... (m + n~ l)/n! and m>l, prove that (sn) 

is divergent.
23. If m> - 1, prove that m(m- 1)... (m-n + l)/(n!)-+0 when 

n-»oo.
24. If sB+2 = (n 4- 3)sn+1 - (n + l)s„, prove that

lim sn/(n!) = (e - 2)sa - (2e - 5)s1 
n—>oo

25. If sn = ul + u, +... +u„ and un+s + 2aun+l 4- bun = 0, prove 
that (sn) is convergent if -l<6<a2<l and (l + 6)2>4a2. 
Examine the case b — a2< 1.

Infinite Series. The discussion of the convergence of
cq 4- ct2 4- <&3 4-... 4- an 4*. •.

is equivalent to that of the convergence of the sequence (A„), 
where A„ = a1+a, + a3 + ... 4- an.

]?an converges if lim An exists.
n->oo

It is convenient to use A„, Bn, ... in this way to denote
°i + °2 +' • • + an> 4- b, 4-... 4- 6„, ...

and also to use A, B, ... for lim An, lim Bn, ... if these limits 
exist.

The usual tests for convergence of simple series were explained 
in Ch. IV, pp. 57-76. It was proved on p. 64 that if ^an converges, 
then lim an = 0 and this is true whether the terms are all positive 
or not. But this test, though necessary, is not sufficient for con­
vergence.

We shall now prove a stronger result of the same kind, applicable 
however only to- series of positive terms. On pp. 342-346 we 
shall give some further tests of convergence.
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Abel’s Theorem. If £an a convergent series of positive terms 

and if (an) is monotone decreasing, then lim {nan} = 0.
n—>ao

By hypothesis An is monotone increasing and tends to a limit A. 
Hence for any given positive value of e, k exists such that

A - e< An< A if n>k, 
An- Ak<e if n>k, 

i.e. ak+1 + ak+i + ...+an<e.
since

(n — k)an< e,
.'. 0<fna„<e when n>2k.

Hence nan->0 when n->a>.
Exercise XIVc, No. 9, shows that if (an) is not monotone 

decreasing, ~£an may converge even when lim (nar) is not zero.
For an illustration of the use of Abel’s Theorem see Example 9.
The example a„=l/(nlogn) shows that the converse theorem 

that if (an) is a monotone decreasing sequence of positive 
terms and lim {nan] = 0, then £an is convergent, is not true. For 
Sl/(nlogn) is divergent, by p. 343.

Example 9. If an = prove that is divergent.

First method. Since log a:1+1/1 = ^, 'j ( ] l°g x f

= (l+-)i--2logx
\ xJ X X2 °

= (rr+1-logz)/z2>0, p. 108, 
it follows that log x1+1lx increases with x and hence xlJr1lx increases 
with x. Thus (<z„) is monotone decreasing.

Also lim {na„} = lim n-1/" = 1, by Example 4, p. 334.
Hence by Abel’s Theorem, S°n cannot converge. 
But an is positive, therefore 2,an diverges.
Second method. Since log n< n, nlln< e,

thus a„ =
1

n.n1/”
1> — ne

But £(l/n.) is divergent, therefore £an is divergent.
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Example 10. Examine the convergence of £an when

n>b

Therefore by the comparison test, it follows from p. 67 that 
converges if k< f and diverges if k>%.

1
V(n-l)

1 ^n- ■Jtn- 1) 1
s/n~ sj(n2-n) (n2 - n){^Jn + (n - 1)}

Hence nk ~ nk
n.2^n '°n " v/(|n2)2V(łn)

that is

EXERCISE XIVc

A
For the values of an in Nos. 1-8, determine whether the series 

Sa« are convergent or divergent.
1. 2n/^(4"+l) 2. (n+l)/Vn5 3. V(l+n2)-n

4. nb(n + l)c for various values of b, c.

5. (4.7 ... 3n+l)/(3.7 ... 4n- 1)

7. (v/n-V(n-1)}/V(n-1)

6. (n6 - nc)_1, 0<c<6

8. (log n)/n

9. If an = 1/n when n is a square and otherwise an=l/n2, prove 
that £cz„ is convergent and that nan does not tend to zero. Why 
does not Abel’s Theorem (p. 339) apply to this series ?

10. If is convergent, prove that £{|a„|/n} is also con­
vergent.

B
For the values of a„ in Nos. 11-16. determine whether the series 

£<zn are convergent or divergent.
11. n(n- 1)®, ę<0

13. n!/(3.5.7 ... 2n+l)

15. ^/(2n2 - l)/y(3n3 + 2n + 5)

12. (6»-c«)-‘, 0<c<6

14. 2”(n!)/(5.8 ... 3n + 2)

16. V(»is + 1)- V(”’- !)

17. Prove that £ log (1 + x2”) is convergent if a:2< 1.
18. Prove that if an>0, the series ^an and 2{an/(l + an)} are 

both convergent or both divergent.
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C
19. If a„= *Jn{^(n+ 1) - 2^n + \/(n - 1)}, determine whether 

the series Ż,an is convergent or divergent.

20. If an = n log {(n + l)/(n - 1)} - 2, determine whether the 
series is convergent or divergent.

21. [A Comparison Test] If 2<zn, "Z,bn are two series of positive 
terms such that an/an+1 >bn/bn+l for all positive integral values 
of n and if ^bn is convergent, prove that is convergent.

22. [Cauchy's Test] If an>0 and lim "/an = l, prove that 2,an 
is convergent or divergent according as l< 1 or 1>1. Show by 
examples that if Z= 1, T.an may be either convergent or divergent.

23. Prove that the sum of the reciprocals of any number of 
positive integers that do not involve the digit 0 (when written in 
the usual way in the scale of 10) is less than 9 + 92/10 + 93/102 + ... , 
so that the series

l + ł + ...+ł + 'it + ... + A + A'+-”
is convergent with sum to infinity less than 90 although 5)1/n is 
divergent.

24. If £an is a divergent series of positive terms and
^n = «i + °i + -"+“n.

prove that S(°n+iMn) *s a^so divergent.
Deduce that 2 '[ log (1 + “)/l°g nJ is divergent.

25. If (an) is monotone and diverges to + oo, prove that 
S{(°n+i_an)/an} 's divergent. Deduce that S{l/(nlogn)} is 
divergent.

26. If (an) is monotone and diverges to + oo and if p >1, prove 
that S{(afl+1 - a,1)/(anJ,_’an+i)} *s convergent. Deduce that

S{n-,(log n)-’}
is convergent if p > 1.

27. If (an) is monotone and diverges to + oo, and if
sT=a1-a3 + a3-...

to r terms, prove that •
Hi) s2n+i tends to a limit A or to + oo ,
(ii) s3n tends to a limit A or to - oo ,

(iii) A and A cannot both exist.
Hence prove that a3 - a2 + a3 - ... oscillates infinitely.
Prove that 2*-2 + 2*-22 +2‘-2’+... diverges to+oo.
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Infinite Integrals. An infinite integral f(x)dx is defined to be 
the limit, if it exists, of [ f(x)dx when t->ao . If the limit exists, 

fBthen the limit of sn, = \af(x)dx, when n tends to infinity through 

positive integral values must also exist. Hence the convergence of 
the sequence (sn) is necessary for the existence of the infinite 

f n
integral. But it is not sufficient. For example if sn = | cos 2-nxdx, 
the sequence is convergent because sn = 0 for all values of n, but 
r®

cos 2wa: dx does not exist.
•°

If however it can be shown that \&f(x)dx lies between sn and 

s„+1 whenever t lies between n and n+ 1, then the convergence of 
(s„) is a sufficient condition for the existence of the integral.

The Integral Test. If f(x) is a positive integrable function of x 
which is monotone decreasing/or x>m where m is a given positive 

integer, then the series ~2,f(n) converges if and only if \f(x)dx exists.

If r is an integer greater than m and r - 1 < x< r, then

/(r) </(x) </(r - 1)

/(»•)< \Tr_1f(x)dx<f(r- 1)

Putting r = m + 1, m + 2, ... , n and adding,

f(m+l)+f{m + 2) +... +f(n)< \mf(x)dx<f(m)+f(m+ 1) + ... 

+/(n-l). 
n fn | n

Thus Ś/(ł')</(m)+ f(x)dx, and if \mf(x)dx-+l when n->oo, 
m -m

n
Hf(r) is a monotone increasing function of n which never exceeds 
m
f(m) +1 and therefore converges.



XIV] SEQUENCES 343
n [h

And conversely if when n-*oo , | f(x)dx is a monotone
m

increasing function of n which never exceeds s and so converges.

If f(x) is a positive integrable function of x which is monotone 
(■CO

decreasing, f(x)dx may not-exist even when/(a:)->0 when a:->oo .
J m

i r ‘For example if f(x) = - , |
f*

f(x)-+k>0, then f(x)dx cannot exist becauseJm
fn
]m/(a:)dx> (n - m)k.

*00 j
| -dx does not exist. If, when x->oo, JI x

But it follows from the inequalities obtained above that if

tn=f(m)+f(m + 1) + ...+/(»- 1)-\mf(x')dx,

the sequence (tn) is convergent.
fn+1

For since /(n) > | f(x) dx, tn is a monotone increasing function 

of n ; and it has been proved that tn<f(m) -f(n)<f(m) (tn) 
converges to a limit </(m).

For an illustration of this property, see Example 11 (ii). See 
also Example 1, p. 330.

1
Example 11. If a„ = ------j-r-r-—:------n and A„ = a. + a, + ... + an‘ n (n+1) log (n +1) ” 1 "

prove that (i) the sequence (An) is divergent,
and (ii) the sequence (An - log log ri) is convergent. 

fn dx r ~in(i) ' 2 xl^c = Llog log xJ2 = log 10g n ~log log 2-

® dx ._____ x . . ., 1
<*> I

f u..cHence I —t------ does not exist. Also —=------ is a monotoneJ2 x log x x log x
decreasing positive function. Hence (A„) is not convergent, and 
since it is monotone increasing, it is divergent.

'n dx
—------ tends to a limit when n-*oo.2 X log X

But ar-»0 when r->oo , .•. (An - log log n) is convergent.

(ii) An_,- I’

D.R.A.A. II. L
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Example 12. Prove that V —.------ n is convergent.
2 n(log n)a

fn dx r -1 i i
J2 a:(log x)* Mog z-J2 log 2 log n

L —.i^ exists. Hence since —~-----rj is a monotone
J2 a:(log x)1 x (log x)*

decreasing positive function, Sw^og nji is convergent.

Cauchy’s Condensation Test. If f(n) is a positive monotone 
decreasing function of n, the series ^,f(n) is convergent or divergent 
according as the series 2,2nf(2n) is convergent or divergent.

Put «B = 2/(r) <„ = 227(2").
1 1

(i) Suppose (<„) converges to the limit t.
7(2) 4-/(3)} + {/(4) + ... +/(7)} +... + {/(2r_1) + ... +/(2’- - 1)}

< 2/(2) + 2’/(2‘) + ... + 2’-1/(2r-1) = <r_v
Thus if 2*>n, sn<tB_1+f(l)<t+f(l).
Also (s„) is monotone increasing, therefore it converges.
(ii) Suppose (<„) is a divergent sequence.

/(2) + {/(3) +/(4)} + </(5) +... /(8)} + ... + 7(2"-* + 1) + ... +/(2r)J
>/(2) + 2/(2’) + 2«/(2’) +... + 2r-1/(2r) =

Thus if n>2v, ; therefore (s„) diverges.
Cauchy’s test may be applied to the series in Examples 11, 12.

(i) If/(n)= l/{n log nJ, n>l,
2"/(2") = 2n/(2n log 2n) = l/(n log 2).

But 2(1/n) is divergent, therefore 2/(n) is divergent.
(ii) If/(n)=l/(n(logn)«},

2n/(2n) = 2n/(2"(log 2")’}= l/{n’(log 2)’}.
But 2(l/w’) is convergent, therefore 2/(n) is convergent.

Ratio Tests. It was pointed out on p. 70 that D’Alembert’s 
test fails when lim (a„/a„+l) = 1- We give here two further tests 
which suffice for most purposes and in particular are decisive 
when a„/an+l can be expressed as the ratio of two polynomials in n.
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Raabe’s Test. For a series of positive terms

(i) if an/an+1>l + <x/n where a > 1, « convergent,
(ii) if an/an+1< 1 + 1/n, 2<z„ is divergent,

and the same results hold if an/an+1 satisfies the inequality only for 
n>m where mis a constant. In (i) a must be a constant.

(i) If r>m, ar/ar+1>l + a/r.
Thus raT > rar+1 + «aT+1

i.e. rar - (r+l)ar+1>(a-l)ar+i.
Put r = m, m + 1,... , n- 1 and add,

thus rnam -nan>(a- I)(am+1 + am+i +... + a„)

where n>m+l. Also a >1,

thus am+1 + am+, +... + an< (rnam - nan)/(a - 1)
<mam/(a- 1).

Hence if sn = a1 +at +... + an, (s„) is a monotone increasing 
sequence and sn<sm + rnaml(a- 1) which is constant. Thus (sn) 
is convergent.

(ii) If r>m, rar< (r + l)ar+1,
.’. na„> (n - l)an_1>.. .> mam (n>m)

Thus an>mam/n. But £l/n is divergent and therefore by the 
comparison test 2an *3 divergent.

In practice it is often simpler to use these tests by evaluating a 
limit, but it may also happen that the tests can be used when the 
corresponding limits do not exist.

If lim n(a„/<zn+1 - 1) exists and is I where 1>1, then m exists 
n—*oo

such that n(a„/a„+1 - 1)>|(Z + 1) > 1 for n>m,

.'. anlan+fi> 1 + a/n where a = |(Z + 1) >1,

5®n *s convergent.
If lim n(an/an+1 - 1) exists and is I where I < 1, then m exists 

n—>ao
such that n(aB/an+l - 1)< 1 for n>m,

°n/ffln+i< 1 + V".

2an is divergent.
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Gauss’ Test. For a series of positive terms, if

_5ł_ = l+-+&
«n+l n n

where | /?„ | is less than a constant C for n>m, then 4,3
divergent.

a" = 1 I 1 I 1 lpg w .
an+i n n 1°8n n

But (log n)/n->0 when n->a> by p. 332; Therefore exists 
, ,, , I log n I C log n , ,such that ——2— <----5— < 1 when n >m, >m.n | n

Then _^_<i+A + __L_
°n+i n n log n

zia„logn<(n+l)an+1logn + an+1 
na„ log n - (n + l)a„+1 log (n+ l)<an+1[l - (n+ 1) log (1 + 1/n)}

< 0, by p. 108.
Thus (na„ log n) is monotone increasing for n >mt 

and so nan log n >m1ami log m1 = b1> 0.

Thus an >bf(n log n). But by Example 11 £l/(nlogn) is 
divergent; therefore by the comparison test, £an a^so divergent.

For an alternative method of proof, see Exercise XlVd, No. 32.

The O-notation. It is often a convenience to use the symbol O 
which is defined as follows.

The statement f(n) = 0 g(n)
means that constants C, m exist such that

|/(n) \<Cg(n) whenever n>m.
The tests of Raabe and Gauss may therefore be stated in the form

If an>0 and -^-=l + - + o(—}
an+1 n \n‘/ 

then £an convergent if a > 1 and divergent if a < 1.
The ratio tests can be used in conjunction with the results on 

pp. 72, 75 to decide the convergence or divergence of series in 
which the terms are not all positive.
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Example 13. if on = - * - , discuss the convergence of 2Jan.
1 tSKTf

*^1, an< l/xn ; therefore £an converges.
If ® = 1, an = i ; therefore £an diverges to + oo .
If Ix | < 1, an >0 and an->l when n->oo ; therefore £an diverges 

to + 00 . (p. 64).
If x~ - 1, an does not exist if n is odd.
If ~ 1> put aj= —y so that y>\,

then I a„ I = 1 l{yn + ( - 1)”} = &„, say,
i>ut 6n>o and lim (&n/&n+1) = y >1, .•. is convergent.

Thus Sa„ is absolutely convergent and therefore convergent, 
(P- 74).

Example 14. If an = nkxn, discuss the convergence of £a„.

If x^O, I «n
I an+i

nk
| x |(n+ l)k

7; when n->oo ;
l«l

hence £an is divergent for a:>l and absolutely convergent (and 
therefore convergent) for | x | < 1, x 0.

For x = 0 the terms are all zero. ,
For x = 1, an = nk, .'. 2,an is convergent if k< - 1 and divergent 

if k> - 1, (p. 67).
For x< - 1, if l<p< \x I, m exists such that | ar+l | >p | ar | 

whenever r >m ; thus | an | >pn_™ | am |. Hence | an oo when 
. But the terms are alternately positive and negative, 

and |an | is monotone increasing; thus by No. 27 on p. 341 
oscillates infinitely.

For x=-l, | an |->oo if k>0; therefore £a„ oscillates
infinitely for the same reasons as before.

For x= - 1 and k = 0, 2,an oscillates finitely.
For x = - 1, -l<&<0, (|an|) is monotone decreasing and 

converges to zero. Therefore by p. 72, £an i® convergent, but it 
is not absolutely convergent because £a„ i® divergent for x=l, 
k>-l.

For a?= - 1, k< — 1, is absolutely convergent because it has 
been proved convergent for x = 1, k < - 1.
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Example 15. Determine whether the series
* + ...

is convergent or divergent.

Hence by Gauss’ test the series is divergent.

Infinite Products. If An = al + a2 + ... + an and (A„) is a 
convergent sequence with limit A, then A is called the sum to 
infinity of the series a, + a2 + ... and this series is called convergent. 
Similar definitions are given for products, with one qualification.

If Pn = axat ... an and (Pn) is a convergent sequence whose 
limit P is not zero, then P is called the value of the infinite product 
OjO, ... which is called convergent.

IfP„-> + oo , the infinite product is called divergent and is said 
to diverge to + ao . It is also called divergent and is said to diverge 
to zero when Pn^-0 although the sequence (Pn) is convergent.

ip , t (n+1)2 2(n+l) „ ,
For example if an = w(w+2)’ ••• “’■ = "^+2—*2, and S°

cqa, ... is convergent with value 2. But the product f f f ... for 
n + 1which an=——— and therefore a1ai ... an~n+ 1 is divergent to

+ oo . Also the product | f |... for which a2a2... an=l/(n+ 1) 
is divergent to zero, and so is the product 0.1.2.3.4 ... , although 
the product 1.2.3.4 ... is divergent to + ao .

Just as the convergence of a series £an implies that lim an = 0 
although this is not sufficient for convergence, so the convergence 
of a product a2a2 ... implies that lim an— 1. This would not hold 
if a product for which pn->-0 were called convergent, as illustrated 
above by 0.1.2.3.4 ...
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On account of the property liman=l, it is convenient to 

change the notation and to consider products of the form

P„s(l + «i)(l+°.) ... (l+an)

where an->0 when n-> co . A condition of convergence is given by 
the following theorem.

If Q<ar< 1, the infinite products 11(1 + ar) and 11(1 - ar) are both 
convergent or both divergent according as the series ~£ar is convergent 
or divergent.

If Har ™ divergent, 11(1+ ar) diverges to -l-ao and 11(1-ar) 
diverges to zero.

Let Pn = II(l+ar), Qn = II(l-ar), A„ = £ar.
1 1 1

Then if (An) converges to the limit A, there is no loss of 
generality in supposing O<A<1 since this merely involves the 
omission of a finite number of terms in (An) and of a finite 
number of non-zero factors in (Pn), (Qn).

Since (1 - a2)(l - a2) >1 - (a, + a2) and 1 - a3 >0,

(1 -aj(l -aa)(l -a3)>{l - (a2 + a,))(l - aa) > 1 - (a2 + a2 + a3), 

and so on. Hence Qn > 1 - An > 1 - A >0.

Also (l-ar)(l + ar) = l-ar2<l and l-ar>0,

.'. 1 +ar< 1/(1 - ar).

Hence Pn< 1/Qn< 1/(1 - A).

But Pn is monotone increasing and Qn is monotone decreasing. 
Therefore (P„) converges to a limit which is positive and 

< 1/(1 - A) and (Qn) converges to a limit which is >(1 - A) >0.
Therefore the infinite products are both convergent.
If S®r is divergent, since it is evident that Pn > 1 + A„, 

(Pn) diverges to + oo. Hence (1/P„) converges to zero and 
since 0<Qn<l/P„, Qn-r0 when n->ao, and therefore (Q„) 
diverges to zero. Thus the infinite products are both divergent.



350 ADVANCED ALGEBRA [CH.

and so a„>-2 + (l + |l)(l + | |)(1+| ^y) •

Example 16. _ xu x ^4.7.10...3n+l .
Prove that 2 5.8.T! ... 3n + 2 * divergent.

First Method. By p. 206, if s„ denotes the sum to n terms,

4.7.10 ... 3n+4 o
S”—2.5. 8...3n + 2 '

But
3r + 4 2 2
3r + 2_1 + 3r+2> +3(r+l)

But £(l/n) diverges; hence II^l + g -j diverges; therefore 
sn->oo when n->oo .

Second Method. If an denotes the nth term of the series, 
a„ 3^ + 5-! [ 1 *

an+1 3n + 4 3n + 4 n

and hence by Raabe’s test, £an is divergent.

Example 17. If pT is the rth prime number, that is the rth term 
of the series 2, 3, 5, 7, 11, ... , prove that 11(1 - l/pr) diverges to 
zero and S(l/Pr) diverges to + co .

If pn = x and m is a positive integer such that 2m+l>x, any 
positive integer less than or equal to x can be expressed in prime 

n
factors in the form II pr‘ where pr < x and 0 < s < m, and therefore 

n r=al
the product II (1+pr~1+Pr~* + •■■ + Pr~m'l contains each of the 

r-1
terms 1, 2~l, 3“*, 4"1........

Hence

n n
Therefore when n->a>, 11(1 - co and 11(1 -pr_1)->0.

1 1

Hence 11(1 - pr~*) diverges to zero, and by the theorem on 
p. 349, is not convergent and therefore it diverges to + oo .
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Example 18. Discuss the convergence of the binomial series 

, m(m-l) , - .1 +mx-t---- —x2 + ... for x = + 1, x = - 1.

In the following discussion the trivial Case m = 0 is excluded 
since if m = 0 every term except the first is zero and the series is 
therefore convergent.

If x= —1, the terms aT, ar+l, ... all have the same sign when 
r>m+ 1, and

ar r m+1
ar+1 r-m-1 r-(m+l) r \r2/

Hence by Raabe’s test, the series is convergent if m>0 and 
divergent if m< 0.

If x= + l, the terms ar, ar+1, ... have alternate signs when 
, , I I rr>m+ 1 and —— =----------- .

I °r+i I r-m-1
Hence if m + 1 >0, | ar | is a monotone decreasing sequence.

Also I 2r±.»+‘ I = r~<w+1> r + l-(m+l) 
| ar I r r d-1

r + p - (m + 1) 
r + p

m + 1^
r+1) ■”

m + 1\
r +p /

But this product diverges to zero if m + 1 >0 and diverges to 
+ <» if md-l<0. Hence (|an|) converges to zero if m+l>0, 
and diverges to + oo if m+l<0.' Thus by p. 72 the series 
converges if m> - 1. If m< - 1, | an | is monotone and diverges 
tod- oo ; by No. 27, p. 341, the series oscillates infinitely.

If m— — 1, the series is 1-14-1-1 + ... It therefore oscillates 
finitely if m~ - 1.

It follows from what has been proved for x— - 1, that when 
x= +1 the convergence is absolute for m>0 and conditional for 
-l<m<0.
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EXERCISE XlVd

A
For the values of an in Nos. 1-10, investigate the convergence 

of the series S®n- Apply both the integral test and Cauchy’s 
condensation test in Nos. 1, 2.

1. ___ 1---- 2. ---------- ----------- 3. (log
n(log n)3 n log n log log n n2 

4. —®tt»l where 
n

than p.

[p] denotes the greatest integer not greater

6 (n+l)xn
7. c1/"- 1, c>0.

1,3.5 ... 2n-3 a3"-1 n!
2.4.6... 2n - 2 2n - 1 ’ a(a+1) ... (a + n) ’ a>

10. (i)/(n)/Vn, (ii)/(n)/(n+1), (iii)/(n)/(2n + I), where
/(n) = (1.3 ... 2n- l)/(2.4 ... 2n).

n
11. If br = 1 - 1/r2, verify that II bT is convergent with limit

2
12. Investigate the convergence of jjr +ctr +

r3 + cr + a

B
For the values of an in Nos. 13-21, investigate the convergence 

of the series San-
13. l/{nV(logn)} 14. n'./nn 15. (logn)_n
16. an = xn if n is odd, an = yn if n is even, 0<x<y< 1.

17. (2"-2)x2n/(2n+l) 18. nz2”’ 19. 4"(n!)2/(2n + 1)!
20. {2.6... (4n-2)}/{3.7 ... (4n + 3)}
21. (1.4 ... 3n - 2)3/(2.5 ... 3n- l)3

22. Investigate the convergence of II ( ------ — )

C
For the values of an in Nos. 23-25, investigate the convergence 

of the series San-
23. (i) (n log n)-’(log log n)-2, (ii) (log log n)3/{n(log n)3}
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24. ---- -----------(n*+ l)(logn)a
25 n-3-5-2n-lP

I 2.4.6...2n )

26. Prove that (i) 2 A < 2> (“) S ~~~ < 3
1 ns i n-Jn

27. If a, b are positive, prove that

tends to a limit when n->oo .
28. Examine the convergence of 11(1 + ar) where

(i) ar=( - ir-*/(r + 1), (ii) ar = (- l)r^^(r+ 1).
29. If for n integral and greater than 1,

“tn-i= "1/n”, a,„= l/n’+1/n’1’ 
where prove that ^an and are both divergent and
that 11(1 + an) is convergent.

30. If f(x)>0, f'(x)>0, f"(x)<0, prove that the series
and S{/'(n)//(«)} both converge or both diverge. If in addition 

y(a:)->oo when an-oo, prove that the series is
convergent for a>l.

31. If an/an+1 = 1 + bn/n where 6n->6 >0 when n->ao , prove that
n

m exists so that am/an+1 > 1 + ł&S(l/r) and deduce that an->0 
when n->oo. m .

32. If £a„ is a series of positive terms and S(l/6„) is a divergent 
series of positive terms, prove that £an is-convergent if

braT/ar+1 - br+1 >k >0
for all values of r and is divergent if brar/ar+l< br+l.

Deduce Raabe’s test by taking bn = n, and establish the more 
general form of Gauss’ test that £an is divergent if 

=1+-+O
n

where p>0, by taking bn = n log n.

33. With the notation of Example 17, prove that

lr-1 ' Pr J r=l Pr 2 
n 1 1and deduce that V — >log log pn - 5 •

r-lPr 2
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Absolute Convergence. The definition is given on p. 74, and 

the property, there proved, that an absolutely convergent series 
is convergent has already been used in this chapter. See Examples 
13, 14, p. 347. The manipulation of an absolutely convergent 
series is essentially simpler than that of a conditionally con­
vergent series on account of the following theorem.

Dirichlet’s Theorem. The sum to infinity of a convergent series 
of positive terms or of any other absolutely convergent series is un­
affected by a change in the order of the terms.

(i) First suppose that a1 + at + a3 +... is a convergent series of 
positive terms and denote its sum to infinity which is lim An by 
A. Consider a new series b2+ b2 + bs + ... formed by rearranging 
the terms of 2ur. Then if n is given, another integer m exists 
such that

(B„) is therefore a monotone increasing sequence whose terms do 
not exceed A. Hence it converges to a limit B and B< A.

Since cq + a2 + a3 + ... can be obtained by rearranging the terms 
of iq + b3 + b3 +... , it may be proved similarly that A<,B. 
Hence A = B.

(ii) Now suppose that a3 + a3 + a3+ ... is an absolutely con­
vergent series with sum to infinity A and that the stun to infinity 
of | cq | + \a21 + | a31 +... is A'.

It follows from p. 64 that {cq + | cq |} + {aq + | a, |} + ... converges 
and has A + A' for sum to infinity.

If bj + b3 + b3 + ... is the rearranged series, then

I bl I + I I + I I + ”• 
is a rearrangement of | a3 | + | cq1 + | cq | + ... and therefore by 
(i) it converges to A'.

Also {&i + 1|} + {b2 + | b2“|}+■.. is a series with no negative 
terms and is a rearrangement of {cq + | aq |} + {cq + | cq |} + ... . 
Therefore by (i) it converges to A + A'.

It now follows from p. 64 that b3 + bt + b3 + ... converges to 
(A + A') - A', that is to A.
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In contrast to the property of Dirichlet’s theorem, if the terms 

of a conditionally convergent series are rearranged, the new series 
may have a different sum (see Example 19) or may fail to converge 
(see Exercise XlVg, No. 6).

It is not in fact difficult to prove that the terms may be 
rearranged so that the new series diverges, oscillates, or has a 
given sum to infinity. This is known as Riemann’s Theorem ; 
for a proof the reader is referred to Bromwich : Infinite Series, 
p. 68 (1st edition). In the following example the series has the 
same terms as the series l-ł + ł-f+... for log 2, but they are 
arranged in a different order, and it is shown that the sum to 
infinity is | log 2.

Example 19. Find the sum to infinity of
1 _x_X4.A_1_i4.l_Js._JL4.1 2 4'3 6 8'3 13 12T...

Denote the sum to r terms by sr. 
Then

(- 1 - I
\2n - 1 4n - 2/ 4nf

4n - 2 4nt

==ł(l_ł + 3- -- - to 2n terms)
.’. Iims3n = jlog2.

n—*00

But it is necessary also to consider the limits of s3B+1 and s3B4,.

1
®3n+1 2^+1

Um s3n+i = lim s3n = 2 log 2
n—*00 n—>oo

Since

Similarly

Hence

_1
»3n+i S3n-4n + 2 

/. lim s3n+3 —f log 2.
«-*oo

lim Sy. = | log 2.
r—*oo
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Cauchy’s Multiplication Theorem. If + a2 + a3 + ... and 
+ 68 + ... are convergent series of positive terms or absolutely 

convergent series, with sums to infinity A and B, then the series

Oj 6, + (a2 b2 + a2 bx) + {a1 b3 + a2 b2 + a3 b2) +.................... (i)

is also convergent and its sum to infinity is AB. Also the convergence 
is absolute.

Let A', B' be the sums to infinity of

| Oj | + | a, | +... , | b21 + | b21 +...

Consider also the series whose sum to n terms is

(a2 + a2 + ... + <!„)(&! + b2 + ... + bn).

This is convergent and has AB for sum to infinity. It may be 
written

(aA) + (a2b2 + a2b2 + a2bf) + (a2b3 + a2b3 + a3b3 + a3b2 + a3bf) + .. .(ii) 

where the nth bracket contains all the products involving an or bn 
but not involving any suffix greater than n.

The series obtained by omitting brackets, namely

a, b2 + b2 + a2 b2 + a2 \ + a2 b3 + a2 b3 + a3 b3 + o3 b2 + a3 b2 + ... (iii) 

is absolutely convergent, because

I afii I + I “A I + I °2621 + I ®2&i I + I afis I + ••• to & terms
< (I I + I I + ••• + Il)(l I + l^a I + ••• + I l)< A'B'.

Hence all series formed by rearranging the terms of (iii) have 
the same sum to infinity,. One of these is the series (ii) whose 
sum is AB, and another is the series (i). Hence the series (i) 
converges to AB.

The convergence of (i) is absolute because

l°l6l 1 + |ai62+a2&1 1 + I«1&3 + O2&2+°361 ! + •••

is a series of positive terms whose sum to n terms does not exceed 
A'B'.
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Double Series. An arrangement

au + ała + a13 + ...
+ °21 + °22 + °23 + •••

+ a31 + a32 + a33 + ...-
+....................

in which the term of the pth row in the ęth column is aOT, is called 
a double series. No meaning has yet been assigned in this book to 
‘ the sum to infinity of a double series

If for each value of r, arl + an + «r3 +... is convergent with 
sum to infinity Ar, and if A3 + ^42 + A3 +... is convergent with 
sum to infinity A, then A is called the sum by rows of the double 
series.

If for each value of s, als + a3s + a3s+... is convergent with sum 
to infinity Bs, and if B3 + B3 + B3 +... is convergent with sum to 
infinity B, then B is called the sum by columns of the double series.

Further if an + (a12 + o21) + (<z13 + a33 + a31) +... is convergent, 
its sum to infinity is called the sum by diagonals of the double 
series ;

and if a31 + (<z12 + a33 + <?21) + (u13 + u23 + a33 + a33 + <i31) + ...

is convergent, its sum to infinity is called the sum by squares, and 
other modes of summation can be defined.

There is no reason to suppose that the various sums of a double 
series which may happen to exist are necessarily equal. And in 
the example

0+1 + 0 + 0 + 0 + 0 + 0 + ...
— 1 + 0+1 + 0 + 0 + 0 + 0 + ...
+ 0— 14-0+1 + 0 + 0 + 0 +... •
+ 0 + 0— 1 + 0+1 + 0 + 0+ ...
+ 0 + 0 + 0- 1 + 0+1 + 0 + ...

the sum by rows is 1, the sum by columns is - 1, and the sums by 
diagonals and by squares are both zero.

D.R.A.A. n m2
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The general discussion of double series is beyond the scope of 
this book. One result has however just been proved, since 
Cauchy’s Multiplication Theorem may be enunciated in the 
following form.

In the double series defined by = ajj9, if <q + a, + a3 + ... and 
&i + b3 + b3 + ... are absolutely convergent and have A, B as sums 
to infinity (so that the sums by rows and by columns are each 
AB), then the sum by diagonals is AB.

The proof also shows that the sum by squares is AB.
It is possible to prove by Dirichlet’s theorem that if all the 

terms of a double series are positive and if one of the sums exists, 
then the others exist and all the sums are equal. In this case 
the double series is called convergent.

EXERCISE XlVe

A
Determine the conditions for convergence, conditional or 

absolute, divergence, and oscillation of the series in Nos. 1-4.

Find by rows, by columns, by diagonals, and by squares,
in Nos. 5-7.

5. <ip9 = z’,+»-1, 0<z<L
6. alr = a„=l; a3r = a„= - 1 if r>l; otherwise am = 0.

7. a„ = 2; arir+t = ar+,,r= - 1 ; otherwise a„ = 0.
. , 1 1 1 ...

8. Write down the square of 1 + 2+2» + 2i + ••• M a double 
series. Show that its sum by diagonals is Sr21-r, and evaluate 
this sum. Find also the sum by rows.

9. If the terms of 1 - ł + ł -1 + ■■• are rearranged in the 
order 1 +1-| +1+ ?-i + • • ■ > prove that the sum becomes f log 2.
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B
Discuss as in Nos. 1-4 the convergence of the series in Nos. 

10-12.
10. ^xnl(l + nxln) 11. Sl/{l + («+ l)ic”+i}

12. 1 1.3
2 + 2.4

1.3.5.7 .
2.4.6.8* +

Find by rows, by columns, by diagonals, and by squares
in Nos. 13, 14.

13. aw = xV> 0<a:<y<l.

14. arr = 2, ar,r+1 = «r+i,r= “ b otherwise aOT = 0.

C
15. If £an, ~Zbn are convergent series of positive terms, prove 

that 5an&„ is convergent.

16. If a double series of positive terms has a stun by squares 
prove that it also has a sum by diagonals and that these sums are 
equal. Also prove the converse.

17. Discuss as in Nos. 1-4 the convergence of

1 +
q8 q(q+!)/?(/?+1)

l.y 1.2.y(y+l)

18. Find by rows, by columns, and by squares if

=Pq(P + I)’’"1 - (P + W(P + 2)-®-1 /
19. If the terms of l-i+g-ł-t-... are rearranged in the order

1 + a +ł - i +7 +1 + rr -i + • • • » prove that the sum becomes 
a log 12.

20. Prove that the series

1-ł( 1+1)+ ł(l + a +a) ~l(l + a + s +*) + ••• 
is convergent.

D.K.A.A. II. M
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Infinite Continued Fractions. The convergents of the con­

tinued fraction a, + — — are given (p. 244) bya2 + a3+ ...

Pr ~ arPr-i + Pr-l It = °r9r—1 + ?r-«-

It is assumed that a,, a2, a3, ... are positive integers except 
that a2 may be zero :. Pt'^Pt-y +1, r >2.

Hence the sequence (pr) is monotone increasing in the strict 
sense and diverges to + oo . Similarly for qr.

Also from p. 245, = ——
1r Qr-1 QrQr-l

Putting r=2, 3, ... , n and adding,

—----Li)»—L_
Qn Qi Q1Q2 Q2Q3 Qn—iQn

In this series, the terms have alternate signs and decrease in 
absolute value ; also the nth term tends to zero when n->co . 
Hence by p. 72, the series is convergent. Thus pn/qn tends to a 
limit F. This limit is called the value of the infinite continued 
fraction. It lies between the values of pnlqn for any two con­
secutive values of n. This gives a limit to the error when a 
convergent is used as an approximation to the value of the 
fraction.

Example 20. Express as a continued fraction and deduce 
its value to 3 places of decimals.

>/2 = 1 + (V2 - 1) = 1 + 1/x where z=l/(v/2-l) = l + -J2.

Hence ^2=1 + LLL...

The convergents are f, f, f, fa,
It follows that = 1-4137 ... < ^/2<f§= 1-41428 ... and so 

v'2= 1-414 to 3 places of decimals.
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Example 21. Evaluate 11111 

24-4 + 2 + 4 + 2 + ...
By p. 360, pr/qr tends to a limit, say F. Also

. p_l 1 F 4 + F 
~ 2 + 4+1 ~ 9 +2F

whence (F + 2)a = 6.
But F is positive, F=^6-2.

See Example 14, p. 243.

Example 22. Evaluate 2 + 1 1 1 1 1 1
3 + 1 + 2 + 1 + 2 + 1 + ...

T, 1 1 1 1 . .. ,lfa: = - - - - as in Example 21 1 + 2 + 1 + 2 + ... 1

1 1 x_2 + x
1 + 2+1 3 + ^;

Thus x2 + 2x = 2 ; butx>0, :. x =5/3-1.

Hence the value of the given fraction = 2 +1---- = 4 - \/3.3 + x

Example 23. Evaluate 1 + 1 ? s t
1 + 2 + 3 + 4 + ...

Since pr+1 = rpr + rpr_x and gr+1 = rqT + rqr_1, pr+l and qr+l are 
values of wr+1 which satisfy the difference equation

wr+i - = °> (’•>!)•
From Example 9, pp. 232, 233, the solution is

^J=u1 + (w2-2w1)S
n! 2

But px = 1, qx = 1, p2 = 2, q2 = 1 ;

when n->® , ^->1 - 1 and 2—
n! e qn e- 1 

the value of the infinite continued fraction is e/(e - 1).
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Example. 24. If a, b, c are positive, find the value of x/y when
11111

x=a+r -~r- o+c + a+o + c+...
11111

3/ = C + v - - T -

From x = a +r - - > it follows that x is the positive root of6+c + a; r
the equation x2(bc + 1) - x(abc + a + c -b) - (ab + l) = 0. Hence 
by exchanging a and c, y must be the positive root of the equation 
y2(ba + 1) - y(abc + c + a - 6) - (c6+ l) = 0. Therefore - 1 /y satisfies 
the same equation as x, and is the negative root.

Thus - = - product of the roots = + J
y bc+1

EXERCISE XlVf

A
Express Nos. 1-4 as infinite continued fractions.

1. V3 2. VI1 3. s/9j
4. V(n2 + 1) where n is a positive integer.

Evaluate the infinite continued fractions in Nos. 5-8.
„„Ill
5‘ 2 + 3 + 3 + 3 + ...

,111111
+ 4 + 2 + 3 + 2 + 3 + 2 + ...

B
Express Nos. 9-12 as infinite continued fractions.

9. <26 10. 3-<5

11. <(n2 + 2), n being a positive integer.

12. Each root of 6x2 + 2x- 1 = 0.

13. Express <15 as a continued fraction. Evaluate the 5th 
convergent and show that it gives the value of <15 correct to 
3 places of decimals.

14. Evaluate 2+I 1 ł 1 ł
3 + 1 + 2 + 1 + 2 +...
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C

15. If Oj, a., ... , b2, b2, ... are positive integers, prove that the
odd convergents of a, -+ — — form a monotone increasing

sequence and the even convergents a monotone decreasing 
sequence. Deduce that (pn/qn) converges or oscillates.

ifi rr * 1 1 116. If x = a + -; - v -6-+zz+-5-+<x-+...
,1111 and y = b + - ~ - -

ct-+6-+u+-5 + ...
prove that x/y = alb.

„ 11111117. If®=a-+7 - - - - -
b + c + a + b+c + a+...

, 111111y = b + - - 7- - - tc -+ cs -+ 6 +■ c-+<z*+6-+...
111111

Z = C+ - T - - -r +.:.a + b+ c + a+ b + c

prove that xyz = 2 +- - - where t = a + b + c + abc.2 -+ 2 +■...

Prove that the infinite continued fractions in Nos. 18-20 are 
convergent and find their values.

1 2 3 4
2-3-4-5

19. 1 2 ? 4
3 - 4 - 5 - 618.

20. 2.3 3.41 D2
2+ 2+2+2 +-•••

21. 6 &If ~ is the rth convergent of a. + — — where a., a2, ... ,
qr ... a2 + a3 + ...

b2> b^ ... ShXQ positive integers, prove that

(i) _ z _ j yi ^2^3 •••
Qn 2n—i ^tn^ln-1

(ii) ?n >(“««„-! + bn)Qn-2

(iii) vq^-n~\ >v”n(i +
o2o3 ... bn b2 2 '

Deduce that pr/qr tends to a limit when r-»oo if X(Or-iarl^r) i® 
divergent.

arar+iA 
br+i }
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22. If P/Q, P'lQ' are the nth and (n-l)th convergents of 
a. + — — - and F is the value of the infinite continueda2 + a2+...an

fraction a. H— — — — — > where a,, a,, ... are1 a2+...a„ + a1+ ...a„ + a1+...
positive integers, prove that

(i) F is the positive root of f(x) = x2Q + x(Q' - P) - P' = 0 ;

(ii) P/P', QIQ' are the nth and (n - l)th convergents of
1 1
------- — *

(iii) if F' is the value of the infinite continued fraction
1 1 1

a„ H------- — —■a„_1 + ...a1 + an+...
- 1 /F' is the negative root of f(x) = 0.

23. The infinite series cl + c2 + c3+ ... and the infinite continued 
fraction — — are said to be equivalent if for every

ai + a2 + a3 + • • •
value of n, On=pn/qn where Cn = ct+c2 +... + cn and

qn a1 + a2 + ...an’

(i) By finding the value of pnlqn -pn-i/2n-i sh°w that the 
continued fraction is equivalent to the series

<71 Q2Q3 Qn—i^n
(ii) Construct a continued fraction equivalent to the infinite 

series c1 + c2 + c3 + ... and such that qn = 1 for all values of n, by 
solving the equations Cn = anCn_l + bnCn_2, l=an + bn for ctn, bn. 
Hence prove that the series c2 + c2 + c3 +... is equivalent to

C1 c3/ci cs/c3 cnlcn—i
1 - 1 + Cj/Cj - 1 + c3/c3 - ... 1 + cn/cn_2 - ...

(iii) Use the result in (ii) to find the series equivalent to
gi a2 an
1 — 1 + a2 — ... 1 + an — ...

and to deduce from iff=l-f + i-| + ... Brouncker’s expression 
for iw as a continued fraction.
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MISCELLANEOUS EXAMPLES

EXERCISE XlVg

A
Find the conditions for the series in Nos. 1-3 to be convergent.

1- S(log n)”n~»

2. 'Znk{s/n- 3«/(n + 1) + 3V(n + 2) - V(™ + 3)}

„ ab a(a+ 1)6(6+ 1) a(a + l)(a +2)6(6 + 1)(6 + 2)
' ^d+c(c+ l)d(d+ l) + c(c+l)(c + 2)d(d+l)(d + 2) +“" 

where a, b, c, d are positive.

4. If wn =n -1 xn - —i xn+1, find when £un is convergent 

and give the sum to infinity.

5. Discuss the convergence of

(i) 2-f + f-H + H-H + ...
(ii) (2-f) + (f-H) + (H-H) + ...

6. Prove that 2 + * divergCnt-
Deduce that the series

1 , 1 1 1 1 1 1
1 H------------------------------ 1--------------------L_--- 4.

v/3 ^/2 V5 \/7 V4 V9

is divergent, although 1- — + -Ł__L + _L_.,.is convergent.
5/0 5/4

B
Prove that the series in Nos. 7-12 are convergent.

’■ Ł

9- S{log(l + l/n)}n 10. 2>"(a;»n-l)-*, x’^1.

11- S{ - 1+ n log (2n+1)-n log (2n-1)}
12. £(znsinna), |a:|<l.

13. Discuss the series in No. 12 when a;s= 1 and a^kir.
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C

14. Find the condition that £(n log «l°g log n)~1 (l°g log log n)_3> 
is convergent.

15. Sum the series ——T—-———;—T-...—rr—t where x2 - 1 x* - 1 xB - 1 xslc - 1
k = 2n~1 and P^l. Show that the infinite series is convergent 
and find its sum to infinity.

16. If | x | > 1 and k = 2n_1 show that + I)-1 's convergent
and find its sum to infinity. n

17. Prove that £exp{ - (log n)a] converges if and only if a>l.

P 22 32 4218. Evaluate

19. (i) If a1>a2>a3>... and an-+0 and nbn = al +a2+... + an, 
prove that 6M>6n+J and that 6„->0.

(ii) Establish the convergence of the series
1 _ 1 / 1 , 1 \ 1 / 1 1 , 1 \ _

log 2 2 \log 2 + log 3/ + 3 \log 2 + log 3 + log 4/

20. If lim = I and 0< Z< 1, prove that m exists such/(n)
that whenever n>m, and that /(n)->0
when n-»oo .

Extend the result to -l<!<0 by proving that | f(n) |->0 
when n-><» .

21. Show that if 0 < x< 1, the series 1 + x + x2 + ... is equivalent
to the continued fraction - - —- , X , X and deduce 

l-I+rr-l + rs-l+rr...x xthat l+®-l+a:-l + a:—... is equal to x if 0<»:<il and to 1 
if x> 1.

22. Prove that prime numbers exist as large as we please con­
taining the digit 0 when written in the usual way in the scale of 
ten.

23. Prove that if m is not a positive integer, the binomial 
series Y+mx + fym\m- l)x2+... diverges for x< - 1 and oscillates 
infinitely for x> + 1.

Z'- -■
/ -. <

As\
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Page 197 EXERCISE Xa
1. 60, 10.
2. Sa‘ + 6Sa6& + 15£cz4&2 + 30S«45c + 20Sa3&’ + 60Sa’b'c

+ 90<z262c2.
3. 360. 4. n2 5. 3"/n!
6. (n2"+1 + l)/{(n+l)(n + 2)} 13. 120 14. 2142

15.37380 16. - 1840 18. n(2n+l)
20. 2-?(n + l)(n + 2)(n + 3)
23. {1 - (1 - a?)n+l( 1 + nz + x)} ^{(n + l)(n + 2)a;2}
30. (”) or zero 31. 32. [2p]B-[p]B

33. (i) nx(l + a:)”_3{l + (3n - l)# + nV}.
(ii) n(n - l)x2(l + a;)n~‘{6 + 6nx + n(n + l)a;2}.

MA-l/{(3n + 8)(3n+ll)}];
fn( 125n3 + 450n2 + 295n - 198) 
Mi(n + l)(n + 4)(n + 5)

3 1 5 ■ 3
< + 2(n+l) 2(n+2): ‘

Page 207 EXERCISE Xb
1
41.

3.
5.

7.

9.

10.

12.

2.
4.
6.

8.

3

> + 3): ’’

J-l/(9n + 6) ; J

11.

xxiii
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14.
16.

18.

20.

21.

22.

23.

25.

26.

27.
28.
29.
30.
31.
33.

34.

35.

36.

37.

38.

39.

i[i-l/{(2n+l)(2n + 3)}]; A- 15. jn(4n2+30n + 71). 
n(16n3 + 48n2 + 14ti - 33). 17. fn(6na + 9n + 1).

1 3
fn(8n2 - 5n - 1) 19. ł - 16(2n+i) “ 16(2n + 3): 3

i_____1_____ L_ . i
y 4(2n+l) 4(2n+3)’ 3

» 4 I___L. • 5
6 n + 3 n+2’ ¥

7 _ 1 2 , 1 X . _7_

1 f (n+1)!________1
2-p 'p(p + 1)... (p + n- 1) 1f

1 | j _ (-!)"■ (n+1)! )
P+1 ' (p-l)(p - 2)... (p-n)f

2P /1 _ ( _ nn (2p~2)(2p-4)...(2p-2n)
2p-l ' 1.3.5...(2n-l)

36 3(n+l) 6(n + 2) 6(n+3)’ 36
5.8...3n + 2 38.13...5n + 8 3

3.6... 3n ’ 4 4.9...5n + 4 3
A--l/{3(n+l)(n + 2)(n+3)}

a______________________ i_____________}

2d \a(a + d) (a + nd)(a + nd + d)J 
ln(n+ l)(n + 2)(n + 3)(n + 4).
an (a + nd) + fn(n2 - 1)<Z2.
$n(n + l)(6n2 + 4n- 1).

+ l)(2n + l)(3n2 + 3n - 1)
T^n(n+l)(3n2 +31n +74). 32. rj>n(n2 - l)(n + 2)(2n+1).
^n(n+ l)(n + 2)(n + 3)(4n + 1).

3 1 1_L S.________ _ _______
* 2(71+1) 2(ti + 2)

288 24(71+ 1) 24(n+2) 24(n + 3)+ 8(n + 4)

121 1 1 7 7
7200 40(n+ 1)

1
40(n + 2) + 120(n + 3) ‘ 120(n + 4)

19
15(n+5)

1 1 7 3
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411 (1)a-b + d

40.

((a + d)(g + 2d) ... (a + nd)_ , I 
I b(b + d)... (b + nd-~d)~ >
( (a-d)(a-2d)...(a-™*)l

Page 211 EXERCISE Xc
1. 3(r+l)(r + 2) 2. r!r 3. - 3 +{r(r + l)(r + 2)(r + 3)}
4. 2sin0cos2r0 5. 6(r+ 1) 6. a(x-l)axr 1

7. fn(n-l) + c; fn(n+l)
8. |n(n*-l) + c; ln(n+l)(n + 2)
9. c+(x-xn)l(l-x); (x-xn+1)l(l~x)

10. c — l/(4n + 2) ; j- l/(4n+6)
11. J(3n + 2)u„ + c; j(3n+4)u„-2 12. (n+l)!n
13. 2«+*/(n+2)-l 14. 2r+l 15- - 1-?{r! (r + 2)}
16. 6(r+2) 17. log{r(r+2)/(r+l)2}
18. A(4n-7)(4n-3)(4n+l) + c; Jn(16n2 + 12n - 13)
19. c-n-*; n/(n + l) 20. c + logn; log(n+l)
21. 1 - {2n+1/(n + 2)!} 22. 2 - 2n+1-?{3n(n + 1)}
23. c + 2 cos |0 sin |n0 sin i (n - 1)0; 2cosl0sinln0sinl(n+ 1)0
24. l-(n+l)/(n + 2)!; f 25. x~,-(x + n)-t; x~‘
26. f-l/(n+2)!; I 27. (a + dj ... (a + dJHdJ, ... dn)
29. 1 - 1/(3.5 ... 2n+1)

Page 221 EXERCISE Xd
1. 10 24 44 70 102 140 ; 14 20 26 32 38 ; 6 6 6 6.
2. r’ + r+l 3. r’-r+l 4. r(r+3) 5. (r-2)(r+3)
6. fn(n2 + 3n + 5) 7. r*-r+l; <n(n2 + 2)
8. r’-2r; Jn(n+l)(n« + n - 4) 9. 2’-> + 2; 2n + 2n-l

10. i(10r-l); A(10n+1-9n-10)
11. A’«r= 16.3r_1; A‘wr = 32.3r_* 12. r’-2r+l
13. A (r‘ - 10rs + 35r2 - 26r + 24) 14. 2r> - r + 2
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15. ra-r* 16. Jn(n+ l)(n8 - n - 1)
17. 4r2-l; |n(4n2 + 6n-l)
18. 2r3-r2; ln(n + l)(3n2 + n - 1)
19. 3.2r_1-2; 3.2"-2n-3
20. 3.2r_1 + 2r - 1 ; 3.2n + n‘-3 21. (-l)"/(n+l)
22. (-l)”/(n + 2) 23. (r - l)(r - 2)(r + 3)
24. |(r+l)(r2-4r+12) 25. r?n(n - l)(n - 2)(3n2 - 6n + 1)
26. r(r + 3)(2r+1) ; fn(n + l)(3n2 + 17n+ 16)
27. jr(r2-3r + 8); &n(n+ l)(n2 - 3n+ 14)
28. 2.3r-1 + r2; 3" + f(n- l)(2n2 + 5n + 6)
29. 7.2r-1 + r’-r2; 7(2n-1) + A»(n2-l)(3n + 2).

Page 223 EXERCISE Xe '
1. 8640 5. ((3n — 2)(3n + l)(3n + 4)(3>ł + 7) 4- 56}
6. n/(3n+l) 7. 3”+* - j(5n2+9n+6) 11. 360

12. l/{(n+I)(n +2)} 14. 1 - 2~"(n + I)"1; 1
16. in(48n2 + 80n2 - 6n - 47)
17. i(f - l/(n + 1) - l/(n + 2) + 2/(n + 3)} 18. -Jn(n2 - 9n + 32)
21. (1-a)(2-a)... (n-1-a)/(n-1)! 22. n(n+ l)/(4n + 8)
28 a + dfi (1+d)(l + 2d)... (1+nd)]

a-l I (a + d)(a + 2d)... (a + nd)J

Page 233 EXERCISE Xia
1. -2,1; {3 - x - (2n + 3)xn + (2n + l)xn+1}(l - x)~2
2. [I - 2z+(- l)"-1{(3n+ l)o:n +(3n - 2)»B+1}](1 +a:)-2
3. {1 + ( - l)"-i(2"+i - l)z" + ( - l)n_12(2" - l)xn+i}

x (1 + 3x +2a:2)-1
4. A3r + B(-4)r 5. (A + Br)5r
6. - 3ur_x + 3wr_, - ur_, = 0 7. wr-10ur_1 + 21ur_s = 0
8. 17 - ( - 4)r 9. (5-2r)3r

10. (r+2)a 11. ur = A + B(- l)r + C2r
12. 3r-2r+l 13. (3 - 5r)2T + (- 4)r
14. (6 cos ra + l sin r«)5r_2, cos a : sin a : 1 = 3 : 4 : 5
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15. r! - 1 16. ft! 17. -2, 1; 13

18.
19.
20.
22.
24.
26.

{l-2x- .1(3" + l)xn + ł{3”-,+l)x"+1)(l - 4a:+
{1 - x - (2.3" - 2")x" + (4.3" - 3.2")x”+1)(l ~ + 6-r’)

ur = A4r + B2r
ur - 2ur_1 + wr_, = 0
2wr + ur_, - ur_a = 0
2r 4- 22“r

21. «r = A(-l)' + B(-2)r
23. ur - 5ur_! + 4ur_, = 0

25. (r-2)(-l)r
27. ur = A+B2r + C(-Vr

28. 2.3r_1 +( - 4)r_1 - 10. 29. 2r/2 sin Jt-tt

30. (sfc')/r! 31. -3, 3, - 1 ; 31

32. {1 + x2 - (n2 + n + l)zn + 2n‘xn+1 - (n* - n + l)x’’+l!}(1 '

33. ur - 12ur_j + 36ur_, = 0
34. 0{(ar~' - ^-i) - («<•-« - ^-»)}/(« - p)
35. ur= (A + Br + Cr2)3r 36. wr = A + fir + C3r

r <nt/24
37, r’-7(r-l)« 38. {1 - S1/&!} (r!) 39. (r + ai

2
r—1

40. (i) r + 1, (ii) (r + 1) £ &! if r>l.
1

Page 240 EXERCISE XI b
1. 12(4’-»-3’-*) ; 4"-2.3n + l n
2. ł + i4r; |n + i(4"-l) 3. 3.2r-2-l; 3.2’,'‘' ’ "

4. (l-2x)/(l-4z+3z2); }(3r+l)
5. (2 + x)(l - x)~2; 3r+2
6. (1-'4x)/(1 + 4z + 4x2) ; (3r+l)(-2)r
7. (1 + 2x)l( 1 -x + a:2)
8. (2 + 3x + f (22-" - 7.2n)xn + i(7.2" - 2<-«)a;n+i}

x (l-fx + x2)-*
9. (1 + x^2')/(l -x^/2 + x2) ; cos jTtt + 3 sin

10. sin 0/(1 - 2a: cos 0 +a:2) f sin (r+1)0
11. 6(2r-2 + 3r-«); 3.2”+ 3"-4
12. 3 + (-2)’-~i; 3n + j{l-(-2)"}
13. (1 + 2r-1)2”i~’; jL(7.4”+ 3.8"-10)
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14. (2 - 6x)/(l - 6a: + 8z2) ; 2r + 4r
15. (5 - 16z)/(l - 7x+ 10a:2) ; 3.5r + 2r+*
16. (5 - 7a:)/(l-a:- 2a:2) ; 2r + 4(-l)r 17. (1 - 3a? + x« + a:2)-'
18. (2 - 8a: - (5n + 3n)x" + (3.5n + 5.3")zn+1}( 1 - 8a: + 15a:2)-’
19. (1 + a:)/(l — a: + ■Ja:2) ; (cos jTtt + 3 sin-}rw)/>/2r
20. {1 + (k + 2)x + 4(k - l)a:’}{l + kx + (2k - 7)z2 + (6 - 7k)x7}-'
21. (4 - 20x + 22x2)I(1 - 6x + llx* - 6x*)
22. (4 - 9a: - 7a:2)/(l - 3a:2 - 2a:2)
23. (8 - 16a;)/(l - |x +Ja;*) ; 24_r{sin f(r + l)w - 4 sin |rw}/v/3

24. (1 -x) cos 0/(1 - 2x cos 20 + a:2) ; cos(2r+l)0
25. 1 + 2(cos3-r7r - 1^3 sin jr77-)z’'.

Page 248 EXERCISE XI c

1. 2+1111
1+1+1+3 2. 2 + V5 3. Il® red, 8tb blue

7. 9n + 2, lln + 2 8. 56,9 9. 16
11. {2.3r+1 + 3(-2)r+1}+{3r+i_(_2)r+t} 12. r~l

14. 3 + ^/H

18. 4 19. (2r-l)_1

21. 4+^19

— ’ 7+16+11 ’ 7 ’ it? ,
25. 9, 2, 1 ; 2, 6, 1 ; 6, 1, 2. 28. |{3 + ( - S)1'*^
29. {a(-l)’-i + ^+*}+{(_1)r + ar+1}>

13.

17.
20.

1+1 1111
1+1+1+3+2

15 - 17n, 13n - 11
2r/(l +r)
„ 1 1 1 „

22

Page 250 EXERCISE XId
1. 22r+1-5r
3. b(ar - l)/(cr — 1); br

2. 5r_1 - 2.3r_1; -i-(5" _ 4.3" + 3)

4.
7.

11.

(4+5o:) : {(1 + 2a:)(l — a;)} . 3 + j_2)r 
ur = .4 2r + B3r + ja ; ur = A2r + B3r + lar + 
s(2r+3r_1 - 5); ł(2"+. + 3„_10n_6)

5. (r + 2)!-b2
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12. (1 - 2®)/(l - 3z)»; (r + 3)3’-*
13. (l-fcc+7x«)-+{(l-a:)(l'-2a:)(l-3a:)}; 1 + 2r - 3r

14. f (>/3) sinfrw
19. (i)(r+l)! (ii) (r+l)!{l+ >+...+ l/(r+l)}
20. (a — b) (1 — abx2)(l - ax)_2(l - bx)~*
21. |n(n- l)(4n- 5)a - n(n- 2)ui + nu2 + n(n- l)w3
22. ur = ««,._! -1 (a2 - b’)ur_a + i(a2 - 3ab2 + 2c’)ur_,

23. ur = Aar+B(-a)r +

4. 1-V2, i(-l±V5)
9. 2x + 5

11. 3x2 + 5x + 7
13. -J-, — l±\/5

16. c(a-b)(a + b + c+l) = 0

{cos br - a2 cos b(r + 2)}(1- 2a2 cos 26 + a1) *
24. ur = (r2 + Ar + B)2T~2

oq 1 Ł8 32 (2w~3)‘
1+2 + 2 +... 2

Page 258 EXERCISE XII a
1. 2,4 4. (x + y)(x +a>y)(x+aj2y)

5. - l±i, l±\/2 6. (x2 + y2)n

9. 1, |{c-l±iV(10 + 2c)} where c= ±V5 ; e2, e-1, e~2.
10. abc, -'Zabf'Za. 11. -1, l(l±i\/3)

13. (x + y-z)(x +a>y - a>2z)(x+a>2y -wz) 14. 2, - W) GJa
15. z2 - 2z(c2 - d2) + (c2 + d2)2 = 0 ; z2 - 4cdz + (c2 + d2)2 = 0
18. (d2 - 4abd+4b2c=0, b^tO) or (b = d = O, <z2>c)
19. Jn not integral 20. abc £a, abc - ^a^bc, 2(a2 + be).

Page 263 EXERCISE XII b
1. z2-3z + 2. 2. 2aJ2-5x+2 3. (2x - 3)2(a:2 + 3x - 2)

5. G2 = 4fl2 8. a:-4.
10. x2 + x+ 1

12. ±V2±V5, - l±s/2
14. n -2 divisible by 3
17. r(p3 + r) = 0

19. 1, 1, - l±iV2, if c=l; -1,-1, lii^/2, if c = - 1 ; 
-i, -4, 3±V2, if c = i; i, i, -V2, if c= -



XXX ADVANCED ALGEBRA
Page 268 EXERCISE XIIc

1. Js(l-2x) + (x2 + 2x + 2)P, A(6-5z+2x’)-(a:’+l)P.
In 1, 2 P is any polynomial.

2. i(x - 2) + (x2 + 2x - 3)P, i( - + 4x - 3) - (x> - Sx + 2)P.
3. 12-29n, - 7 + 17n, n integral.
6. /r(4a:- 11), /i(-8x2 + 22x+ 16)
7. x2, x2( - x3 - x2 + x + 1)
8- 3Tz( -x2+7x + 47), 3ła(x- 11)

5. r : s constant.

9. 53, -41.

Page 275 EXERCISE Xlld
1. 5 +7(a: - 2) + 4(a; - 2)2 + (a: - 2)8

-i-(2x+l) + ^(2a:+l)«-2(2a:+ l)’ + ł(2x+ 1)‘ 
1 - 2x + (4 + 3a:)(l - x + a:8) - x( 1 -x + x2)2.

2

2.
3.

4. 3 5
1 + 2(x - 1) + 2(x - 3)

3 a: + 5
6.

5. l + (~“
\a:-a

1
.x («-&)

3x+l

8.

9.

2(a?4-1) 2(x2+l)
/ a ax - c
\x - a x2 + bx + c)

X X - 1
x2+l X2 + X + 1

7 _L +___________ __
a:-1 2(ar4-1) 2(a4+l)

-?(a2 + a6 + c)

3 1 1 - 2x
10, 2(T=15j+ 2(1 + 2a:)" 1 + 4x2

11. 1 + 4(a:+2) - 3(a: + 2)2 + (a:+2)3
12. 1 + 4(a: - 1) + 6(a: - I)2 + 4(a; - l)3 + (a:- D*
13. 4+2x-z(4+10x)-z2(5- 12x) + z3(6 + x)

14- (O " 6) 16' 2(^T)+ 2(z2 +T)

2
X + 3(a:- 1)+ 3 (a:2 + x + 1)

I a3 b2(ax -b2)\
17- 1+l------+ — 8 , ( + (a2 + 6’)lx-a x2 + b2 J

x + 4_______ 1________ 1
x2 + 2x + 2 2(x+l) 2(x-l)

19. l + ^{a3l(a-b)(a-c)(x-a)}

16.

18.

1

x - 1

x + 2

x2 + b2
1
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20. x + a + h + (—---------ż-(a-b)
\x-a x-bs

21- i(<2 - 2) (-------------+------3---- s')
' \x + 1 - ^/2 x - 1 + \/2/

-1(V2 + 2) (a;+1 + ^2 + x - I - ^2)

22 1_____ 1_____ 2 Xs/2- 2 _ Xs/2 + 2
X-l x+1 x2 + l + x* -x^2+1 x2 + x^2 +1

Page 279 EXERCISE Xlle
1. (x-l)-* + (x-l)-« + (x-l)-«
2. l(x - 1)(1 + a:’)"1 - >(x - I)-1 + (x - 1)"’
3. 28(x - 3)_1 - 28(x - 2)“* - 26(x - 2)~* - 15(x - 2)“’
4. (x - 1 )-> - (x + l)(x2 + I)"1 - (2x + l)(x2 + l)-’
5. j(4x - l)(x2 -X + I)'1 - f (X + I)'1 - f (X + I)-2
6. 2(x + l)-i + (x + l)-« - (2x - l)(x* + I)-1 - 2x(x2 + 1)~«
7. 5.2~,~*{1 + (- l)r}, \ x I <2
8. reven,f(2r-(-If/’}; rodd,f(2r+1 + (-l)(r_1)'2}; |a5|<l
9. reven, r + 2 + ( - l)r/*; r odd, -r - 2 + ( - l)<r+1h2; | x | < 1

10. |xz + |xz2 + (x + l)z’ - J(x + 2)_1 where z = l/(x2 + 2x + 2)
11. (x - l)-1 - x~‘ - x~* - x-s - x~2 - x_1
12. (x-2)-1 +(x-1)~* +(x-I)-2
13. fJ(x-2)-1+f(x-2)-2-f(x-l)_1-^ofe(35+3)~*
14. 2(x2 + l)-2 + (x2+l)-2-2z-2 + x-‘
15. V(a> - I)-1 + f(35 - 1)-* +1(35 - 1)-’ - 2(35 - 2)-* + t(35 - 3)~2
16. 3(x+1)-1+5(x-1)-1+2(x-l)-2 + 4x(x2 + x+l)-1
17. +1, - 1, 0 for r=3n, 3n + 1, 3n + 2, n integral; | a? | < 1-

18. 2r + 3-2,+1, | x|<f
19. 10(35 - I)*1 + 4(x - l)-« + (x - I)"2 - 10(x - 2)-1 + 6(x - 2)-*

-3(x-2)-’ + (x-2)-‘
20. (x2 + 4)-* -I(x - l)-> + J(x - 1)-’ + s(35 + I)-1 +1(35 + D"2
21. (x* + I)"1 - (4x + 1)(x2 + l)-« - (x2 + 2)-1 + (4x + 2)(x2 + 2)-’.
22. A(r + l)(r + 5)+ f(-l)' +1, increased by ł if r divisible

by 3.
d.b.a.a. n. 9



xxxii ADVANCED ALGEBRA

24.
1--------------1__________ |--------------- 1_ r~. 

q2r(a-x) p2r(b-x) pq(c-x)2 p2q2(c - a:)2
p-q

25. a: + Sar + S{“i"+1/ (“i “ «a)(«i ~ a,) ... (“i ~ ~ “1)1

Page 281 EXERCISE Xllf
1. x2 + x+l, - x2 - 3

5. 6x- (x- 1)-' - (»+ 1)-!+ 16(a:- 2)-J+ lG^ + S)-1
6. 2(l+a:)-1 + 3(l+a:)-a + 4(l-2a:)-1
7. 13n-2{18(2 - a:)-3 - 6n(2 - a:)-2+ n(n - 1)(2 - a:)-1}

10. &c(a + 6 + c) = O 11. ac = b2, bd=c2

12. -1-V3, 1(7 ±V37)

n 14. (a~c)(6~c) _ (a-d)(b-d)
(c-d)(x-c) (p-d)(x-d)

14. z+ (a - 2c)z‘ + (c2 - ac + Ł>)z3, z = l/(as + c)
15. (x + l)(x2 + l)-1 + (x - 1) (a:2 + l)-> - (x - I)-1 + (x - l)-‘
16. 8(a:_1 + x_2d x~>) - 9(x - l)-» + 2(a> - 1)-* - (x + I)'1

+ 2(z-l)(z2 + I)"1
17. k(x-a)~2-2k2(a-b)(x-a)~2

+ k2{2(a - b)x + a2 - 4ab + 462 - c}(x2 - 2bx + c)~1, 
k = (a2-2ab + c)~1.

Page 290 EXERCISE XHIa
1. 3 roots ; - 2, - 1 ; 0, 1 ; 1, 2
2. 2 roots ; 0, 1 ; 1, 2 4. - 9 < k < 23

6. (z-aj ... (z-a2r_i) + 6a(a>-a2)... (a;-a2r) = 0 
has r unequal roots if every ar > ar+1

11. 3 roots; -3, -2; 0, 1 ; 2, 3
12. 2 roots ; - 1, 0 ; 2, 3 20. 2 roots ; 0, 1 ; 1,2

21. 2 roots ; 1,2; 3, 4
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Page 295 EXERCISE Xlllb
2. 2, 0 3. 0, 1 4. 1, 1 5. n even, 0, 0 ; n odd, 0, 1

9. Between - 2, - 1 ; 0, 1 ; 1, 2 10. 2, 1
11. 0, 2 12. 1, 0 13. 2, 0
14. n = 3, roots 1, 1, ; n>5, 2 positive, 1 negative
17. (6/(n- l)}n_1C, >(a/n)n. 25. Between 0, 1 and 3, 4.

Page 301 EXERCISE XIIIc
1. x3+ 9px - 21q = 0, x(qx + p)2 — q
2. <z/ - 2ala3, 9a3 - a2a2
3. a1a3 - 4a4, a/a2 - 2a 22 - a1a3 + 4a,
4. (n - 1)0/ - 2na2, a2an_2lan -n, a,- a„_1(a12 - 2a2)/aB
5. 144(a/ - a1a3) 6. a3 - 0,0,, 2a,2 - 6a2, a,a2/a3 -3

*
7. a,a3 - 4a,, 2a, - 2a,a3 + a22
8. x(x + a,)2 + a2x + a,a2-a3 = 0 9. (x + 2qY + p3(% + 3?)

10. 32(a3 - 3a,a2 + 2a/) 11. 9a/;, - 27</3 - 2a/
12. ę2(a;+ l)3 +p3(a:+ 2) = 0, q2(x2 + x + l)3 + p3x2(x + l)2 = 0
13. a/ + a/a4 - 4a2a„

x3 - a2x2 + (a,a3 - 4a,)x - a2 - a2a, + 4a2a, — 0
14. 3ata4 - a2a3 - 5a6
15. x2 + (3a2 - a,2)x2 + a2(3a2 - a,2)x + a/ - a/a3 = 0,

k3 + (2a2 - a/)®2 + (4a/a2 - Sa/;,, - a/)® 
+ 2(a/ - 2a,a2 + 2a3)2 - a/(a/ - 2a2) = 0

16. 16(3a2a3 - 2a,a, - 4a/a3), 16(6a1a2a3-a12a4-a32)-

Page, 305 EXERCISE XHId
1. 3x2 - Qx2 + 6x +2 = 0

10. f(n - 2)(n - 3)a4a2 - l(n - l)(n - 2)a/ - J(n2 -9n + 2)a3
11. ns, - GSjSj + 15s2s4 - 10s/ 13. a32 - 2a2a, + 2a,a, - 2a,
14. (n - l)a/ - 4na,2a2 + 4(n - 3)a,aa + 2(n + 6)a/ - 4na4

Page 310 EXERCISE XHIe
1. — 4, — a> — 3<o2, — w3 — 3(0
2. $4 - 4/2, 0,4/4 - <u24/2, o?4/4 - (04/2 3. -7,11, n
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4. -4, -<d-2o>*, -o)’-2o) 5. 6 cos inr, r = 1, 5, 7
6. 2763<4a3 7.4/12-4/18 10. 3, a> + 2o)3, o? + 2o)

11. 4/3 + 24/9, o)4/3 + 2o)24/9, o)24/3 + 2«)4/9
12. — 5, — 2cu — 3o)3, — 2co* - 3o)
13. - 1 - 14/4 - 4/2, - 1 - jo)4/4 - o?4/2, - 1 - 1^4/4 - 0)4/2
14. - 1 + 4 cos frrr, r = 1, 2, 4 16. 5- 4/12- 4/18
19. ao)r + 6o)’ ; r, s = 0, 1, 2 21.1 + 4/2-4/4 23. y = x + al
25. 1/3 + 6qy2 + 9q2y + 4g3 + 27r2 = 0.

(i) 4g3 + 27r2 > 0, (ii) 4ę3 + 27r2 = 0.

Page 317 EXERCISE XHIf
1. l±\/2, - l±2i
3. 3 ±2^/2, 2±^3

5. 1(3±V21), ł(-l±V13)

2. ł(-3±s/5), ł(-l±s/17)
4. ± 1, —3, — 1, ł(3±»/5)
8. 256(73 - 27<7!)

9, J3 < 27(?4, 2 z-axal and 2 conjugate; I3 = 21 Gl 4= 0, 2 equal 
a;-axal and 2 conjugate; 7 = G' = 0, 4 zero ; l3>21Gi, 
two pairs of conjugate.

10. (i) includes (H = 0, I > 0) ; (v) includes (H = 0,1 < 0)
and (77 + 0, 7 = 0).

11. -2±V7, 2±V3 12. -3±V7, l±is/3

13. 1, 2, 1, 2±V3
14. 1, ł{- l+c±W(10 + 2c)} where c = ±>/5
15. j/5 - 6y4 + 7j/s + 7i/2 - 6y + 1 = 0 ; - 2, l±v/3, 1(1 ±<75)
16. (p-n)(p-n + m)* = (2p-n)t 17. a: = 2?/
18. G* + ^H3^=0, 2 z-axal and 2 conjugate; G2 + 4f73 = 0, 

q ± 0, 3 equal z-axal and another z-axal ; G = H = 0, 
4 zero.

19. 2, 2, 1, 1, - 1. ~ 1
20. (z - I)3+ 3(^+2)’, 2(z- 1)*- (z+2)«

21. 2cos iVm7r> 271 = 2, 8, 14, 20, 26
22. (a„z - 2aa)3-47(a0z-2a,)+16J = 0

23. a + )3=y + 8; «=P-
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Page 320 EXERCISE XHIg

1. 2a’-9ob + 27c = 0 ; 6’ = a’c 3. cq2-bqr + r2
6. (i) (360^0, - 27a/ - 8a/)/a/ (ii) 3(a/ - Oa^.a, + 9a,«)
8. q>p* 9. Also one root if ę(81ę’+125r’) > 0.

10. + +- 17. p2(b2-ac)=a2(q*-pr) 18. +-
20. Between a, b ; b, c. Also < a if a+b + c + d>0, or >c

if a + 6 + c + d<0
21. -4/5-4/25, - «>4/5 - cu’4/25, -<0’4/5-0,4/25
22. One negative 23. H—
25. 48(0/-a,); 36a/-32a1a„ + 2at; 16(3ataa-20^-
26. r2 -pqr+p2a—O; (px2 + r)(rx2 + prx +jjs) = O
27. (a-3)/(a+l), (a + 3)/(l-a)

Page 331 EXERCISE XlVa
1. 19 2. 1446 5. C, mon. deer., 5
6. Osc., ±1 7. D, mon. incr. 8. Osc. infin.
9. C, mon. incr., in 10. Ose., ± 1

11. (5) 12, 5, x=5. (9) in,
13. M28 + 41/e) 14.
16. D, mon. incr. 17.
18. C, mon. deer., 1 19.
22. Osc. l'nfin. 23.

in,X=in. (10) f, -i,x = 0, ±1
C, mon. deer., 0 15. Osc., 1, 0
Undefined for n = 4m + 2
Osc., ±1 20. D 21.0,0
Osc., ±1 24. Osc. infin.

25. (20) m= — 1. (21) sin 1, (sin 5)/^5,z = 0. (23) ± 1, x = 0,± 1.
(24) m= - 1, x= 1, - |.

26. - J 27. mon. deer., mon. incr.
28. mon. incr., mon. deer.

Page 337 EXERCISE XlVb
18. Osc. fin., C. 20. 1 25i. (ii) 0

Page 340 EXERCISE XIVc
1. D. 2. C. 3. D. 4. 0 if & + c < -1
5. C. 6. C if 6 >1 7. D. 8. D.

11. C if q< - 2 12. Cif 6>1 13. C. 14. C.
15. D. 16. C. 19. D. 20. C.



xxxvi ADVANCED ALGEBRA
Page 352 EXERCISE XlVd

1. C. 2. D. 3. C.
4. x< - 1, osc. infin. ; - l<a:< 1, C ; x> 1, D
5. C. 6. Same answers as 4. 7. D unless c=l.
8. | a: | < 1, C ; |a?|>l,-D 9. Oifa>l. 10. D, C, C.

12. a<c, D to zero ; a = c,C ; a>c, D to + oo
13. D. 14. C. 15. <7. 16.0. 17. Oif|s|<l
18. 0 if | a: I < 1 19. D. 20. C. 21. D.
22. D to zero if | x | < 1 or 2= - 1 ; C if | a: | > 1 or a: = 1.
23. O, C 24. D. 25. Oifp>2
28. (i) C to 1, (ii) D to zero.

Page 358 EXERCISE XlVe
[♦ denotes non-existence]

1. D, but undefined if 1/x is a negative integer.
2. | x |< 1, abs. C; | x | >1 and x = 1, D; x = - 1, undefined.
3. x< - 1, osc. infin.; x= - 1, osc. fin. ; | x |< 1, abs. O ;

x> 1, D.
4. x< - 1, D ; | x | < 1, abs. O ; x > 1, osc. infin.
5. a:(l-a:)-’ 6. 4, 2 7. 2, 2, 2, 4 8.4,4.

10. | x | #= 1, abs. C ; x— - 1, C ; x=l, D.
11. | x | >1, abs. C ; -1<x<1, D; x=-l,C.
12. | x |< l, abs. O; x< - 1, osc. infin.; x= - 1, O; x>l, D.
13. xy-r{(l-x)(l-y)} 14. 1, 1, *, 2.
17. | x |< 1, abs. C ; a: = 1, abs. C if y > a+ /3, D if y< a+ B ;

X= - 1, abs. C if y>a+/3, C ifa+J8-l<y<«+)3> 
osc. fin. if y=a + p-1, osc. infin. if y<a+p-l; 
x< - 1, osc. infin.; x>l, D.

18. - ł, ł,e"*-ł

Page 362 EXERCISE XlVf
[♦* denotes recurrence]

5. 1(14- V13) 6. 1(9+ V5)



ANSWERS xxxvu

9.8. l(a+ »y(a2 + 46)}7. 2-^15

1 1 1** 1* 1*10. 1 + 3 + 4 11. nH---- —n + 2n +

12. 1 1* 1 1 1* 1 1* 1 1 1*
3+1 +1+1+4 1+1 +1+1+4

1* 1* 21313. 3 + F+6~ 5? 14. 4- V3 18. 1.

19. (e-2)/(e-l) 20. - 1 + log 4

23. (iii) ax + axa2 + axa2a3 + ... 1 I2 32 5s
i + "2+¥ + ¥+”'

Page 365 EXERCISE XlVg
1. g>l or (ę= 1, jt>< - 1) 2. &<f 3. c + d-a-b>l
4. -l<a:<l; 0 if | x | < 1, -lifa:=l
5. (i) osc. fin., (ii) C. 13. Osc. fin. 14. p>l

15. x^Hx^-l) ; 1 if | x | >1, 0 if | x | < 1
16. l/(z-l) 18. 1.
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