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PREFACE

This book is adapted to the use of students in the first year 
in technical school or college, and is based upon the experience 
of the authors in teaching calculus to students in the Massa­
chusetts Institute of Technology immediately upon entrance. 
It is accordingly assumed that the student has had college­
entrance algebra, including graphs, and an elementary course 
in trigonometry, but that he has not studied analytic geometry.

The first three chapters form an introductory course in 
which the fundamental ideas of the calculus are introduced, 
including derivative, differential, and the definite integral, but 
the formal work is restricted to that involving only the poly­
nomial. These chapters alone are well fitted for a short course 
of about a term.

The definition of the derivative is obtained through the 
concept of speed, using familiar illustrations, and the idea 
of a derivative as measuring the rate of change of related quan­
tities is emphasized. The slope of a curve is introduced later. 
This is designed to prevent the student from acquiring the 
notion that the derivative is fundamentally a geometric concept. 
For the same reason, problems from mechanics are prominent 
throughout the book.

With Chapter IV a more formal development of the subject 
begins, and certain portions of analytic geometry are introduced 
as needed. These include, among other things, the straight line, 
the conic sections, the cycloid, and polar coordinates.

The book contains a large number of well-graded exercises for 
the student. Drill exercises are placed at the end of most sec­
tions, and a miscellaneous set of exercises, for review or further 
work, is found at the end of each chapter except the first.

Throughout the book, the authors believe, the matter is pre­
sented in a manner which is well within the capacity of a first- 
year student to understand. They have endeavored to teach 
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iv PREFACE

the calculus from a common-sense standpoint as a very useful 
tool. They have used as much mathematical rigor as the 
student is able to understand, but have refrained from raising 
the more difficult questions which the student in his first 
course is able neither to appreciate nor to master.

Students who have completed this text and wish to continue 
their study of mathematics may next take a brief course in 
differential equations and then a course in advanced calculus, 
or they may take a course in advanced calculus which includes 
differential equations. It would also be desirable for such stu­
dents to have a brief course in analytic geometry, which may 
either follow this text directly or come later.

This arrangement of work the authors consider preferable to 
the one — for a long time common in American colleges — by 
which courses in higher algebra and analytic geometry precede 
the calculus. However, the teacher who prefers to follow the 
older arrangement will find this text adapted to such a program.

F. S. WOODS
F. H. BAILEY



PREFACE TO THE REVISED EDITION

The text has been carefully revised as suggested by ex­
perience in the classroom, and the exercises for the use of the 
student have been largely changed. In addition there has been 
an extension of the work in analytic geometry, and the process 
of integration has been more closely interwoven with that of 
differentiation. Certain topics previously treated by double 
integration have been transferred to the chapter on simple 
integration, and new applications of integration have been 
added.

F. S. WOODS
F. H. BAILEY
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ELEMENTARY CALCULUS

CHAPTER I
RATES

1. Limits. Since the calculus is based upon the idea of a limit, 
it is necessary to have a clear understanding of the word. Two 
examples already familiar to the student will be sufficient.

In finding the area of a circle in plane geometry it is usual to 
begin by inscribing a regular polygon in the circle. The area of 
the polygon differs from that of the circle by a certain amount. 
As the number of sides of the polygon is increased, this differ­
ence becomes less and less. Moreover, if we take any small 
number e, we can find an inscribed polygon whose area differs 
from that of the circle by less than e ; and if one such polygon 
has been found, any polygon with a larger number of sides will 
still differ in area from the circle by less than e. The area of the 
circle is said to be the limit of the area of the inscribed polygon.

As another example of a limit consider the geometric progres­
sion with an unlimited number of terms

l + i + ï + l + --""

The sum of the first two terms of this series is 1|, the sum 
of the first three terms is 1|, the sum of the first four terms is 
1|, and so on. It may be found by trial and is proved in the 
algebras that the sum of the terms becomes more nearly equal 
to 2 as the number of terms which are taken becomes greater. 
Moreover, it may be shown that if any small number e is as­
sumed, it is possible to take a number of terms n so that the 
sum of these terms differs from 2 by less than e. If a value of n 
has thus been found, then the sum of a number of terms greater 
than n will still differ from 2 by less than e. The number 2 is 
said to be the limit of the sum of the first n terms of the series.

1



2 RATES

In each of these two examples there is a certain variable — 
namely, the area of the inscribed polygon of n sides in one case 
and the sum of the first n terms of the series in the other case — 
and a certain constant, the area of the circle and the number 2 
respectively. In each case the difference between the constant 
and the variable may be made less than any small number e by 
taking n sufficiently large, and this difference then continues to 
be less than e for any larger value of n.

This is the essential property of a limit, which may be defined 
as follows :

A constant A is said to be the limit of a variable X if, as the 
variable changes its value according to some law, the numerical dif­
ference between the variable and the constant becomes and remains 
less than any small positive quantity which may be assigned.

The definition does not say that the variable never reaches its 
limit. In most cases in this book, however, the variable fails to 
do so, as in the two examples already given. For the polygon is 
never exactly a circle, nor is the sum of the terms of the series 
exactly 2. Examples may be given, however, of a variable 
becoming equal to its limit, as in the case of a swinging pendulum 
finally coming to rest. But the fact that a variable may never 
reach its limit does not make the limit inexact. There is nothing 
inexact about the area of a circle or about the number 2.

The student should notice the significance of the word 
"remains” in the definition. If a railroad train approaches a 
station, the difference between the position of the train and 
a point on the track opposite the station becomes less than any 
number which may be named ; but if the train keeps on by the 
station, that difference does not remain small. Hence there is 
no limit approached in this case.

If X is a variable and A a constant which X approaches as a 
limit, this fact is expressed by the notation

XA.
It follows from the definition that we may write

(1)

(2)
where e is a quantity (not necessarily positive) which may be 
made, and then will remain, as small as we please.
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Conversely, if as the result of any reasoning we arrive at a 
formula of the form (2), where X is a variable and A a constant, 
and if we see that we can make e as small as we please and 
that it will then remain just as small or smaller as X varies, 
we can say that A is the limit of X. It is in this way that we 
shall determine limits in the following pages.

2. Average speed. Let us suppose a body (for example, an 
automobile) moving from a point A to a point B (Fig. 1), a 
distance of 100 mi. If the automobile takes 5 hr. for the trip, 
we are accustomed to say that it has traveled at the rate of 
20 mi. an hour. Everybody knows A P Q b
that this does not mean that the 1 ' * *Fic 1 automobile went exactly 20 mi.
in each hour of the trip, exactly 10 mi. in each half hour, ex­
actly 5 mi. in each quarter hour, and so on. Probably no auto­
mobile ever ran in such a way as that. The expression " 20 mi. 
an hour ” may be understood as meaning that a fictitious auto­
mobile traveling in the steady manner just described would 
actually cover the 100 mi. in just 5 hr. ; but for the actual 
automobile which made the trip, "20 mi. an hour” gives only 
a certain average speed.

So if a man walks 9 mi. in 3 hr., he has an average speed of 
3 mi. an hour. If a stone falls 144 ft. in 3 sec., it has an aver­
age speed of 48 ft. per second. In neither of these cases, how­
ever, does the average speed tell us what we should properly 
call the true speed at any given instant. In other words, we do 
not yet know how fast the body is actually moving at a given 
instant.

The point we are making is so important, and it is so often 
overlooked, that we repeat it in the following statement :

If a body traverses a distance in a certain time, the average 
speed of the body in that time is given by the formula

Average speed = distance, 
time

but this formula does not in general give the true speed at any 
given time.
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EXERCISES

1. A man runs a quarter mile in 50 sec. What is his average 
speed in feet per second?

2. A man runs a mile in 4 min. 25 sec. What is his average speed 
in yards per second?

3. A stone is thrown directly downward from the edge of a ver­
tical cliff. Three seconds afterwards it passes a point 204 ft. down 
the side of the cliff, and 6 sec. after it is thrown it passes a point 
696 ft. down the side of the cliff. What is the average speed of the 
stone in falling between the two mentioned points ?

4. A flywheel 2 ft. in diameter is making 1500 revolutions per 
minute. What is the average speed in feet per second of any point 
on the outer rim of the wheel ?

5. A bead slides on a wire bent into a circle of radius 4 ft. If the 
plane of the circle is vertical and it takes the bead one minute to 
go from the highest point to the lowest point of the circle, what is 
its average speed in inches per second ?

6. A man rows across a river | mi. wide and lands at a point 
1 mi. farther down the river. If the banks of the river are parallel 
straight lines and he takes J hr. to cross, what is his average speed 
in feet per minute if his course is a straight line ?

7. A trolley car is running along a straight street at an average 
speed of 10 mi. per hour. A house is 60 yd. back from the car 
track and 150 yd. up the street from a car station. A man comes out 
of the house when a car is 300 yd. away from the station. What 
must be the average speed of the man in yards per minute if he goes 
in a straight line to the station and arrives at the same instant as 
the car?

8. AB is the diameter of a circular track and is 100 yd. long. Two 
men, C and D, start from A at the same time. C goes directly to B 
at an average speed of 300 yd. per minute. D goes around the track. 
What must be D’s average speed in yards per minute if he arrives 
at B at the same moment as C ?

3. True speed. How, then, shall we determine the speed at 
which a moving body passes any given fixed point P in its 
motion (Fig. 1) ? In answering this question the mathemati­
cian begins exactly as does the policeman in setting a trap 
for speeding. He takes a point Q near P and determines the 
distance PQ and the time it takes to pass over that distance. 
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Suppose, for example, that the distance PQ is | mi. and the 
time is 1 min. Then, by § 2, the average speed with which the 
distance is traversed is

T mi. I- mi. on . .—------= _£-------= 30 mi. per hour.
1 min. hr.

This is merely the average speed, however, and can no more 
be taken for the true speed at the point P than could the 20 mi. 
an hour which we obtained by considering the entire distance 
AB. It is true that the 30 mi. an hour obtained from the in­
terval PQ is likely to be nearer the true speed at P than was 
the 20 mi. an hour obtained from AB, because the interval PQ 
is shorter.

The last statement suggests a method for obtaining a still 
better measure of the speed at P ; namely, by taking the interval 
PQ still smaller. Suppose, for example, that PQ is taken as 
Yb mi. and that the time is 6| sec. A calculation shows that the 
average speed at which this distance was traversed was 36 mi. 
an hour. This is a better value for the speed at P.

Now, having seen that we get a better value for the speed at 
P each time that we decrease the size of the interval PQ, we 
can find no end to the process except by means of the idea of a 
limit defined in § 1. We have, then, the definition :

The speed of a moving body at any point of its path is the limit 
approached by the average speed computed for a small distance be­
ginning at that point, the limit to be determined by taking this 
distance smaller and smaller.

This definition may seem to the student a little intricate, and 
we shall proceed to explain it further.

In the case of the automobile, which we have been using for 
an illustration, there are practical difficulties in taking a very 
small distance, because neither the measurement of the distance 
nor that of the time can be exact. This does not alter the fact, 
however, that theoretically to determine the speed of the car 
we ought to find the time it takes to go an extremely minute 
distance, and the more minute the distance the better the result. 
For example, if it were possible to discover that an automobile 
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ran in. in 52V0 sec., we should be pretty safe in saying that 
it was moving at a speed of 30 mi. an hour.

Such fineness of measurement is, of course, impossible; but 
if an algebraic formula connecting the distance and the time is 
known, the calculation can be made as fine as this and finer. 
We will therefore take a familiar case in which such a formula 
is known ; namely, that of a falling body.

Let us take from physics the formula for a body falling from 
rest’ s = 16 i2, (1) .

O

where s is the distance from the point O (Fig. 2) from which the 
body fell and t is the time which has elapsed since the body 
began to fall, and let us ask what is the speed of the body 
at the instant when t = 2. In Fig. 2 let Pi be its position 
when t = 2, and P2 its position a short time later. The 
average speed with which the body falls through the dis­
tance P1P2 is, by §2, that distance divided by the time 
it takes to traverse it. We shall proceed to make several 
successive calculations of this average speed, assuming 
P1P2 and the corresponding time smaller and smaller.

In so doing it will be convenient to introduce a notation 
as follows : Let b represent the time at which the body 
reaches Pi, and <2 the time at which it reaches P2. Also 
let 81 equal the distance OPi, and S2 the distance OP2. 
Then S2 — Si — P1P2, and <2 — ti is the time it takes to 
traverse the distance P1P2. Then the average speed at which 
the body traverses P1P2 is

82 — Si
<2 — tl

■P

Fig. 2

(2)

Now, by the statement of our particular problem,
h = 2.

Therefore, from (1), si = 16(2)2 = 64.
We shall assume a value of <2 a little larger than 2 and compute 
S2 from (1) and the average speed from (2). That having been 
done, we shall take Z2 a little nearer to 2 than it was at first, and 
again compute the average speed. This we shall do repeatedly, 
each time taking Z2 nearer to 2.
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Our results can best be exhibited in the form of a table, as 
follows :

t>2 S2 — h S2-S1
S2-S1
I2 — ti

2.1 70.56 .1 6.56 65.6
2.01 64.6416 .01 .6416 64.16
2.001 64.064016 .001 .064016 64.016
2.0001" 64.00640016 .0001 .00640016 64.0016

It is fairly evident from the above arithmetical work that as 
the time <2 — ii and the corresponding distance S2 — Si become 
smaller, the more nearly is the average speed equal to 64. 
Therefore we are led to infer, in accordance with § 1, that the 
speed at which the body passes the point Pi is 64 ft. per second.

In the same manner the speed of the body may be estimated 
at any point of its path by means of a purely arithmetical cal­
culation. In the next section we shall go farther with the same 
problem and employ algebra.

We may, however, sum up what we have now obtained in the 
'°rmUla Speed = limit of cha"8e in<iiatance-

change m time

EXERCISES

1. Estimate the speed of a falling body at the end of the fourth 
second, given that s = 16 t2, exhibiting the work in a table.

2. Estimate the speed of the body in Ex. 1 at the end of the fifth 
second, exhibiting the work in a table.

3. The distance of a falling body from a fixed point at any time 
is given by the equation s = 150 + 16 t2. Estimate the speed of the 
body at the end of the third second, exhibiting the work in a table.

4. A body is falling so that its distance s from a fixed point O at 
any time t is given by the equation s = 16 t2 + 20 t. Estimate the 
speed of the body when t — 2 sec., exhibiting the work in a table.

5. A body is thrown upward with such a speed that at any time 
its distance from the surface of the earth is given by the equation 
s = 200 t — 16 i2. Estimate its speed at the end of the third second, 
exhibiting the work in a table.
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6. The distance of a falling body from a fixed point at any time 
is given by the equation s = 100 + 10 t + 16 t2. Estimate its speed 
at the end of the first second, exhibiting the work in a table.

7. A body is thrown upward with such a speed that at any time t 
its distance from the surface of the earth is given by the equation 
s = 100 + 70 t — 16 t2. Estimate its speed when t = 2, exhibiting the 
work in a table.

4. Algebraic method. In this section we shall show how it is 
possible to derive an algebraic formula for the speed, still con­
fining ourselves to the special example of the falling body whose 
equation of motion is

s = 16 t2. (1)

Instead of taking a definite numerical value for fa, we shall 
keep the algebraic symbol fa. Then

Si = 16 fi2.

Also, instead of adding successive small quantities to fi to 
get t2, we shall represent the amount added by the algebraic 
symbol h. That is,

t2 = fi + h,
and, from (1), S2 = 16 <22 = 16(fi + fe)2.

Hence S2 — Si = 16(fi + h)2 — 16 fa2 — 32 fife + 16 h2.

This is a general expression for the distance P1P2 in Fig. 2. 
Now f2 — fi = h, and therefore the average speed with which 
the body traverses P1P2 is represented by the expression

32 fife + 16_ft2 = 32 Z1 + 16 fe.
fe

It is obvious that if fe is taken smaller and smaller, the aver­
age speed approaches 32 fi as a limit. In fact, the quantity 
32 fi satisfies exactly the definition of limit given in § 1. For if 
e is any number, no matter how small, we have simply to take 
16 fe < e in order that the average speed should differ from 32 fi 
by less than e ; and after that, for still smaller values of fe, this 
difference remains less than e.
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We have, then, the result that if the distance of a falling body 
from a fixed point is given by the formula

s = 16 i2,
the speed of the body at any time is given by the formula 

Speed = 32 t.

It may be well to emphasize that this is not the result which 
would be obtained by dividing s by t.

EXERCISES

1. Find the speed in each of the problems 3-7 of § 3 by the method 
explained in this section.

In each of the following equations s is the distance of a body mov­
ing along a straight line from a fixed point O of that line at any 
time t. In each case find an expression for the true speed of the body 
at any time t.

2. s = 3 i2 + 4 t + 6. 4. s = t3. 6. s = j t3 + j t2.
3. s = j <2 + 2 < + 10. 5. s = 2 t3 + t. 7. s = t3 + 3 t + 7.

5. Acceleration. Let us consider the case of a body which is 
supposed to move along a straight line so that if s is the distance 
in feet from a fixed point of that line and t is the time in seconds,

s = t3. (1)
Then, by the method of § 4, we find that if v is the speed in 
feet per second, v _ g (2)

We see that when < = 1, » = 3 ; when t = 2, v — 12 ; when t = 3, 
v = 27 ; and so on. That is, the body is gaining speed with each 
second. We wish to find how fast it is gaining speed. To find 
this out, let us take a specific time

Ą = 4.
The speed at this time we call Vi, so that, by (2),

Vi = 3(4)2 = 48 ft. per second.
Take <2 = 5;

then »2 = 3(5)2 = 75 ft. per second.
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Therefore the body has gained 75 — 48 = 27 units of speed in 
1 sec. This number, then, represents the average rate at which 
the body is gaining speed during the particular second con­
sidered. It does not give exactly the rate at which the speed 
is increasing at the beginning of the second, because the rate 
is constantly changing.

To find how fast the body is gaining speed when ti = 4, we 
must proceed exactly as we did in finding the speed itself. 
That is, we must compute the gain of speed in a very small 
interval of time and compare that with the time.

Let us take = 4.1.
Then v2 = 50.43

and v2 — fi = 2.43.

Then the body has gained 2.43 units of speed in .1 sec., which 
• 2 43is at the rate of -ÿ— = 24.3 units per second.

Again, take t2 = 4.01.
Then v2 — 48.2403

and v2 — vi = .2403.

A gain of .2403 unit of speed in .01 sec. is at the rate of

~ 24.03 units per second. We exhibit these results, and 
one other obtained in the same way, in a table :

<2 V2 ta — ti V2 — Vi
V2 -Vi
Ï2 — tl

4.1 50.43 .1 2.43 24.3
4.01 48.2403 .01 .2403 24.03
4.001 48.024003 .001 .024003 24.003

The rate at which a body is gaining speed is called its accelera­
tion. Our discussion suggests that in the example before us the 
acceleration is 24 units of speed per second. But the unit of 
speed is expressed in feet per second, and so we say that the 
acceleration is 24 ft. per second per second.
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By the method used in determining speed, we may get a 
general formula to determine the acceleration from equation (2).
We take

Î2 — fi h.
Then

and
V2 — 3 t22 — 3 (ii T h')2

v2 — z>i = 6 hh + 3 h2.

The average rate at which the speed is gained is then

6tiH3fe2 = 6(1 + 3fe
h

and the limit of this, as h becomes smaller and smaller, is 
obviously 6 Ą.

This is, of course, a result which is valid only for the special 
example that we are considering. A general statement of the 
meaning of acceleration is as follows :

Acceleration = limit of c^nge in speed,
change in time

EXERCISES

1. At any time t the speed » of a moving body is given by the 
equation v = 8 t + 21. What is the speed when t = 2, and how rap­
idly is the speed changing ?

2. At any time t the speed v, measured in feet per second, is given 
by the equation v = 5 t + 10. By how much does the speed increase 
during the third second, and how fast is v increasing at the end of 
the third second ?

3. If v = at + b, a and b being constants, show that the acceler­
ation is constant.

4. At any time t the speed v is given by the equation v = 6t2 +1 + 3. 
What is the speed when t — 3 and how rapidly is it changing ?

5. If v = 2 t2 + 3 t + 10, measured in feet per second, by how 
much does the speed increase during the fifth second, and how fast 
is the speed increasing at the beginning of that second ?

6. If v = t2 + 3 t + 4, measured in feet per second, determine the 
acceleration at the beginning of the fourth and at the end of the 
fifth second, also the average acceleration during the fourth and 
fifth seconds.
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7. If v = t3 + t2, measured in feet per second, determine the 
acceleration at the beginning of the second second and at the end 
of the third second, also the average acceleration during the second 
and third seconds.

8. If s = 2 t2 + 4 t + 7, s being measured in feet and t in seconds, 
how far has the body moved between the times t = 0 and t = 4 ? 
Determine the speed and the acceleration when t = 4.

9. If s = at2 + bt + c, a, b, and c being constants, show that the 
acceleration is constant.

10. If s = t3 + t2 + 2 t + 5, measured in feet per second, (a) how 
far will the body move during the third and fourth seconds ? (&) how 
fast will the body be moving at the beginning and the end of the 
period noted in (a) ? (c) how fast will the speed be increasing at the 
beginning and the end of the period noted in (a) ?

6. Rate of change. Let us consider another example which 
may be solved by processes similar to those used for determining 
speed and acceleration.

A stone is thrown into still water, 
forming ripples which travel from 
the center of disturbance in the 
form of circles (Fig. 3). Let r be 
the radius 
area. Then

of a circle and A its

A = 7rr2. (1)
the circles drawn areIn Fig. 3 

for the successive values of r — 1, 
2, 3, and so on. Hence the area of 
each circular ring is the area which 
is added to the circle inside the ring as the radius of the circle
is increased by unity. It is obvious that these rings increase in 
area as r increases, and hence the changes in A as r increases 
from 0 by successive increases of unity are not all the same. 
How then do the changes in A compare with the changes in r ?

To answer this question we first let ri = 3, whence Ai = 9 tt. 
We now give r2 the successive values noted in the first column 
of the table on page 13, and compute the corresponding values 
of A2, T2 — ri, A2 — Ai, and finally the ratio 2 ~ 41 given in 
the last column. 2 ~ ri
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In the first line we see that a change of .1 in r causes a change 
of .617T in A, and the ratio A~ ~ A1 — 6.1 ir is the average 

72 — 71
change of A per unit change in r, as r increases from 3 to 3.1. 
In like manner, in the second line we see that the average change 
in A per unit change in r is 6.01 -it as r increases from 3 to 3.01 ; 
and finally in the third line the average change of A per unit 
change in r is found to be 6.001 t as r changes from 3 to 3.001.

f2 A2 72 - 71 A2 — Ai A2 — Ai 

r2 — ri

3.1 9.61 77 .1 .61 77 6.1 77
3.01 9.0601 77 .01 .0601 77 6.01 77
3.001 9.006001 tt .001 .006001 77 6.001 77

The average change of A per unit change in r may be called 
the average rate of change of A with respect to r for the interval 
72 — 7i to which it corresponds.

These average rates of change of A with respect to r vary but 
seem to approach a limit 6 tt. Hence we say, as definition, that 
the limit of the average rate of change of A with respect to r, 
as the change in r approaches zero, is the true rate, or simply 
the rate of change of A with respect to r.

Using this definition and following the algebraic method of 
§ 4 we determine the rate of change of A with respect to r, 
starting from any value of r, as 7i. Then

Ai = li-ri2.

Next take r2 = ri + h.
Then A2 = 7rr22 = 7r(ri2 + 2 rih + h2)

and A2 — Ai = tt(2 rfi + A2) ;

so that ——— = 2 7T7i + irh.
72 — 71

As 72 — 7i = A is taken smaller and smaller, the limit of 
A2 ~-A1 is 2 7T7i, which is accordingly the rate of change of A 
72 — 71

with respect to r when r = 7i. As this is an entirely general 
statement, we may drop the subscript 1 and state the general 
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result that the rate of change of A with respect to r is 2 irr. 
In case r = 3, 2 irr — 6 tt, the limit that was inferred from the 
table.

The above is only one of many cases. For example, it may 
be desired to compare the change of length of an iron bar with 
the change in temperature which causes the bar to change in 
length, or it may be desired to compare the change in the 
temperature of a gas with the change in the pressure to which 
it is subjected. In these, and all similar cases, we have two 
related quantities such that a change in one causes a change 
in the other. In such a case, if we denote the quantities by 
x and y, and if the change in x causes the change in y, we write 
the following definition :

Rate of change of y}_ jjmit of change in y 
with respect to x j change in x

In the above discussion the element of time does not enter. 
We are concerned only in comparing the changes in two quan­
tities without considering how fast in respect to time either is 
changing. The latter question will be taken up in a subsequent 
section.

EXERCISES

1. In the example of the text find a general expression for the 
rate of change of the area with respect to the circumference.
' 2. A soap bubble is expanding, always remaining spherical. Find 

the general expression for the rate of change of the volume with 
respect to the radius.
\ 3. In Ex. 2 find the general expression for the rate of change of 

the surface with respect to the radius.
4. A cube of metal is expanding under the influence of heat. 

Assuming that the metal retains the form of a cube, find the rate of 
change at which the volume is increasing with respect to an edge.

5, The altitude of a right circular cylinder is always equal to the 
diameter of the base. If the cylinder is assumed to expand, always 
retaining its form and proportions, what is the rate of change of the 
volume with respect to the radius of the base?
\ 6. Find the rate of change of the area of a sector of a circle of 
radius 6 ft. with respect to the angle at the center of the circle.
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7. Find the rate of change of the area of a sector of a circle with
respect to the radius of the circle if the angle at the center of the 
circle is always • What is the value of the rate when the radius 
is 8 in. ? 4

8. Find the rate of change of the area of an equilateral triangle 
with respect to its side as the side varies in length.
\ 9. The kinetic energy of a body of mass m moving with a velocity v 

is Find the rate of change of the kinetic energy with respect '/ 
to the velocity.

10. The slant height of a certain right circular cone is always 6 ft. 
in length. Find the rate of change of the volume of the cone with 
respect to its altitude as the vertex of the cone settles toward the base.

11. The length of a bar of metal at different temperatures is given 
by the formula L = L0(l + at 4- bt2), where t is the temperature, Lo 
is the length of the bar at zero temperature, and a and b are small 
constants depending upon the nature of the metal. Find the rate 
of change of the length with respect to the temperature.

12. A balloon is in the form of a right circular cone with a hemi­
spherical top. The radius of the largest cross section is equal to 
the altitude of the cone. The shape and proportions of the balloon 
are assumed to be unaltered as the balloon is inflated. Find the 
rate of increase of the volume with respect to the total height of 
the balloon.
x 13. A spherical shell of ice surrounds a spherical iron ball concen­
tric with it. The radius of the iron ball is 6 in. As the ice melts, 
how fast is the mass of the ice decreasing with respect to its thickness ?

y



CHAPTER II
DIFFERENTIATION

7. The derivative. The examples we have been considering 
in the foregoing sections of the book are alike in the methods 
used to solve them. We shall proceed now to examine this 
method so as to bring out its general character.

In the first place, we notice that we have to do with two 
quantities so related that the value of one depends upon the 
value of the other. Thus the distance traveled by a moving 
body depends upon the time, and the area of a circle depends 
upon the radius. In such a case one quantity is said to be 
a function of the other. That is, a quantity y is said to be a 
function of another quantity, x, if the value of y is determined by 
the value of x.

The fact that y is a function of x is expressed by the equation 

y=f(x),
and the particular value of the function when x has a definite 
value a is then expressed as 7(a). Thus, if

/(z) = z3 — 3 z2 + 4 z + 1,
7(2) = 23 - 3(2)2 + 4(2) + 1 = 5,
/(0) = 0 - 3(0) + 4(0) + 1 = 1.

It is in general true that a change in x causes a change in 
the function y, and that if the change in x is sufficiently small, 
the change in y is small also. Some exceptions to this may be 
noticed later, but this is the general rule. A change in x is 
called an increment of x and is denoted by the symbol Az (read 
"delta z”). Similarly, a change in y is called an increment of 
y and is denoted by Ay. For example, consider

^ = x2 + 3 z + 2.
16
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When x = 2, y = 12. When x — 2.1, y = 12.71. The change 
in x is .1, and the change in y is .71, and we write

Ax = .1, Ay = .71.
So, in general, if Xi is one value of x, and x2 a second value 

of x, then Ax = x2 — Xi, or x2 = Xi + Ax ; (1)
and if yi and y2 are the corresponding values of y, then

Ay = y2- yi, or y2 = yx + Ay. (2)
The word increment really means "increase,” but as we are 

dealing with algebraic quantities, the increment may be nega­
tive when it means a decrease. For example, if a man invests 
$1000 and at the end of a year has $1200, the increment of his 
wealth is $200. If he has $800 at the end of the year, the 
increment is — $200. So, if a thermometer registers 65° in the 
morning and 57° at night, the increment is — 8°. The incre­
ment is always the second value of the quantity considered 
minus the first value.

Now, having determined increments of x and of y, the next 
step is to compare them by dividing the increment of y by 
the increment of x. This is what we did in each of the three 
problems we have worked in § § 3-6. In finding speed we began 
by dividing an increment of distance by an increment of time, 
in finding acceleration we began by dividing an increment of 
speed by an increment of time, and in discussing the ripples in 
the water we began by dividing an increment of area by an 
increment of radius. .

The quotient thus obtained is That is,

Ay _ increment of y _ change in y 
Ax increment of x change in x

An examination of the tables of numerical values in §§ 3,5, and 6 
shows that the quotient depends upon the magnitude of Ax,

Ax
and that in each problem it was necessary to determine its limit 
as Ax approached zero. This limit is called the derivative of y 
with respect to x, and is denoted by the symbol . We have then

= limit of change inj/ = Lim A?/.
dx change in x a»- o Ax
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At present the student is to take the symbol — not as a 
dx

fraction but as one undivided symbol to represent the deriva­
tive. Later we shall consider what meaning may be given to 
dx and dy separately. At this stage the form suggests simply 

a ( x
the fraction which has approached a definite limiting value.

We may accordingly write the results of the previous chapter 
as follows : ,

Speed = — v,
dt

Acceleration =
dt’ 

Rate of change of j dy 
with respect to x J dx'

The process of finding the derivative is called differentiation 
and we are said to differentiate y with respect to x. From the 
definition and from the examples with which we began the book, 
the process is seen to involve the following four steps :

1. The assumption at pleasure of Az.
2. The determination of the corresponding A?/.
3. The division of Aw by Az to form

Az
4. The determination of the limit approached by the quo­

tient in step 3 as the increment assumed in step 1 approaches 
zero.

Let us apply this method to finding when y = -. Let Zi
1 dx x

be a definite value of z, and yi = — the corresponding value of y. 
Xi

1. Take Az = h.
Then, by (1),

2. Then

whence, by (2),

z2 = Zj + h.

Ay = 1 1 
Zi + h Zi

h
Zi2 + hx}
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3. By division, Ay _ 1
Az Xi2 + hxi

4. By inspection it is evident that the limit, as h approaches

zero, is--- —,
Xl2

which is the value of the derivative when x = Zi.

But xi may be any value of x ; so we may drop the subscript 1 
and write as a general formula

dx x2

EXERCISES

Find from the definition 
pressions :

the derivatives of the following ex-

1. y — 5(x2 + x — 1).
2. y = 3 x3 — x2 + 3.
3. y = x4 — 2 x.

x-2
x + 2'

x
X2+1

8. Differentiation of a polynomial. We shall now obtain for­
mulas by means of which the derivative of a polynomial may be 
written down quickly. In the first place we have the theorem :

The derivative of a polynomial is the sum of the derivatives of 
its separate terms.

This follows from the definition of a derivative if we recog­
nize that the change in a polynomial is the sum of the changes 
in its terms. A more formal proof will be given later.

We have then to consider the terms of a polynomial, which 
have in general the form axn. Since we wish to have general 
formulas, we shall omit the subscript 1 in denoting the first 
values of x and y. We have, then, the theorem :

If y — axn,'^dtere n is a positive integer and a is a constant, then 

<^- = anxn~1. (1)
dx
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To prove this, apply the method of § 7 :
1. Take Az = h;

whence x2 — x + h.

2. Then y2 = ax2 — a(x + h)n ;
whence Ay = a(x + K)n — axn

= a(nxn 1h-1rn^n ——zn_2À2 + • • • + hn). 
Li

3. By division, 4^ = «(kz71-1 + ~ xn~2h + • • • + hn~1}.
Ax 2 ii/

4. By inspection, the limit approached by as h approaches 
zero, is seen to be anxn~1.

Therefore = anxn ’, as was to be proved.
dx

The polynomial may also have a term of the form ax. This 
is only a special case of (1) with n = 1, but for clearness we 
say explicitly,

If y = ax, where a is a constant, then

(2)

Finally, a polynomial may have a constant term c. For this 
we have the theorem :

If y = c, where c is a constant, then
^ = 0.
dx (3)

The proof of this is that as c is constant, Ac is always zero, 
no matter what the value of Ax is. Hence 

^ = 0,
dx

and therefore

As an example of the use of the theorems, consider 
?/ = 6x4 + 4x3 — 2x + 7.

We write at once
= 24 x3 + 12 x2 - 2.

dx
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EXERCISES

Find the derivative of each of the following polynomials :
1. x2 + 2 x — 4.
2. I x2 + 5 x — 7.
3. 3 x3 + 6 x2 + 21 x — 15.
4. x4 + 3 x2 + 10 x — 21.
5. I x5 — I x3 + x.

6. 2 — x + 3 x2 + 4 x4.
7. 8 + 2 x2 - I x4 + x6.
8. 21 + x — x3 + x5.
9. ax3 + bx2 + ex + d.

10. a + bx2 + ex4 + dxa.
9. Sign of the derivative. If, for a given value of x, is posi- 

live, an increase in the value of x causes an increase in the value 
of y I if is negative, an increase in the value of x causes a 
decrease in the value of y

To prove this theorem, let us consider that is positive.
dx

Then, since is the limit of it follows that is positive 
dx Az Az

for sufficiently small values of Az; that is, if Az is assumed 
positive, A«/ is also positive, and therefore an increase of z 
causes an increase of y. Similarly, if is negative, it follows

A «z
that is negative for sufficiently small values of Az ; that is, 

Az
if Az is positive, A?/ must be negative, so that an increase of z 
causes a decrease of y.

In case the derivative is a polynomial, its sign may be con­
veniently determined by breaking it up into factors and con­
sidering the sign of each factor. It is obvious that a factor 
of the form z — a is positive when z is greater than a, and 
negative when z is less than a.

Suppose, then, we wish to determine the sign of
(z + 3)(x — l)(z — 6).

There are three factors to consider, and three numbers are im­
portant ; namely, those which make one of the factors equal to 
zero. These numbers arranged in order of size are — 3, 1, and 6. 
We have the four cases :

1. z < — 3. All factors are negative and the product is negative.
2. — 3 < z < 1. The first factor is positive and the others 

are negative. Therefore the product is positive.
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3. 1 < x < 6. The first two factors are positive and the last 
is negative. Therefore the product is negative.

4. x > 6. All factors are positive and the product is positive. 
As an example of the use of the theorem, suppose we have

y • a:3 — 3 a:2 — 9 x + 27,
and ask for what values of x an increase in x will cause an in­
crease or a decrease in y. We form the derivative and factor it. 
Thus, j

= 3 x2 - 6 x - 9 = 3(x + l)(x - 3).

Proceeding as above, we have the following three cases :

is positive, and therefore an increase in x 
dx

3. is negative, and therefore an increase in x 
dJu

is positive, and therefore an increase in x in-

1. x < — 1. 
increases y.

2. — 1 < a: < 
decreases y. .

3. x >3. 
creases y.

These results may be checked by substituting values of x in 
the derivative.

EXERCISES

Find for what values of x each of the following expressions will 
increase if x is increased, and for what values of x they will decrease 
if x is increased :

1. x2 — 6 x + 7.
2. 3 x2 + 4 x + 7.
3. 2 + 3 x - 2 x2.
4. 4 + 6 x + 3 x2.
5. x3 - 9 x2 + 24 x + 20.
6. x3 — 3 x2 — 9 x + 3.

7. x3 - 2 x2 + 1.
8. 1 + 3 x — 4 x2 — x3.
9. 8 + 36 x + 54 x2 + 27 a;3.

10. 1 + 2 x2 - x4.
11. 1 — 2 x3 + x4.
12. 3 + 54 x+27 x2 - 8 x3 - 6 x4.

10. Velocity and acceleration. The method by which the speed 
of a body was determined in § 4 was in reality a method of 
differentiation, and the speed, as there determined, was the 
derivative of the distance with respect to the time. In that 
discussion, however, we so arranged each problem that the re­
sult was positive and gave a numerical measure (feet per second, 
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miles per hour, etc.) for the rate at which the body was moving. 
Since we may now expect, on occasion, negative signs, we will 
replace the word speed by the word velocity, which we denote 
by the letter v. In accordance with the previous work, we have

(1)

The distinction between speed and velocity, as we use the 
words, is simply one of algebraic sign. The speed is the numer­
ical measure of the velocity and is always positive, but the 
velocity may be either positive or negative.

From (1) and § 9, we have the following theorem :
When the velocity is positive, the body moves so as to increase s. 

When the velocity is negative, the body moves so as to decrease s.
For example, consider a stone dropped from the top of a build­

ing. If s is measured from the top of the building and t is the 
time which has elapsed since the body began to fall,

s = 16 t2 ;
v = 1È = 32 t.

dt
The velocity is positive and the stone moves so as to increase 

the distance from the top of the building.
Suppose now for the same falling stone we measure s from 

the ground. If the building is 100 ft. high, we have
s = 100 - 16 t2,
v = ^ = -S2t.

dt

whence

1
whence

The velocity is now negative, and the stone moves so as to 
decrease its distance from the ground. The actual motion of the 
stone is the same as before. The change in the sign of the 
velocity is caused by the change in the way s is measured.

In § 5 we have defined acceleration by using the speed and 
have so arranged the work that the acceleration is always posi­
tive. We shall now extend the definition using velocity instead 
of speed. Letting a represent the acceleration, we have, by 
definition, dv (ey,

a=di- (2)
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We must now expect to find negative accelerations on oc­
casion. Accordingly, in accordance with § 9, we have the 
theorem :

If the acceleration is positive, the body is moving with increasing 
velocity. If the acceleration is negative, the body is moving with 
decreasing velocity.

But it must be emphasized that if the velocity is negative, an 
increasing velocity means a decreasing speed and a decreasing 
velocity means an increasing speed. This is because, if a nega­
tive number increases, its numerical value decreases, while if a 
negative number decreases, its numerical value increases. Thus, 
if a number changes from — 8 to — 5 it increases, since 3 has 
been added, while if it changes from — 5 to — 8 it decreases, 
since 3 has been subtracted.

We have accordingly the following table :

V a s V Speed

+ + increasing increasing increasing

+ - increasing decreasing decreasing

-- + decreasing increasing decreasing

- - decreasing decreasing increasing

As an example, suppose a body thrown vertically into the air 
with a velocity of 96 ft. per second. From physics, if s is meas­
ured up from the earth, we have

s = 96 Z - 16 Z2.

From this equation we compute
v = 96 — 32 Z,
a = — 32.

If Z = 2, v = 32 and a — — 32. The distance from the earth is 
increasing (the body is going up), the speed is decreasing. If 
Z = 4, v = — 32, a = — 32. The distance from the earth is de­
creasing (the body is coming down) and the speed is increasing, 
although the velocity is decreasing.
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EXERCISES

In the following examples find the direction of the motion :
1. s = 3f2-4f + 7.
2. s = 2 t2 + 5 t - 7.
3. s = 5 + 8 t - 5 t2.

4. s = 5 + 12 t - 9 t2 + 2 t3.
5. s = 8 - 4 t - 2 t2 + t3.
6. s = 3 t4 - 4 t3 + 12.

In the following examples find when the velocity is increasing 
and when decreasing :

7. s = 4 t2 + t + 4.
1/ 8. s = t3 - 2 t2+ 5 t + 1. 

«9. s = 2 - 4 t + 4 t2 - 2 t3.

10. 8 = f4-4fi>-4f+l.
11. s = 3 t4 + 4 t3 - 4 t - 3.
12. s = 3 t4 + 7 t3 - 9 t2 + 7 t + 3.

In the following examples find when the speed is increasing and 
when decreasing :

13.
14.

= t2 - 3 t + 1. 16. s = 1 + 3 t2 - t3.
= 1 - 3 t - t2. 17. s = t3 — 6 t2 + 9 t — 12.

6. 18. s = 8 + 8 t - t2 - t3.

s
s

15. s = 3 t3 - 6 t2 + 4 t -

11. Graphs. The relation between^, variable x and a function 
y may be pictured to the eye by a graph. It is expected that 
students will have acquired some knowledge of the graph in 
the study of algebra, and the following brief discussion is given 
for a review.

Take two lines OX and OY (Fig. 4), intersecting at right 
angles at O, which is called the origin of coordinates. The line 
OX is called the axis of x, and the 
line OY the axis of y; together they 
are called the coordinate axes, or axes 
of reference. On OX we lay off a dis­
tance OM equal to any given value 
of x, measuring to the right if x is 
positive and to the left if x is nega­
tive. From M we erect a perpen­
dicular MP, equal in length to the 
value of y, measured up if y is posi­
tive and down if y is negative.

The point P thus determined is said to have the coordinates 
X and y and is denoted by (x, y). It follows that the numerical 
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value of x measures the distance of the point P from OY, and 
the numerical value of y measures the distance of P from OX. 
The coordinate x is called the abscissa, and the coordinate y the 
ordinate. It is evident that any pair of coordinates (x, y) fix a. 
single point P, and that any point P has a single pair of coor­
dinates. The point P is said to be plotted when its position is 
fixed in this way, and the plotting is conveniently carried out 
on paper ruled for that purpose into squares.

If y is a function of x, values of x may be assumed at pleasure 
and the corresponding values of y computed. Then each pair of 
values (x, y) may be plotted and a series of points found. The 
locus of these points is a curve called the graph of the function.

It may happen that the locus consists of distinct portions not 
connected in the graph. In this case it is still customary to say 
that these portions together form a single curve.

For example, let y = 5 x _ (1)

We assume values of x and compute values of y. The results 
are exhibited in the following table :

X -1 0 1 2 3 4 5 6

y -6 0 4 6 6 4 0 -6

These points are plotted and connected by a smooth curve, 
giving the result shown in Fig. 5. This curve should have the 
property that the coordinates of any point on it satisfy equation (1) 
and that any point whose coordinates satisfy (1) lies on the curve. 
It is called the graph both of the function y and of the equation 
(1), and equation (1) is called the equation of the curve.

Of course we are absolutely sure of only those points whose 
coordinates we have actually computed. If greater accuracy is 
desired, more points must be found by assuming fractional 
values of x. For instance, there is doubt as to the shape of the 
curve between the points (2, 6) and (3, 6). We take, therefore, • 
x = 2| and find y — 6|. This gives us another point to aid us 
in drawing the graph. Later, by use of the calculus, we can 
show that this last point is really the highest point of the 
curve.
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The curve (Fig. 5) gives us a graphical representation of the 
way in which y varies with x. We see, for example, that when 
x varies from — 1 to 2, y is increasing ; that when x varies
from 3 to 6, y is decreasing, and that 
at some point between (2, 6) and 
(3, 6), not yet exactly determined, y 
has its largest value.

It is also evident that the steep­
ness of the curve indicates in some 
way the rate at which y is increasing 
with respect to x. For example, when 
x = — 1, an increase of 1 unit in x 
causes an increase of 6 units in y; 
while when x = 1, an increase of 1 unit 
in x causes an increase of only 2 units 
in y. The curve is therefore steeper 
when x - — 1 than it is when x = 1.

Now we have seen that the deriv­
ative measures the rate of change 

dx

Y

Fig. 5

of y with respect to x. Hence we expect the derivative to be 
connected in some way with the steepness of the curve. We 
shall therefore discuss this connection in § 13.

EXERCISES
Plot the graphs of the following functions:

12. Real roots of an equation. Let
y=f(x) (1)

be any equation for which we have a graph. When the graph 
crosses the axis of x we have a point at which y = 0 and hence 
x satisfies the equation — o. (2)
Hence some of the roots of equation (2) may be found by finding 
the points at which the graph crosses the axis of x.
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We cannot find in this way the imaginary roots of (2) nor the 
real roots which correspond to points where the graph of (1) 
touches the axis of x without crossing it. However, this method 
of solving (2) is very useful.

The points where the graph crosses the axis of x, and the 
corresponding roots of (2), may be found by trial as follows : 
Take any two values of x, say x — a and x = b, and substitute 
each in (1). If the values of y thus found have opposite signs, 
the graph must have crossed the axis of x at least once between 
x = a and x = b, and hence at least one root of the equation lies 
between a and b. By narrowing the interval between a and b 
the root may be located as accurately as desired.

Of course, there is no absolute certainty that the curve may 
not have crossed the axis of x more than once and an odd 
number of times between x = a and x — b, but if these values 
are taken close enough together, this is not probable.

Similarly, if the values of y for x = a and x = b have the same 
sign, the graph has either not crossed the axis of x, or has crossed 
it an even number of times, or has touched it without crossing. 
The graph will usually distinguish between these cases.

Example. Find a real root of the equation
x3 + 2 x - 17 = 0

accurate to two decimal places.
We will arrange the work in tables, placing

ÿ = x3 + 2 x — 17.
I

X y

0 - 17

1 - 14

2 - 5

3 16

II

X y

2.1 - 3.539

2.2 - 1.952

2.3 - .233

2.4 1.624

III

X y

2.31 - .054

2.32 .127

In Table I we try integral values of x and discover that a root 
lies between 2 and 3.

In Table II we try values of x between 2 and 3 differing by tenths. 
We are lead to suspect that the root is nearer 2 than 3 because the 
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value of y for x = 2 is smaller numerically than that for x = 3. We 
find that the root lies between 2.3 and 2.4 and apparently is nearer 2.3.

In Table III we need to try only two values of x to see that the 
root lies between 2.31 and 2.32. The root apparently lies nearer 2.31, 
but to make sure we substitute x = 2.315 and find y = .037 • • •. 
Hence the root lies between 2.31 and 2.315, and therefore it is 2.31, 
accurate to two decimal places.

EXERCISES

Find the real roots of the following equations, accurate to two 
decimal places :
1. x3 — x2 — 5 = 0.
2. x3 + 3 x — 6 = 0.
3. x3 + 2 x2 + 1 = 0.

4. x3 + 4 x + 2 = 0.
5. x3 — 6 x2 + 9 x — 6 = 0.
6. x3 - 3 x + 1 = 0.

7. x4 — 12 x + 4 - 0.
8. x4 + x3 - 3 = 0.
9. x4 + x — 1 = 0.

13. Slope. We shall discuss in this section a quantity, called 
the slope, which may be used to measure the steepness of a 
graph. We begin with a straight line.

Let Pi(xb t/i) and P2(x2, y2) (Figs. 6 and 7) be any two points 
on a straight line LK. If we imagine a point to move along the 

line from Pi to P2 the change in x is x2 — Xi = Ax (§ 7) and 
the change in y is y2 — ?/i = At/ (§ 7). We define the slope as 
the ratio of the change in y to the change in x and shall denote 
it by the letter m. We have then, by definition,

w = fc^i = Ay. (1)
X2 — Xi Ax

In Fig. 6, since x2 is greater than Xi, Ax is positive, and since 
?/2 is greater than y\, Ay is positive, and hence m is positive. If 
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the points Pi and P2 are interchanged it is evident that Ax and 
Ay both become negative but their ratio m remains positive.

In Fig. 7, since x2 is less than Xi, Ax is negative, and since y 2 
is greater than yi, Ay is positive, and hence m is negative. If 
the points Pi and P2 are interchanged, it is evident that Ax 
becomes positive and Ay becomes negative, but their ratio m 

. remains negative.
Let us now draw through Pi a straight line parallel to OX and 

through P2 a straight line parallel to OF and denote by R the 
point in which the two lines intersect. Then X2 — Xi = Ax = PiP, 
where P\R is positive if drawn from left to right (Fig. 6) and is 
negative if drawn from right to left (Fig. 7). In like manner 
y2 — yx = Ay — RP2, where RP2 is positive if drawn upward 
and negative if drawn downward. It follows that

m (2)

If any other two points are chosen on the given line LK, it 
can be shown by similar triangles that the ratio m is not changed 
in magnitude or sign. The sign of m is positive if the line is 
situated as in Fig. 6 and is negative if the line is situated as in 
Fig. 7 ; that is,

The slope of a straight line is positive if the line runs up to the 
right and is negative if the line runs down to the right. The 
magnitude of the slope measures the steepness of the line.

When the line is parallel to OX, Ay = 0 and consequently 
m = 0. When the line is parallel to OY, Ax = 0 and we say 
m = 00.

Consider now the general case of a curve AB (Figs. 8 and 9) and 
let Pi and P2 be two points on it. Draw the straight line PiP2 

and prolong it to form the secant PiS. Then, as in (1), is 
the slope of PjS and may be called the average slope of the 
curve between Pi and P2.

To obtain a number which may be used for the actual slope 
of the curve at the point Pi, it is necessary to use the limit 
process (with which the student should now be familiar), by 
which we allow Ax to become smaller and smaller and the point 
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P2 to approach Pi along the curve. The result is the derivative 
of y with respect to x, and we have the following result :

The slope of a curve at any point is given by the value of the

From this and § 9 we may at once deduce the theorem :
If the derivative is positive, the curve runs up to the right. If the 

derivative is negative, the curve runs down to the right.

The values of x which make zero are of particular interest 
dx

in the plotting of a curve. If the derivative changes its sign at 
such a point, the curve will change its direction from down to up 
or from up to down. Such a point will be called a turning-point.

This is illustrated in Fig. 10, where 
the derivative is positive to the left 
of A, is negative between A and B, 
and is positive to the right of B. 
The points A and B are turning- 
points. To find the turning-points 
we solve the equation

dx
and examine the sign of the derivative for values of x less 
and greater than the roots of the equation to see if we have 
a change of sign. It is to be noted that a solution of the 
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equation does not give a turning-point if the derivative does 
not change sign.

In rare cases a turning-point may occur when = oo, but 
dx

this cannot happen in the case of a polynomial and will not be 
discussed here.

The examples which follow illustrate the method.

Example 1. Consider equation (1) of § 11, 
y = 5 x — x2.

Here

Equating to dx

g=5-2. = 2(|-.).

zero and solving, we have
5 

turning-point. It is evident that when 

when x > is negative. Therefore x =2 dx
point of the curve at which the latter changes its direction from 
up to down. It may be called a high point of the curve.

5
x = - as a possible 

is positive; and 

I gives a turning-

Example 2. Consider

|(x3 — 3 x2 — 9 x + 32).
o

| (x2 — 2 x — 3) = | (x — 3)(x + 1).Here

zero and solving, we have x = — 1 and x = 3

V =

dy _
dx

Equating ~ to dx
as possible turning-points. From the 
factored form of and reasoning as 
shown in § 9, we see that when x < —
— is positive ; when — 1 < x < 3,dx j
is negative ; when x > 3, ~ is positive.dx
Therefore both x = — 1 and x = 3 give 
turning-points, the former giving a 
high point, and the latter a low point. 
Substituting these values of x in the 
equation of the curve, we find the high point to be (— 1, 4j) and 
the low point to be (3, f). The graph is shown in Fig. 11.
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The case in which a solution of the equation — 0 does not 

give a turning-point is illustrated in the next example.

Example 3. Consider
y = |(x3 — 9 x2 + 27 x — 19). 

Here ^ = x2-6x + 9=(x- 3)2.
dx

Solving -^ = 0, we have x = 3 ; but since
dx 

the derivative is a perfect square, it is never 
negative. Therefore x = 3 does not give a 
turning-point, although when x = 3 the tan­
gent to the curve is parallel to OX. The 
curve is shown in Fig. 12.

EXERCISES

Locate the turning-points and then plot the following curves :
1. y = 3 x2 — 5 x — 2. 

is 2. y = 3 — x — x2.

3. y = x3 — 12 x. 
'-'4. y = 4 + 2 x2 — x3.

5. y = x3 — x2 — 5 x + 5.

^G. y — x3 — 7 x2 + 15 x — 6.

7. y = 8 + 4 x — 2 x2 — x3.

8. x4 - 4 i3 + 16.
9. y = x4 — 2 x3 — 2 x2 + 1.

(/10. y = x4 — 4 x3 + 6 x2 — 4 x + 6.

14. Straight line. Let a given straight line pass through a 
fixed point Pi(xi, yf) with a given slope m. Let P(x, y) be any 
point of this line. We may then substitute x and y for X2 and y2 
respectively in (1), § 13, and clearing of fractions have

y - yi = m(x - Xi). (1)

This is the equation of a line through a fixed point (xi, yf) with 
a fixed slope m, since it is satisfied by the coordinates of any 
point on the line and by those of no other point.

In particular, Pi(xi, ?/i) may be taken as the point with coor­
dinates (0, b) in which the line cuts OY. Then equation (1) 
becomes y _ mx (2)
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Since any straight line not parallel to OX or to O Y intersects 
OY somewhere and has a definite slope, the equation of any 
such line may be written in the form (2).

If the line is parallel to OX, m — 0 and equation (1) becomes

y = yi- (3)
If the line is perpendicular to OX, m — oo, and it is not con­

venient to substitute in (1). However, it is evident from a figure 
that the equation of the line is

x = Xi, (4)
a result which we could get from (1) by placing m on the other 
side of the equation and then allowing it to approach oo.

Finally we notice that any equation of the form
Ax + By + C = 0 (5)

represents a straight line. This follows from the fact that the 
equation may be written either as (2), (3), or (4).

The straight line LK (Figs. 6 and 7) makes with OX an angle 0 
which we shall always take as marked in the figures, namely, 
above OX and to the right of LK. Then it is at once evident 
from the figures that tan . =

Formula (6) is also true for a line perpendicular to OX, when 
<j> = 90°, or for a line parallel to OX, when we shall say that 0 = 0.

If two lines are parallel they
make equal angles with OX, and
conversely. Hence if mi and m2
are the slopes of the two lines,
we have m2 = mi (7)

as the condition for parallelism.
Consider now two lines mak-

ing angles 02 and 0i (02 > 0i) Z 0

with OX (Fig. 13). They inter- Fig 13
sect at a point P.

Through P draw PR parallel to OX. Then, as is evident from 
the figure, if /3 is the angle as shown between the two lines,

= 02 — 01. (8)
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If /3 — 90°, we have 02 = 90° + </>i,
whence tan <t>2 = — ctn </>i. (9)

Conversely, if this condition is fulfilled and (f>2 and </>i are as 
in the figure, we have cf>2 = 90° + </>i.

Hence we have, from (9),
m2 = - — (10)

as the condition for perpendicularity.
Consider now the general case (8). Then

tan (3 — tan (</>2 — </>i)
_ tan </>2 — tan </>i _ m2 — wg

1 + tan cf>2 tan </>i 1 + m2mi

If tan (3 is positive, /? is acute. If tan is negative, /3 is 
obtuse and /?' (Fig. 13) is acute. Then tan /?' = tan (180° — y3) 
= — tan /?.

If the slope of a line whose equation is in form (5) is needed 
in using the above formulas, it may be found by placing the 
equation in form (2) and taking the coefficient of x.

EXERCISES

1. Find the equation of the straight line which passes through 
(1, — 4) with the slope 2.

2. Find the equation of the straight line which passes through 
(— 2, 3) with the slope — f.

3. Find the equation of the straight line passing through the 
points (2, 3) and (j, — 4).

4. Find the equation of the straight line passing through the 
points (3, — 1) and (3, 4).

5. Find the equation of the straight line passing through the 
points (1, 5) and (— 4, 5).

6. Find the equation of the straight line passing through the 
point (1, — 4) and making an angle of 30° with OX.

7. Find the equation of the straight line passing through the 
point (|, — I) and making an angle of 135° with OX.

8. Find the equation of the straight line passing through the 
point (— 1, j) and parallel to the line 2 x — 3 ÿ + 7 = 0.
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9. Find the equation of the straight line passing through the 
point (— 2, — 3) and perpendicular to the line 3x + 4?/ — 12 = 0.

10. Find the equation of the straight line passing through the 
point (3, 3) and parallel to the straight line determined by the two 
points (— 2, 4) and (2, — 1).

11. Find the equation of the straight line passing through (2,-3) 
and perpendicular to the straight line determined by the points 
(- 3, - 1) and (2, |).

12. Find the angle between the lines 2 x — y = 0 and 5x — y — 3 = 0.
13. Find the angle between the lines x — 2 y — 3 = 0 and

6x —2ÿ—13 = 0.
14. Find the angle between the lines 2z + y + 4 = 0 and

5 x — y + 17 = 0.
15. Find the angle between the lines 2x — 6y — 11 = 0 and 

4x + 2?/+13 = 0.
16. Find the angle between the line 3 x + 4 y = 12 and the line 

determined by the points (— 1, 1) and (3, 3).
17. Find the angle between the line determined by the points 

(— 4, 0) and (1, 6) and the line determined by the points (0, 5) 
and (4, 0).

18. The vertices of a triangle are at the points A (— 1,1), B (4, — 2), 
and C (2, 2). Find the internal angles of the triangle.

19. Find the foot of the perpendicular drawn from the vertex C 
of the triangle of Ex. 18 to the side AB.

20. Prove that the lines 3z+5?/ — 8 = 0 and 3 r - 5 y + 2 = 0 
form with the axis of x an isosceles triangle, and determine its area.

15. Tangent line to a curve. In determining the slope of a 
curve (§ 13) we allowed the point P2 to approach Pi (Figs. 8 
and 9).

As this limit process takes place, it appears from the figures 
that the secant PiS approaches a limiting position PTT. The 
line Pi T is called a tangent to the curve, a tangent being by defi­
nition the line approached as a limit by a secant through two points 
of the curve as the two points approach coincidence. It follows that 
the slope of the tangent is the limit of the slope of the secant. 
Therefore,

The slope of the tangent to a curve at any point is the same as the 
slope of the curve at that point.
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From (6), § 14, it also follows that if tf> is the angle which the 
tangent at any point of a curve makes with OX, then

The equation of the tangent to a curve at a point (xi, yi) is 
easily written down. We let represent the value of at 

\ax/L dx

the point (xb yi). Then m = and, from (1), §14, the
equation of the tangent is z 1

Example. Find the equation of the tangent at (1, — 1) to the curve 
y - x2 — 4 x + 2.

We have ~ = 2 x — 4,dx

Therefore the equation of the tangent is
2/ + 1 = — 2(x — 1),

which reduces to 2 x + y — 1 = 0.

EXERCISES

1. Find the equation of the tangent line drawn to the curve 
y = 4 x3 + 7 x2 — 6 x + 5 at the point for which x = 1.

2. Find the equations of the tangent lines drawn to the curve 
■y — x3 — 3 x + 4 at the points for which x = — 2 and x = 2 respectively.

3. Find the equations of the tangent lines drawn to the curve 
y = 8 + 4 x — 2 x2 — x3 at the points which are on OX and OY.

4. Find the equations of the tangent lines drawn to the curve 
y = x3 — 5 x2 — 8 x at the points whose abscissas are respectively 

— and |, and find the acute angle between the tangents.
5. Find the equations of the tangent lines drawn to the curve 

y = x3 + x2 — x 4- 2 which make an angle of 135° with OX.
6. At what points on the curve y = x3 — x2 — 5 x + 5 will the 

tangents be parallel to3x — y + 5 = 0? What are the equations of 
ithese tangents?
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7. Tangents are drawn to the curve y = x3 + 3 x2 — 9 x — 10 per­
pendicular to the straight line determined by the points (8, 1) and 
(1, |). Find their equations.

8. Find the equation of the tangent line to the curve 8 y = x3 at 
the point (1, |). Find where the tangent again intersects the curve.

16. The second derivative. The derivative of the derivative 
is called the second derivative and is indicated by the symbol 
A/Wl or
dx \dx) dx2

The acceleration of a body moving in a straight line may be 
expressed as a second derivative. For, by definition, a = and 
v = —> whence _ _d /ds\_ d2s

dt dt\dt) dt2'

The second derivative may also be used in studying the slope 
of a curve; for since ~ is equal to the slope of the graph, 
we have z

d2y _ d_
dx2 dx

(slope).

From this and § 9 we have the following theorem :
If the second derivative is positive, the slope is increasing as x 

increases ; and if the second derivative is negative, the slope is de­
creasing as x increases.

We may accordingly use the second derivative to distinguish 
between the high turning-points and the low turning-points of 
a curve, as follows :

If, when x = a, = 0 and is positive, it is evident that 
, dx dx2 ,

-&■ is increasing through zero ; hence, when x < a, is negative, 
dx du dx
and when x> a, is positive. The point for which x — a is 
therefore a low turning-point, by § 13.

Similarly, if, when x — a, = 0 and is negative, it is 
, dx dx2

evident that is decreasing through zero ; hence, when x < a,

is positive, and when x > a, is negative. The point for 
dx dx
which x — a is therefore a high turning-point of the curve, by § 13.
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These conclusions may be stated as follows :

If x = a is a root of the equation = 0 and is positive 
dx dx2

when x = a, the point corresponding tox = a is a low turning-point 
■ d2u ■of the curve; but if is negative when x = a, the corresponding a/jü

point is a high turning-point of the curve.

EXERCISES
Plot the following curves after determining their high and low 

turning-points by the use of ~ and 4-^ :
dx dx2

1. y = 4 x3 — 3 x 4- 4.
2. y = 5 x3 — x2 — 8 x + 2.
3. y = 1 + 12 x + 3 x2 — x3.

4. y = x3 + 3 x2 — 3 x + 1.
5. y = 3 + 3 x — x2 — x3.
6. y = x3 + 2 x2 — 5 x — 5.

17. Maxima and minima. If /(a) is a value of /(x) which is 
greater than the values obtained either by increasing or by 
decreasing x by a small amount, /(a) is called a maximum value 
of fix). If /(a) is a value of fix) which is smaller than the 
values of ffx) found either by increasing or by decreasing x by 
a small amount, /(a) is called a minimum value of fix).

It is evident that if we place
y=f(x)

and make the graph of this equation, a maximum value of fix) 
occurs at a high point of the curve and a minimum value at a 
low point. Hence we deduce the following rule :

To find the values of x which give maximum or minimum values
of y, solve the equation ^ = 0

dx
If x = a is a root of this equation, it must be tested to see 

if it gives a maximum or a minimum. We have two tests :

Test I. If the sign of changes from + to — as x increases 

through a, then x = a gives a maximum value of y. If the sign of 
~ changes from — to + as x increases through a, then x = a gives 

a minimum value of y.
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Test II. If x = a makes = 0 and negative, then x = a 
dx dx2 ,

gives a maximum value of y. If x = a makes — 0 and 
positive, then x = a gives a minimum value of y.

Either of these tests may be applied according to convenience. 
It may be noticed that Test I always works and is readily ap­
plicable in case can be factored ; if is not easily factored 

dx d2 dx
Test II is to be preferred unless -rĄ — 0 when x = a, in which 

dx2
case the test fails to give the required information. It is also 
frequently possible by the application of common sense to a 
problem to determine whether the result is a maximum or mini­
mum, and neither of the formal tests need then be applied.

Example 1. A rectangular box is to be formed by cutting a square 
from each corner of a rectangular piece of cardboard and bending 
the resulting figure. If the dimensions of the piece of cardboard are 
20 in. by 30 in., find the largest box which can be made.

Let x be the side of the square cut out. Then, if the cardboard is 
bent along the dotted lines of Fig. 14, the dimensions of the box are 
30 — 2 x, 20 — 2 x, x. Let V be the volume of the box.
Then V = x(20 - 2 x) (30 - 2 x)

= 600 x — 100 x2 + 4 x3.
= 600 - 200 x + 12 x2. ax

Equating to zero, we have

3 x2 — 50 x + 150 = 0 ; 
u 25 i 5>/7 o „whence x =----- ------ = 3.9 or 12.7.o Fig. 14

X 
X

&
Ï

04

30—2 x

The result 12.7 is impossible, since that amount cannot be cut 
twice from the side of 20 in. The result 3.9 corresponds to a possible 
maximum, and the tests are to be applied.

To apply Test I we write ~ in the factored formdx
= 12(x - 3.9) (x-12.7),

when it appears that ~ changes from + to — as x increases through dx
3.9. Hence x = 3.9 gives a maximum value of V.
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rf2 vTo apply Test II we find = — 200 4- 24 x and substitute 

x = 3.9. The result is negative. Therefore x — 3.9 gives a maximum 
value of V.

The maximum value of V is 1056 cu. in., approximately, found by 
substituting x = 3.9 in the equation for V.

Example 2. A piece of wood is in the form of a right circular cone, 
the altitude and the radius of the base of which are each equal to 
12 in. What is the volume of the largest right circular cylinder that 
can be cut from this piece of wood, the axis of the cylinder to coin­
cide with the axis of the cone?

Let x be the radius of the base of the required cylinder, y its alti­
tude, and V its volume. Then

V = irx2y. (1)
We cannot, however, apply our method directly to this value of 

V, since it involves two variables x and y. It is necessary to find 
a connection between x and y and eliminate one of them. To do so, 
consider Fig. 15, which shows a cross section of cone and cylinder. 
From similar triangles we have

FE
EC

y

AD .
DC ’

_____ __ 12.
12 - x 12 ’ 

y = 12 — x.
Substituting in (1), we have

V = 12 irx2 — 7TX3 ;

= 24 irx — 3 irx2.ax

that is,

whence

whence

Equating —to zero and solving, we 
find x = 0 or 8. The value x = 0 is evi-
dently not a solution of the problem, but x = 8 is a possible solution. 

Applying Test I, we find that as x increases through the value 8,
4^ changes its sign from + to —. Applying Test II, we find that 
ax 
d2V = 24 7T — 6 7TX is negative when x = 8. Either test shows that
x = 8 corresponds to a maximum value of V. To find V substitute 
x = 8 in the expression for V. We have V = 256 7T cu. in.



42 DIFFERENTIATION

EXERCISES

1. A piece of wire of length 30 in. is bent into a rectangle. Find 
the maximum area.

2. A gardener has a certain length of wire fencing with which to 
fence three sides of a rectangular plot of land, the fourth side being 
made by a wall already constructed. Required the dimensions of 
the plot which contains the maximum area.

3. A gardener is to lay out a flower bed in the form of a sector 
of a circle. If he has 40 ft. of wire with which to inclose it, what 
radius will he take for the circle to have his garden as large as 
possible ?

4. In a given isosceles triangle of base 30 and altitude 10 a rec­
tangle is inscribed. Find the rectangle of maximum area.

5. A right circular cylinder is inscribed in a sphere of radius a. 
Find the cylinder of maximum volume.

A rectangular box with a square base and open at the top is 
to be made out of a given amount of material. If no allowance is 
made for the thickness of the material or for waste in construction, 
what are the dimensions of the largest box that can be made ?

t/7. A piece of wire 24 ft. in length is cut into six portions, two 
of one length and four of another. Each of the two former portions 
is bent into the form of a square, and the corners of the two squares 
are fastened together by the remaining portions of wire, so that the 
completed figure is a rectangular parallelepiped. Find the lengths 
into which the wire must be divided so as to produce a figure of 
maximum volume.

Z 8. The strength of a rectangular beam varies as the product of 
its breadth and the square of its depth. Find the dimensions of the 
strongest rectangular beam that can be cut from a circular cylin­
drical log of radius a inches.

9. An isosceles triangle of constant perimeter is revolved about 
its base to form a solid of revolution. What are the altitude and 
the base of the triangle when the volume of the solid generated is 
a maximum?

10. The combined length and girth of a parcel is 60 in. Find the 
maximum volume (1) when the parcel is rectangular with square 
cross section ; (2) when it is cylindrical.

11. A piece of galvanized iron & feet long and a feet wide is to be 
bent into a U-shaped water drain & feet long. If we assume that the 
cross section of the drain is exactly represented by a rectangle on 
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top of a semicircle, what must be the dimensions of the rectangle 
and the semicircle in order that the drain may have the greatest 
capacity (1) when the drain is closed on top? (2) when it is open 
on top?

12. A circular filter paper 12 in. in diameter is folded into a right 
circular cone. Find the height of the cone when it has the greatest 
volume.

Differentials. The derivative has been defined as the limit 

of and has been denoted by the symbol This symbol is 
Az dx

in the fractional form to suggest that it is the limit of a frac­
tion, but thus far we have made no attempt to treat it as a 
fraction.

It is, however, desirable in many cases to treat the derivative 
as a fraction and to consider dx and dy as separate quantities. 
These quantities are called differentials, and it is necessary to 
define them in such a manner that their quotient shall be the 
derivative. We shall begin by defining dx, when x is the inde­
pendent variable; that is, the variable whose values can be 
assumed independently of any other quantity.

We shall define dx, the differential of x, as a change in x which 
may have any magnitude, but which is generally regarded as 
small and may be made to approach zero as a limit. In other 
words, the differential of the independent variable x is identical 
with the increment of x ; that is,

dx = Ax. (1)
After dx has been defined, it is necessary to define dy so that 

its quotient by dx is the derivative. Therefore, if y = fix) and
dy
dx

— f'(x), we have dy = f'(x)dx. (2)
That is, the differential of the function y is equal to the derivative 
times the differential of the independent variable x.

In equation (2) the derivative appears as the coefficient of dx. 
For this reason it is sometimes called the differential coefficient.

It is important to notice the distinction between dy and Ay. 
The differential dy is not the limit of the increment Ay, since 
both dy and Ay have the same limit, zero. Neither is dy equal 
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to a very small increment Ay, since it generally differs in value 
from Ay. It is true, however, that when dy and Ay both become 
small, they differ by a quantity which is small compared with 
each of them. These statements may best be understood from 
the following examples :

Example 1. Let A be the area of a square with the side x, so that
A = x2.

If x is increased by Ax = dx, A is in­
creased by AA, where
AA = (x + dx)2 — x2 = 2xdx + (dz)2.

Now, by (2), dA = 2 x dx,
so that AA and dA differ by (dx)2.

Referring to Fig. 16, we see that dA 
is represented by the rectangles (1) and 
(2), while A A is represented by the rec­
tangles (1) and (2) together with the 
square (3) ; and it is obvious from the figure that the square (3) is 
very small compared with the rectangles (1) and (2), provided dx is 
taken small. For example, if x = 5 and dx = .001, the rectangles (1) 
and (2) have together the area 2 x dx = .01 and the square (3) has 
the area .000001.

Example 2. Let s = 16 t2,
where s is the distance traversed by a moving body in the time t.

If t is increased by At — dt, we have
As = 16(2 + dt)2 - 16 t2 = 32 t dt + 16(dt)2,

and, from (2), ds = 32 t dt ;
so that As and ds differ by 16(di)2- The term 16(dZ)2 is very small 
compared with the term 32 t dt, if dt is small. For example, if t = 4 
and dt = .001, then 32 t dt = .128, while 16(d/)2 = .000016.

In this problem As is the actual distance traversed in the time dt, 
and ds is the distance which would have been traversed if the body 
had moved throughout the time dt with the same velocity which it 
had at the beginning of the time dt.

In general, if y=f(x) and we make a graphical representa­
tion, we may have two cases, as shown in Figs. 17 and 18.
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In each figure, MN = PR — Az — dx and RQ — Ay, since RQ 
is the total change in y caused by a change of dx = MN in x. 
If PT is the tangent to the curve at P, then, by § 15, 

^=/'(x) = tan RPT;
dx

so that, by (2), dy — (tan RPT)(PR) — RT.
In Fig. 17, dy < Ay, and in Fig. 18, dy> Ay; but in each case 

the difference between dy and Ay is represented in magnitude 
by the length of QT.

This shows that RQ = Ay is the change in y as the point P is 
supposed to move along the curve y —f(x), while RT — dy is 

the change in the value of y as the point P is supposed to move 
along the tangent to that curve. Now, as a very small arc does 
not deviate much from its tangent, it is not hard to see graphi­
cally that if the point Q is taken close to P, the difference between 
RQ and RT, namely, QT, is very small compared with RT.

A more rigorous examination of the difference between the 
increment and the differential lies outside the range of this 
book.

EXERCISES

1. If y = xa — 4 x2 + 4 x — 1, find dy.
2. If y = xi + 5 a;3 — x2 + 7 x, find dy.
3. If V is the volume of a cube of edge x, find both AV and dV 

and interpret geometrically.
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4. If A is the area of a circle of radius r, find both AA and dA. 
Show that AA is the exact area of a ring of width dr, and that dA 
is the product of the inner circumference of the ring by its width.

5. If V is the volume of a sphere of radius r, find Av and dV. 
Show that AV is the exact volume of a spherical shell of thickness 
dr, and that dV is the product of the area of the inner surface of the 
shell by its thickness.

6. If s is the distance traversed by a moving body, t the time, 
and v the velocity, show that ds = v dt. How does ds differ from As ?

7. If y = x2 and x = 3, find the numerical difference between dy 
and Aw, with successive assumptions of dx = .01, dx = .001, and 
dx = .0001.

8. If y = x3 and x = 5, find the numerical difference between dy 
and At/ for dx = .001 and for dx = .0001.

9. For a circle of radius 8 in. compute the numerical difference 
between dA and AA corresponding to an increase of r by .001 in.

10. For a sphere of radius 2 ft. find the numerical difference 
between dV and AV when r is increased by 1 in.

19. Approximations. The previous section brings out the fact 
that the differential of y differs from the increment of y by a 
very small amount, which becomes less the smaller the incre­
ment of x is taken. The differential may be used, therefore, to 
make certain approximate calculations, especially when the 
question is to determine the effect upon a function caused by 
small changes in the independent variable. This is illustrated 
in the following examples :

Example 1. Find approximately the change in the area of a square 
of side 2 in. caused by an increase of .002 in. in the side.

Let x be the side of the square, A its area. Then
A = x2 and dA = 2 x dx.

Placing x = 2 and dx = .002, we find dA = .008, which is approxi­
mately the required change in the area.

If we wish to know how nearly correct the approximation is, we 
may compute AA — (2.002)2 — (2)2 = .008004, which is the exact 
change in A. Our approximate change is therefore in error by .000004, 
a very small amount.
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Example 2. Find approximately the volume of a sphere of radius 1.9.
The volume of a sphere of radius 2 is Ąp 7r, and the volume of 

the required sphere may be found by computing the change in the 
volume of a sphere of radius 2 caused by decreasing its radius by .1.

If r is the radius of the sphere and V its volume, we have
V = A 7rr3 and dV = 4 7rr2 dr.

Placing r = 2 and dr = — .1, we find V = -j- tt and dV - — 1.6 7r. 
Hence the volume of the required sphere is approximately

%2- tt - 1.6 tt = 9.0667 TT.
To find how much this is in error we may compute exactly the 

volume of the required sphere by the formula
V = I 7t(1.9)3 = 9.1453 tt.

The approximate volume is therefore in error by .0786 tt, which 
is less than 1 per cent of the true volume.

EXERCISES

1. The side of a square is measured as 4 ft. long. If this length 
is in error by 1 in., find approximately the resulting error in the area 
of the square.

2. The diameter of a spherical ball is measured as 2^ in., and the 
volume and the surface are computed. If an error of in. has been 
made in measuring the diameter, what is the approximate error in 
the volume and the surface?

3. The radius and the altitude of a right circular cone are meas­
ured as 3 in. and 5 in. respectively. What is the approximate error 
in the volume if an error of in. is made in the radius ? What is 
the approximate error in the volume if an error of in. is made in 
the altitude?

4. Find approximately the volume of a cube with 2.0003 in. on 
each edge.

5. The altitude of a certain right circular cone is the same as the 
radius of the base. Find approximately the volume of the cone if the 
altitude is 3.00003 in.

6. The distance s of a moving body from a fixed point of its path, 
at any time t, is given by the equation s = 16 t2 + 100 t — 50. Find 
approximately the distance when t — 4.0002.

7. Find the approximate value of x3 + x — 2 when x = 1.0001.
8. Find approximately the value of x*  + x2 + 4 when x = .99988.
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20. Integration. It is often desirable to reverse the process of 
differentiation. For example, if the velocity or the acceleration 
of a moving body is given, we may wish to find the distance 
traversed ; or, if the slope of a curve is given, we may wish to 
find the curve.

The inverse operation to differentiation is called integration, 
and the result of the operation is called an integral. In the case 
of a polynomial it may be performed by simply working the 
formulas of differentiation backwards. Thus, if n is a positive
integer and

= axn, 
dx

then axn+ï , /1A!)-„+l+c- m

The first term of this formula is justified by the fact that if it 
is differentiated, the result is exactly axn. The second term is 
justified by the fact that the derivative of a constant is zero. 
The constant C may have any value whatever and cannot be 
determined by the process of integration. It is called the 
constant of integration and can only be determined in a given 
problem by special information given in the problem. The ex­
amples will show how this is to be done.

Again, if

then y = ax + C. (2)
This is only a special case of (1) with n — 0. 
Finally, if

= doxn + ctix"-1 + • • • + a„_ix + an, 
dx
y = ą^+ą1x1+... + ą^+anX+a (3) 

n +1 n 2

Example 1. The velocity v with which a body is moving along a 
straight line AB (Fig. 19) is given by p p
the equation ---------------- hL_tJ-----------p

r = 16f+5. Fig. 19

How far will the.body move in the time from t = 2 to t = 4 ?
If when t = 2 the body is at Pi, and if when t = 4 it is at P2, we 

are to find Pi P2.



By hypothesis,

Therefore

INTEGRATION

s - 8 t2 + 5 t + C.

49

(1)
We have first to determine C. As a matter of fact, the value of C 

depends upon the point from which s is measured. This point is not 
given in the problem, so that we may take it anywhere we please. If 
s is measured from Pi, it follows that when

t — 2, s = 0.
Therefore, substituting in (1), we have

0 = 8(2)2 +5(2)+ C;
whence C = — 42,
and (1) becomes s = 8t2 + 51 — 42. (2)

This is the distance of the body from Pi at any time t. Accord­
ingly, it remains for us to substitute / = 4 in (2) to find the required 
distance PiP2. There results

P1P2 = 8(4)2 + 5(4) - 42 = 106.
If the velocity is in feet per second, the required distance is in feet.
Example 2. Required the curve the slope 

of which at any point is twice the abscissa 
of the point.

By hypothesis, ~^ = 2 x.

Therefore y = x2 + C. (1)
Any curve whose equation can be de­

rived from (1) by giving C a definite value 
satisfies the condition of the problem 
(Fig. 20). If it is required that the curve 
should pass through the point (2, 3), we 
have, from (1), 3 = 4 _|_ p.

whence C = — 1,
and therefore the equation of the curve is

y = x2 — 1.
But if it is required that the curve should pass through (— 3, 10),

we have, from (1), 10 = 9 + C;
whence
and the equation is

C = l, - 
y = x2 + 1.
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EXERCISES

In the following problems v is the velocity, in feet per second, of 
a moving body at any time t :

1. If v = 32 t — 64, how far will the body move in the time from 
t = 2toi = 5?

2. If v = 3 t2 + 4 t + 3, how far will the body move in the time 
from t = 1 to t = 3 ?

3. If v = 201 — 25, how far will the body move in the fourth second?
4. If v = t2 + 2 t + 6, how far will the body move in the fifth 

and sixth seconds ?
5. If v = 160 — 32 t, how far will the body move before v = 0 ?
6. A curve passes through the point (—1, 1), and its slope at 

any point (x, y) is 3 more than twice the abscissa of the point. 
What is its equation ?

7. The slope of a curve at any point (x, y) is 3 x2 + x — 4, and 
the curve passes through the point (2, 2). What is its equation?

8. The slope of a curve at any point (x, y) is 6 — 5 x — x2, and 
the curve passes through the point (— 6, 1). What is its equation?

9. A curve passes through the point (— 5, 2), and its slope at any 
point (x, y) is one half the abscissa of the point. What is its equation ?

10. A curve passes through the point (— 6, — 4), and its slope at 
any point (x, y) is x2 — x + 1. What is its equation?

GENERAL EXERCISES

Find the derivatives of the following functions from the definition :
1 2 + 3 x
K 1 - x '

2.^- 
a 4- x

4
x2 - 1

5. Vx.*

7. Vx2 4- 1.*

8. Prove from the definition that the derivative of — is ——, •xn xn + 1
9. By expanding and differentiating, prove that the derivative of 

(x + a)n is n(x + a)n_1, where n is a positive integer.
10. By expanding and differentiating, prove that the derivative of 

(x2 4- a2)" is 2 nx(x2 4- a2)"-1, where n is a positive integer.

*Hint. In these examples make use of the relation VÂ — Vfi =— 
VÂ + VB
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11. A particle is moving along a straight line so that at any time 
t its distance s from a fixed point A of the line is given by the 
equation s = t3 — 2 t2 — 4 t + 8. During what intervals of time is the 
body moving toward A ?

12. A particle is moving in a straight line in such a manner that 
its distance x from a fixed point A of the straight line, at any time t, 
is given by the equation x = t3 — 9 t2 + 15 t + 25. When will the 
particle be approaching A ?

13. A particle is moving along a straight line so that at any time t its 
velocity in feet per second is given by the equation v — 16 + 2 t — 3 t2. 
How far does the body move in the direction in which s is increasing ?

14. At any time t the velocity v of a body is given by the equation 
v = t2 — 6 t 4- 5. When is the body moving in the direction in which 
s is decreasing ? How far does it move in that direction ?

15. If a stone is thrown up from the surface of the earth with a 
velocity of 300 ft. per second, the distance traversed in t seconds is 
given by the equation s = 300 t — 16 t2. Find when the stone moves 
up and when down.

16. The distance s of a certain moving body from a fixed point in 
its path is given by the equation s = 10 + 5 t — 5 t2 — 10 t3, where t 
is the time. When is its velocity increasing and when decreasing ?

17. At any time t the distance of a certain moving body from a 
fixed point in its path is given by the equation s = t3 — t2 — 5 t + 6. 
When is its velocity increasing and when decreasing?

18. At any time t the distance s of a certain moving body from a 
fixed point in its path is given by the equation s = t3 + 2 t2 — 551 + 60. 
When is the speed of the body increasing and when decreasing ?

19. At any time t the distance s of a certain moving body from a 
fixed point in its path is given by the equation s = 48 + 24 t — 3t2 — t3. 
When is its speed increasing and when decreasing ?

20. Show that the equation of any straight line not parallel or 
perpendicular to OX may be written y = m(x — a), where m is the 
slope and a the intercept on OX.

21. Show that if a straight line intersects OX at a distance a 
from O and intersects OY at a distance b from O, its equation may 
be written - + ^ = 1.

a b
22. Show that two straight lines whose equations agree in the 

coefficients of x and y are parallel.
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23. Show that two straight lines are perpendicular when their 
equations are such that the coefficient of x in one is the negative 
of the coefficient of y in the other, and the coefficient of y in the 
first is the coefficient of x in the other.

24. Find the equation of a straight line through the point (xi, yi) 
parallel to the line Ax + By + C = 0.

25. Find the equation of a straight line through the point (xi, yi) 
perpendicular to the line Ax + By + C = 0.

?6. Find the equation of the straight line determined by the two 
points (xj, yi) and (x2, 7/2).

27. Find the turning-points of the curve y — 27 + 9 x — 3 x2 — x3, 
and draw the graph.

28. Find the turning-points of the curve t/ = 4x3 — 7x2 — 6x+5, 
and draw the graph.

29. Find the turning-points of the curve y = 2 x3 + 3 x2 — 36 x, 
and draw the graph.

30. Find the turning-point of the curve y = ax2 + bx + c. From 
this deduce the condition that the equation ax2 + bx 4- c = 0 has 
equal roots.

31. Find the turning-points of the curve y = ax3 + bx + c, and 
find the conditions that there should be two or none. Hence show 
that if a and b have the same sign the equation ax3 + bx + c = 0 
has only one real root.

32. Show graphically that the cubic equation ax3 + bx2 + ex + d = 0 
has always at least one real root.

33. Find the equations of the tangents to the curve y = x3 + x 
which are perpendicular to the line 2 x+ 8 ÿ - 7 = 0.

34. Tangents are drawn to the curve ÿ = 4x3-7x2-6x+5 
at the points for which x = — 1 and x = 1, respectively. Find the 
acute angle between these tangents.

35. Find the points of the curve t/ = 2 + 3x + 4x2 — x3 where 
the tangents make an angle of 45° with OX.

36. Find the area of the triangle included between the coordinate 
axes and the straight line tangent to the curve y = x3 + 4 x2 at the 
point for which x = 2.

37. Find the equations of the tangent lines drawn to the curve 
y = 2 x3 + 3 x2 — 3 x at the points where the ordinate is twice the 
abscissa.
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38. Find the area of the triangle formed by the axis of x and the 
tangents to the curve y = 4 — x2 at the points for which x = — 2 
and x = 2.

39. Show that the equation of the tangent drawn to the curve 
y — ax2 + 2 bx + c at the point (xi, yi) is y = 2(axi + &)x — axi2 + c.

40. Show that the equation of the tangent drawn to the curve 
y = x3 + ax + b at the point (xi, yi) is y = (3 Xi2 + a)x — 2 Xi3 + b.

41. Find the equation of the tangent to the curve y = ax2 at the 
point Pi(xi, ÿi). If A is the point where the tangent intersects OY 
and N is the foot of the perpendicular from Pi to OY, show that O 
is halfway between A and N.

42. A length I of wire is to be cut into two portions which are to 
be bent into the forms of a circle and a square, respectively. Show 
that the sum of the areas of these figures will be least when the wire 
is cut in the ratio t : 4.

43. A log in the form of a frustum of a cone is 10 ft. long, the 
diameters of the bases being 4 ft. and 2 ft. A beam with a square 
cross section is cut from it so that the axis of the beam coincides 
with the axis of the log. Find the beam of greatest volume that 
can be so cut.

44. Required the right circular cone of greatest volume which can 
be inscribed in a given sphere.

45. The total surface of a regular triangular prism is to be k. Find 
its altitude and the side of its base when its volume is a maximum.

46. A piece of wire 9 in. long is cut into five pieces, two of one 
length and three of another. Each of the two equal pieces is bent into 
an equilateral triangle, and the vertices of the two triangles are con­
nected by the remaining three pieces so as to form a regular triangular 
prism. How is the wire cut when the prism has the largest volume ?

47. The perimeter of a rectangle is constant and equal to 30 in. 
What must be its dimensions when the volume of the right circular 
cylinder formed by revolving the rectangle about one of its sides is a 
maximum ?

48. A post is in the form of a right circular cylinder of radius r 
surmounted by a right circular cone of altitude | r and base equal 
to that of the cylinder. If the outside area of the post is 9 7T sq. ft., 
what is its radius when the volume is a maximum ?

49. From a rectangle whose perimeter is 120 in. a semicircle is 
cut, the diameter of the semicircle coinciding with one of the 
shorter sides of the rectangle. What are the dimensions of the rec­
tangle when the area of the remainder of the rectangle is a maximum ?
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50. A piece of wire 36 in. long is to be cut into two pieces, one of 
which is to be bent into the form of a square and the other into the 
form of an equilateral triangle. Prove that the sum of the areas 
of the square and the triangle is a minimum when the side of the 
square is to the side of the triangle as 1 : V3.

51. The hypotenuse of a right triangle is 10 in. What must be 
the lengths of the other two sides of the triangle in order that the 
volume of the solid formed by revolving the triangle about the 
hypotenuse shall be a maximum?

52. Compute the difference between AA and dA for the area A of 
a circle of radius 5, corresponding to an increase of .01 in the radius.

53. Compute the difference between A V and dV for the volume V 
of a sphere of radius 5, corresponding to an increase of .01 in the 
radius.

54. If a cubical shell is formed by increasing each edge of a cube 
by dx, where x is the length of an edge, show that the volume of 
the shell is approximately equal to its inside surface multiplied by 
its thickness.

55. Show that the volume of a thin cylindrical shell is approxi­
mately equal to the area of its inner surface times its thickness.

56. If V is the volume and S the curved area of a right circular 
cone the radius of whose base is r and whose vertical angle is 2 a, 
show that V = I irr3 ctn a and S = irr2 csc a. Thence show that the 
volume of a thin conical shell is approximately equal to the area of 
its inner surface multiplied by its thickness.

57. A solid sphere of radius x is cut out of a cube of edge 2 x. 
If by error of measurement the value of x is made too small by 1 
per cent, find approximately the percentage of the error caused in 
the amount of material left in the hollow cube.

58. Find an expression for the area of a square inscribed in a 
circle of radius r. Find approximately the area remaining if such 
a square is cut out of a circle of radius 3.99.

59. The height of a post in the form of a right circular cylinder 
is known to be eight times its diameter. By use of differentials find 
approximately the volume of the post if its diameter is 5.98 in.

60. The strength of a rectangular beam varies as the product of 
its breadth and the square of its depth. A rectangular beam of 
breadth 2.99 in. is cut from a circular cylindrical log of 6-inch ra­
dius. By using differentials find approximately the strength of this 
beam.
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61. A rough wooden model is in the form of a regular quadran­
gular pyramid 3 in. tall and 3 in. on each side of the base. After it 
is smoothed down, its dimensions are all decreased by .01 in. What 
is the approximate volume of the material‘removed?

62. The edge of a cube is 1.999 in. long. Find the approximate 
volume.

63. The distance s of a body from a fixed point in its path at 
any time t is given by s = 100 — 45 t + 12 t2 — t3. Find approxi­
mately how far the body moves in the time from t = 4 to t = 4.2.

64. A particle moves in a straight line according to the law 
s = t3 + 3 t2 — 6 t + 4, where s is in feet and t is in seconds. Its 
velocity when t = 10 is to be found. If an error of .01 is made in 
measuring t, what is the approximate error in the computed velocity ?

65. Find approximately the value of x4 + 4 x2 + 1 when x = 2.0003 
and when x = 1.9997.

66. The edge of a cube is 2.0001 in. Find approximately its surface.
67. If t is time in seconds, v the velocity of a moving body in 

feet per second, and v = 200 — 32 t, how far will the body move in 
the first 5 sec. ?

68. If v = 200 — 32 t, where v is the velocity of a moving body 
in feet per second and t is time in seconds, how far will the body 
move in the fifth second ?

69. A curve passes through the point (2, — 3), and its slope at 
any point is equal to 3 more than twice the abscissa of the point. 
Find the equation of the curve.

70. At any point of a curve its slope is 8 — 2 x — 3 x2. Find the 
equation of the curve which passes through the point (— 2, 4), and 
sketch the curve.

71. The slope of a curve at any point is 3 x2 — 2 x — 1, and the 
curve passes through the point (1, 0). Find the equation of the 
curve and sketch the curve.

72. The slope of a curve at any point is 12 — 3 x2, and the curve 
crosses the axis of x at the point x = 4. Find the equation of the 
curve and sketch the curve.



CHAPTER III
SUMMATION

21. Area. An important application of integration occurs in 
the problem of finding an area bounded as follows :

Let RS (Fig. 21) be any curve with the equation y = f(x), and 
let ED and BC be any two ordinates. It is required to find the 
area bounded by the curve 
RS, the two ordinates ED 
and BC, and the axis of x.

Take MP, any variable or­
dinate between ED and BC, 
and let us denote by A the 
area EMPD bounded by the 
curve, the axis of x, the fixed 
ordinate ED, and the vari­
able ordinate MP.

It is evident that as val­
ues are assigned to x = OM,
different positions oi MP and corresponding values of A are 
determined. Hence A is a function of x. To determine this

y afunction we shall first find 5- • 
ax

Take MN = Ax and draw the corresponding ordinate NQ. 
Then the area MNQP — AA. If L is the length of the longest 
ordinate of the curve between MP and NQ, and I is the length 
of the shortest ordinate in the same region, it is evident that

I Ax < AA < L Ax,
for L Ax is the area of a rectangle entirely surrounding A A, and 
I Ax is the area of a rectangle entirely included in A A.

Dividing by Ax, we have
I < < L.

Ax
56
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As Ax approaches zero, NQ approaches coincidence with MP, 
and hence I and L, which are always between NQ and MP, 
approach coincidence with MP. Hence at the limit we have

^ = MP = ÿ=J(4 (1)

Therefore, by integrating,

A = F(x).+ C, (2)
where F(x) is used simply as a symbol for any function whose 
derivative is /(x).

We must now find C. As in § 20, the value of C is not deter­
mined by the integration but depends upon the position of the 
left-hand boundary from which A is measured. If we wish to 
measure the area from ED and let OE = a, then when MP 
coincides with ED, the area is zero. That is, when

x = a, A = 0.

Substituting in (2), we have

0 = F(a) + C;
whence C = — F(a),

and therefore (2) becomes

A = F(x) - F(a) (3)
and we have A expressed as a function of x.

If in (3) we place x — b, we have

A = F(b) - F(a), (4)
a formula in which A is now the area bounded on the left by the 
ordinate x = a and on the right by the ordinate x — b. If, in 
Fig. 21, OB = b, then (4) is the area EBCD which we set out to 
find.

In solving problems the student is advised to begin with 
formula (1) and follow the method of the text, as shown in the 
following example :

Example. Find the area bounded by the axis of x, the curve 
2/ = i x2, and the ordinates x = 1 and x = 3.
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In Fig. 22, BE is the line x 
required area is the area BCDE. 
Then, by (1),

dA 1 ,
=QX > dx 3

whence A = x3 4- C.
When x = 1, A = 0, and there­

fore 0 = i + C;
whence C = —
and A — x3 —

Finally, when x — 3,
A=|(3)8-| = 2|.

1, CD is the line x = 3, and the

EXERCISES

1. Find the area bounded by the curve y = 10 x — 3 x2, the axis 
of x, and the lines x = 1 and x = 3.

2. Find the area bounded by the curve y = x2 — 6 x + 18, the axis 
of x, and the lines x = — 4 and x = — 1.*

3. Find the area bounded by the curve y = 16 + 12 x — x3, the 
axis of x, and the lines x = — 1 and x — 3.

4. Find the area bounded by the curve y + x2 — 4 = 0 and the 
axis of x.

5. Find the area bounded by the curve ?/-|-2x4-x2 = 0 and the 
axis of x.

6. Find each of the areas bounded by the curve y = 6 x2 — x3, 
the axis of x, and the line x = 2.

7. Find the area bounded by the axis of x, the axis of y, and the 
curve 9ÿ = x2 + 4x + 4.

8. Find the area bounded by the curve y = 8 + 4x — 2x2 — x3 
and the axis of x.

22. Area by summation. Let us consider the problem of find­
ing the area bounded by the curve y = ^x2, the axis of x, and the 
ordinates x — 2 and x = 3 (Fig. 23). This may be solved by the 
method of § 21 ; but we wish to show that it may also be con­



AREA 59

/

sidered as a problem in summation, since the area is approxi­
mately equal to the sum of the areas of a number of rectangles 
constructed as follows :

We divide the axis of x between x = 2 and x = 3 into 10 equal
9 _  9

parts, each of which we call Ax, so that Ax = — A = .1. If Xi 
is the first point of divi- y 
sion, X2 the second point, 
and so on, and rectangles 
are constructed as shown 
in the figure, then the 
altitude of the first rec­
tangle is |(2)2, that of 
the second rectangle is 
A X!2 = i(2.1)2 = .882, 
and so on. The area of 
the first rectangle is 
I (2)2 Ax = .08, that of 
the second rectangle is | Xi2 Ax = |(2.1)2 Ax = .0882, and so on.

Accordingly we make the following calculation :

1.2170

x = 2, |(2)2Ax = .08
Xi - 2.1, |(X!)2Ax = .0882
X2 = 2.2, |(x2)2Ax = .0968
x3 = 2.3, l(x3)2 Ax = .1058
X4 = 2.4, |(x4)2Ax = .1152
x5 = 2.5, |(x5)2Ax = .1250
x6 = 2.6, |(x6)2Ax = .1352
x7 = 2.7, |(x7)2 Ax = .1458
x8 — 2.8, |(x8)2Ax = .1568
x9 = 2.9, |(x9)2 Ax = .1682

This is a first approximation to the area.
For a better approximation the axis of x between x — 2 and 

x = 3 may be divided into 20 parts with Ax = .05. The result 
is 1.2418. If the base of the required figure is divided into 100 
parts with Ax — .01, the sum of the areas of the 100 rectangles 
constructed as above is 1.26167.
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The larger the number of parts into which the base of the 
figure is divided, the more nearly is the required area obtained. 
In fact, the required area is the limit approached as the number
of parts is indefinitely in­
creased and the size of Az 
approaches zero.

We shall now proceed to 
generalize the problem just 
handled. Let LK (Fig. 24) 
be a curve with equation 
y = f(x), and let OE = a and 
OB = b. It is required to 
find the area bounded by the 
curve LK, the axis of x, and 
the ordinates at E and B.

For convenience we assume in the first place that a < b and 
that f(x) is positive for all values of x between a and b. We 
will divide the line EB into n equal parts by placing Ax = ~ a 

n 
and laying off lengths EM\ = M1M2 — M2M3 = • • • = M„_iB 
= Ax (in Fig. 24, n — 9).

LetOMi =Xi, 0M2 = x2, ■ ■ -,OMn-i=xn.t. Draw ED=f(a), 
M1P1 =f(xi'), M2P2 — f(X2), ■ ■ -, Mn^iPn_! = f(xn_i), and BC ; 
also DRlt P1R2, P2R3, ■ ■ -, Pn-iRn, parallel to OX. Then

f(a)Ax — the area of the rectangle EDR1M1, 
f(xi)Ax = the area of the rectangle M1P1R2M2, 
f(x2)Ax — the area of the rectangle M2P2R3M3,

f(xn_i)Ax = the area of the rectangle Mn-iPn_iRnB.

The sum

/(a)Ax +f(x^Ax +f(x2)Ax 4--------F f(xn_i)Ax (1)

is then the sum of the areas of these rectangles and equal to 
the area of the polygon EDRCP1R2 ■ ■ • Rn-\Pn-vRnB. It is evi­
dent that the limit of this sum as n is indefinitely increased is 
the area bounded by ED, EB, BC, and the arc DC.
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by the symbol

The sum (1) is expressed concisely by the notation

X /(x,)Ax, 
i = 0

where 2 (sigma), the Greek form of the letter S, stands for the 
word "sum,” and the whole expression indicates that the sum 
is to be taken of all terms obtained from /(x,)Ax by giving to i 
in succession the values 0, 1, 2, 3, • • -, n — 1, where xo = a.

The limit of this sum as n is indefinitely increased is expressed 

jC /(x)dx,

where J'is a modified form of S ; that is,

Jz»6 i=n-l
i f(x)dx = Lim V /(xt)Ax,

and therefore if we denote the area EBCD by A,

A = J' f(x)dx.

(2)

(3)

We have found in § 21 that the area EBCD is F(b) — F(a), 
and shall express this as [F(x)]b, where F(x) is any function 
whose derivative is/(x). We have then, finally,

A =£f(x)dx = [F(x)]b = F(b) - F Ça). (4)

It is evident that the result is not vitiated if ED or BC is of 
length zero.

The expression fÇx)dx which appears in formula (3) is called 
the element of area. It is obviously equal to dFÇx). In fact, it 
follows at once from § 21 that

dA = ydx =f(x)dx. (5)

In applying (4) it is usually desirable to take a as the smaller 
of the two quantities a and b. Then Ax in (2) is positive. If the 
curve y =/(x) lies above the axis of x, as in Fig. 24, all the fac­
tors/(x,) are positive and all the products/(x,) Ax in (2) are posi­
tive, and hence the area A in (4) is positive. If the curve lies 
entirely below the axis of x,/(xt) is negative, all products/(x,) Ax 
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are negative, and hence A computed from (4) has a negative 
sign. If the curve lies partly above and partly below the axis 
of x, it is necessary to find each area separately, as formula (4) 
would give the algebraic sum of £he areas (see Example 2).

Example 1. The example of the text may now be completely 
solved. The required area is

r3 x2 , _rx3l3 27 8 _19_1 4X 5 dx L15J2 15 15 15 15‘

Hence part of the area

expect to find the result of

Example 2. Find the area bounded by the curve y = x3 — x2 — 6 x 
and the axis of x.

Plotting the curve (Fig. 25), we see that it crosses the axis of x 
at the points B(— 2, 0), 0(0, 0), and C(3, 0). 
is above the axis of x and part below. 
Accordingly, we shall find it necessary 
to solve the problem in two parts, first 
finding the area above the axis of x 
and then finding that below. To find 
the first area we proceed as in the text, 
dividing the area up into elementary 
rectangles for each of which

dA = y dx — (x3 — x2 — 6 x)dx ;
r° whence A = I (x3 — x2 — 6 x)dx

= [jx4- |x3-3x2]°
= 0 —[f (—2)4 —1(—2)3 —3(—2)2] = 5|.

Similarly, for the area below the axis 
of x we find, as before,

dA — y dx = (x3 — x2 — 6 x)dx.
But in this case y = x3 — x2 — 6 x is 

negative and hence dA is negative, for 
we are making x vary from 0 to 3, and 
therefore dx is positive. Therefore we 
the summation negative. In fact, we have

A =fg (x3 — x2 - 6 x)dx = [| x4 - I x3 — 3 x2]®

= Eï(3)4 - |(3)3 - 3(3)2] - 0 = - 151.
As we are asked to compute the total area bounded by the curve 
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and the axis of x, we discard the negative sign in the last summation 
and add 5^ and 15-|, thus obtaining 21^ as the required result.

If we had computed the definite integral
f3(x3 — x2 — 6 x~)dx,

J — 2
we should have obtained the result — 10 Ą> which is the algebraic 
sum of the two portions of area computed separately.

Example 3. Find the area bounded by the two curves y = x2 and

O
Fig. 26

y = 8 — X2.
We draw the curves (Fig. 26)

y = x2 
and y = 8 -
and by solving their equations we 
find that they intersect at the 
points Pi(2, 4) and P2(— 2, 4).

The required area OP1BP2O is 
evidently twice the area OPiBO, 
since both curves are symmetrical Pi 
with respect to O Y. Accordingly, we 
shall find the area OPiBO and mul­
tiply it by 2. This latter area may 
be found by subtracting the area 
ON1P1O from the area ON1P1BO, 
each of these areas being found as 
in the previous example; or we 
may proceed as follows :

Divide ONi into n parts dx, and 
through the points of division draw 
straight lines parallel to 0 Y, inter­
secting both curves. Let one of these lines be M1Q1Q2. Through the 
points Qi and Qi draw straight lines parallel to OX until they meet 
the next vertical line to the right, forming the rectangle Q1RSQ2- 
The area of such a rectangle may be taken as dA and may be com­
puted as follows : its base is dx and its altitude is Q1Q2 = M1Q2 — M1Q1 
= (8 — x2) — x2 = 8 — 2 x2 ; for M1Q2 is the ordinate of a point 
on the curve (2) and M1Q1 the ordinate of a point on (1).

Therefore

■X

dA = (8 — 2 x2)dx ;
A = J2(8 - 2 x2)dx = [8 x - f x3]*  

= [16 - 1(16)] - 0 = 10|.
Finally, the required area is 2(10|) = 21|.

whence
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EXERCISES

1. Find the area bounded by the curve 3 y — x2 — 3 = 0, the 
axis of x, and the lines x = — 3 and x = 3.

2. Find the area bounded by the curve y = x3 — 5 x2 + 3 x + 10, 
the axis of x, and the lines x = 1 and x = 2.

3. Find the area bounded by the curve y — 16 x — 8 x2 + x3 and 
the axis of x.

4. Find the area bounded by the axis of x and the curve 
3 ÿ = 9 — x2.

5. Find the area bounded by the curve ?/ = 4x2 — 4x—15 and 
the axis of x.

6. Find the area bounded below by the axis of x and above by 
the curve y = x3 — x2 — 4 x + 4.

7. Find the area bounded by the curve y =’4 x3 — 3 x2 — 16 x + 12 
and the axis of x.

8. Find the area bounded by the curve x2 + 3y—7 = 0 and the 
straight line 2 x + 3 ÿ - 4 = 0.

9. Find the area bounded by the curve 3 y = x2 + 5 and the 
straight line x — 3t/ + 7 = 0.

10. Find the area of the crescent-shaped figure bounded by the 
two curves y = x2 + 13 and y = 2 x2 + 4.

11. Find the area bounded by the curves y = 2 x2 and y = 36 — 2 x2.
12. Find the area bounded by the curves 4 y — x2 — 4 x - 4 = 0 

and y = 1 — 4 x — x2.

23. The definite integral. The formula 

(1)

obtained by the study of an area, may be given a much more 
general application. For if /(x) is any function of x whatever, 
it may be graphically represented by the curve y = /(x). The 
rectangles of Fig. 24 are then the graphical representations of 

the products f(x)dx, and the symbol I /(x)dx represents the
*za

limit of the sum of these products. We may accordingly say :
Any problem which requires the determination of the limit of 

the sum of products of the type f(x)dx may be solved by the use of 
formula (1).
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The limit of the sum (1), § 22, which is denoted by Ç f(z)dx,

J a
is called a definite integral, and the numbers a and b are called 
the lower limit and the upper limit,*  respectively, of the definite 
integral. The quantity f(x)dx is called the element of integration.

On the other hand, the symbol f(x)dx is called an indefinite 

integral and indicates the process of integration, as already 
defined in § 20.

Thus, from that section, we have
Çaxndx = ax^ + C

J n +1
J'adx = ax f- C, 

and, in general, J'f^dx = F(x) + C, 

where F(x) is any function whose derivative is/(x).
We may therefore express formula (1) in the following rule : 
To find the value of ÿ f(x)dx, evaluate J flx)dx , substitute 

x — b and x = a successively, and subtract the latter result from 
the former.

It is to be noticed that in evaluating j' f(x)dx the constant 

of integration is to be omitted, because if it is added, it disap­
pears in the subtraction, since

[F(b) + C] - [F(a) + C] = F(b) - F(a).

Let us illustrate this by considering again the problem, al­
ready solved in § 20, of determining the distance traveled in the 
time from t = h to t = t2 by a body whose velocity v is known.
Since

we have ds = vdt,
which is approximately the distance traveled in a small interval 
of time dt. Let the whole time from t = ti to t = t2 be divided

* The student should notice that the word ’’limit ” is here used in a sense quite dif­
ferent from that in which it is used when a variable is said to approach a limit (§ 1). 
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into a number of intervals each equal to dt. Then the total dis­
tance traveled is equal to the sum of the distances traveled in 
the several intervals dt, and hence is equal approximately to the 
sum of the several terms v dt. This approximation becomes better 
as the size of the intervals dt becomes smaller and their number 
larger, and we conclude that the limit of the sum of the terms v dt 
is the actual distance traveled by the body. Hence we have, if 
s is the total distance traveled,

If, now, we know v in terms of t, we may apply formula (1), 
but, as in the case of area, we must determine whether or not 
v has the same sign throughout the interval of time considered.

Example 1. If v = 16 t + 5, find the distance traveled in the time 
from.1 = 2 to t = 4.

Since v is positive throughout the interval of time from t = 2 
to t — 4, we have directly

s = f 4(16 t + 5)df = [8 t2 + 5 = 106.
•J 2 2 J-

Example 2. If v = 10 t — 30, find the distance traveled in the time 
from 1 = 1 to i = 4.

Writing v = 10(1 — 3), we see that v is negative before t = 3, and 
accordingly we set

si = f 3(10 t - 30)dl = [5 t2 - 30 f]3 = - 20, 
Ji i

and s2= f4(10i-30)dl = [5i2-30fP = 5.
J 3 3

Hence the total distance traveled is 25, 20 in the direction in 
which s decreases and 5 in the direction in which s increases.

EXERCISES

1. At any time t the velocity of a moving body is 6 t2 + 2 t ft. 
per second. How far will it move in the first 4 sec. ?

2. How far will the body in Ex. 1 move during the sixth second?
3. At any time t the velocity of a moving body is 4 + 31 — t2 ft. per 

second. Show that this velocity is positive during the interval from 
t = — 1 to t = 4, and find how far the body moves during that interval.
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4. At any time t the velocity of a moving body is 4 t2 — 6 t — 4 ft. 
per second. During what interval of time is the velocity negative, 
and how far will the body move during that interval?

5. At any time t the velocity of a moving body in feet per second 
is 64 — 2 t. How many feet will the body move in the first 40 sec. ?

6. At any time the velocity of a moving body in feet per second 
is 3 t2 — 20 t + 32. How far does the body move in the time from 
f = 3 to t = 5?

7. The number of foot-pounds of work done in lifting a weight is 
the product of the weight in pounds and the distance in feet through 
which the weight is lifted. A cubic foot of water weighs 621 lb. 
Compute the work done in emptying a cylindrical tank of depth 
6 ft. and radius 2 ft., considering it as the limit of the sum of the 
pieces of work done in lifting each thin layer of water to the top of 
the tank.

8. By the method of Ex. 7 find the work done in pumping to a 
distance of 10 ft. above the top of the tank the contents of a cylin­
drical tank of depth 10 ft. and radius 4 ft.

9. By the method of Ex. 7 find the work done in emptying of 
water a full conical receiver of altitude 12 ft. and radius 4 ft., the ver­
tex of the cone being down and the water being emptied from the top.

24. Pressure. It is shown in physics that the pressure on one 
side of a plane surface of area A, immersed in a liquid at a 
uniform depth of h units below the surface of the liquid, is equal 
to whA, where w is the weight of a unit volume of the liquid. 
This may be remembered by noticing that whA is the weight of 
the column of the liquid which would be supported by the area A.

Since the pressure is the same in all directions, we can also 
determine the pressure on one side of a plane surface which is 
perpendicular to the surface of the 
liquid and hence is not at a uniform 
depth.

Let ABC (Fig. 27) represent such a 
surface and RS the line of intersection 
of the plane of ABC with the surface 
of the liquid. Divide ABC into strips 
by drawing straight lines parallel to RS. Call the area of one 
of these strips dA, as in § 22, and the depth of one edge h. Then, 
since the strip is narrow and horizontal, the depth of every point 

R--------------------------------------------s



68 SUMMATION

differs only slightly from h, and the pressure on the strip is then 
approximately wh dA. Taking P as the total pressure, we write 

dP - wh dA.

The total pressure P is the sum of the pressures on the several 
strips and is therefore the limit of the sum of terms of the form 
wh dA, the limit being approached as the number of the strips is 
indefinitely increased and the width of each indefinitely de­
creased. Therefore r

P — I wh dA,

where the limits of integration are to be taken so as to include 
the whole area on which the pressure is to be determined. To 
evaluate the integral it is necessary to express both h and dA 
in terms of the same variable.

Example 1. Find the pressure on one side of a rectangle BCDE 
(Fig. 28), where the sides BC and ED are each 4 ft. long, the sides BE 
and CD are each 3 ft. long, immersed in water so that the plane of 
the rectangle is perpendicular to 
the surface of the water, and the 
side BC is parallel to the surface 
of the water and 2 ft. below it.

In Fig. 28, LK is the line of 
intersection of the surface of the 
water and the plane of the rec­
tangle. Let O be the point of inter­
section oi LK and BE produced. 
Then, if x is measured downward 
from 0 along BE, x has the value 
2 at the point B and the value 5 
at the point E.

We now divide BE into parts dx, and through the points of divi­
sion draw straight lines parallel to BC, thus dividing the given 
rectangle into elementary rectangles such as MN RS.

Therefore dA = area of MNRS = MN ■ MS = 4 dx.
Since MN is at a distance x below LK, the pressure on the ele­

mentary rectangle MNRS is approximately wx(4 dx). Accordingly, 
we have dP = A wx dx
and P =f iwxdx = [2 wx2]® = 2 w(5)2 - 2 w(2)2 = 42 w.
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For water, w = 62| lb. = T.
Hence we have, finally, P = 2625 lb. = 1 j5g T.

Example 2. The base CD (Fig. 29) of a triangle BCD is 7 ft., and 
its altitude from B to CD is 5 ft. This triangle is immersed in water 
with its plane perpendicular 
to the surface of the water 
and with CD parallel to the 
surface and 1 ft. below it, B 
being below CD. Find the 
total pressure on one side of 
this triangle.

Let LK represent the line 
of intersection of the plane of 
the triangle and the surface 
of the water. Then B is 6 ft. 
below LK. Let BX be per- Fig. 29
pendicular to LK and intersect CD at T. We will measure distances 
from B in the direction BX and denote them by x. Then, at the 
point B, x has the value 0 ; and at T, x has the value 5.

Divide the distance B T into parts dx ; through the points of 
division draw straight lines parallel to CD, and on each of these 
lines as lower base construct a rectangle such as MNRS, where E 
and F are two consecutive points of division on BX.

Then

and, by similar triangles,

BE = x,
EF - dx, 

MN _ BE . 
CD BT ’

whence MN _x
7 5

and MN = ^x.
Then dA = the area of MNRS = xdx.
Since B is 6 ft. below LK, and BE = x, it follows that E is (6 — x) ft. 

below LK.
Hence the pressure on the rectangle is approximately

dP = (£ x dx) (6 — x)w = (-4S2- WX- ! wx2)dx,
and P (^2- wx-j- wx2)dx = [^- wx2 — wx3]®

= (105 w - Lp w) - 0 = l j o w = 2916f lb. = T.
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EXERCISES

v 1. A gate in the side of a dam is in the form of a square 3 ft. 
on a side, the upper side being parallel to and 12 ft. below the sur­
face of the water in the reservoir. What is the pressure on the 
gate?

2. Find the total pressure on one side of a triangle of base 3 ft. 
and altitude 9 ft., submerged in water so that the altitude is vertical 
and the vertex is in the surface of the water.

3. Find the total pressure on one side of a triangle of base 8 ft. 
and altitude 6 ft., submerged in water so that the base is horizontal, 
the altitude vertical, and the vertex above the base and 8 ft. below 
the surface of the water.

4. The base of an isosceles triangle is 6 ft. and the equal sides 
are each 5 ft. The triangle is completely immersed in water, its 
base being parallel to and 8 ft. below the surface of the water, 
its altitude being perpendicular to the surface of the water, and its 
vertex being above the base. Find the total pressure on one side 
of the triangle.

5. Find the pressure on one side of an equilateral triangle 8 ft. 
on a side, if it is partly submerged in water so that one vertex is 
2 ft. above the surface of the water, the corresponding altitude being 
perpendicular to the surface of the water.

6. The gate in Ex. 1 is strengthened by a brace which runs 
diagonally from one corner to another. Find the pressure on each 
of the two portions of the gate — one above, the other below, the 
brace.

7. A dam is in the form of a trapezoid, with its two horizontal 
sides 200 and 100 ft. respectively, the longer side being at the top ; 
and the height is 20 ft. What is the pressure on the dam when the 
water is level with the top of the dam ?

8. Compare the pressures on the two portions of the dam in 
Ex. 7 respectively above and below a straight line parallel to the 
top and the bottom of the dam and midway between them.

9. What is the pressure on the dam of Ex. 7 when the water 
reaches halfway to the top of the dam ?

10. If it had been necessary to construct the dam of Ex. 7 with 
the shorter side at the top instead of the longer side, how much 
pressure would the dam have had to sustain when the reservoir was 
full of water?
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11. The centerboard of a yacht is in the form of a trapezoid in 
which the two parallel sides are 2 ft. and 4 ft., respectively, in length, 
and a side perpendicular to these two is 3 ft. in length. Assuming 
that the last-named side is parallel to the surface of the water at 
a depth of 3 ft., and that the parallel sides are vertical, find the 
pressure on one side of the board.

12. Where shall a horizontal line be drawn across the gate of 
Ex. 1 so that the pressure on the portion above the line shall equal 
the pressure on the portion below ?

25. Volume. The volume of a solid may be computed by di­
viding it into n elements of volume, dV, and taking the limit 
of the sum of these elements as n is increased indefinitely, the 
magnitude of each element at the 
same time approaching zero. The 
question in each case is the deter­
mination of the form of the element 
dV. We shall discuss a comparatively 
simple case of a solid such as is shown 
in Fig. 30.

In this figure let OH be a straight 
line, and let the distance of any point 
of it from O be denoted by h. At one 
end the solid is bounded by a plane 
perpendicular to OH at C, where 
OC = a, and at the other end it is 
bounded by a plane perpendicular to 
OH at B, where OB — b, so that it 
has parallel bases.

The solid is assumed to be such that the area A of any plane 
section made by a plane perpendicular to OH at a point distant 
h from O can be expressed as a function ,of h.

To find the volume of such a solid we divide the distance CB 
into n parts dh, and through the points of division pass planes 
perpendicular to OH. We have thus divided the solid into 
slices of which the thickness is dh.

Since A is the area of the base of a slice, and since the volume 
of the slice is approximately equal to the product of its base and 
thickness, we write dV = Adh
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The volume of the solid is then the limit of the sum of terms of 
this type, and therefore

V = ÇbAdh.
J a

It is clear that the foregoing discussion is valid even when one 
or both of the bases corresponding to h = a and h — b, respec­
tively, reduces to a point.

This method of finding volumes is particularly useful when 
the sections of the solid made by parallel planes are bounded by 
circles or by concentric circles. If such a solid is generated by 
the revolution of a plane area around an axis in its plane, it 
is called a solid of revolution.

Example 1. Let O-Y (Fig. 31) be an edge of a solid such that all 
its sections made by planes perpendicular to O Y are rectangles, the 
sides of a rectangle in a y 
plane distant y from O 
being respectively 2 y 
and y2. We shall find 
the volume included be­
tween the planes y = 0 
and y = 2|.

Dividing the distance 
from y = 0 to y = 2| into 
n parts dy, and passing 
planes perpendicular to 
OY, we form rectangles 
such as MNRS, where, if X)M = y, MN = y2, and MS = 2y. Hence 
the area MNRS = 2y3, and the volume of the slice standing on MNRS 
as a base is 2 y3dy ; that is,

dV = 2 y3 dy.
Therefore V = j 2 y3 dy = [| y4]^ = 19| j.

Example 2. The axes of two equal right circular cylinders of radius 
a intersect at right angles. Required the volume common to the two 
cylinders.

Let OA and OB (Fig. 32) be the axes of the cylinders and OY the 
common perpendicular to OA and OB at their point of intersection O. 
Then OAD and OBD are quadrants of two equal circles cut from 
the two cylinders by the planes through OY perpendicular to the
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axes OB and OA, and OD = a. Then the figure represents one eighth 
of the required volume.

We divide the distance OD into n parts dy, and through the points 
of division pass planes perpendicular to OY. Any section, such as 
LMNP, is a square, of which one side NP is equal to ~\/OP2 — ON2. 
OP = a, being a radius of one of the cylinders,
and hence, as ON = y,

NP= N'a2 - y2.
Accordingly, the area of LMNP = a2 — y2, 

and the volume of the slice standing on 
LMNP as a base is

dV - (a2 — y2)dy ;
whence

y = X (°2 “ y2S>dy = ^a2y ~ % y3^>= i a3'
Hence the total volume is a3.

Example 3. Find the volume of the solid generated by revolving 
about OX the area bounded by the curve y2 — 4 x, the axis of x, 
and the line x = 3.

The generating area is shown in Fig. 33, where AB is the line
x = 3. Hence OA = 3.

Divide OA into n parts dx, and 
through the points of division pass 
straight lines parallel to 0 Y, meeting the 
curve. When the area is revolved about 
OX, each of these lines, as MP, NQ, etc., 
generates a circle, the plane of which 
is perpendicular to OX. The area of the 
circle generated by M P, for example, is 
7rMP2, which is equal to iry2 = 7r(4 x) 
if OM = x.

Hence the area of any plane section 
of the solid made by a plane perpen­
dicular to OX can be expressed in terms 
of its distance from O, and we may apply the previous method for 
finding the volume.

Since the base of any slice is 4 irx and its thickness is dx, we have

Hence
d V = 4 irx dx.

V = C 34 TTX dx — [2 7TX2]q = 18 7F. Vo
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Example 4. Find the volume of the ring solid generated by re­
volving about the axis of x the area 
bounded by the line y = 5 and the 
curve y = 9 — x2 *.

2. A solid is such that any cross section perpendicular to an axis
is an equilateral triangle of which each side is equal to the square

The line and the curve (Fig. 34) 
are seen to intersect at the points 
Pi(—2, 5) and P2(2, 5), and the ring 
is generated by the area P1BP2P1. 
Since this area is symmetrical with 
respect to OY, it is evident that the 
volume of the ring is twice the vol­
ume generated by the area AP2BA. 
Accordingly we shall find the latter 
volume and multiply it by 2.

We divide the line OM2 = 2 (M2 
being the projection of P2 on OX) into 
n parts dx, and through the points of 
division draw straight lines parallel to 
OY and intersecting the straight line 
and the curve. One of these lines, as 
MQP, will, when revolved about OX, 
generate a circular ring, the outer 
radius of which is MP = y = $ — x2
and the inner radius of which is MQ = y = 5. Hence the area of the
ring is

ttMP2 - irMQ2 = tt(9 - x2)2 - tt(5)2
= 7t(56 — 18 x2 + x4).

Accordingly, dV = tt(56 — 18 x2 + x4)dx,
and V = f 2tt(56 - 18 x2 + x4)dx = tt [56 x - 6 x3 + | x8]^ = 70| tt.

Accordingly the volume of the ring is 2 (70 5 r) = 140

EXERCISES

1. The section of a certain solid made by any plane perpendicular 
to a given line OH is a circle with one point in OH and its center 
on a straight line OB intersecting OH at an angle of 60°. If the 
height of this solid measured from O along OH is 4 ft., find its vol­
ume by integration.
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of the distance of the plane of the triangle from a fixed point on the 
axis. The total length of the axis from the fixed point is 6. Find 
the volume.

3. Find the volume of the solid generated by revolving about OX 
the area bounded by OX and the curve y — 3 x — x2.

4. Find the volume of the solid generated by revolving about OX 
the area included between the axis of x and the curve y = 2 x2 + x3.

5. Find the volume of the solid generated by revolving about the 
line y = — 3 the area bounded by the axis of y, the lines x = 5 and 
y = — 3, and the curve y = 5 x2.

6. On a spherical ball of radius 3 in. two great circles are drawn 
intersecting at right angles at the points A and B. The material of 
the ball is then cut away so that the sections perpendicular to AB 
are squares with their vertices on the two great circles. Find the 
volume left.

7. Find the volume generated by revolving about the line x = 2 
the area bounded by the curve y2 = 8 x, the axis of x, and the 
line x = 2.

8. Any plane section of a certain solid made by a plane perpen­
dicular to 07 is a square of which the center lies on OY and two 
opposite vertices lie on the curve y = 3 x2. Find the volume of the 
solid if the extreme distance along OY is 6.

9. Find the volume generated by revolving about OY the area 
bounded by the curve y2 = 8 x and the line x = 2.

10. Find the volume of the solid generated by revolving about OX 
the area bounded by the curves y — 4 x — x2 and y = x2 — 4 x 4- 6.

11. The cross section of a certain solid made by any plane per­
pendicular to OX is a circle with the ends of one of its diameters 
on the curves y — x2 and 2 y = x2 + 4. Find the volume of this 
solid between the points of intersection of the curves.

GENERAL EXERCISES

1. If A denotes the area bounded by the axis of y, the curve 
x=f(y'), and two straight lines y = a and y = b parallel to OX,
show that A =f‘‘f(y')dy.

2. If A denotes the area bounded above by the curve y — f(x) 
and below by the curve y — F(x), show that

A = f \f(x). - F(x))dx, 
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where x = a and x = b are either the abscissas of the points of inter­
section of the two curves, or the equations of two straight lines 
bounding the area at the left and the right. Show that the formula 
is correct even if part of the area is above OX and part below OX.

3. The curve y = ax2 is known to pass through the point (h, k). 
Prove that the area bounded by the curve, the axis of x, and the 
line x = h is | hk.

4. The curve y2 = ax is known to pass through the point (h, k). 
Prove that the area bounded by the curve, the axis of x, and the 
line x = h is 3 hk.

5. Find the total area bounded by the curves y2 = 4 ax and 
y2 = 4 a2 — 4 ax.

6. Find the total area bounded by the curve y2 — 4y — x = 0 and 
the axis of y.

7. Find the total area bounded by the curve x — y3 + y2 — 6 y 
and the axis of y.

8. Find the area bounded by the curve y = x2 and the line 
y = x 4- 12.

9. Find the area bounded by the curve y + 4 x + x2 — 0 and the 
line y — x.

10. Find the area bounded by the curve y — x2 — 6 z + 5 and the 
line 3 x + y — 15 = 0.

11. Find the area bounded by the curves x2 + 2 x + y — 2 = 0 
and 3 z2 + 6 z - 4y — 13 = 0.

12. The velocity in feet per second of a moving body at any 
time t is t2 — 4 t + 6. Show that the body is always moving in the 
direction in which s increases, and find how far it will move during 
the fourth second.

13. The velocity in feet per second of a moving body at any time 
t is t2 — 6 t. Show that after t — 6 the body will always move in 
the direction in which s increases, and find how far it wilt move in 
the time from t = 7 to t = 9.

14. At any time t the velocity in feet per second of a moving 
body is t2 — 8 t + 15. How many feet will the body move in the 
direction in which s decreases?

15. At any time t the velocity in feet per second of a moving body 
is 3 + 2 t — t2. Find the total distance traversed in the first 5 sec.

16. At any time t the velocity in feet per second of a moving body 
is t2 — 10 t + 21. Find the total distance traversed in the first 10 sec.
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17. At any time t the velocity in feet per second of a moving 
body is 10 — 7 t + i2. Find the distance traversed in the interval 
from t — 1 to t = 7.

18. The water is 15 ft. deep in a well which is 50 ft. deep and 
6 ft. in diameter. How much work must be done in pumping the 
well dry?

19. Find the work done in pumping all the water from a full hemi­
spherical bowl of diameter 4 ft. to a height of 10 ft. above the level 
of the top of the bowl.

20. A tank is in the form of the frustum of a right circular cone, 
10 ft. across the top, 6 ft. across the bottom, and 8 ft. deep. If the 
tank is full of water, how much work will be done in pumping the 
tank dry?

21. If a force of F pounds moves a body through a small distance, 
dx, measured in feet, the work done is F dx foot-pounds. Show 
that if the force F is a function of x, the work done in moving the 
body from x = a to x = b is I F dx.

22. Apply Ex. 21 to find the work done in stretching a spring 
1| ft. from the unstretched position, it being known that the force 
needed at any time is proportional to the amount that the spring 
has been stretched.

23. Apply Ex. 21 to find the work done in lifting a bag of sand 
100 ft., if the bag weighed originally 50 lb. and the sand leaked 
out so that the amount in the bag at any time was 50 — 5 x, where 
x is the distance the bag had been lifted.

24. Prove that the pressure on one side of a rectangle completely 
submerged with its plane vertical is equal to the area of the rectangle 
multiplied by the depth of its center and by w (consider only the 
case in which one side of the rectangle is parallel to the surface).

25. Prove that the pressure on one side of a triangle completely 
submerged with its plane vertical is equal to its area multiplied by 
the depth of its median point and by w (consider only the case in 
which one side of the triangle is parallel to the surface).

26. Show by Ex. 24 that the pressure on a vertical strip of breadth 
dx and with one end at the surface of the liquid and the other at the 
depth y is ~~ dx.

27. Use Ex. 26 to find the pressure on a semicircle of radius a, 
■ the diameter of the semicircle being in the surface of the liquid and

its plane being vertical.
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28. The equal sides of an isosceles triangle are each 5 ft. long, and 
the length of the base is 6 ft. It is held in a vertical position in 
water, the vertex above the base, with its base parallel to and 2 ft. 
below the surface of the water. Find the pressure of the water on 
the part of the triangle which is under water.

29. The cross section of a ditch is in the form of an equilateral tri­
angle, vertex down. The ditch is closed by a vertical dam. Deter­
mine the pressure on the dam when the water in the ditch is 3 ft. deep.

30. A square 4 ft. on a side is immersed in water, with one vertex 
in the surface of the water and with the diagonal through that vertex 
perpendicular to the surface of the water. How much greater is the 
pressure on the lower half of the square than that on the upper half?

31. The parallel sides of a trapezoid are, respectively, 2 ft. and 
8 ft. long, and the nonparallel sides are each 5 ft. long. Find the 
pressure on one side of this trapezoid when it is immersed in water 
with its parallel sides vertical and its highest vertex 2 ft. below the 
surface of the water.

32. Find the pressure on one side of an area the equations of whose 
boundary lines are x = 4, y = 0, and y2 = 4 x respectively, where the 
axis of x is taken in the surface of the water and where the positive 
direction of the y-axis is downward and vertical.

33. Derive by integration the formula V = | 7rr2A, where V is the 
volume of a right circular cone whose altitude is h and the radius 
of whose base is r.

34. Derive by integration the formula V = |/i(Ai-l-A2-ł- V A1A2), 
where V is the volume of the frustum of a right circular cone whose 
altitude is h and the areas of whose bases are, respectively, Ai and A2.

35. Derive by integration the formula V = | 7rr3, where V is the 
volume of a sphere of radius r.

36. Derive by integration the formula V = ir(rh2 — 17i3), where 
V is the volume of a segment of one base, and altitude h, cut from 
a sphere of radius r.

37. Derive by integration the formula V = | irh(3 n2 + 3 r22 + h2), 
where V is the volume of the segment of a sphere, the altitude of 
the segment and the radii of its bases being, respectively, h, n, and r2.

38. Show that the volume of the solid generated by revolving 
about OY the area bounded by OX and the curve y = a — bx2 is 
equal to the area of the base of the solid multiplied by half its altitude.

39. An axman makes a wedge-shaped cut in the trunk of a tree. 
Assuming that the trunk is a right circular cylinder of radius 8 in., 
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that the lower surface of the cut is a horizontal plane, and that the 
upper surface is a plane inclined at an angle of 45° to the horizontal 
and intersecting the lower surface of the cut in a diameter, find the 
amount of wood cut out.

40. AB is a diameter of a spherical ball of radius 10 in. Through 
A and B are drawn semicircumferences of three great circles so 
that the diedral angle between the planes of each pair of adjacent 
semicircumferences is 120°. The material of the ball is then cut away 
so that the plane sections perpendicular to AB are equilateral triangles 
with their vertices on the semicircumferences. Find the volume left.

41. The cross section of a certain solid made by any plane per­
pendicular to OX is a square with the ends of one of its diagonals 
on the curves y = 4 -I- x2 and y = 2 x2 — 5. Find the volume of the 
solid between the points of intersection of the curves.

42. Find the volume generated by revolving about OX the area 
bounded by OX and the curve y = 3 x — x2.

43. Find the volume generated by revolving about OX the area 
bounded by OX and the curve y = x3 — x2 — 2 x.

44. Find the volume generated by revolving about the line 
y = — 1 the area bounded by the curves y = 5 x2 and y = 2 x2 + 12.

45. On a system of parallel chords of a circle of radius 3 there 
are constructed equilateral triangles with their planes perpendicular 
to the plane of the circle and on the same side of that plane, thus 
forming a solid. Find the volume of the solid.

46. A solid is such that any cross section perpendicular to an axis 
is a circle, with its radius equal to the square root of the distance of 
the section from a fixed point of the axis. The total length of the 
axis from the fixed point is 6. Find the volume of the solid.

47. The cross section of a certain solid made by any plane per­
pendicular to OY is a right isosceles triangle with the ends of its 
base on the curve y = x2 — 2. Find the volume of this solid between 
the planes y = — 2 and y = 2.

48. All sections of a certain solid made by planes perpendicular 
to O Y are isosceles triangles. The base of each triangle is a line 
drawn perpendicular to OY, with its ends in the curve y = 4 — x2. 
The altitude of each triangle is equal to its base. Find the volume 
of the solid included between the planes for which y — 0 and y = 4.

49. Compare the volumes generated by revolving the area bounded 
by OX and the curve y = 3 x — x2 about the lines y = — 3 and 
y = 3 as axes.



CHAPTER IV
ALGEBRAIC FUNCTIONS

26. Graphs. In the previous chapters we have used only 
polynomials in explaining and illustrating the fundamental ideas 
of differentiation and integration. We now wish to apply the 
same principles to general algebraic functions which may involve 
sums, products, fractions, and roots. We begin with the study 
of graphs which are more complicated than those of Chapter II.

In making any graph the final step is to substitute values of 
one variable in the equation of the graph, compute the corre­
sponding values of the other variable, plot the corresponding 
points, and draw a curve through them. But a preliminary 
study of the equation will often give a general idea of the ap­
pearance of the graph and aid in determining what particular 
points should be found. It is accordingly suggested that the 
following plan of work be followed :

1. Solve the equation for one coordinate in terms of the other. 
We shall suppose in the following directions that the equation 
has been solved for y in terms of x.

2. Find the axis of symmetry parallel to OX if such exists. 
When y is equal to plus or minus the square root of a function 
of x, the graph is symmetrical with respect to OX. When y is 
equal to a constant, c, plus or minus the square root of a func­
tion of x, the line y = c is an axis of symmetry.

3. Find the intersections with the axis of symmetry, or with 
the axis of x if no symmetry exists. This may be done by placing 
y = c or y = 0, where c is as in 2.

4. Find impossible values of x. Values of x which make nega­
tive the expression under the square-root sign referred to in 2, 
cannot be used since they make y imaginary.

5. Find asymptotes parallel to OY if such exist. These may 
occur when the value of y found in 1 contains a fraction. If the 
denominator of such a fraction is zero when x — a, the value of y 
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is not defined, since we cannot divide by zero. We may, however, 
let x —> a. Then the value of y increases indefinitely and is said 
to become infinite. The graph then runs up or down indefinitely, 
approaching the line x — a indefinitely near but never reaching it.

Now, when a straight line has such a position with respect to a 
curve that as the two are indefinitely prolonged they do not meet, but 
the distance between them approaches zero as a limit, the straight 
line is called an asymptote of the curve. Hence the line x = a is 
an asymptote.

It may sometimes be more convenient to solve the equation 
for x in terms of y. In such a case x and y should be inter­
changed in the above directions. While it is generally sufficient 
to solve for either x or y alone, there are cases in which it is de­
sirable to make both solutions, as the second solution may give 
us information which could not be obtained from the first solution.

Example 1. y2 = 8(x — 2).
Solving for y, we have y = ± v/8(x — 2).
The axis of x is an axis of symmetry since any 

value of x gives two values of y equal in magni­
tude but opposite in sign. The graph intersects 
the axis of x when x = 2. Any value of x less than 
2 makes the quantity under the square-root sign 
negative and the value of y imaginary. Hence 
such values of x are impossible and the curve lies 
entirely to the right of the line x = 2. Assigning 
values to x greater than 2, computing values of y, and plotting points,
we draw the curve (Fig. 35). This curve is a parabola (§ 33).

Example 2. (y + 3)2 = (x — 2)2(x + 1).
Solving for y, we have

y = — 3 ± (x — 2)y/x + 1.
In the first place we see that the line 

y = — 3 is an axis of symmetry. The curve 
meets the axis of symmetry when x = — 1 
and x = 2. Since any value of x less than 
— 1 makes y imaginary, only values of x 
greater than — 1 can be used, and hence 
the curve lies entirely to the right of 
the line x = — 1. Assigning values of x 
and locating the points determined, we have the curve (Fig. 36).
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Example 3. x2 + 4 ?/2 — 2 x — 8 ?/ + 1 = 0.
Solving for y, we have

y = 1 ± I V(3 - x)(l + x).
It appears that y = 1 is an axis of symmetry, which the curve 

intersects when x = — 1 and x = 3. Values of x less than — 1 or 
greater than 3 make the quantity under the radical sign negative, 
but values of x between — 1 
and 3 make the quantity 
under the radical sign posi­
tive. Hence the curve lies 
between the lines x = — 1 
and x = 3.

Again, solving for x, we 
have x = 1 ± 2 Vÿ(2 - y).

It appears that x = 1 is 
an axis of symmetry, which 
the curve intersects when 
y = 0 and y = 2. Values of y 
less than zero or greater than 
2 make the quantity under the radical sign negative, while values 
of y between 0 and 2 make the quantity under the radical sign posi­
tive. Hence the curve lies between the axis of x and the line y = 2.

We now have the curve boxed up inside a certain rectangle, and we 
also know two axes of symmetry. It is necessary to compute only a 
few points and draw the rest of the curve by symmetry (Fig. 37).

Example 4. xy = 4.
Solving for y, we have

4 y = -- x
It is evident, then, that we may­

assign to x any real value except zero. 
Consequently, there can be no point 
of the curve on the line x = 0 ; that 
is, on OY. We may, however, assume 
values for x as near to zero as we 
wish, and the nearer they are to zero, 
the nearer the corresponding points are to OY ; but as the points 
come nearer to O Y they recede along the curve. Hence OY is an 
asymptote of the curve.
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If we solve for x, we have 

and, reasoning as above, we conclude that the line y = 0 (that is, 
the axis OX) is also an asymptote of the curve.

The curve is drawn in Fig. 38. It is a special case of the curve xy = k, 
where k is a real constant which may be either positive or negative, 
and is a rectangular hyperbola (§33) referred to its asymptotes as axes.

Example 5. xy + 2x + y — 1 — 0.
Solving for y, we have 

from which we conclude that the 
line x = — 1 is an asymptote of 
the curve.

Solving for x, we have 

y = — 2 is also an asymptote

_ 1 -y
2 +

from which we conclude that the line 
of the curve.

We accordingly draw these two asymp­
totes (Fig. 39), and draw the curve through 
the points determined by assigning values 
to either x or y and computing the corre­
sponding values of the other variable.

The curve is, in fact, a rectangular hy­
perbola, with the lines x = — l and y— — 2 
as its asymptotes.

Example 6. y2 = —•H 2 a —x
Solving for y, we have 

?/=±aÆS’ 
whence it is evident that the curve is 
symmetrical with respect to OX. The 
lines x = 0 and x = 2 a, corresponding to 
the values of x which make the numerator 
and the denominator of the fraction under 
the radical sign respectively zero, divide 
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the plane into three strips ; and only values between 0 and 2 a can 
be substituted for x, since all other values make y imaginary. It 
follows that the curve lies entirely in the strip bounded by the two 
lines x = 0 and x = 2 a.

By the same reasoning that was used in Exs. 4 and 5, it can be 
shown that the line x = 2 a is an asymptote of the curve.

The curve, which is called a cissoid, is drawn in Fig. 40.

EXERCISES

Plot the following curves :
1. y2 = x3.
2. y2 = x2(x + 6).
3. y2 = 4(8 - x).
4. y2 = x2 — 6 x + 8.
5. y2 = x3 — 6 x2 + 8 x.
6. y2 = x(x2 — 9).
7. y2 = 9 xi — x6.
8. xy2 = 2 — x.
9. xy + 8 = 0.

10. 2 y + xy — 8.

11. xy — 2 y — x = 0.
12. xy = x2 + 1.
13. y2 — 2 y — 4 x — 7 = 0.
14. x2 — 4 x — 4 y'— 0.
15. (7/ — l)2(x — 1) = 1.
16. (ÿ-2)2- (x + l)3 = 0.
17. (2 - y)x2 - 16 = 0.
18. y2 = x3 — 2 x2 — 4 x + 8.
19. (x - 2)2 - y(y - 4) = 0.
20. 4ï2 + ÿ2-8r-4ÿ + 4 = 0.

27. Distance between two points. In the previous section we 
have found the shapes of curves from their equations. Many 
an important curve, however, is defined by a property possessed
by all points upon it, and the 
equation of the curve is to be 
found from the definition. In 
such a definition the distance of a 
point on the curve from some 
fixed point or points is often of 
importance. We shall therefore 
begin by finding a formula for 
the distance between two fixed 
points.

Let Pi(xi, 2/i) and P2(x2, 2/2) 
(Fig. 41) be any two points in the plane XOY, such that the 
straight line P1P2 is not parallel either to OX or to OY. Through 
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Pi draw a straight line parallel to OX, and through P2 draw a 
straight line parallel to 0 Y, and denote their point of intersec­
tion by R.

Then PiR = Xx — x2 — Xi

and RP2 = Xy — y2 — yi.

In the right triangle P1RP2

P1P2 = VpTR2 + ÏÏF? ;

whence P1P2 = V(x2 — Xi)2 + (2/2 — yi)2- (1)

If y2 — ylt p1p2 is parallel to OX, and the formula reduces to

P1P2 =.x2 — Xi. (2)

In like manner, if x2 = Xi, P1P2 is parallel to OY, and the 
formula reduces to D D /Q>.P1P2 = y2 — yi. (3)

In §§28-32 we shall use these formulas to obtain general 
forms for the equations of certain curves. For the present we 
shall apply the formulas to finding the equations of curves de­
fined by simple numerical data. Some of these examples are 
special cases of the more general discussions to follow.

Example 1. Find the equation of a 
circle with center at the point (2, 3) and 
radius equal to 5.

Let P(x, y) (Fig. 42) be any point on 
the circle. By (1) the distance of the point 
from the center is V(x — 2)2 + (y — 3)2. 
But this distance is equal to the radius 5. 
Hence we have

V(x-2)2+ (y-3)2 = 5,
which reduces to

x2 + y2 — 4 x — 6 y — 12 = 0. Fig. 42

Example 2. Find the equation of a curve such that the sum of the 
distances of any point on it from the two points (— 3, 0) and (3, 0) 
is always equal to 8.
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Let P(x, y) (Fig. 43) be any point on the curve. Its distance 
from (— 3, 0) is + 3)2 + y2, and its distance from (3, 0) is 
y/(x — 3)2 + y2. By the statement of the problem the sum of these 
distances is 8. Hence we have

V(x + 3)2 + y2
+ V(z - 3)2 + 2/2 = 8.

To simplify this equation we 
transpose the second radical to 
the right-hand side of the equa­
tion and square. A few simple 
reductions then give
3 x — 16 = — 4 Vz2 + ÿ2 —6a+9. 
Again square and reduce. We 
have 7 + 16 = 112,
the required equation.

Example 3. Find the equation of a curve such that any point on 
it is equally distant from the axis 
of x and from the point (2, 3).

Let P(x, y) (Fig. 44) be any point 
on the curve. Its distance from 
OX is ± y. Its distance from (2, 3) 
is V(x — 2)2 + (y — 3)2. Therefore

±ÿ = V(x - 2)2 + (2/ — 3)2, 
which reduces to 

x2 — 4 x — 6 y + 13 = 0.

EXERCISES
1. Find the equation of a circle with radius 6 and center (— 2, 3). 

Plot.
2. Find the equation of a circle with radius 5 and center (— 3, 4). 

Plot.
3. Find the equation of the locus of a point equidistant from (1, 3) 

and (— 2, 5). Plot.
4. Find the equation of the locus of a point equidistant from (0, 3) 

and (5, 0). Plot.
5. A curve is such that the sum of the distances of any point on 

it from the two points (2, 0) and (— 2, 0) is 12. Find its equation 
and graph.
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6. A curve is such that the sum of the distances of any point 
on it from the two points (0, 1) and (0, — 1) is 3. Find its equation 
and graph.

7. Find the equation of a curve such that any point on it is 
equidistant from (4, 0) and the axis of y. Plot.

8. Find the equation of a curve such that any point on it is 
equidistant from (4, 0) and the line x = — 4. Plot.

9. Find the equation of a curve such that the distance of any 
point on it from (3, 0) is twice its distance from OY. Plot.

10. A curve is such that the distance of any point on it from 
(4, 0) is twice its distance from (1, 0). Find its equation and graph.

28. Circle. Since a circle is the locus of a point which is always 
at a constant distance from a fixed point, formula (1), 8 27, 
enables us to write down imme­
diately the equation of a circle.

Let C(h, k) (Fig. 45) be the 
center of a circle of radius r. 
Then, if P(x, y) is any point of 
the circle, by (1), § 27, x and y 
must satisfy the equation

(x — h)2 + (y — k)2 — r2. (1)

Moreover, any point the coor­
dinates of which satisfy (1) must be at the distance r from 
C and hence be a point of the circle. Accordingly (1) is the 
equation of a circle.

If (1) is expanded, it becomes
x2 y2 _ 2 fox — 2 ky + h2 + k2 — r2 = 0, (2)

an equation of the second degree with no term in xy and with 
the coefficients of x2 and y2 equal.

Conversely, any equation of the second degree with no xy 
term and with the coefficients of x2 and y2 equal (as

Ax2+ Ay2 + 2 Gx + 2 Fy + C = 0, (3)
where A, G, F, and C are any constants) may be transformed 
into the form (1) and represents a circle, unless the number cor­
responding to r2 is negative (see Example 3), in which case 
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the equation is satisfied by no real values of x and y and 
accordingly has no corresponding locus.

The circle is most readily drawn by making such transfor­
mation, locating the center, and constructing the circle with 
compasses.

Example 1. x2 + y2 — 2 x — 4 y = 0.
This equation may be written in the form

(x2 - 2 x ) + (y2 - 4 y ) = 0,
and the terms in the parentheses may be made perfect squares by 
adding 1 in the first parenthesis and 4 in the second parenthesis. 
As we have added a total of 5 to the left-hand side of the equation, 
we must add an equal amount to the right-hand side of the equation. 
The result is (x2 — 2 x + 1) + (y2 — 4 y + 4) = 5,
which may be placed in the form

(x - l)2 + (y - 2)2 = 5,
the equation of a circle of radius V5 with its center at the point (1, 2).

Example 2. 9 x2 + 9 ÿ2 - 9 x 4- 6 y — 8 = 0.
Placing 8 on the right-hand side of the equation and then divid­

ing by 9, we have X2 + y2-X+2y = ^

which may be treated by the method used in Example 1. The result 
is (^-ł)2+(f/ + ł)2 = f.
the equation of a circle of radius j x/5, with its center at (J, — ^).

Example 3. 9 x2 + 9 y2 — 6 x + 12 y + 11 = 0.
Proceeding as in Example 2, we have, as the transformed equa­

tion, (x - |)2 + (y + j)2 = - j,
an equation which cannot be satisfied by any real values of x and y, 
since the sum of two positive quantities cannot be negative. Hence 
this equation corresponds to no real curve.

EXERCISES

1. Find the center and the radius of the circle
x2 + y2 + 4 x — 10 y + 13 = 0.

2. Find the center and the radius of the circle
3x2 + 3y2 — 4x+2y — 5 = 0.
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3. Find the equation of the straight line passing through the 
center of the circle x2 + ?/2 + 2a; — ?/+l = 0
and perpendicular to the line

2 x + 3 y — 4 = 0.
4. Prove that two circles are concentric if their equations differ 

only, in the constant term.
5. Show that x2 + y2 + ax = 0 is the equation of a circle with its 

center on OX and tangent to OY.
6. Find the equation of the locus of a point the square of whose 

distance from (3, 0) is always twice its distance from OX. Show 
that the locus is a circle, and find its center and radius.

7. A point moves so that its distance from (0, 4) is always three 
times its distance from (0, — 4). Show that its locus is a circle, and 
find the center and the radius of the circle.

8. Find the equation of the locus Sf a point whose distance from 
(3, 0) is always twice its distance from (—3, 0). Show that the 
locus is a circle, and find the center and the radius of the circle.

9. Find the length of the tangents drawn from (4, 5) to the circle 
/2 + y2 — 4 x — 6 y + 12 = 0.

10. A point moves so that the squares of the lengths of the tan­
gents drawn from it to the two circles x2 + y2 = 4 and x2 + y2 — 25 
are inversely as the radii of these circles. Find the locus of the 
point.

29. Parabola. The locus of a point equally distant from a fixed 
point and a fixed straight line is called a parabola. The fixed 
point is called the focus and the fixed straight 
line is called the directrix.

Let F (Fig. 46) be the focus and RS the 
directrix of a parabola. Through F draw 
a straight line perpendicular to RS, inter­
secting it at D, and let this line be the 
axis of x. Let the middle point of DF be 
taken as O, the origin of coordinates, and 
draw the axis OY. Then, if the distance DF
is 2 c, the coordinates of F are (c, 0) and the equation of 
is x — — c.

Let P(x, y) be any point of the parabola, and draw 
straight line FP and the straight line NP perpendicular to RS.

RS

the
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Then NP = c + x,
and, by § 27, FP = V(x — c)2 + y2;
whence, from the definition of the parabola,

(x - c)2 + y2 = (c + x)2,
which reduces to y2 = 4 ex. (1)

Conversely, if the coordinates of any point P satisfy (1), it 
can be shown that the distances FP and NP are equal, and 
hence F is a point of the parabola.

Solving (1) for y in terms of x, we have
y = ±2 Vex. (2)

We assume that c is positive. Then it is evident from (2) 
that the parabola is symmetrical with respect to OX. Accord­
ingly OX is called the axis of the parabola. The point at which 
a parabola intersects its axis is called the vertex of the parabola. 
Accordingly 0 is the vertex of the parabola.

It is also evident from (2) that only positive values may be 
assigned to x, and hence the parabola lies entirely on the posi­
tive side of the axis OY.

Accordingly we assign positive values to x, compute the cor­
responding values of y, and draw a smooth curve through the 
points thus located.

Returning to Fig. 46, if F is taken at the left of 0 with the 
coordinates (— c, 0), and RS is taken at the right of O with the 
equation x — c, equation (1) becomes

y2 = — 4 ex (3)
and represents a parabola lying on the negative side of OY. 
Hence we conclude that any equation in the form

?/2 = kx, (4)
where k is a positive or a negative constant, is a parabola, with 
its vertex at O, its axis on OX, its focus at the point 
its directrix the straight line x = — -■

4
Similarly, the equation x2 = ky (5)

represents a parabola, with its vertex at 0 and with its axis
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coinciding with the positive or the negative part of OY, accord­
ing as k is positive or negative. The focus is always the point 
/ k\ kÇ0, -y, and the directrix is the line y — — -, whether k be posi­

tive or negative.
30. Parabolic segment. An important property of the parabola 

is contained in the following theorem :

The squares of any two chords of a parabola which are perpen­
dicular to its axis are to each other as their distances from the 
vertex of the parabola.

This theorem may be proved as follows :
Let Pi(æi, 2/i) and ^2(^2,2/2) be any two points of any parab­

ola y2 — kx (Fig. 47).

Then 2/12 == kxi
and 2/22 == kx2 ;

whence 2/12 = Xi= -- 9
Z/22 x2

whence = —•
(2 y2)2 x2

From the symmetry of the parab­
ola, 2 2/1 = QiPi and 2 y2 = Q2P2. 
But Xi = OMi and x2 — OM2, and

(1)

hence (1) becomes

QrPi2 _OM!
q2p2~ om2

and the theorem is proved.
The property just proved does not depend upon the position 

of the parabola. It can therefore be used when the parabola so 
lies that none of the equations of § 29 applies.

The figure bounded by the parabola and a chord perpendicu­
lar to the axis of the parabola, as Q1OP1 (Fig. 47), is called a 
parabolic segment. The chord is called the base of the segment, 
the vertex of the parabola is called the vertex of the segment, 
and the distance from the vertex to the base is called the altitude 
of the segment.
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EXERCISES

Plot the following parabolas, determining the focus of each :
\z 1. y2 = — 4 x. 3. y2 = 3 x.

2. x2 = 8y. 4. x2 = — 5 y.

5. The altitude of a parabolic segment is 8 ft., and the length of 
its base is 16 ft. A straight line drawn across the segment perpen­
dicular to its axis is 12 ft. long. How far is it from the vertex of 
the segment?

6. An arch in the form of a parabolic curve, the axis being ver­
tical, is 25 ft. across the bottom, and the highest point is 15 ft. 
above the horizontal. What is the length of a beam placed horizon­
tally across the arch 6 ft. from the top ?

7. The cable of a suspension bridge hangs in the form of a pa­
rabola. The roadway, which is horizontal and 500 ft. long, is sup­
ported by vertical wires attached to the cable, the longest wire 
being 80 ft. and the shortest being 20 ft. Find the length of a 
supporting wire attached to the roadway 75 ft. from the middle.

8. Any section of a given parabolic mirror made by a plane 
passing through the axis of the mirror is a parabolic segment of 
which the altitude is 6 in. and the length of the base 12-in. Find 
the circumference of the section of the mirror made by a plane 
perpendicular to its axis and 4 in. from its vertex.f

9. Find the equation of the parabola having the line x = 5 as its 
directrix and having its focus at the origin of coordinates.

10. Find the equation of the parabola having the line y = — 3 as 
its directrix and having its focus at the point (2, 4).
v 11. Show that if the focus is at the origin and the directrix is 
x = — 2 c the equation of the parabola is y2 = 4 ex + 4 c2.

sz 12. Show that if the vertex of the parabola is at (a, 0) and the 
focus at (a + c, 0), the equation of the parabola is y2 = 4 c(x — a).

31. Ellipse. The locus of a point the sum of whose distances from 
two fixed points is constant is called an ellipse. The two fixed 
points are called the foci.

Let F and F' (Fig. 48) be the two foci, and let the distance 
F'F be 2 c. Let the straight line determined by F' and F be 
taken as the axis of x, and the middle point of F'F be taken as 
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O, the origin of coordinates, and draw the axis OY. Then the 
coordinates of F' and F are, respectively, (— c, 0) and (c, 0). .

Let P(z, y) be any point of the ellipse, and let 2 a represent 
the constant sum of its dis­
tances from the foci. Then, 
from the definition of the el­
lipse, the sum of the distdhces 
F'P and FP is 2 a, and from 
the triangle F'PF it is evident 
that 2 a > 2 c ; whence a > c.

By §27,
F'P = y/(x + c)2 + y2, 

and FP = V(x — c)2 + y2 ; 
whence, from the definition of the ellipse,

V(z + c)2 + y2 + V(x — c)2 + y2 — 2 a. (1)

Clearing (1) of radicals, we have
(a2 — c2)x2 + a2y2 — a4 — a2c2. (2)

Dividing (2) by a4 — a2c2, we have

(3)

But since a > c, a2 — c2 is a positive quantity which may be 
denoted by 62, and (3) becomes

(4)

Conversely, if the coordinates of any point P satisfy (4), it 
can be shown that the sum of the distances F'P and FP is 2 a, 
and hence P is a point of the ellipse.

Solving (4) for y in terms of x, we have

y = ± - Va2 - x2. (5)
a

From this form of the equation it appears that the ellipse has 
OX as an axis of symmetry and lies entirely between the lines 
$ — — a and x = a.
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We may also solve (4) for x in terms of y, with the result

x = ± ? s/b2 - y2. 
b

From this form of the equation we find that the ellipse is 
symmetrical with respect to OY and lies entirely between the 
lines y — — b and y = b.

Hence the ellipse has two axes, A'A and B'B (Fig. 48), which 
are at right angles to each other. But A'A — 2a and B'B = 2b; 
and since a > b, it follows that A'A > B'B. Hence A'A is called 
the major axis of the ellipse, and B'B is called the minor axis 
of the ellipse.

The ends of the major axis, A' and A, are called the vertices of 
the ellipse, and the point midway between the vertices is called 
the center of the ellipse ; that is, O is the center of the ellipse. 
Since the ellipse is symmetrical both with respect to OX and 
with respect to O Y it follows that any chord of the ellipse which 
passes through O is bisected by that point.

From B draw lines to F and F'. Since B is a point on the 
ellipse the sum of the lengths of these lines is equal to 2 a. 
But these lines are obviously equal. Hence

BF — BF' = a.

Hence if we describe a circle with the point B as a center and 
with a radius equal to a, that circle will intersect OX in the foci 
of the ellipse.

It follows that c — OF = ~x/a2 — b2, (7)
which is in agreement with the original algebraic definition of b. 

O FThe ratio —• (that is, the ratio of the distance of the focus OA
from the center to the distance of either vertex from the center) 
is called the eccentricity of the ellipse and is denoted by e. 
Hence „ Va2 - b2 e =------------ ;a (8)

whence it follows that the eccentricity of an ellipse is always 
less than unity.

Similarly, an equation in form (4) in which b2 > a2 repre­
sents an ellipse with its center at O, its major axis on OY, and 
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its minor axis on OX. Then the vertices are the points (0, ± b), 

the foci are the points (0, ± Vb2 — a2), and e = —a" • 
b

In either case the nearer the foci approach coincidence, the 
smaller e becomes and the more nearly b = a. Hence a circle 
may be considered as an ellipse with coincident foci and equal axes. 
Its eccentricity is, of course, zero.

EXERCISES

Plot the following ellipses, finding the vertices, the foci, and the 
eccentricity of each :

1. 9 x2 + 25 y2 = 225. 3. z2 + 2 ?/2 = 1.
2. 25 x2 + 4 y2 = 100. . 4. 3 x2 + 5 y2 = 1.

5. Find the equation of the ellipse having its foci at the points 
(— 1, 0) and (7, 0) and having the length of its major axis equal to 10.

6. Find the equation of the ellipse having its foci at the points 
(0, 0) and (0, 4) and having the length of its major axis equal to 6.

7. Find the equation of the ellipse which passes through the 
point (7, 0) and has its foci at the points (— 6, 0) and (6, 0).

8. Find the equation of the ellipse which passes through the 
point (4, Jj2-) and has its foci at the points (— 3, 0) and (3, 0).

9. Find the locus of a point such that its distance from the point 
(3, 0) is always one half its distance from the line x = 12.

10. Find the locus of a point such that its distance from the point 
(3, 0) is always three fifths of its distance from the line 3 x 25 = 0.

32. Hyperbola. The locus of a point the difference of whose
distances from two fixed 
points is constant is called a 
hyperbola. The two fixed 
points are called the foci.

Let F and F' (Fig. 49) 
be the two foci, and let 
the distance F'F be 2 c. 
Let the straight line de­
termined by F’ and F be 
taken as the axis of x, and 
the middle point of F'F be Fig. 49
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taken as 0, the origin of coordinates, and draw the axis OY. 
Then the coordinates of F' and F are, respectively, (— c, 0) and 
(c, 0).

Let P(x, ÿ).be any point of the hyperbola and let 2 a repre­
sent the constant difference of its distances from the foci. Then, 
from the definition of the hyperbola, the difference of the dis­
tances F'P and FP is 2 a, and from the triangle F'PF it is 
evident that 2 a < 2 c, for the difference of any two sides of a 
triangle is less than the third side ; whence a < c.

By § 27, F'P = V(*  + c)2 + y2

and FP = \/ (x _ c)2 + y2 >
whence either

V(« — c)2 + y2 — V(* + c)2 + y2 = 2 a (1 )
or V(æ + c)2 + y2 — V(z — C)2 + y2 = 2 a, (2)
according as FP or F'P is the greater distance.

Clearing either (1) or (2) of radicals, we obtain the same 
result. ça2 _ c2^x2 _|_ a2y2 — a4 — a2c2. (3)

Dividing (3) by a4 — a2c2, we have

(4)

But since a < c, a2 — c2 is a negative quantity which may be 
denoted by — b2, and (4) becomes

= 1
a2 b2 (5)

Conversely, if the coordinates of any point P satisfy (5), it 
can be shown that the difference of the distances F'P and FP 
is 2 a, and hence P is a point of the hyperbola.

Solving (5) for y in terms of x, we have

y = ± - Vx2 - a2. (6)
a

From this equation it appears that OX is an axis of symmetry 
of the hyperbola, that no part of the hyperbola lies between the . 
lines x = — a and x — a, and that as x <x>, y —> oo,
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(7)

If we solve (5) for x in terms of y, the result is

x = ±^y/b2 + y2 ;

from which it appears that OY is also an axis of symmetry of 
the hyperbola and all values may be assigned to y.

The points A' and A in which one axis of the hyperbola inter­
sects the hyperbola are called the vertices, and the portion of the 
axis extending from A' to A is called the transverse axis. The 
point midway between the vertices is called the center ; that is, 
O is the center of the hyperbola, and it can readily be seen that 
any chord of the hyperbola which passes through O is bisected 
by that point. The other axis of the hyperbola, which is per­
pendicular to the transverse axis, is called the conjugate axis. 
This axis does not intersect 
the curve.

Important information 
as to the shape of the hy­
perbola may be obtained by 
considering a straight line 
through the center (Fig. 50). 
The equation of such a line 
1S y = mx. (8)

To find the points of in­
tersection of this line with 
the hyperbola we must solve equations (5) and (8) simultane­
ously. Substituting from (8) into (5), and solving for x, we have

d: ab 
X y/b2 — a2m2 (9)

k-2
This equation shows that if m is so taken that m2 > — the 

a2 
values of x in (9) are imaginary and hence that the line (8) 

ft2does not intersect the hyperbola ; but if m2 < — the line (8) 
a-

intersects the curve in two real points. Hence if we draw the 
two straight lines ,

y = ±-x,a (10)
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we divide the plane into four sections, in two of which the curve 
lies and in the other two of which there is no point of the curve 
(Fig. 50).

We shall now prove that the lines (10) are asymptotes of the 
hyperbola in the sense of § 26. For that purpose take two 

points both in the first quadrant, one P2 on the line y = -x 
a 

and the other Pi on the hyperbola, and such that P2 and Pi 
have the same abscissa, x. Then if y2 is the ordinate of P2 and 
yi is the ordinate of Pi, we have

P1P2 = 3/2 — = — -y/x2 - a2
a a

_ b(x — y/x2 — a2)
a

If we should allow x to increase indefinitely in this expression 
we should get no information, since the difference between two 
quantities each of which increases indefinitely is not deter­
minate. We may, however, rationalize the numerator in (11) 
by multiplying numerator and denominator by x + y/x2 — a2 
and obtain „a

PiP2 =--------(12)
x + y/x2 — a2

If we now let x —> 00, it is evident that P1P2 —* 0. Hence the 
line y — - x is an asymptote. From the symmetry of the figure 

CL
it is evident that the property which we have proved for the 
first quadrant is true in all quadrants.

In graphing a hyperbola it is best to draw the asymptotes 
first. This may be done by drawing the rectangle with sides 
2 a and 2 b as in Fig. 50. The asymptotes are then the diagonals 
of this rectangle.

From the definition of b, c — Va2 + b2, and the coordinates of 
the foci are (± y/a2 + b2, 0). Therefore

OF = y/a2 + b2. (13)

The foci may be found by describing a circle with the center 
at O and a radius equal to the semidiagonal of the rectangle 
which determines the asymptotes. This circle intersects the 
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transverse axis in the foci. If we define the eccentricity of the 
O Fhyperbola as the ratio we have

e = Va2 + 62, (14)
(L

a quantity which is evidently always greater than unity. 
Similarly, the equation

y2 _

b2 a2 (15)

is the equation of a hyperbola, with its center at O, its transverse 
axis on O Y, and its conjugate axis on OX. Then the vertices are 
the points (0, ± 6), the foci are the points (0, ± V&2 + a2), the 
asymptotes are the straight lines y = ±-x, and e = + rt~.

a b
If b = a, in either (5) or (15), the equation of the hyperbola 

assumes the form
x2 — y2 = a2 or y2 — x2 = a2, (16)

and the hyperbola is called an equilateral hyperbola. The equa­
tions of the asymptotes become y = ± x ; and as these lines 
are perpendicular to each other, the hyperbola is also called a 
rectangular hyperbola.

EXERCISES

Plot the following hyperbolas, finding the vertices, the foci, the 
asymptotes, and the eccentricity of each :
1. 4 x2 - 25 y2 = 100. 3. 2 y2 - 3 x2 = 6. 5. 3 x2 - 2 y2 = 1.
2. 25 x2 - 4 y2 = 100. 4. x2 - j/2 = 16. 6. y2 - 4 x2 = 1.

7. Find the equation of the hyperbola having its foci at the points 
(0, 0) and (3, 0), and the difference of the distances of any point on 
it from the foci equal to 2.

8. The foci of a hyperbola are at the points (— 5, 2) and (5, 2), 
and the difference of the distances of any point on it from the foci 
is 4. Find the equation of the hyperbola, and plot.

9. Find the locus of a point which has the property that its dis­
tance from the point (4, 0) is twice its distance from the line x = 1.

10. Find a curve which has the property that the distance of any 
point on it from the point (6, 0) is three times its distance from the 
line 3 x — 2 = 0.
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33. Conics. The circle, ellipse, hyperbola, and parabola are 
called collectively conics, or conic sections. The name is due to 
the fact that they may all be obtained by making plane sections 
of a right circular cone.

The general equation of the circle has been obtained in § 28, 
and special forms of the equations of the other conics have been 
derived in §§ 29-32. We 
shall now proceed to 
find more general forms 
of the equations of the 
ellipse, parabola, and 
hyperbola, but shall 
not try to obtain the 
most general forms of 
their equations.

Let us take first an 
ellipse with its center 
at the point (h, k), and 
with its axes along the 
lines x — h and y — k 
(Fig. 51). In the equa­
tion of the ellipse ob­
tained in § 31, the
coordinates x and y denote the distances of a point on the ellipse 
from the two axes of the ellipse. In the present case these 
distances are NP = x — h and MP — y — k, respectively. Hence 
the equation of the ellipse is

(z ~ fe)2 _|_ (y- fc)2 _ !
a2 b2 (1)

Similarly, if the center of a hyperbola is at (h, k) and its 
transverse axis is y — k, its equation is

, (x-hy2 _ (y — k)2 _ 1 .— r J (2)a2 b2
while if its center is at (h, k) and its transverse axis is x — h, its 
equation is (y_k)2 _ h}2

b2 a2 (3)
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Similarly, for a parabola, the coordinates y and x in § 29 are 
the distances of a point on the parabola from the axis of the 
parabola and from a line perpendicular to the axis through the 
vertex. If the vertex of the parabola is at the point Qi, k) and 
the axis of the parabola is y — k, these distances now become 
y — k and x — h, respectively, and hence the equation of the 
parabola is _ fc)2 = 4 c(z _ . (4)

while if the vertex of the parabola is at (h, k) and the axis of 
the parabola is a: = ft, the equation of the parabola is

(x -h)2 = 4: c(y - k), (5)
where in both (4) and (5) c has the same meaning as in § 29.

If the indicated operations in equations (1)—(5) are carried 
out and terms are collected, each equation reduces to the form

Ax2 + By2 + 2 Gx + 2 Fy + C = 0 (6)
with the following differences :

1. For the ellipse, A and B have the same sign. If A = B, 
the ellipse reduces to the circle as a special case of the ellipse.

2. For the hyperbola, A and B have opposite signs.
3. For the parabola, either A = 0 or B = 0.
Conversely, if an equation of the form (6) is given, it may 

usually be reduced to one of the types (1)—(5) by methods 
similar to those used in handling the circle as shown in the fol­
lowing examples. Occasionally, however, certain exceptional 
cases may arise, as shown in Example 4.

Equation (6) is obtained when each axis of a conic is parallel 
to one of the coordinate axes. When this is not true, the equa­
tion of the conic will also contain a term with the product xy 
and will be of the most general form

Ax2 + 2 Hxy + By2 + 2 Gx + 2 Fy + C = 0. (7)

A discussion of this equation lies outside the range of this 
book. We will notice, however, that in § 26 we have plotted a 
special, but important, case, namely

xy = k, (8)
and have said that this was a rectangular hyperbola. This may 
be verified by showing that the locus of a point the difference 
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of whose distances from the fixed points (a, a) and (— a, — a) 
is always equal to 2 a is the curve

By taking a — y/ilc we have equation (8).

Example 1. Discuss the equation4x2+6y2 + 4x — 12 ÿ —1 = 0.
We collect the x-terms in one parenthesis and the ?/-terms in another, 

and have 4(x2 + + 6(j,2 _ 2 y) = 1.
Completing the square in each parenthesis and adding to the 

right-hand member of the equation the same numbers that are 
added to the left-hand member, we have

4(x2 + x + I) + 6(ÿ2 - 2ÿ+l) = l + l + 6 = 8, 
which may be written in the form

(*  + i)2 , (.y - i)2 = !
2 I

The equation therefore represents an ellipse with its center at 
(— |, 1) and its major axis parallel to OX.

Example 2. Discuss the equation 9 x2 — 4 y2 — 36 x — 24 y — 36 = 0.
Proceeding as in Example 1, we have

9(x2 -4x4-4) — 4(y2 + 6 y + 9) = 36 + 36 - 36 = 36, 
which may be written in the form

(x - 2)2 (y + 3)2 _ 1
4 9

The equation therefore represents a hyperbola with its center at 
(2, — 3) and its transverse axis parallel to OX.

Example 3. Discuss the equation 4 y2 — 8 x — Gy — 3 = 0.
We collect the terms in y and transpose the other terms to the 

right-hand side of the equation. We have
4(j/2 - j J/) = 8 x + 3.

Completing the square of the terms in the parenthesis, we have 
4(ÿ2 - I y + A) = 8 x + 

which may be written (j/ — |)2 = 2(x 4- ||).
The equation therefore represents a parabola with its vertex at 

(— > I) and its axis parallel to OX.
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Example 4. Exceptional cases. In discussing an equation of elliptic 
type 1 we may be led to an equation of either one of the forms

or

(z - fe)2 (y - À:)2 = 0 
a2 + b2

(x - h)2 , (y - fc)2 _ 
a2 b2

The first equation is satisfied by x = h, y = k, but by no other 
real values of x and y. It therefore represents a point as a special 
case of an ellipse. The second equation can be satisfied by no real 
values of the variables, and hence no graph exists.

Also, in discussing an equation of the hyperbolic type 2 we may 
be led to an equation of the form

(*  ~ h)2 _ (y - fc)2 = 0.
a2 b2

This may be written as

and hence represents two straight lines intersecting at (h, k). This 
may be considered as a special case of a hyperbola when the axes 
have become zero, just as a point is a special case of an ellipse.

Finally, an equation of parabolic type 3 may have one of the 
variables missing. For example,

Ay2 + 2 Gy + C = 0.
This represents two straight lines parallel to OX or no lines at 

all, according as the roots of the equation are real or imaginary. 
This may be considered a special case of a parabola.

EXERCISES
Discuss the following conics :

1. 3 x2 + 2 ÿ2 + 6 r - 8 y + 5 = 0.
2. x2 + 3 ÿ2 - 6x + 6y + 9 = 0.
3. 4 x2 + 9 ÿ2 - 4x+6y + l = 0.
4. 5 x2 — 2 y2 + 50 x + 16 y + 83 = 0.
5. 45 x2 — 75 y2 — 60 x + 60 y + 23 = 0.
6. 16 x2 — 16 y2 — 64 x + 8 y + 15 = 0.
7. y2 — 2y — 2z—5 = 0.
8. x2 + 4 x + 3 y + 10 = 0.
9. 15 y2 + 12 y + 30 z — 8 = 0.

10. b2x2 + a2y2 — 2 ab2x = 0.
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34. Theorems on limits. In obtaining more general formulas 
for differentiation, the following theorems on limits will be 
assumed without formal proof :

1. The limit of the sum of a finite number of variables is equal 
to the sum of the limits of the variables.

2. The limit of the product of a finite number of variables is 
equal to the product of the limits of the variables.

3. The limit of a constant multiplied by a variable is equal to 
the constant multiplied by the limit of the variable.

4. The limit of the quotient of two variables is equal to the quotient 
of the limits of the variables, provided the limit of the divisor is not zero.

35. Theorems on derivatives. In order to extend the process 
of differentiation to functions other than polynomials, we shall 
need the following theorems :

1. The derivative of a constant is zero.
This theorem was proved in § 8.

2. The derivative of a constant times a function is equal to the 
constant times the derivative of the function.

Let u be a function of x which can be differentiated, let c be 
a constant, and place y ±= cu.

Give x an increment Az, and let Au and At/ be the corre­
sponding increments of u and y. Then

At/ = c(u + Au) — cu = c Au.

Hence Ay _ c Au
Az Az

and, by theorem 3, § 34, when Az —» 0, 
T. Au 

=c Llm Â?

Therefore d?/ = cdu, 
dx dx’

by the definition of a derivative.
Example 1. y = 5(z3 + 3z2 + 1).

= 5 4- (* 3 + 3 z2 + 1) = 5(3 z2 + 6 z) = 15(z2 + 2 z). 
dx dx
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3. The derivative of the sum of a finite number of functions is 
equal to the sum of the derivatives of the functions.

Let u, v, and w be three functions of x which can be differen­
tiated, and let | y |

Give x an increment Ax, and let the corresponding incre­
ments of u, v, w, and y be Au, Ar, Aw, and Ay. Then

Ay = (u + Au + r + Ar + w + Aw) — (u + v + w)
= Au + Ar + Aw ;

whence Ąy = Ąu + Ąr + Ąw.
Az Az Az Az

Now let Az —> 0. By theorem 1, § 34,

Lim = Lim — + Lim — + Lim ;
Az Az Az Az

that is, by the definition of a derivative,
dy _ du i dv | dw
dx dx dx dx

The proof is evidently applicable to any finite number of 
functions.

Example 2. y = z4 — 3 x3 + 2 x2 — 7 x.

= 4 x3 - 9 x8 + 4 x - 7.dx

4. The derivative of the product of a finite number of functions 
is equal to the sum of the products obtained by multiplying the 
derivative of each factor by all the other factors.

Let u and r be two functions of z which can be differentiated, 
and let y — uv

Give z an increment Az, and let the corresponding increments 
of u, r, and y be Au, Ar, and Ay.

Then Ay — (u + Au) (r + Ar) — ur
= u Ar + r Au + Au • Ar

Az Az Az Az
and
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If, now, Az —> 0, we have, by § 34,

Lim — — u Lim — + v Lim — + Lim — • Lim Av. 
Az Az Az Az

But

and therefore

Again, let

Lim Av = 0,

dx dx ax 
y = uvw.

Regarding uv as one function and applying the result already 
obtained, we have

dy 
dx

— uv d(uv) 
dx

— uv dw 
dx

The proof is clearly applicable to any finite number of factors. 
Example 3. ÿ = (3 z — 5)(z2 + l)z3.

g = (3 x - 5)(^ + 1) + (3 » - 5)x>

+ (z2 + l)z3 d(3 x~5^
dx

= (3 z - 5)(z2 + 1)(3 z2) + (3 z - 5)z3(2 z) 4- (z2 + l)z3(3) 
= (18 z3 - 25 z2 + 12 z - 15)z2.

5. The derivative of a fraction is equal to the denominator times 
the derivative of the numerator minus the numerator times the deriva­
tive of the denominator, all divided by the square of the denominator.

Let y = -> where u and v are two functions of z which can be 
v 

differentiated. Give z an increment Az, and let Au, Av, and Ay 
be the corresponding increments of u, v, and y. Then

v Au — u Av
v2 + v Av

v2 + v Avand
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Now let Ax —> 0. By § 34,

Lim^ =-------- -4*  . Al;
Ax v2 + v Lim As

whence

dv_
dx

%2 _  1
Example 4. y =

dy _ (x2 + 1)(2 x) — (x2 — 1)2 x _ 4 x
dx~ (x2 + l)2 ~(x2 + l)2’

6. The derivative of the nth power of a function is obtained by 
multiplying n times the (n — 1 )th power of the function by the 
derivative of the function.

Let y = un, where u is any function of x which can be differ­
entiated and n is a constant. We need to distinguish four 
cases :

Case I. When n is a positive integer.
Give x an increment Ax, and let Au and A?/ be the corre­

sponding increments of u and y. Then
A?/ — lu + Au)n — un ;

whence, by the binomial theorem,
Aÿ = nun~l &u + n(n—D. u"_2(Au)2 + • • • + (Au)n.

= nun-i Au + n(n-l) m„_2 Ąu + . . . + (Am)b_1 Au.
Ax Ax 2 Ax Ax

Now let Ax, Au, Ay —> zero, and apply theorems 1 and 

2, § 34. The limit of is the limit of — is —, and the 
Ax dx Ax dx

limit of all terms except the first on the right-hand side of 
the last equation is zero, since each contains the factor Au. 
Therefore

dx "" dx
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CASE II. When n is a positive rational fraction.
Let n = where p and q are positive integers, and place

By raising both sides of this equation to the (/th power, we
have yi - up.

Here we have two functions of x which are equal for all values 
of x.

Taking the derivative of both sides of the last equation, we 
have, by Case I, since p and q are positive integers,

Substituting the value of y and dividing, we have

dy = P.uq~1^£. 
dx q dx

Hence, in this case also, = nun 1 •
dx dx

Case III. When n is a negative rational number.
Let n — — m, where th is a positive number, either integral 

or fractional, and place

dxThen

_ dfam) 
dy dx [By 5]

[By Cases I and II]

Hence, in this case also,

du 
dx

= —

du.
dx dx
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Case IV. When n is an irrational number.
The formula is true in this case also, but the proof will not 

be given.
It appears that the theorem is true for all real values of n. 

It may be restated as a working rule in the following words :
To differentiate a power of any quantity, bring down the exponent 

as a coefficient, write the quantity with an exponent 1 less, and 
multiply by the derivative of the quantity.

Example 5. y = (x3 + 4 x2 — 5 x + 7)3.
= 3(x3 + 4 x2 - 5 x + 7)2 £ (x3 + 4 x2 - 5 x + 7)

= 3(x3 + 4 x2 — 5 x + 7)2(3 x2 + 8 x — 5).

Example 6. y = a/x2 + = x"‘ + x~3.

^- = lx~i-3x-^
dx 3 

_ _2___ 3_
3\/x

Example 7. y = (x + l)Vx2 4- 1.

= (x + 1) d(a;2 + 1)? + (x2 + 1)4 +
dx dx dx

=(x + 1) [j (x2 + 1)-*.  2 x] + (x2 + 1)4
_ Z (X + 1) + çx2 +

(X2 + 1)1
_ 2 x2 + x + 1

Vx2 + 1

Examples, y = •

dy_l / x d / x \ 
dx~ 3\x3 + l' dx\x3 + l/ 

_ 1 /x3 + 1\< 1 - 2 x3
3 \ x / (x3 +1)2

— 1 — 2 x3 e
3xl(z3 + l)l
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■i.lfy is a function of x, then x is a function of y, and the 
derivative of x with respect to y is the reciprocal of the derivative 
of y with respect to x.

Let Ax and Ay be corresponding increments of x and y. It is 
immaterial whether Ax is assumed and Ay determined, or Ay 
is assumed and Ax determined. In either case Ax —> 0 and
Ay 0 together. But Ax _ 1

Ay ~ Ay’
Ax

whence

that is, dx _ 1
dy dy

dx

8. If y is a function of u and u is a function of x, then y is a 
function of x, and the derivative of y with respect to x is equal to the 
product of the derivative of y with respect to u and the derivative of 
u with respect to x.

An increment Ax determines an increment Au, since u is a 
function of x, and this in turn determines an increment Ay, 
since y is a function of u. Then as Ax —> 0, Au —» 0 and

0

Ay —> 0. But Ay _ Ay Au
Ax Au Ax ’

whence

that is,

Example 9.

dy _ dy du 
dx du dx

y = u2 + 3 u + 1, where u — x2
4 + 6 x2

x5
The same result is obtained by substituting in the expression for 

y the value of u in terms of x and then differentiating.
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36. Formulas. We may now collect our formulas of differen­
tiation in the following table :

£ = 0,
dx

d(cu) _ cdu 
dx dx

d(u + p) _ du i dv 
dx dx T dx
d(uv~) „ dv . du
——- = UJ~ + Vy-’dx dx

v^-u^ 
dx dx

~ v* ’

dx

dx
d^l = nun-l^,

dx dx
dx 1 
dy dy’ 

dx
dy _dy du
dx du dx’

dy
dy _ du
dx dx

du

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Formula (9) is a combination of (7) and (8).
The first six formulas may be changed to corresponding for­

mulas for differentials by multiplying both sides of each equa­
tion by dx. They are _ q, (10)

dÇcu') = cdu, (11)
d(u + p) = du + dv, (12)

d(wp) = u dv + v du, (13)
_ v du — u dv 

\v) p2
d(un) = nun 'du. (15)
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EXERCISES

Find in each of the following cases : 

ÿ= (2x+3)(3x2 + 2x-3).^'?l „ = 
y — (2 x2 + l)(x3 + 3 x).
y = (x2 — l)2(x + 2)3.
y = (x — l)(x+ 2)(x —3)2.

x2 — 4 
ÿ_x2 + 4’ 
„-(3Z+1)2.
y (2x —l)3

7. ÿ=\/x3 + -^-

8. y — (3 x2 — 6 x + 1)2.

1.
2.
3.
4.

5.

6.

Vx2 — 1
x + 1
x + 1

y/rf + 2.______
11. y — (x + 1) Vx2 — 2 x.
12.7/ = ^==-

V9 x2 + 4

9. ÿ =

10. y =

13.

14.

15.

x2

17.

x3 + 3

37. Differentiation of implicit functions. Consider any equa­
tion containing two variables x and y. If one of them, as x, is 
chosen as the independent variable and a value is assigned to 
it, the values of y are determined. Hence the given equation 
defines y as a function of x. If the equation is solved for y in 
terms of x, y is called an explicit function of x. If the equation 
is not solved for y, y is called an implicit function of x. For 
example, 2/2 + 3x2 + 4x?/ + 4x + 2?/ + 4 = 0,

which may be written
y2 + (4 x + 2)y + (3 x2 + 4 x + 4) = 0, 

defines y as an implicit function of x.
If the equation is solved for y, the result

y = — 2 x - 1 ± Vx2 — 3
expresses y as an explicit function of x.
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If it is required to find the derivative of an implicit function, 
the equation may be differentiated as given, the result being an 
equation which may be solved algebraically for the derivative. 
This method of finding both first and second derivatives is illus­
trated in the following examples :

Example 1. x2 + y2 = 5.
If x is the independent variable,

A(^ + rt = A(6) = 0;
2x + 2?/^=0,

ax
_ -L

dx y
Or the derivative may be found by taking the differential of both 

sides, as follows : d(x2 + y2) = d(5) = 0 ;

that is,

whence

that is, 2 x dx + 2 y dy = 0,
, dy xwhence , --------dx y
It is also possible first to solve the given equation for y, thus : 

y = ± V5-x2;
whence = ± —. Z ’

dx V5 - x2
a result evidently equivalent to the result previously found.

Example 2. Find if x2 + y2 = 5.

We know from Example 1 that dx y
Therefore B = -|(ï)

»"»(£)

y2
x\y-xl-
y/

y2
y2 + x2

since y2 + x2 = 5, from the given equation.
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EXERCISES
Find from each of the following equations : dx
1. ?/2(x - y) + x + y = 0. 4. y2 = x + Vx2 + y2.
2. Vÿ + x + Vÿ - x = a. 6 & + y = a.
3. (x — ÿ)2(x + y) — a3. ‘y3 x b

Find ~ and from each of the following equations : dx dx2
6. xy + 2 x + 3 y — 6. 9. x5 + y5 = a3.
7. y = x/x + y. 10. x’ + y^ — <A.
8. x2 + xy — y2 = 0. 11. x2 + y2 — 2 ax — 2 by = 0.
38. Tangent line. In § 15 we derived the equation of the tan­

gent line to any curve at the point Pi(xb y^ in the form

■ m

where is the value of ~ when x = Xi and 2/ = 2/1 ; that 
\dx/i dx

is, it is the slope of the curve, and hence of the tangent line, at 
Pi. The use of (1) in deriving a general equation of the tangent 
line to any given curve at a chosen point Pi (xb yi) is illustrated 
in Example 1.

The angle of intersection of two curves is the angle between 
their respective tangents at the point of intersection. The method 
of finding the angle of intersection is illustrated in Example 2.

Example 1. Find the equation of the tangent line to the ellipse 
+ K = 1 at Pi(xi, 2/i).

a2 o
By differentiation we have

2x 2ydy_n a)a2 b2 dx ’

whence dx a2y
(2)

Placing x = Xi and y = yi in (2), we have
AM _ _ &2xi j
\dx/1 a2yi ’ (3)

and the equation of the required tangent line is
y-y^=-^^-x^ (4)
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It is desirable to put this equation into a simpler form.
Since Pi is a point of the ellipse, its coordinates satisfy the equa­

tion of the ellipse, and hence

B_2 4. 2/i2 _ i
a2 b2 ’ (5)

an equation which enables us to simplify (4).

For, multiplying (4) by we have o2
fl (2/ ~ 2/i) = - § (z - xi),

which may be written in the form
xix , 2/12/ _ æi2 . yi2 
a2 b2 a2 b2‘

But, by virtue of (5) the right-hand member of (6) is 1, and (6)
reduces to 2±r 4. 2/12/ _ i

a2 b2 ’ (7)

the equation of the required tangent line in simple form.
The obvious similarity between this equation and that of the ellipse 

makes it easy to remember, if necessary.

Example 2. Find the angle of intersection of the circle x2 + y2 = 8 
and of the parabola x2 = 2 y.

The points of intersection are Pi (2,2) 
and P2(— 2t 2) (Fig. 52), and from the 
symmetry of the diagram it is evident 
that the angles of intersection at Pi and 
Pi are the same.

Differentiating the equation of the 
circle, we have 2 x + 2 y = 0, whence 
dv x ■ • *?-f- =---; and differentiating the equa-
. y dvtion of the parabola, we find = x.

Hence at Pi the slope of the tangent to the circle is — 1, and the 
slope of the tangent to the parabola is 2.

Accordingly, if /3 denotes the angle of intersection, by § 14,

or /3 — tan-1 3.
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EXERCISES

1. Find the equation of the tangent line drawn to the circle 
x2 + y2 — 4 x + 6 y = 12 at the point (5, 1).

2. Find the equation of the tangent line drawn to the curve 
y3 — 4 x2 — yx2 at the point (— 2, 2).

3. Find the angle of intersection of the tangents to the curve 
y2 = 2 x3 at the points for which x = 2.

4. Show that the equation of the tangent to the hyperbola
= 1 at the point (xb 2/i) is 7^ - 3^ = 1- 

a2 b2 a2 b2
5. Show that the equation of the tangent to the parabola y2 — kx

kat the point (xi, ?/i) is yiÿ = - (x + Xi).
6. Show that the equation of the tangent drawn to the parabola 

y2 — 4 ax + 4 a2 at the point (xi, yi) is yiy = 2 a(x + Xi) + 4 a2.
7. Find the point at which the tangent to the curve ?y2(2 + x) = 2 — x 

at the point (— , 2) intersects the curve again.
Draw each pair of the following curves in one diagram and deter­

mine the angles at which they intersect :

39. The differentials dx, dy, ds. On any given curve let the 
distance from some fixed initial point measured along the curve 
to any point P be denoted by s, where s is positive if P lies in 
one direction from the initial point and negative if P lies in the 
opposite direction. The choice of the positive direction is purely 
arbitrary. We shall take as the positive direction of the tangent 
that which shows the positive direction of the curve, and shall 
denote the angle between the positive direction of OX and the 
positive direction of the tangent by <p.

Now for a fixed curve and a fixed initial point the position of 
a point P is determined if s is given. Hence x and y, the coor­
dinates of P, are functions of s which in general are continuous 
and may be differentiated. We shall now show that

yi- = cos 0, 3^ = sin <f>.
ds ds
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Let arc PQ = As (Fig. 53), where P and Q are so chosen that
As is positive. Then PR = Ax and 
RQ = Ay, and
Ax _ PR _ chord PQ PR
As arc PQ arc PQ chord PQ

chord FQ.COS RpQ>
arc PQ

Ay _ RQ _ chord PQ RQ
As arc PQ arc PQ chord PQ 

= chord PQ ,sin RpQ

We shall assume without proof that the ratio of a small chord 
to its arc is very nearly equal to unity, and that the limit of 
chord PQ _ | as ^g pOjnt q approaches the point P along the 

arc PQ
curve. At the same time the limit of RPQ — <f>. Hence, taking 
limits, we have dx . dy ■

— = cos <p, -r = sm d>.ds ds (1)

If the notation of differentials is used, equations (1) become 
dx = ds ■ cos 0, dy — ds ■ sin </> ;

whence, by squaring and adding, we obtain the equation 
ds2 — dx2 + dy2. (2)

This relation between the differentials of x, y, and s is often 
represented by the triangle of 
Fig. 54. This figure is convenient 
as a device for memorizing for­
mulas (1) and (2), but it should 
be borne in mind that RQ is not 
rigorously equal to dy (§ 18), nor 
is PQ rigorously equal to ds. In 
fact, RQ — Ay, and PQ = As ; but 
if this triangle is regarded as a 
plane right triangle, we recall im­
mediately the values of sin 0, 
cos <j>, and tan which have been previously proved.
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40. Motion in a curve. When a body moves in a curve, the 
discussion of velocity and acceleration becomes somewhat com­
plicated, as the directions as well as the magnitudes of these 
quantities need to be considered. We shall not discuss accelera­
tion, but shall notice that the definition for the magnitude of 
the velocity, or the speed, is the same as before (namely, 

where s is distance measured on the curved path) and that the 
direction of the velocity is that of the tangent to the curve.

Moreover, as the body moves along a curved path through a 
distance PQ = As (Fig. 55), x changes by an amount PR — Ax, 
and y changes by an amount RQ — Ay. We have then

Lim 4^ = = y = velocity
At dt J

of the body in its path,

Lim = vx = component

of velocity parallel to OX,
Lim 4^ = — vy = component

At dt
of velocity parallel to OY.

Otherwise expressed, v repre­
sents the velocity of P, vx the velocity of the projection of P 
upon OX, and vv the velocity of the projection of P on OY.

Now, by (8), § 36, and by § 39,

dt ds dt

and

= v cos </>,
v =dy = dy.ds 

v dt ds dt

(1)

(2)

(3)

= v sin d>.

Squaring and adding, we have
»2 * = vx2 + r 2.
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Formulas (1), (2), and (3) are of especial value when a par­
ticle moves in the plane XOY and the coordinates x and y of 
its position at any time t are each given as a function of t. 
The path of the moving particle may then be determined as 
follows :

Assign any value to t and locate the point corresponding to 
the values of x and y thus determined. This will evidently be 
the position of the moving particle at that instant of time. In 
this way, by assigning successive values to t we can locate other 
points through which the particle is moving at the correspond­
ing instants of time. The locus of the points thus determined 
is a curve which is evidently the path of the particle.

The two equations accordingly represent the curve and are 
called its parametric representation, the variable t being called a 
parameter.*  In case t can be eliminated from the two given 
equations, the result is the (x, y) equation of the curve, some­
times called the Cartesian equation ; but such elimination is not 
essential, and often is not desirable, particularly if the velocity 
of the particle in its path is to be determined. By (9), § 36, the 
slope of the curve is given by the formula

dd
dy = ^L. (4)
dx dx

dt

Example 1. A particle moves in the plane XOY so that at any 
time t, x _ y —
where a and 6 are any real constants. Determine its path and its 
velocity in its path.

Eliminating t from the two equations, we have
bx2 = a2y

as the Cartesian equation of the path. This equation may be writ­
ten in the form a2

whence it is immediately evident that the path is a parabola.
* It may be noted in passing that the parameter in the parametric representa­

tion of a curve is not necessarily time, but may be any third variable in terms of 
which x and y can be expressed.
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To determine the velocity of the particle in its path, we find, by 
differentiating the given equations,

dx dy o
^=di = a’ V^M=2bt’

whence, by (3), v = Va2 + 4 b2t2.

Example 2. If a projectile starts with an initial velocity v0 in an 
initial direction which makes an angle a with the axis of x taken 
as horizontal, its position at any time t is given by the parametric 
equations x = Vqi cos y = Vot sin a — gt2.

Find its velocity in its path.
cZxWe have vx — ~r. = i'o cos a,
dt

vy = = v0 sin a — gt.

■ Hence v = Vi>02 — 2 gvot sin a + g2t2.

EXERCISES

1. The coordinates of the position of a moving particle at any 
time t are given by the equations x = 2 t2, y = t3. Determine the 
path of the particle and its speed in its path.

2. The coordinates of the position of a moving particle at any 
time t are given by the equations x = t2, y = t + 2. Determine the 
path of the particle and its speed in its path.

3. The coordinates of the position of a moving particle at any 
time t are given by the equations x = 5 t, y = 6 t — 10 t2. Determine 
the path of the particle, its speed in its path, and the point in the 
path at which the speed is the least.

4. The coordinates of the position of a moving particle at any 
time t are given by the equations x = t2, y = 2 t2 — 25 t. Find the 
path of the particle, its speed in its path, and the point in the path 
at which the speed is least.

5. The coordinates of the position of a moving particle at any 
time t are given by the equations x = t2 — 3, y = t3 + 2. Determine 
the path of the particle, its speed in its path, and the point in the 
path at which the speed is the least.

6. The coordinates of the position of a moving particle at any 
time t are given by the equations x = 4 t2, y = 4(1— i)2. Determine 
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the path of the particle, its speed in its path, and the point in the 
path at which the speed is the least.

7. Show that the speed of a projectile is least when the projectile 
is at its highest point.

8. Find the range of a projectile (that is, the distance to the 
point at which the projectile will fall on OX), the speed at that point, 
and the angle at which the projectile will meet OX.

9. Show that in general the same range may be produced by 
two different values of a, and find the value of a which produces 
the greatest range.

10. Find the (x, y) equation of the path of a projectile, and plot.

41. Related rates. If we have any variable x expressed in 
terms of the time t, we may, by differentiating with respect to t, 
find which, according to § 6, is the rate of change of x with re­

al
sped to the time t. In the particular case in which x is a distance 

(1 y •
traveled by a moving body we have called — the velocity of 

the moving body. It follows that velocity is a special case of a 
rate with respect to the time t.

More generally, if we have any two variables x and y connected 
by a single equation, we may regard one of them as the inde­
pendent variable and the other as a function of it. Suppose we 
take x as the independent variable ; then y is a function of x. 
Differentiating with respect to x, we find the rate of change 

dx
of y with respect to x. This type of problem was discussed in § 6.

Suppose, however, that the two variables x and y each vary 
with respect to the time t. We are now able to differentiate the 
equation with respect to t. The resulting equation will contain 
— and the respective rates of change of x and y with respect 
dt dt 
to t ; and if either rate is known, the other may be readily com­
puted. In fact, by (8), § 36,

dy__d]l. dx.
dt dx dt

Hence the two important steps in comparing the rates of two 
variables with respect to the time t are first, the formation of a 
general equation containing the two variables; second, the 
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differentiation of that equation with respect to t. These steps 
appear in the solution of the following illustrative examples :

Example 1. The radius of a circle is increasing at the uniform rate 
of 2 ft. per second. How fast is the area of the circle increasing when 
its radius is 4 ft. ?

Denoting the area of the circle by A and its radius by r, we have 
the equation a = irr2.

Since A and r are both functions of t, we may differentiate with 
respect to t, obtaining the result

cZz*  • •But — = 2, and hence, by substitution,
.

a general formula for the rate of change of A with respect to t, for
any value of r.

dAIf r = 4, — = 16 7T, and A is increasing at
at the rate of 16 tt sq. ft. per second.

Example 2. Suppose we have a vessel 
in the shape of a right circular cone (Fig. 56) 
of radius 3 in. and altitude 9 in. into which 
water is being poured at the uniform rate 
of 100 cu. in. per second. Required the rate 
at which the depth is increasing when the 
water is 6 in. deep.

From similar triangles in the figure, if 
h is the depth of the water and r the ra­
dius of its surface, r — ^-Ó If V is the volume of the water,

V = irr2h = 7rh3.
Since h and V are both functions of t, we may differentiate with 

respect to t, the result being
dV 1 , „ dh
-dt=9Th di'

We have given = 100 and h = G; from which we compute

= 7.96.at 7T
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Hence the depth is increasing at the rate of 7.96 in. per second 
when h = 6 in.

As a variation of this problem, suppose the water is leaking out 
of the same vessel at the uniform rate of 50 cu. in. per second, and it 
is required to find the rate of change of the depth when the water 
is 6 in. deep.

Using the same notation as before, we have
V.= Th3,

whence ' ^T = 57r^23r'
at 9 dt

In this case, however, V is decreasing and hence — 50.
dVSubstituting this value for — and placing h = 6, we find, by com­

putation, that — — — = — 3.98.
(It x-i 7T

Since is negative, it follows that the depth is decreasing, as 
was known to be the case, and at the rate 3.98 in. per second.

Example 3. A lamp is 60 ft. above the ground. A stone is dropped 
from a point on the same level as the lamp and 20 ft. away from it. 
Find the speed of the stone’s shadow on the ground at the end of 
1 sec., assuming that the distance 
traversed by a falling body in the 
time t is 16 t2.

Let AC (Fig. 57) be the surface of 
the ground, which is assumed to be 
a horizontal plane, L the position of 
the lamp, 0 the point from which 
the stone was dropped, and S the 
position of the stone at any time t. 
Then Q is the position of the shadow 
of S on the ground, LSQ being a 
straight line. Let OS = x and BQ — y. Then LO — 20, BO — 60, and 
BS = 60 — x. In the similar triangles LOS and SBQ,

x _ 60 — x. 
20— y ’ 
y = i200 - 20.

X

We know x = 16 i2, whence = 32 t ; and wish to find the 
velocity of Q.

(1)

whence (2)
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Differentiating (2) with respect to t, we have
dy _ 1200 dx 
dt x2 dt

dxWhen t = 1 sec., x = 16, and — = 32 ; whence, by substitution, 
we find j

= — 150 ft. per second.
dt

The result is negative because y is decreasing as time goes on.

EXERCISES

1. A solution is being poured into a conical filter at the rate of 
5 cc. per second and is running out at the rate of 1 cc. per second. 
The radius of the top of the filter is 10 cm. and the depth of the 
filter is 30 cm. Find the rate at which the level of the solution is 
rising in the filter when it is one fourth of the way to the top.

2. A peg in the form of a right circular cone of which the ver­
tical angle is 60° is being driven into the sand at the rate of 1 in. 
per second, the axis of the cone being perpendicular to the surface 
of the sand, which is a plane. How fast is the lateral surface of the 
peg disappearing in the sand when the vertex of the peg is 5 in. 
below the surface of the sand ?

3. A trough is in the form of a right prism with its ends equi­
lateral triangles placed vertically. The length of the trough is 10 ft. 
It contains water which leaks out at the rate of J cu. ft. per minute. 
Find the rate, in inches per minute, at which the level of the water 
is sinking in the trough when the depth is 2 ft.

4. A trough is 10 ft. long, and its cross section, which is vertical, 
is a regular trapezoid with its top side 4 ft. in length, its bottom 
side 2 ft., and its altitude 5 ft. It contains water to the depth of 
3 ft., and water is running in so that the depth is increasing at the 
rate of 2 ft. per second. How fast is the water running in ?

5. A point is moving on the curve y2 = x3. The velocity along 
OX is 2 ft. per second. What is the velocity along OY when x = 2 ?

6. A ball is swung in a circle at the end of a cord 2 ft. long so 
as to make 20 revolutions per minute. If the cord breaks, allowing 
the ball to fly off at a tangent, at what rate will it be receding from 
the center of its previous path 2 sec. after the cord breaks, if no 
allowance is made for the action of any new force?
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7. The inside of a vessel is in the form of an inverted regular 
quadrangular pyramid, 4 ft. square at the top and 2 ft. deep. The 
vessel is originally filled with water, which leaks out at the bottom 
at the rate of 10 cu. in. per minute. How fast is the level of the 
water falling when the water is 10 in. deep ?

8. The top of a ladder 20 ft. long slides down the side of a ver­
tical wall at a speed of 3 ft. per second. The foot of the ladder slides 
on horizontal land. Find the path described by the middle point of 
the ladder, and its speed in its path.

9. A boat with the anchor fast on the bottom at a depth of 40 ft. 
is drifting at the rate of 3 mi. per hour, the cable attached to the 
anchor slipping over the end of the boat. At what rate is the cable 
leaving the boat when 50 ft. of cable are out, assuming it forms a 
straight line from the boat to the anchor ?

10. The angle between the straight lines AB and BC is 60°, and 
AB is 40 ft. long. A particle at A begins to move along AB toward 
B at the rate of 5 ft. per second, and at the same time a particle at 
B begins to move along BC toward C at the rate of 4 ft. per second. 
At what rate are the two particles approaching each other at the 
end of 1 sec. ?

11. The foot of a ladder 50 ft. long rests on horizontal ground, 
and the top of the ladder rests against the side of a pyramid which 
makes an angle of 120° with the ground. If the foot of the ladder is 
drawn directly away from the base of the pyramid at the uniform 
rate of 2 ft. per second, how fast will the top of the ladder slide 
down the side of the pyramid ?

42. Integration. We know that if n has any value, positive or 
negative, integral or fractional, we have

(1)

Now if n + 1 is not equal to zero, we may divide equation (1) 
by + 1 and have

xn — ——1 d(z"+1) = d /x"+1\
+1 dx dx\n +1/n +1 dx (2)

Hence by reversing the process of differentiation we have

(3)

This is the same formula obtained in § 20, but it is there limited
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to positive integral values of n, while here it is applicable to any 
value of n except n = — 1. For example,

2
3 x* + C;

fÿ=f^<k=-^+c=-1-+c.

The value of j' x~ldx= J — cannot be obtained by formula 

(3), however, and will be found later (see § 57).
We may apply formula (3) to problems of the types discussed 

in §§ 20-25.

Example 1. The slope of a curve at any point is always equal to 
the square of the slope of the line joining the point to the origin, 
and the curve passes through the point (2, 1). Find its equation.

• • dvThe slope of any curve at any point is The slope of the line
.,,'11joining the point to the origin is -• By the statement of the problem 

we have
dy _y^t
dx x2
dy _ dx.
y2 x2

which we may write as

Integrating by (3), we have

y x

Since the curve passes through (2, 1), we have
- 1 = - 1 + C,

C = - |.whence

or

The required equation is therefore
1_1 1
y x + 2 

xy — 2x + 2y = 0.
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Example 2. Find the pressure on a parabolic segment, with base 
b and altitude a, submerged so 
that its base is in the surface of 
the liquid and its axis is vertical.

Let RQC (Fig. 58) be the para­
bolic segment, and let CB be 
drawn through the vertex C of the 
segment perpendicular to RQ in 
the surface of the liquid. Accord­
ing to the data, RQ = b, CB —a.
Draw LN parallel to TS, and on LN as a base construct an element 
of area, dA. Let

Then

But, from § 30,

whence

dA = (LN)dx.
CM = x.

LN2 _ CM
RQ2 ~ CB

b2xLN = --- fa

and therefore dA — — x^ dx.
aA

The depth of the line LN below the surface of the liquid is 
CB — CM = a — x-, hence, if w is the weight of a unit volume of 
the liquid, & t

dP - — x^(a — x)wdx,
aT

and p = Ç x\a - xjdx
Jo aA

= wba2.

EXERCISES

1. The velocity in feet per second of a moving body is equal to 
y/t. Find the distance traveled in the time from t = 2 to t = 4.

2. The velocity in feet per second of a moving body is equal to 
vs, and when t - 0, s = 4. Find s when t — 3.

3. The slope of a curve at any point is always equal to the square 
root of the abscissa of the point, and the curve passes through the 
point (4, 2). Find its equation.

4. A curve always cuts at right angles the line joining any point 
on it to the origin, and the curve passes through the point (3, — 2). 
Find its equation.
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5. The slope of a curve at any point is equal to the reciprocal of 
the square of the abscissa of the point, and the curve passes through 
the point (1, 1). Find its equation.

6. Prove that the area of a parabolic segment is two thirds of the 
product of the base and the altitude.

7. Find the area bounded by OX, OY, and the curve x^ + y^ = cO.
8. Find the area bounded by the curve y2 = x3 and the straight 

line y = x.
9. Find the volume of the solid generated by revolving about OX 

the triangular area bounded by OX, OY, and the curve x? + y'2 — a?.
10. Find the volume of the solid formed by revolving about the 

line x — a the area bounded by that line and the curve ay2 = x3.
11. A parabolic segment with base 18 and altitude 6 is submerged 

so that its base is horizontal, its axis vertical, and its vertex in the 
surface of the liquid. Find the total pressure on the segment.

12. A pond 15 ft. in depth is crossed by a roadway with vertical 
sides. A culvert, whose cross section is in the form of a parabolic 
segment with horizontal base on a level with the bottom of the 
pond, runs under the road. Assuming that the base of the parabolic 
segment is 4 ft. and its altitude is 3 ft., find the total pressure on 
the bulkhead which temporarily closes the culvert.

Find

1.

GENERAL EXERCISES

in each of the followingdx
a

2.

x — y/x2 — a2
x

cases :

y = (3 x2 — 2 a2)y/(x2 + a2)3.4.

3.

x +y/x2 + a2

y = xy/x2 — a2---- ,a X :
y/ x2 — a2

5.

6.

x — y/a2 — x2 y =

y = (a2 — x2)ï + a2
(a2 - x2)i

y

y X

Find -- and in each of the following cases : dx dx2
7. y3 = a2(x + y).
8. x^ + y*  = a*.
9. xn + yn = an.

10. b2x2 + a2y2 = a2b2.
11. x3 + y3 — 3 axy = 0.
12. xy2 = x+ y.
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Plot the following curves :
13. y2 — 4 y = x3 + 3 x2 — 4.
14. (x - l)2 - y (y - 2)2 = 0.

16. y = Çr + 2)2
x + 1

(x - 2)2
x + 2

18. (y - 2)2(x + 4) = 4.

27. Plot the curve y — • a.—x
x2 + 4 a2

19. t/2(4 + x2) = x2(4 - x2).
20. t/2(4 - x2) - x2(4 + x2).
21. x2(t/2 - 4) = 4.
22. (ÿ — x)2 = 16 — x2.
23. {y - x)2 = t/2(3 - 7/).
24. a4?/2 + b2x4 = a2b2x2.
25. t/2(x2 + a2) = a2x2.
26. x2y2 + a2b2 = b2y2.

This curve is called the witch.

28. Plot the curve y2 = x2 -—- • This curve is called the strophoid.a + x
29. Plot the curve x? + y% = a*.  This curve is the four-cusped 

hypocycloid, and is the curve described by any point of a circle of 
radius y as the circle rolls on the inside of a circle of radius a.4

30. Plot the curve xl + 7/1 = al. This curve is the parabola, the 
axes of x and y being the tangents to the parabola at the ends of 
the chord drawn through the focus of the parabola perpendicular 
to the axis of the parabola.

Sketch the following conics :
31. 3 x2 + 7/2 - 6 x - 6 y + 9 = 0.
32. 9 x2 + 25 t/2 — 36 x + 50 7/ — 164 = 0.
33. 36 x2 - 18 y2 + 36 x + 24 y - 35 = 0.
34. 12 x2 — 18 t/2 — 36 x — 12 7/ + 31 = 0.
35. x2 — 4 x — 11 y — 7 = 0.
36. 4 t/2 - 4 7/ + 6 x + 3 = 0.
37. Find the locus of a point the square of whose distance from 

a fixed point is always k times its distance from a fixed straight line.
38. Find the equation of the locus of a point whose distance from 

the fixed point (c, 0) is always e times its distance from the axis 
of y. Show that the locus is an ellipse if e < 1, a hyperbola if e > 1, 
and a parabola if e = 1.
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39. Find the equation of the locus of a point whose distance from 
one fixed point is always k times its distance from a second fixed 
point. Show that the locus is a circle unless fc = 1, and find its center 
and radius.

40. Show that the locus of a point which moves so that the sum 
of the squares of its distances from any number of fixed points is 
constant is a circle.

41. A point moves so that the length of the tangent from it to 
the circle x2 + y2 = a2 is always equal to the length of the tangent 
from it to the circle (x — b)2 + y2 = c2. Find its locus.

42. A point moves so that the length of the tangent from it to 
the circle x2 + y2 — 1 is equal to its distance from the line x = 3. 
Show that the locus is a parabola.

43. Find the general expression for the length of the tangent from 
any point (xi, yi) to any circle A(x2 + y2) + 2 Gx + 2 Fy + C = 0.

44. Find the equation of an ellipse with foci (3, 0) and (0, 3) and 
major axis equal to 6.

45. Find the equation of an ellipse which passes through the 
origin and has the foci at (4, 0) and (0, 4).

2 a — x
a 4- x

at the

46. Find the equation of the tangent to the strophoid y2 = x
. ,, • <- / 4 a 12 «\at the point (——>-----— )•

^•3
47. Prove that the tangents to the cissoid y2 = -r——-2 a — x 

points for which x = a make supplementary angles with OX.
48. A chord is drawn through the focus of the parabola y2 = kx 

perpendicular to the axis of the parabola. Show that the tangents 
to the parabola at the ends of the above chord intersect at right 
angles on the axis of the parabola.

49. Find the equation of the tangent to the curve x*  + y*  = a*  
at the point (xi, yi).

50. Derive the equation of the tangent to the curve xn + yn = an 
at the point (xi, yi).

51. Show that the equation of the tangent to the conic
Ax2+ By2 + 2Gx+2 Fy+C = 0

at the point (xx, yi) is
Axix + Byiy + G(x + Xi) + F(y + yi) + C = 0.



GENERAL EXERCISES 131

52. Prove that if a tangent to a parabola y2 — kx has the slope 
k \x—I and that its equation is4 m2 2 m/m, i

y = mx + 4 m „æ2 y 2
53. Prove that if a tangent to an ellipse 4- = 1 has the slope m.a2 b2

• / g,2vt b2 \its point of contact is I ± , =, =F ,--------= ) and that its
\ V«2m2 + 62 Vo2m2 + 62/

equation is y = mx ± y/a2m2 + b2.
54. Show that a tangent to a parabola makes equal angles with 

the axis and a line from the focus to the point of contact.
55. Show that a tangent to an ellipse makes equal angles with the 

two lines drawn to the foci from the point of contact.

Find the angles of intersection of the following pairs of curves :
56. x2 + y2 — 10 x = 0, y2 = 4 x — 16.
57. y2 = x3, y2 = (2 — x)3.
58. y = (x - 2)2, y = 2 - (x - 2)2.
59. 3 y = (x — 2)2, 9 y2 = 8(x — 2).
60. x2 = 2(y + 1),

61. x2 — 4 x + 3 y — 0, x2 — 4 x + 4 — y2 = 0.
62. 4 y2 — 3 x2 = 4, y2 = ----

4 iC

63. y2 = 4 - 2 x, y2 =

64. A particle moves so that its coordinates at the time t are 
x = 2 t, y — 8 t2. Find its path and its velocity in its path.

65. A particle is moving in the plane XOY so that at the time t 
its coordinates are x = 2 V3 t — t2, y = 2 t. Show that the motion 
is defined only when 0 < t < 3, and that the path is a semicircle. 
Determine the velocity of the particle in its path when t = 1.

66. A particle moves so that its coordinates at the time t are 
y = t, x = y/t2 + 9. Find its path and its velocity in its path when 
t = 4.

67. A particle moves so that its coordinates at the time t are 
x=t + l, y = 2y/i + l. Find its path and its velocity in its path.

68. A particle moves so that its coordinates at the time t are 
x = 3 + 3 y/t, y — 2 + 3 t. Find its path and its velocity in its path 
when t = 4.
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69. A particle moves so that its coordinates at the time t are 
x=2 t, y = 2 V— f2 + 4 / — 3. For what interval of time is the 
motion defined? Find its path and its velocity in its path.

70. The coordinates of a moving particle are given by the equa­
tions x = t3, y — (1 — f2)^. Find its path and its velocity in its path.

71. A particle moves so that its coordinates at the time t are
2

f2 4-1 Find its path and its velocity in its path.

72. A body moves so that x = — 2 4- 0 = 1 + L Find its path
and its velocity in its path.

73. A man standing on a wharf 20 ft. above the water pulls in a 
rope, attached to a boat, at the uniform rate of 3 ft. per second. 
Find the velocity with which the boat approaches the wharf.

74. At 12 o’clock a vessel is sailing due north at the uniform rate 
of 20 mi. an hour. Another vessel, 40 mi. north of the first, is sailing 
at the uniform rate of 15 mi. an hour on a course 30° north of east. 
At what rate is the distance between the two vessels diminishing at 
the end of one hour? What is the shortest distance between the 
two vessels?

75. At a certain time two ships, A and B, are 20 mi. apart, and 
the ship B is due east from the ship A. The ship B is sailing north 
at the uniform rate of 6 mi. an hour and the ship A is sailing south 
at the uniform rate of 8 mi. an hour. How fast will the distance 
between the ships be increasing at the end of 2 hr. ?

76. The top of a ladder 32 ft. long rests against a vertical wall, 
and the foot is drawn at the rate of 4 ft. per second along a straight 
line at right angles to the wall. Find the path of a point on the 
ladder one third of the distance from the foot of the ladder, and its 
velocity in its path.

77. The top of a ladder rests against a vertical wall, and the foot 
is drawn at a uniform rate along a straight line at right angles to 
the wall. Prove that any point on the ladder describes an ellipse 
except the center, which describes a circle.

78. One side of a right triangle, 24 in. long, is increasing at the 
rate of 3 in. per second and the other side, 10 in. long, is decreasing 
at the rate of 2 in. per second. At what rate is the hypotenuse 
changing ?

79. The volume and the radius of a cylindrical boiler are expand­
ing at the rate of .8 cu. ft. and .002 ft. per minute, respectively. How 
fast is the length of the boiler changing when the boiler contains 
40 cu. ft. and has a radius of 2 ft. ?
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80. Sand is being poured on the ground from the end of an elevated 
pipe and forms a pile which has always the shape of a right circular 
cone, whose height and the radius of whose base are equal. If the 
sand is falling at the rate of 6 cu. ft. per second, how fast is the 
height of the pile increasing when the height is 5 ft. ?

81. The inside of a cistern is in the form of a frustum of a right 
circular cone of vertical angle 90°. The cistern is smallest at the 
base, which is 4 ft. in diameter. Water is being poured in at the rate 
of 5 cu. ft. per minute. How fast is the water rising in the cistern 
when it is 21 ft. deep?

82. The inside of a bowl is in the form of a hemispherical surface 
of radius 10 in. If water is running out of it at the rate of 2 cu. in. 
per minute, how fast is the depth of the water decreasing when the 
water is 3 in. deep ?

83. How fast is the surface of the bowl in Ex. 82 being exposed ?
84. The inside of a certain vessel is in the form of a surface of 

revolution formed by revolving x2 = 4 y around OY. If the vessel 
contains water which leaks out at the uniform rate of 2 tt cu. in. per 
second, how fast is the depth of the water falling when the depth 
is 4 in.?

85. A man walks at the uniform rate of 4 ft. per second directly 
across a street from a point B which is 40 ft. from a lamp-post. How 
fast does his shadow move along the wall which is on the opposite 
side of the street, the width of the street from lamp-post to. wall 
being 80 ft. ?

86. The hypotenuse of a right triangle is given. Find the other 
sides if the area is a maximum.

87. A wire 10 ft. long is to be bent into the form of an isosceles 
triangle, and the triangle is to be revolved about its altitude to form 
a cone of revolution. What will be the length of the base and the 
sides of the triangle when the volume of the cone is the greatest?

88. The stiffness of a rectangular beam varies as the product of 
the breadth and the cube of the depth. Find the dimensions of the 
stiffest beam which can be cut from a circular cylindrical log of 
diameter 18 in.

89. A rectangular box with a square base and open at the top is 
to be made out of a given amount of material. If no allowance is 
made for thickness of material or for waste in construction, what are 
the proportions of the largest box which can be made?
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90. A rectangular box open at the top is to have a square base. 
The capacity of the box is to be 27 cu. ft. The box is to be lined, 
the cost of the lining for the bottom being twice as much per square 
foot as the cost of the lining for the sides. Find the inside dimensions 
of the least expensive box that may be constructed.

91. A metal box open at the top is to be cast in the form of a right 
circular cylinder, the bottom to be 2 in. thick and the side 1 in. thick. 
The box is to have a capacity of 16 it cu. in. What should be its di­
mensions that the least amount of material may be required?

92. A covered tin can is to be made in the form of a right circular 
cylinder of capacity 54 ir cu. in. What must be its radius and height 
to have the can as light as possible?

93. A horizontal gasoline tank in the form of a right circular 
cylinder is to be made of iron plates. The plates for the upper half 
of the tank cost 50 cents per square foot ; those for the lower half, 
60 cents. The tank is to contain 60 ir cu. ft. Find the dimensions 
of the tank that will make the cost a minimum.

94. The outside and the inside surfaces of a metal vessel are each 
to be in the form of a right circular cone, vertex at the bottom, and 
the radius and the altitude of the inner surface are each one inch 
less than the corresponding dimensions of the outer surface. The 
vessel is open at the top and has a capacity of 9 it cu. in. What 
are the dimensions of the inner surface when the vessel is of the 
least possible weight?

95. A volume of metal is cast in the form of a right circular cyl­
inder and the ends are hollowed out in the form of hemispheres, the 
radii of the hemispheres and the cylinder being equal. If the volume 
of the solid is | t cu. in., what is the radius of the cylinder when the 
cost of finishing the total surface is as small as possible ?

96. A tent is to be constructed in the form of a regular quad­
rangular pyramid. Find the ratio of its height to a side of its base 
when the air space inside the tent is as great as possible for a given 
wall surface.

97. It is required to construct from two equal circular plates of 
radius a a buoy composed of two equal cones having a common base. 
Find the radius of the base when the volume is the greatest.

98. A vessel is anchored 4 mi. offshore. Opposite a point 5 mi. 
farther along the shore another vessel is anchored 8 mi. offshore. 
A boat from the first vessel is to land a passenger on the shore and 
proceed to the other vessel. If the shore is a straight line, determine 
the shortest course of the boat.
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99. Two towns, A and B, are situated respectively 12 mi. and 
18 mi. back from a straight river from which they are to get their 
water supply by means of the same pumping station. At what point 
on the bank of the river should the station be placed so that the least 
amount of piping may be required, if the nearest points on the river 
from A and B respectively are 20 mi. apart and if the piping goes 
directly from the pumping station to each of the towns ?

100. A man on one side of a river, the banks of which are assumed 
to be parallel straight lines | mi. apart, wishes to reach a point on 
the opposite side of the river and 5 mi. farther along the bank. If 
he can row 3 mi. an hour and travel on land 5 mi. an hour, find the 
route he should take to make the trip in the least time.

101. A power house stands upon one side of a river of width 
b miles, and a manufacturing plant stands upon the opposite side, 
a miles downstream. Find the most economical way to construct 
the connecting cable if it costs m dollars per mile on land and 
n dollars a mile through water, assuming the banks of the river to 
be parallel straight lines.

102. A vessel A is sailing due east at the uniform rate of 8 mi. 
per hour when she sights another vessel B directly ahead and 20 mi. 
away. B is sailing in a straight course S. 30° W. at the uniform rate 
of 6 mi. per hour. When will the two vessels be nearest to each other ?

103. The number of tons of coal consumed per hour by a certain 
ship is 0.2 + 0.001 v3, where v is the speed in miles per hour. Find 
an expression for the amount of coal consumed on a voyage of 
1000 mi. and the most economical speed at which to make the voyage.

104. The fuel consumed by a certain steamship in an hour is pro­
portional to the cube of the velocity which would be given to the 
steamship in still water. If it is required to steam a certain distance 
against a current flowing a miles an hour, find the most economical 
speed.

105. An isosceles triangle is inscribed in the ellipse — + fr = 1,az o2
(a > &), with its vertex in the upper end of the minor axis of the 
ellipse and its base parallel to the major axis. Determine the length 
of the base and the altitude of the triangle of greatest area which 
can be so inscribed. qj2

106. In the ellipse — + = 1 is inscribed an isosceles triangle,
16 9

its vertex being at one end of the minor axis and its base being 
parallel to the major axis of the ellipse. What will be the altitude 
of the triangle when the volume of the cone formed by revolving the 
triangle about its altitude is a maximum ?
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107. Light emanating from a point A is reflected from a plane 
surface to a point B. Assuming that light travels in the shortest

■ possible time between the two points, prove that the angle of inci­
dence is equal to the angle of reflection.

108. Light emanating from a point A in a medium in which the 
velocity of light is Vi reaches a point B in a medium in which the 
velocity of light is »2- The two media are separated by a plane sur­
face. Assuming that light travels in the shortest possible time from 
A to B, prove that the sine of the angle of incidence is to the sine 
of the angle of refraction as Vi is to Vz.

109. Prove that any curve the slope of which at any point is 
proportional to the abscissa of the point is a parabola.

110. Find the curve the slope of which at any point is propor­
tional to the square of the ordinate of the point and which passes 
through (1, 1).

111. A point moves in a plane curve such that the tangent to the 
curve at any point and the straight line from the same point to the 
origin of coordinates make complementary angles with the axis of x. 
What is the equation of the curve ?

112. Show that if the normal to a curve always passes through 
a fixed point the curve is a circle.

113. If water is running out of an orifice near the bottom of a 
cylindrical tank, the rate at which the level of the water is sinking 
is proportional to the square root of the depth of water. If the level 
of the water sinks halfway to the orifice in 20 min., how long will 
it be before it sinks to the orifice ?

114. A bullet is fired into a sand bank in which the retardation is 
equal to the square root of the velocity. When will it come to rest 
if its velocity on entering is 100 ft. per second?

115. Find the area bounded by the curve y2 = 4 x3 and the 
straight line y = 2 x.

116. Find the area bounded by the curve (y — l)2 = 4 x and the 
straight line x = 4.

117. Find the volume of the solid generated by revolving about 
O Y the surface bounded by O Y and the curve x% + y*  = aA.



CHAPTER V

TRIGONOMETRIC FUNCTIONS

43. Formulas. The following formulas of trigonometry, which 
are sufficient for the purposes of this book, are collected here for 
convenient reference :

tan A = ?in A, ctn A = ——, sec A= 1 , csc A = -4—. (1)
cos A tan A cos A sm A

sin2 A + cos2 A = 1, sec2 A = 1 + tan2 A, csc2 A = 1 + ctn2 A.
sin (A ± B) = sin A cos B ± cos A sin B. 
cos (A ± B) = cos A cos B T sin A sin B. 

tan(A±B) = /anA±tang
1 T tan A tan B 

sin 2 A = 2 sin A cos A. 
cos 2 A — cos2 A — sin2 A

= 2 cos2 A — 1 
= 1 — 2 sin2 A.

1 — cos 2 A 
-------2--------

si„ 1 A

(2)

sin2 A = cos2 A =

cos I A =

sin (180° — A) — sin A, cos (180° — A) = — cos A, 
tan (180° — A) = — tan A.

137
(13)
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sin (180° + A) — — sin A, cos (180° + A) = — cos A,
tan (180° + A) = tan A. (14)

sin (270° — A) = — cos A, cos (270° — A) = — sin A,
tan (270° - A) = ctn A. (15)

sin (270° + A) = — cos A, cos (270° + A) = sin A,
tan (270° + A) = - ctn A. (16)

sin (360° — A) = — sin A, cos (360° — A) — cos A,
tan (360° — A) = — tan A. (17)

The following table gives the values of sine, cosine, and tan­
gent at each of the quadrant points and their algebraic signs in 
each of the quadrants marked I, II, III, IV.

0° I 90° II 180° III 270° IV 360°

sin 0 + 1 + 0 - -1 - 0

cos 1 + 0 - -1 - 0 + 1

tan 0 + oo » 0 + 00 - 0

44. Circular measure. The circular measure of an angle is the 
quotient of the length of an arc of a circle, with its center at the 
vertex of the angle and included between its sides, divided by 
the radius of the arc. Thus, if 9 is the angle, a the length of 
the arc, and r the radius, we have

0 = (1) 
r

The unit of angle in this measurement is the radian, which 
is the angle for which a — r in (1), and any angle may be said 
to contain a certain number of radians. But the quotient - in 

r 
formula (1) is an abstract number, and it is also customary to 
speak of the angle 9 as having the magnitude - without using 

r
the word "radian.” Thus, we speak of the angle 1, the angle f, 
the angle ?» etc.

4
In all work involving calculus, and in most theoretical work 
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of any kind, all angles which occur are understood to be ex­
pressed in radians. In fact, many of the calculus formulas would 
be false unless the angles involved were so expressed. The 
student should carefully note this fact, although the reason for 
it is not yet apparent.

From this point of view such a trigonometric equation as
y = sin x (2)

may be considered as defining a functional relation between two 
quantities exactly as does the simpler equation y = x2. For we 
may, in (2), assign any arbitrary value to x and determine the 
corresponding value of y. This may be done by a direct com­
putation (as will be shown in Chapter VIII), or it may be done 
by means of a table of trigonometric functions, in which case 
we must interpret the value of x as denoting so many radians. 

One of the reasons for expressing an angle in circular measure 
is that it makes true the formula

Lim^ = l. (3)
h -- o h

To prove this theorem we proceed as follows :
Let h be the angle AOB (Fig. 59), and r the radius of the arc 

AB described from O as a center. BC is a line drawn from B 
perpendicular to OA, and BD is a line 
tangent to the arc AB at B and meeting 
OA produced in D.

We thus form two triangles, COB and
DOB.

In the triangle COB, OC = r cos h,
BC = r sin h, and hence the area of the triangle is J r2 sin h cos h.

In the triangle DOB, BD = r tan h, OB = r, and hence the area 
of the triangle is } r2 tan h.

The area of the sector-AOB is | r2h, since, by hypothesis, the 
angle h is in circular measure.

Since the triangle DOB entirely includes the sector AOB and 
the sector AOB entirely includes the triangle COB, it follows that

that is,

area DOB > area AOB > area COB, 
I r2 tan h > | r2h > i r2 sin h cos h.
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Dividing by | r2 sin h, we have

2 Lim1-c°s - = 0.
&-> o h

45. Graphs of trigonometric functions. We may plot a trigo­
nometric function by assigning values to x and computing, or 
taking from a table, the corresponding values of y. In so doing, 
any angle which may occur should be expressed in circular 
measure, as explained in the preceding section. In this connec­
tion it is to be remembered that it is simply the number 3.1416, 
and that the angle ir means an angle with that number of radians 
and is therefore the angle whose degree measure is 180°.

The manner of plotting can best be explained by examples.
Example 1. y = a sin bx.
It is convenient first to fix the values of x which make y equal to 

zero. Now the sine is zero when the angle is 0, ir, 2 ir, 3 ir, — ir, 
— 2 7F, or, in general, kir, where k is any positive or negative integer. 
To make y = 0, therefore, we have to place

bx = ■ • -, — 2 7T, — 7T, 0, 7F, 2 7F, 3 7T, • • • J

whence x = • •0, ’ • ••b b b b b

> -Ay > cos h, 
cos h sin h

or, by inverting, cos h <
Now as h 0, cos h -» 1, and —!-y -> 1. Hence which

1 cos h H
lies between cos h and----- r, must also approach 1 ; that is,cos h

sin h 
h

Lim
/>- 0

This result may be used to find the limit of 
approaches zero as a limit. For we have

2 sin2 7 sin2 7 /—2 = —i = sinM 
h h 21

sin I 2

Now as h -> 0, —— -> 1 by (3). Therefore 
A

1 — cos h 
h

as h

(4)
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whence

The sine takes its maximum value + 1 when

bx = • • 7 7T 3 7T 7T— f 5 TT
2 ’ 2 ’ 2 2 ’

x = • • 7 7T 3 TT TV 5 7T
2 b ’ 2b ’ 2b’ 2 b

For these values y = a.
The sine takes its minimum value — 1 when

bx = •

whence x = •

5 7T 7T
2 ’ 2’

5 7F _ _7T_
2b’ Tb

3 7T 7 7F
2 b’ 2b’

For these values of x, y = — a.
These values of x for which the sine is ± 1 lie halfway between the 

values of x for which the sine is 0.
These points on the graph are enough to determine its general 

shape. Other values of x may be used to fix the shape more exactly.

The graph is shown in Fig. 60, with a = 3 and b = 2. The curve 
may be said to represent a wave. The distance from peak to peak, 
2 7T • ...is the wave length, and the height a above OX is the amplitude.

Example 2. y — a cos bx.
As in Example 1, we fix first the points for which y = 0. Now the

*71" 3 TV TV TV 3 TVcosine of an angle is zero when the angle is — > -r- > > —~z’----- •
Li Li ći Li Lt

etc. ; that is, any odd multiple of ~ • We have, therefore, y — 0 when

bx = • • • 3 7T TV 7T 3 7T 5 7T
2 ’ 29 2’ 2 ’ 2 ’ ‘

whence x = • • 3 7T TV TT 3 7T 5 7T
2 b’ 2b’ 2b’ 2b’ 2b’
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Halfway between these points the cosine has its maximum value 
+ 1 or its minimum value — 1 alternately, and y = ± a. The graph 
is shown in Fig. 61, with a — 3 and 6 = 2.

Example 3. y = a sin (bx + c).
We have y = 0 when bx + c = 0, tt, 2 t, 3 r, etc. ; that is, when

C C . 7T C , 2 7T
x = -"’ ~b’ ~b+b’ ~b + ~T

Halfway between these values of x, y = ± a. The curve is the same 
as in Example 1, but is shifted | units to the left (Fig. 62).

Example 4. y = sin x + | sin 2 x.
The graph is found by adding the ordinates of the two curves 

y = sin x and y = | sin 2 x, as shown in Fig. 63.
Y

Fig. 63
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EXERCISES
Plot the graphs of the following equations :

1. y = 4 sin 3 x.
2. y = 2 sin|-

3. y = 2 cos 3 x.
4. y = 3 cos | x.
5. y = 2 sin (x - •

6. 7/ = J cos(x +

7. y = 2 sin (3 x - 2).
8. y = 3 cos (2 x — 3)

9. y = tan x.
10. y = tan 2 x.
11. y = ctn x.
12. y = 2 ctn
13. y = sec 2 x.
14. y — csc 3 x.
15. y = vers x.
16. y = 2 + sin 3 x.
17. y = cos x — sin x.
18. y = 2 cos x + sin 2 x.

46. Differentiation of trigonometric functions. The formulas 
for the differentiation of trigonometric functions are as follows, 
where u represents any function of x which can be differentiated :

d ■ du— sin u = cos u —,
dx dx
d • du— cos u — — sin u —,
dx dx
d , 9 du— tan u = sec2 u —,
dx dx
d . o du— ctn u — — csc2 u —,
dx dx

sec u — sec u tan u 
dx dx
d .du— csc u = — csc u ctn u -—

dx dx

(1)

(2)

(3)

(4)

(5)

(6)

These formulas are proved as follows :
1. Let y — sin u, where u is any function of x which may be 

differentiated. Give x an increment Ax and let Au and Ay be 
the corresponding increments of u and y. Then

Ay = sin (u + Au) — sin u
= sin u cos Au + cos u sin Au — sin u 
= cos u sin Au — (1 — cos Au) sin u ;

whence A^
Au

cos u sin Au _ 
Au

1 — cos Au 
Au

sin u.
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Now let Ax and therefore Aw approach zero. By (3), § 44,
Lim = 1, and, by (4), § 44, Lim IzzCosAu 

Au , Au
^-cosu. 
du
dy _ dy du 
dx du dx ’

d ■ du— sin u — cos u -— 
dx dx

But by (8), § 36,

and therefore

0. Therefore

Then

d2. To find cos u, we write

KM-
W-A 

dx

= cos [By (1)]

du 
dx

[By (5), § 36]

[By (1) and (2)]

d
4. To find ctn u, we write

„ cosu ctn u = -----
sin u
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mi d i d cos uThen — ctn u = — —----
dx dx sin u

sin u cos u — cos u 4- sin u 
______ dx___________ dx

sin2 u
_ — sin2 u — cos2 u du 

dx

[By (5), §36]

sin2u
9 du— — csc- u — ■ 

dx
5. To find ~ sec u, we write 

dx
sec u =------

cos u
sec w = — (cos u) 

dx
_ sin u du 

cos2 u dx
= sec u tan

[By (1) and (2)]

Then

= (cos u)_1.
_9 d2 — cos u 

dx
[By (2)]

u^ 
dxJ

6. To find — csc u, we write 
dx

csc u = —---- — (sin u)_1.sin u
~ csc u = — (sin u)-2-^- sin u 
dx dx

. du = — csc u ctn u — • 
dx

Example 1. y — tan 2 x — tan2 x = tan 2 x — (tan z)2.
= sec2 2 x4- (2 x) - 2(tan x) ^-tan x 

dx dx dx
= 2 sec2 2 x — 2 tan x see2x.

Then [By (6), § 36]

[By (1)]

Example 2. y = (2 sec4x + 3 sec2z) sin x.
= sin x^8 sec3x j|(sec x) + 6 sec (secx) |

+ (2 sec4x + 3 sec2x) (sin x)dx
= sin x (8 sec4 x tan x + 6 sec2x tan z) + (2 sec4z + 3 sec2z) cos x 
= (1 — cos2z)(8 sec5z + 6 sec3z) + (2 sec3z + 3 sec x')
= 8 sec5 a; — 3 sec x.
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EXERCISES

Find in each of the following cases : dx
1. y = 4 sin 2 x.

2. y = 3 tan

3. y = sin2 3 x.
4. ÿ = J tan2 2 x.
5-?/=l+àsin 10 x-

6. y — I cos5 3 x — I cos3 3 x.
~ . 3 i7. y = sec5 —■5
8. y = I csc2 4 x.
„ . x 1 . , x

4 3 4
10. y — I tan5 | + tan31-

,, o 2 x , „ . 2 x11. y — 3 cos — + 2 x sin —•
o o

ini — csc 2 x — ctn 2 x .. _
- ' ~ csc 2 x + ctn 2 x
13. y = sin (3 x + 2) cos (3 x — 2).

14. y = tan3 f — 3 tan f + x.
o o

15. ÿ = I sec 2 x + I tan3 2 x.
16. y = sec3 2 x — 3 sec 2 x.
17. cos 3 x + sec 2 y = 0.
18. xy + ctn xy = 0.
19. tan (x + y) + tan (x — y)= 1.

20. sin - + cos - = 0.y x

47. Graphs of inverse trigonometric functions. The equation
x — sin y (1)

defines a relation between the quantities x and y which may be 
stated by saying either that x is the sine of the angle y or that 
the angle y has the sine x. When we wish to use the latter form 
of expressing the relation, we write in place of equation (1) 
the equation 2/ = sin-1x, (2)
where — 1 is not to be understood as a negative exponent but as 
part of a new symbol sin-1. To avoid the possible ambiguity, 
formula (2) is sometimes written

y = arc sin x.

Equations (1) and (2) have exactly the same meaning, and 
the student should accustom himself to pass from one to the 
other without difficulty. In equation (1) y is considered the 
independent variable, while in (2) x is considered the independ­
ent variable. Equation (2) then defines a function of x which is 
called the anti-sine of x or the inverse sine of x. It will add to the
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clearness of the student’s thinking, however, if he will read 
equation (2) as "ÿ is the angle whose sine is x.”

Similarly, if x = cos y, then y = cos-1 z ; if x = tan y, then 
y = tan-1x; and so on for the other trigonometric functions. We 
get in this way the whole class of inverse trigonometric functions.

It is to be noticed that, from equation (2), y is not completely 
determined when x is given, since there is an infinite number 
of angles with the same sine. For example, if x = |> f/ = ?’ 
5 it 13 TT 2 6
—, etc. This causes a certain amount of ambiguity in 
6 6

using inverse trigonometric functions. We have the same sort 
of ambiguity when we pass from the equation x — y2 to the 
equation y = ± Vx, for if x is given, there are two values of y.

To obtain the graph of the function expressed in (2) we 
may change (2) into the equivalent form (1) and proceed as 
in § 45. In this way it is evident that the graphs of the inverse 
trigonometric functions are the same as those of the direct func­
tions but differently placed with reference to the coordinate 

axes. It is to be noticed particularly 
that to any value of x corresponds an 
infinite number of values of y.

Example 1. j/ = sin-1x.
From this, x = sin y, and we may plot the graph by assuming 

values of y and computing those of x (Fig. 64).
Example 2. y = tan~‘x.
Then x = tan y, and the graph is as in Fig. 65.
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EXERCISES

Plot the graphs of the following equations :

1. y = sin_11’

2. y = 2 cos-1 3 x.
3. y = I sin_1(2 x — 1).
4. y = I cos-1(2 x — 3).
5. y = tan-1 2 x.

6. y = 2 ctn-1*̂

7. y + ^ = sin-’(2 x + 3).

8. y + sin-*(x  + 2) = —

9. y + 2 cos-'fx — 2) = 7T.
10. tt — 2 y — 2 sin~1(2 x — 1) — 0.

48. Differentiation of inverse trigonometric functions. The 
formulas for the differentiation of the inverse trigonometric 
functions are as follows :

sin_1u = Ł----
dx Vl - u2 dx

1 du
~ Vl - u2 dx

1. when sin-1 w is in the first or the 
fourth quadrant ;
when sin_1tt is in the second 

or the third quadrant.

2. d 1 du
dx Vl - u2 dx

1 du when cos-1 u is in the third or the 
fourth quadrant.

when cos 1 u is in the first or 
the second quadrant ;

Vl - u2 dx

3.

4.

5.

d fan-i u — 1.
dx 1 + u2 dx

d . 1 du

d 1 du
dx ux/u2 — 1 dx

1

■ when sec~*u  is in the first or 
the third quadrant ;

— —------ when sec-1 u is in the second
w Vw2 — 1 £ or £he fourth quadrant.

■j- csc-1 u —------- 1 when csc-1 u is in the first or
x u x/u2 — 1 a: third quadrant ;

= — 1 y- when csc-1 u is in the second or 
u vu2 — 1 x the fourth quadrant.

6.
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The proofs of these formulas are as follows :
1. If 

then
y — sin-1 u, 

sin y — u.

Hence, by § 46, cos y ;
ax dx

whence dy _ 1 du
dx cos y dx

But cos y — Vl — u2 when y is in the first or the fourth quad­
rant, and cos y = — Vl — u2 when y is in the second or the 
third quadrant.

But sin y = Vl — u2 when y is in the first or the second quad­
rant, and sin y = — Vl — u2 when y is in the third or the fourth 
quadrant.

2. If 
then

y = cos_1u,
cos y = u.

Hence • dy du- sin y - — ; 
dx dx

whence dy _ _ 1 du
dx sin y dx

3. If 
then

y — tan-1 u, 
tan y = u.

Hence sec2~vdU-dM. 
y dx dx’

whence dy _ 1 du
dx 1 4- u2 dx

4. If
then

y = ctn-1 u, 
ctn y = u.

Hence
dx dx

whence dy _ 1 du
dx 1 + u2 dx
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5. If
then

y = sec-1 u,
sec y = u.

Hence sec y tan y ~ ;
dx dx

whence dy _ 1 du
dx sec y tan y dx

But sec y = u, and tan y = Vu2 — 1 when y is in the first or 
the third quadrant, and tan y = — Vu2 — 1 when y is in the 
second or the fourth quadrant.

6. If
then

y = csc~1u,
csc y = u.

Hence du du- csc y ctn y = ;
dx dx

whence dy _ 1 du
dx csc y ctn y dx

But csc y = u, and ctn y = Vm2 — 1 when y is in the first or 
the third quadrant, and ctn y = — Vu2 — 1 when y is in the 
second or the fourth quadrant.

If the quadrant in which an angle lies is not material in a 
problem, it will be assumed to be in the first quadrant. This 
applies particularly to formal exercises in differentiation.

Example 1. y = sin-1 Vl — x2, where y is an acute angle.
— = 1 • — (1 — x2)’ = — 1
dx Vl - (1 - x2) dx^ Vl - x2

This result may also be obtained by placing sin-1 Vl —x2 = cos_1x.

Example 2. y = sec 1 V4 x2 + 4 x + 2.

4- V4 x2 + 4 x + 2
dy__________dx______________________
dx ~ V4 x2 + 4 x + 2 V(4 x2 + 4 x + 2) - 1

_ ________4x + 2_______ 1 
(4x2 + 4x+2)(2x + l) 2x2 + 2x+l’
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EXERCISES

Find in each of the following cases : dx
1. y — sin-1 2 x.
o 22-2/ = cos * 3x"
3. y = tan-1 (2 x — 1).
4. y = ctn-1 Vx2 + 2 x.
5. y = sec-1 3 x.
8. y = csc-1 (2 x + 1).
_ . x — 27. y = sin 1 —-—

8. y = tan 1 —5—
L Z

O -1 x2
Q-y = COS & + 2

lb2/=ctn_11 (!-!)•

13.

14.

15.

3
x

x2 + 2 sin-1 -•o
17. y = tan"1 (2 x + 1) + ctn"1 X
18. y = z2Vl — z4 + sin-1 x2.
in x _. X — 219. y — — : — cos 1 —-—

V4 x — x2 2
20. y = csc-1

line OP (Fig. 66) is revolving in a

16. ?/ = 3V9

49. Angular velocity. If
plane about 0, and in a time t has moved from OM to OP, the 
angle MOP — 0 denotes the amount of rotation. The rate of 
change of 0 with respect to t is called 
the angular velocity of OP, and is 
commonly denoted by the Greek let­
ter w. Hence we have the formula

dt
If 0 is in radians and t is in seconds, 

the angular velocity is in radians per 0 
second. By dividing by 2 it, the an­
gular velocity may be reduced to revolutions per second, since 
one revolution is equivalent to 2 it radians.

A point Q on the line OP at a distance r from O describes 
a circle of radius r which intersects OM at A. If s is the length 
of the arc of the circle AQ measured from A, then, by § 44,

8 = r0. (2)

a
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Now — is called the linear velocity v of the point Q, since it 
dt

measures the rate at which s is described ; and, from (2) and (1),

v — ds _ rd9 
dt dt

= rao, (3)

showing that the farther the point Q is from 0 the greater is 
its linear velocity.

Similarly, the angular acceleration, which is denoted by a, is de­
fined by the relation dw d26

a=dl=-w <4)

Example 1. If a wheel revolves so that the angular velocity is 
given by the formula co = 8 t, how many revolutions will it make in 
the time from t - 2 to i = 5 ?

We take a spoke of the wheel as the line OP. Then we have
d6 = 8 t dt.

Hence the angle through which the wheel revolves in the given 
time is 0= z-s g t M _ [4 £2j5 _ 100 _ 16 = 84.

J 2 2

The result is in radians. It may be reduced to revolutions by divid­
ing by 2 it. The answer is 13.4 revolutions.

Example 2. A particle traverses a circle at 
a uniform rate of n revolutions per second. 
Determine the motion of the projection 
of the particle on a diameter of the circle.

Let P(x, y) (Fig. 67) be the position of 
the particle referred to two perpendicular 
diameters of the circle, and let M and N 
be the projections of P on OX and OY re­
spectively. Then

x = OM = a cos 6,
and y = ON = a sin 6, 
where a is the radius of the circle. By hypothesis the angular velocity 
of OP is 2 M7T radians per second. Therefore

whence 6 = 2 mrt + C.
If we consider that when t = 0, the particle is on OX, then C = 0.

Therefore x = a cos 6 = a cos 2 mrt = a cos cot,
y = a sin 6 = a sin 2 mrt = a sin cot.
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EXERCISES

1. A flywheel 4 ft. in diameter makes 4 revolutions per second. 
Find the components of velocity in feet per second of a point on the 
rim when it is 1 ft. above the level of the center of the wheel.

2. A point on the rim of a flywheel of radius 5 ft. which is 4 ft. 
above the level of the center of the wheel has a horizontal component 
of velocity of 120 ft. per second. Find the number of revolutions 
of the wheel per second.

3. The coordinates of a moving particle at a time I are x = 10 cos 4t, 
y = 10 sin 4 t. Prove that the particle moves in a circle, and find 
the angular velocity of the radius drawn from the particle to the 
center.

4. Find the angular velocity of OP joining the origin 0 to the 
point (x, y) when the point moves so that x and y increase at a uni­
form rate of 4 ft. per second.

5. A particle moves around a circle of radius 100 ft. in such a 
manner that at any time t (in seconds) its distance s from a fixed 
point on the circumference is s = 10 t2 ft. Find a general expression 
for the angular velocity of the radius joining the point to the center 
of the circle.

50. Simple harmonic motion. In many natural phenomena we 
have to consider the motion of a point, or a particle, which is 
vibrating in a straight line. An example is the motion of a point 
in the bob of a pendulum when the arc of swing of the pendulum 
is so small that it may be considered a straight line. Another 
example may be had by attaching a weight to an elastic string, 
pulling the weight down a little, and letting go. Other cases 
occur when we consider the motion of a particle of a medium 
which is transmitting a wave of sound, light, or an electric 
impulse.

In all such cases theory teaches us that, if we neglect the 
forces which may tend to stop such a motion, the relation be­
tween the distance s from a fixed point in the line of motion and 
the time t is expressed by either of the equations

s = c sin bt, (1)
or s — c cos bt, (2)

according as the time is measured from the instant when the 
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----- 1—
0

Fig. 68
B

3 TT
2b’

particle is at the middle or the end of its swing. A motion that 
can be so expressed is called simple harmonic motion. A geomet­
ric construction of such a motion is found in the motion of either 
M or N of Example 2, § 49.

It is easy to see that equations (1) and (2) represent a vibra­
tory motion. Take, for example, (1). When t — 0, s = 0 and the 
particle is at O (Fig. 68). When t = s = c, which is the largest 

4ÏJ 0
value s can have, and the particle is at A, where OA = c. As 
t continues to increase, s becomes 
smaller until when t = s = 0 and

o
the particle is back at 0. As time 
continues to increase, s becomes negative, until when t =

s = — c, which is the least value s can have, and the particle is 
2 TTat B, where OB — — c. Finally, when t — —r->s = O and the 

b
particle is back at O. The motion is then repeated.

Similarly for equation (2). When t = 0, s — c and the particle 
is at A. When t = -?~, s = 0 and the particle is at O. When t = ^>

2b 3 b
s = — c and the particle is at B. When t — s — 0 and the 
particle is at O. When t = s — c and the particle is back at 

o
A. The motion then repeats.

In each case the particle oscillates between B and A, the time 
required for a complete oscillation being, as we have seen, 

The quantity c is called the amplitude, and the interval after 
which the motion repeats itself, is the period.

If instead of equations (1) and (2) we write the equations
s = c sin b(t — io), (3)

and s = c cos b(t — i0), (4)
the change amounts simply to altering the instant from which 
the time is measured. For the value of s which corresponds to 
t = ii in (1) and (2) equals the value of s which corresponds to 
i — ti + to in (3) and (4). Hence either (3) or (4) represents 

2 7T simple harmonic motion of amplitude c and period -y



SIMPLE HARMONIC MOTION 155

But (3) and (4) may be written respectively as

s = c cos bt0 sin bt — c sin bt0 cos bt
andand s — c cos bto cos bt + c sin bto sin bt

either of which is the same as

(5)
(6)

s = A sin bt + B cos bt, (7)
where A and B are constants.

Conversely, any equation (7) may be reduced to either (3) or 
(4). If we wish to reduce (7) to (3), we place

A = c cos bto,A = c cos bto, B = — c sin bto

whence
b A

whence

If we wish to reduce (7) to (4), we place

A = c sin bto, B — c cos bto,

Therefore equation (7) always represents simple harmonic 
motion, with amplitude VA2 + B2 and period 

b
From (1) we have, for the velocity v and the acceleration a,

v = cb cos bt, 
a = — cb2 sin bt.

(8)
(9)

Since force is proportional to the mass times the accelera­
tion, the force F acting on the particle is given by the for­
mula F - kma = — kmcb2 sin bt = — kmb2s.

This shows that the force is proportional to the distance s 
from the point O. The negative sign shows that the force 
produces acceleration with a sign opposite to that of s, and 
therefore slows up the particle when it is moving away from 
O and increases its speed when it moves toward O. The force 
is therefore always directed toward 0 and is an attracting 
force.
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EXERCISES

1. A point moves with simple harmonic motion of period 6 sec. 
and amplitude 4 ft. Find the equation of its motion.

2. Given the equation s = 10 cos 3 t. Find the time of a complete 
oscillation and the amplitude of the swing.

3. A particle moves around a circle of radius 5, center at O, so 
that its projection on OX describes the simple harmonic motion 
defined by the equation x = 5 cos 4 t. Determine the velocity of 
the particle and the angular velocity of the radius joining the particle 
to the center of the circle.

4. Discuss the changes in the velocity of a particle describing 
simple harmonic motion.

5. Discuss the changes in the acceleration of a particle describing 
simple harmonic motion.

6. The motion of a particle in a straight line is expressed by the 
equation s — 8 — 4 sin2 2 t. Express the velocity and the accelera­
tion in terms of s, and show that the motion is simple harmonic.

7. A particle moving with a simple harmonic motion of amplitude 
4 ft. has a velocity of 6 ft. per second when at a distance of 3 ft. 
from its mean position. Find its period.

8. A particle moving with simple harmonic motion has a velocity 
of 3 ft. per second when at a distance of 4 ft. from its mean position, 
and a velocity of 4 ft. per second when at a distance of 3 ft. from its 
mean position. Find its amplitude and its period.

9. A particle is moving in a straight line so that s = 4 sin - — 3 cosO O
Show that its motion is simple harmonic, and find the speed at which 
it passes through the middle point of its path.

10. A particle moving in simple harmonic motion with a period 
of 3 sec. has a velocity of ft. per second when it is a distance o
of 4 ft. from its mean position. Find the amplitude of the motion.

11. The amplitude of a certain simple harmonic motion is 4 ft. 
When the particle is halfway from its mean position to its extreme 
position, its velocity is 2 ft. per second. Find the period of the 
motion.

51. Cycloid. If a wheel rolls upon a straight line, each point 
of the rim describes a curve called a cycloid.

Let a wheel of radius a roll upon the axis of x, and let C
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(Fig. 69) be its center at any time of its motion, N its point of 
contact with OX, and P the point which describes the cycloid.

Take as the origin of coordinates, O, the point found by rolling 
the wheel to the left until P meets OX.

Then ON — arc PN.
Draw MP and CN, each perpendicular to OX, PR parallel to 

OX, and connect C and P. Let
Angle NCP — <j>.

Then x = OM = ON - MN
— arc PN — PR
— a<p — a sin <j>. 

y= MP = NC - RC
= a — a cos </>.

whence

and

Hence the parametric representation (§ 40) of the cycloid is 
x — a(<t> — sin </>), 
y — a(l — cos <!>').

If the wheel revolves with a constant angular velocity w = ~, 
we have, by § 40,

vx = a(l — cos </>) = aw(l — cos </>),
at

Vy — a sin </> = aw sin </> ;
at

v2 = a2w2(2 — 2 cos </>) = 4 a2w2 sin2
v = 2 aw sin^,

s-l
as an expression for the velocity in its path of a point on the 
rim of the wheel.
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EXERCISES

2. Show that the straight line drawn from any point on the rim 
of a rolling wheel perpendicular to the cycloid which that point is 
describing goes through the lowest point of the rolling wheel.

3. Show that any point on the rim of the wheel has a horizontal 
component of velocity which is proportional to the vertical height of 
the point.

4. Show that the highest point of the rolling wheel moves twice 
as fast as either of the two points whose distance from the ground is 
half the radius of the wheel.

5. Show that the vertical component of velocity is a maximum 
when the point which describes the cycloid is on the level of the 
center of the rolling wheel.

6. Show that a point on the spoke of a rolling wheel of radius a at 
a distance b from the center describes a curve given by the equations

x = a<f> — b sin </>, y = a — b cos 0,
and find the velocity of the point in its path. The curve is called a 
trochoid.

7. Find the slope of the trochoid and find the point at which the 
curve is steepest.

8. Show that when a point on a spoke of a wheel describes a 
trochoid, the average of the velocities of the point when in its highest 
and lowest positions is equal to the linear velocity of the wheel.

9. Show that the Cartesian equation of the cycloid is
x = a cos-1 -—- — x/2 ay — y2.a

52. Curvature. If a point describes a curve, the change of 
direction of its motion may r
be measured by the change
of the angle </> (§15).

For example, in the 
curve of Fig. 70, if A Pi = s P7 /
and P1P2 —As, and if 
and <f>2 are the values of </>
for the points P\ and P2 re­
spectively, then </>2 — 4>i is a—
the total change of direc- / 0
tion of the curve between Fig. 70
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hence As = a kef. Therefore

Pi and P2. If 02 — 0i = A0, expressed in circular measure, 
the ratio 4^ is the average change of direction per linear unit of 

As
the arc F1P2. Regarding 0 as a function of s, and taking the 
limit of 4^ as As approaches zero as a limit, we have ^4-, which

As ds
is called the curvature of the curve at the point P. Hence the 
curvature of a curve is the rate 
of change of the direction of 
the curve with respect to the 
length of the arc.

0 .
is constant, the curva­

ture is constant or uniform; 
otherwise the curvature is vari­
able. Applying this definition 
to the circle of Fig. 71, of which 
the center is C and the radius is 
a, we have A0 = P1CP2, and
4^ = - • Hence ^ = -, and the circle is a curve of constant cur- 
As a ds a
vature equal to the reciprocal of its radius.

The reciprocal of the curvature is called the radius of curvature 
and will be denoted by p. Through every point of a curve we may 
pass a circle with its radius equal to p, which shall have the same 
tangent as the curve at the point and shall lie on the same side of 
the tangent. Then the curvatures of the curve and of the circle 
are the same, and the circle shows the curvature of the curve in 
a manner similar to that in which the tangent shows the direction 
of the curve. The circle is called the circle of curvature.

From the definition of curvature it follows that
_ ds 

p~ d<j>'

If the equation of the curve is in rectangular coordinates,
ds 
dx

dx

[By (9), §36]
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To transform this expression further, we note that 
ds2 = dx2 + dy2 ;

whence, dividing by dx2 and taking the square root, we have

Since

Substituting, we have

*=tan_‘®’

d2y
d<t> _ dx2
S=1O2'

P dry
dx2

[By § 15]

In the above expression for p there is an apparent ambiguity 
of sign, on account of the radical sign. If only the numerical 
value of p is required, a negative sign may be disregarded.

Example 1.

Here

2/2
Find the radius of curvature of the ellipse —+ 7-= 1. a2 o2

dy _ _ &2x
dx a2y

and d2y _ _ &4
dx1 a2y3

Therefore (a4?/2 + &4x2)^
P ~ aW

Example 2. Find the radius of curvature of the cycloid (§ 51).

= a(l — cos 0) = 2 a sin2 3 > acp 2
dy . , „ . d> <b•77 = <i sin 0 = 2 a sin J cos % • d(p Zu Li

Therefore, by (9), § 36,

We have

2
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Hence

and
(1 + Ctn22?

EXERCISES
1. Find the radius of curvature of the curve y = fl3 at the

point (2 a, a). x + 4 a

2. Find the radius of curvature of the curve y = sin-1 V2 x — x2 
at a point for which x = |.

3. Find the radius of curvature of the curve y2 = æ3-
4. Find the radius of curvature of the curve x% + y% = a\

5. Show that the circle — + y2 = 1 is tangent to the curve
y = sin x at the point for which x = ^, and has the same radius of 
curvature at that point.

6. Find the radius of curvature of the curve x = sin ÿ = cos 2 t, 
at the point for which Z = ^.

7. Find the radius of curvature of the curve whose parametric 
equations are x = a cos + a<j> sin <j>, y = a sin </> — a<f> cos <p.

8. Find the radius of curvature at the point for which x = |

of the curve y = a cos-1--------- v2 ax — x2.a
9. Find the radius of curvature of the curve y = x sin x at the

point for which x = —•

- cos ax ) = — sin ax, we have immediately

;sin ax dx = — - cos ax + C, 
a

f cos ax dx = - sin ax + C.

(1)

a (2)
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Also, by aid of (8), § 43, we have 
fsin^<fc=f1-”a2ll3,<fc = |-gL^+C, (3)

fa>S^dx= f1 + c^2m<ta = ! + Ś^S + C. (4)
J J 2 2 4a

By a similar inversion of formulas for the differentiation of 
inverse trigonometric functions we have

7—3==^= = sin-1 - + C,
J y/a2 - x2 a 

f ~^—2 = " tan-1 - + C.
J a2 + x2 a a

These formulas may be applied to the solution of the follow­
ing exercises:

(5)

(6)

EXERCISES

1. Find the area bounded by the axis of x and one arch of the
curve y = sin x. g

2. Find the area bounded by the axis of x, the witch y = —-,
and the two ordinates x = — 2 a and x = 2 a.

3. Find the area bounded by the axis of x and one arch of the 
curve y = 5 sin2 3 x.

4. Find the triangular area bounded on the left by the axis of y 
and on the other two sides by the curves y = sin x and y = cos x.

5. Find the area bounded by a portion of the first arch of each 
of the curves y = sin x and y = sin 2 x.

6. A line is drawn from the origin to the point 
curve y = sin x. Find the area bounded by this line and the curve.

7. Find the area bounded by the axis of x, the axis of y, the curve
y = __=, and the ordinate x = ?•

va2 — x2
8. Find the volume of the solid formed by revolving about the 

line 2 y + a = 0 the area bounded by the first arch of the curve 
y = sin x and the axis of x.

9. Find the volume of the solid generated by revolving about the 
line y = 1 the area bounded by one arch of the curve y = cos x and 
the axis of x.

10. By use of Ex. 26, p. 77, find the pressure on a board bounded 
by an arch of a sine curve and its base line, if it is submerged verti­
cally with the base line in the surface of the water.
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GENERAL EXERCISES

Find in each of the following cases : dx
1. y = cos (2 x + 3) cos (2 x — 3).

2. y = 15 tan + 10 tan3 | + 3 tan5
Lt Lt Lt

3. y = cos3 3 x tan 3 x.

4. y = sin2 4 x cos4 2 x.
y = x+ 2^ctn ~- csc|

y = (2 x2 — 1) sin 2 x + 2 x cos 2 x.

5. o-
6.

7. y = (3 a2x2 — 6) sin ax — (a3x3 — 6 ax) cos ax.

9.

10.

15. y = ctn-i^-2 + ^.
Li

16. y = (8 x2 — 1) sin-12 x + 2 xVl —4x2.

11.
17. y = tan-1 x + | tan-1 x3.

12.
18.7/=-^---- + cos-15-

VTT2 2

13. ÿ = tan-*a;V^2.  19-+ tan"11 = 0.

14. y = sec"1 - x + 20. y/y2 - x2 + csc-1 = 0.
y/x2 + 2x x

Plot the graphs of the following equations :

26. y = 2 cos 2(x — 2).

27. y2 = tan 2 x.

28. y = ctn2-•

29. y = sin x + sin 2 x.
30. y = 2 sin 2 x + 3 sin 3 x.
31. y = 2 + sin-1 (2 x — 3).
32. 2 y + sin-1 (2 x — 3) = tt.

33. 2 y = 1 — cos-1 (2 x + 1).
34. 3 y + cos-12 x = ir.
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35. A particle moves on the ellipse — + ^ = 1 so that its projec- az o2
tion upon OX describes simple harmonic motion given by x = a cos kt. 
Show that its projection upon OY also describes simple harmonic 
motion, and find the velocity of the particle in its path.

36. A particle moving with simple harmonic motion of period — 
has a velocity of 6 ft. per second when at a distance of 2 ft. from its 
mean position. Find the amplitude of the motion.

37. A particle moves in a straight line according to the equation 
s = 5 sin § t + 3 cos 11. Show that the motion is simple harmonic, 
and find the amplitude of the swing and a time at which the par­
ticle passes through its mean position.

38. A particle moves in a straight line so that at the time t,
Trts — 12 — 6 cos2 —• Prove that the motion is simple harmonic, and 

determine its amplitude and period.
39. The amplitude of a given simple harmonic motion is 20 ft. 

When midway between the mean and the extreme points of its 
path the speed of the particle is 4 V3 ft. per second. What is the 
period of the motion ?

40. A particle is moving in simple harmonic motion. The period 
of the motion is 4 sec., and when the particle is midway between its 
mean and extreme positions its speed is 10 tt V3 ft. per second. Find 
the amplitude of the motion.

41. The amplitude of a certain simple harmonic motion is 10 ft. 
and its period is seconds. Find the velocity when the particle is 
5 ft. from its mean position.

42. Time is measured from 12 o’clock noon. At 12.15 P.M. a par­
ticle moving with simple harmonic motion passes through its mean 
position with a speed of 2 it ft. per minute. At 12.20 P.M. the particle 
is 30 ft. from its mean position and moving with a speed of 7r V3 ft. 
per minute. Determine the amplitude and the period of the motion.

43. Find the radius of curvature of the curve y = x sin - at the
2 xpoint for which x =
7T sin x44. Find the radius of curvature of the curve y =---- - at the

point for which x — ir.
45. Find the radius of curvature at the point for which x =

X /of the curve y = a sin-1----va2 — x2.a
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46. Find the radius of curvature of the curve x = a cos </>,
y = b sin tf> at the point for which </> = £•

47. Find the radius of curvature of the curve x = 2 cos </>,
y = sin2 </>. Find the Cartesian equation of the curve, and sketch.

48. Find the radius of curvature of the curve x = 2 cos2 </>, 
y = 2 sin3 </> at the point for which =

49. Find the radius of curvature of the curve x = a sin4 </>, 
y — a cos4 </> at the point for which </> = ~

50. Prove that the radius of curvature of the curve x = a cos3 <f>, 
y = a sin3 </> has its greatest value when </> = 7T

4
51. A revolving light in a lighthouse | mi. offshore makes one 

revolution a minute. If the line of the shore is a straight line, how 
fast is the ray of light moving along the shore when it passes a 
point one mile from the point nearest to the lighthouse?

52. BC is a rod a feet long, connected with a piston rod at C, and 
at B with a crank AB, b feet long, revolving about A. Find C’s 
velocity in terms of A B’s angular velocity.

53. At any time t the coordinates of a point moving in the xy-plane 
are x = 2 — 3 cos t, y = 3 + 2 sin t. Find its path and its velocity in 
its path. At what points will it have a maximum speed ?

54. At any time t the coordinates of a moving point are x = 2 sec 31, 
y = 4 tan 3 t. Find the equation of its path and its velocity in its 
path.

55. The parametric equations of the path of a moving particle are 
x = 2 cos3 <j), y = 2 sin3 </>. If the angle </> increases at the rate of 
2 radians per second, find the velocity of the particle in its path.

56. A particle moves along the curve x = a (cos </> + </> sin </>), 
y — a (sin cj> — <t> cos </>), </> increasing uniformly b radians per second. 
Find the velocity of the particle along the curve.

57. At any time t the coordinates of a point moving in the æÿ-plane 
are x = 2 tan 3 t, y = 2 ctn 3 t. Find the path, and the velocity in 
the path at the point for which x = y.

58. At any time t the coordinates of a point moving in the xy-plane 
are x = 2 cos2 2 t, y = 2 sin3 2 t. Find the path, and the velocity in 
the path when f = „ •o
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59. At any time t the coordinates of a point moving in the xy-plane 
are x — 2 cos 3 t, y — 2 sin2 3 t. Find the path, and the velocity in 
the path when t = £•

b
60. Two men, A and B, starting at the same point on the cir­

cumference of a circle one mile in radius walk each at the rate of 
one mile an hour, A going straight toward the center, and B going 
around the circumference. At what rate is the distance between them 
changing when B has walked a quarter of the way around the circle ?

61. The equal sides of an isosceles triangle are always 6 ft. 
long, and the vertical angle 9 is increasing at the uniform rate of 
— radians per second. How fast is the area of the triangle chang- 180
ing? When will the area be increasing and when decreasing?

62. If a ball is fired from a gun with the initial velocity v0, it
(Ip-

describes a path the equation of which is y = x tan a — -—?.----z— >r 2 î’o cos2 a
where a is the angle of elevation of the gun and OX is horizontal. 
What is the value of a when the horizontal range is greatest ?

63. In measuring an electric current by means of a tangent galva­
nometer, the percentage of error due to a small error in reading is 
proportional to tan x + ctn x. For what value of x will this percent­
age of error be least ?

64. A tablet 10 ft. high is placed on a wall so that the bottom of 
the tablet is 20 ft. from the ground. How far from the wall should 
a person stand in order that he may see the tablet to best advantage 
(that is, so that the angle between the lines from his eye to the top 
and to the bottom of the tablet should be the greatest), assuming 
that his eye is 5 ft. from the ground ?

65. One side and the opposite angle of a triangle are given. Prove 
that the triangle having the greatest area is isosceles.

66. Above the center of a round table of radius 2 ft. is a hanging 
lamp. How far should the lamp be above the table in order that 
the edge of the table may be most brilliantly lighted, given that 
the illumination varies inversely as the square of the distance and 
directly as the cosine of the angle of incidence?

67. A weight P is dragged along the ground by a force F. If 
the coefficient of friction is k, in what direction should the force be 
applied to produce the best result ?
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68. An open gutter is to be constructed of boards in such a way 
that the bottom and sides, measured on the inside, are to be each 
8 in. wide and both sides are to have the same slope. How wide 
should the gutter be across the top in order that its capacity may 
be as great as possible?

69. A steel girder 27 ft. long is to be moved on rollers along a 
passageway and into a corridor 8 ft. in width at right angles to the 
passageway. If the horizontal width of the girder is neglected, how 
wide must the passageway be in order that the girder may go around 
the corner ?

70. Two particles are moving in the same straight line so that
their distances from a fixed point O are, respectively, x = a cos kt and 
x' = a cos (kt + , k and a being constants. Find the greatest

distance between them.
71. The top of a wall on the edge of an ice pond is 8 ft. above the 

level of the water. An ice house stands back 27 ft. horizontally 
from the wall. A runway just resting on the wall extends from the 
water to an opening in the ice house. What is the minimum length 
of the runway ?

y = cos 2 a; at the points of intersection between the lines x = 0 
and x = 2 tt.

72. Find the angle of intersection of the curves y = sin x and
= COS X.

73. Find the angle of intersection of the curves y = sin x and
= sin^z + ?)•

74. Find the angle of intersection of the curves y = cos x and

75. Find the points of intersection of the curves y = sin x and 
y = sin 3 x between the lines x = 0 and x= ir. Determine the angles 
at the points of intersection.

x

76. Find the angle of intersection of the curves y — 2 sin 2 x and 
y = tan 2 x at their common points which are between the lines 
x = — and x = ? *4 4

77. Prove that the curves y = 2 tan £ and y — 4 sin % intersect at 
the point (^> 2) 
point.

2 “““ a " ““ 3
, and determine their angle of intersection at that

78. Prove that the curves y = 2 cos x and 9 x2 — ir2y intersect at 
the point (^, 1), and determine their angle of intersection at that 
point. '



CHAPTER VI
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

54. The exponential function. The equation
y = a1,

where a is any constant, defines y as a function of x called the 
exponential function.

If x = n, an integer, y is determined by raising a to the «th 
power by multiplication.

If x = 2, a positive fraction, y is the gth root of the pth power 
of a.

If x is a positive irrational number, the approximate value of 
y may be obtained by expressing x approximately as a fraction.

If x = 0, y = a° — 1. If x = — m, y = a~n — -ij.
The graph of the function is readily found. a
Example. Find the graph of y = (1.5)*.  By giving convenient 

values to x we obtain the curve shown in Fig. 72. To determine the 
shape of the curve at the extreme left, we 
place x equal to a large negative number, 
sayx = —100. Thenÿ= (1.5)~100= >
which is very small. It is obvious that the 
larger numerically the negative value of x 
becomes, the smaller y becomes, so that the 
curve approaches asymptotically the nega­
tive portion of the z-axis.

On the other hand, if x is a large positive number, y is also large.
55. The logarithm. If a number N may be obtained by placing 

an exponent L on another number a and computing the result, 
then L is said to be the logarithm of N to the base a. That is, if

N = aL, (1)
then L — log0 N. (2)

Formulas (1) and (2) are simply two different ways of ex­
pressing the same fact as to the relation of N and L, and the 

168 
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student should accustom himself to pass from one to the other 
as convenience may demand.

From these formulas follow easily the fundamental properties 
of logarithms ; namely,

10gn2V + logaM = loga MN,

loga IV - log0M - loga

n loga2V = log,, A", 
logal = 0, 

log„ i = - 10goN.

(3)

Theoretically any number, except 0 or 1, may be used as the 
base of a system of logarithms. Practically there are only two 
numbers so used. The first is the number 10, the use of which as 
a base gives the common system of logarithms, which are the 
most convenient for calculations and are used almost exclusively 
in trigonometry.

Another number, however, is more convenient in theoretical 
discussions, since it gives simpler formulas. This number is 
denoted by the letter e and is expressed by the infinite series 
, » 1 a-1 1 _L 1 a. 1e = 1 + ï + 2! + 3Î + 4! + ‘:”

where 2 ! = 1 X 2, 31 = 1x2x3, 41 = 1x2x3x4, etc.
Computing the above series to seven decimal places, we have 

e = 2.7182818 • • -.
An important theorem, which is used in finding the derivative 

of a logarithm, is that j 1
tim (1 + h)h = e, (4)

To check this arithmetically we may take successive small 
values of h and make the following computation :

When h = .1, (l + ^= (l.l)io = 2.59374.

When h — .01, (1 + hÿ = (1.01)100 = 2.70481.

When h = .001, (1 + hÿ = (1.001)1000 = 2.71692.

When h — .0001, (1 + hy = (1.0001)10000 = 2.71815.
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i

Working algebraically, we expand (1 + k)h by the binomial 
theorem, obtaining l/l.Wl-l

(l + t)‘ = 1+|» + * g;

* This notation is generally used by engineers. However, the abbreviation "log ” 
is used by many authors to denote the natural logarithm. In this book " log ” is 
used for the logarithm to the base 10.

= 1 + 1 + (1z7*)  + (1-W-2«+...

= 1 + i + ^! + ń+'" + B’
where R represents the sum of all terms involving h, h2, h3, etc. 
Nov/ it may be shown by advanced methods that as h approaches 
zero, R also approaches zero ; so that

Lim (1 + h)h — 1 + i + . = e.
fc-.o '■ 1 2 ! 31

When the number e is used as the base of a system of loga­
rithms, the logarithms are called natural logarithms. We shall 
denote a natural logarithm by the symbol In * ; thus,

if 
then

N = eL, 
L = In N. (5)

Tables of natural logarithms exist, and should be used if 
possible. In case such a table is not available, the student may 
find the natural logarithm by use of a table of common loga­
rithms, as follows :

Let it be required to find In N.

If x = In N,

then, by (5), N — ex;

whence, by (3), log N — x log e = In N log e,

or lnN = logAf= log#.
log e 0.4343



LOGARITHM 171

Certain graphs involving the number e are important and are 
shown in the examples.

Example 1. y = In x.
Giving x positive values and finding y, 

we obtain Fig. 73.

Example 2. y = e~z\
The curve (Fig. 74) is symmetrical 

with respect to OY and is always above 
OX. When x = 0, y = 1. As a: increases nu­
merically, y decreases, approaching zero. Hence OX is an asymptote.

This is the curve (Fig. 75) made by a cord or a chain held at the 
ends and allowed to hang freely. It is called the catenary.

Example 4. y = e~ax sin bx.
The values of y may be computed by multiplying the ordinates 

of the curve y — e~ax by the val­
ues of sin bx for the correspond­
ing abscissas. Since the value of 
sin bx oscillates between 1 and 
— 1, the values of e~ax sin bx 
cannot exceed those of e~ax. 
Hence the graph lies in the por­
tion of the plane between the 
curves y = e~ax and y = — e~ax.
When x is a multiple of y-> y b 
is zero. The graph therefore 
crosses the axis of x an infinite number of times. Fig. 76 shows the 
graph when a = 1, b = 2 tt.
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Example 5. ÿ = e*
When x approaches zero, being positive, y increases without 

limit. When x approaches zero, being negative, y approaches zero ;
for example, when x = y qVo > y ~ elooo> 
and when x = - ^óo, V = e“10°° = ^66’ 

The function is therefore discontinuous 
for x = 0.

The line y = 1 is an asymptote (Fig. 
77), for as x increases numerically with­
out limit, being positive or negative, - 
approaches 0, and y approaches 1.

EXERCISES

Plot the graphs of the following equations :
1. y = ex.

2-y = (>)*.
3. y = e1~x.

_1
4. y = e i.

5. y = xex.
6. y = |(ex - e"1).
7. y = xe~2x.

9. y = log 3 x.
10. y = log cos x.
11. y = log csc x.
12. y = e~3x sin 2 x.
13. y = ex sin x.

56. Differentiation. The formulas for the differentiation of the 
exponential and the logarithmic functions are as follows, where, 
as usual, u represents any function which can be differentiated 
with respect to x, In means the Napierian logarithm, and a is
any constant :

(1)

A
dx (2)

d _  .. du
dx dx

(3)

(4)

The proofs of these formulas are as follows :
1. By (8), § 36, A Iog„u = A logaM .

cijc xjtHi cue
To find logu u, place y — logau.

du
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Then, if u is given an increment Au, y receives an increment 
Ay, where a?/ = loga (u + Au) — log0 u

“ oga(1 + ^r) ’

4. If y — eu the previous formula becomes 
dÿ = gU du 
dx dx

the transformations being made by (3), § 55.

^«iiogJi+Asy4.
Au u \ u /

Now, as Au approaches zero the fraction — may be taken 
as h in (4), § 55.

Then

u

Hence ńw Y“= g

Therefore 

and

2. If y = In u, the base a of the previous formula is e ; and 
since loge e = 1, we have

dy _ 1 du
dx u dx

3. If
we have

Z/ = a“,
In y = In au — u In a.

Hence, by formula (2),

whence

y dx dx

dx dx
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Example 1. y — In (x* 2 — 4 x + 5).

Çeaxdx = -eax+ C.
J a

Similarly, from the formula for the derivative of In x we have
J^ = lnx + C.

Since - = x-1 this gives us the integral of xn dx when n = — l.x
All other values of n are taken care of by formula (3), § 42.

dy _ 2 x — 4
dx x2 * — 4 x + 5

Example 2. ÿ = e~x\ ~ = — 2 xe~x\dx
Example 3. y = e~ax cos bx.

~ = cos bx (e~ax) + e~ax (cos bx) = — ae~axcos bx — be~axsin bx dx dx dx _ar,= — e ax (a cos bx + b sm bx).

EXERCISES

Find “ in each of the following cases : 
_2

1. y = e x.
2. y = I (e5 + e_“)-

3. y = a* 2-1.
4. y = ataB~lx.
5. y = In (x2 + 6 x — 1).
6. y = In V2 x2 + 8 x + 9.
_ 1,1-4
’•‘' = 8lnJ+T
8. y = In (x + Vx2 + 9).
9. ÿ = In (5 x + V25x2 + 1).

, „ , 1 — cos 2 x
1 + cos 2 x

11. y = In (e3* + e~3x).
12. y = e~2x sin 2 x.

13. y = In Vl + x2 — x tan-1x.
14. y = e2x(2 x2 — 2 x + 1).
15. y = e3x(3 cos x + sin x).

16. y = sin 1-----------ex + e~x
17. 7/=secxtanx+ln(secx+tanx).
18. y - In ~ A.

Vx + 1 + 1

19. = In--
V

20. xy — In (x + y).

57. Integration. By reversing the formula for the differentia­
tion of an exponential function, we may write

(1)

(2)
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EXERCISES

when t = 1, s = 0. Find s when t = 5. 1
2. The slope of a curve at any point is always twice the slope of 

the line from the point to the origin, and the curve passes through 
(4, 2). Find its equation.

3. The slope of a curve at any point is always equal to the recip­
rocal of the abscissa of the point, and the curve passes through (3, 2). 
Find its equation.

4. Find the area bounded by the curve y — the axis of x, the 
axis of y, and the ordinate x = a.

5. Find the area bounded by the curve xy = 4, the axis of x, and
the ordinates x = 2 and x = 4. x

6. Find the area bounded by the catenary y = |\e“ + e the 
axis of x, and the lines x = ± h.

7. Find the area bounded by the curve xy — 18 and the straight 
line x + y = 9.

8. Find the volume generated by revolving about OX the area
a / ?

bounded by the catenary y = - \e“ + e the axis of x, and the 
lines x = ± h.

9. Find the volume generated by revolving about the line y + 1 = 0, 
the area bounded by that line, the curve xy = 8, and the lines 
x = 2 and x = 4.

58. The compound-interest law. An important use of the ex­
ponential function occurs in the problem of determining a func­
tion whose rate of change is proportional to the value of the 
function. If y is such a function of x, it must satisfy the equation

(1)

where k is a constant called the proportionality factor. 
We may write equation (1) in the form

& = kdx;
y

whence In y — kx + C.

From this, by (1) and (2), § 55,
w = ekx + c = ekxec.
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Finally we place ec — A, where A may be any constant, since 
C is any constant, and have as a final result

y = Aekx. (2)

The constants A and k must be determined by other condi­
tions of a particular problem, as was done in § 20.

The law of change here discussed is often called the compound­
interest law, because of its occurrence in the following problem :

Example. Let a sum of money P be put at interest at the rate of r % 
per annum. The interest gained in a time At is P At, where At 
is expressed in years. But the interest is an increment of the prin­
cipal P, so that we have „

In ordinary compound interest the interest is computed for a 
certain interval (usually one half-year), the principal remaining 
constant during that interval. The interest at the end of the half- 
year is then added to the principal to make a new principal on which 
interest is computed for the next half-year. The principal P therefore 
changes abruptly at the end of each half-year.

Let us now suppose that the principal changes continuously ; 
that is, that any amount of interest theoretically earned, in no matter 
how small a time, is immediately added to the principal. The average 
rate of change of the principal in the period At is, from § 6,

AP_  Pr (1)
At ~ 100'

To obtain 
equation (1),

the rate of change we must let At approach zero in 
and have dP=p_L_

dt 100 '

From this, as in the text, we have

(2)
To make the problem concrete, suppose the original principal were 

$100 and the rate 4 %, and we ask what would be the principal at 
the end of 14 yr. We know that when t = 0, P = 100. Substituting 
these values in (2), we have A = 100, so that (2) becomes

-4-« J-
P — lOOe100 = 100 e25.
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Placing now t = 14, we have to compute P = 100 e25. The value 
of P may be taken from a table if the student has access to tables 
of powers of e. In case a table of common logarithms is alone avail­
able, P may be found by first taking the logarithm of both sides 
of the last equation. Thus

log P = log 100 + || log e = 2.2432 ;
whence P — $175, approximately.

EXERCISES

1. The rate of change of y with respect to x is always equal to 
I y, and when x = 0, y = 6. Find the law connecting y and x.

2. The rate of change of y with respect to x is always 0.01 times y, 
and when x = 10, y = 60. Find the law connecting y and x.

3. The rate of change of y with respect to x is proportional to y. 
When x = 0, y = 8, and when x = 2, y = 16. Find the law connect­
ing y and x.

4. The sum of $100 is put at interest at the rate of 5 % per annum 
under the condition that the interest shall be compounded at each 
instant of time. How much will it amount to in 30 yr. ?

5. At a certain date the population of a town is 10,000. Forty 
years later it is 35,000. If the population increases at a rate which 
is always proportional to the population at the time, find a general 
expression for the population at any time t.

6. In a chemical reaction the rate of change of concentration of 
a substance is proportional to the concentration at any time. If the 
concentration is when t = 0, and is when t = 6, find the law 
connecting the concentration and the time.

7. A rotating wheel is slowing down in such a manner that the 
angular acceleration is proportional to the angular velocity. If the 
angular velocity at the beginning of the slowing down is 200 revolu­
tions per second, and in 1 min. it is cut down to 50 revolutions per 
second, how long will it take to reduce the velocity to 25 revolutions 
per second ?

59. Certain empirical equations. If x and y are two related 
quantities which are connected by a given equation, we may 
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plot the corresponding curve on a system of ^-coordinates, and 
every point of this curve determines corresponding values of 
x and y.

Conversely, let x and y be two related quantities of which 
some corresponding pairs of values have been determined, and 
let it be desired to find by means of these data an equation con­
necting x and y in general. On this basis alone the problem 
cannot be solved exactly. The best we can do is to assume 
that the desired equation is of a certain form and then en­
deavor to adjust the constants in the equation in such a way 
that it fits the data as nearly as possible. We may proceed 
as follows :

Plot the points corresponding to the known values of x and y. 
The simplest case is that in which the plotted points appear to 
lie on a straight line or nearly so. In that case it is assumed 
that the required relation may be put in the form

y = mx + b, (1)

where m and b are constants to be determined to fit the data. 
The next step is to draw a straight line so that the plotted 
points either lie on it or are close to it and about evenly dis­
tributed on both sides of it. The equation of this line may be 
found by means of two points on it, which may be either two 
points determined by the original data or any other two points 
on the line.

The resulting equation is called an empirical equation and 
expresses approximately the general relation between x and y. 
In fact, more than one such equation may be derived from the 
same data, and the choice of the best equation depends on the 
judgment and experience of the worker.

Example 1. Corresponding values of two related quantities x and y 
are given by the following table :

X 1 2 4 6 10

y 1.3 2.2 2.9 3.9 6.1

Find the empirical equation connecting them.
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We plot the points (x, y) and draw the straight line, as shown in 
Fig. 78. The straight line is seen to pass through the points (0, 1) 
and (2, 2). Its equation is 
therefore, by § 14,

y = 0.5 x + 1,
which is the required equation.

o 1

' In many cases, however, 
the plotted points will not 
appear to lie on or near a 
straight line. We shall con­
sider here only two of these
cases, which are closely connected with the case just considered. 
They are the cases in which it may be anticipated from previous 
experience that the required relation is either of the form

y = abx, (2)
where a and b are constants, or of the form

y = axn, (3)
where a and n are constants.

Both of these cases may be brought directly under the first 
case by taking the logarithm of the equation as written. Equa­
tion (2) then becomes•

log y = log a + x log b. (4)

As log a and log b are constants, if we denote log y by y', (4) 
assumes the form (1) in x and y’, and we have only to plot the 
points (x, y') on an x?/-system of axes and determine a straight 
line by means of them. The transformation from (4) back to 
(2) is easy, as shown in Example 2.

Taking the logarithm of (3), we have
log y = log a + n log x. (5)

If we denote log y by y' and log x by x', (5) assumes the form 
(1) in x' and y', since log a and n are constants. Accordingly 
we plot the points (x', y') on an xV-system of axes, determine 
the corresponding straight line, and then transform back to (3), 
as shown in Example 3.
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Example 2. Corresponding values of two related quantities x and 
y are given by the following table :

X 8 10 12 14 16 18 20

y 3.2 4.6 7.3 9.8 15.2 24.6 36.4

Find an empirical equation of the form y = abx.
Taking the logarithm of the equation y — abx, and denoting 

log y by y', we have y> _ iog a + x log b.
Determining the logarithm of each of the given values of y, we 

form a table of corresponding values of x and y', as follows :

X 8 10 12 14 16 18 20

y' = log y 0.5051 0.6628 0.8633 0.9912 1.1818 1.3909 1.5611

We choose a large-scale plotting-paper, assume on the T/'-axis a 
scale four times as large as that on the x-axis, plot the points (x, y'), 
and draw the straight line (Fig. 79) through the first and the sixth
point. Its equation is, by § 14, 

y' - 0.08858 x - 0.20354.
Therefore log a = — 0.20354 

= 9.7965 — 10, whence a = 0.626 ; 
and log b = 0.08858, whence 
b = 1.22. Substituting these 
values in the assumed equation, 
we have

y = 0.626 (1.22)1 Fig. 79

as the required empirical equation. The result may be tested by 
substituting the given values of x in the equation. The computed 
values of y will be found to agree fairly well with the given values.

Example 3. Corresponding values of pressure and volume taken 
from an indicator card of an air-compressor are as follows :

Find the relation between them in the form pvn = c.

P 18 21 26.5 33.5 44 62

V 0.635 0.556 0.475 0.397 0.321 0.243
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Writing the assumed relation in the form p = cv~n and taking the 
logarithms of both sides of the equation, we have

log p = — n log v + log c,
or y = — nx + b,
where y = log p, x = log v, and b = log c.

The corresponding values of x and y are

x = log V - 0.1972 - 0.2549 - 0.3233 - 0.4012 - 0.4935 -0.6144

y = log p 1.2553 1.3222 1.4232 1.5250 1.6435 1.7924

We take large-scale plotting­
paper assuming on the x-axis 
a scale twice as large as that 
on the y-axis, plot the points 
(x, y), and draw the straight 
line as shown in Fig. 80. The 
line is seen to pass through 
the points (— 0.05,1.075) and 
(— 0.46, 1.6). Its equation is 
therefore, by § 14,

y = - 1.28 x + 1.01. Fig. 80

Hence n = 1.28, log c = 1.01, c = 10.2, and the required relation 
between p and v is i.^ _ 10 2

1. Show that the following points lie approximately on a straight 
line, and find its equation :

EXERCISES

X 4 9 13 20 22 25 30

y 2.1 4.6 7 12 12.9 14.5 18.2

2. For a galvanometer the deflection I), measured in millimeters 
on a proper scale, and the current I, measured in microamperes, are 
determined in a series of readings as follows :

D 29.1 48.2 72.7 92.0 118.0 140.0 165.0 199.0

I 0.0493 0.0821 0.123 0.154 0.197 0.234 
-------- A------

0.274 0.328

Find an empirical law connecting D and I.
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3. Corresponding values of two related quantities x and y are 
given in the following table :

X 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

y 0.3316 0.4050 0.4946 0.6041 0.7379 0.9013 1.1008 1.3445

Find an empirical equation connecting x and y in the form y = abx.

4. In a certain chemical reaction the concentration c of sodium 
acetate produced in a stated number of minutes t is as follows :

t 1 2 3 4 5

c 0.00837 0.00700 0.00586 0.00492 0.00410

Find an empirical equation connecting c and t in the form c = ab‘.

5. The deflection a of a loaded beam with a constant load is found 
for various lengths I as follows :

I 1000 900 800 700 600

a 7.14 5.22 3.64 2.42 1.50

Find an empirical equation connecting a and I in the form a = nlm.

6. The relation between the pressure p and the volume » of a gas 
is found experimentally as follows :

P 20 23.5 31 42 59 78

V 0.619 0.540 0.442 0.358 0.277 0.219

Find an empirical equation connecting p and v in the form pvn = c.

GENERAL EXERCISES
Find ~ in each of the following dx cases :

6. y = x(ln 2 x)2 — 2 x In 2 x + 2 x.
7. ÿ = 2xtan_12x —|ln (l + 4x2).
8. y = I sec2 ax + In cos ax.
9. ÿ = I e2l(4 x3 — 6 x2 + 6 x — 3).

10. y = 3 x sec-1 3 x — In (3 x + V9 x2 — 1).



GENERAL EXERCISES 183

Find the graphs of the following equations : 
z + 1 1

11. y = ex. 15. y = e1~x. 19. y = x2e~x.
L^X 16. y = + e~x). X

12. y = xe x .
17. e1 - e~x 20. y = e 2 cos x.

13. y = xe~x\ v —----- e~x 21. y = log sin 2 x.
14. y = 18. y = xe~x 22. y = log tan 3 x.
23. Prove that the curve y = e~2x sin 3 x is tangent to the curve 

y = e~2x at any point common to the two curves.
24. Show that the catenary y = (e“ + e~“) and the parabola

1 zy = a + — x2 have the same slope and the same curvature at their Zj CL
common point.

25. Find the radius of curvature of the curve x = e‘ sin t,y = e‘ cos t.
26. Find the radius of curvature of the curve y = In x and its 

least value.
27. Find the radius of curvature at the point x = 2 a of the curve 

y = Vx2 — a2 — a In (x + Vx2 — a2). _x
28. Find the radius of curvature of the curve y = e 2 sin 3 x at 

the origin.
29. Find the radius of curvature of the curve y = e 1-1 at the point 

for which x = 0.
30. Show that the radius of curvature of the curve y = In cos x 

can never be less than unity in numerical value.
31. The slope of a curve at any point is always equal to n times 

the slope of the line joining the point to the origin, and the curve 
passes through the point (1, a). Find its equation.

32. Find the curves such that the portion of the tangent between 
the coordinate axes is bisected by the point of tangency.

33. Find the area in the first quadrant bounded by the hyperbola 
xy = 6 and the parabola x2 + 5 y — 19 = 0.

34. Find the volume generated by revolving about the line x = 2 
the triangular area bounded by the curve xy = 10 and the lines 
x = 2 and y = 2.

35. A substance of amount x is being decomposed at a rate which 
is proportional to x. If x = 3.24 when t = 0, and x = 1.72 when 
t = 40 min., find the value of x when t = 1 hr.
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36. A substance is being transformed into another at a rate which 
is proportional to the amount of the substance still untransformed. 
If the amount is 50 when t = 0, and 16.4 when t = 4 hr., find how 
long it will be before of the original substance will remain.

37. According to Newton’s law the rate at which the temperature 
of a body cools in air is proportional to the difference between the 
temperature of the body and that of the air. If the temperature of 
the air is kept at 60°, and the body cools from 130° to 120° in 300 sec., 
when will its temperature be 100°?

38. Assuming that the rate of change of atmospheric pressure p 
with respect to the distance h above the surface of the earth is pro­
portional to the pressure, and that the pressure at sea level is 14.7 lb. 
per square inch and at a distance of 1600 ft. above sea level is 13.8 lb. 
per square inch, find the law connecting p and h.

39. For a copper-nickel thermocouple the relation between the 
temperature t in degrees and the thermoelectric power p in micro­
volts is given by the following table :

t 0 50 100 150 200

p 24 25 26 26.9 27.5

Find an empirical law connecting t and p.

40. The safe loads in thousands of pounds for beams of the same 
cross section but of various lengths in feet are found as follows :

Find an empirical equation connecting the data.

Length 10 11 12 13 14 15

Load 123.6 121.5 111.8 107.2 101.3 90.4

41. In the following table s denotes the distance of a moving 
body from a fixed point in its path at time t :

Find an empirical equation connecting s and t in the form s — ab‘.

t 1 2 4 6 7 8

s 10 4 0.6400 0.1024 0.0410 0.0164
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42. In the following table c denotes the chemical concentration of 
a substance at the time t :

t 2 4 6 8 10

c 0.0069 0.0048 0.0033 0.0023 0.0016

Find an empirical equation connecting c and t in the form c = ab‘.

43. The relation between the length I in millimeters and the 
time t in seconds of a swinging pendulum is found as follows :

Find an empirical equation connecting I and t in the form t = kln.

I 63.4 80.5 90.4 101.3 107.3 140.6

t 0.806 0.892 0.960 1.010 1.038 1.198

44. For a dynamometer the relation between the deflection 9, 
when the unit 9 — —— > and the current I, measured in amperes, is 
as follows: 400

Find an empirical equation connecting I and 9 in the form I = k9n.

9 40 86 120 160 201 240 280 320 362

I 0.147 0.215 0.252 0.293 0.329 0.360 0.390 0.417 0.442

45. In a chemical experiment the relation between the concen­
tration y of undissociated hydrochloric acid and the concentration x 
of hydrogen ions is shown in the table :

X 1.68 1.22 0.784 0.426 0.092 0.047 0.0096 0.0049

y 1.32 0.676 0.216 0.074 0.0085 0.00315 0.00036 0.00014

Find an empirical equation connecting the two quantities in the 
form y — kxn.



Fig. 81

CHAPTER VII
POLAR COORDINATES

60. Graphs. So far we have determined the position of a 
point in the plane by two distances, x and y. We may, however, 
use a distance and a direction, as follows :

Let 0 (Fig. 81), called the origin, or pole, 
be a fixed point, and let OM, called the 
initial line, be a fixed line. Take P any 
point in the plane, and draw OP. Denote 
OP by r, and the angle MOP by 9. Then r 
and 9 are called the polar coordinates of the 
point P(r, 9), and when given will completely determine P.

For example, the point (2, 15°) is plotted by laying off the 
angle MOP — 15° and measuring OP = 2.

OP, or r, is called the radius vector, and 9 the vectorial angle, 
of P. These quantities may be either positive or negative. A 
negative value of 9 is laid off in the direction of the motion of 
the hands of a clock, a positive angle in the opposite direction. 
After the angle 9 has been constructed, positive values of r are 
measured from O along the terminal line of 9, and negative 
values of r from 0 along the backward extension of the terminal 
line. It follows that the same point may have more than one 
pair of coordinates. Thus (2, 195°), (2, — 165°), (— 2, 15°), and 
(— 2, — 345°) refer to the same point. In practice it is usually 
convenient to restrict 9 to positive values.

Plotting in polar coordinates is facilitated by using paper ruled 
as in Figs. 83 and 84. The angle 9 is determined from the num­
bers at the ends of the straight lines, and the value of r is counted 
off on the concentric circles, either toward or away from the 
number which indicates 9, according as r is positive or negative.

The relation between (r, 0) and (x, y) is found as follows :
Let the pole O and the initial line OM of a system of polar 

coordinates be at the same time the origin and the axis of a: of a 
186
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system of rectangular coordinates. Let P (Fig. 82) be any point 
of the plane, (x, y) its rectangular coordinates, and (r, 0) its 
polar coordinates. Then, by the definition of the trigonometric
functions,

cos e =
r

sin 0 = ^-
r

Whence follows, on the one hand,
x = r cos 0,
y = r sin 0,

and, on the other hand,
r — y/x2 + y2, sin 0 — —. ?__ > cos 0 = . . x (2)

Vx2 + y2 y/x2 + y2

By means of (1) a transformation can be made from rectangu­
lar to polar coordinates, and by means of (2) from polar to 
rectangular coordinates.

When an equation is 
given in polar coordi­
nates, the corresponding 
curve may be plotted by 
giving to 0 convenient 
values, computing the 
corresponding values of 
r, plotting the resulting 
points, and drawing a 
curve through them.

Example 1.
r = 3 + 2 cos 9.

To plot this curve, we 
assign values to 9, com-

Fig. 83

pute the corresponding values of r with the aid of a table of natural 
cosines, and plot the points of the curve whose coordinates are thus 
determined. Proceeding in this manner we see that, as the values 
assigned to 9 increase from 0° to 90°, cos 9 decreases from 1 to © ; 
hence r decreases from 5 to 3, and we draw the corresponding arc AB 
(Fig. 83). As 9 increases from 90° to 180°, cos 9 decreases from 0 to
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Fig. 84

— l,r decreases from 3 to 1, and we draw the arc BC. As 9 increases 
from 180° to 270°, cos 9 increases from — 1 to 0, r increases from 
1 to 3, and we draw the arc CD. As 9 increases from 270° to 360°, 
cos 9 increases from 0 to 1, r increases from 3 to 5, and we draw the 
arc DA.

If any more values are assigned to 9, the corresponding points 
will follow the curve already drawn. Hence the curve in Fig. 83 is 
the complete curve of the given equation. The curve is one form of 
limaçon.

Example 2. r — a sin 3 9.
As 9 increases from 0° to 30°, r increases from 0 to a ; as 9 increases 

from 30° to 60°, r decreases from a to 0 ; the point (r, 0) traces out 
the loop OAO (Fig. 84), 
which is evidently sym­
metrical with respect to 
the radius OA. As 9 in­
creases from 60° to 90°, r 
is negative and decreases 
from 0 to — a ; as 9 in­
creases from 90° to 120°, 
r increases from — a to 
0 ; the point (r, 0) traces 
out the loop OBO. As 9 
increases from 120° to 
180°, the point (r, 0) traces 
out the loop OCO. The 
curve is now complete, for 
larger values of 0 give 
points already found, as 
sin 3 (180° + 0) = — sin 3 0.
The three loops are congruent, because sin 3 (60° + 0) = — sin 3 0. 
This curve is called a rose of three leaves.

Example 3. r2 = 2 a2 cos 2 0.
Solving for r, we have r = ± av2 cos 2 0.

Hence, corresponding to any values of 0 which make cos 2 0 posi­
tive, there will be two values of r numerically equal and opposite 
in sign, and two corresponding points of the curve symmetrically 
situated with respect to the pole. If values are assigned to 0 which 
make cos 2 0 negative, the corresponding values of r will be imagi­
nary and there will be no points on the curve.
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Accordingly, as 9 increases from 0° to 45°, r 
from aV2 to 0, and the portions of the curve 
third quadrant are constructed (Fig. 85) ; as 
to 135°, cos 2 0 is negative, and there is no 
between the lines 9 = 45° and 
9 = 135° ; finally, as 9 increases 
from 135° to 180°, r increases 
numerically from 0 to a V2, 
and the portions of the curve 
in the second and the fourth 
quadrant are constructed. The 
curve is now complete, as we 
should only repeat the curve already found if we

numerically 
the first and the 

from 45° 
of the curve

45°

further
values to 9 ; it is called the lemniscate.

Example 4. r = a9.
In plotting this curve, 9 is considered in circular measure. When

9 = 0, r = 0 ; and as 9 increases, r 
increases, so that the curve winds 
an infinite number of times around 
the origin while receding from it 
(Fig. 86). In this example, we ob­
tain for negative values of 9 points 
of the curve which cannot be ob­
tained by use of positive values. In 
the figure the heavy line shows the 
portion of the spiral corresponding
to positive values of 9, and the dotted line the portion corresponding 
to negative values of 9. The curve is called the spiral of Archimedes.

Example 5. r = ea9.
When 9 = 0, r = 1. As 9 increases, 

r increases, and the curve winds around 
the origin at increasing distances from 
it (Fig. 87). When 9 is negative and 
increasing numerically without limit, 
r approaches zero. Hence the curve 
winds an infinite number of times 
around the origin, continually ap­
proaching it. The dotted line in the fig­
ure corresponds to negative values of 9.

The curve is called the logarithmic 
spiral.
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EXERCISES

Plot the following curves :
1. r = a sin 2 9.
2. r — a cos 3 9.
_ • 03. r — a sin -•o

4. r = a sin - •

5. r = 2 + 3 cos 9.
6. r = a (1 + cos 9)*.

8. r2 — a2 sin 9.
9. r2 = a2 sin 3 9.

10. r = a (1 — cos 2 9).
11. r = a (1 + 2 cos 2 O').
12. r = a tan 9.
13. r — a tan 2 9.

Plot in one diagram each of the following pairs of curves and find 
their points of intersection :

14. r = 3 cos 9, r = 3 VŚ sin 9. 16. r = 1 + cos 9, r = 2 cos 9.
15. r2 = a2sin9,r2 = a2sin2 9. 17. r2 = a2 sin 9, r2 = a2 sin 3 9.

Transform the following equations to polar coordinates :
18. xy + 2 = 0. 20. x2 + y2 + 2 ax = 0.
19. x2 + y2-2ax + 2ay = 0. 21. (x2 + y2)2 = a2(x2 - y2).

Transform the following equations to rectangular coordinates :
22. r = a csc 9. 23. r = 2 a sin 9. 24. r = a tan 9. 25. r = a sin 2 9.

61. Certain curves. In this section we shall derive the polar 
equations of certain curves directly from l
their definitions or geometrical properties.

1. The straight line. Let LK (Fig. 88) 
be a straight line perpendicular to the / p
initial line OM at A, where OA = a. Let 
P(r, O') be any point of LK, and draw OP. / 
Then, by trigonometry, OP cos 9 = OA, or __________ M

r cos 9 = a. (1) o A

Conversely, if the coordinates of any 
point P satisfy (1), it can be shown that P 
is on a straight line perpendicular to OM at

K
Fig. 88

A, that is, is a point of LK. Hence (1 ) is the polar equation of LK. 
As 9 increases from 0° to 90°, cos 9 decreases from 1 to 0, 

whence it is evident, if the equation is written in the form
* This curve is called a cardioid.
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r —----- -, that r increases from a to oo, and the corresponding
cos 0

part of the line is AL. As 0 increases from 90° to 180°, cos 0 
decreases from 0 to — 1, r is negative and decreases in numerical 
value from oo to a, and the corresponding part of the line is A A. 
If any other values are assigned to 0, no new points can be 
found. It is to be noted, however, that the part AK of the line 
may also be found by letting 0 vary from 0° to — 90°.

2. The circle. Take any point of the circle as O and the diam­
eter through that point as the initial line for the system of polar
coordinates (Fig. 89). Let the radius 
of the circle be a ; then OA — 2 a. 
Let P(r, 0) be any point of the circle, 
and draw OP and PA. Since the 
triangle OP A is inscribed in a semi­
circle, it is a right triangle. There­
fore, by trigonometry,

OP = OA cos AOP,
or r = 2 a cos 0. (2)

Conversely, if the coordinates of any point P satisfy (2), it 
can be shown that OP A is a right triangle, and hence P is a 
point of the circle. Hence (2) is the polar equation of the circle.

As 0 increases from 0° to 90°, r 
decreases from 2 a to 0 and the 
upper half of the circle is con­
structed. As 0 increases from 90° 
to 180°, r is negative and decreases 
from 0 to — 2 a, and the lower half 
of the circle is constructed. If any 
more values are assigned to 0, the 
points located will be but repeti­
tions of those already located. If 
preferred, however, the lower half 
of the circle may be plotted by as­
signing values of 0 from 0° to — 90°.

3. The parabola. Let O (Fig. 90) be the focus of a parabola, 
whose directrix RS is perpendicular to the initial line OM at the 
point A, where OA — 2 c. Then OM is the axis of the parabola.
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(3)

(4)

Let P(r, 0) be any point of the parabola and draw OP, PN per­
pendicular to OM, and PL perpendicular to RS. By the defi­
nition of the parabola, OP = PL ; but OP — r, and PL = NA 
— OA — ON = 2 c — r cos 6. Therefore r = 2c — r cos 6, which 
may be written in the form

r = —2Ç___
1 + cos B

Conversely, if the coordinates of any point P satisfy (3), it 
may be proved that P is equally distant from O and RS, and 
hence is a point of the parabola.

Equation (3) is usually written in the form

= k 
T 1 + cos B ’

where the constant k is the distance from the focus to the 
directrix.

As B increases from 0° to 180°, cos B decreases from 1 to — 1 

and r increases from - to oo, the corresponding part of the 
parabola being VB. As 0 increases from 180° to 360°, cos B in- 

creases from — 1 to 1 and r decreases from oo to -, the cor- 

responding part of the parabola being CV. No other values 
need be assigned to B, as the curve is now complete. It may be 
noted, however, that the lower part of the parabola may be 
found by assigning values of B from 0° to — 180°.

EXERCISES

1. Find the polar equation of a straight line parallel to the initial 
line OM and at a distance a from O.

2. Find the polar equation of a straight line distant a from O 
and with its normal from O making an angle a with the initial line 
OM.

3. Find the polar equation of a circle of diameter 2 a passing 
through O and having a diameter perpendicular to OM at O.

4. Find the polar equation of a parabola having its focus at O 
and its directrix perpendicular to the radius vector 9 = 180° at a 
distance k from O.
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5. Find the polar equation of the locus of a point which moves 
so that its distance from O is always one half its distance from the 
straight line RS which is perpendicular to the initial line OM at the 
point A, where OA = a.

6. In a parabola prove that the length of a focal chord which 
makes an angle of 30° with the axis of the curve is four times the 
length of the focal chord perpendicular to the axis.

7. A comet is moving in a parabolic orbit around the sun at the 
focus of the parabola. When the comet is 100,000,000 miles from 
the sun, the radius vector makes an angle of 60° with the axis of the 
orbit. How near does it come to the sun ?

8. A comet moving in a parabolic orbit around the sun is observed 
at two points of its path, its focal distances being 5 and 15 million 
miles, and the angle between them being 90°. How near does it 
come to the sun ?

62. The differentials dr. dO, ds. We have seen, in § 39, that 
the differential of arc in rectangular coordinates is given by the
equation ds2 = dx2 + dy2. (1)

If we wish to change this to polar coordinates, we have to
place x = r cos 0, y = r sin 0;
whence dx = cos 0 dr — r sin 0 d0, 

dy = sin 0 dr + r cos 0 d0.

Substituting in (1), we have
ds2 = dr2 + r2d02.

This formula may be remembered by means of an " elementary
triangle” (Fig. 91), constructed as follows:

Let P be a point on a curve r = f(0), the 
coordinates of P being (r, 0), where OP — r 
and MOP = 0. Let 0 be increased by an 
amount d0, thus determining another point 
Q on the curve. From O as a center and 
with a radius equal to r, describe an arc of 
a circle intersecting OQ in R so that OR — OP = r. Then, 
by § 44, PR — r d0. Now RQ is equal to Ar, and PQ is equal
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to As. We shall mark them, however, as dr and ds respec­
tively, and the formula (2) is then correctly obtained by treat­
ing the triangle PQR as a right triangle with straight-line 
sides. The fact is that the smaller the triangle becomes as Q 
approaches P, the more nearly does it behave as a straight-line 
triangle ; and in the limit, formula (2) is exactly true.

Other formulas may be read out of the triangle PQR. Let us 
denote by the angle PQR, which is the angle made by the 
curve with any radius vector. Then, if we treat the triangle PQR 
as a straight-line right-angle triangle, we have the formulas :

smii = —-, cos w = — > tan w — —— • (3)
ds ds dr

The above is not a proof of the formulas. To supply the 
proof we need to go through a limit process, as follows :

We connect the points P and Q by 
a straight line (Fig. 92) and draw a 
straight line from P perpendicular to 
OQ meeting OQ at S. Then the tri­
angle PQS is a straight-line right­
angle triangle, and therefore

sin SQP = SP 
chord PQ

SP arc PQ 
arc PQ chord PQ

Now angle POQ = Ad, arc PQ — As, and, from the right tri­
angle OSP, SP = OP sin POQ = r sin Ad. Therefore

sin SQP — r sin Ad 
As

arc PQ _ r sin Ad 
chord PQ Ad

Ad
As

arc PQ 
chord PQ

■ (4)

Now let Ad approach zero as a limit, so that Q approaches P 
along the curve. The angle SQP approaches the angle OPT, 
where PT is the tangent at P. At the same time s'n. ap- 

Ad ddproaches 1, by § 44 ; — approaches — > by definition ; and 
As ds

■ ^rc g approaches 1, by § 39. In this figure we denote the 
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(5)

angle OPT by xp and have, from (4),
sin^ = ^, 

as
which is the first of formulas (3). It is true that in Fig. 92 we 
have denoted OPT by xp and that in Fig. 91 xp denotes OQP. 
But if we remember that the angle OQP approaches OPT as a 
limit when Q approaches P, and that in using Fig. 91 to read off 
the formulas (3) we are really anticipating this limit process, the 
difference appears unessential.

The other formulas (3) may be obtained by a limit process 
similar to the one just used, or they may be obtained more 
quickly by combining (5) and (2). For, from (2) and (5), we 
have

whence

i=(s)’+(^)2=(iy+-a*=
cos 

as
By dividing (5) by (6) we have

tan^ = ^.
dr

(6)

(7)

In using (7) it may be convenient to write it in the form

tan xp — (8)

dë
since the equation of the curve is usually given in the form 

r = and — is found by direct differentiation.

Example. Find the angle which the curve r — a sin 4 0 makes with 
the radius vector 0 = 30°.

Here = 4 a cos 4 6. Therefore, from (8),
, a sin 4 0tan y = a =4 a cos 4 v

- 7 tan 4 0.4
Substituting 0 — 30°, we have

tan xp = j tan 120° = — |v/3 = — .4330.
Therefor^ xp = 156° 35'.
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EXERCISES

1. Find the angle which the curve r = a sin 3 9 makes with the 
initial line.

2. Find the angle which the curve r = 3 + 2 cos 9 makes with 
the radius vector 9 = 60°.

3. Find the angles which the curve r = a(l + sin 2 0) makes with 
the initial line and with the line 9 — 45°. g

4. Find the angle which the curve r = a cos2 - makes with the 
initial line at each point where it intersects that line.

5. Find the angle at which the curve r — 2(1 — 2 sin 9) crosses 
the initial line at each point of intersection.

0 06. Show that for the curve r = a sin3 -, = - •o o
7. Show that the angle between the cardioid r = a(l — cos 0) and 

any radius vector is always half the angle between the radius vector 
and the initial line.

8. Show that the angle between the lemniscate r2 = 2 a2 cos 2 9 
and any radius vector is always plus twice the angle between the 
radius vector and the initial line.

63. Area. Let O (Fig. 93) be the pole ând OM the initial line 
of a system of polar coordinates (r, 9), OPi and OP2 two fixed 
radius vectors for which 
9 = 0i, and 9=92 respec­
tively, and P1P2 any curve 
for which the equation is 
r — /(O')- Required the area 
P1OP2.

To construct the differ­
ential of area, dA, we divide 
the angle P1OP2 into parts, 
d6. Let OP and OQ be
any two consecutive radius — _________ _
vectors; then the angle 0 p
POQ = dO. With O as a cen­
ter and OP as a radius, wę draw the arc of a circle, intersecting 
OQ at R. The area of the sector POR = |(OP)2 dO = J r2 dO.
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It is obvious that the required area is the limit of the sum of 
the sectors as their number is indefinitely increased. Therefore 
we have dA = jr2d0 

and

This result is unchanged if Pi coincides with O, but in that 
case OPi must be tangent to the curve. So also P2 may coincide 
with O.

Example. Find the area of one loop of the curve r = a sin 3 9 
(Fig. 84, § 60).

As the loop is contained between the two tangents 9 = 0 and
9 = ^> the required area is given by the equation Ó 7T

A = f31 a2 sin2 3 6 d6 Jo IT
_ T 0 _ sin 6 01 §
— 2 L2 12 Jo [By (3), § 53]

EXERCISES

1. Find the total area of the lemniscate r2 = 2 a2 cos 2 9.
2. Find the area of one loop of the curve r = a sin n9.
3. Find the total area of the cardioid r = a(l + cos 0).
4. Find the total area bounded by the curve r = 5 + 3 cos 0.
5. Find the total area bounded by the curve r = 3 + 2 sin 0.
6. Find the area bounded by the curves r = a cos 3 0 and r = a.
7. Find the total area bounded by the curve r = 3 + 2 cos 4 0.
8. Find the area bounded by the curves r = 6 + 4 cos 0 and 

r = 4 cos 0.
9. Find the area which is inside the curve r = 4 + 2 cos 0 and 

outside the circle r = 4.
10. Find the area of each of the two portions into which the circle 

r = 4 cos 0 is divided by the straight line r ’= 3 sec 0.
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GENERAL EXERCISES

Plot the following curves :

1. r2 = a2 sin -•

2. r2 = a2 sin 4 9.
3. r = a(l — sin 0).
4. r = a(l + cos 2 0).
5. r = 2 + 4 cos 9.
6. r — 1 — 2 sin 2 9.
7. r = 1-2 9.
8. r2 = 4 sec 2 9.

9. r2 = a2 tan 9.

10. r2 = a2 tan

11. r = 1 4- sin -•

12. r = 2 + sin |-

13. r = 1 + sin •

14. r2 = a2(l + 2 cos 2 0).

Plot in one diagram each of the following pairs of curves, and 
find their points of intersection :

15. r = 2 + sin 9, r = 2 + cos 9.
16. r — a cos 9, r = a sin 2 9.
17. r = a sin 9, r2 = a2 cos 2 9.
18. r2 = 3 cos 2 9, r2 = 2 cos2 9.
19. r = a sin 9, r2 = a2 sin 2 9.
20. r = a(l + sin 2 0), r2 = 4 a2 sin 2 9.

Transform the following equations to polar coordinates :

22. yi + y2x2 — a2x2 = 0.

Transform the following equations to rectangular coordinates :
23. r2 = 2 a2 sin 2 9.
24. r = a(l + cos 0).
25. Show that the curves r2 = a2 sin 2 0 and r2 = a2 cos 2 0 inter­

sect at right angles.
26. Find the angle of intersection of the curves r = 2 sin 0 and 

r2 = 4 sin 2 0.
27. Find the angle at which the curve r = a(l + 2 sin 0) cuts the 

radius vector perpendicular to OM at each point at which it inter­
sects it.
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28. Find the angle at which the curve r = 2 + cos 2 9 meets the 
circle r = 2.

29. Find the angle of intersection of the curves r = a cos 6 and 
r ~ a sin 2 9.

30. Find the polar equation of the curve which intersects all the 
radius vectors at the same angle.

31. Find the polar equation of a curve, passing through the point 
(2, 0), such that the tangent of the angle between the radius vector 
and the curve is equal to the square of the radius vector.

32. Find the polar equation of a curve, passing through the 
point (1, 2), such that the tangent of the angle between the radius 
vector and the curve is equal to minus the reciprocal of the radius 
vector.

33. Find the total area bounded by the curve r2 = a2 sin 9.
34. Find the area bounded by the radius vectors 6 = 0 and 

6 = ^ and a part of the first turn of the logarithmic spiral r = e“9.

35. Find the total area bounded by the curve r2 = a2 sin 3 6.
36. Find the area which is inside the circle r = a and outside the 

cardioid r = a(l + cos 6).



CHAPTER VIII
SERIES

64. Power series. The expression
do + dix + «2æ2 + a3x3 + cuz4 + • • -, (1)

where ao, cn, «2, • • • are constants, is called a power series in x. 
The terms of the series may be unlimited in number, in which 
case we have an infinite series, or the series may terminate after 
a finite number of terms, in which case it reduces to a polynomial.

If the series (1) is an infinite series, it is said to converge for a 
definite value of x when the sum of the first n terms approaches 
a limit as n increases indefinitely.

Infinite series may arise through the use of elementary opera­
tions. Thus, if we divide 1 by 1 — x in the ordinary manner, we ob­
tain the quotient | x _|_ x2 _|_ x3 .
and we may write

1 - = 1 + x + x2 + x3 + x4 + • • •. (2)
1 — X

Similarly, if we extract the square root of 1 + x by the rule 
taught in elementary algebra, arranging the work as follows,

1 + x
1

the operation may be continued indefinitely. We may write
VÏT5 = 1 + |-f + ---. (3)

200
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The results (2) and (3) are useful only for values of x for 
which the series in each case converges. When that happens 
the more terms we take of the series, the more nearly is their 
sum equal to the function on the left of the equation, and in 
that sense the function is equal to the series. For example, the 
series (2) is a geometric progression which is known to converge 
when x is a positive or negative number numerically less than 1. 
If we place x = | in (2), we have

ł=1 + ł + ł + W + A^—'»
which is true in the sense that the limit of the sum of the terms 
on the right is f. If, however, we place x — 3 in (2), we have

_ 1 = 1 + 3 + 9 + 27 + ..-,
which is false. A reason for this difference may be seen by 
considering the remainder in the division which produced (2) 
but which is neglected in writing the series. This remainder is 
xn after n terms of the quotient have been obtained. Therefore 
we have exactly

-A- — 1 + Z + Z2 + • • • + Zn_1 + —^—_• (4)
1 — X 1 — X

If x is numerically less than 1, the last term in (4) becomes 
smaller and smaller as n increases, while if x is numerically 
greater than 1, that term becomes larger. Hence in the former 
case it may be neglected, but not in the latter case.

The calculus offers a general method for finding such series 
as those obtained by the special methods which led to (2) and 
(3). This method will be given in the following section.

65. Maclaurin series. We shall assume that a function can 
usually be expressed by a power series which is valid for appro­
priate values of x, and that the derivative of the function may 
be found by differentiating the series term by term. The proof 
of these assumptions lies outside the scope of this book.

If we wish to find the power series for a given function, we 
may follow a procedure which we shall now outline in general 
and afterward carry out in detail in the illustrative examples. 
We begin by equating the function, whatever it is, to a series of 
the form A + Bx + Cx2 + Dxs + Ex4 + Fxs + (1) 
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where the coefficients A, B, C, • • • are unknown constants which 
are to be determined. They are called undetermined coefficients. 
We next differentiate both terms of the equation thus formed, 
then differentiate that result, and so on, forming as many new 
equations as seems desirable.

We have then a set of equations which are to be true for all 
values of x which make the series convergent. We may con­
sequently place x = 0 in each equation, and find that we may 
usually determine A, B, C, ■ ■ These values substituted in 
(1) give the required series. In a few elementary cases (see 
Example 3) the values of A, B, C, ■ become infinite. This 
means the series (1) cannot be found. For a full discussion of 
this matter the student must consult more advanced texts.

Example 1. Expand sin x into a power series in x. 
Place sin x = A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + ■ ■ ■.
Differentiating successively, we have :

cos x=B + 2Cx + 3 Dx2 + 4 Ex3 +
— sin x = 2 C + 6 Dx + 12 Ex2 +

6 D + 24 Ex +
24 E +

— COS X = 
sin x =
cos x =

5 Fx4 +
20 Fx3 +
60 Fx2 +

120 Fx +
120 F +

Placing x = 0 in each of these equations, we have
0 = A, 1 = B, 0 = 2 C, -1 = 6 D, 0 = 24 E, 1 = 120 F, 

whence, A = 0, B = 1, C = 0, D = — ^, E = 0, F =
Substituting these values in the first series, we have

sinx=x__+__+....*

*The last sign in the series indicates that more terms are to be added algebra­
ically. It is not necessarily the sign of the following term.

We observe that there is no even power of x in the series as far 
as determined ; this is because the left-hand sides of the equations 
from which A, C, and E are determined are either sin x or — sin x 
and hence become zero when x = 0. Moreover, the coefficients of 
the odd powers of x may be written so as to indicate how they are 
formed. Take, for example, the equation from which D is deter­
mined ; the term 6 D in this equation is the result of differentiating 
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Dx3 three times in succession. But the first differentiation gives 
3 Dx2, the second differentiation gives 3 D(2 x) = 3 • 2 Dx, and the 
third differentiation gives 3 ■ 2 • 1 D = 3 ! D since the product 3-2-1 
is denoted by 3 ! (§ 55). Using 3 ! D in place of 6 D, we find /) = — —•

1 ' In like manner we may prove F = — •
If the expansion is-câmed out to five terms we should now expect 

the series to be æ3 ^5 ^.7 ^.9
sinz = x- 31 + rj-yj + ^+ ---,

and this is found to be the case when the work is completed.

Example 2. Expand (a + x)n, where a and n are any constants, 
in a power series in x.

We place (a + x)n = A + Bx + Cx2 4- Dx3 4- Exi + ■ •
Differentiating successively, we have

n(a + x)n~1=B + 2 Cx+ 3Dx2 + 4Ex34--•
n(n-l)(a + ï)"-2= 2 ! C 4- 3 • 2 Dx 4- 4-3Ex24----,

n(n —l)(n-2)(a4ï)”’3= 3 ! D + 4-3-2 Ex +■-\
n(n—l)(n—2)(n—3)(a4-x)"_4= 41E 4-• •-.

Placing x = 0 in each of these equations and solving for the unde­
termined coefficients, we have

A = an, B=nan~1, C = n a"~2,
_ n(n-l)(n-2) 3

3! ’
F _ n(n~ l)(n-2)(n-3) 4

4 !
Hence the required series is

(a 4- x)” = a" 4- na"_Ix 4- an~2x2 4- —— an~3x3n —

This series is exactly what we should have found if we had ex­
panded the expression (a 4- x)n by the rules of the binomial theorem 
learned in elementary algebra for a positive integral exponent. As 
a matter of fact, we have just proved that the binomial theorem 
holds for any exponent, positive or negative, fractional or integral. 
If n is a positive integer, the series will be a polynomial of n 4- 1 
terms ; in all other cases the series will be infinite.
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Example 3. Expand In (1 + x) in a power series in x.
The reason we take In (1 + x) rather than In x, which might 

seem to be more natural, is that In x is an example of a function 
which cannot be expanded into a power series in x, since we should 
find the coefficients infinite if we tried to use the method of the 
previous examples.

Accordingly we place
In (1 + x) = A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + • • -, 

and by successive differentiation find

—— = (1 + x)-1 = B + 2 Cx + 3 Dx2 + 4 Ex3 + 1 + x
— l(l + x)-2 = 2C + 6Dx +12Ex2 +

5 Fx4 + ■
20 Fx3 + •

2(l + z)-3 = 
-6(l + z)-4 = 

24(l + x)-s =

6 D +24 Ex
24 E

+ 60 Fx2 + •
+ 120 Fx +•

120 F + •
Placing x = 0 in these equations and solving, we find
A = In 1 = 0, B = l, C = -|, D = |, E=-l, F =
Hence the required series is

In (1 + x) = x - j j

The work of finding the coefficients may be abridged by stopping 
the differentiation with the second equation, for we know, by algebra, 
that i

T-----  = 1 — X + X2 — X3 + X4 + ■ • •.1 + X
Substituting this value in the second equation, we have

1 - x + x2 - x3 + x4 + • • • = B + 2 Cx + 3 Dx2 + 4 Ex3 + 5 Fx4 + • • -,
Comparing coefficients of like powers of x, we have

B = 1, 2C = -1, 3 0 = 1, 4E = -1, 5f=l; 
whence we obtain the values of B, C, D, E, and F previously deter­
mined.

This method of abridgment can generally be used to advantage 
when the left-hand side of the first derived equation can be readily 
expanded into a power series by division or by the binomial theorem.

It is possible to embody the results of this discussion in a 
general formula. For that purpose let us write in place of any 
one of the specific functions used in the illustrative examples 
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the general expression for a function fix). Let us denote the 
successive derivatives of this function by /'(x), /"(x), /'"(x), • • •• 

Placing
fix) = A + Bxf-Cx2 + Dx3 + Ex4-]------ ,

and differentiating, we have
fix) = B 4-2 Cx+ 3 Dx2 4-
f'ix) = 2! C + 3 • 2 Dx 4-
/"'(X) =
/iv(x) =

Denoting by/(0),/'(0),/"(0),/'"(0),/iv(0), • • • the values of 
f(x), /'(x), fx), fix), fvix), • ■ ■ when x = 0, and solving, we 
find
A=/<0), «=/-(»), c = « B = « B =

4 Ex3 4------,
4 • 3 Ex2 + • • •,

3! D + 4 • 3 • 2 Ex 4------,
41E 4------•

Hence the required general series is

/(x) = 7(0) +/'(0) x + ™ x2 + ® x4 + ■ •

This is called the Maclaurin series. The illustrative examples 
are special forms of this series.

EXERCISES

Expand each of the following functions into a Maclaurin series, 
obtaining the first four nonvanishing terms :

1. e*.  5. tan-1 x. ^8. cos2 x.
/2. cos x.
3. tan x.

Sy 4. sin-1 x.

^6. sin (^ + x) •

In (2 + x).

9. iex + e_x)2.
10. In (1 + sin x).
11. Vl + X2.

66. Taylor series. Instead of expanding a function into a 
series of powers of x, as is done in the previous section, we may 
expand into powers of the binomial x — a, where a is a constant 
chosen at pleasure. The procedure is analogous to that of the 
previous section.
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We equate the given function to
A + B(x — a) + C(x — a)2 + D(x — a)3 + • • •

and differentiate successively. To determine the coefficients, we 
now place x = a in order to make x — a = 0. The method is 
illustrated in the following examples :

Example 1. Expand sin x in powers of x — •
We place

sin x = A + B (x - ÿ + C (x - J) + D (x - 3!+••*.
Differentiating successively, we have

cosx = B + 2c(x-■f) + 8O|[* “ f)T *>

— sin x = 2C + 60(x- f)+"

— cos x = 6 D
Placing x = ~, we have o

|v/3 = A, 1=B, V3 =: 2 C 1
» ~ 2 = 6 D,

whence A = J V3,
Therefore

B = %, c = -f V3, D = 1 
12*

sinx = |>/3 + j(H)- { V3^x - 7f\2
3/ ’- tV (x

-?)■+

Example 2. Expand In x in powers of x — 3.
We place

In x = A + B(x - 3) + C(x - 3)2 + D(x - 3)3 + • • •.
Differentiating, we have

- = B + 2 C(x - 3) + 3 D(x - 3)2 + • • -, x
-4 = 2C +6D(x-3)

4= + ...X3

Placing x = 3 and solving the resulting equations, we have
A = In 3, B = C = - D =

Hence
In x = In 3 + |(x - 3) - ^(x - 3)2 + /T(x - 3)3 + • • •.
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It is possible to embody the results of this discussion in a 
general formula. Let /(x) be any function which it is desired 
to expand in powers of x — a. Placing

/(x) = A + B(x — a) + C(x — a)2 + D(x — a)3 + • • •
and differentiating, we have

/'(x) = B + 2 C(x - a) + 3 D(x - a)2 + • • -,
/"(x)= 2!C + 3.2 £>(x — a) ------ ,
/"'(x) = 3! D

We now place x — a in these equations, and denote by /(a), 
/'(«), /"(«), etc. the values of /(x), /'(x), /"(x), etc. when x = a. 
Solving for A, B, C, etc., we have

A =/(«), B=/'(a), C=™, ••••

Hence the required general series is

J(x) = /(a) +/'(«)(x — a) + (x - a)2 + (x - a)3 + • • •.

This is called the Taylor series.

EXERCISES

Find the first four terms in the expansion of each of the following 
functions in a Taylor series, using the value of a given in each case:

4. cos x, a = —•4
5. e21, a = 3.
6. tan-1 x, a = 1.

7. Vl + x2,a=l.
8. tan x, a = — •o
9. In (sin x), a = ~^‘

67. Computation by series. One important use of a series is in 
the computation of the value of a function for a given value of 
x. For this purpose it is necessary that the series should con­
verge and it is also desirable that the series should converge 
rapidly. By this we mean that it should be possible to compute 
the value of the function by using only a few terms of the series. 
This consideration enables us to decide whether we should use a 
Maclaurin or a Taylor series.
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If x is numerically less than unity, the powers x2, x3, etc. are 
successively smaller and smaller. Hence in this case the 
Maclaurin series is the one to use, and the smaller the value of 
x the fewer terms of the series will be necessary to compute 
the value of the function to a required degree of accuracy.

If x is numerically greater than unity, the powers of x are 
successively larger and larger, and in this case a Maclaurin series 
is not convenient. Hence we should use a Taylor series, first 
choosing a value of a such that x — a is numerically less than 
unity. Then the powers (x — a)2, (x — a)3,... are successively 
smaller and smaller, and the nearer x is to a the fewer terms of 
the series will be necessary to compute the value of the function 
to a required degree of accuracy. We express this by saying 
that the Taylor series is useful in the neighborhood of x — a, 
while the Maclaurin series is useful in the neighborhood of 
x — 0. In choosing a it is necessary that we know the values of 
the function and its derivatives for x — a.

Example 1. Find the value of sin 10° to four decimal places.
It is necessary to express the angle in circular measure, since all 

formulas of the calculus which involve the trigonometric functions 
are based on that hypothesis. Now 10° = radians = radians 

lov lo

= .17453 radians. Hence we place x = = .17453, where we take
loO

five significant figures in order to insure accuracy in the fourth 
significant figure of the result,*  and substitute in the series of Ex­
ample 1, § 65.

* This is not a general rule. In other cases the student may need to carry two 
or even three more significant figures in the calculation than are needed in the result.

. . 7T (.17453)3 ,We have sin — = .17453 — 2-----—— + ■ ■ •
lo b

= .17453 - .00089 = .17364.
Hence to four decimal places sin 10° = .1736.
We have used only two terms of the series, since a rough calcu­

lation, which may be made with x = .2, shows that the third term 
of the series will not affect the fourth decimal place.

Example 2. Find the value of sin 61° to four decimal places.
61 7TIn radians the angle 61° is = 1.0647. Since this number is 
lou

greater than unity, we will not use a Maclaurin series. We shall 
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use a Taylor series, choosing for a the circular measure of an angle 
near 61° whose sine and cosine we know. This angle is evidently 
60° = radians. We take from Example 1, § 66, the expansion of 
sin x in the neighborhood of — > namely,Ó

If we place x = 61 7T
180 ’ we have x — 3- = -33 = .01745. Therefore

o lol)

sin = >V§ + >(.01745) - >V3(.O1745)2 + • • •
= .8746 • •

Another method of solving this problem is to expand sin (w + x 
in a Maclaurin series. We find

sin + x) = > + > x — J V3 x2 + • •

Placing x = = .01745 in this equation, we have
lol)

sin = >V3 + >(.01745) - >V3(.O1745)2 + • • • 
= .8746

as before.
EXERCISES

1. Compute sin 3° to four decimal places.
2. Compute cos 12° to four decimal places.
3. Compute cos 62° to four decimal places.
4. Compute sin 44° to four decimal places.
5. Compute cos 29° to four decimal places.
6. Compute e*  to four decimal places.
7. Compute e11 to four decimal places.
8. Compute In (1.2) to four decimal places.
9. Compute the value of it to two decimal places, from the 

expansion of sin-1 x (Ex. 4, § 65) and the relationship sin-1 | =

10. Compute to four decimal places by the binomial theorem, 
placing a = 8 and x = 1.
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GENERAL EXERCISES

Expand each of the following functions into a Maclaurin series. 
If the given function contains only xn, place xn = y, expand in 
powers of y, and replace y by x”.

5. esinx.
6. etan*.

1
Vl + X2

11. Obtain the expansion of tan x by dividing the series for sin x 
by that for cos x.

12. Obtain the expansion of sec x by dividing 1 by the series for cosx.
13. Expand ex cos x into a Maclaurin series, and verify by mul­

tiplying the series for ex by that for cos x.
14. Find Ve to four decimal places.
15. Compute sin 35° to four decimal places.
16. Compute tan 5° to four decimal places.
17. Compute In sec 46° to four decimal places.
18. Using the series in Ex. 1, compute In f to five decimal places.
19. Using the series found in Ex. 1, compute In 2 to five decimal 

places, and thence, by aid of the result of Ex. 18, find In 3 to four 
decimal places.

20. Using the series found in Ex. 1, compute In | to five decimal 
places, and thence, by aid of the first result of Ex. 19, find In 5 to 
four decimal places.

21. Using the series found in Ex. 1, compute In | to four decimal 
places, and thence, by aid of the result of Ex. 19, find In 7 to three 
decimal places.

22. Compute the value of ir to four decimal places, from the
expansion of tan-1 x and the relation tan-1 — 2 tan-1 i = - •

7 3 4
23. Compute V15 to four decimal places by the binomial theorem.
24. Compute V28 to four decimal places by the binomial theorem.
25. Obtain the integral f Sln - dx in the form of a series

• •'O Xexpansion.
26. Obtain the integral e-®2 dx in the form of a series expansion.

C x (It27. Obtain the integral I - in the form of a series expan­
sion. (x < 1.) 0 Vl-x«
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CHAPTER IX
PARTIAL DIFFERENTIATION

68. Partial derivatives. A quantity is a function of two vari­
ables x and y when the values of x and y determine the quantity. 
Such a function is represented by the symbol f(x, y). For 
example, the volume V of a right circular cylinder is a function 
of its radius r and its altitude h, and in this case

V = f(r, h) — irr2h.
Similarly, we may have a function of three or more variables 
represented by the symbols/(x, y, z), fix, y, z, u), etc.

Consider now /(x, y), where x and y are independent varia­
bles so that the value of x depends in no way upon the value 
of y nor does the value of y depend upon that of x. Then we 
may change x without changing y, and the change in x causes 
a change in f. The limit of the ratio of these changes is the 
derivative of f with respect to x when y is constant, and may 
be represented by the symbol

Similarly, the derivative of f with respect to y when x is 
. These derivatives 
z

are called partial derivatives of / with respect to x and y respec­
tively. The symbol used indicates by the letter outside the 
parenthesis the variable held constant in the differentiation. 
When no ambiguity can arise as to this variable, the partial de­

rivatives are represented by the symbols and thus:

g/ = (df\ _ Lim /(*  + Ax, y) - fix, y) _
dx \dx/v Ax
g/ = /df_ \ = Lim /(x, # + Aÿ) ~/(æ, y), 
dy \dy)x ab_o &y

So, in general, if we have a function of any number of vari- 
211

constant, is represented by the symbol
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ables /(x, y,..z), we may have a partial derivative with 
respect to each of the variables. These derivatives are expressed 
by the symbols or sometimes by fx(x, y,..z),

ox oy oz
fy(.X, y> • • •> Z)> • • •> J/, • • •» Z)*

To compute these derivatives we have to apply the formulas 
for the derivative of a function of one variable, regarding, as 
constant all the variables except the one with respect to which 
we differentiate.

• clExample 1. Consider a perfect gas obeying the law r = —• We 
P 

may change the temperature while keeping the pressure unchanged. 
If Af and Ar are corresponding increments of t and v, then

_ c(t + Af) _ ri _ c Af
_ p p~ p

8v _ c
St p

Or we may change the pressure while keeping the temperature 
unchanged. If Ap and Ar are corresponding increments of p and r, 
then _ d _Çt__ d Ap

■ * p2 + p Ap

and

and
p + Ap p 

ëv _ et 
dp p2

Example 2. f = x3 — 3 x2y + y3, 
fx = 3x2-6xy, 

& = - 3 x2 + 3 y2.
dy

Example 3. f = sin (x2 + y2), 

0*  = 2 z cos (x2 + y2), 

= 2 y cos (x2 + y2).

Example 4. x = r cos 0, y = r sin 9.
We may here regard x and y as explicit functions of r and 9 and 

differentiate accordingly with the following results :
dx a dx ■ ow- = cos 0, — — r sin 0,dr d0

Tp = sin 0, = r cos 9.or 00
(1)

We may also regard r and 9 as functions of x and y, and find the
d 3dpartial derivatives — , —, and 3— These derivatives may be

found in two ways. ëx dx
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1. Solving for r and 8 in terms of x and y, we have 

r = Vx2 + y2, 6 - tan-1 ->xwhence we find
gr _
gz -\/x2 4- y2
80___ y _ _ sin 0 80 _ x _ cos 0 
8x~ x2 + y2 r ’ 8y x2 + y2 r

x a= cos 0, — = . - sin 0,
8y y/x2 4- y2

80 x
(2)

2. We may differentiate the equations x = r cos 0, y = r sin 0 as 
they stand, regarding r and 0 as implicit functions of x and y. 
Differentiating with respect to x, we have

1 a dr • a dO1 = cos 0 r---- r sin 0 tv’8x 8x
n • a 8r a 800 = sin 0 7- 4- r cos 0 v->8x 8x

since ^v = 1 and the derivative of y with respect to x is zero since y 
dx

is held constant in the differentiation. Solving these equations for 
gr j 80 f. ,
tv and tv’ we find
dx 8x 8r _ a 80 _ sin 0

Q — COS C7, — •ox ox r
Differentiating with respect to y, we have

n a dr ■ a 800 = cos Or---- r sin 0 x-»By 8y
i • a dr , a 801 = sin 0 r- 4- r cos 0 •8y 8y

t r ( 0Solving these equations for and ~ we find

80 _ cos 0
8y~ r

These results agree with (2).
It may be inferred that if we have two equations containing four 

variables, any two may be taken as the independent variables and 
the remaining two as the dependent variables, and that we can find 
the corresponding partial derivatives even if we cannot express the 
dependent variables as explicit functions of the independent variables.

It is to be emphasized that tv in (1) is not the reciprocal of
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in (2). In fact, in (1) g = and in (2) g= (^5 and be­

cause the variable held constant is different in the two cases, there 
is no reason that one should be the reciprocal of the other. It 
happens in this case that the two are equal, but this is not a general 

3x 80rule. In fact in (1) and 3- in (2) are neither equal nor reciprocal.80 ox

EXERCISES

5. z = In

Find tt and in each of the following cases : ox oy
1. z = x5 + x3y2 + xyi — y6.

2. z= xy-■■
y2 — x2

3.0 = tan-i^-
1 - xy

4. z = sin_1z?/.

\y ay
6. z = cos —• X — ÿ
7. z = ei sin -•x
8. z = In (x + y/x2 + y2).

9. If z = sin ——-> prove x^- + y = 0.
x + y ox oy

10. If z = y/x2 + y2 ez> prove x + ÿ = z.ox oy

69. Higher partial derivatives. The partial derivatives of 
/(x, y) are themselves functions of x and y which may have 
partial derivatives, called the second partial derivatives of/(x, y).

But it may be 

shown * that the order of differentiation with respect to x and y 
is immaterial when the functions and their derivatives fulfill 
the ordinary conditions as to continuity, f so that the second

* See Woods’s "Advanced Calculus,” p. 68. Ginn and Company.
t A function of z is said to be continuous if the increment of the function 

approaches zero when the increment of x approaches zero. Then
Lim [f(x + Az) — /(z)] = 0 

Ax-»0
or Lim f(x + Az) = /(z),

Ax-»0
whence /(z + Az) = /(z) + e
where e->0 as Az->0.

A function of two or more variables is continuous if the increment of the function 
approaches zero as the increments of the variables approach zero in any manner 
whatever.
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partial derivatives are three in number, expressed by the
symbols a/a/\ s2/ 

8x\8x) 8x2 Jxx’

a/an_ g2/
8x\8y) 8y\8x) 8x8y

8_/8±\8f£=f
8y\8y} dy2

Similarly, the third partial derivatives of j(x, y) are four in 
number; namely,

_aav
8x\8x2) 8x3’

g /a2/\_; d / d2f\ s2 (8f\ ay 
8y\8x2) 8x\8x8y) 8x2\8yf 8x28y’

8J8ff\ = 8 / 82f\ _ 8f_/8±\ _ 83f
8x\8y2/ 8y\8x8y) 8y2\8x) 8x8y2’

8_(8ff\^8fj_,
8y\8y2) 8y3

f)p+qf
So, in general, " signifies the result of differentiating 

dxPoy9
f(x, y) p times with respect to x, and q times with respect to 
y, the order of differentiating being immaterial.

"ł" Q r fIn like manner, 7?-——signifies the result of differentiating 
8xp8y“8zr

f(x, y, z) p times with respect to x, q times with respect to y, 
and r times with respect to z, in any order.

EXERCISES

1. If z = (x2 + y2) ctn-1-> findy dxdy

2. If z = ex cos (y — x), find
fix2
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Verify — (—) = — (—) in each of the following cases : 
ox wy' oy wx'

4. z = x2y2 + 2 exy. 6. z = x sin-1--" x
7. z = —^=

y/x2 — y2
b.z = x2 + y2-

x — y

8. If z = tan-1-, prove = 0.x ox2 oy2
9. If z = In (a2x2 + &2ÿ2), prove b2 + a2 = 0.

10. If V = rm sin n<j>, prove n2r + m(m + 1) = 0.or2 o<p2

(2)

(3)

70. Total differential. In § 68 we considered the change in 
f(x, y) due to changing x alone, y being kept constant, and found 
the partial derivative In like manner we held x constant 

and changed y alone and found the partial derivative We 

now wish to consider the change in f due to changing both x and 
y at the same time. Accordingly we give x an increment Az and y 
an increment Ay and denote the corresponding increment of/by 
A/, where A/ = /(x + Ax, y + Ay) -f(x, y). (1)
The computation of A/ for given values of x, y, Ax, and Ay is 
a question of arithmetic or algebra.

For example, let j _ x2 _|_ xy y2,

and let Xi = 1 and yx = 2.
Then /1 = (l)2 + (l)(2) + (2)2 = 7.

Now let Ax = .1 and Ay = .2.
Then x2 — 1.1, y2 = 2.2
and /2= (1.1)2+(1.1)(2.2) +(2.2)2 = 8.47; (4)
whence Af = f2—fi = 1.47. (5)

More generally, we may let the first value of / be
fi = x2 + xy + y2. (6)

Adding increments Ax and Ay to x and y respectively, we have 
whence (x +Ax)2+(x + Ax)(y + Ay) + (y + Ay)2; (7)

A/=/2-/i = (2x+y)Ax+(x+2y)Ay+ (Ax)2+AxAy+ (Ay)2. (8)



TOTAL DIFFERENTIAL 217

An examination of (8) shows that A/ may be divided into two 
parts, namely, (2 x + y)Ax + (z + 2 y)Ay, (9)
which is of the first degree in Az and Ay, and

(Az)2 + AzAy + (Ay)2, (10)
which is of the second degree in Az and Ay.

Now if Az and Ay are small, as, for example,
Az = .001, Ay = .0002,

then (Az)2 = .000001, AzAy = .0000002, (Ay)2 = .00000004, 
all of which are much smaller than Az and Ay. Hence the ex­
pression in (10) is very small in comparison with the expression 
in (9), (at least, unless z and y are themselves very small). 
Hence we may call (9) the principal part of the increment (8).

Now the coefficient of Az in (8) is and the coefficient of or
Ay is — , so that (8) may be written

>J A/ = Az + Ay + (Az)2 + Az Ay + (Ay)2. (11)
ox oy

We shall now show that (11) is a special case of a general 
formula = + Ay + É1Az + e2Ay, (12)

ox oy
where / is any continuous function of z and y which can be 
differentiated and ei —» 0, e2 —> 0, as Az —» 0, Ay —■> 0.

To prove this, we note that (1) is unaltered by writing it in the 
form A/ = {/(z + Az, y + Ay) - fix, y + Ay)}

+ {/Cri y + Ay) - fix, y)}. (13)
Consider the expression in the first brace of (13). By § 68 and 
the definition of a limit,
fix + Az, y + Ay) -/(z, y + Ay) = [/x(z, y + Ay) + e'] Az, (14) 

where fxlx, y + Ay) is with y replaced by y + Ay, and 
df ■ ■e'—>0 as Az—>0. Now we assume that is continuous.*

Hence /x(z, y + Ay) = /x(z, y) + e", 
where e" —» 0 as Ay —» 0. Hence (14) gives

fix + Az, y + Ay) - fix, y + Ay) = [/x(z, y) + d] Az, (15) 
where ei = c' + e".

* See footnote, p. 214.
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Similarly, considering the quantity in the second brace in (13), 
we have y^ y _|_ _ y^ y^ = [y^ y^ + É2j ^y. (lg)

Substituting these two values in (13), we have
A/ = îx{x, y) Sx + fffx, y) Sy + «jSx + e2Sy, (17) 

which is the same as (12), which we set out to prove.
Now the value of Sf in (12) consists of two parts, one of 

which we call the principal part, namely,

fâx + gâ», (18)

which contains Sx and Sy multiplied by coefficients which do 
not become small with Sx and Sy, and the other part,

and

dSx + e2Sy, (19)
where the coefficients of Sx and Sy are quantities which ap­
proach zero as Sx and Sy approach zero. The quantity (19) 
is accordingly very small as compared with (18), at least in 
general. We now take the principal part of the increment Sf 
and call it the total differential of f and denote it by df.

We cannot define dx and dy in this way when x and y are the 
independent variables. We shall therefore, as in § 18, define the 
differential of an independent variable as equal to its increment. 
Hence we have dx = Sx, dy = Sy, (20)

df=&dx + &dy*  (21)
dx dy

It is evident that the total differential expresses approxi­
mately the change in the function caused by changes in both 
the independent variables.

Example.
is

The period of a simple pendulum with small oscillations

T = 2 7T

whence 4 t21

* This formula has been obtained on the hypothesis that x and y are independ­
ent values. It is also true when x and y are functions of other variables. See 
Woods’s "Advanced Calculus," p. 78.
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Let I = 100 cm. with a possible error of | mm. in measuring, and 
T = 2 sec. with a possible error of sec. in measuring.

Let it be required to find approximately the largest error made in 
computing g due to the errors in I and T. We have, by (20) and (21),

d( — ± /q-, dT — ±

We obtain the largest possible error in g by taking dl and dT of 
opposite signs, say dl = dT = —

Then dg = ~ + ir2= 1.05 tt2 = 10.36.

The ratio of error is

— = T - 2 = -0005 + .01 = .0105 = 1.05%.g I T

EXERCISES

1. Calculate the numerical difference between Az and dz when 
z = x3 + y3 — 3 x2y, x = 2, y = 3, Ax = dx= .01, and Ay = dy= .001.

2. The base AB of a triangle is 10 in. long, the side AC is 15 in. 
long, and the angle A is 45°. Calculate the change in the area caused 
by increasing AC by .1 in. and the angle A by 1°. Calculate also the 
differential of area corresponding to the same increments.

3. A right circular cone has an altitude of 10 ft., and the radius of 
its base is 4 ft. Find approximately the change in the volume of the 
cone caused by increasing the altitude by .1 in. and decreasing the 
radius of the base by | in.

4. The equal sides of an isosceles triangle are each 5 ft. long, and 
the base is 8 ft. long. Find approximately the greatest possible error 
in the computed area of the triangle caused by possible errors of 
.02 ft. in the length of each of the equal sides and .04 ft. in the length 
of the base.

5. If C is the strength of an electric current due to an electro­
motive force E along a circuit of resistance R, by Ohm’s law

c-f-
If an error of 1 per cent is made in measuring E, and an error of 
2 per cent in measuring R, find approximately the greatest possible 
percentage of error in computing C.
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6. The density D of a body is determined by the formula
W D = —-—> w - w

where W is the weight of the body in air and W the weight in water. 
If W = 240,000 gr. and W = 220,000 gr., find approximately the 
greatest possible error in D caused by an error of 4 gr. in W and an 
error of 8 gr. in W.

7. The velocity v, with which vibrations travel along a flexible 
string, is given by the formula

v =

where t is the tension of the string and m the mass of a unit length 
of it. Find approximately the greatest possible error in the compu­
tation of v if t is found to be 6,000,000 dynes and m to be .005 gr. 
per centimeter, the measurement of t being subject to a possible 
error of 1000 dynes and that of m to a possible error of .0005 gr.

8. An acute angle <b is determined from the formula d> = sin-1 -,
V 

where x is a side and y the hypotenuse of a right triangle. The 
lengths of x and y are, respectively, 5 ft. and 13 ft., with a possible 
error of 1 in. in the measurement of each. Find approximately the 
greatest possible error in the computed value of </>.

71. Exact differential. We have just seen (21) §70, that if 
f(x, y) is a function of x and y, we have

df = ÿ- dx + ÿ- dy. (1)
8x 8y

When the function f(x, y) is known, the partial derivatives 
and may be found. Let us denote them by M and N 

8x 8y 
respectively, so that

= M, %L = N, (2)
8x 8y

where M and N are certain functions of x and y. The second 
member of (1) is then of the form

Mdx + Ndy. (3)

Now expressions of the form (3) may arise in practice by 
other methods than by differentiation, or may be written down
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at pleasure, M and N being any two functions whatever. 
Hence it is important to know when (3) is the same as (1). 
We shall accordingly prove the following theorem :

The necessary and sufficient condition that an expression

Mdx + Ndy

shall be a total differential of some function f(x, y) is that M and 
N should satisfy the equation

dM = dN, f4)
dy dx

To prove that the condition is necessary, we assume that (3) 
is equal to the differential of some function ffx, y), that is, that 

df - M dx + Ndy, (5)
and shall prove that (4) necessarily follows.

We have, by (2),
M = n = — > 

dx dy

whence dy dy\dx) dx dx\dy/

But from § 69 these results are equal, and hence (4) must be 
true, as was to be proved.

To prove that the condition is sufficient, we assume that we 
have Mdx + Ndy with M and N such that (4) is true. We 
must then be able to find a function f(x, y) such that

^- = N. (6)
dx dy

If the first equation of (6) is to be true, we may integrate that 
equation, holding y constant. In place of the usual constant of 
integration we may have a function of y alone, which we will 
denote by </>(?/), since the derivative of such a function with 
respect to x would be zero. Hence we have

f(x, y)= I Mdx + <p(y). (7)
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But this value of /(z, y) must satisfy the second equation of 
(6), and, substituting in that equation, we have

or (8)

By hypothesis, the first member of (8) does not contain x. 
Hence if the second member should contain x, the equation 
would be absurd, and the work would stop.

The condition that the second member of (8) should not con­
tain x is that its derivative with respect to x should be zero. 
That is, we must have

which is the same as

gN dM 
dx dy

which is the same as 

which is a true equation according to the hypothesis, (4). Hence 
<{>(y) can be found from (8) and substituted in (7). The function 
f(x, y) has therefore been found.

Hence (4) is a sufficient condition to make any expression (3) 
a total differential. Since in this case (3) may be exactly found 
by differentiation, it is also called an exact differential.

Example. The expression (3 x2 + 6 xy)dx + (3 x2 + 3 y2')dy is an 
exact differential, since a

— (3 x2 + 6 xy) = 6 xay

and — (3 x2 + 3 y2) = 6 x,

and the results are equal.
The expression (x2 + 2 xy)dx + (y2 — x2)dy is not an exact differ­

ential, since a
(x2 + 2 xy) = 2 xdy

and — (y2 — x2) = — 2 x,
and the results are not equal.



RATE OF CHANGE 223

EXERCISES

Find which of these expressions are exact differentials :
1. (5 x4 — 3 x2y + 2 xy2)dx + (2 x2y — x3 4- 5 y^dy.
2. x(l — y)dx + y(l — x)dy.
3. (2 x — y + l)dx + (2 y — x — l)dy. 
4-(2/+3dz+(z+JK

5. y2 dx — (x2 + 2 xy)dy.
„ 1 + y2 j 1 + x2 j6. ---- j2- dx —  ------- y dy.x3 x
7. (y — x2 — l)dx — xdy.
8. dx + (x — y}dy.

(x + y)2dx + (x2 + 2 xy + 3 y2)dy. 
^£^ + ('-l + -Ą=W
Vx2 + y2 \ Vx2 + y2J
(y + xy2)dx - dy.
1 -x12. = e 
y

9.

10.

11.

: vdx — e * + dy. 
\y2 y)

72. Rate of change. If we differentiate any function f(x, y) 
with respect to x, the resulting partial derivative gives the 

OX 
rate of change of / with respect to x when x alone varies. In 
like manner, the partial derivative gives the rate of change 

dy .
of f with respect to y when y alone varies.

Now suppose that x and y are functions of a single variable t. 
Then f is a function of that single variable t, and we may wish 
to find v ’ To do this, we divide A/((12), § 70) by A/ and take 

at 
the limit as Af —> 0. The result is

df _ df dx . df dy 
dt dx dt dy dt ’

for, as Af —> 0, Ax —> 0 and Ay —» 0, and hence ei —» 0 and 
É2 —* 0.

Or we might have divided df ((21), § 70) by dt, thus finding 
(1) directly.

(1)
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If x and y are functions of more than one variable t, then f 
is a function of more variables than t, and hence the correspond­
ing derivative of f with respect to t is a partial derivative and is 
denoted by To find this derivative, we divide A/((12), § 70)

C/t
by Ai and take the limit as Ai —> 0. The result is

(2)df_dfdx.dfdy 
dt dx dt dy dt ’

the derivatives of x and y with respect to i being partial 
derivatives.

The partial derivative gives, as already noted, the rate of 
dx

change of / with respect to x when x alone varies ; that is, as 
we move from one point in the xy-plane to any second point 
in that plane in a direction parallel to OX. Hence we may 
regard as giving the rate of change of f in a direction parallel- r
to OX. In like manner, gives the rate of change of f in the 

dy
xy-plane in a direction parallel to OY. Formula (1) now 
enables us to find the rate of change of f in any direction in the 
xy-plane.

Let P(x, y) (Fig. 94) be any 
point in the plane, and Q(x + Ax, 
y + Ay) be any second point in 
the plane. Let the value of/(x, y) 
at P be denoted by f and the value 
at Q be denoted by f + A/. Divide 
A/ by As, the length of the arc PQ 
of a curve drawn through P and 
Q, and take the limit of as

As
As —> 0. This7 limit will be denoted

the rate of change of f in the direction of the tangent line to the 
curve PQ at the point P in exactly the same way that and 
df Sx
~ measure the rates of change of f in directions parallel to OX 
dy 
and OY respectively.

by 4^ and will measure
as



RATE OF CHANGE 225

But, by (1), df_ Sf_dx _^Sf_dy. 
ds Sx ds Sy ds (3)

and if the tangent line makes an angle with OX, we have,
by § 39,

= cos </> and = sin </>, 
ds ds

and hence (3) becomes
= & cos <j> + sin 0, (4)

ds Sx Sy
and gives the rate of change of f in a direction making an 
angle </> with OX.

We may visualize (4) by thinking of the profile map of a 
country built up on the xj/-plane, with f as the height of the 
country above sea level. Then gives the rate of change of 

the height of the country as one moves from any point in a 
direction whose projection on the xy-plane is parallel to OX, 
that is, gives the slope or the grade of a road through that 
point in that direction. In like manner, gives the grade of 

a road whose projection is parallel to OY, and (4) gives the 
grade of a road whose projection makes an angle 0 with OX.

In particular, if a road is such that at all points of it ~ = 0, 
ds

the road is level, that is, all points of it are at the same height 
above sea level ; and if at any point, </> is so taken as to make 

have its greatest value, the corresponding road is the steepest 
ds
road through the point. By following on the z?/-plane from 
point to point the direction in which = 0 we may construct 
"contour lines” often seen on maps. s

But f need not necessarily be height. It may have other 
physical meanings, such as the electrical potential at P(x, y), 
or the temperature at that point, and the profile map may be 
considered a graphical representation of the function.

Example 1. If the radius of a right circular cylinder is increasing 
at the rate of 2 in. per second, and the altitude is increasing at the 
rate of 3 in. per second, how fast is the volume increasing when the 
altitude is 15 in. and the radius 5 in. ?
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Let V be the volume, r the radius, and h the altitude. Then
V = irr2h.

r m dV _ dV dr . dV_ dh
y 1 ’’ dt dr dt + dh dt

o , dr , , dh= 2 irrh — + 7rr2-r--dt dt
By hypothesis, ^ = 2, § = 3, r = 5, h = 15. Therefore

at dt dt
— 375 tt cu. in. per second.

The same result may be obtained without partial differentiation 
by expressing V directly in terms of t. For, by hypothesis, 
r = 5 + 2 t, h = 15 + 3 t, if we choose t = 0 when r = 5 and h = 15. 
Therefore v = (375 + 375 t + 120 t2 + 12 i3)ir ; 
whence Ç = (375 + 240 t + 36 <2)tf.

When t = 0, = 375 ir cu. in. per second, as before.

Example 2. The temperature u at a point in the zy-plane is given
by the formula u = In Vx2 + y2. (1)

The rate of change of temperature in a direction parallel to 
0X ls du= x .

dx x2 + y2’ ' '
the rate of change of temperature in a direction parallel to OF is

du _ y .
dy x2 + y2 ’ ' '

and the rate of change of temperature in a direction making an angle 
d> with OX is, by (4) above,

du _x cos + y sin <f> ...
ds x2 + y2 '

duIf ^- = 0 at all points of any curve, then u is constant on that 
curve, and the temperature is the same at all points of that curve. 
Such a curve is called an isothermal line.

Placing — = 0, we findds
tan </> = — ->

y
or =dx y
for any isothermal line.

(5)

(6)
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Writing (6) in the form
xdx + ydy = 0, (7)

we can integrate and obtain the result
x2 + y2 — a2, (8)

where a2 is a constant.
Hence the isothermal lines in this problem are concentric circles 

with their common center at O.
Since equation (1) gives the temperature at any point, we could 

have found the equation of an isothermal line by placing u — c in (1). 
The result is c = In (9)
which can be put in the form

x2 + y2 = e2c, (10)
a result in agreement with (8).

We will now determine the direction in which the rate of change 
of temperature is greatest, that is, we will determine ó when is • (7 Sa maximum.

Differentiating (4) with respect to </>, we have
d / du\ _ — a? sin </> + y cos </> _ m 1)

d<t>\ds) x2 + y2

™en ^(S)=°’WehaVe
— x sin <j> + y cos </> = 0, (12)

whence tan <j> — - ; (13)
•C

• duand it can readily be shown that when ó satisfies (13), — is a . dsmaximum.
Comparing (13) with (5), we see that the direction of most rapid 

change of temperature is normal to the isothermal lines. This result 
agrees with the general theorem that any function f(x, y) increases 
most rapidly in the direction normal to the contour lines.

EXERCISES
—i V

1. If z = etan x, x = sin t, y = cos t, find the rate of change of z 
with respect to t.

2. If z = In -, x = cos t, y — sin t, find the rate of change of z with 
respect to t when t = —•

4 7T
3. If z = ex sin xy, x = — t, y = t, find the rate of change of z with 

respect to t when t = 1.
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4. The equal sides of an isosceles triangle are increasing at the 
uniform rate of .02 in. per second, and the vertical angle is decreas­
ing at the uniform rate of 1' per second. How fast is the area of the 
triangle increasing when the equal sides are each 3 ft. long and the 
angle at the vertex is 60° ?

5. If V = (e"1 — e_ox)cos ay, prove that V and its derivatives in 
any direction are all equal to zero at the point (0,~l ’ (I /

6. If V = , —: > find the rate of change of F at the point
Vx2 + y2

(3, 4) in a direction making an angle of 135° with OX.
7. At any point in the plane XOY the electrical potential is

defined by the equation z------ —------ -= V(x-l)2 + y2.

Find the rate of change of V at the point (1, 1) in a direction 
making an angle of 45° with OX.

8. In what direction from the point (1, 1) is the rate of change 
of V (Ex. 7) the greatest?

9. Prove that the rate of change of z = In (x + Vx2 + y2) in the 
direction of the line drawn from the origin of coordinates to any 
point P(x, y) is equal to the reciprocal of the length of OP.

10. In what direction from any point (x, y) is the rate of change 
of the function z = e~ax cos ay the greatest?

73. Differentiation of a definite integral. From the definition 
of a definite integral given in Chapter III 

Ç f(x)dx = F(x) — F(a),
J a

where the upper limit x is left as a variable. Then

= F'(x) =f(x).

£ f(x)dx = F(6) - F(x),

/(x)dx = - F'(x) =-/(x).

the integral Ç f(x, a)dx, where a is a parame- 
u/ a

ter independent of x. This parameter does not affect the in-

Similarly,

and

(1)

(2)

(3)

Consider now
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tegration, but appears in the value of the integral. Hence (1) 
takes the form

f ffx, a)dx — F(b, a) — F (a, a).
«4a

(4)

Obviously equation (4) may be differentiated with respect to 
a, and we have

£ f/(x, affix =
daja da da

For example,

Ç Jâxdx — 2-^*  (VP — VP),
J a 3

— Ç Jaxdx = —--= (VP — VP).
8a Jaand

(5)

(6)3 Va
We now wish to prove that the differentiation may be performed 

under the integral sign before integrating, when the functions in­
volved are continuous and a and b are finite. That is, we wish 

bto prove ~ rbf(x,a)dx= dx.
8a Ja Ja 8a

To prove formula (7), let us write
/»b

(7)

ufa) = Ç f(x, affix, 
J a

(8)
«/a

since u is a function of a. Now give a an increment Aa. Then 
Ufa + Aa) = f /(æ> « + Aa)dx ;

Ja
u(a + Aa) — u(a) = ( [/(x, a + Aa)— f(x, a)]dx. (10) 

Ja
We now divide by Aa, and perform the division under the 

integral sign, since Aa is not dependent on x. We have
I A \ \ rb tl~ I A A Cl- \

whence
(9)

Aa 8a
where e —> 0 as Aa —» 0, if we assume that / is continuous.



230 PARTIAL DIFFERENTIATION

Hence (11) may be written in the form
+Aa)—= r8ldx+ C’edx. (12)

Aa Ja da Ja
We now let Aa —> 0. The left-hand member of (12) ap­

proaches by definition of a derivative. The first integral on da
the right of (12) does not contain Aa and hence is not altered 
as Aa —» 0. It seems plausible that the second integral in (12) 
approaches zero as a limit, and this, in fact, may be shown*  to 
be true for the type of function which we consider in this book. 
Hence, taking the limit of both sides of (12) as Aa —* 0, we have 
formula (7), which we set out to prove.

*See Woods’s "Advanced Calculus,” p. 141.

Applying this method to the integral considered in (6), we 
Vox dx — Ç dx = „ I,- (VP — VP).

Ja 2 Vâ 3 Va
have

1. £ (a2x2 — 

’• £ [

EXERCISES
Verify formula (7) by differentiating the following integrals with 

respect to a both before and after integrating :

3. ax

4. x3

- cos ax ofotajn vajue of 
a

ax/

5. From the formula I sin ax dx = -
c x a
I x cos ax dx.

X
6. From the formula / cos ax dx = -ln ax obtain the value ofx ‘'O Oi.

y x sin ax dx.
C 2 dx7. From the integral I ■—■■■■ obtain by differentiation witha2 + x2
Cx dxrespect to a the value of 1 —t-----— •Jo (a2 + x2)2

8. From the integral I = obtain by differentiation with
0 Va2 — x2
Cx dxrespect to a the value of I--------------

(a2-x2)l
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9. From the integral j'^xad,x obtain by differentiating with re­

spect to a the value of C*x “ In xdx.
i

10. From the integral fxe“xdx obtain by differentiating with
o

respect to a the value of fx xeax dx. 
Jo

GENERAL EXERCISES

1. If z = In (zy2 — x2y), find the value of ~ dx dy
2. If z = In x , find the value of x + y

x2 — y2 dx dy

dx dy3. If z = y3 + yex, prove x2 ~ + y = 3 y3.

S. If z = y/y2 — x2 sin-1 -, prove i^- + yr- = z.

6. If z = (x2 + y2) tan-1 -, prove + = 2«.

' yxuvv .v Q ( „x ox oy

„ T. 2 - dz . dz c.7. If z = x2yex, prove x-^~ + y-^- = 3z.dxVJ dy

10. If z = e~te sin {my + xy/a2m2 — k2), prove + 2k^- = a2 ■

11. If y = e-*  cos (a In r), prove ^t + 7^ + ^|^ = 0-

12. If «=(* “ + e-)2, prove § + 2 g + = 4 a2u.

13. The hypotenuse and one side of a right triangle are 10 in. 
and 6 in. If the hypotenuse is increased by .02 in. and the given 
side is decreased by .01 in., find approximately the change in the 
other side, the triangle being kept a right triangle.

14. The eccentricity e of a hyperbola is given by the formula 

a
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where a and b are the semi-axes of the hyperbola. Find approxi­
mately the greatest possible error in the computed value of e if a 
and b are, respectively, 4 ft. and 3 ft., with a possible error of 1 in. in 
the measurement of each.

15. If F denotes the focal length of a combination of two lenses 
in contact, their thickness being neglected, and fi and f2 denote the 
respective focal lengths of the two lenses, then

If /i and f2 are said to be 8 in. and 4 in. respectively, find approxi­
mately the greatest possible error in the computation of F from the 
above formula if errors of .02 in. in fi and .01 in. in f2 are made.

16. The distance between two points A and B on opposite sides 
of a pond is determined by taking a third point C and measuring 
AC = 40 ft., BC = 100 ft., and BCA = 60°. Find approximately the 
greatest possible error in the computed length of AB caused by 
possible errors of 3 in. in the measurement of both AC and BC.

17. The distance of an inaccessible object A from a point B is 
found by measuring a base line BC = 200 ft., the angle CBA = a 
= 45°, and the angle BCA = fl = 30°. Find the greatest possible 
error in the computed length of AB caused by errors of 2' in measur­
ing both a and fl.

18. The horizontal range R of a bullet having an initial velocity of 
Vo, fired at an elevation a, is given by the formula

„ ®o2 sin 2 aK —-------------- *
g

Find approximately the greatest possible error in the computation 
of R if Vo = 8000 ft. per second with a possible error of 12 ft. per 
second, and a — 60° with a possible error of 2' (take g = 32).

19. The area of a circular segment bounded by a chord and an
arc subtending an angle 2 9 at the center of the circle is given by 
the formula A = r20 - | r2 sin 2 9.
Assuming r to be 6 ft. with a possible error of .1 ft., and 9 to be J o 
with a possible error of .01 radian, find approximately the greatest 
possible error in the computation of A.

20. The stiffness of a rectangular beam varies as the product of 
its breadth and the cube of its depth. From a circular log 10 in. 
in diameter a rectangular beam of breadth 6 in. is sawed, having 
the greatest possible depth. If the measurements of the diameter 
of the log and the breadth of the beam may each be inaccurate by 
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.01 in., find approximately the greatest possible error in the com­
puted stiffness of the beam.

21. If z = sin-1 ’ x = sin t, y = cos t, find the rate of change of
1 + y

z with respect to t when < = ■?-•
o

22. The altitude of a right circular cone decreases at the uniform 
rate of .01 in. per second, and its radius increases at the uniform rate 
of .02 in. per second. How fast is the lateral surface of the cone in­
creasing when its altitude is 3 ft. and its radius 2 ft. ?

23. If u = In , find the rate of change of u at the point
y/x2 + y2

(3, 4) in the direction toward the point (7, 7).
24. If the electric potential V at any point of a plane is given by 

the formula V = ln[(x — l)2 + (y — l)2]7 find the rate of change of 
potential at any point : (1) in a direction from (1,1) to (x, y) ; (2) in 
a direction perpendicular to the above direction.

25. If the electric potential V at any point of a plane is given by
the formula V = In + (1/ + a) , ra^e of change of potential

\/x2 + (y — a)2
at the point (a, a) in the direction toward the origin and at the point 
(a, 2 a) in the direction toward the point (0, 4 a).

26. In what direction from the point (3, 4) is the rate of change 
of the function z = kxy a maximum, and what is the value of that 
maximum rate ?

27. Find a general expression for the rate of change of the func­
tion w = e-1* sin x +1 e~3l/ sin 3 x at the point 0^- Find also the 

maximum value of the rate of change.
28. From the integral f sin ax dx find by successive differentiation 

the value of I x2 sin ax dx.Jo
29. From the integral f cos ax dx find by successive differentiation 

the value of J" x2 cos ax dx.

30. From the integral I eaxdx find by successive differentiationJ 0px
the value of I x3eax dx.Jo

31. From the integral^ x“ dx find by successive differentiation 
the value of x“(lnz)2dx.



CHAPTER X
INTEGRATION

74. Introduction. The process of integration has been defined, 
(§ 20), as the determination of a function when its derivative 
or its differential is known. Some formulas of integration have 
already been written down and applied in the solution of prob­
lems. We will now make a more systematic study of inte­
gration and derive a more complete list of formulas which will 
include those already found. These formulas will be proved 
anew, however, in order that this chapter may be a self- 
contained discussion of methods of integration.

By definition, if = dF{x),

then J f(x)dx — F (x) + C,

where C is the constant of integration.
The expression f(x)dx is said to be under the sign of integra­

tion, and fix) is called the integrand. The expression F(x) + C 
is called the indefinite integral to distinguish it from the definite 
integral defined in Chapter III.

In all the formulas which will be derived the constant C will 
be omitted, since it is independent of the form of the integrand ; 
but it is to be added in all the indefinite integrals found by 
means of the formulas.

(1)
The two formulas

are of fundamental importance. Stated in words they are as 
follows :

(1) A constant factor may be changed from one side of the sign 
of integration to the other.

234
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(2) The integral of the sum of a finite number of functions is the 
sum of the integrals of the separate functions.

To prove (1), we note that since cdu — d(cu), it follows that

du = / d(cu) = cu du.

In like manner, to prove (2), since
du + dv + dw + • • • = d(u + « + w + • • •), 

we have
J (du + d» + dw + • • •) =J'd(u + » + «? + ••■)

= u + » + w + • • •

= I du + I dv + I dw + • • •.

The application of these formulas is illustrated in the follow­
ing articles.

75. Integral of un. Since for all values of m except m = 0
d(um) = mum idu,

dor d = um~ldu, \m/
it follows thatfollows that Cum ldu — ~—

J m
Placing m — n + 1, we have

(1)

for all values of n except n = — 1.
In the case n = — 1, the expression under the sign of inte­

gration in (1) becomes — , which is recognized as d(ln u).

Therefore Ç — = In u.Therefore (2)
u

It is evident that formulas (3), § 42, and (2), § 57, are but 
special cases of (1) and (2) respectively, where u = x. To apply 
these formulas to more general cases, it is evident that we must 
choose for u some function of the variable which will bring the 
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integral, if possible, under one of the formulas. The form of the 
integrand suggests the function of the variable which should be 
chosen for u, as will be seen in the solutions of the following 
illustrative examples :

Example 1. Find the value of J (ax2 4-i» + ^4- Applying

(2), § 74, and then (1), § 74, we have
j'^x2 + bx + ^ + ^dx = aj"x2dx + bj~xdx + + kj"x~2dx

= i ax3 + £ bx2 4- c In x — - + C.
3 2 x

Example 2. Find the value of J" Vz2 + 2 xdx. Let us try placing 
x2 + 2 = u. Then, by differentiation, 2 xdx = du, so that xdx = | du. 
Hence

yy/x2 + 2 xdx =J’u^ ^du = Ju^du = ~ ■ ^ + C
2"

= 1 + c = 1 (x2 4- 2)’ + 6.
ó 3

Example 3. Find the value of fdx.
J ax2 + 2 bx

Here we will place ax2 4- 2 bx = u.
Then (2 ax + 2 b)dx = du, so that (ax + b)dx = | du.
Hence C4(ax+ b)dx r 2du = 2 r du

J ax 4~ 2 bx du du
= 2 In u 4- C
= 2 ln(ax2 + 2 bx) + C
= ln(az2 4- 2 bx)2 4- C.

Example 4. Find the value of J" (e01 4- b)2e?xdx.

Let e“x + b = u. Then e“r adx = du.
Hence J"(e?x 4- b)2e?x dx =§u2—-
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If the integrand is a trigonometric expression it is often pos­
sible to carry out the integration by either formula (1) or for­
mula (2). This may happen when the integrand can be expressed 
in terms of one of the elementary trigonometric functions, the 
whole expression being multiplied by the differential of that 
function. For instance, the expression to be integrated may 
consist of a function of sin x multiplied by cos xdx, or a func­
tion of cos z multiplied by (—sin xdx), etc.

Example 5. Find the value of J" cos3 4 xdx. Since d(sin 4 x) 
= 4 cos4 xdx, we will separate out the factor cos 4 xdx and try to 
express the rest of the integrand in terms of sin 4 x. We have

cos3 4 xdx = cos2 4 x(cos 4 xdx) = (1 — sin2 4 x)(cos 4 xdx).
Since we have succeeded in expressing the rest of the integrand in 

terms of sin 4 x, we let sin 4 x = w, whence cos 4 xdx = | du. Hence 

fcos3 4 xdx — f(l — sin2 4 x)(cos 4 xdx)

= f(1~ du^ 

= I J' (1 — u2)du

= I (sin 4 x — | sin3 4 x) + C
= (3 sin 4 x — sin3 4 x) + C.

Example 6. Find the value of f sec6 2 xdx.

Since d(tan 2 x) = 2 sec2 2 xdx, we separate out the factor sec2 2 xdx 
and express the rest of the integrand in terms of tan 2 x.

Thus sec6 2 xdx = sec4 2 x(sec2 2 xdx)
= (1 + tan2 2 x)2(sec22 xdx)
= (1 + 2 tan2 2 x + tan4 2 x)(sec22 xdx).

Now place tan 2 x = u, and we have

f

= + I U3 +1 M5) + c
= J tan 2 x + I tan3 2 x + tan5 2 x + C.

sec6 2 xdx — IJ"(1 + 2 it2 + u*)du
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EXERCISES

1. 8 x3 + 6 x —

Find the values of the following integrals :
r eaz + sin ax , 11. ----------- 75 dx.j (e<« _ cos aa;)2 

1 + sin 2 x
(2 x — cos 2 x)$ 

(x2 — x)dx
2 x3 — 3 x2 4-1

3.

6. Ç(x3 4- 3)3 x2dx.

7. f V(x4 - 8)3 x3dx.

8. f - - dx.
’ x/x3 4- 3

9. + e7dx.
J ę2x __ ę — 2x

10. a 1 — sin 3 x , 
'3x4- cos 3 x J

,. r sec2 ax ,14. / ——------ dx.

15. f sin2 3 x cos 3 xdx.

16. cos (2x4-3) sin (2x4- 3)dx.

17. f sin3 5 x cos3 5 xdx.

18. Çsec4 2 xdx.

19. I ctn(3 x 4- 2) csc3(3 x 4- 2)dx.

20. [ sin5 (3 x — l)dx.

76. Other algebraic integrands. The following formulas of in­
tegration, in which the integrands are algebraic functions of u, 
can easily be verified by differentiation, and this verification 
should be made by the student.

tan-1 -•
a (1)

L ln“~ a- (2)a u + a

sin-1 -• (3)a

ln(u 4- Vu2 4- a2). (4)

(5)
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In the verification of (3) the student will observe that the 
formula holds only if sin-1 - is in the first or the fourth quadrant, 

a
since the plus sign before the radical in 1, § 48, holds only for 

those quadrants. If, however, it is necessary to have sin-1- in 
a 

the second or the third quadrant, it will be necessary to prefix 
the minus sign on the right-hand side of the equation.

On the other hand (1) holds for all quadrants.

Example 1. Find the value of f-—•
J 4 x2 + 7

Letting 2 x = u, we have 2 dx = du, whence dx = du. Hence

/ dx
4z2 + 7 =/ I du

u2 + 7
1 f du
2 J u2 + 7

C_ 1 1 u

C.

Example 2. Find the value of f—■: —•
J V3 - 2 r2

Letting x/2 x — u, we have x/2 dx=du, whence dx = —= du. 
x/2

Ç -y=du
r dx _ I v2

J x/3 — 2 z2 J x/3 - u2

Hence

1 f du
ViU x/3 — u2

C

1
x/2 3
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Example 3. Find the value of x2 + 2 x + 5
Since there are terms of both the first and the second degree in x, 

we place those terms in a parenthesis, and write

We may make the terms in parenthesis a perfect square by adding 
1 (the square of half the coefficient of z), and in order not to change 
the value of the expression we subtract 1 from 5. Thus

x2 + 2 x + 5 = (z2 + 2 x) + 5
= (z2 + 2 x + 1) + (5 - 1) 
= (z + l)2+ 4.

dxExample 4. Find the value of / -—--------- — •J 2 x2 + x — 15
We first divide out the coefficient of x2, writing the integrand in 

the form 1 1 1 1
2 ' x2 + j z - V- “ 2 ’ (z + I)2 - Ve1-’

the second fraction having been transformed by the method used in
Example 3. We now let z + | = u, whence dx = du. Hence

where C = In 2 + K.
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By expressing the first constant of integration as the sum of the 
constant yy In 2 and a new constant K, we have been able to simplify 
the form of the integral ; but the two forms of answer really differ 
only in the constants of integration.

In this connection it may be noted that if the same integral is 
evaluated by using different formulas, the resulting integrals may 
seem to be different, but it can always be shown that they differ 
only in the constants of integration.

Example 5. Find the value of I —. ----- We first factor
J Vl + 2 x — 3 x2

out the coefficient of x2 and write the terms containing x in a paren­
thesis with the minus sign before it, since the term in x2 is negative. 
Thus 111

Vl + 2 x - 3 x2 “ V3 V| - (x2 - f x)

We now complete the square of the terms in x, as in Examples 3 
and 4, with the result that

1 _ 1 . 1
V1 + 2 x — 3 x2 V3 Vjt — (x — J)2

Placing x — I = w, we have dx = du.
Hence C , dx ■

•' Vl + 2 x — 3 x2
dx

/5 x_ 22g2 + 3 dx-
Separating the integrand into two fractions

5x_______ 2
2 x2 + 3 2x2 + 3’

and using (2), § 74, we have
f 5x - 2

J 2 x2 + 3
, _ r 5 x dx _ r 2 dx

J 2 x2 + 3 J 2 x2 + 3
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If we let 2 x2 + 3 = u in the first integral, then du = 4 x dx, and

and if we let V2 x = um the second integral, then du = V2 dx,
2 dx

2x2 + 3
du

u2 + 3 V2 -^= tan-1 -A= = tan~‘ xy/3. 
V3 V3 3 3

EXERCISES

Therefore Jf 2 5 +> - ï>”<2 ■=’ + V - f + C.

Find the values of the following integrals :

8. r dx
/ 3 x2 - 5

9. r dx
' V4 x — 3 x2

10. r dx
‘ V2 + 6 x — x2

11. r dx
1 x2 + 6 x

12. r dx
' 5 x2 + 3 x — 1

13. r dx
‘ x2 + 8 x + 17

14. r dx
' 2 x2 — 3 x + 5

15 r dx
' V2 —4x —3x2

16,\r dx
y/x2 + 4 x

17. r dx
x/2 x2 + x + 1

18*J x2 — 4

19. ji"3x+7 j
4x2 + 9^'

20. jf -^"--dx. 
' V9 - x2

2LJf 2x + 3 Ar
v3 x2 + 4

77. Integrals of trigonometric functions. Of the following for­
mulas for the integration of the trigonometric functions, each 
of the first six is the direct converse of the corresponding for­
mula of differentiation (§46), and the last four can readily be 
verified by differentiation, which is left to the student.

(1)

(2)
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Often a trigonometric transformation of the integrand facili­
tates the carrying out of the integration, as shown in the 
following examples :

= — I cos u + C 
= — | cos 7 x + C.

Example 1.
If we let 

then 
whence

Find the value of j'sin 7 xdx. 
u = 7 x,

du = 7 dx;
dx — y du,

and J"sin 7 xdx =j'sin w(| du) 

= I fsin udu

Example 2. Find the value of J sec(2 x + l)tan(2 x + l)dx.

If we let u = 2 x + 1, then du = 2 dx,

and Jsec(2 x + l)tan(2 x + l)dx = |

= I sec(2 x + 1) + C.
= I sec u + C
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Example 3. Find the value of fcos2 3 xdx.

Since by (8), § 43, cos2 3 x = |(1 + cos 6 x),

y cos2 3 xdx = y (I + I cos 6 x)dx

= |/'dx + |ycos 6 xdx

= | x + sin 6 x + C, 

the second integral being evaluated by formula (2) with u = 6 x.

Example 4. Find the value of J Vl + cos 5 xdx. 
Since by (9), § 43,

Vl + cos 5 x = y/2 cos 

y Vl + cos 5 xdx = y V2 cos ^dx

= V2 y cos ^-dx 

= ?V2sin^ + C.

Example 5. Find the value of f tan2 3 xdx.

Since tan2 3 x — sec2 3 x — 1,
y tan2 3 xdx — J" (sec2 3 x — l)dx

= y sec2 3 xdx — ydx

= I tan 3 x — x, 
the first integral being evaluated by formula (3) with u — 3 x.

EXERCISES
Find the values of the following integrals :

1. J sin (4 x + 3)dx.

2. J"cos (3 x — 2)dx.

3. J"tan dx.

4. yctn (4 x — 2)dx.

5. y sec (2x + 4)dx.

6. ycsc (3 x — 2)dx.

7. y sec

8. ycsc2 (1 — 3 x)dx.

(2 — 3 x)tan (2 — 3 x~)dx.

k
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78. Integrals of exponential functions. The formulas

9. J sec2 | dx. 15. r cos 4 x
J cos 2 x

10. J"csc (2 — 5 x) ctn (2 — 5 x)dx. 16. y cos2 Ï dx.

11. J"sin2 ^dx. 17. J"sin21 cos2 | dx.

12. J"tan2 (2 x + 3)dx. 18. y^i + cos^dx.

13. J Vl — cos 3 xdx. 19. y sin 3 x cos 2 x dx.

14. J (sin —-cos—)dx. 20. r dx
d Vl — cos 4 x

and

(1)

(2)

are derived immediately from the corresponding formulas of 
differentiation.

Example 1. Find the value of J e3xdx.
If we let 3 x = u, we have

e3xdx

= i e“ + C
= I e3x + C.

f VŚExample 2. Find the value of J dx.

If we place V 5 = 5X and let - = u, we have x
f dx = — J" 5udu

= - 5“ + CIn 5
1

In 5 Vó + C.
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EXERCISES

Find the values of the following integrals :

12-

“J ga+(œ ca + 6z

10. y*(10* + xI0)dz.

9. (e1 + Xe) dx.

i

79. Substitutions. In all the integrations that have been 
made in the previous sections we have substituted a new vari­
able u for some function of x, thereby making the given integral 
identical with one of the formulas. There are other cases in 
which the choice of the new variable u is not so evident, but in 
which, nevertheless, it is possible to reduce the given integral 
to one of the known integrals by an appropriate choice and 
substitution of a new variable. We shall suggest in this section 
a few of the more common substitutions which it is desirable 
to try.

1. Integrand involving powers of a + bx. The substitution of 
some power of z for a + bx is usually desirable.

Example 1. Find the value of

Here we let 1 + 2 x = z3 ; then x = J (z3 — 1) and dx = | z2dz.

Therefore f ——t = | f (z7 — 2 z*  + z)dz
J (1 + 2 z)*  8 J

z2(5 z6 - 16 z3 + 20) + C.

Replacing z by its value (1 + 2 x)l and simplifying, we have

= sfjr (1 + 2 z)*(9  - 12 x + 20 z2) + C.
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2. Integrand involving powers of a + bxn. If the integrand 
contains xn~1dx as a factor, but otherwise contains only powers 
of xn and of a + bxn, the substitution of some power of z for 
a + bxn is desirable, since d(a + 6x") = bnxn~ldx.

Example 2. Find the value of Ç —*'  + a 
J X

We may write the integral in the form

f y/x2 + a2
x2 (xdx)

and place x2 + a2 = z2. Then xdx = z dz, and the integral becomes
j _  * d i Cl «dz = z + - In —------F C.2 z + a

Replacing z by its value in terms of x, we have

Example 3. Find the value of J x®(l + 2 x3)^dx.

We may write the integral in the form

Jx3(l + 2 x3^(x2dx), 

and place 1 + 2 x3 =z2, Then x2dx = | zdz, and the new integral in 

if(z4_ z2)dz = z3(3 z2 - 5) + C.

Replacing z by its value, we have 

fx3(l + 2 x3)*dx  = ^(1 + 2 z3)*(3  x3 - 1) + C.

3. Integrand involving square roots. This occurs very fre­
quently in practice.

If the square root is of the type Va + bx, the substitution 
a + = z2 is to be made in accordance with 1.

If the square root is one of the types Va2 — x2, y/x2 — a2, or 
Vx2 + a2 and the integrand is of the type described in 2, the 
substitution of z for the radical is to be made as illustrated in 
Example 2. In other cases a trigonometric substitution may be 
made as shown in 4, 5, and 6.
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If the square root is of the type y/a+ bx + ex2, it may be put 
into one of the forms y/a2 — u2, Vu2 — a2, or Vu2 + ®2 as 
shown in Example 5, § 76, and the above 
directions followed.

4. Integrand involving Va2 — x2. If a 
right triangle is constructed with one leg
equal to x and with the hypotenuse equal Fig. 95
to a (Fig. 95), the substitution x = a sin </> is suggested.

Example 4. Find the value of J Va2 - x2dx.

Let x = a sin </>. Then dx = a cos </> d<t> and, from the triangle, 
y/a2 — x2 = a cos </>.

Therefore J y/a2 — x2dx = a2 J" cos2 </>d</>

= | a2j"(1 + cos 2 </>)d</>

= | a2(</> + | sin 2 </>) + C.

But X(b = sin-1-,a
and sin 2 </> = 2 sin <f> cos 0

2 x y/a2 — x2. 
a2

for, from the triangle, sin <f> = - and cos <f> =------------a a
Finally, by substitution, we have

5. Integrand involving Vx2 + a2. If a right triangle is con­
structed with the two legs equal to x and 
a respectively (Fig. 96), the substitution 
x = a tan </> is suggested.

Example 5. Find the value of f---- —---- .
J (x2 + arf

Let x — a tan <j>. Then dx = a see2d>d(f> and, from the triangle, 
Vx2 + a2 = a sec <f>.

Therefore f---- ——-
J (x2 + a2)^

= ^2 f = fcos — A sin </> + C.
a2 J sec </> a2 J a2
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But, from the triangle, sin </> = - ------ ; so that, by substitution,
y/x2 + a2

dx
(x2 + a2)*

x____
a2 y/x2 + a2

6. Integrand involving Vx2 — a2. If a right triangle is con­
structed with the hypotenuse equal to x and with one leg equal
to a (Fig. 97), the substitution x = a sec <p 
is suggested.

Example 6. Find the value of
f x3x/x2 — a2dx.

8
I

Vx
^-

Let x = a sec <j>. Then dx — a sec cj> tan 0d</> and, from the tri­
angle, y/x2 — a2 = a tan cf>.

Therefore I x3Vx2 — a2dx = a51 tan2 <£ sec4 </>d</>

= a5 J (tan2 </> + tan4 0) sec2 d>d<p

= a5 (I tan3</> + | tans</>) 4- C.

But, from the triangle, tan </> = •g2 ~ q2 ; so that, by substi­
tution, we have a

J"x3Vx2 — a2dx = y5 (2 a2 + 3 x2)V(x2 — a2)3 + C.
We might have written this integral in the form J' x2 y/x2 —a2 (xdx) 

and solved by letting z2 ■=■ x2 — a2.

EXERCISES

Find the values of the following integrals :

11. yx5(x3 + 8)^dx.

13•/

dx
x4 y/x2 —25

x2dx
(4 x2 + 9)’

dx
x2V9 + 4 x2

5
x
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80. Integration by parts. Another method of importance in 
the reduction of a given integral to a known type is that of 
integration by parts, the formula for which is derived from the 
formula for the differential of a product,

d(ur) = u dv + v du.

From this formula we derive

which is usually written in the form

fudv — uv

In the use of this formula the aim is evidently to make the 
original integration depend upon the evaluation of a simpler 
integral.

Example 1. Find the value of J xexdx.

If we let x = w and exdx — dv, we have du = dx and v = e*.  
Substituting in our formula, we have

= xe* — e1 + C
= {x- l)ex + C.

It is evident that in selecting the expression for dv it is desirable, if 
possible, to choose an expression that is easily integrated.

Example 2. Find the value of I sin-1 xdx.
J dx

Here we may let sin-1 x = u and dx = dv, whence du = . ■ .
and v = x. ~ x2

Substituting in our formula, we have
Csin_1xdx = x sin_1x— f —
J J y/l-x2

= x sin_1x + Vl — x2 + C,
the last integral being evaluated by § 79.

Sometimes an integral may be evaluated by successive inte­
gration by parts.
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Example 3. Find the value of Jx2exdx.

Here we let x2 = u and exdx = dv. Then du = 2 xdx and v = ex.

Therefore j x2exdx = x2ex — 2 J' xezdx.

The integral jxexdx may be evaluated by integration by parts 
(see Example 1) so that finally

J"x2exdx = x2ex — 2(x — l)ex + C = ex(x2 — 2 x + 2)+ C.

Example 4. Find the value of^e“x sin &x dx. v/ A
Letting sin bx = u and e?xdx = dv, we have

f e“x sin bxdx = ~ e°x sin bx — - Ce™ cos bxdx.J a a J
In the integral I ePx cos bxdx we let cos bx — u and e“xdx = dv, and 

have

bx e“x cos bx + - f e?x sin bxdx\.a\a a J /

a

J"eaz sin bx dx =

f eax cos bxdx = - cos bx + - feaz sin bxdx. J a a J
Substituting this value above, we have

/e°xsin bxdx = - ef11 sina
Now bringing to the left-hand member of the equation all the 

terms containing the integral, we have

fl + f e“x sin bxdx = - e°x sin bx —eax cos bx,
\ a2/J a a2

eax(a sin bx — b cos bx)
a2 + b2whence

J*  Vx2 + a2 dx = x Vx2 + a2 — J'- (1)

Example 5. Find the value of / Vx2 + a2dx.
z—— xdxPlacing VZ+ a2 = u and dx — dv, whence du = ...._and

v = x, we have * + °2
' x2dx
Vx2 + a2

Since x2 = (x2 + a2) — a2, the second integral of (1) may be 
written as f (z2 + a2)dx f

J Vw . “J

which equals Jy/x2 + a2dx — a2J"

dx
Vx2 + a2 

dx
. x2 + a2
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Clearing (1) of fractions by multiplying by (x + 3) (x2 — 4), we have 
x2 + llx+14 = A(x-2)(x+2) + B(x+3)(x+2)+C(x+3)(x-2), (2) 

or
x2 4-11 x + 14 = (A + B + C)x2 + (5 B + C)x + (- 4 A + 6 B - 6 C). (3)

Since A, B, and C are to be determined so that the right-hand mem­
ber of (3) shall be identical with the left-hand member, the coefficients 
of like powers of x on the two sides of the equation must be equal.

Therefore, equating the coefficients of like powers of x in (3), we 
obtain the equations 4 b 4- C = 1

5 B + C= 11,
— 4A + 6B — 6C=14,

whence we find A = — 2, B = 2, C = 1.
Substituting these values in (1), we have

r2 4- 11 x 4- 14 =___ 2 2 1
(x 4- 3) (x2 — 4) x 4- 3 x— 2 x 4- 2 ’

, Cx2 + 11 x + 14 j 2 dx , f 2 dx , f dx
and J(x + 3)(z2-4)dZ = -Jrr3+J^2+J7T2

= — 21n(x4-3)4-21n(x—2)4-ln(x4-2)4-C
(x4-2)(x-2)2

1 (x4-3)2 +C’

Example 2. Find the value of z3 —~dx.

The factors of the denominator are x 4- 1 and x2 — x 4- 1. We 
assume 3 x2 - 4 x - 1 _ A Bx 4-C (1)

X3+l X + 1 X2 — X + 1
Clearing of fractions and rearranging terms, we have

3 x2-4x - 1 = (A 4- B)x2 4- (- A 4- B 4- C)x 4- ( A 4- C). (2)
Since A, B, and C are to be determined so that the right-hand mem­

ber of (2) shall be identical with the left-hand member, the coefficients 
of like powers of x on the two sides of the equation must be equal.

Therefore we have A -I- B = 3,
-A + B + C = -4,

A + C = -l,
whence we find A = 2, B = 1, C = — 3.

Hence J 3 x2 — 4 x — 1 
x3+ 1

2 dx
x 4-1dx=J x — 3

- x +
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The value of the first integral is 2 In (x + 1). To evaluate the 
second integral we write

x2 - x + 1 = (x2 - x + I) + 1 - I = (x - I)2 + f, 
which suggests the substitution u = x — |. Then

We have finally

EXERCISES

Find the values of the following integrals : 

i. f^ÿrdx.
J 2 x2 + 3 x

4 x + 26' fx3+ 2 x2-x-2 dx‘

„ r 4 x3 — 6 x — 1,
7‘ J 2 x3 - z2 - x dx'

8. f 1_8_î3 + 20z2- 8z-8
9 x3 — 4 x

. r 6x3 + 3x2 — x+1
J 2 x2 + x — 1

5. fz2 + 4^~4dz.
J x3 — 4 x

dx. ». dx.J x3 — x2 4- 2 x
f 5 x2 + x - 1 j 10J »,2-l',L

82. Definite integrals. As shown in Chapter III,

£f(x)dx = [F(x) + C]‘ = [F(6) + C] - [F(a) + C] 

= F(6) - F(a).

It appears that the constant of integration cancels out and 
may be omitted in evaluating a definite integral.

When a definite integral is evaluated by substitution it is 
usually desirable to change the limits to the values of the new 
variable which correspond to the values of the old variable.
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Example 1. FindJ^ Va2 — x2dx.
Let x = a sin </>. The limits of the given integral are x = 0 and 

x = a. Substituting these values in the equation x — a sin </>, we find 
that when x — 0, <f> = 0 ; and when x — a, — so that varies 

7Tfrom 0 to — as x varies from 0 to a. Accordingly,
TT

J" Va2 — x2dx — a2J"2 cos2(f>d<f>

_ ira2
~ 4

When a definite integral is evaluated by integration by parts,
b

IT 

sin2^)]2o

the limits may be handled as follows : b
If /(x)dx is denoted by udv, the definite integral I f(x)dx

J
f*  b <7 a

udv, where it is understood that a and b 
a

are the values of the independent variable. Then

J
r'b b Cb

udv=[uv]a~ I vdu.
a a

To prove this, note that it follows at once from the equation
. r<>

a

b

a

b b
vdu.

Example 2. J^2x2 sin xdx — | — x2 cos xj2 + 2^ 2 x cos xdx

= 2 I 2 x cos x dx vo IT IT

= ^2 x sin xj2 - 2j^2 sin xdx
= 7T + ^2 COS X j 2

= IT — 2.
A special difficulty occurs in evaluating a definite integral by 

(1) and (3), § 76, which involve inverse trigonometric functions. 
Consider in the first place

f -, = [tan-1 x]b = tan-1 b — tan-1 a.
Ja æ2 + l
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There is an ambiguity, since tan-1 a and tan-16 have each an 
infinite number of values. Let us draw the curve y — tan-1 a: 
(Fig. 98), which consists of an infinite number of separate parts, 
or branches. If we take OM = a, tan- 'a 
is the distance of any one of the points 
Pi, P2, P3,-- - from OX, distances which 
are represented by the lines MP\, MP2, 
MP3, • • •. In like manner, if we take 
ON — b, then tan-1b is represented by 
any one of the lines NQi, NQ2, NQ3, ■ ■ ■■ 
It follows that tan-16 — tan-1amay be 
represented by the difference found by 
subtracting from any line representing 
tan-16 any line representing tan-1 a; 
and it is obvious that unless we choose 
tan-1 a and tan-16 according to some 
great variety of values for our integral.
able to choose the values of tan -1 a and tan 1 b so that they may 
be represented by the ordinates of two points on the same branch 
of the curve. That this is correct may be shown as follows :

From the definition of a definite integral as given in § 23, if 
we hold a fixed and let b approach a as a limit, the value of the 
integral approaches zero as a limit. Accordingly whatever point 
Q is taken to determine tan-1 b, it should approach the point P, 
which determines tan-1a, as ON approaches OM. Hence P and 
Q should be on the same branch of the curve. It is immaterial 
which branch of the curve is taken, and, for convenience, we 
shall always take the branch so that tan-1 a and tan~xb shall lie 
between — and

Lt Lt

system, we may get a 
It would seem reason-

Example 3. = tan-V5-ta-f-l) = fj) = ÏJ •

Let us now consider the integral 

[sin ^j'' = sin-16 — sin-’a,

where we have the same kind of ambiguity as that just discussed. 
A similar discussion leads to a similar result; namely, sin~xa
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and sin~lb must be taken between — and
£ Li This is also in­

dicated by the fact, pointed out in § 76, that the formula of in­
tegration used is valid only when sin-1-is in the first or the 
fourth quadrant.

Example 4. = - sin- (-|) = f-(-|)= '

EXERCISES
Find the values of the following integrals :

1. /•I xdx
"'l (x2 - 1)*

2. .
?3 (1 + x2)dx

(3 x + x3)’

3. \ 3 tan 2 x sec3 2 xdx.

4.
z-2 dx

■lo V4 x — x2 
çl dx

5.
y/a2 - x2

6. rs dx
J-3x2 + 9

7. c 5 dx
■^3 y/x2 — 9

8.
/» 1 3
I x2ex dx, Jo
C 19. J e3x~'dx.

10. /» 6 dx
J 3 xVx3 + 9

11. r^/15 X5 dx.■4 (x3 +1)*

12. fS ----- ---------
x2yJx2 — 9

13. f 3 V3 æ" — 4

14. f■T (x2 + 1)*
p3V3 dx

^y/3 X2 y/x2 + 9
. „ z-i x4dx16. I

Jo (2 - x2)?

17. f2(4- xrfdx.

18. C5-* 2^ .
J2 y/x-1

19. r7~xdj: •
J2 V3 X - 5

20. f113-15 dx.
x2

ir
21. f 4 x sin 2 xdx. Jo
22. f2x(lnx)2dx.^1

83. Table of integrals. Much time and labor in integration 
may be saved by using a table in which are collected those 
formulas of integration which are frequently required in the 
applications of the calculus. In order that the student may 
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become familiar with the use of such a table, a brief one has 
been placed at the end of this text. In it we have collected the 
formulas of integration already used in this chapter and have 
added a few others which may be derived from them by sub­
stitutions or by integration by parts. In all cases they can be 
verified by differentiating both sides of the equation.

It will be noticed that some of the formulas express the given 
integral only in terms of a simpler integral.

It will often happen that the integral to be evaluated is 
exactly like one of the formulas of the table ; in such cases the 
integral can be written down immediately. In other cases, it 
will be necessary, as in the previous work, to choose some 
function of the variable for x or u and make the corresponding 
transformation.

GENERAL EXERCISES

Find the values of the following integrals :

13. f 3z~ 5___ dx.
' y/3x2 + 2x + l

20. J*sec 3 (x + 3) tan3 (x + 3 ) dx 

f sin?: dx.J cos 2 x14. f 3:c + 7 dx. 21.

15. f x+5 dx. 22. /(tanï-ctng2dx.
1 \/2 + 2x — 3x2 rl + cosGx^

J 1 — cos 6 x16. f 3 r + 2
/ 8 x2 + 24 x + 15

23.

17. cos3 | dx. 24. CSintXdx.
J sm 2 x

18. fcsc4 | dx. 25. f /os8x A dx.
J cos 4 x + sin 4 x

19. [ sin3(2x + 3)cos2(2z + 3)dx. 26. C^n2x + cos2x\dj;
J \ cos x sin x /
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27. f----------------
J 1 4- cos 4 x

28. Çà^dx.
J COS X

29. jvr — sin 4 x dx.

m-fÿx4dx-

39. f * * x"dx

69’ X (x5 4- 3)’

70. ------«È—,
x2(x24-l)*

J (5 - x2)*
40. C xidx --.

J (4 x2 — 1)*  
ai f %7 dx

' J Vx4 4- 4
42. f x2dx .

J (9 x2 4- 4)>

43. Jxe3dx.

44. Jx2 In 3 xdx.

3Lf x2(2 x 4- 3)^ dx.

32. r dx — 
j x2x/9 -x2

45. / x2 tan 'xdx.

46’ J 2x2-x-6dX‘

47 f3x3 + 2x2-5x-2d
47, J 3 x2 - 4 x aX'
48 r 2 - 3 x + 16 x2 d 
S' J 4 x3 - 8 x2 - x 4- 2

49 r 3 x2 4- 4 x - 23 d
J x3 4- x2 - 9 x - 9 ‘
f 2 x3 4-x2 — 12 x — 18

50- J

51. r i-x-.^dx.
J x3 + X2 + X

52. Ç'Mx.
J-ix + 2

r-61. I 2 sin x sin 2 xdx. 
Jo

62. _p(14-cos6x)^dx.
Î2

H
63. cos6 xdx.

Jo 
r" dx64. f 9 .

Jo v 1 4 cos 3 x
65. f'^x</2x-3dx. </2

dx.

33'/x2(x2 4- 4)2‘

34. Ç _%dx-----
J (3 x - 2)*

35. f x&dx—
J (x3 4- 1)*

36. f—2 dx.
J x2

38. f x? dx ..
7 (1 4- x3)*

53 cos x dx 
' Jo 1 4- sin x

- JN~

J-s x- + 4

se. frrTJ 2 4 x2 — 9
57. f1 , dx - 

V4 x2 4-1
58. J" sin3| dx.

2 
ir __________________ ___

59. j'2 V1 — cos 2 x cos xdx.

60. p sin2 
”4

66.

/'V3 dx
67 I --------------- -

J' x2(4 — x2)*
68. f'x2 V2 — x2dx.

z.2 x4dx

14-3 tan | sec2 £ dx. 
dx

x 
dx

Z*  2 \JX2 — 1 i71. J 1 dx.

12. f*  z_____
J % x Vx2 4- 1

73. f^cos_'3xdx.
Jo

74. Ç 3 x2 sin xdx.
Jo

75. .psin-1 2 xdx.



CHAPTER XI
APPLICATIONS

84. Fundamental theorem. In Chapter III we have solved 
certain problems involving areas, pressures, and volumes by 
use of the definite integral. The general method used in each 
case was to analyze the problem into the limit of the sum of an 
infinite number of terms of the form f(Xi)Ax, where Ax is an 
increment of x which is taken as positive and may be replaced 
by dx when x is the independent variable. We made use of the 
following formula, derived in § 22,

Lim £ /(xt)Ax = f f(x)dx, (1)

which is the fundamental theorem of integral calculus.
The term f(x)dx, as well as the concrete object it represents, 

is called the element of the sum or the element of integration. 
In each problem we first found this element of integration and 
then proceeded to the integration.

We now wish to extend this method to a larger type of prob­
lems. Before doing this, however, certain theoretical questions 
need to be considered.

In finding the element of integration, it is often not possible 
to express the terms of the sum (1) exactly as/(Xj)Ax, the more 
exact expression being [/(x,) + e,] Ax, where the quantities e,- are 
not fully determined but are known to approach zero as a limit 
as Ax approaches zero. It is consequently of the highest impor­
tance to show that . ,t = n — 1 

Lim e, Ax = 0, 
SO that n-»ooi = O

Lim V [/(x,) + e,]Ax = Lim V/(x,)Ax = f ftxjdx.
i = 0 n^°° i = 0

260
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For that purpose, let 7 be a positive quantity which is equal to 
the largest numerical value of any in the sum. Then

- 7 S €i s 7
and — £7 Ax ïï £e,Ax £7 Ax.
But £7 Ax = 7£ Ax = 7(6 — a)
and Tim £7 Ax = 0 since 7 approaches zero as Ax approaches 

n->oo i = n-l
zero. Hence Lim £ e. Ax = 0.

n-» 00 i = 0

Hence the quantities ti which may appear in expressing the sum 
do not affect the value of the integral and may be omitted.

Quantities such as Ax and e,-, which approach zero as a limit, 
are called infinitesimals. Terms such as /(x)Ax, which are 
formed by multiplying Ax by a finite quantity, not zero, are 
called infinitesimals of the same order as Ax. Quantities such 
as e,- Ax, which are the products of two infinitesimals approach­
ing zero together, are called infinitesimals of higher order than 
either infinitesimal.

The theorem above proved may be restated in the following 
way:

In forming the element of integration infinitesimals of higher 
order than fix) Ax may be disregarded.

For example, consider the area under a curve considered in 
§ 22, Fig. 24. We have obtained the area by considering it as 
the limit of the sum of the areas of rectangles each of which has 
the area y Ax. Suppose that in place of rectangles we should 
use trapezoids formed by drawing chords DPi, P1P2, etc. 
(Fig. 24). The parallel sides of one of these trapezoids are, re­
spectively, y and y + Ay, and hence its area is y Ax + | Ay Ax. 
The term | Ay Ax is an infinitesimal of higher order than y Ax 
and our theorem asserts that no error is made in neglecting it in 
finding the limit of the sum. In fact it is geometrically evident 
chat the limit of the sum of the areas of the trapezoids is the 
same as the limit of the sum of the areas of the rectangles.

85. Infinite limits or integrand. There are cases in which it 
may seem to be necessary to use infinity for one or both of the 
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limits of a definite integral, or in which the integrand becomes 
infinite. We shall restrict the discussion of these cases to the 
solution of the following illustrative examples :

1
x2Example 1. Find the area bounded by the curve 2/ = ~(Fig. 99), 

the axis of x, and the ordinate x = 1.
It is seen that the curve has the axis of x as 

an asymptote ; and hence, strictly speaking, the 
required area is not completely bounded, since 
the curve and its asymptote do not intersect. Ac­
cordingly, in Fig. 99 let OM = 1 andON=&(6>l) ~O 
and draw the ordinates MP and NQ. Then

V

Fig. 99

Are. = [-!];= 1-1.

If the value of b is increased, the boundary line NQ moves to the 
right ; and the greater b becomes, the nearer the area approaches 
unity.

We may, accordingly, define the area bounded by the curve, the 
axis of x, and the ordinate x = 1 as the limit of the area MNQP as b 
increases indefinitely, and denote it by the symbol

Example 2. Find the area bounded by the curve y = 1 — :
(Fig. 100), the axis of x, and the ordinates x — 0 and x = a. * a'2 ~ x2

Since the line x = a is an asymptote of the curve, y x when 
x —> a ; furthermore, the area is not, strictly speak­
ing, bounded. We may, however, find the area 
bounded on the right by the ordinate x = a — h, 
where h is a small quantity, with the result

= [sin-1-! = sin-1
L aJo

Iffc-»0, sin-1^^-»sin-11 =

a~h dx 
y/a2 — x2

a

I.

Hence we may regard ~ as the value of the area 
required, and express it by the integral
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Find the value

Proceeding as in Example 1, we place
Example 3.

an expression which increases indefinitely as b —» oo ; hence the given 
integral has no finite value.

We accordingly conclude that in each case we must determine 
a limit, and that the problem has no solution if we cannot find 
a limit.

86. Element of integration. We shall collect in this section 
under the headings Area, Pressure, and Volume some of the 
elements of integration which are useful in determining those 
quantities. Some of these elements have already been used in 
previous sections, and some of them are derived here for the 
first time in this text.

Area. Let the required area (Fig. 101) 
be bounded below by the curve y =/i(x) 
and above by the curve y = fAx), where 
fAx) > /i(x). To form elements of area 
we draw a series of straight lines par­
allel to 01 and dx apart, and form a 
series of rectangles such as P1P2RS. If 
we denote MP2 by y2 and MPi by yi,
the length P1P2 of this rectangle is y2 — yi, and its width is dx. 
Hence, if the area of such a rectangle is taken as the element 
of area dA, ^A = (y2 — yi)dx = [/2(x) — /i(x)J dx. (1)

If one of the boundary curves is replaced by the axis of x, and 
the equation of the other curve is y — fix), we can form, as in 
§ 22, a similar series of elementary rectangles having one end 
on OX and have as a special case of (1) the formula

dA — y dx — f(x)dx. (2)
In (1) and (2) we assume that dx is positive. Then in (1), dA 

is always positive; in (2), however, dA is positive where the 
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axis of x is the lower boundary, and is negative where the axis 
of x is the upper boundary, of the required area.

Similarly, if the required area is bounded on the left by the 
curve x=fa(y), and on the right by the curve x=f2(y'), we may 
form the elementary rectangles of area by drawing a series of 
straight lines parallel to OX and dy apart. With this construc­
tion the area of any rectangle is (X2 — X\)dy, where Xi and x2 
are the respective values of x for the points of the two curves 
in which they are intersected by one of the series of parallel lines. 
Hence dA = (x2 - xrfdy = [f2(y)-fityfidy. (3)

As a special case of (3) we have the formula
dA = xdy = f(y)dy, (4)

when one of the curves coincides with the axis of y.
In (3) and (4) we assume that dy is positive. Then in (3) 

dA is always positive ; in (4), however, dA is positive where the 
axis of y is the left-hand boundary, and is negative where the 
axis of y is the right-hand boundary.

If part of the boundary of the required area is a curve whose 
equation is given in polar coordinates, we draw (§ 63) a series 
of radius vectors, any two consecutive radius vectors making 
an angle df) with each other. We then take as the element of 
area the area of a sector of circle of radius r, where r is the 
radius vector of the point of the curve at which it is intersected 
by one of the series of radius vectors. As the angle of the sector 
is d6, it follows that dA = | r2 dd. (5)

Or we may proceed as follows if the equation of the boundary 
curve is in polar coordinates. We may divide the required area 
up into circular rings by drawing a series of 
concentric circles having their common cen­
ter at the origin 0, the radii of two consecu­
tive circles differing by Ar (Fig. 102).

Then the area of such a ring is
ir(r + Ar)2 — 7rr2 = 2 irr Ar + tt Ar2

= 2 7rr Ar + e Ar,
where e — 7rAr and is hence an infinitesimal since it vanishes 
when Ar vanishes.
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By the theorem of § 84,
i=n — l i=n—l

Lim V (2-irri + e,)Ar = Lim V 27rrl Ar. 
n-»“ i = 0 i = 0

Hence we may take as the element of area a circular ring of 
this type and let dA = 2irr dr. (6)

Pressure. To find the hydrostatic pressure on any vertical 
plane area, we may draw a series of straight lines across the area 
parallel to the surface of the liquid (§ 24), each pair of consecu­
tive lines being at an infinitesimal distance apart. We can then 
form a series of infinitesimal rectangles of area dA with their 
long sides parallel to the surface of the liquid. Then if h is the 
depth of either of the long sides below the surface of the liquid 
and w is the weight of a unit volume of the liquid, we have the 
element of pressure dP given by the formula

dP = hw dA. (7)

Another method is to draw a series of straight lines (Fig. 103) 
perpendicular to the surface of the liquid MN, each pair of 
consecutive lines being an infinitesimal distance apart, and let
dA be the area of an infinitesi­
mal rectangle such as PiP2RS. 
It is easy to show that the 
pressure on any rectangle is 
equal to its area multiplied by 
w and the depth of its middle 
point (see Ex. 24, p. 77). If 
TPi = hi and TP2 = h2, and 
P is the middle point of PiP2, 
then TP = |(Ài + h2).

Hence the element of pressure dP is given, in this method, by
the formula dP = j(hi + h2)w dA. (8)

To evaluate either (7) or (8) it is necessary to express both 
h and dA in terms of the same variable.

Volume. To form an element of volume, dV, we pass through 
the solid a series of planes (§ 25) all perpendicular to some 



266 APPLICATIONS

chosen straight line, each pair of consecutive planes being at an 
infinitesimal distance apart. As these planes are parallel, they 
cut the given solid up into slices of infinitesimal thickness. Let 
A represent the area of either face of a slice. Let h represent the 
distance of the face of the slice from some chosen fixed point on 
the straight line to which all the cutting planes are perpendic­
ular. Then the thickness of a slice may be denoted by dh, and 
the volume of the slice is approximately A dh. Accurately speak­
ing, A dh is the volume of a solid of base A and sides of length dh 
perpendicular to the base, but the volumes of this solid and the 
slice differ by an infinitesimal of higher order. Hence we take 
the slice as the element of volume dV and let

dV = A dh. (9)

If we are to carry out the work by evaluating a definite in­
tegral, we must be able to express A in terms of h, or both of 
them in terms of a third variable.

Another element of volume may be found as follows : Through 
the solid pass a series of right circular cylinders having a com­
mon axis. These cylindrical surfaces divide the solid up into 
cylindrical shells. If the radii of two consecutive cylindrical 
surfaces are r and r + dr, the area of the cross section of the in­
cluded shell may be taken by (6) as 2 irrdr. If the altitude of 
the shell is denoted by h, the volume of the shell is approximately 
2 rrrh dr. Accordingly we may take such a cylindrical shell as 
an element of volume dV and write

dV = 2irrhdr. (10)

To use this element of volume it is necessary to express h in 
terms of r, or r in terms of h, or both r and h in terms of a third 
variable.

The use of some of these elements is illustrated in the follow­
ing examples :

Example 1. Find the area of the ellipse + 7- = 1.a2 o2
It is evident from the symmetry of the curve (Fig. 104) that one 

fourth of the required area is bounded by the axis of y, the axis of x, 
and the curve.
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Constructing
have

the rectangle MNQP as the element of area dA, we
Ł 

dA = y dx = - Va2 — x2dx.a

Hence

= — r^Va2 — x2 + a2 sin-1-l 
a L «Jo 2 

a
= irab.

Example 2. Let the ellipse of Example 1 be represented by the 
equations x = a cos </>, y = b sin </>.

Using the same element of area, and expressing y and dx in terms 
of </>, we have dA _ gin a gin

= — ab sin2 </> d</>.

hence A = 4 f “ y dx = — 4 f ° ab sin2 </> d<f>.
Jq Jir

2

It is evident from formula (1), § 23, that the sign of a definite in­
tegral is changed by interchanging the limits. Hence

A = 4 ab f 2sin2</> d<f>do 7T
, ,r</> sin 2 <Aj2= 4“Hf------ 4 |.= irab.
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Example 3. Find the area bounded by the axis of x, the para
bola y2 = kx, and the straight line

The straight line and the parabola 
!k k\intersect at the point Ci -, - ]> and 

the straight line intersects OX at 
•8^1’ 0^. Draw CD perpendicular to 

OX. If we construct the elements of 
area as in Example 1, they will be of 
different form according as they are 
to the left or to the right of the 
line CD; for on the left of CD we 
shall have

y + 2 x — k = 0 (Fig. 105).

dA = ydx - kÀx^ dx,
and on the right of CD we shall have

dA = ydx = (k — 2 x~)dx.
It will, accordingly, be necessary to compute separately the areas 

ODC and DBC and take their sum.

Area ODC = j' ^k^x^dx = | 3 k^xk2.

Area DBC = J"2(k — 2 x)dx = [fcx — x2|fc = jg k2.

4 4

Hence the required area is k2. It is to be noted that the area 
DBC, since it is that of a right triangle, could have been found by the 

kformulas of plane geometry ; for the altitude DC — - and the base
DB = - — and hence the area = •

4 4 16
Or we may construct the element 

of area as shown in Fig. 106.
Then, if Xi and x2 are the abscis­

sas, respectively, of Pi and P2,

Y
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Example 4. Find the volume of the ring solid generated by revolving 
a circle of radius a about an axis in its plane b units from its center (b > a).

Take the axis of revolution as O Y (Fig. 107) and the line through 
the center as OX. Then the equation of the circle is

(x — b)2 + y2 = a2.
A straight line parallel to OX meets the circle in two points: Pi, 

where x = Xi = b — Va2 — y2, and P2, where x = X2 — b + Va2 — y2.
A section of the required Y 
solid made by a plane 
through P1P2 perpendicular 
to OY is bounded by two 
concentric circles with radii 
MPi = Xi and MP2 = X2 re­
spectively. Hence

dV = (7TX22 — 7TXl2)dÿ 
= 4 7T&Va2 — y2dy.

The summation extends 
from the point L, where 
y = — a, to the point K, 
where y — a. On account of 
symmetry, however, we may

L
Fig. 107

twice the integral from y = 0 to
y — a. Hence ______

V = 2 f 4 irb y/a2 — y2 dy = 2 ir2a2b. 
Jo

Example 5. Find the volume of a hemisphere of radius a by use 
of formula (10).

Let a quarter of the hemisphere be represented in Fig. 108. Let
OX be perpendicular to the base of the 
hemisphere at its middle point 0. Let 
PiRiSiTi and P2R2S2T2 be quarters of 
right circular cylinders of radii r and 
r + dr, respectively, with OX as a com­
mon axis. If Pi Ti is taken as the alti­
tude of the cylindrical shell thus formed,

Pi Ti = y/a2 - r2,
since OTi — a, OP\ = r, and OP1T1 = 90°. 

Hence dV = 2 irry/a2 — r2dr,
and V = irry/a2 — r2dr

= [-^(a2-r2)*] “ = 2
0 3
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EXERCISES

1. Find the area of one of the closed figures bounded by the 
curves y2 = 9 x and y2 = x3.

2. Find the area bounded by the curve y2 = 4(x — 2) and the 
line 2 x — 3 y — 0.

3. Find the area between the axis of x and one arch of the cy­
cloid x = a(<l> — sin <f>), y = a(l — cos 0).

4. Find the area bounded by the hyperbola xy = 16 and the line 
x + y — 10 = 0.

5. Find the total area bounded by the curve 4 y2 = 9 x2 — x4.
6. Find the area bounded by the parabola x2 = 4 ay and the

8 a3

7. Find the total area bounded by the curve r = a(l — cos 2 O').
8. Find the area of that part of the circle r = 8 cos 9 which is 

outside the circle r = 4.
9. Find the total area bounded by the curve r = 4 + 2 cos 3 9.

10. Find the area inside the curve r — 5 + 3 cos 2 0 which is out­
side the circle r = 5.

11. Find the area inside the circle r — a cos 9 and outside the 
curve r = a(l — cos 0).

12. Find the area inside the curve r = 1 + 2 cos 9 which is outside 
the small loop of that curve.

13. Find the volume of the solid formed by revolving about OX 
the area bounded by OX, OY, and the curve + y? = ak

14. The area bounded by the ellipse x2 + 4 y2 = 16 is revolved 
about the line x + 4 = 0 as an axis. Find the volume of the solid 
generated.

15. Find the volume of the solid formed by revolving about the 
axis of x the area in the first quadrant bounded by OY and the 
curves y = 8 — 2 x2 and y = 4 x2.

16. Find the volume of the solid generated by revolving about the 
line x = 4 as an axis the area bounded by the line x = 4 and the 
hyperbola 9 x2 — 4 y2 = 36.

17. The section of a certain solid made by any plane perpendicular 
to OX is a square with the ends of one diagonal on the hyperbola 
4 x2 — 9 y2 = 36. Find the volume of this solid between the planes 
perpendicular to OX at the points for which x = 3 and x = 6.
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18. The section of a given solid made by any plane perpendicular 
to OX is an equilateral triangle with the ends of one of its sides on the 
curve y2 = 9 x2 — x4. Find the total volume of the solid.

19. The surface of the water in a given reservoir is 8 ft. above the 
bottom of the dam. In the side of the dam is a semicircular gate of 
2 ft. radius, the diameter of the semicircle being on a level with the 
bottom of the dam. What is the pressure on the gate ?

20. A gasoline tank is in the form of a right circular cylinder of 
radius 2 ft., with its axis horizontal. Find the pressure on one end in 
terms of w, the weight of a cubic foot of gasoline, when the gasoline 
is 3 ft. deep in the tank.

21. The vertical end of a given water tank is in the form of a 
parabolic segment, the base of which is horizontal and 4 ft. long, and 
the vertex of which is 2 ft. below the base. Determine the pressure 
on the end of the tank : (1) when the tank is full ; (2) when the sur­
face of the water is 1 ft. below the top of the tank.

87. Mean value of a function. Let /(x) be any function of x, 
and let y=f(x) be represented by the curve AB (Fig. 109), 
where OM — a and ON = b. Take the points Mi, M2, • ■ -, Mn-i
so as to divide the distance 
MN into n equal parts, each 
equal to dx ; then b — a = ndx. 
At the points M, Mi, M2, • • -, 
Mn_i erect the ordinates yo, 
yi, V2, • ■ -, yn-i- Then the 
average, or mean, value of 
these n ordinates is

yo + yi + ya -I-------- 1- yn-i
n

This fraction is equal to
Fig. 109

(yo + yi + ya -I-------\-yn-i)dx_ yodx + yidx + y2dx-|------ H yn-idx
ndx b — a

If n is indefinitely increased, this expression approaches as a
6limit the value

a

This is evidently the mean value of an "infinite number” of 
values of the function /(x) taken at equal distances between 
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the values x — a and x — b. It is called the mean value of the 
function for that interval.

If we now draw the ordinate NB, the integral 

is graphically represented by the area MN BA. Hence the mean 
value of the function is graphically represented by the altitude 
of a rectangle with the base MN which has the same area as 
MNBA.

We see from the above discussion that the average of the 
function y depends upon the variable x of which the equal 
intervals dx are taken, and we say that the function is aver­
aged with respect to x. If the function can also be averaged with 
respect to some other variable which is divided into equal parts, 
the result may be different. This is illustrated in the examples 
which follow.

Example 1. Find the mean velocity of a body falling from rest 
during the time G if the velocity is averaged with respect to the time.

Here we imagine the time from 0 to h divided into equal intervals 
dt and the velocities at the beginning of each interval averaged. 
Proceeding as in the text, we find, since v = gt, that the mean velocity 
equals ,

Since the velocity is gti when i = <i, it appears that in this case the 
mean velocity is half the final velocity.

Example 2. Find the mean velocity of a body falling from rest 
through a distance Si if the velocity is averaged with respect to the 
distance.

Here we imagine the distance from 0 to Si divided into equal inter­
vals ds and the velocities at the beginning of each interval averaged. 
Proceeding as in the text, we find, since v = V2 gs, that the mean 
velocity is .

Since the velocity is x/2 gsi when s = si, we see that in this case 
the mean velocity is two thirds the final velocity.
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EXERCISES

1. Find the mean value of the lengths of the perpendiculars from 
a diameter of a semicircle to the circumference, assuming the per­
pendiculars to be drawn at equal distances on the diameter.

2. Find the mean length of the perpendiculars drawn from the 
circumference of a semicircle to its diameter, assuming the perpen­
diculars to be drawn at equal distances on the circumference.

3. Find the mean length of the radii of a loop of the curve 
r = a cos 4 9, the angle between successive radii being constant.

4. From a point 1 in. from the center of a circle of radius 4 in. 
straight lines are drawn to points equally spaced along the circum­
ference. Find the mean of the squares of the lengths of these lines.

5. Find the mean area of the plane sections of a right circular 
cone of altitude h and radius a made by planes perpendicular to the 
axis at equal distances apart.

6. In a right circular cone of altitude 2 and radius of base 1, all 
possible right circular cylinders with their upper bases equally spaced 
along the altitude of the cone are inscribed. What is the mean vol­
ume of the inscribed cylinders ?

7. The angular velocity of a certain wheel is proportional to the 
square of the time. It starts from rest and in 3 minutes acquires an 
angular velocity of 300 revolutions per minute. Find the average 
angular velocity in that time.

8. Find the mean width of one arch of the curve y = sin x.
9. A particle vibrates according to the law s = a sin kt. Find the 

average velocity of the particle during the time of vibration from an 
extreme to the mean position of its path.

10. The formula connecting the pressure p in pounds per square 
inch and the volume v in cubic inches of a certain gas is pv = 40. 
Find the average pressure as the gas expands from 4 cu. in. to 8 cu. in.

88. Length of a plane curve. To find the length of any plane 
curve AB (Fig. 110), we assume n — 1 
points P1(X1, ?/i), P2(x2, ?/2), P3(X3, ?/3), 
• ■ -, Pn_i(xB_i, yn-i) on the curve be­
tween A and B, and connect each pair 
of consecutive points by a straight 
line. The length of AB is then defined 
as the limit of the sum of the lengths 
of the n chords as n is increased with­
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out limit and the length of each chord at the same time 
approaches zero as a limit.

The length of any chord PiPi+i is, by § 27,
V(xi+1 - Xi)2 + (yi+1 - yt)2 = Vax," + Ay2 (1)

if we denote xi+1 — x{ by Ax,- and yi+i — yi by A^,-.
Hence the length of the n chords is

i = n — 1

X x/AĘ2 + A^2, (2)
i = °

and, by definition,
i = n — 1 / —---------------

Length AB = Lim V vAxf + A?/,2. (3)
»->« i = 0

To bring this into the form of a definite integral we need to 
have the equation of the curve so given that x and y are both 
functions of an independent variable t. Here t is a third in­
dependent variable, or it may be either x or y.

Then we may write (3) in the form

(4)

Now as AZ

Length AB = Lim'-f

dt’

mA'“ux - \Z(î)2+(t)!■
and therefore, by (2), § 1,

We may now substitute in (4) by means of (5), with the 
result that

Length AB - Um ’ £ ' + <■]<*<

according to § 84.
(6)
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Hence, we have
Length AB (7)

where io and t\ are the values of t which determine the points 
A and B respectively.

We may write (7) in the more convenient form
Length AB = J's/dx2 + dy2, (8)

the appropriate limits of integration to be substituted.
It is to be noted that the expression Vdz2 + dy2 under the 

sign of integration is the ds of § 39. Accordingly we may express 
this ds in terms of polar coordinates, and obtain the formula

Length AB = Çy/dr2 + r2d92 (9)

to be used in case the equation of AB is in polar coordinates.
To evaluate either (8) or (9) we must express one of the 

variables involved in terms of the other, or both in terms of a 
third. The limits of integration may then be determined.

Example 1. Find the length of the parabola y2 = kx from the 
vertex to the point (a, b).

From the equation of the parabola we find 2 ydy = kdx. Hence 
formula (8) becomes either

or

Either integral leads to the result
s = ■— <4 b2 + k2 + J In 2 b +. 

2 k 4 k
Example 2. Find the length of one arch of the cycloid 

x = a(<p — sin </>), y = a(l — cos </>).
We have dx = a(l — cos 0)d</>, dy = a sin </> dcp ;

whence ds = a V2 — 2 cos </> dcp = 2 a sin dcp.
2 » "

Therefore s — 2 a C ’sin dtp = 8 a.



276 APPLICATIONS

EXERCISES

1. Find the length of the curve 2 y2 = (x — 2)3 from its point of 
intersection with OX to the point (4, 2).

2. Find the total length of the curve 8 y2 = x2 — x*.
3. The position of a body moving in the plane XOY is given at 

any time t by the equations x = t2 — 3, y = t3 + 2. How far will the 
body move during the first five seconds if the unit of time is the 
second and the unit of distance is the foot?

4. Find the length of the curve x = e 2'sin 2 t, y = e 21 cos 2 t 
between the points for which t = 0 and f = 5 •

4 f)
5. A point is moving along the curve r = a sin5 If it starts from 

the pole, how far will it go before it gets back to the pole again?
6. Find the total length of the curve r = a(l — cos 0).
7. Find the length of the catenary y = %(e“ + e “) from x = 0 to 

x = h.
8. Find the length of the curve y = In —---- - between the points

for which x = 1 and z = 2 respectively. e +
9. Find the length of the loop of the curve 9 y2 = 3 x2 + x3.
89. Area of a surface of revolution. A surface of revolution 

is a surface generated by the revolution of a plane curve around 
an axis in its plane. Let the curve AB (Fig. Ill) revolve about 
OH as an axis. To find the area of the 
surface generated, assume n — 1 points, 
Pi, P2, P3, • • -, Pn-i, between A and B 
and connect each pair of consecutive 
points by a straight line. These lines are 
omitted in the figure since they are so 
nearly coincident with the arcs. The 
surface generated by AB is then defined 
as the limit of the sum of the areas of 
the surfaces generated by the n chords 
APi, P1P2, P2P3, ■ • -, Pn-iB as n in­
creases without limit and the length of 
each chord approaches zero as a limit.

Each chord generates the lateral surface of a frustum of a 
right circular cone, the area of which may be found by elemen­
tary geometry.
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Draw the lines ANo, PiNi, P2N2, • • • perpendicular to OH, 
and place

N0A = To, NiPi = rlt N2P2 = r2, • • -, NnB = rn.

Then the frustum of the cone generated by PiPi+i has for the 
radius of the upper base N,+i_P,+i = r,-+i, and for the radius of 
the lower base NJ\ — rit and for its slant height P,P,+i. Its 
lateral area is therefore equal to

2 7T

But r,+i = Zj + Ar,.
Therefore the lateral area of the frustum of the cone equals 

2ir^ + ^P,Pi+1.

Now PiPi+i differs from ds (§ 88) by an infinitesimal of 
higher order. The lateral area of the frustum is therefore 
an infinitesimal which differs from

2 it r ids
by an infinitesimal of higher order. Hence, if we represent the 
required area by S, we have dS — 2 irrds, whence

8 = 2 7rJ~rds.

To evaluate the integral it is necessary to express r and ds in 
terms of the same variable and supply the limits of integration.

Example. Find the area of the surface of revolution generated 
by revolving about OX the portion of the parabola y2 = kx be­
tween the points for which x = 0 and x = a respectively.

Let B (Fig. 112) be the point of the parabola 
for which x = a ; the required surface is gener­
ated by the arc OB.

As in Example 1, § 88, we find
, , V4 y2 + k2 ,

v 4 y2 2 y
= ^kx+k2dx^

Fig. 112
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If PQ is the arc represented by ds, then r of the formula is the y 
for the point P.

r> V4 kX + k2 jHence dS = 2 iry------- v------- dx2 y
= 7fV4 kx + k2 dx,

and S — tt f y/4 kx + k2 dxJo

=777 [(4 to + F)ł_F], 
O K

EXERCISES

1. Find the area of a zone of height h on a sphere of radius a.
2. Find the area of the surface of the ring formed by revolving a 

circle of radius a about an axis in its plane b units from the center 
(b > a).

3. Find the area of the surface formed by revolving the curve 
+ yi = about OY.

4. Find the area of the curved surface of the catenoid formed by
Q / — _ ? \ 

revolving about OX the portion of the catenary y = -\ea + e a) 
between x = — h and x = h.

5. Find the area of the surface formed by revolving about the
a( - tangent at its lowest point the portion of the catenary y = -\ea + e a) 

between x = — h and x = h.
6. Find the area of the curved surface formed by revolving about 

O Y the portion of the parabola y2 = kx between y = 0 and y = k.
7. Find the area of the surface formed by revolving about OX an 

arch of the cycloid x = a(cf) — sin </>), y = a(l — cos </>).
8. Find the area of the surface formed by revolving an arch of 

the cycloid x = a((f) — sin </>), y = a(l — cos </>) about the tangent at 
its highest point.

9. Find the area of the surface formed by revolving the lem- 
niscate r2 = 2 a2 cos 2 9 about the initial line.

10. Find the area of the surface formed by revolving the lem- 
niscate r2 = 2 a2 cos 2 9 about the line 9 = 90°.
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90. Work. By definition the work done in moving a body 
against a constant force is equal to the force multiplied by the 
distance through which the body is moved. If the foot is taken 
as the unit of distance and the pound is taken as the unit of 
force, the unit of measure of work is called a foot-pound. Thus 
the work done in lifting a weight of 25 lb. through a distance 
of 50 ft. is 1250 ft.-lb.

Suppose now that a body is moved along OX (Fig. 113) from 
A(x = a) to B(x = b) against a force which is not constant but 
is a function of x, expressed by 
f(x). Let the line AB be divided ~o x MN b x

into intervals each equal to dx, Fig. 113
and let one of these intervals
be MN, where OM — x. Then the force at the point M is/(x), 
and if the force were constantly equal to /(x) throughout the 
interval MN, the work done in moving the body through MN 
would be f(x)dx. This expression therefore represents approxi­
mately the work actually done, and the approximation becomes 
more and more nearly exact as MN is taken smaller and smaller. 
The work done in moving from A to B is the limit of the sum of 
the terms f(x)dx computed for all the intervals between A and B. 
Hence we have jTt7 _

Example. The force which resists the stretching of a spring is pro­
portional to the amount the spring has been already stretched. For a 
certain spring this force is known to be 10 lb. when the spring has 
been stretched | in. Find the work done in stretching the spring 1 in. 
from its natural (unstretched) length.

If F is the force required to stretch the spring through a distance 
x, we have, from the statement of the problem,

F — kx;
and since F = 10 lb. when x = ft., we have k = 240. Therefore 
F = 240 x.

Reasoning as in the text, we have

W = 240 x dx = | ft.-lb.Jo
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EXERCISES

1. The law of force is F = 3 s — 5, where s is the distance. Find 
the work done upon a mass in moving it from a point where 
F = 1 to a point where F = 25.

2. A positive charge m of electricity is fixed at O. The repulsion 
on a unit charge at a distance x from O is — • Find the work done in x2
bringing a unit charge from infinity to a distance a from O.

3. Assuming that the force required to stretch a wire from the 
length a to the length a + x is proportional to -> and that a force 
of 1 lb. stretches a certain wire 48 in. in length to a length .04 in. 
greater, find the work done in stretching that wire from 48 in. to 
80 in.

4. A block slides along a straight line from 0 against a resistance 
ka2equal to —7----- -> where k and a are constants and x is the distance ofx2 + a2

the block from O at any time. Find the work done in moving the 
block from a distance a to a distance aV3 from O.

5. A cylindrical tank 10 ft. high and 10 ft. in diameter stands 
upon the roof of a building 50 ft. high. Find the work done in pump­
ing the tank full of water from the level of the ground, through a 
pipe to the bottom of the tank.

6. The section of a bowl made by any plane through its axis is a 
parabolic segment of height 3 ft. and base 4 ft. How much work is 
necessary to pump all the water out of the bowl if it is originally 
full?

7. A body moves in a straight line according to the formula x = ct2, 
where x is the distance traversed in a time t. If the resistance of the 
air is proportional to the square of the velocity, find the work done 
against the resistance of the air as the body moves from x = 0 to 
x = a.

8. A particle is moving along the ellipse x = a cos kt, y = b sin kt 
against a force which resists with a magnitude directly equal to the 
speed of the particle. Find the work done by the particle in moving 
along the arc of the ellipse in the first quadrant.

9. Assuming that above the surface of the earth the force of the 
earth’s attraction varies inversely as the square of the distance from 
the earth’s center, find the work done in moving a weight of w pounds 
from the surface of the earth to a distance a miles above the surface.
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10. A piston is free to slide in a cylinder of cross section S. The 
force acting on the piston is pS, where p is the pressure of the gas 
in the cylinder and is 7.8 lb. per square inch when the volume v is 
2.6 cu. in. Find the work done as the volume changes from 3 cu. in. to 
6 cu. in., according as the law connecting p and v is (1) pv = k or 
(2) pv1A = k.

91. Center of gravity. It is shown in mechanics that the cen­
ter of gravity of n particles of masses mi, m2, • • -, mn lying in a 
plane at points whose coordinates are (xi, yi), (æ2,2/2), • • -, (xn, yn) 
respectively is given by the formulas

- = miXi + m2x2 + ■ • • + mnxn
m1 + m2-\- ■ —(- mn

- _ rniyi + m2y2 + • • ■ + mnyn U i i i
(1)

mi + m2 + ■ ■ ■ + mn
This is the point through which the resultant of the weights 

of the particles always passes, no matter how the particles are 
placed with respect to the direction of the earth’s attraction.

We now wish to extend formulas (1) so that they may be 
applied to physical bodies in which the number of particles may 
be said to be infinite. For that purpose we divide the body into 
n elementary portions so small that the mass of each may be 
considered as concentrated at a point (x, y). Let the mass of 
each element be dm. If all the dimensions of dm are infini­
tesimal, it is immaterial at which point (x, y) within it we 
consider the mass as concentrated (§ 84). We have then to re­
place the m’s of formula (1) by dm and to take the limit of the 
sums involved in (1) as the number n is indefinitely increased 
and the elements of mass become indefinitely small. There 
result the general formulas

x
xdm y dm

(2)y
dm dm

The integral I dm is the total mass of the body, and, if this 

mass is denoted by M, formulas (2) may be written in the form

Mx y dm.
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In applying formulas (3) it is necessary to evaluate the two 
integrals J xdm and j' ydm, but if M can be found by elemen­

tary methods without integration, its value may be written 
down immediately.

We will first apply these formulas to the case of a slender wire 
so fine and so placed that it may be represented by a plane 
curve. More strictly speaking, the curve may be taken as the 
mathematical line which runs through the center of the physical 
wire. Let the curve be divided into elements of length ds. Then 

dm — pds,
where p is a constant equal to the mass of the wire per unit 
length. If this is substituted in (3), the constant p may be taken 
out of the integrals and canceled, and the result may be written
in the form _ f , _ f ,

sx — I x ds, sy = I y ds, (4)

where s on the left of the equations is the total length of the
curve. These formulas give the center of gravity of a plane curve.

Example 1. Find the center of gravity of one fourth of the cir­
cumference of a circle of radius a.

Here we know that the total length is | ira ; so that, from (4), we 
have I irax = J"xds, iray = j'yds.

To integrate, it is convenient to in­
troduce the central angle </> (Fig. 114) ; 
whence
x — a cos </>, y — a sin <f>, ds = a d<f>.

ir
Then | irax = fz a2 cos cbdd>, 

Jo
% irdÿ = Çz a2 sin <f>d<p ;

*'0
. - 2 a _ 2 awhence x = — > y =------

TT TT

Y

Consider now a solid of revolution formed by revolving the 
plane area (Fig. 115) ABCD about OY as an axis. It is assumed 
that the equation of the curve CD is given. It is evident from 
symmetry that the center of gravity of the solid lies on OY, 
so that we have to find only ÿ.
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Let the solid be divided into thin slices perpendicular to OY, 
as was done in § 25, and let each slice be divided into elements 
of mass dm. Let the summation of 
y dm first take place over one of the 
slices. In this summation y is con­
stant, and the result of the summa­
tion is therefore y times the mass of 
the slice. It is therefore py^irx2dy), 
where p is the density which we 
assume to be constant. We have 
now to extend the summation over 
all the slices. This gives the result 

p ( 7rx2ydy, (5)
<7 a

where OA = a and OB = b.
The mass M of the body is pV, where V is the total volume. 

Substituting these values in formula (3) and dividing out p, we 
have the formula

Vy= irx2ydy. (6)
•/a

It is to be noticed that this result is what we obtain if we in­
terpret dm in (3) as the mass of the slice 
and consider it concentrated at the mid­
dle point of one base of the slice.

Example 2. Find the center of gravity of 
a right circular cone of altitude b and ra­
dius a (Fig. 116).

This is a solid of revolution formed by 
revolving a right triangle about OY. How­
ever, the equation of a straight line need 
not be used, as similar triangles are simpler.

Fig. 116We have - = ? ; whence x = ^ y- The vol-
V b b

urne V is known to be | ira2b. Therefore, from (6), we have

ł Ta2by=fob^ y3dy = ira2b2
4 ’

whence
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EXERCISES

1. Show that the center of gravity of a semicircumference of 
radius a lies at a distance of — from the center of the circle on the7T
radius which bisects the semicircumference.

2. Show that the center of gravity of a circular arc which subtends 
an angle a at the center of a circle of radius a lies at a distance
— sin from the center of the circle on the radius which bisects a 2
the arc.

a( - -2^3. A wire hangs so as to form the catenary y = -\e° + e a). Find 
the center of gravity of the piece of the curve between the points 
for which x = — a and x — a.

4. Find the center of gravity of the arc of the cycloid 
x = a(cj> — sin </>), y = a(l — cos </>) between the first two sharp 
points.

5. Find the center of gravity of a solid hemisphere.
6. Find the center of gravity of the segment cut from a solid 

sphere of radius a by two parallel planes distant, respectively, hi and 
hatfo > hi) from the center of the sphere.

7. Find the center of gravity of a solid formed by revolving about 
its altitude a parabolic segment of base b and altitude a.

8. Find the center of gravity of the upper half of the solid formed 
by revolving about its base a parabolic segment of base b and 
altitude a, so placed that its base is vertical.

9. Find the center of gravity of the solid formed by revolving 
about OX the area bounded by OX, OY, and the first quadrant of

0»2 ni 2
the ellipse = 1.

92. Moment of inertia. When a rigid body is rotating about 
an axis, a certain quantity called the moment of inertia is of great 
importance.

This is defined as follows : The moment of inertia of a particle 
about an axis is the product of its mass and the square of its dis­
tance from the axis. The moment of inertia of a number of par­
ticles about the same axis is the sum of the moments of inertia 
of the separate particles about that axis. From these definitions 
we may derive the moment of inertia of a body.
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Let the body be divided into elements of mass dm. Let R 
be the distance of any point in the element from the axis about 
which we wish the moment of inertia. Then the moment of 
inertia of the element is approximately

R2dm.

We say "approximately” because not all points of the element 
are exactly a distance R from the axis, as R is the distance of 
some one point in the element. However, the smaller the ele­
ment the more pearly can it be regarded as concentrated at one 
point, and the limit of the sum of all the elements, as their size 
approaches zero and their number increases without limit, is 
the moment of inertia of the body. By § 84 it is immaterial 
which point of dm is taken at the distance R from the axis. 
Hence if I represents the moment of inertia of the body,

di — R2 dm,

and (1)

Consider now a thin plate which can be considered as a plane 
area with a mass. Let the surface of the plate be referred to 
coordinate axes and let it be required to find the moments of 
inertia about OY and OX. These moments of inertia will be 
denoted by Iv and Ix respectively.

To determine Iy we may divide the surface of the plate into 
elements of area dA, taking for dA a vertical strip as in (1), 
§ 86, so that , . , . ,s dA = (y2 - y^dx.

Then dm = p(y2 — yi)dx,

where p is the amount of mass per unit area of the plate.
Now all the points of the strip are approximately at the dis­

tance x from OY, and hence x may be taken as R for the whole 
strip. Therefore the moment of inertia of the strip about O Y is 
its mass multiplied by x2. Hence, denoting the moment of in­
ertia of the strip about OY by dly, we have

dly = px2(y2 — yi)dx.
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Since Iy is the limit of the sum of these differentials, we have
I y = P J x2(y 2 - yi)dx. (2)

Similarly, if we want Ix, we may divide the area into strips 
parallel to OX of mass p(x2 — Xi)dy. Each point of the strip 
may be regarded as at a distance y from OX, and, reasoning as 
before, we have dIx = py2^2 _ Xi}dy 

and Ix = p J y2(xz — x^dy. (3)

If we place p — 1 in (2) and (3), the resulting Iy and Ix are 
called the moments of inertia of the plane area about OY and 
OX respectively.

Find the moment of inertia of a rectangle of dimen- 

Y

Example 1.
sions a and b about the side of 
length b.

Let the rectangle be placed as 
in Fig. 117.

Draw the element of area
MN = dA = bdx.

Then, since each point of MN 
is approximately at the distance 
x from O Y, we have

dlv = bx2dx
and Iy= Çabx2dx = | a3b.•'0

This is the moment of inertia of the area. If we want the moment 
of inertia of a plate, we must multiply the result by p. But in that 
case the total mass M of the plate is pab. Whence P — and

4 = j Ma2.

Example 2. Find the moment of inertia of the quadrant of an 
ellipse + ^-= 1 (a > b) about its major axis.

We draw a strip parallel to OX (Fig. 118). Its area is
xdy =C^ y/b2 — y2 dy.
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Since each point of the strip is approximately at a distance y from

a thin plate, we must multiply by p. The area of the quadrant is 
(Example 1, § 86). Hence, if M is the total mass of the plate, 

M = Hence, for the plate,
I = I Mb2.

The polar moment of inertia of a plane area is defined as the 
moment of inertia of the area about an axis perpendicular to 
its plane. This may also be called conveniently the moment 
of inertia with respect to the point in which the axis cuts the 
plane of the area, for the distance of an element from the axis 
is simply its distance from that point. Thus we may speak, 
for example, of the polar moment of inertia with respect to 
an axis through the origin perpendicular to the plane of an area, 
or, more concisely, of the polar moment with respect to the 
origin.

If the area is divided into elements dm, and one point in 
the element has the coordinates (æ, y), the distance of that 
point from the origin is y/x2 + y2. That is, in (1), if we place 
R~ = x2 + y2, we shall have the formula for the polar moment 
of inertia with respect to the origin. Denoting this by Io, we 
have p

Io= (x2 + y2) dm. (4)

This integral may be split up into two integrals, giving

(5)

The first integral in (5) is the moment of inertia about OY 
and has been denoted by Iu ; the second integral is the moment 
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of inertia about OX and has been denoted by Ix. Therefore 
formula (4) may be written as

lo = Ą + h, (6)
so that the problem of finding the moment of inertia may be 
reduced to the solving of two problems of the type of the first 
part of this section.

Example 3. Find the polar moment of inertia of an ellipse with 
respect to the origin.

In Example 2 we found Ix for a quadrant of the ellipse. For the 
entire ellipse it is four times as great, since moments of inertia are 
added by definition. Hence / = 1 ^^3

By a similar calculation Iu = | ira3b.
Therefore Io = | 7ra&(a2 + b2).

If the area is replaced by a plate of mass M, this result gives
Io = 1 M(a? + &2).

Example 4. Required the polar moment of inertia of a circle
of radius a about its center.

This problem may be solved by the 
method of Example 3. It is more con­
venient to divide the circle into circular 
rings of radius r and width dr (Fig. 119). 
The area of one of these is 2 irr dr, and 
since each point is approximately at the 
distance r from 0, we have

dlo = 2 irr3 dr

and Io = 2 7T r3dr = 7ra4.

If M is the mass of a circular plate, this result multiplied by p 
reduces to /o = 1 Ma2.

It is evident from symmetry that for the circle Ix = I„. Hence 
Io = Ix + Iv = 2 Ix.

Therefore = i Ma2>

which is the moment of inertia of a circle about any diameter.
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The moment of inertia of a solid of revolution about the axis 
of revolution is the sum of the moments of inertia of the circular 
slices about the same axis, that is, of the polar moments of 
inertia of the circular slices about their centers. If the axis of
revolution is O Y, the radius of any circular section perpendicu­
lar to O Y is x and its thickness is dy. Its mass is therefore
pirx2dy, and therefore, by Example 4, its moment of inertia 
about OY is pirx^dy. The total moment of inertia of the
solid is therefore

Example 5. Find the moment of inertia of a circular cone about 
its axis.

Take the cone as in Example 2, § 91. Then we have

= 1 p*fX y'dy = à p™4b-
But if M is the mass of the cone, we have M = | pira2b.
Therefore Iy = Ma2.

EXERCISES

1. Find the moment of inertia of a rectangle of base b and alti­
tude a about a line through its center parallel to its base.

2. Find the moment of inertia of a triangle of base b and altitude 
a about a line through its vertex parallel to its base.

3. Find the moment of inertia of a triangle of base b and altitude 
a about its base.

4. Find the moment of inertia of an ellipse about its minor axis 
and also about its major axis.

5. Find the moment of inertia of a trapezoid about its lower base, 
taking the lower base as b, the upper base as a, and the altitude as h.

6. Find the moment of inertia about its base of a parabolic seg­
ment of base b and altitude a.

7. Find the polar moment of inertia about its center of a rec­
tangle of base b and altitude a.

8. Find the polar moment of inertia about its center of a circular 
ring, the outer radius being r2 and the inner radius n.

9. Find the polar moment of inertia of a right triangle of sides 
a and b about the vertex of the right angle.
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10. Find the moment of inertia about its axis of a right circular 
cylinder of height h and radius r.

11. Find the moment of inertia of a solid sphere of radius a about 
any diameter.

12. A paraboloid of revolution is formed by revolving the parabola 
x2 = 4 y about OY. Find the moment of inertia about OF of the 
solid bounded by this surface and the planes formed by revolving 
about O Y the lines y = 1 and y = 5.

93. Attraction. Two particles of matter of masses mi and m2 
respectively, separated by a distance r, attract each other with 
a force equal to The

r2 
same law holds for the attrac­
tion of two electric masses or 
of two magnetic poles. In all 
cases A: is a constant which de­
pends upon the units used.

Consider now n particles of 
masses mi, m2, m3, •• -,mn lying 
in a plane at the points Pi, P2, 
P3, • • -, Pn (Fig. 120). Let it 
be required to find their attraction upon a particle of unit mass 
situated*  at a point A in their plane.

Let the distances APi, AP2, • • •, APn be denoted by n. 
r2, • • -, rn. The attractions of the individual particles are

but these attractions cannot be added directly, since they are 
not parallel forces. To find their resultant we will resolve each 
into components along two perpendicular axes AX and AY 
respectively. If we denote the angle XAPi by 0», we have as 
the sum of the components along AX,

and for the sum of the components along A Y,

F = * gin + A: sin 02 +------F A: sin 0;ri2 1 r2 r„
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The resultant attraction is then

r = Va2 + y2
and acts in a direction which makes the angle tan-1 — with AX. 

X
Let it now be required to find the attraction of a solid of mass 

m upon a particle of unit mass situated at a point A. Let the 
solid be divided into n elements, the mass of each of which may­
be denoted by Am, and let Pi be a point at which the mass of 
any one element may be considered as concentrated. Then the 
attraction of this element on the particle at A is k^^, where 

r,2
Ti = APi, and its component in the direction of AX is cos 0it 

ri2
where 6, is the angle between the directions AX and AP,. Also 
the component in the direction of A Y is k sin 0„ Hence we 
have r*

r2n-oo/TJ r* J

Y=Lim‘f^

.2

iXm = kj'ŝdm.

r
■Ł

•Q
r

P

Example. Find the attraction of a uniform wire of length Z and mass 
M on a particle of unit mass situated in a straight 
line perpendicular to one end of the wire and at 
a distance a from it.

Let the wire OL (Fig. 121) lie in the axis of y 
with one end at the origin and let the particle of 
unit mass be at A on the axis of x where AO = a.

Divide OL into elements of length dy one of 
which is PQ, where OP = y. Then if p is the 
mass per unit length of the wire, dm = p dy.
Draw AP. Then AP = r = Va2 + y2, 0 = OAP, cos 0 = 
sin 0 = y Hence the formulas become

Va2 + y2 ,
X = pkÇl ady—,

•'o (a2 + y2)?

Jo (a2 + yrf
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To integrate, it is convenient to express y in terms of 9. Then 
y = a tan 9, and

„ pk ra a ,a pk ■ Mk ■X = — cos 9a9 = — sin a = —7- sin a,
Ct 0 ct ctt

Y = — Ç sin9d9— — (1 — cos a) = ~ {1 — cos a), a Jo a al
where a = OAL, and M = Ip.

If R is the resultant of X and Y, and the angle the resultant 
makes with OX, - 2 Mfc . 1

K=Vx*+ —sm-a,

and 0 = tan-1 = tan-1 1 — cos a 1 
---- :------  = sin a 2

EXERCISES

1. Find the attraction of a uniform straight wire of length I and 
mass M upon a particle of unit mass situated in the line of direction 
of the wire at a distance c from one end.

2. A particle of unit mass is situated at a perpendicular distance 
c from the center of a straight homogeneous wire of mass M and 
length I. Find the force of attraction of the wire.

3. Find the attraction of a uniform circular ring of radius a and 
mass M upon a particle of unit mass situated at a distance c from the 
center of the ring in a straight line perpendicular to the plane of 
the ring.

4. Find the attraction of a uniform circular disk of radius a and 
mass M upon a particle of unit mass situated at a perpendicular 
distance c from the center of the disk. (Divide the disk into con­
centric rings and use the result of Ex. 3.)

5. Find the attraction of a uniform right circular cylinder with 
mass M, radius of its base a, and length I upon a particle of unit 
mass situated in the axis of the cylinder produced, at a distance c 
from one end. (Divide the cylinder into parallel disks and use the 
result of Ex. 4.)

6. Find the attraction of a homogeneous hemisphere of radius a 
and mass M on a particle of unit mass in the straight line perpen­
dicular to the base at its center and at a distance a from the base 
in the direction away from the hemisphere.



GENERAL EXERCISES 293

7. The top of a homogeneous right circular cylinder of radius a is 
cut away into the form of a spherical surface of radius b (b > a), the 
center of which coincides with the center of the base of the cylinder. 
Find the attraction of the remaining portion of the cylinder on a 
particle of unit mass at the middle point of its base.

8. A solid of revolution of mass M is formed by revolving about 
OY as axis the area bounded by the curve y3 = x2 and the line y = 3. 
Find the attraction of this solid on a particle of unit mass at the 
origin of coordinates.

GENERAL EXERCISES

1. Find the area of the sector of the ellipse 16 x2 + 25 y2 = 400 
cut out of the first quadrant by the axis of x and the line 
15?/ — 16 z =0.

2. Find the area bounded on the right by the circle x2 4- y2 — 12 
and on the left by the curve y2 = x3.

3. Find the total area of the loop of the curve ax2 = ?/2(a + ?/).
4. Find the total area bounded by the curves 27 y2 = 16 x3 and 

y2 = 8(5 - x).
5. Find the area bounded by the curve x2y2 + a2b2 = a2y2 and its 

asymptotes.
6. Find the area bounded by the curve y2(x2 + a2) = a2x2 and its 

asymptotes.
7. Find the area bounded by the curve x = a cos 6, y = b sin3#.
8. Find the area inclosed by the curve x = a cos3#, y = a sin3#.
9. Find the area of a loop of the curve r2 = a2 sin nd.

10. Find the area inclosed by the curve r =
curve r = 4

1 + cos 9

4
1 — cos 6 and the

11. Find the area bounded by the circles r = a cos 9 and r = a sin 9.
12. Find the area in the first quadrant between the first and the 

second turns of the logarithmic spiral r = eaS.
13. Find the total area inside the curve r — a sin 2 9 and outside 

the circle f = 5 •

14. Find the area bounded on the outside by the large loop of 
g

the curve r = 2 + sin | and on the inside by the small loop of the 
same curve.
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15. Find the area of the segment of the cardioid r = a(l + cos O') 
cut off by a straight line perpendicular to the initial line at a dis­
tance | a from the origin O.

16. Find the area cut off from the lemniscate r2 = 2 a2 cos 2 9 by 
the straight line r cos 9 =

17. Two parabolas have a common vertex and a common axis, but 
lie in perpendicular planes. An ellipse moves with its plane perpen­
dicular to the axis and with the ends of its axes on the parabolas. 
Find the volume generated when the ellipse has moved a distance 
h from the common vertex of the parabolas.

18. Find the volume of the solid formed by revolving about the 
line x = 2 the figure bounded by the parabola y2 = 8 x and the line 
2x—1 = 0.

19. Find the volume of the solid generated by revolving about 
OY the area in the first quadrant bounded by the axis of x and the 
curves y2 = 4 ax and y2 = 4 a2 — 4 ax.

20. Find the volume of the solid generated by revolving about 
the line y + a = 0 as axis the area bounded by the curve x5 + ÿ*  = a5 
and the axes of x and y.

21. The plane sections of a certain solid made by planes perpen­
dicular to OX are squares with the ends of one of the diagonals of 
each square lying on the curve xs + y*  = a*.  Find its volume.

22. Find the volume formed by revolving about the line x = 2 
the plane figure bounded by the curve y2 = 4(2 — x) and the axis of y.

23. The sections of a solid made by planes perpendicular to O Y 
are circles with one diameter extending from the curve y2 = 6 x to 
the curve y2 = 6 — 3 x. Find the volume of the solid between the 
points of intersection of the curves.

24. A right circular cylinder of radius a is intersected by two 
planes, the first of which is perpendicular to the axis of the cylinder 
and the second of which makes an angle 9 with the first. Find the 
volume of the portion of the cylinder included between these two 
planes if their line of intersection is tangent to the circle cut from 
the cylinder by the first plane.

25. The cross section of a horizontal pipe is in the form of a semi­
circle of 4 in. radius, the diameter of the semicircle being at the top 
and horizontal. The pipe receives water from a roof 40 ft. above the 
top of the pipe. If the conductor leading from the roof to the pipe is 
full, what is the pressure on a board closing the end of the pipe?
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26. A horizontal gutter is U-shaped, a semicircle of radius 4 in. 
surmounted by a rectangle 8 in. wide by 4 in. deep. If the gutter is 
full of water and a board is placed across the end, how much pressure 
is exerted on the board?

27. The vertical end of an oil tank, 4 ft. tall and 6 ft. broad at its 
widest point, is made up of two parabolic segments with their bases 
horizontal and coincident. Find the total pressure on the end when 
the tank is full of oil which weighs 45 lb. per cubic foot.

28. The gasoline tank of an automobile is in the form of a horizon­
tal cylinder the ends of which are plane ellipses 20 in. high and 10 in. 
broad. Assuming w as the weight of a cubic inch of gasoline, find 
the pressure on one end of the tank when the gasoline is 15 in. deep.

29. Show that if y is a linear function of x, the mean value of y 
with respect to x is equal to one half the sum of the first and the 
last value of y in the interval over which the average is taken.

830. Find the mean width of the part of the curve y = —---- -—-
above the line y = a. x + 4 a

31. An ellipsoid of revolution is formed by revolving the ellipse 
9 x2 + 16 y2 = 144 about its minor axis. In this ellipsoid is inscribed 
a series of cones of revolution with their respective vertices at one 
end of the minor axis of the ellipse and their bases cutting off equal 
distances on the minor axis. Find the mean volume of these cones.

32. In a sphere of radius a a series of right circular cones is in­
scribed with their bases perpendicular to a given diameter of the 
sphere and so placed that they cut off arcs of equal length on any 
circle of the sphere made by a plane through the given diameter. 
Find the mean volume of these cones.

33. A series of rectangles are inscribed in the ellipse — + 7- = 1,a2 b2
(a > 6), with their sides parallel respectively to the major and the 
minor axes of the ellipse. If the sides perpendicular to the minor 
axis cut off equal distances on that axis, find the mean area of the 
rectangles.

34. A particle describes a simple harmonic motion defined by the 
equation s = a sin kt. Show that the mean kinetic energy f -— 1 

during a quarter vibration is half the maximum kinetic energy, if 
the average is taken with respect to the time.

35. In the motion defined in Ex. 34 what will be the ratio of the 
mean kinetic energy during a quarter vibration to the maximum 
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kinetic energy, if the average is taken with respect to the space 
traversed in a quarter vibration ?

36. A quantity of steam expands according to the law pi’0-8 = 1800, 
p being the pressure in pounds per square foot. Find the average 
pressure as the volume v increases from 1 cu. ft. to 4 cu. ft.

37. Find the total length of the curve x^ + y*  — a?.
38. Find the length of the curve

x = a cos <j> + a<j) sin <[>, y = a sin </> — a</> cos <f>,
from </> = 0 to </> = 4 ir.

39. A given area is inside the curve r = a cos 0 and outside the 
curve r = a(l — cos 0). Find the length of the boundary of this area.

40. Find the length of the loop of the curve 3 y2 = x2 — x3.
41. Find the total length of the curve x = a cos3 <p, y = b sin3 <fr.
42. Find the length of the curve

x = 2 a cos cf> — a cos 2 <f>, y = 2 a sin <f> — a sin 2 </> 
between the points for which <f> = 0 and tf> = 2 -it.

43. Show that the length of the logarithmic spiral r = eae between 
any two points is proportional to the difference of the radius vectors 
of the points.

44. Find the total length of the curve r — a sin3 - •o
45. Find the surface area of the prolate spheroid formed by re­

volving an ellipse about its major axis.
46. Find the surface area of the oblate spheroid formed by revolv­

ing an ellipse about its minor axis.
47. Find the area of the surface formed by revolving the curve 

x = a cos3 <p, y = a sin3 </> about OX.
48. Find the area of the surface formed by revolving about the 

line x — a the portion of the curve x = a cos3 <t>,y = a sin3 </> which is 
at the right of OY.

49. Find the area of the surface formed by revolving about the 
initial line the cardioid r = a(l + cos 0).

fc

50. If a center of force attracts with a magnitude equal to — >
x*  

where x is the distance of the body from the center, how much work 
will be done in moving the body in a straight line away from the 
center from a distance a to a distance 8 a ?
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51. A body is moved along a straight line toward a center of force 
which repels with a magnitude equal to kx when the body is at a 
distance x from the center. How much work will be done in moving 
the body from a distance 2 a to a distance a from the center ?

52. A central force attracts a body at a distance x from the center 
fcby an amount — • Find the work done in moving the body directly x3

away from the center from a distance a to the distance 2 a.
53. A bag containing originally 80 lb. of sand is lifted through a 

vertical distance of 8 ft. If the sand leaks out at such a rate that 
while the bag is being lifted the number of pounds of sand lost is 
equal to a constant times the square of the number of feet through 
which the bag has been lifted, and a total of 20 lb. of sand is lost dur­
ing the lifting, find the number of foot-pounds of work done in lifting 
the bag.

54. Find the foot-pounds of work done in lifting to a height of 
20 ft. above the top of the tank all the water contained in a horizontal 
cylindrical tank 10 ft. long and 2 ft. in radius, the tank being full at 
the outset.

55. Assuming that below the surface of the earth the force of the 
earth’s attraction varies directly as the distance from the earth’s 
center, find the work done in moving a weight of w pounds from a 
point a miles below the surface of the earth to the surface.

56. A wire carrying an electric current of magnitude C is bent 
into a circle of radius a. The force exerted by the current upon a 
unit magnetic pole at a distance x from the center of the circle in a 
straight line perpendicular to the plane of the circle is known to be

9 TrCa2------------- Find the work done in bringing a unit magnetic pole from 
(a2 + x2)^
infinity to the center of the circle along the line just mentioned.

57. Find the center of gravity of the arc of the curve x% + y% = a? 
which is above the axis of x.

58. A wire is bent into a curve of the form 9 y2 = x3. Find the 
center of gravity of the portion of the wire between the two points for 
which x = 5 respectively.

59. Find the center of gravity of the upper arc of the curve 
9 ay2 — x(x — 3 a)2 = 0 between the ordinates x = 0 and x = 3 a.

60. Find the center of gravity of the solid formed by revolving 
about OY the plane figure bounded by the parabola y2 — kx, the 
axis of y, and the line y = k.
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61. Find the center of gravity of the solid formed by revolving
about OY the surface bounded by the hyperbola = 1 and the
lines y = 0 and y = b. a b

62. Find the moment of inertia of a parallelogram of altitude a 
and base b about its base as an axis.

63. Find the moment of inertia of a plane circular ring, the inner 
radius and the outer radius of which are respectively 3 in. and 5 in., 
about a diameter of the ring as an axis.

64. Find the moment of inertia about its axis of a hollow right cir­
cular cylinder of mass M, its inner radius being n, its outer radius f2, 
and its height h.

65. A ring is cut from a spherical shell, whose inner and outer radii 
are, respectively, 5 ft. and 6 ft., by two parallel planes on the same 
side of the center and distant 1 ft. and 3 ft. respectively from the 
center. Find the moment of inertia of this ring about its axis.

66. The radius of the upper base and the radius of the lower base 
of the frustum of a right circular cone are, respectively, ri and r2. 
Find its moment of inertia about its axis.

67. Find the moment of inertia about OX of the volume formed 
by revolving about OX the area bounded by y = 4 x2, x = 1, and the 
axis of x.

68. Find the moment of inertia about OY of the solid formed by 
revolving about OY the area bounded by the curve x2 = y3 and the 
lines y = 1 and y = 3.

69. Find the attraction of a homogeneous straight wire of infinite 
length and mass p per unit length on a particle of unit mass at a per­
pendicular distance c from wire.

70. Find the attraction of a uniform straight wire of length I and 
mass M upon a particle of unit mass situated at a perpendicular 
distance c from the wire and so that lines drawn from the particle 
to the ends of the wire inclose an angle a.

71. Find the attraction of a wire of length I and mass M on an­
other parallel bar of the same length and mass so placed that the 
lines connecting the ends of the two bars are perpendicular to the 
bars and of length c.

72. A ring of mass M is cut from a homogeneous spherical shell, 
the inner radius and the outer radius of which are, respectively, 
4 ft. and 5 ft., by two parallel planes on the same side of the center 
of the shell and distant 1 ft. and 3 ft. respectively from the center. 
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Find the attraction of this ring on a particle of unit mass which 
is situated at the center of the shell.

73. A homogeneous solid of mass M is bounded by a right circular 
cone of vertical angle 90° and a spherical surface of radius 2 ft., the 
center of the spherical surface being at the vertex of the cone. Find 
the attraction of this solid on a particle of unit mass at the vertex of 
the cone.

74. Show that the attraction of a segment of one base, cut from 
a homogeneous sphere of radius a, on a particle of unit mass at its 

vertex is 2 -irhkp where p is the density of the sphere

and h is the height of the segment.
75. The vertex of a right circular cone of vertical angle 2 a is at 

the center of a homogeneous spherical shell, the inner radius and the 
outer radius of which are, respectively, di and a?. Find the attrac­
tion of the portion of the shell outside the cone on a particle of unit 
mass at the center of the shell.



CHAPTER XII
REPEATED INTEGRATION

94. Double integrals. The symbol

(1)

in which a and b are constants and yi and y% are either con­
stants or functions of x, indicates that two integrations are to 
be carried out in succession. The first integral to be evaluated is

»2

/(z, y)dxdy,

where x and dx are to be held constant. The result is a func­
tion of x only, multiplied by dx ; let us say, for convenience, 
FÇx)dx.

The second integral to be evaluated is, then,

Ç F(x)dx,
J a

which is of the familiar type.
Similarly, the symbol

n
l2

5<yx, y)dydx,
x

(2)

where a and b are constants and Xi and x% are either constants 
or functions of y, indicates first the integration 

in which y and dy are handled as constants, and afterwards in­
tegration with respect to y between the limits a and b.

300
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r=9-10

Example 1. Evaluate f 3 ( 2 xydxdy. 
uo uo

The first integration is

xydxdy = x?/2dxj2 = 2 xdx.

The second integration is

Example 2. Evaluate f1 f1 1 (x2 + y2)dxdy. 
Jo Jl — x

The first integration is

1 (x2 + 2/2)dxdî/ = px2ÿ + |ÿ3)dxl

The second integration is

J* 1 (x — 2 x2 + | x3 — | x6)dx = .

z» 2 a pExample 3. Evaluate I I *ay2dydx.Jo Jo
The first integration is

r— r 1| iay2 dy dx — | ?/2 a"dz/1

The second integration is

f2oJfl dv=[ JĆ_l:
Jo 4 a J 120 a J.

x =(x—2x2 + | x3—|x6)dx.
1 — X

4 a

12 a

0 5

A definite integral in one variable has been shown to be the 
limit of a sum, from which we infer that formula (1) involves 
first the determination of the limit of a sum with respect to y, 
and then the determination of the limit of a sum with respect 
to x. The application of the double integral comes from its in­
terpretation as the limit of a double summation.

How such forms arise in practice will be illustrated in the 
following sections. In the next section, by means of an appli­
cation to area, the method by which the limits of integration 
are found is explained. This should be read with care since 
the same principles are applied in all subsequent sections.
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EXERCISES

Find the values of the following integrals :

i r3 r»2 y c-c ydxdy
•Ą Jy X3

2. f ('yxy2dydx. •'I Jo
4 —

3. j'^xy dxdy.
X

4. J"3J"*  cos dxdy.

„ pi piz dxdy

Jo Jo y/x2 + y2 

g 77 4 cos x dx dy
' Jo Jo y/y 4- 4

9. p Csin3erdddr.
*10 *10

10 fasin0
Jo Jo Va2 — r2

11. p rsiner cos OdOdr. 
*'0 Jo

y*— f*  a cos 012. 2 r2 cos 0 d0 dr .-'o Jo

*^0 «'O y/x2 — y2 
g M rx dxdy

‘ Ji Jo y2 + x2
Y

95. Area as a double integral. Let it be required to find an 
area (Fig. 122) which is bounded below by the curve

y=fi(.x) (1)
and above by the curve y = f2(x), (2)
which intersect at the points B(a, c) and C(6, e). It is essential 
in Fig. 122 that any straight line parallel to O Y between the lines 
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x = a and x = b intersect each of the curves (1) and (2) in one 
and only one point. We shall call yi the value of y from equa­
tion (1) and y2 the value of y from equation (2) ; hence y2 > yi.

Let the plane be divided into rectangles by straight lines 
parallel to OX and O Y respectively. Then the area of any such 
rectangle is dA = dxdy, (3)
where dx is the distance between two consecutive lines parallel 
to OY, and where dy is the distance between two consecutive 
lines parallel to OX. The sum of the rectangles which are either 
wholly or partially within the required area is an approximation 
to the required area, but only an approximation, because the 
rectangles extend partially outside that area. We assume as 
evident, however, that the sum thus found becomes more nearly 
equal to the required area as the number of rectangles becomes 
larger and dx and dy become smaller. Hence we say that the 
required area is the limit of the sum of the terms dx dy.

This summation must be so carried out as to include every 
rectangle once and only once. To do this systematically we 
begin with any rectangle in the interior, such as PQRS, and add 
first those rectangles which lie in the vertical strip with it. That 
is, we take the limit of the sum of dx dy, with x and dx held 
constant and y varying from yi = /i(x) to y 2 = fa(x). This is 
indicated by the symbol

dxdy = (ÿ2 - y\)dx = [/2(a;) - fi(x)]dx. (4)

This is the area of the strip KLMN.
We are now to take the limit of the sum of all such strips as 

dx —» 0 and x varies from a to b. We have then

If we put together what we have done we see that we have

dxdy. (6)

This discussion enables us to express the area as a double in­
tegral. It does not, however, give us any more convenient way 
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to compute the area than that used in Chapter XI, for the result 
(4) of the first integration is simply what may be written down 
at once for the area of a vertical strip taken as the element of 
area, as in (1), § 86.

Let us now also assume that any straight line parallel to OX 
between the lines y = c and y = e intersects each of the bound­
ary curves in but a single point. In this case we may proceed as 
follows :

Let the equation of the boundary curve on the left of the area 
be written in the form x = Fi(y), (7)
and the equation of the boundary curve on the right of the area 
be written in the form „ , . /o.x = F Ay). (8)

Denote by Xi, the value of x from equation (7), and by x2, 
the value of x from equation (8) ; then X2 > aq.

We may now make our first summation with respect to x, 
holding y and dy constant. The result is the area of the horizon­
tal strip TUVW and is indicated by the symbol

dydx = (x2 - xi)dy = [_F2(y) - ^Ay)]dy. (9)

We now take the limit of the sum of all these strips as dy —> 0 
and y varies from c to e. We have then

A = I (x2 - Xi)dy = I [F2(y) - FAy)]dy. (10)

If we put together what has been done we see that we have

dydx. (ID

' The area has now been expressed as a double integral with the 
order of integration the reverse of that in (6). We noted that the 
use of (6) gives a no more convenient method of determining 
area than the use of the vertical strip of area (1), § 86. In like 
manner, the use of (11) gives a no more convenient method of 
determining area than the use of the horizontal strip of area 
(3), § 86.
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E^'ni
F

II

o G 1^c
double integral of the form / I dx dy as 
nrpvimis discussion J J

It should not be assumed that it is always possible to express 
a required area as one double integral, using either order of in­
tegration. For example, consider the area BCDE (Fig. 123) 
which is bounded below by the curve y=fi(x), above by the 
curve y = f2(,x'), on the left by the line x = a, 
and on the right by the line x = b. As every 
straight line parallel to O Y between the lines 
x = a and x = b cuts each of the boundary 
curves ÿ = /i(x) and y = fa(x) in but a single 
point, it is evident that we can express the area 
by one < 
in our previous discussion.

Suppose, however, that we try to make the first integration 
with respect to x. Draw the straight lines CG and EF parallel 
to OX, dividing the area into three parts, I, II, and III, as noted 
in the figure. In I, the result of the first integration is the area 
of a horizontal strip extending from the line x = a on the left 
to the curve y = fi(x) on the right ; in II, the result of the first 
integration is the area of a horizontal strip extending from the 
line x = a on the left to the line x — b on the right ; and in III, 
the result of the first integration is the area of a horizontal strip 
extending from the curve y — fz(x') on the left to the line x — b 
on the right. Hence the limits of integration are different 
according as the strip formed by the first integration is in I, II, 
or III ; it follows that it will require three double integrals of 
the formJJ”dydx to express the area BCDE.

As another example, suppose we have to find the area BCDE 
(Fig. 124), bounded on the left by the curve 
x =fi(.y), on the right by the curve x = f2(y'), 
below by the line y = c, and above by the line 
y = e. Drawing the straight lines EF and DG 
parallel to OY, and examining Fig. 124 as we 
examined Fig. 123, we conclude that the area 
BCDE may be expressed by one double inte­
gral of the form 

integrals of the form

ÇJ'dydx, but that it will require three double 

dxdy to express the same area.
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It is to be noted that the above diagrams do not cover all 
possible cases, but that the fundamental aim is to include all 
the elements dxdy in the summation. In order to accomplish 
this purpose it may be necessary to divide the area into more 
parts than those in the cases considered. In all cases we may 
write the general formula y

A

Example. Find by double integration the 
area bounded by the parabola y2 = 16 x and 
the line y — 4 x — 8 (Fig. 125).

The boundary lines intersect at the points 
B(l, - 4) and 0(4, 8).

Drawing in an element of area
d A = dx dy,

we see that if the first integration is made 
with respect to x all the resulting horizontal 
strips will be alike in that they extend from 
the parabola on the left to the straight line 
on the right ; hence for the first integration 
with respect to x the lower limit, derived
from the equation of the parabola, is always

16 and the upper limit, derived from the 
equation of the straight line, is always 2 + U

4
To sum up all the horizontal strips, evidently y varies from 

— 4 to 8. Hence
z>8 z’2 + -A = I f 4 dydxJ— 4 v y2

16

8 

- 4
= 18.

Suppose, however, we wish to make the first integration with 
respect to y. We see that the limits of integration with respect to y 
depend on whether the resulting vertical strip is to the left or to the 
right of the straight line BC which is drawn parallel to OY and
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hence has the equation x = 1 ; accordingly two double integrals 
will be required to find the total area.

Considering first the area to the left of BC, which we will denote 
by Ai, we see that the limits of integration with respect to y are 
— 4 Vx and 4 Vx, as from the equation of the parabola the equation 
of OB is y = — 4 Vx and the equation of OCD is y = 4 Vx. Finally, 
the limits of integration with respect to x are 0 and 1. Hence

Ai = f1 dxdy

=J~ '&y/xdx = | -;iĘ- x^ = 16
5 ■

Denoting the area to the right of BC by A2, we see that the 
limits of integration with respect to y are 4 x — 8 from the equation 
of the straight line and 4Vx from the equation of the parabola. 
Finally, the limits of integration with respect to x are 1 and 4. 
Hence

= f ' (4 Vx — 4 x + 8)dx

* x’ - 2 x2 + 8 x

Finally, the required area is + ^8~, which is 18, as was found by 
the other solution.

Consider a similar problem in polar coordinates. Let an 
area, as in Fig. 126, be bounded by two curves n =/i(0) and 
r2 = f2(8), and let the values of 8 corresponding to the points 
B and C be 0i and 82 respectively. We assume that rj < r2 for all 
values of 8 between di and 82- The plane may be divided into 
four-sided figures by circles with centers at O and straight lines 
radiating from O. Let the angle between two consecutive radii 
be d8 and the distance between two consecutive circles be dr. 
We want first the area of one of the quadrilaterals, such as PQRS. 
Here OP = r, PQ — dr, and the angle POS — d8. By geometry 
the area of the sector POS = | r2dd and the area of the sector 
QOR = |(r + dr)2d8 ; therefore PQRS = |(r + dr)2d8 — | r2d8 
— rdrdd + ^(dr)2d8 = (j + ^-^drd8. Now as dr and d8 approach 

zero as a limit it is evident that the area PQRS is of the form
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(r + e)drdd, where e is an infinitesimal. Hence PQRS differs 
from rdddr by an infinitesimal of higher order (§ 84), and it may
be shown by a discus­
sion similar to that of 
§ 84 that this infinitesi­
mal does not affect the 
limit of the sum of the 
expression, and we are 
therefore justified in 
writing as the differ­
ential of area

dA = rdddr. (12)
Referring to Fig. 126, 

we see that rdd is the 
length of the side PS 
of the area PQRS and 
dr is the length of the 

6=3,

Fig. 126
side PQ.

The required area is the limit of the sum of the differentials 
of area (12). To find it we first take the limit of the sum of the 
quadrilaterals, such as PQRS, which lie in the same sector UOV. 
That is, we integrate rdddr, holding d and dd constant and 
allowing r to vary from n to r2. We have 

Ç rdddr = | (r22
Jn

r^dd, (13)

which is the area of the strip TUVW.
Finally, we take the limit of the sum of the areas of all such 

strips in the required area and have
A= C^^-r^dd. (14)

c/01

If we put together what we have done, we may write

J
/*  02 f*T2

' I rdddr. (15)
01 f“l

It is clear that this formula leads to nothing which might 
not be obtained by (5), § 86, but it is convenient sometimes to 
have the expression (15).
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(16)

In connection with a plane area we may consider the integral

y~)dxdy

Here dxdy = dA as before, while f(x, y) is a function whose 
value is computed at some point (x, y) of the element dxdy. The 
product /(x, y)dxdy is then formed for each element of area. 
Finally, the products are summed and the limit of the sum is 
determined as dx and dy each approaches zero. The result is 
evaluated by a double integration where the limits of integra­
tion are to be determined, exactly as in finding the area.

The integral 
-, 6) rdddr (17)

has a similar meaning in polar coordinates.
96. Center of gravity of a plane area. Formulas (3), §91, may 

now be applied to a plane area. Let the area be divided in any 
way into elements of area dA. Then if p is the amount of mass 
per unit area, _ p^A, m = pA.

By substitution in (3), § 91, we have

(1)

If we use Cartesian coordinates we may take dA = dxdy, 
and if the area considered is of the general form of Fig. 122, we 
have, using the notation of § 95,

nV2 CV2
xdxdy, Aÿ= I ydxdy. (2)

Ja Jy\
Making the first integration in each of the formulas (2), we 

= f x(y2 - yi)dx,
rb Ja (3)

= I i(?/22 — yi2)dx = I |(?/2 + ?/i)(?/2 — yi)dx
J a a

have
Ax

Ay

These results may be interpreted as follows : The area of the 
vertical strip in Fig. 122 is (7/2 — yi)dx and the middle point of 
its left-hand edge is (x, (7/2 + ?/i))- Hence in (1) we may take
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dA as the area of a vertical strip, regard its mass as concen­
trated at the middle point of its left-hand edge, and complete 
the work by a single integration.

Example 1. Find the center of gravity of 
the parabola y2 = kx, the axis of x, and the 
ordinate through the point (a, &) of the 
parabola (Fig. 127).

We shall denote the ordinate of any 
point on the parabola by yi to distinguish 
it from the ordinate of the point (x, y) at 
which the element dA is concentrated.

We will solve the problem first by tak­
ing dA as the vertical strip of the figure. 
Then dA = yidx = y/kx dx and the middle 
point of its left-hand edge is (x, which is

bythe area bounded

Ax =j'ax'Vkxdx = § k^cfi, 

Aÿ=Ça^Vk'xdx = ^.
Jo 4

52
But, from the equation of the curve, & = —, and, by Exercise 4, 

p. 76, A = § ab, Therefore a
x = ja, y= t b.

Or we may solve the problem by taking as dA the small shaded 
rectangle of dimension dx and dy in Fig. 127. Then dA = dx dy and 
the point of concentration (x, y) may be taken as the lower left-hand 
corner of the rectangle. Then we have, since yi = y/kx,

Ax = f a Cv'xdxdy = C“xy/kxdx = f Jo Jo Jo
.- f a vi rakx j ka2Ay= I y dxdy- —dx = —>Jo Jo Jo 2 4

as before. It is to be noted that the results of the first integrations 
in this method of solution are the integrals which we wrote down 
at once in the first method of solution.

If we have an area bounded by curves in polar coordinates, we 
may put dA — rdddr in (1). We have then to place x — r cos 0, 
y = r sin 0 and (1) becomes

Ax r2 cos Odddr, Ay =Jj^f2 sin OdOdr. (4)
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Example 2. Find the center of gravity of a sextant of a circle of 
radius a.

To solve this problem it is convenient to place the sextant so that 
the axis of x bisects it (Fig. 128) and 
to use polar coordinates.

From the symmetry of the figure 
the center of gravity lies on OX, so 
that we may write at once ÿ = 0. 
To find x take an element of area 
rd8dr in polar coordinates and place 
x = r cos 0. We have then, from (4),

IT 
Ax=j'a J" rI 2 cos 8d8 dr, 

~6 
where A = | ira2, one sixth the area 
of a circle. In the first integration 8 
and d6 are constant, and the sum­
mation takes place along a line ra­

I ira2x = f ® I a3 cos 8dd = | a3 ;J 7T
6

_ 2 ax -------
7T

EXERCISES

1. Find the center of gravity of a parabolic segment of base b 
and altitude a.

2. Find the center of gravity of a quadrant of the area of a circle.
3. Find the center of gravity of a triangle.
4. Find the center of gravity of the area bounded by the curve 

y = sin x and the axis of x between x = 0 and x — tt.
5. Find the center of gravity of the plane area bounded by the 

two parabolas y2 = 12 x and x2 = 12 y.
6. Find the center of gravity of a figure which is composed of 

a rectangle of base 2 a and altitude b surmounted by a semicircle 
of radius a.

7. Find the center of gravity of the area bounded by the first 
arch of the cycloid (§ 51) and the axis of x.

diating from 0 with r varying from 0 to a. The angle 8 then 
varies from — to —> and thus the entire area is covered. The 6 o

is as follows : 7Tsolution

whence
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8. Show that the center of gravity of a sector of a circle lies at

the angle of the sector, where a is the angle and a the radius.
9. Find the center of gravity of the area bounded by the cardioid 

r = a(l + cos 0).
10. Find the center of gravity of the area bounded by the curve 

r = 2 cos 0 + 4.
11. Find the center of gravity of the area inside the curve 

r = a cos 0 and outside the curve r = a(l — cos 0).
97. Center of gravity of a composite body. In finding the cen­

ter of gravity of a body the following theorem is often useful :
If a body of mass M is composed of several parts of masses 

Mi, M2, • • -, Mn, and if the centers of gravity of these parts are 
respectively (xi, ÿf), (x2, ÿ2), • • -, (æ™, ÿn), then the center of grav­
ity of the composite body is given by the formulas

Mx = M1X1 -f" M2x2 4*  • • • -f- Mnxn, 
Mÿ = Mfÿi + M2ÿ2 + • • • + Mnÿn.

(1)

We shall prove the theorem for the x coordinate. The proof 
for ÿ is the same.

By (3), § 91, we have, for the original body,

(2)
where the integration is to be taken over all the partial masses 
Mi, M2, • • -, Mn into which the body is divided. Hence formula 
(2) can be written 

(3)

where the subscripts indicate that the integration in each case 
is restricted to one of the several bodies.
But we have also C

(4)

M. —J xndmn,

and, by substitution in (3), the theorem is proved.
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Example. Find the center of gravity of an area bounded by two 
circles one of which is completely inside the other.

Let the two circles be placed as in Fig. 129, where the center of the 
larger circle of radius a is at the origin, and the center of the smaller 
circle of radius b is on the axis of x 
at a distance c from the origin.

The area which can be considered 
as composed of two parts is that of 
the larger circle, the two parts being, 
first, the smaller circle and, second, 
the irregular ring whose center of 
gravity we wish to find. Now the 
center of gravity of a circle is known 
to be at its center. Therefore, in 
the formula of the theorem, we 
know (x, ÿ), which is on the left of 
the equation, to be (0, 0), and 
(xi, ÿi) to be (c, 0), and wish to 
find (x2, y2).

Since we are dealing with areas, we take the masses to be equal 
to the areas, and have, accordingly, M — ira2 (the mass of the larger 
circle), Mi = irb2 (the mass of the smaller circle), and M2 = Tt(a2 — b2) 
(the mass of the ring). Substituting in the formula, we have

ira2 ■ 0 = irb2c + 7r(a2 — b2)x2 ;
. _ _ b2cwhence, by solving for x2, x2 —---- r----— •a2 — b2

It is unnecessary to find y2, since, by symmetry, the center of 
gravity lies on OX.

EXERCISES

1. Prove that if a mass M2 with center of gravity (x2, y2) is cut 
from a mass Mi with center of gravity (Xi, ÿi), the center of gravity 
of the remaining mass is

- _ MiXt - M2x2 t _ Miÿi - M2y2 .
Mi - M2 ’ y Mi - M2

2. Two circles of radii ri and r2 are tangent externally. Find their 
center of gravity.

3. Find the center of gravity of a hemispherical shell bounded by 
two concentric hemispheres of radii ri and r2.

4. Place r2 = ri + Ar in Ex. 3, let Ar approach zero, and thus find 
the center of gravity of a hemispherical surface.
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5. Find the center of gravity of a hollow right circular cone 
bounded by two parallel conical surfaces of altitudes hi and h2 re­
spectively and with their bases in the same plane.

6. Place h2 = hi + Ah in Ex. 5, let A/i approach zero, and thus 
find the center of gravity of a conical surface.

7. Find the center of gravity of a carpenter’s square, each arm 
of which is 18 in. on its outer edge and 3 in. wide.

8. From a square of edge 8 in. a quadrant of a circle is cut out, 
the center of the quadrant being at a corner of the square and the 
radius of the quadrant being 4 in. Find the center of gravity of the 
figure remaining.

9. Two iron balls, of radius 4 in. and 6 in. respectively, are con­
nected by an iron rod of length 1 in. Assuming that the rod is a 
cylinder of radius 1 in., find the center of gravity of the system.

10. A cubical pedestal of side 4 ft. is surmounted by a sphere of 
radius 2 ft. Find the center of gravity of the system, assuming that 
the sphere rests on the middle point of the top of the pedestal.

98. Theorems. The following theorems involving the center 
of gravity may often be used to advantage in finding pressures, 
volumes of solids of revolution, or areas of surfaces of revolution.

Y
Fig. 130

1. The total pressure on a plane surface immersed in liquid in a 
vertical position is equal to the area of the surface multiplied by the 
pressure at its center of gravity. _____o ________ x

Take any area of any shape, as in 
Fig. 130. Construct coordinate axes so 
that the axis of x is in the surface of the 
liquid and the axis of y is measured down­
ward, and divide the area into elements 
of area dA = dx dy. Then, if such an ele­
ment is at the depth y, the pressure on it 
is wy dx dy, and the total pressure P is the 
limit of the sum of the pressures on all the elements as the 
elements are made to approach zero in size. Hence

P =wy dxdy — wJ'J'y dx dy.

Moreover, from § 96, we have

Ay

(1)

(2)=J'J'ydxdy-
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By comparison of (1) and (2) we have
P = wyA.

But wÿ is the pressure at the center of gravity, and the theorem 
is proved.

Example 1. A circular bulkhead which closes the outlet of a res­
ervoir has a radius 3 ft., and its center is 12 ft. below the surface 
of the water. Find the total pressure on it.

Here A = 9 7r and the depth of the center of gravity is 12. Therefore
P = 108 7tw = -2g7- 7T tons = 10.6 tons.

2. The volume generated by revolving a plane area about an axis 
in its plane not intersecting the area is equal to the area of the figure 
multiplied by the circumference of the circle described by its center 
of gravity. y

Let the plane area be taken in the 
plane XOY and let OY be the axis of 
revolution (Fig. 131). Each element of 
area dx dy will generate a cylindrical shell 
of inner radius x, thickness dx, and alti­
tude dy. The volume of this shell is 
2 rvxdxdy, by (10), § 86, an'd the volume 
of the whole solid of revolution is the
limit of the sum of the volumes of these shells. Hence 

By § 96,

(3)

(4)

and, by comparison of (3) and (4), we have 
V = 2 tvxA, 

which was to be proved.
Example 2. Find the volume of the ring solid formed by re­

volving about an axis in its plane a circle of radius a whose center is 
at a distance c from the axis, where c > a.

We know that A = rra2 and that the center of gravity of the circle 
is at the center of the circle and therefore describes a circumference 
of length 2 ire. Therefore

V = 2 rr2a2c.
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3. The area generated by revolving a plane curve about an axis 
in its plane not intersecting the curve is equal to the length of the 
curve multiplied by the circumference of the circle described by its 
center of gravity.

If 8 is the area of the surface formed by revolving a plane 
curve about OY, then, by § 89,

(5)

Moreover, by (4), § 91, we have

sx (6)

and comparing the two equations (5) and (6), we have
S - 2 TTSX,

which was to be proved.
Example 3. Find the area of the ring surface described in Exam­

ple 2.
We know that s = 2 ira and that the center of gravity of a circum­

ference is at its center and therefore describes a circumference of 
length 2 ire. Therefore a — aS = 4 rr2ac.

Theorems 2 and 3 are known as the theorems of Pappus.

EXERCISES

1. Find by the theorems of Pappus the volume and the surface 
of a sphere.

2. Find by the theorems of Pappus the volume and the lateral 
surface of a right circular cone.

3. Find by the theorems of Pappus the volume generated by 
revolving a parabolic segment about its altitude.

4. Find by the theorems of Pappus the volume generated by re­
volving a parabolic segment about its base.

5. Find by the theorems of Pappus the volume generated by re­
volving a parabolic segment about the tangent at its vertex.

6. Find the volume and the surface generated by revolving a
square of side a about an axis in its plane perpendicular to one of 
its diagonals and at a distance b from its center.
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7. Find the volume and the area generated by revolving a right 
triangle with legs a and b about an axis in its plane parallel to the 
leg of length a on the opposite side from the hypotenuse and at a 
distance c from the vertex of the right angle.

8. A circular water main has a diameter of 4 ft. One end is 
closed by a bulkhead, and the other is connected with a reservoir in 
which the surface of the water is 18 ft. above the center of the bulk­
head. Find the pressure on the bulkhead.

9. Find the pressure on an ellipse of semiaxes a and b completely 
submerged, if the center of the ellipse is c units below the surface of 
the liquid.

10. Find the pressure on a semiellipse of semiaxes a and b (a> b) 
submerged with the major axis in the surface of the liquid and the 
minor axis vertical.

11. Find the pressure on a parabolic segment submerged with the 
base horizontal, the axis vertical, the vertex above the base, and the 
vertex c units below the surface of the liquid.

12. What is the effect on the pressure on a submerged vertical area 
in a reservoir if the level of the water in the reservoir is raised by c 
feet?

13. Find the center of gravity of an area of a semicircle by the 
theorems of Pappus.

14. Find the center of gravity of a semicircumference by the 
theorems of Pappus.

99. Moment of inertia of a plane area. The moment of inertia 
of a plane area may be expressed as a double integral. Let the 
area be divided into elements of area dxdy. Then dm — pdxdy, 
where p is the amount of mass per unit of area. Let (x, y) be 
any point of the element of area. By the theorem of § 84, 
which is easily extended to the case of a double integral, it is 
immaterial which point of dxdy is taken as the point (x, y). 
The mass dm is at a distance x from OF. Its moment of inertia 
about O Y is therefore px2dx dy, by the definition of § 92. The 
moment of inertia of the area about O Y is the limit of the sum 
of the moments of inertia of the elements as dx and dy approach 
zero. Therefore, placing p = 1, we have
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Similarly, the element dxdy is at a distance y from OX, and 
therefore

Ix

Again, each element is at a distance Vx2 + ?/2 from 0. Its 
polar moment of inertia about 0 is therefore (x2 + y2)dx dy, and 
the polar moment of the whole area is

Io —JJ' (x2 + y2)dxdy. (3)

In evaluating these integrals the integration may be carried 
out in either order. It is usually convenient to integrate (1) with 
respect to y first. Then, if the area and limits are as in Fig. 122, 
§ 95, we have 

ly — f æ2(f/2 - yi)dx,

J a

which agrees with (2), § 92.
On the other hand, it is usually convenient to integrate (2) 

first with respect to x. We then have, with the notation of 
(10), § 95,

which agrees with (3), § 92.
In evaluating (3) it is often convenient to separate /0 into the 

sum of two integrals and integrate the two in different orders. 
We have then, in agreement with (6), § 92,

(4)

(5)

If polar coordinates are used, the element of area is rdf) dr 
and the distance of a point in an element from the origin is r. 
Therefore

Io

In practice it is usually convenient to integrate first with 
respect to r, holding 0 constant. This is, in fact, to find the polar 
moment of inertia of a sector with vertex at O.
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Example. Find the polar moment of inertia of a circle with respect 
to a point on its circumference.

Let the circle be placed as in Fig. 132. Its equation is then 
((2), § 61) r = 2 a cos 0, where a is the r 
radius. If we take any element rdOdr 
and find Io for all elements which lie 
in the same sector with it, we have 
to add the elements r3d0dr, with r 
ranging from 0 to n, where n is the 
value of r on the circle ; and therefore 
ri = 2 a cos 0. We have

f 'r3d0dr = | ri4d0 = 4 a4cos40d0.
We have finally to sum these quan­

tities, with 0 ranging from — to + ~•J
We have Io = j 2 4 a4 cos4 0 d0 = ira4.

2
If M is the mass of a circular plate, this result, multiplied by p, 

gives Io = f Ma2.

EXERCISES

1. Find the polar moment of inertia about the origin of the area 
bounded by the hyperbola xy = 4 and the straight line x + y — 5 = 0.

2. Find the moment of inertia about OY of the area bounded 
above by the circle x2 + y2 = 128 and below by the parabola x2 = 8 y.

3. Find the moment of inertia about OY of the area bounded by 

»=^T4andx2 = 4ÿ-
4. Find the polar moment of inertia about the pole of the entire 

area bounded by the curve r2 = a2 sin 3 0.
5. Find the polar moment of inertia about the pole of the area 

bounded by the cardioid r — a(l + cos 0).
6. Find the polar moment of inertia about O of the total area 

bounded by the curve r = a(l + cos 2 0).
7. Find the polar moment of inertia about 0 of the total area 

bounded by the curve r = a(l + 2 sin 0).
8. Find the polar moment of inertia about O of that part of the 

area inside the curve r = 4 + 2 cos 0 which is outside the circle r = 4.
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9. Find the polar moment of inertia about O of the area inside 
the curve r = a sin d and outside the curve r = a(l — sin#).

10. Find the polar moment of inertia about O of that part of the 
circle r — 6 sin d which is outside the circle r = 3.

100. Moments of inertia about parallel axes. The finding of a 
moment of inertia is often simplified by use of the following 
theorem :

The moment of inertia of a body about an axis is equal to its 
moment of inertia about a parallel axis through its center of gravity 
plus the product of the mass of the body by the square of the distance 
between the axes.

We shall prove this theorem only for a plane area, in the two 
cases in which the axes lie in the plane of the figure or are per­
pendicular to that plane. We shall also consider the mass of 
the area as equal to the area, as in § 92.

Case I. When the axes lie in the plane of the figure.
Let the area be placed as in Fig. 133, where the center of

gravity (x, y) is taken as the 
origin (0, 0) and where the axis 
of y is taken parallel to the axis 
LK, about which we wish to find 
the moment of inertia. Let x be 
the distance of an element dxdy 
from OY, and Xi its distance from 
LK. Then, if Ig is the moment of 
inertia about OY, and h the mo­
ment of inertia about LK, we 
have

I» JJ'x2dx dy,

Moreover, if a is the distance between OY and LK, we have
Xi = x + a; (2)

so that, by substituting from (2) in the second equation of (1), 
we have

h =■J'J'x2dxdy + 2 affx dxdy + a2JJ'dxdy. (3)

Now, by § 95, dxdy = A; by § 96, I / xdxdy = Ax — 0,
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since by hypothesis x = 0 ; and, by (1), the first integral on the 
right hand of (3) is Ig. Therefore (3) can be written

// = /„ + a2 A, (4) .
which proves the theorem for this case.

Case II. When the axes are perpendicular to the plane of the 
figure.

■

"___  p ■Z

/ 0

We have to do now with polar moments of inertia. Let the 
area be placed as in Fig. 134, where the center of gravity is taken 
as the origin, and P is any point about which we wish the polar 
moment of inertia. Let Ig be the 
polar moment of inertia about 
O, and Ip the polar moment of 
inertia about P. Draw through 
P axes PX' and PY' parallel to 
the axes of coordinates OX and 
O Y. Let Ix and Iy be the mo­
ments of inertia about OX and 
OY respectively, and let Ix’ and 
Iy' be the moments of inertia 
about PX' and PY'. Then, by 
(4), § 99,

Ig= Ix + I 
Ip = Ix' + I

Moreover, if (a, ft) are the coordinates of P, we have, by
Case I, Ix' = lx + b2A, Iy' = IV + a2 A. (6)

Therefore, from (5), we have
IP = Ig + (a2 + b2')A, (7)

which proves the theorem for this case also.
The student may easily prove that the theorem is true also 

for the moment of inertia of any solid of revolution about an 
axis parallel to the axis of revolution of the solid.

Example. Find the polar moment of inertia of a circle with respect 
to a point on the circumference.

The center of gravity of a circle is at its center, and the distance of 
any point on its circumference from its center is a. By Ex- 4, § 92, 
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the polar moment of inertia of a circle about its center is | ira4. 
Therefore, by the above theorem,

/p = o ira4 + a2(7ra2) = | ira4.

This result agrees with the example in § 99, where the required 
moment of inertia was found directly.

EXERCISES

1. Find the moment of inertia of a circle about a tangent.
2. From a square of side 10 a circular hole of radius 4 is cut, the 

center of the circle being at the center of the square. Find the mo­
ment of inertia of the resulting figure about a side of the square.

3. Find the polar moment of inertia about a corner of the square 
of the figure in Ex. 2.

4. From a circle of radius 8 in. a square of side 2 in. is cut out, the 
center of the square being 3 in. from the center of the circle. Find 
the polar moment of inertia of the resulting figure about the center 
of the circle.

5. From a circle of radius a is cut a circle of radius tangent to 
the larger circle. Find the moment of inertia of the remaining figure 
about the line through the centers of the two circles.

6. Find the moment of inertia of the figure in Ex. 5 about a line 
through the center of the larger circle perpendicular to the line of 
centers of the two circles and in the plane of the circles.

7. Find the polar moment of inertia about one of its outer corners 
of a picture frame bounded by two rectangles, the outer one being of 
dimensions 9 ft. by 12 ft., and the inner one of dimensions 6 ft. by 9 ft.

8. Find the moment of inertia about one of its outer edges of a 
carpenter’s square of which the outer edges are 15 in. and the inner 
edges 12 in.

9. Find the moment of inertia of a hollow cylindrical column of 
outer radius f2 and inner radius ri about an element of the inner 
cylinder.

10. Find the moment of inertia of the hollow column of Ex. 9 
about an element of the outer cylinder.

101. Space coordinates. In the preceding pages we have be­
come familiar with two methods of fixing the position of a point 
in a plane, namely, by Cartesian coordinates (x, y) and by 
polar coordinates (r, 0). If, now, any plane has been thus sup-
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plied with a coordinate system, and, starting from a point in 
that plane, we measure another distance, called z, at right angles 
to the plane, we can reach any point in space. The quantity z 
will be considered positive if measured in one direction and 
negative if measured in the other. We have, accordingly, two 
systems of space coordinates.

1. Cartesian coordinates. We take any 
plane, as XOY, in which are already 
drawn a pair of coordinate axes, OX and 
O Y, at right angles with each other. Per­
pendicular to this plane at the origin we 
draw a third axis OZ (Fig. 135). If P is 
any point of space, we draw PM parallel 
to OZ, meeting the plane XO Y at M, and 
from M draw a line parallel to 0 Y, meet­
ing OX at L. Then for the point P(x, y, z), OL = x, LM — y, 
and MP = z. It is to be noticed that the three axes determine
three planes, XOY, YOZ, and ZOX, called 
the coordinate planes, and that we may 
just as readily draw the line from P per­
pendicular to either the plane YOZ or 
ZOX and then complete the construction 
as above.

These possibilities are shown in Fig. 136, 
where it is seen that x = OL = NM = SR 
= TP, with similar sets of values for y 
and z.

p

2. Cylindrical coordinates. Let XOY be any plane in which 
a fixed point 0 is the origin of a system 
of polar coordinates, and OX is the initial 
line of that system (Fig. 137). Let OZ be 
an axis perpendicular to the plane XOY 
at O. If P is any point in space, we draw 
from P a straight line parallel to OZ until 
it meets the plane XO Y at M. Then, if the 
polar coordinates of M in the plane XOY Y 
are r — OM, 0= XOM, and we denote the 
distance MP by z, the cylindrical coordinates of P are (r, 0, z).
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It is evident that the axes OX and OZ determine a fixed plane, 
and that the angle 0 is the plane angle of the dihedral angle be­
tween that fixed plane and the plane through OZ and the point 
P. If SP is drawn in the latter plane perpendicular to OZ, it is 
evident that OM = SP = r and OS — MP — z. The coordinate 
r, therefore, measures the distance of the point P from the axis 
OZ, and the coordinate z measures the distance of P from the 
plane XOY.

If the line OX of the cylindrical coordinates is the same as 
the axis OX of the Cartesian coordinates, and the axis OZ is the 
same in both systems, it is evident, from (1), § 60, that

x = r cos 0, y - r sin 0, z = z. (1)

These are formulas by which we may pass from one system 
to the other. It is convenient to notice especially that

r1 2 = x2 + y2. (2)

1. Cylinders. Consider first a right circular cylinder with its axis
along OZ (Fig. 138). From any point P of the surface of the cylinder

102. Certain surfaces. A single equation between the coordi­
nates of a point in space represents a surface. We shall give 
examples of the equations of certain surfaces which are impor­
tant in applications. In this connection it should be noticed 
that when we speak of the equation of a sphere we mean the 
equation of a spherical surface, and when we speak of the vol­
ume of a sphere we mean the volume of the solid bounded by a 
spherical surface. The word sphere, then, indicates a surface or 
a solid, according to the context. Similarly, the word cone is 
used to denote either a conical surface indefinite in extent or a 
solid bounded by a conical surface and a plane base. It is in the 
former sense that we speak of the equation of a cone, and in the 
latter sense that we speak of the volume of a cone. In the same 
way the word cylinder may denote either a cylindrical surface 
or a solid bounded by a cylindrical surface and two plane bases. 
This double use of these words makes no confusion in practice, as 
the context always indicates the proper meaning in any particu­
lar case.
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draw PS perpendicular to OZ. Then SP is always equal to a, the 
radius of the cylinder. Therefore, for all points on the surface,

r = a, (1)
which is the equation of the cylinder in cylin­
drical coordinates. Changed to Cartesian coor­
dinates, equation (1) becomes

x2 + y2 = a2. (2)

More generally, any equation in x and y 
only, or in r and 9 only, represents a cylinder 
with its elements parallel to OZ. In fact, either 
of these equations, if interpreted in the plane 
XOY, represents a curve ; but if a straight line 
is drawn from any point in this curve perpen­
dicular to the plane XOY, and P is any point Fig. 138
on this line, the coordinates of P also satisfy 
the equation, since z is not involved in the equation. Hence the line 
lies entirely in the surface. Accordingly, the surface is a cylindrical 
surface with its elements parallel to OZ and with the given equation 
as the equation of the right section of the surface made by the plane 
XOY. As examples, the equation y2 = 4 x represents a cylinder 
whose right section is a parabola, and the equation r = a sin 3 9 
represents a cylinder whose right section is a rose of three leaves

s
V

9 D

(Fig. 84, § 60).
Similarly, a Cartesian equation in y and z 

alone is the equation of a cylinder with its 
elements parallel to OX, and a Cartesian 
equation in z and x alone is the equation of a 
cylinder with its elements parallel to OY.

2. Surfaces of revolution. Consider any 
surface of revolution with OZ as the axis of 
revolution (Fig. 139). Take P any point on 
the surface and pass a plane through P and 
OZ, cutting the surface in the curve CD. In 
this plane draw OR perpendicular to OZ ; we 
may now regard OR and OZ as a pair'of 
rectangular axes in this plane. Draw the 
straight lines SP and MP perpendicular, respectively, to OZ and OR. 
Then SP = r, MP = z, and we may write down the equation of the 
curve CD in the plane ROZ in the form 
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exactly as y = /(x) is the equation of a curve in the plane XOY. But 
z and r in (3) are also the cylindrical coordinates of any point P of 
the curve CD in space of three dimensions, and CD is the same 
curve in all sections of the surface made by planes passing through OZ. 
Therefore equation (3) is true for all points P in the surface and is 
the equation of the surface in cylindrical coordinates. Hence we have 
the following theorem :

An equation of the form z — f(r) in cylindrical coordinates always 
represents a surface of revolution with OZ as the axis of revolution.

The shape of the surface may be inferred by constructing a pair 
of rectangular axes OZ and OR in a plane and drawing in that plane 
the plane curve having z = fir} as its equation.

If the equation of the surface of revolution in Cartesian coordi­
nates is desired, it may be found by placing r = Vx2 + y2, according 
to (2), § 101.

When the plane POZ coincides with the plane XOZ, r is equal to x, 
and equation (3) becomes, for that section,

z=/(x). (4)
Hence we have the following theorem :
The equation of a surface of revolution formed by revolving about OZ 

any curve in the plane XOZ may be found in cylindrical coordinates by 
writing r for x in the equation of the curve.

For example, the equation of the surface formed by revolving the 
parabola z2 = 4 x about OZ as an axis is z2 — 4 r in cylindrical coor­
dinates, and z4 = 16(x2 + y2) in Cartesian coor­
dinates.

3. Right circular cone. Consider any right cir­
cular cone (Fig. 140) with its vertex at the origin 
of coordinates and its axis along OZ. Let a be 
the angle which each element of the cone makes 
with OZ. This cone may be regarded as a sur­
face of revolution formed by revolving about OZ 
as axis a straight line passing through O and 
making the given angle a with OZ. We accord­
ingly take any plane through OZ and in that plane 
draw the axis OR. This plane cuts the cone in the 
element OA, a straight line making the angle a 
with OZ, and hence having the equation

Fig 140
r = z tan a. (5)

Hence, interpreted in space of three dimensions, (5) is the equa­
tion of the cone in cylindrical coordinates.
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In this case equation (5) or

Replacing r by Vx2 + y2 and simplifying, we have
z2 + y2 — z2 tan2 a = O, (6)

as the equation of the cone in Cartesian coordinates.
As explained above, we have here used the word cone in the sense 

of a conical surface. If the cone is a solid with its altitude h and the 
radius of its base a, then tana = h 
(6) is that of the curved surface of the 
cone only.

4. Sphere with center at origin. Con­
sider any sphere (Fig. 141) with its 
center at the origin of coordinates and 
its radius equal to a. We shall derive 
the equation of the sphere by regard­
ing it as a surface of revolution formed 
by revolving about OZ as axis a circle 
of radius a with its center at O. Let 
ROZ be any plane through OZ. The 
equation of the circle ABC cut out of 
the sphere by this plane is, by § 28,

r2 + z2 = a2. (7)
Hence, interpreted in space of three di­
mensions, (7) is the equation of the sphere in cylindrical coordinates.

Replacing r by Vx2 + y2, we obtain
x2 + y2 + z2 = a2 (8)

as the equation of the sphere in Car­
tesian coordinates.

5. Sphere tangent at origin to a coor­
dinate plane. Consider a sphere of 
radius a, tangent to the plane XOY 
at 0 (Fig. 142). Regarding this sphere 
as a surface of revolution formed by 
revolving a circle of radius a about its 
diameter OZ as axis, we pass any plane 
ROZ through OZ. This plane cuts the 
sphere in a circle, one half of which, 
OAB, is shown in the figure. The coor­
dinates of the center of this circle are 
z = a, r = 0 ; hence its equation is, by
§ 28’ (r - 0)2 + (z - a)2 = a2,
which reduces to r2 + z2 — 2az — 0. (9)
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(10)

Considered in space of three dimensions, (9) is the equation of the 
sphere in cylindrical coordinates.

Replacing r by Vx2 + y2, we have
x2 + y2 + z2 — 2 az = 0

as the equation of the sphere in Cartesian coordinates.
6. Ellipsoid. Consider the surface defined by the equation

źli! 4_ 4- — = 1

a2 b2 c2
If we place 3 = 0, we get the points on the surface which lie in the 

XOY plane. These points satisfy the equation
x2 4_ y^ i 
a2 b2

and therefore form an ellipse.
Similarly, the points in the ZOX plane lie on the ellipse

(U)

(12)

and those in the YOZ 
lie on the ellipse

^ + ^ = 1. 
b2 c2

The construction of these 
ellipses gives a general idea 
of the shape of the surface 
(Fig. 143). To make this 
more precise, let us place 
z = Zi in (11), where Zi is a 
fixed value. We have

which can be written

(13)

plane

(14)

5Î 4-^ = 1

a2 c2

(15)

(16)

r'T/V-A
....■/Azq Ż T 'A
/O\/ 1 7\

/ A I J
/ ! 1—/

\ y/ \ ! / /

which is satisfied by all points which lie in the plane at the distance Zi 
from the XOY plane.

As long as Zi2 < c2, equation (16) represents an ellipse with semi- 
and b -^1 — ÿ- By taking a sufficient number ofaxes a
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these sections we may construct the ellipsoid with as much exactness 
as desired.

If Zi2 = c2 in (16), the axes of the ellipse reduce to zero, and we have 
a point. If Zi2 > c2, the axes are imaginary, and there is no section.

7. Elliptic paraboloid. Consider the surface
z _ x2 . y2 
c ~ a2 + b2’ (17)

where we shall assume, for definiteness, that c is positive. 
If we place z — 0, we get

î!+ ^ = 0
a2 + b2 ’ (18)

which is satisfied in real quantities only by x = 0 and y = 0. There­
fore the XOY plane simply touches the surface at the origin.

The sections (19), (20), and (21) determine the general outline of 
surface. For more detail we place z = Zi and find the ellipse 

x2 g/2 _ 1
ç^zi b^zi ’

c c
2. (22)

so that all sections parallel to the XOY plane and above it are ellipses 
(Fig. 144).

8. Elliptic cone. Consider the surface

(23)

Proceeding as in 7, we find that the section z = 0 is simply the 
origin and that the section z = c is the ellipse

î! . -1
a2 b2

(24)
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If we place x = 0, we get the two straight lines
L &^±-2,

and if we place y = 0, we get the two straight lines
. a x= ± - z. c

The sections we have found suggest a cone with 
an elliptic base. To prove that the surface really is 
a cone, we change equation (23) to cylindrical coor­
dinates, obtaining

/cos2 9 sin20\ 
\ a2 + b2 ) 2 Z2

c2
(27)

Now if 9 is held constant in (27), the coefficient 
of r2 is constant, and the equation may be written

r = ±kz, (28)
which is the equation of two straight lines in the 
plane ROZ determined by 9 = constant. Hence any 
plane through OZ cuts the surface in two straight lines, and the 
surface is a cone (Fig. 145).

9. Plane. Consider the surface
Ax + By + Cz + D = 0.

The section z = 0 is the straight line 
equation

Ax + By + D = 0, (30)
the section y = 0 is the straight line LH 
with the equation

Ax + Cz + D = 0, (31)
and the section x = 0 is the straight 
line LK with the equation

By + Cz + D = 0. (32)
The two lines (31) and (32) intersect

OZ in the point L (q, 0, — unless

C = 0. Assuming for the present that C is not zero, we change equa­
tion (29) to cylindrical coordinates, obtaining

(A cos 9 + B sin 9)r + Cz + D — 0.

(29)
KH (Fig. 146) with the

(33)
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This is the equation of a straight line LN in the plane 9 = con­
stant. It passes through the point L, which has the cylindrical 
coordinates r = 0, z = — ; and it meets the plane z = 0 in a pointc
which lies on KH, since KH contains all the points of the surface 
which lie in the plane z = 0. Hence the surface is covered by straight 
lines which pass through L and meet KH. The locus of such lines is 
clearly a plane.

We have assumed that C in (29) is not zero. If C = 0, equation 
(29) 1S Ax + By + D = 0. (34)

The point L does not exist, since the lines corresponding to HL 
and KL are now parallel. ' But, by 1, equation (34) represents a plane 
parallel to OZ intersecting XOY in the line whose equation is (34). 
Therefore we have the following theorem :

Any equation of the first degree in x, y, z represents a plane.

EXERCISES

Describe each of the following surfaces :
1. y2 — 2 y — 4 x = 0.
2. y(z - 2) = 4.
3. 4 x2 + 9 y2 = 12 z - 24.
4. 4 x2 + 9 y2 + 36 z2 — 8 x — 32 = 0.
5. x2 + y2 + z2 + 2 Fx + 2 Gy + 2 Hz + C = 0.

a2 b2 c a2 b2 c2

7 a. yl- (z ~ fe)2 _ n 
'•a2^62 c2

12. r = a cos 9.
13. r2 = a2 cos 29.
14. r2 + z2 + 2 z - 3 = 0.
15. z2 - 3 r = 0.
16. 6 z2 + 4 r2 = 24.
17. 6 z2 - 4 r2 = 12.

18. Find the equation of the surface formed by revolving about 
OZ as axis the parabola z2 = 14 x.

19. Find the equation of the oblate spheroid formed by revolving 
an ellipse about its minor axis.

20. Find the equation of the prolate spheroid formed by revolving 
an ellipse about its major axis.
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103. Volume. Starting from any point (z, y, z) in space, we 
may draw lines of length dx, dy, and dz in directions parallel 
to OX, OY, and OZ respectively, and on these lines as edges 
construct a rectangular parallelepiped. The volume of this 
figure we call the element of volume dV and have

dV — dxdydz. (1)

For cylindrical coordinates we construct an element of volume 
whose base is rdddr ((12), § 95), the element of plane area in 
polar coordinates, and whose altitude is dz. This figure has 
for its volume dV the product of its base by its altitude, and 
we have dV = rdddrdz. (2)

The two elements of volume dV given in (1) and (2) are not 
equal to each other, since they refer to differently shaped figures. 
Each is to be used in its appropriate place. To find the volume 
of any solid we divide it into elements of one of these types.

To do this in Cartesian coordinates, note that the z-coordinate
of any point will determine a plane parallel to the plane YOZ
and x units from it, and that 
similar planes correspond to the 
values of y and z. We may, ac­
cordingly, divide any required 
volume into elements of volume 
as follows :

Pass planes through the vol­
ume parallel to YOZ and dx units 
apart. The result is to divide the 
required volume into slices of 
thickness dx, one of which is 
shown in Fig. 147. Secondly, pass 
planes through the volume parallel to XOZ and dy units apart, 
with the result that each slice is divided into columns of cross
section dxdy. One such column is shown in Fig. 147.

Finally, pass planes through the required volume parallel to 
XOY and dz units apart, with the result that each column is 
divided into rectangular parallelepipeds of dimensions dx, dy, 
and dz. One of these is shown in Fig. 147.
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It is to be noted that the order followed in the above explana­
tion is not fixed and that, in fact, the choice of beginning with 
either x or y or z, and the subsequent order, depend upon the 
particular volume considered.

A similar construction may be made for cylindrical coordi­
nates. In this case the coordinate 6 determines a plane through 
OZ. We accordingly divide the volume by means of planes 
through OZ, each pair of adjacent z 
planes making the angle dO with 
each other. The result is a set of 
wedge-shaped slices, one of which 
is shown in Fig. 148.

The coordinate r determines a 
cylinder with OZ as its axis. We 
accordingly divide each slice into 
columns with cross section rdOdr by 
means of cylinders with radii differ­
ing by dr. One such column is shown 
in Fig. 148.

Finally, these columns are divided into elements of volume by 
planes parallel to AO Y at a distance dz apart. One such ele­
ment is shown in Fig. 148.

When the volume has been divided in either of these ways, 
it is evident that some of the elements will extend outside the 
boundary surfaces of the solid. The sum of all the elements that 
are either completely or partially in the volume will be approxi­
mately the volume of the solid, and this approximation becomes 
better as the size of each element becomes smaller. In fact, the 
volume is the limit of the sum of the elements. The determina­
tion of this limit involves in principle three integrations, and we 
write

V =j'JJ'dxdydz (3)

or V —j'J'J'rdddrdz. (4)

In carrying out the integrations we may, in some cases, find 
it convenient first to hold z and dz constant. We shall then be 
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taking the limit of the sum of the elements which lie in a plane 
parallel to the XOY plane. We may indicate this by writing (3) 
or (4) in the form

V — JdzJJ"dxdy —J' dzj'J'rdddr.

But, by § 95, J'J'dxdy = A and J'J'rdddr = A, where A is 

the area of the plane section at a distance z from XOY. Hence 
(5) is r

F — J Adz,

or V — (5)

(6)
in agreement with § 25.

Hence, whenever it is possible to find A by elementary means 
without integration, the use of (6) is preferable. This is illus­
trated in Example 1.

In some cases, however, this method of evaluation is not con­
venient, and it is necessary to carry out three integrations.

We may notice three types of volumes. The first is rep­
resented by Figs. 147 and 148, where the required volume is 
bounded below by the plane XOY, above by a surface whose 
equation is given, and laterally by a right cylinder whose equa­
tion is given. If we first integrate with respect to z, taking as a 
lower limit z — 0 and as an upper limit the value of z from the 
equation of the upper surface, we have the volume of a column 
parallel to OZ. All such columns as lie in the given cylinder are 
to be summed and the limits of the last integrations are to be 
determined by the equation of the cylinder, or of its intersection 
with the plane XOY, exactly as in the case of any double integral.

The above type of volume may be modified by taking as the 
lower boundary not the plane z = 0 but any surface whose equa­
tion is known. The student may easily imagine such a surface 
drawn in Fig. 147 or Fig. 148. The volume required is bounded 
above and below by given surfaces and laterally by a given 
cylinder. We may first integrate with respect to z, taking as a 
lower limit the value of z given by the equation of the lower 
surface. In other respects the work proceeds as before.

Again, we may have the case of a volume which is completely 
bounded by two surfaces, one above and one below. This may 
be considered a special case of the preceding where the lateral 
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surface has shrunk to zero. It is then necessary to find the equa­
tion of the surrounding cylinder, since only the equations of the 
two surfaces are given. This may be done by eliminating z from 
the equations of the two surfaces. The resulting equation cer­
tainly represents a cylinder since it contains no z (1, § 102), and 
it passes through the curve of intersection of the two given sur­
faces since it is satisfied by the coordinates of any point whose 
coordinates satisfy the two equations simultaneously. The 
equation of the cylinder having been found, the work proceeds 
as before.

We have considered in the foregoing the case in which inte­
gration with respect to z is first performed. This is not always 
the most convenient thing to do. In case it is more convenient 
to integrate first with respect to some other variable, the student 
should fix the limits in accordance with the principles which 
underlie the above discussion.

Example 1. Find the volume of the ellipsoid ~ = 1.
By 16, § 102, the section made by a plane parallel to XOY is an 

I Ź I z2ellipse with semiaxes a x/l~an^ & 'Therefore, by

Example 1, § 86, its area is irab (1 - • Hence we use formula (6)
and have

V = irabj' ^1 — dz = | irabc.

Example 2. Find the volume bounded above by the sphere 
x2 + y2 + z2 = 5 and below by the paraboloid i2 + ÿ2 = 4 z (Fig. 149).

As these are surfaces of revolution, 
this example may be solved by for­
mula (6) as in Example 1, but in so 
doing we need two integrations, one 
for the sphere and the other for the 
paraboloid. We shall solve the ex­
ample, however, by the other method 
in order to illustrate that method.

We first reduce our equations to 
cylindrical coordinates, obtaining, 
respectively, r2 j_22 =

r2 = 4 z. (2)and
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Eliminating z between the two equations, we have r = 2. Therefore 
the required volume lies entirely in the cylinder r = 2.

We now imagine the element rdddrdz inside the volume and, 
holding r, 9, dO, dr constant, we take the sum of all the elements 
obtained by varying z inside the volume. These elements obviously 
extend from z = Zi in the lower boundary to z = z-i in the upper ^•2 --------
boundary. From (2), Zj = — and, from (1), z2 = v5 — r2. The first 
integration is therefore

4

which is the volume of a column with cross section rdOdr.
We must now allow 9 and r to vary so as to include all the columns 

which lie in the cylinder r = 2.
If we hold 9 constant, r varies from 0 to 2. The second integration 

is therefore
V5 - r2 -

Finally, 9 must vary from 0 to 2 tt, and the third integration is

If we put together what we have done, we have

V — f f f'^~r2rd0drdz = \/5 — 4).
Jl) J(j Jr’: 3

4

EXERCISES

1. Find the volume bounded by the paraboloid z = x2 + y2 and
the plane z = 4. *

2. Prove that the volume bounded by the surface - = ^ + ~c a2 o2 
and the plane z = c is one half the product of the area of the base 
by the altitude.

3. Find the volume of the solid bounded by the cylinder 
Vs 1' + y2 = 1 and the planes y = 0, z = 0, and z = x.©’

S 4. Find the volume included between the XOY plane and the 
surface 4 x2 + y2 — 4 z — 4 = 0.

5. Find the volume bounded above by the cylinder y2 = a2 — az, 
below by the plane z = 0, and laterally by the cylinder x2 + y2 = a2.
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6. Find the volume of the paraboloid x2 + y2 = z cut off by the 
plane z = x.

7. Find the volume cut from the sphere r2 + z2 = a2 by the 
cylinder r = a cos 9.

8. Find the volume bounded below by the paraboloid r2 = az 
and above by the sphere r2 + z2 — 2 az = 0.

9. The curve az2 = x3 is revolved about the axis of z to form a 
surface. Find the volume included between this surface and the 
surface r = a.

10. Find the volume of the surface bounded by the plane z — 0, 
the cylinder y2 = a2 — az, and the cylinder r2 = a2 cos 2 9.

104. Center of gravity of a solid. The center of gravity of a 
solid has three coordinates, x, ÿ, z, which are defined by the 
equations

Mx — 

where M is the total mass of the body, dm is the mass of one of 
the elements into which the solid may be divided, and x, y, and z 
are the coordinates of the point at which the element dm may be 
regarded as concentrated. The derivation of these formulas is 
the same as that in § 91.

When dm is expressed in terms of space coordinates, the in­
tegrals become triple integrals, and the limits of integration are 
to be substituted so as to include the whole solid.

We place dm = pdV, where p is the density. If p is constant, 
it may be placed outside the integral signs and canceled from 
the equations. Formulas (1) then become

(2)

Example. Find the center of gravity of a body bounded below 
by one nappe of a right circular cone of vertical angle 2 a and above 
by a sphere of radius a, the center of the sphere being at the vertex 
of the cone.

If the center of the sphere is taken as the origin of coordinates and 
the axis of the cone as the axis of z, it is evident from the symmetry of 
the solid that x = y = 0. To find z we shall use cylindrical coordi­
nates, the equations of the sphere and the cone being, respectively,

r2 + z2 = a2 and r = z tan a.



338 REPEATED INTEGRATION

By eliminating z the surfaces are found to intersect on the cylinder 
r = a sin a. .——

rdddrdz = | 7ra3(l — cos a)

and

Therefore, from (2), z = f <z(l + cos a).

EXERCISES

1. Find the center of gravity of the pyramid bounded by the co- 
ordinate planes and the plane - + | + - = 1.

2. Find the center of gravity of the first octant of the solid bounded 
by the cylinders x2 + z2 = a2 and x2 + y2 = a2.

3. Find the center of gravity of the solid bounded by the parabo­
loid - = ^- + 7- and the planes x= 0, y = 0, z = c.c a2 o2

4. Find the center of gravity of a body in the form of an octant
0*2 y/2 j-2

of the ellipsoid ^5 + tô + -« = 1.a2 b2 c2
5. A ring is cut from a spherical shell, the inner radius and the 

outer radius of which are, respectively, 4 ft. and 5 ft., by two parallel 
planes on the same side of the center of the shell and distant 1 ft. 
and 3 ft., respectively, from the center. Find the center of gravity of 
this ring.

6. Find the center of gravity of the first octant of the solid bounded 
below by the paraboloid az = r2 and above by the right circular cone 
z + r — 2 a.

7. Find the center of gravity of the first octant of the solid bounded 
below by the cone z = r and above by the sphere r2 + z2 — 1.

8. Find the center of gravity of a solid bounded by the surfaces 
z = 0, r2 + z2 = b2, and r = a(a < 5).

105. Moment of inertia of a solid. If a solid body is divided 
into elements of volume dV, the moment of inertia of the solid 
about any axis is n r 

(1)

where R is the distance of any point of the element from the 
axis, and p is the density of the solid, which we have assumed
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to be constant and therefore have been able to place before the 
integral sign. If M is the total mass of the solid, p may be de­
termined from the formula M = pV.

If the moment of inertia about OZ, which we shall call Iz, is re­
quired, then in cylindrical coordinates R — r and dV = rdd dr dz, 
so that (1) becomes

dd dr dz. (2)

If we use Cartesian coordinates to determine Iz, we have 
R2 — x2 + y2 and dV — dxdydz, so that

(3)

Similarly, if Iv and Ix are the moments of inertia about OY 
and OX respectively, we have

In evaluating (2) it is sometimes convenient to integrate with 
respect to z last. We indicate this by the formula

dddr. (5)

ButJJ r^dddr is, by (5), § 99, the polar moment of inertia of 
a plane section perpendicular to OZ about the point in which OZ 
intersects the plane section. Consequently, if this polar moment 
is known, the evaluation of (5) reduces to a single integration. 
This has already been illustrated in the case of solids of revolution.

A similar result is obtained by considering (3). In fact, the 
ease with which a moment of inertia is found depends upon a 
proper choice of Cartesian or cylindrical coordinates and, after 
that choice has been made, upon the order in which the integra­
tions are carried out.

Equation (3) may be written in the form 

dx dy dz (6)

and the order of integration in the two integrals need not be 
the same. Similar forms are derived from (4).
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The theorem of § 100 holds for solids. This is easily proved 
by the methods used in that section.

Example. Find the moment of inertia about OZ of a cylindrical 
solid of altitude h whose base is one loop of the curve r = a sin 3 9.

The base of this cylinder is shown in Fig. 84, § 60.
from formula (2),

We have,

d9 dr dz,

where the limits are obtained as follows :
First, holding r, 9, d9, dr constant, we allow z to vary from the 

lower base z = 0 to the upper base z = h, and integrate. The result 
phr3d9dr is the moment of inertia of a column such as is shown in 
Fig. 148. We next hold 9 and (19 constant and allow r to vary from 
its value at the origin to its value on the curve r = a sin 3 9, and in­
tegrate. The result | ph a4 sin4 3 9d9 is the moment of inertia of a 
slice as shown in Fig. 148. Finally, we sum the moments of inertia of 
all these slices while allowing 9 to vary from its smallest value 0 to its 
largest value The result is pha'-rr.

The volume of the cylinder may be computed from the formula
/•a sin 3 0 ph , „ , , . , „

V = I 3 I I rd9drdz = X ha2ir.Jo Jo Jo 12
Therefore M = pha2ir and Iz — | Ma2.

EXERCISES

1. Find the moment of inertia about OZ of the solid bounded by 
the surfaces z = 0, z = 2, x = 1, and y2 = x3.

2. Find the moment of inertia about OZ of a solid bounded by 
the paraboloid - = — 4- f- and the plane 2 = c.c a2 b2

3. Find the moment of inertia about its axis of a right elliptic 
cylinder of height h, the major and the minor axis of its base being, 
respectively, 2 a and 2 b.

4. Find the moment of inertia about OZ of the ellipsoid

5. Find the moment of inertia about OZ of the portion of the 
sphere r2 + z2 = a2 cut out by the plane 2 = 0 and the cylinder 
r = a cos0.
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6. Find the moment of inertia about OZ of the solid bounded by 
the surfaces r — a cos 9, z — 0, z — 2.

7. Find the moment of inertia about OZ of the solid bounded 
below by the plane z = 0, above by the paraboloid az = r2, and in­
cluded in the cylinder with base a loop of the curve r = a cos 2 0 
and with elements parallel to OZ.

8. Find the moment of inertia about OX of the solid bounded
æ2 y 2 g

by the plane z = 0 and the surface — + — 1-----a2 o2 c
9. Find the moment of inertia of a right circular cone of radius a 

and height h about any diameter of its base as an axis.
10. Find the moment of inertia of a right circular cone of height h 

and radius a about an axis perpendicular to the axis of the cone at 
its vertex.

11. Find the moment of inertia of a right circular cylinder of height 
h and radius a about a diameter of its base.

12. A solid is in the form of a right circular cone, the altitude 
and radius of base being each equal to a. Find its moment of inertia 
about an axis which is perpendicular to the axis of the cone at a 
point distant 2 a from the base of the cone and a from the vertex.

GENERAL EXERCISES

1. Find the center of gravity of the area in the first quadrant 
bounded by the curve 9 y = x3 and the line y = x.

2. Find the center of gravity of the area in the first quadrant 
bounded by the curves y = 8 — 2 x2, y = 4 x2, and the axis of y.

3. Find the center of gravity of the area bounded by the curves
8 y = x3 and y — the axis of x, and the line x = 4.

4. Find the center of gravity of the area bounded by the axes 
of x and y and the curve x = a cos3</>, y = a sin3</>.

5. Find the center of gravity of the area in the first quadrant
bounded by the ellipse Ą + j~2 = l(a > b), the circle x2 + y2 = a2, 
and the axis of y. a '

6. Find the center of gravity of the area bounded below by the 
parabola x2 = 6 y and above by the circle x2 + y2 = 72.

7. Find the center of gravity of the area bounded on the right 
by the curve r = 2 + cos 2 9 and on the left by the circle r = 2.
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8. Find the center of gravity of that part of the area inside the 
curve r — 3 + 2 cos 9 which is outside the circle r = 3.

9. Find the center of gravity of the area bounded by the large 
loop of the curve r = a (z + sin

10. Find the center of gravity of the area included in one loop of 
the curve r = a cos 2 9.

11. Find the center of gravity of the segment of a circle of radius 
a cut off by a straight line b units from the center.

12. Find the center of gravity of an area in the form of a semi­
circle of radius a surmounted by an equilateral triangle having one 
of its sides coinciding with the diameter of the semicircle.

13. Find the center of gravity of an area in the form of a rec­
tangle of dimensions a and b surmounted by an equilateral triangle 
one side of which coincides with a side of the rectangle which is 
b units long.

14. From a rectangle 8 ft. long and 6 ft. broad a semicircle of 
diameter 6 ft. is cut, the diameter of the semicircle coinciding with 
one end of the rectangle. Find the center of gravity of the remaining 
portion of the rectangle.

15. Find the center of gravity of a plate in the form of one half of 
a circular ring the inner and the outer radii of which are respectively 
H and r2.

16. Find the center of gravity of a plate in the form of a T-square 
10 in. across the top and 12 in. tall, the width of the upright and 
that of the top being each 2 in.

17. From a plate in the form of a regular hexagon 6 in. on a side 
one of the six equilateral triangles into which it may be divided is 
removed. Find the center of gravity of the portion left.

18. Find the center of gravity of the figure formed by cutting out 
of a circle of radius 8 in. a square hole 2 in. on a side, the center of the 
square being 3 in. from the center of the circle.

19. Find the center of gravity of a plate, in the form of the ellipse
= 1 (a> b), in which there is a circular hole of radius c, the 

center of the hole being on the major axis of the ellipse at a distance 
d from its center.

20. A square, 6 V2 in. on a side, has a corner cut off by a straight 
line joining the middle points of two adjacent sides. Find the center 
of gravity of the remaining area.
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21. Find the polar moment of inertia about the origin of the area 
bounded by the curves y = x2 and y = 2 — x2.

22. Find the moment of inertia about OX of the smaller area 
bounded by the curves x2 + y2 = 36 and y2 = x3.

23. Find the polar moment of inertia about the origin of the area 
of one loop of the lemniscate r2 = 2 a2 cos 2 0.

24. Find the polar moment of inertia about O of the area bounded 
by the curve r = 2(1 — cos 0).

25. Find the polar moment of inertia about 0 of the total area 
bounded by the curve r2 = a2 sin 0.

26. Find the polar moment of inertia about O of the area boundedg
by the large loop of the curve r = 2 + sin •

27. Find the polar moment of inertia about the pole of that area 
of the circle r = a which is not included in the curve r = a sin 2 0.

28. Find the moment of inertia of a circular ring of inner radius 
ri and outer radius r2 about a tangent to the outer circle.

29. A square plate 10 in. on a side has a square hole 5 in. on a side 
cut in it, the center of the hole being at the center of the plate and its 
sides parallel to the sides of the plate. Find the moment of inertia 
of the plate about a line through its center parallel to one side.

30. Find the moment of inertia of the plate of Ex. 29 about one of 
the outer sides.

31. Find the moment of inertia of the plate of Ex. 29 about one 
side of the hole.

32. Find the moment of inertia of the plate of Ex. 29 about one 
of its diagonals.

33. A square plate 8 in. on a side has a circular hole 4 in. in 
diameter cut in it, the center of the hole coinciding with the center 
of the square. Find the moment of inertia of the plate about a line 
passing through its center parallel to one side.

34. Find the moment of inertia of the plate of Ex. 33 about a 
diagonal of the square.

35. Find the polar moment of inertia of the plate of Ex. 33 about 
its center.

36. Find the moment of inertia of a semicircle about a tangent 
parallel to its diameter.

37. All sections of a given right cylinder made by planes parallel 
to the plane XOY are ellipses with major axis 10 in. long and minor 
axis 8 in. long. Find the equation of this cylinder.
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38. Show that the surface z = a — Vx2 + y2 is a cone of revolution, 
and locate its vertex and axis.

39. Find the equation of the surface formed by revolving a 
hyperbola about its transverse axis.

40. Find the equation of the surface formed by revolving a 
hyperbola about its conjugate axis.

41. Derive the equation of the ring surface formed by revolving
the ellipse . 9Ct'> + = 1 (a > &) about OZ as axis.

42. Find the equation of the surface formed by revolving the
8 a3 , . r.r,curve z = „ , .—; about OZ as axis.x2 + 4 a2

43. Find the equation of the curved surface of a right circular cone 
of altitude 10 ft. and radius 4 ft.

44. Find the volume bounded by the surface x*  + y*  + z% = a*  
by making use of the area bounded by the curve x^ + y^ = cO.

45. Find the volume bounded by the surfaces x2 — 4 — z and 
z = x2 + y2.

46. Find the volume of the solid bounded by the paraboloid 
2 z = x2 + y2 and the plane z — x + 1.

47. Find the volume bounded by the plane XOY, the cylinder 
x2 4- y2 — 2 ax = 0, and the right circular cone having its vertex at 
O, its axis coincident with OZ, and its vertical angle equal to 90°.

48. Find the volume bounded by the surfaces r2 = bz, z = 0, and 
r = a cos 6.

49. Find the volume of the portion of the sphere, of radius a and 
with its center at the origin of coordinates, included in the cylinder 
having for its base one loop of the curve r2 = a2 cos 2 6.

50. Find the volume of the solid bounded by the plane z = 0, the 
cylinder y2 — a2 — az, and the cylinder r = a cos 0.

51. Find the volume of the portion of the cylinder, included be­
tween the planes z = 0 and z = x, having its elements parallel to OZ 
and for its base that loop of the curve r — a cos 2 9 which is bisected 
by OX.

52. Find the center of gravity of the solid bounded below by the 
plane z = 0, above by the cone z + r = 2 a, and laterally by the 
cylinder r = a cos 0.

53. Find the center of gravity of the volume bounded below by 
the upper nappe of the cone r = 2 z — 2 and above by the surface 
r2 + z2 = 25.



GENERAL EXERCISES 345

54. Find the moment of inertia about OX of a solid bounded by 
the paraboloid z = r2 and the plane z = 2.

55. Find the moment of inertia about OZ of the volume bounded 
below by the surface z = r and above by the surface r2 = a (2 a — z).

56. Find the moment of inertia about its axis of a cylindrical post 
of density 3, diameter 2, and total length 6, the top of the post 
being rounded off into the shape of a paraboloid whose altitude is 
equal to the diameter of its base.

57. Find the moment of inertia about OX of the volume bounded 
by the surface r — 4 z2 and the plane z = 1.

58. A solid is in the form of a hemispherical shell the inner radius 
and the outer radius of which are, respectively, n and r2. Find its mo­
ment of inertia about any diameter of the base of the shell as an axis.

59. An anchor ring of mass M is bounded by the surface generated 
by revolving a circle of radius a about an axis in its plane distant 
b (b > a) from its center. Find the moment of inertia of this anchor 
ring about its axis.

• • • x2 v260. Find the moment of inertia of the elliptic cylinder —- + *-  = 1a2 b2
(a > b), its height being h, about the major axis of its base.

61. Find the center of gravity of the solid bounded by the cylinder 
r = 2 a cos 9, the cone z = r, and the plane z = 0.

62. Find the moment of inertia about OZ of the solid of Ex. 61.
63. Find the volume of the cylinder having for its base one loop 

of the curve r = 2 a cos 2 9, between the cone z = 2 r and the plane 
z = 0.

64. Find the center of gravity of the solid of Ex. 63.
65. Find the moment of inertia about OZ of the solid of Ex. 63.
66. Find the volume bounded by the planes z = 0 and z = x + 2 a 

and the cylinder having for its base the particular loop of the curve 
r = a cos 2 9 which is bisected by the initial line.

67. Find the moment of inertia about OZ of the solid of Ex. 66.
68. Find the volume of the cylinder r — 2 a cos 9 included between 

the planes z = 0 and z = 2 x + a.
69. Find the moment of inertia about OZ of the solid of Ex. 68.
70. Through a spherical shell, of which the inner radius and the 

outer radius are, respectively, ri and r2, a circular hole of radius 
a (a <ri) is bored, the axis of the hole coinciding with a diameter 
of the shell. Find the moment of inertia of the ring thus formed 
about the axis of the hole.





TABLE OF INTEGRALS

I. Fundamental Forms
1.

2.

3.

4.

5.

10.

11.

12.

13.

14.

15.

j' cdu = c J' du.

j'(du + dv + dw + •••) = J'du + /*+/  dw + • • •. 

J'udv — uv— J" v du.

n + 1
undu =----- - • (n — 1)

n + 1

/* —=lnu.
J u

6.
J u2 + a2 a a

7 f du — 1 ]n u — a 
‘ J u2- a2 2 a u +a

8. f =Rin-i”.
J y/a2 — u2 a

, du = In (w + Vu2±a2). 
u2±a2

/
f
f

»•/

sin u du = — cos u. 16. 1 sec2 udu = tan u.

cos u du = sin u. 17. 1 csc2 udu = — ctn u.

tan u du = — In cos u. 18. sec u tan udu = sec u.

ctn u du = In sin u. 19. Ç csc u ctn udu=—csc u.

sec wdu=ln (secw+tan u). 20. Ç eu du = eu.

cse,udu=\n. (cscw—ctnw). 21.f
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II. Expressions involving Va + bx

22. y/a + bxdx = (a + bx)\

23. f x y/a + bx dx = - 2(2 a~J*  bx) (a + bx)*.
J Io bz

24. f'x-s^+bidx = 2^±^-
J (2 n + 3)6

~ (2 4^3)6/x”_1 Va + 6zdz. (2 n + 3 ± 0) 

= 7 Va + bx.
6

= 2(2a-6x)

n, C dx
' J \/a + bx 
/x dx

Vâ+bx
ar> C xndx 2 xn ^a + bx

J Va + 6z~

28. f_ ^x___
' J x y/a + bx

(2 n + 1)6
2 an r xn~1dx , nx- yx---- 7-7-r I /- , • (2 n + 1 + 0)(2 n + l)bj y/a _|_ i)X

1 (a > 0)
va Va + 6z + Va

tan-1

. _ Va + bx
'a + bx (n-l)az"-1

-g"-3*1’!—^=. <»*i)
2(n l)ajxn 1 Va + bx

la + bx ,V±ï- <“<°)
r dx29. I —J xn

dx

III. Expressions involving Va2 — z2

30. f Va2 - x2dx = ^y/a2-x2 + $ sin-1 ■
J 2 2 a

31. jx Va2 — x2 dx = — %(a2 — x2)L

32. fx2 y/a2 — x2 dx = — (a2 — x2)*  + x Va2 — x2 + — sin-1
J 4 8 8

SI 8
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33. ÇxnVâ2^x2dx = - zn~1(ffl2 ~
J n + 2

+ y f xn~2y/a2 - x2 dx.
n + 2 J

(n + 2 =# 0)

f Jx
/ y/a2 - x2 a

(n=#0)

(n#l)

IV. Expressions involving x/x2 ± a2

40. J x/x2 ± a2dx = x/x2 ± a2 ± In (x + x/x2 ± a2).

41. j x x/x2 ± a2 dx = | (x2 ± a2)’.

42. f x2 y/x2 ± a2 dx = 7 (x2 ± a2)’ -F tt x x/x2 ± a2J 4 8

— In (x + x/x2 ± a2).
o

43. fx" V^±^dx = xn~^ ?2)ł
J n + 2

T fX"-2 Vx2 ± a2dx. (n + 2 =# 0)
n + 2 J
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44. f-7===^ = In (x + Vz2±a2).
J Vx2 ± a2
r xdxi5-Jv?7 

46. f- /2<fc = f V^±^T^ln(z + V»»±a»). 
J vx2 ±a2

x
dxr dx _ -p y/x2 ± a2

J xn Vx2 ± a2 (n - l)a2x"->
-r n — 2 (

V. Expressions involving Vax2 + bx + c

Reduce to expressions involving Va2 — a2 or Vu2 ± a2.

VI. Trigonometric Expressions
. I sin ax dx — — i cos ax.
J a

. Csin2 axdx = %-2 ax.
J 2 4a

53. / sin3 axdx — — - cos ax + — cos3 ax. 
J a 3 a
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56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

(m + n 0)
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(m + l)a
+ m + w + 2 Csjnm+2 ax cosn axdx. (m =£ — 1)

m + 1 J

VII. Miscellaneous Expressions
■ = eax - - / xn~1eaxdx. 

a aj
)xdx _ eax(a sin bx — b cos bx)

a2 + b2
ix dx = e°J(a cos & sin bx).

a2 + b2
74. f sin 1 axdx = x sin-1 ax + - Vl — a2 x2.

75,

a

(n =# -1)

76. In xdx = xlnx — x.

77, (n #= -1)

78. I xn sin axdx — — - cosax-}-- /xn~l cos axdx. 
J a a J

j xn • cos ax dx = — sin ax
a

sin ax dx.79.



ANSWERS
[The answers to some problems are intentionally omitted.] 

CHAPTER I
Page 4 (§ 2)

1. 26|. 3. 164 ft. per sec. 5. 2.51. 7. 158.
2. 6H- 4. 157. 6. 146J. 8. 471.2.

Page 7 (§ 3)
1. 128 ft. per sec. 2. 160 ft. per sec. 3. 96 ft. per sec.

4. 84 ft. per sec.

Page 8 (§ 3)
6. 42 ft. per sec.

Page 9 (§ 4)
2. 6 t + 4. 3. I + 2. 4. 3 t2.

Page 11 (§5)
1. 37; 8.
2. 5 ft. per sec. ; 5 .

sec.2
4. 60 ; 37.

5. 104 ft. per sec.

7. 6 ft. per sec.

5. 6 I2 + 1. 6. t2 + t. 7. 3 t2 + 3.

5. 21 ft. per sec. ; 19 sec.2
6.9-^-; 13^-; 11 

sec.2 sec.2 sec.2

8. 48 ft. ; 20 ft. per sec. ; 4 •
sec.2

10. (a) 72 ft.; (6) 18 ft. per sec., 58 ft. per sec.; (c) 14-^-, 26-^-. 
sec.2 sec.2

Page 14 (§ 6)
1. -2-. 2. 4 7rr2. 3. 8 7rr. 4. 3 x2, x = length of edge. 5. 6 irr2. 6. 18. 

2 ir

Page 15 (§ 6)
7. 2 ir.

8. X > x = length of side.

9. mv.
10. 12 ir — irh2, h = altitude.

11. Z/o(æ 4" 2 6/).

12. 3 7r^- > h = total height.
8

13. 4 ir(t2 + 12 t + 36) ,t = thickness.
353
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Page 19 (§ 7)
CHAPTER II

1. 5(2 x + 1). 2. 9 x2 - 2 x.

4. - 0.47.
5. 4.20.
6. - 1.88; 0.35; 1.53.

4. 5. 3 x2 4-1.
x2

6. - 2
(x + 4)2' 7.

3. 4 x3 - 2.
4 1 _  2^2

(x + 2)2 5 6' 8’ (x2 + I)2’

Page 22 (§ 9)
1. Increasing if x > 3 ; decreasing if x < 3.
2. Increasing if x > — < ; decreasing if x < — f.
3. Increasing if x < f ; decreasing if x > J.
4. Increasing if x > — 1 ; decreasing if x < — 1.
5. Increasing if x < 2 or x > 4 ; decreasing if 2 < x < 4.
6. Increasing ifx< — 1 orx>3; decreasing if — 1 < x < 3.

5- 7. Increasing if x < 0 or x > > ; decreasing if 0 < x < |.
8. Increasing if — 3 < x <J; decreasing if x < — 3 or x > |.
9. Always increasing.

10. Increasing ifx< — 1 or 0 < x < 1 ; decreasing if — 1 < x < 0 or x > 1.
11. Increasing if x > f ; decreasing if x < J.
12. Increasing ifx<—for — l<x<|; decreasing if — > < x < — lor 

x>

Page 25 (§ 10)
1. s increases if t > > ; s decreases if t < J.
2. s increases if t > — J ; s decreases if t < — .
3. s increases if t < | ; s decreases if t > J.
4. s increases if t < 1 or t > 2 ; s decreases if 1 < i < 2.
5. s increases if t < — J or t > 2 ; s decreases if — J < t < 2.
6. s increases if t > 1 ; s decreases if t < 1.
7. Always increasing.
8. Increasing if t > J ; decreasing if t < |.
9. Increasing if t < < ; decreasing if t > J.

10. Increasing if t < 0 or t > 2 ; decreasing if 0 < t < 2.
11. Increasing if Z < — f or t > 0 ; decreasing if — J < t < 0.
12. Increasing if t < — > or t > |, decreasing if — J < t < |.
13. Increasing if t > f ; decreasing if t < f.
14. Increasing if t > — J ; decreasing if t < — f.
15. Increasing if t > J ; decreasing if t < J.
16. Increasing if 0 < t < 1 or t >.2; decreasing if t < 0 or 1 < t < 2.
17. Increasing if 1 < i < 2 or 1 > 3 ; decreasing if t < 1 or 2 < t < 3.
18. Increasing if —2<t<—| or f>f; decreasing if t<— 2 or 

— i f < y.

Page 29 (§ 12)
1. 2.12.
2. 1.29.
3. - 2.21.

7. 0.33; 2.17.
8. - 1.66; 1.12.
9. - 1.22; 0.72.
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Page 33 (§ 13)
, !• (I, — 4tï).

2- (— i, 3|).
3. (-2, 16), (2, - 16).
4. (0, 4), (li, 5^).
5- (— 1, 8), (If, — Iff).

Page 35 (§ 14)
1. 2x — y — 6 = 0.
2. 5x + 2ÿ + 4 = 0.
3. 14 x + y — 31 = 0.
4. x = 3.

Page 36 (§ 14)
9. 4 x — 3 y — 1 = 0.

10. 5 x + 4 y — 27 = 0.
11. 10x4-9 2/+ 7 = 0.

0. (If, 4^), (3, 3).
7. (- 2, 0), (f, 9W-
8. (3, - 11).
9. (- i, ił), (0, 1), (2, - 7).

10. (1, 5).

5. y = 5.
6. x — V3 2/ — 1 — 4 = 0.
7. 6 ï + 6 ÿ - 5 = 0.
8. 8 x - 12 y + 17 = 0.

14. tan-1 i.

15. tan-*  7.
16. tan-12.
17. tan-1 ff.
18. tan-1 f ; tan _1 A ; tan _1 (
19. (fr> ~ rr),
20. lf.

7).

Page 37 (§ 15)
1. 20 x - y - 10 = 0.
2. 9x — ÿ + 20 = 0; 9 x - 2/ - 12 = 0.
3. ÿ = 0 ; 16 x + 2/ — 32 = 0 ; 4x — ÿ + 8 = 0.
4. 117x + 27 y- 17 = 0; 297 x + 27 y - 13 = 0 ; tan->44.
5. 27 x + 27 y — 58 = 0 ; x + y — 2 = 0.
6. (2,-!);.(-J, 7W; 3x —2/ —7 = 0; 81 x - 27 y + 311 = 0.

Page 38 (§ 15)
7. 15 x — 2/ + 70 = 0 ; 15 x — y — 38 = 0.
8. 3x —82/ —2 = 0; (-2,-1).

Page 39 (§ 16)
1- (— i, 5), (i> 3).
2, (— f, 5fł), (i, ~ 2ff).
3. (- 1.24, - 7.4), (3.24, 37.4).

4. (- 2.4, 11.6), (0.4, 0.3).
5. (- 1.4, - 0.4), (0.7, 4.3).
6. (- 2.1, 5.1), (0.8, - 7.2).

Page 42 (§ 17)
1. 56| sq. in.
2. Side parallel to wall twice as long as side perpendicular to wall.

4. 75. 5. 4 w*3. 10 ft.

The symbol tan-1 A' denotes the angle whose tangent is A (<+ § 47).
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6. Depth is one half side of base.
7. 2 portions 8 ft. long ; 4 portions 2 ft. long.
8. Breadth = 2 in. ; depth = 2 ' in.

3 3
9. Altitude = 2— ; base = 2, where p is the perimeter.

4 4
10. 2000 cu. in. ; 2547 cu. in.
11. Height of rectangle = radius of semicircle; semicircle of radius

=4
 la

Page 43 (§ 17)
12. 2V3 in.

Page 46 (§ 18)
7. 0.0001 ; 0.000001 ; 0.00000001.
8. 0.000015001 ; 0.000000150001.

9. 0.000003 sq. in.
10. 305.8 cu. in.

Page 47 (§ 19)
1. 96 sq. in.

3. cu. in. ; cu. in.
0

4. 8.0036 cu. in.
5. 28.28 cu. in.
6. 606.0456.
7. 0.0004.
8. 5.99928.

Page 50 (§ 20)
1. 144 ft. 3. 45 ft.
2. 48 ft. 4. 82f ft.

7. y = x3 + I x2 — 4 x.
8. y = 55 + 6 x — | x2 — ÿ x3.

Page 50 (General Exercises)

1.---- . 3.------- —-----
(1 - x)2 (x2 - l)2

2 2a 4
(a + x)2 ’ (x2 — l)2

5. 400 ft.
6. y = x2 + 3 x + 3.

9. 4 y = x2 — 17.
10. y - I x3 - i x2 + x + 92.

7. x
Vx2 +1

Page 51 (General Exercises)
11. t < - 2, or - < < t < 2.
12. t < — 1, or 1 < t < 5.

13. 50f| ft.
14. 1 < t < 5 ; lOf.

15. Up when t < 9| sec. ; down when 9f sec. < t < 18f sec.
16. Increasing if t < — | ; decreasing if t > —
17. Increasing if i > | ; decreasing if f < |.
18. Increasing if — 5 < f < — | or f > V-î decreasing if t < — 5 or — J < t < V.
19. Increasing if — 4<i< — lorf>2; decreasing if t < — 4 or — 1 < t < 2.
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Page 52 (General Exercises)
24. A(x - Xi) + B(y — yx) = 0.
25. B(x - Xi) — A(y - j/i) = 0.
26. (x2 - xi)(y - yi) = (ys - yi)(x - Xi).

33. 4x — ÿ + 2 = 0; 4 x — y — 2 = 0.

27. (- 3, 0), (1, 32).
28. (— 1, 6yr), (14, — 61).
29. (- 3, 81), (2, - 44).

34. tan-1^^.
35. (- 0.2, 1.5), (2.9, 20).
36. 18f.
37. 3 x + 2/ = 0 ; 78 x - 4 y + 175 = 0 ; 9x-ÿ-7 = 0.

Page 53 (General Exercises)
38. 16. 43. 64 ft. long. 44. Altitude of cone is f radius of sphere.

4 Ia Ł2
45. Altitude = -» / ; side of base =

46. 2 pieces 3 in. long ; 3 pieces 1 in. long.
47. Side about which rectangle is revolved is 5 in. long ; the other side is 

10 in. long.
48. 2 ft.
49. 240 îr, •in. f

8 + ir
240 + 60 it in

8 + 7T

Page 54 (General Exercises)
51. Each side = 5V2 in. 53. 0.00629. 58. 18.17.
52. 0.0003. 57. 3%. 59. 1344 cu. in.

60. 403.83 k, where k is the proportionality factor.

Page 55 (General Exercises)
61. 0.09 cu. in.
62. 7.988 cu. in.
63. 0.6.
64. 0.66 ft. per sec.

65. 33.0144 ; 32.9856.
66. 24.0024 sq. in.
67. 600 ft.
68. 56 ft.

69. y = x2 + 3 x — 13.
70. y = 16 + 8 x — x2 — x3.
71. y = x3 — x2 — x + 1.
72. y = 16 + 12 x - x3.

Page 58 (§ 21)
1. 14. 2. 120. 3. 92.

CHAPTER III

4. 10J. 5. lj. 6. 12; 96. 7. A- 8.211.

Page 64 (§ 22)
1. 12. 3. 211. 5. 42f. 7. 404 H- 9- Il- Il- 144.
2. 6A. 4. 12. 6. 111. 8. 3f. 10. 36. 12. 131.

Page 66 (§ 23)
1. 144 ft. 2. 193 ft. 3. 201 R-

Page 67 (§ 23)
4. — 4<f<2; 10 A ft. 6. 4 ft. 8. 150,000 tt ft.-lb.
5. 1088 ft. 7. 4500 7T ft.-lb. 9. 12,000 tt ft.-lb.
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Page 70 (§ 24)
1. 3H T. 3. 9 T. 5. 2.3 T. 7. 8331 T.
2. 2AT. 4. 21 T. 8. 260A T.; 572H T.

9. 182 A T.
10. 1041| T.

Page 71 (§ 24)
11. IAT. 12. 1.6 ft. below top side.

Page 74 (§ 25)
1. 64 7T cu. ft. o 1944 V3

5
Page 75 (§ 25)

3. 8.1 TT. 6. 72 cu. in. 8. 12. 10. 16 TT.
. 128 t _ 128 TT „ 128 TT 32tt
4‘ 105 ’ 7- 15 • 9- 5 • 1l"TT
5. 16,920 tt.

Page 76 (General Exercises)

5. 4 a2 V2
3

6. 10J.
7. 21A.

8. 57|.
9. 20|.

10. 571.

11. 18J. 14. ljft.
12. 41 ft. 15. 191 ft.
13. 32< ft. 16. 641 ft.

Page 77 (General Exercises)
17. 15 ft.
18. 358,5931 it ft.-lb.
19. 35831 it ft.-lb.
20. 27,3331 tt ft.-lb.

27.1 wa3, where w is the weight of a cubic unit of the liquid.

22. 9gfc

23. 2500 ft.-lb.

where k is the proportionality factor.

Page 78 (General Exercises)
28. 625 lb.
29. 3 wVÎÎ, where w is the weight of a cubic foot of water.
30. Twice as great.
31. 31 T.
32. 16 w, where w is the weight of a cubic unit of water.
39. 3411 cu- in-

Page 79 (General Exercises)
40. 1000 V3 cu. in. 43. 162
41. 129J. 35
42. 8.1 7T. 44. 6271 ir.

45. 36 x/3.
46. 18 tt.
47. 8.

48. 16.
49. 35.1 tt; 18.9 tt.

CHAPTER IV
Page 86 (§ 27)

1. x2 + y2 + 4 x - 6 y - 23 = 0.
2. x2 + y2 + 6 x — 8 y — 0.
3. 6 x - 4 y + 19 = 0.

4. 5 x — 3 y — 8 = 0.
5. 8 x2 + 9 y2 = 288.
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Page 87 (§ 27)
6. 36 x2 + 20 y2 = 45.
7. y2 - 8 x + 16 = 0.

Page 88 (§ 28)
1. (-2, 5); 4.

Page 89 (§ 28)
3. 3x-2ÿ + 4 = 0.

8. y2 = 16 x. 10. x2 ± y2 = 4.
9. 3 x2 - y2 + 6 x - 9 = 0.

2. (f,

9. <7. 10. x2 + y2 - 39 = 0.

Page 92 (§ 30)
1. (- 1, 0). 3. (1, 0).
2. (0, 2). 4. (0. - H).

9. y2 + 10 x - 25 = 0.

5. 4J ft. 7. 25J ft.
6. 5 VÏÔ ft. 8. 4 ir <6 in.

10. x2 - 4 x - 14 y + 11 = 0.

Page 95 (§ 31)
1. (±5,0); (±4,0); J.
2. (0, ± 5); (0, ± <21); ^±1.

3. (±1, O);(±^.o);^.

5. 9 x2 + 25 y2 - 54 x - 144 = 0
6. 9 x2 ± 5 y2 - 20 y - 25 = 0.
7. 13 x2 + 49 y2 = 637.
8. 16 x2 + 25 y2 = 400.
9. 3 x2 ± 4 y2 - 108.

10. 16 x2 ± 25 y2 = 400.

Page 99 (§ 32)
(± 5, 0) ; (± <29, 0) ; 2 x ± 5 y = 0 ; Xp.

O 

(±2,0); (±<29, O) ; 5x±2ÿ = 0; 

(0, ±<3); (0, ±<5); <3x±<2ÿ = 0;
O 

(± 4, 0) ; (± 4 <2, 0) ; x ± y = 0 ; <2. 
(±^> o); (±^> O); <3x±<2ÿ = 0; 

(0, ±1); (o,±^)

1.

2.

3.

4.

5.

6. ; 2x±ÿ = 0;

7. 20 x2 - 16 y2 - 60 x + 25 = 0.
8. 21 x2 - 4 y2 ± 16 y - 100 = 0.

9. 3 x2 - y2 = 12.
10. 8 x2 - y2 = 32.

Page 112 (§ 36)
1. 18 x2 ± 26 x.
2. 10 x4 + 21 x2 ± 3.

3. (x2 — l)(x + 2)2(7 x2 + 8 x — 3).
4. (x — 3)(4 x2 — 3 x — 7).
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16 x
(x2 + 4)2' 

6(3x+l)(x + 2) 
(2 x - l)4 

7.3/-^______—Y

3. 0.26 in. per min.
4. 64 eu. ft. per sec.

5 W X ■V/X3/

5.

6.

4(x — 1)
^3 x2 - 6 x + 1

17. (6 x2 + 14 x + l)(x2 + 4 x + l)i
18. -—L—-

(x3 + 3 x2)*
19. ----------2,-=-

(2 — x) vx2 — 4

Page 114 (§ 37)
ÿ2 + 1

3 y2 — 2 xy — 1
Vÿ + x- Vÿ-x 6.

a
3 x + y
x + 3 y

y

8.

1.

2.

3.

4.

9.
(x + 1) Vx2 — 1

13.

10. 2 - x2
14.

(x3 + 2)’

11. 2 x2 - 2 x - 1 15.
Vx2 — 2 x

12. 12 - 18 x 
n . . K 3.* 16.

20. 6 x2
(x3-3)i(x3 + 3)s

21.-#^=.

5.

2 y2 - 2 x - 1

x
_ ÿ + 2. 2 ÿ + 4 

x + 3’ (x + 3)2'
_ . 2

2jz —1*  (2 ÿ — l)3
8.2x + ÿ. 0

2 y - x

7.

2x
(1 + x3)*
2 x4 + 2 x2 — 2 x 
(x2+2)’(x3-2)t
2 x4 - 3 x2 - 1

2(2 x3 +x)î
8 x — 3 x3
V4 — x2

22.------------ ----------
3 x2(x + 4 xe)i

4 asx3

1

Page 116 (§ 38)
1. 3 x + 4 y — 19 = 0. 8. tan-1 V- H. tan-11 ; tan-13. tt. tan-i y
2. x + 2ÿ-2 = 0. 9 2E. tan-’it 12.-■ 2
3. tan-1 J. 2 25 2 tt
7. _ i). io. tan-12. 13. tan-13. 2 ’

Page 120 (§ 40)
1. x3 = 8 y2 ; t V16 + 9 t2. 2. (y - 2)2 = x; V4 t2 + 1.
3. 5ÿ = 6x-2x2; V61 — 240 Z + 400 t2 ; (IJ, *).
4. (ÿ — 2 x)2 = 625 x; V20 t2 - 200 Z + 625; (25, - 75).
5. (ÿ-2)2 = (x + 3)3; «V4 +9Z2; (-3, 2).
6. xi + yi = 2 ; 8 V 1 — 2 Z + 2 Z2 ; (1, 1).

Page 121 (§ 40)
o »o2 sin 2 a. .. .o. —-----------; vo , <x. 10. y = x tan a — gx2

2 Vo2 cos2 ag

Page 124 (§ 41)
1. 0.2 cm. per sec.
2. 20.9 sq. in. per sec.

5. 3 V2 ft. per sec.
6. 4.1 ft. per sec.
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Page 125 (§ 41)
7. Ay in. per min.

158. Circle; — ft. per sec., x = distance of point from wall.
x

9. 2.64 ft. per sec. 10. 6.6 ft. per sec.
11. 2 J + 4 ÿ ft. per sec-> where x is distance of top of ladder and y is 

2 x + y
distance of foot of ladder from base of pyramid.

Page 127 (§ 42)

Page 128 (§ 42)
5. Xÿ —2x+l=0. 7.< 8. At- 9-^.

b lo

11. 259| w, where w is weight of cubic unit of liquid.

16 7ra3

12. 3A T.

Page 128 (General Exercises)

x + Vx2 — a2
a Vx2 — a2

o ■ a* _
Vx2 + a2(x + Vx2 + a2)2 
2 z4 - 3 a2x2 + 2 a4

(x2 — a2)*
4. 15 x3 Vx2 + a2.
5. ----- 02-------

x2 va2 — x2
x3

6. ------------7-
(a2 — x2)“

Page 129 (General Exercises)
37. Circle.

7 °2 6 a4ÿ
’ 3 y2 — a2 ’ (3 y2 — a2)3

1 2

8 _KZ- n? -
x*  3 x*y*
xn ~4. _ (n — l)awxn~2

* yn —1 ’ y2n —4

10. b2x. _ b4 
a2y ' a2y3

.. ay — x2. _ 2 a3xy .
' y2 — ax’ (y2 — ax)3

12 1 — ÿ2 • 2(ÿ2 - 1)(4 x + y)
’ 2 xy — 1 ’ (2 xy — l)3

Page 130 (General Exercises)
41. A straight line perpendicular to line of centers of circles.

43. Vâ(xi2 4- ÿi2) + 2 Gxt + 2 Fyi + C.

44. 3 x2 + 2 xy + 3 y2 — 12 x — 12 y = 0. 49. Xi~łx + yi~*y  = a*.
45. 3 x2 + 2 xy + 3 y2 - 16 x - 16 y - 0. 50. x^-’x + yin~'y = an.'
46. 29 x - 3 ÿ + 16 a = 0.
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Page 131 (General Exercises)
56. tan”12.
57. tan-> -1/.
58. tan-1 J.

59. tan-1*.2

60.
2

61. tan-1 V-
62. tan_1|.
63. tan-1!.

64. y = 2 x2 ; 2 Vl + 64 t2.
65. 2.1.

Page 132 (General Exercises)
69. 1< t < 3; semicircle; —7=

a 2 V-
70. x*  + ÿ*  = 1 ; 3 t.________

2
P + 4 f - 3

8 . 2 V(P + l)4 + 4 t2
7-ÿ~x2 + 4’ (P + 1)2____ '
72. (x + 2)2 = (ÿ - l)3 ; i V9 / + 4.
73. — ° ft. per sec., where s is the length of rope between the man 

Vs2 - 400
and the boat.

74. 5.8 mi. per hr. ; 28.8 mi.

76. 9 x2 + 36 y2 = 4096;

78. Increasing at rate of 2 in. per sec.

75. 11.4 mi. per hr.
4 /256-3P
3 V 64-P

79. 0.06 ft. per min.

Page 133 (General Exercises)
80. 0.08 ft. per sec. 82. 0.01 in. per min. 84. | in. per sec.
81. 0.08 ft. per min. 83. sq. in. per min.

85. —- ■ ft. per sec., where x is the distance the man has crossed. 
x2

86. Sides equal. 88. Breadth = 9 in. ; depth = 9 V3 in.
87. Base = 4 ft. ; side = 3 ft. 89. Side of base = twice the depth. 

Page 134 (General Exercises)
90. Each dimension = 3 ft. 95. J in.
91. Inner dimensions : radius = 2 in. ; altitude = 4 in. gg 1_
92. Radius = 3 in. ; height = 6 in. ’ V2
93. Radius = V3Ô ft. ; length = 2 V30 ft. 97 a V6
94. Each 3 in. 3
98. When the passenger is landed at a point If mi. from point of shore 

directly opposite the vessel which is 4 mi. offshore.

Page 135 (General Exercises)
99. 8 mi. from point on bank nearest to A.

100. He should travel 4f| mi. on land.
, -, bm • 1 j bn101. a — , - mi. on land ; -. - = mi. in water.

Vn2 - m2 Vn2 - m2
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102. 1^4 hr. later.
103. V100 mi. per hr.
104. Speed in still water = mi. per hr.

105. Base = a V3 ; altitude =

106. 4.

Page 136 (General Exercises)
110. y — 1 = ky(x — 1), where k is the factor of proportionality.
111. x2 — y2 = c2. 113. 68 min.

116. 21 f.

114. 20 sec.
32 to3

105 '

115. J.

Page 146 (§ 46)
1. 8 cos 2 x.
2. sec2

o
3. 3 sin 6 x.
4. tan 2 x sec2 2 x.

CHAPTER V

5. cos2 5 x.
6. 3 sin3 3 x cos2 3x.
_ „ ,3x. 3 x7. 3 sec5 —— tan — •

5 5
8. -4 csc2 4 x ctn 4 x.

12. 4 csc 2 x(csc 2x — ctn 2 x)2.
13. 3 cos 6 x.

14. tan4

15. sec 2 x tan 2 x(l 4- sec 2 x tan 2 x).
16. 6 sec 2 x tan3 2 x.

9. 4 cos3
4

10. tan2 I sec4

j y _ 3 tan 3 x
2 tan 2 y

18.
x

19 sec2(x — ÿ) + sec2(x + y) 
' sec2(x — y) — sec2(x + y)

20. V.
x

Page 151 (§ 48)
2

Vl — 4 x2
2

x V9 x2 — 4
1

1 - 2 x + 2 x2
1

1. 8.

2.

3.

4' - I---------------
(x + 1) Vx2 + 2x

5. ---- 1 •
x V9 x2 — 1

6. -------------1 ------
(2 x + l)Vx2 + x 

17. ,_______
V4 x — x2

9. -

2
x2 + 4 x + 8

2 x

10. -

11.

12.

13.

15.

16.

17.

1
(1 + x)Vx

2 - 3 x
V9 — x2

2
l+2x + 2x2‘

18. 4 x Vl - x4.
19. .

Vx(4 — x)3
20. ------------ 2

(x —2)Vx2 —4x
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Page 153 (§ 49)
1. =F 8 ir ft. per sec. ; ± 8 tt V3 ft. per sec. . 4 x — 4 V4. —- ----- rad. per sec.

x2 + y2

3. 4 rad. per sec. 5. ~ rad. per sec.
5

Page 156 (§ 50)
1. s = 4 sin —.

3
2. 10.

3
3. 20 ; 4.

Page 158 (§ 51)
7. -&sjn<fr ; </> —cos-!—• 

a — b cos <p a
Page 161 (§ 52)

9. f.
10. 4 V2 ft.
11. 2 tt V3 sec.

j 5 a V5
1>_2

2.1^.
4

Page 162 (§ 53)
1. 2.
2. 2 7T a2.
3.52L.

3 2 Vx(x + 3)3.
3

4. 3(axÿ)k
o 17 VÏ7
6‘—-----

4. V2 - 1.

5.
6. A(10 + 8 V2 - 3 tt V2).

7. a<t>.
8. 2 a.
9.1^2.

7T

q ?r(8 — 7T) . 7T(8 + TT)
2 ’ 2

8. 7r(7T + 4 a)
2

10. —, where w = weight of cubic unit of water.

Page 163 (General Exercises)
1. — 2 sin 4 x.

2. — sec6-.
2 2

3. 9 cos3 3 x — 6 cos 3 x.
4. 8 cos3 2 x sin 4 x cos 6 x.

9.2.
X

2
(x + 2) V2x

11. - -^-7-
X2 + 1

12.—. 2 —
x v9 x2 — 4

10.

13. 2
(x2 - 1) Vx2 -2

1

5. ctn 5 i csc - — ctn -Y
2\ 2 2/

6. 4 x2 cos 2 x.
7. a4x3 sin ax.
g cos 2 x
' cos 2 y

:• 17.

14. - ,_______
(x + 1) Vx2 + 2 x

15. ------------- 2 ------ •
(x + 2) Vx2 + 4x

16. 16 x sin-12 x.

18.

1 + x4
1 + X6

X2
(4 - x2)*

19 v<l ~x2~ v2). 
x(l +x2 + y2)

20. w-y. 
y2 -x
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Page 164 (General Exercises)
35. k y/a2 sin2 kt + b2 cos2 kt. 39. 5 7T sec.

36. 2$ ft.
37. +

38. 3 ; 2.

40. 40 ft.

41. 20 V3 ft. per sec.

42. 60 ft. ; 60 min.

43.162^.
7T3

44 (7T2 + l)i.

2 7T
45. 2 a V3.

Page 165 (General Exercises)
4G (a2 + &2)* . 48. 13'VÎ3

2 ab V2 3
47. 2(1 + cos2 </>)’; x2 = 4(1 — y). 49.22^2.

17tt . . 2
51. —— mi. per min.
52. fôsinfl-t—; cos.ff_\ times angular velocity of AB, where

\ Va2 - b2 sin2 9/
9 — angle CAB.

53. & ~ 2)2 + (j/~3)2 = 1 ; V9sin2Z + 4 cos21 ; when t = (2 k + 1)
9 4 2

54. = 1 ; 6 sec 3 t Vtan2 3 Z + 4 sec2 31
4 16

55. 6 sin 2 </>. 56. ab<f>. 57. xy = 4 ; 12 V2. 58. 2 y2 = (2 - x)3 ; V34.

Page 166 (General Exercises)
59. x2 = 2(2 — ÿ) ; 6. 60.0.

61. cos 9 sq. ft. per sec. ; increasing if 0 < 9 < ;

decreasing if Ï < 9 < ir.

62. Ï. 63. • 64. 5 VÏ5 ft.
4 4

67. At an angle tan-1 k with the ground.

66. V2 ft.

Page 167 (General
68. 16 in.
69. 5 V5 ft.

70. 2 a cos —
8

71. 13 VÏ3 ft.

Exercises)
72. tan”' 2 a/2.
73. tan"1
74. 0 ; tan”1 3 V§.
75. tan"1 $•; tan"1 4 V2.
76. tan-1 f ; tan-1

77. tan-. 2(V3..-_11. 
V3 +4

78. tan-1 6 + ir V3 ■
6 V3 - tt

Page 174 (§ 56)
CHAPTER VI

3. 2 x In a a* 2-*.

1 + x:
atan xt

5 2 x + 6
' x2 + 6 x — 1

6 2 x + 4
’ 2 x2 + 8 x + 9
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7‘ x2—16*

2 2x 4 3
’ 1 - x4 ’ 49 x2 - 9

8.-^=.
vx2 + 9

9.-^=-

V25 x2 + 1
10. 4 csc 2 x.

Page 175 (§ 57)
1. (3 In 5) ft.
2. x2 = 8 y.
3. x = 3 e«~2.
4. 1 (e°2 - 1).

a
5. 4 In 2.

3(e3r - e~:taj
• e3x + e~3x

12. e'3x(2 cos 2 x — 3 sin 2 x).
13. — tan'1 x.
14. 4 x2e21.
15. 10 e3» cos x.
16. ---- - -----

ex +e~x

Page 177 (§ 58).r
1. y = 6e3. 2. ÿ = 54.3e001». 3. y = 8e0-36». 4. $448.

5. P = 10,000 eoml‘, where P is the population at any time t.
6. C = 0.01 e'0-037', where C is the concentration at any time t.
7. 90 sec.

Page 181 (§ 59)
1. y = 0.62 x - 0.76. 2. J = 0.0017 D.

Page 182 (§ 59)
3. y = 0.30(2.7)».
4. c = 0.010(0.84)'.

Page 182 (General Exercises)
1 1 3 - 4

‘ 1+ e21 ’ V16 x2 + 1

5. a = 0.0000000048 Z3 06.
6. pt)1-35 = 10.

5. 2e61 ■
1 - eix

6. (In 2 x)2.
7. 2 tan'1 2 x.

8. a tan3 ax.
9. x3e2».

10. 3 sec'1 3x.

Page 183 (General Exercises)
25. V2 e‘. 2g loVÏÔ
pg (X2 + 1)I. 3V3 3

X ’ 2 29 (1 +4e2)1-
27. 8 a. ’ 8 e

31. y = ax".
32. xy = c.
33. H - 6 In |.
34. tt(42 - 40 In |).
35. 1.24.

Page 184 (General Exercises)
36. 16.5 hr.
37. 1090 sec.
38. p = 14.7 e~00000ih.

Page 185 (General Exercises)
42. c = 0.010(0.83)'. 43. Z = 0.1VŻ.

39. p = 0.018 t+ 24.
40. Load = 190 — 6.5 length.
41. s = 25(0.40)'.

44. I - 0.023 V0. 45. y = 0.40 x1-54.



ANSWERS 367

Page 190 (§ 60)

14.

15. Origin;
16. Origin ; (2, 0).
17. Origin;

CHAPTER VII

18. r2 sin 2 0 + 4 = 0.
19. r = 2 a(cos 0 — sin 0).
20. r + 2 a cos 0 = 0.
21. r2 = a2 cos 2 0.
22. y = a.
23. x2 + y2 — 2 ay = 0.
24. x4 + x2y2 = a2y2.
25. (x2 + ÿ2)3 = 4 a2x2y2.

Page 192 (§ 61)
1. rsin0 = a.
2. r cos (6 — a) = a.
3. r = 2 a sin 0.

4. r =----------- ; r =------------
1 — cos 0 1 + cos 0

Page 193 (§ 61)
5. r = a_______ • r =___ ±____

2 + cos 0 ’ 2 — cos 0

Page 196 (§ 62)
1-0- 4
2. ir — tan-1 —= •

V3

7. 75,000,000 mi., or 25,000,000 mi.
8. 1.2 million mi., or 4.8 million mi.

3. tan-11 ; 7T
2

4.0; 5.|; tan_1(—|).

Page 197 (§ 63)
1. 2 a2.

2
4 n

q 3 ira23_2~'

4 59 lr.
2

10. 4 ir — 3
3

5. 11 7T.

o 3 ira2
6-"4~-

8 ir + 3 V3
3

7. 11 ir.
8. 40 ir.
9. ir + 16.

Page 198 (General Exercises)
15 I4 + V2 7r\ . /4 — V2 5 7r\ 

’ \ 2 ’ 4/ \ 2 ’ 4 / '
16. Origin; (^3, ±|).

17. Origin;(^.sin-^).

18. Origin

19. Origin ; , tan-12^.

20.

21.

22.
23.
24.

r =

Origin; 2 a, 0-

2 a sin2 0 
cos 3

r = a ctn 0.
(x2 + y2)2 — 4 a2xy = 0. 
(x2 + y2 — ax)2 = a2(x2 + y2).

26. 0; tan”12.

97 21 • IL
2’ 3
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Page 199 (General Exercises)
28.7- 29. 0 ; 7 ; tan-13 V3.

30. r = cet, where k is the tangent of the angle at which the curve inter­
sects a radius vector.

31. r2 = 2(0 + 2).
32. r(0 - 1) = 1.

33. 2 a2. 35. 2 a2.
36, {8^.

4

CHAPTER VIII
Page 205 (§ 65)

1.1+. + S + !2 + ..„
-y«2 -)«4 7*62. l-i- + ±__±_ + ..
2! 4! 6!

3. x+î! + 2x_5 + 17x_7 + .
3 15 315
7. In 2 + - — ^ • — + i • — + • • •,

2 2 22 3 23

8-1-2-§+23-S-25-fî+----
9.4 + 23.g + 2».g + 22.|-; + ...

7-2 -p3
Wl-|+T-fe + --

1 • 3 xs , 1 • 3 • 5 x7

’■'-7 + T-7 + --
6-à(1+*-ü-^ +-)-

■ a4 + 1 ' 1 ' a
2-4-6

Page 207 (§ 66)
1. e*[l  + (x - 5) + ^-Vy-5!2 + (x ~5)3 + •••].

2. 1 (x —1) . (x—1)»' (x- l)3 ...

‘àH-Hf-RH’4-}
5. e6[1 + 2(x - 3) + Hx~ 3)2 + 8^~3)3 + •••!.

6 tt 1 a? — 1 (x — l)2 - (a: — l)3 . .
’ 4 2 4 12

7.V2[l+^ + ^l£-^ + ...].
s. V5 + 4 (« - Ï) + < V5(. - 0* +«(, - !)■+ • ■..
9--lto2+(’-î)-(’-ï)’+l(«-ï)' + --
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Page 209 (§ 67)
1. 0.0523. 3. 0.4695. 5. 0.8746. 7. 3.0042. 9. 3.14.
2. 0.9781. 4. 0.6947. 6. 1.6487. 8. 0.1823. 10. 2.0801.

7*4 7*6

7*2 7*4

5-1+x + f--7 + '"-
7» 2 t»3S.l+» + ï-+L + ..,

4.

Page 210 (General Exercises)

(
7*3 7*5 t«7 \

x + ïï + ïï + 7 + "j-
2 1 -L x2 + 5 z4 4. 61 16 4- • • •+ 2!+ 4! + 6! ’

/y*4 <7*6 t»83-x3-W7 + "--

7-1-rx2+H-a:4-H^
8l_l î! + L13 & 1 • 3 • 5

2 3 2-4 5 2-4-6 7
7*6  7*10  7*14

9-x2-5!+^!-7!+"-- 

io-i+l-x4+H-x8+H^-a:,2+-"- 
13-1+x-f-Ç + ....

14. 1.2214. 16. 0.0875. 18. 0.40547. 20. 0.22314 ; 1.6094. 23.1.9680.
15. 0.5736. 17. 0.3643. 19. 0.69315; 1.0986. 21. 0.8473 ; 1.946 . 24. 3.0366.

OK _ x3 , x5 x7OK I A3(3!) + 5(5!) 7(7!) + "
X3 . X5 X726. x - — + —------------- !-•••.
3 5(2!) 7(3!)

27 - . 1 . 1 • 3 x7 1 • 3 • 5 x>° .27-X + 2’7 + 2-4 7 + 2-4-6 ÎÔ +

Page 214 (§ 68)
l. 5 x4 + 3 x2y2 + y4 ;

2 x3y + 4 xy3 — 5 y4. 
y3 + x2y . x3 + xy2 
(y2 — x2)2’ (y2 — x2)2'

1 . 1
1 + x2’ 1 + y2

y x

2.

3.

4.

CHAPTER IX

X

7. ey

V1 — x2y2 Vl — x2y2
x2 — y2 . y2 — x2

x(x2 + y2~) ’ y(x2 + y2)
8. — 1 ■ - : -------- - — ■

Vx2 + y2 (x + Vx2 + y2) Vx2 + y2

X 
eî»

xy .
»

K.

5.
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Page 215 (§ 69)
1 x2 — y2 
' x2 + y2

2. 2 ex sin (y — x). 3. - 2
(y +2 x)2

Page 219 (§ 70)
1.0.000410299. 2.1.277:1.279. 3. -i^cu.ft. 4. sq.ft. 5.3%.

10. In direction making angle (2 k + l)ir + ay with OX.

Page 220 (§ 70)
6. 0.007. 7. 1735. 8.

Page 227 (§ 72) w
1. — z. 2. 2. 3. - e2.

2
Page 228 (§ 72)

4. 0.53 sq. in. 7. 0.
6. - 0.006. 8. In direction making angle 135° with OX.

Page 230 (§ 73)

(cos ax + ax sin ax — 1).

8.

1 / X
2\a2 '

1
X2 a2

+ -Î- tan”1 
a3

6. — (sin ax — ax cos ax'). 
a2

x
a2 y/a2 — x2

Page 231 (§ 73)
a (a + l)a?g+1ln a; + (1 — xa+1) 

(a + l)2

Page 231 (General Exercises)
1. £±J/. 2. 0.

in. e“z(,ax - 1) + 1
a2

13. 0.0325 in. 14.

Page 232 (General Exercises)
15. in. 18. 6360 ft.
lg 9 ft 19. 0.2887 sq. ft.

8 VÏ9 20. 17.92 k, where k is the factor of proportionality.
17. 1.25 in.

Page 233 (General Exercises)
Vë 22. 2.9 sq. in. per sec. gl 1 25. V2. n

'3 23. — iVs-. V(z — l)2 + (y — l)2 ’ 5 a’
26. In direction making angle tan-1 J with OX ; 5 k.
27. — |(cos </> + V3 sin </>) ; 1.
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29. — [(a2x2 — 2) sin ax + 2 ax cos ax]. 
a3

30. — ie“x(a3x3 — 3 a2x2 + 6 ax — 6) + 6]. 
a4
x“+1(lnx)2 2xg+1Inx . 2(x* +1 — 1) 

a + 1 (a + l)2 (a + l)3

21. ? V3 x2 + 4 + V3 ln(3 x + V9 x2 + 12).
3

Page 238 (§ 75)
1. 2x‘ + 3x2+i.

a X32. 3(x - 2)x’.
o 6 x1 + 283-“7vr’

4. ^ + 2 In x --1-.
2 2 x2

0'2
6-j+j + x + lntx-D.

6. A(x3 + 3)4.
7. A(x4 - 8)>.
8. J(x3 + 3 A
9. |ln(e21 - e-21).

CHAPTER X

10. I ln(3 x + cos 3 x).
11. —------ i---------•

a (cos ax — eax)
12. -----— 1........... ■

V2 x — cos 2 x
13. i ln(2 x3 - 3 x2 + 1).
14. - ln(l + tan ax), 

a
15. j sin3 3 x.
16. i sin2(2 x + 3).
17. 5^(3 sin4 5 x — 2 sin6 5 x).
18. |(3 tan 2 x + tan3 2 x).
19. — I csc3(3 x + 2).

20. — A[15 cos(3 x — 1) — 10 cos3(3 x — 1) + 3 cos5(3 x — 1)].

Page 242 (§ 76)

„ 1 xVÎÔ
2-vïsin —
3. Az tan-1 

Vs VÜ
4. -Ltan-1^.

V2Ï 3
5. ln(x + Vx2 + 3).
6. i ln(2 x + V4 x2 - 9).
7-^ln£ri

x + 2
1 3 x — VÏ5

8‘ 2 VÏ5 " 3 x + VÏ5

1 3 x - 2
9’V3

10. sin-'^J-
VÏÏ

11. iln——
.6 x + 6

12. 1 in10x + 3-V29
V29 10x + 3 +V29

13. tan"*(x  + 4).
14. A= tan-1

V3Ï V3Î
„ 1 . ,3x + 2
1&. —~ sin-1 —7=—V3 V10
16. ln(x + 2 + Vx2 + 4x).
17. A ln(4 x + 1 + 2 V4 x2 + 2 x + 2).

l8.lln(z2_4)+|ln^|.

19. |ln(4 x2 + 9) + Î tan-1
8 DO

20. - V9 - x2 - 2 sin-*  f •
o
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Page 244 (§ 77)
1. — Jcos(4x + 3).
2. J sin(3 x — 2).
o 3 i„ „„„ 2 x3. — - In cos----

2 3

Page 245 (§ 77)

4. J In sin(4 x — 2).
5. i ln[sec(2 x + 4) + tan(2 x + 4)].
6.1 ln[csc(3 x — 2) — ctn(3 x — 2)].
7. — J sec(2 — 3 x).

8.1 ctn(l — 3 x).

9. 3 tan-.
3

10. I csc(2 — 5 x). 
ni(4’-s”T}

12. |[tan(2 x + 3) — 2 x].

13.

14. |(3 x 4- cos 3 x).

15. sin 2 x — 4 ln(sec 2 x + tan 2 x). 
l8.h„n|.

18. 3V2sinï.
3

19. ~ t<t(cos 5 x + 5 cos x).
20. ln(csc 2 x — ctn 2 x).

2V2

Page 246 (§ 78)
1. 1 eSl+3.
2. 4 ex\
3. l{eRx-e~6x)+2x.
4. ln(e*  + e~x).
5. ln(e*  + e-*).

6. x - 2 ln(l + ex).
_  gCOSX

8. etan~lx.

10. 10*  x11
In 10 11 '

9. xe+1
e + 1’

r^a+bx^a+bx
11. -—£------

6(1 + In c) 1
12. — e*.

Page 249 (§ 79)

V3 V^T3 +V3
2. A(3x2-x + l)(5x + l)^. z______

3.1 (x + 10)V2x + 5 + 5V5 In V2a; + 5~X^
3 V2x + 5+V5

4. X
3V3 - X2

5 (2 x2 + 25) Vx2 - 25
1875 x3

6-^tl.
Vx2 + 4

7. X
2 x2 + 8*

x
4 Vx2 - 4

----------------- •
27(4 x2 + 9)< 

n (5 x3 — 24)(x3 + 8)^
40

12 (4xł —9)t
45 x6

13 V4 x2 + 9
9x

14 15 x3 — 2 x5
135(3 - x2)>

15. ? f Vx3+4 + In -X-3 + 4 ~ 2 ).
3\ Vx3 + 4 +2/
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Page 252 (§ 80)
x ^1)^

2. jÇ(9 x2-6x + 2)e3*.
3. x cos-1 x — Vl - x2.
4. x tan-1 x — J ln(l + x2).
5. sin x — x cos x.
6. i (1 — 2 x2) cos 2 x +1 sin 2 x.

7. In 3.
8. |(e - 1).
9. ł(e2 - 1).

10.1 In 2.
11. H-

V3-V2
12’ 18

13.
14. A(9V3 - 10 V2).

6. ln(2 x2 + 3 x + 5) + -4= tan"* 4 g ±. 3
V3Ï V31

7. Ç (3 In x - 1).

8. J x2 + x sin 6 x + T'y cos 6 x.
9. |(x4 — l)tan_1 x — Ą(x3 — 3 x).

10. |(4 x2 sec-1 2 x — V4 x2 — 1).
11. (x2 — 2)sin x + 2 x cos x.
12. cos x(l — In cos x).

5.
x + 2
x2 - 1

Page 254 (§ 81)
1. I In x2(2 x + 3).
2.1 In g*  + D27.

3 (3 x + 2)23
3 X I 1 In (2 x — i)9 * 11 * 13 14 63-X + 6ln (3x + l)’

4.^  + iln(x + l)(2x-l)2.
O

9. i In x4(x2 — x + 2)3 + -4= tan’1----
2 Vÿ VŸ

10.1 ln(2 x - 1)(4 x2 + 2 x + l)2 + tan~’ " 1

6-In(x + 2)2'

7. 2 x + In 2 +
x — 1

8. 2 x +1 In x18(9 x2 — 4).
2 x- 1

2

Page 257 (§ 82)
1. ri.
2. %.

4f-

sf-

15. ^-(6- 2 V3).
16. ITS-
17. 3 IT.
18. 23H-
19. 13-rjTy.
20. 1 - In 2.
21.
22. 2(ln 2)2 — 2 In 2 + |.

Page 258 (General Exercises)

!• T - 7T + Iln(x2 + 3- "7= ta
4 2 2 V7

2. 2 ln(x2 + 3) +V3 tan-1-^. 4. 1 In-
V3 4 3

5. ln(x2 + x + 3) + -|= tan-’ 2 æZt1 •
Vil Vll
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7. i ln(6 x2 + 6 x - 5) + In 6x + 3 -V39.
4 4V39 6X + 3 +V39

8. 5 ln(2 x2 - x + 1) + -LL tan-1 4ic~1.
4 2VŸ VŸ

9. gin"1 £^-2.
. 3 _____________

10. -t= ln(2 x + 2 + V4x2 + 8x-10).
V2

11. ! 2 x + 1
V3

12. -L= ln(3 x — 1 + V9 x2 — 6 x — 3). 
v3

13. V3x2 + 2x +1 -2 V3 ln(3x +1 + V9x2 + 6x + 3).
14. -?9 sin-i 5x4-2 _ I Vl — 4 x — 5 x2.

5 V5 5
15. -1^= sin-1 3x-1 - 1 V2 + 2 x - 3 x2.

3V3 VŸ 3
16. ln(8 x2 + 24 x + 15) - In 4? + 6-Vë.

16 r r 48 4X + 6+V6
17. 3 sin — sin3-.

3 3
18. - 2^3 ctn I + ctn3

21. ^2 jn V2cosx±l.
4 v2 cos x — 1

22. 2/tan - — ctn — 4 x.
\ 2 2/

25. |(sin 4 x + cos 4 x).
26. ln(csc x — ctn x).

Page 259 (General Exercises)
27. J tan 2 x.
28. 4(3 cos x — 2 cos3 x).
29. — 4 (cos 2 x 4- sin 2 x).

30. 2 ln(x - 2) + ——
x — 2

31. A(5 x2 - 6 x -t- 6)(2 x + 3)4.

35. A(2 x3-3)(l+x3)i.
36, -Ï^É_sirl i .

x . V2 
(4 x2 + l)* .

19. ^,[3 cos6(2 x + 3) - 5 cos3(2 x 4- 3)].
20. A [3 sec5(x + 3) - 5 sec3(x 4- 3)].

23. — I ctn 3 x —
24. sin 2 x.

37‘ 5 x«

38. j(x3 -2)V1 4-x3.
39. 4 2:3 ~ 45 19 20 21 + Sin-i

3(5 - x2)> V5

40. --------- —-------
5(4 x2 - 1)7

41. |(x4 — 8) Vx4 + 4.
X

32. -^7^.
9x

33. - — tan-1 ------ 3 2:2 + 8
64 2 32 x(x2 + 4)

34. A(3 x + 8) (3 x - 2)4.

42. In (3 x + V9 x2 4- 4) - ,_______
9 V9 x2 + 4
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CHAPTER XI
Page 270 (§ 86)

1 12x/3.
5

2. J.
3. 3 ira2.
4. 30 -16 In 4.
5. 18.
6. ^(3tt-2).

y 3 ira2
2

8. |(2 7t + 3V3).
9. 18 it.

10. J(120 + 9 7r).
11. y(3\^-ir).

12. 7T + 3V3.

14. 64 it2.
,c 4096 irV3
15'~Î35—

16. 48 7r[V3 — ln(2 4-V3)].
17. 32.

Page 271 (§ 86)

18. 324x^3
5

19. 1.40 T.

20. (8 7T + 9x/3).
o

21. AT.; 0.024T.

IPage 273 (§ 87)
where a is radius of semicircle.

2 a2. —, where a is radius of semicircle. 
7T

4.17. 7. lOOr.p.m.
g ira2 8. 2.

3 g 2 ka
_ ir

6 — •'6 10. 6.93 lb. per sq.in.
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Page 276 (§ 88)
1. A(13 VÏ3 - 8).
2. iry/2.
3. ^(229 V229-8)ft.
4. V2(l -e-’).

Page 278 (§ 89)
1. 2 irah.
2. 4 ir2ab.

12 ira2
5 ’ "2

6. ^[36V5-ln(9 + 4V5)J.
64

? 64 ira2
3

3.

g 15 ira

6. 8 a.

7. -kc“

m-
9. 4 V3.

8. In

-a2 ( —
4. \ea — e a ) + 2 irah.

2 / — \ / - -h\

5. ^-\ea — e a )— 2 ira2\e“ — e “)+2irah.

q 32 ira2
8’“3~•
9. 4 ?ra2(2 - V2).

10. 4 ira2 y/2.

3. 1066< ft.-lb.
4 irka

12 ’

5. 2,700,000 ft.-lb.
6. 1178 ft.-lb.

9.

4 (”•¥)■

Page 280 (§ 90)
1. 104.
2. -• a

7. 2 kca2, where k is the proportionality factor.
8. (a2 + b2).

4

mi.-lb., where R is the radius of the earth in miles.R + a

Page 281 (§ 90)
10. 1.17 ft.-lb. ; 0.97 ft.-lb.

Page 284 (§ 91)
3. /o, .̂+ 4e2-l)\.

\ 4 e(e2 — 1) /
5. On axis, distant < of radius from base.
6. On axis of segment, distant a.2(h22 — hi2) — (h24 — hi4)] from cenjer

of sphere. 4[3 “ **>  " W ~ h1^
7. On axis, - from base. 8. On axis, — from base.

3 32
9. On axis of solid, distant f from base.

Page 289 (§ 92)
1. A Ma2.

5 h2(& + 3 a)
6(b + a)

Page 290 (§ 92)
10. I Mr2.

4. J Ma2 ; i Mb2.
8. 1 M(r22 + n2).
9. |M(a2 + b2).

11. I Ma2.
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Page 292 (§ 93)
1 kM

' c(c + I)
2 2 kM 

cVl2 + 4 c2
2 kcM 

(c2 + a2)^

4 2 kcM /I_____ 1
a2 \c V c2 + a2/

5. D + Vc2 + a2 - V(c + Z)2 + a2]. 
a2l

6. Ml (V2 _ 1).
a2

Page 293 (§ 93)
7 3 ka(2 b — a)M
' 2 b[b3 — (b2 - a2)*]

Page 293 (General Exercises)
1. 10 sin-14. 6. 4 a2.

8. 8 kM
81

2. 12 sin 1 4V2
5

,8 a2
3" ”15""

? 3 irab
4

4. 20A-
5. 2 irab.

Q 3 ira2*-~T

9. —■
n

Page 294 (General Exercises)
15. — (8 TT + 9V3).

16
17. I irh2
1« 68 7T

kik2, where fci and k2 are values
19. 20. 2-^~

03 62 ir23’ 15

in a2x/3
16- 4 •

for k in the equation y2 = kx.
64 7rV2

5
2121‘ 105

24. ira3 tan 9.
25. 438 lb.

22.

Page 295 (General Exercises)
26. 7.49 lb.
27. 1440 lb.
28. i^(8 tt 4- 9V3)w.
30. a(2 7T — 4).

Page 296 (General Exercises)
36. 957 lb. per sq. ft.
37. 6 a.
38. 8 7r2a.

„1 32 7T31.—.

(tt + 12 - 6 VS)-

44 3 tto 
‘ 2

40 4 42. 16 a.
3

45. 2 7rb2 + 2 sin-1 e, where e is eccentricity of ellipse.
e

46. 2 ira2 + 2 7ral>2 In « + ^«2 ~ fe2,
Va2 - b2 b
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47 12 ira2 18 ira2 49. 32 ’r“2. 50. —
5 5 5 8 ax

Page 297 (General Exercises)
3 fca2

2
51. 55. (2 aR — a2), where

2 ri
R is radius of earth.

53. 586| ft.-lb.
54. 54,000 tt ft.-lb.

56. 2 irC.

«■ (»■ ¥)■
60. On axis of solid, 

distant from bise.
6

Page 298 (General Exercises)
61. On axis of solid,

distant — from
16 

smaller base.

62. I Ma2.

63. ¥ M.

65. ^M.

66.
10 Vp-n3/

67. ¥ M.
68. W&M.

64. |M(r22 + n2).

Page 299 (General Exercises)
73. A*M(2  +V2). 75 3 fcM(l — cos a)

2(ai2 + aiü2 + a22)

CHAPTER XII
Page 302 (§ 94)

1. i In 3 - J. 5. i(ir - 2). 8. 4(2 V2- it). 11. —.a
2. 6. — In 4. 9.2L.

o

3. — ? In 2. 4 12 io ira!
4. 1. 7. x/2 - 1. 10. a(ir — 2). 12--16

Page 311 (§ 96)
1. On axis of segment, — from vertex.

5 r-
2. On axis of quadrant, —- from center of circle, a being radius of

circle. 37r
3. Intersection of medians. 4. (H)-

6. On axis, 4a2 + 3ira& + 6 ft2 from bage
3 7ra + 12 6

7.

Page 312 (§ 96)

(¥> °y 10. (¥, 0). n /3a(8ir-llV3)
\ 6 J \ 16(3 V3 — 7r) )



ANSWERS 379

Page 313 (§ 97)
2. On line of centers, r^r„2- from center of circle of radius n.

n2 + r22
3. On axis of shell, 8^~2* ~ ri*)  frOm common base of the bounding

hemispheres. 8(r2 ~ ri >
4. Middle point of axis.

Page 314 (§ 97)

5. On axis, ~ from base.
4 («23 — /ii3)

6. On axis of cone, f of distance from vertex to base.
7. (5K, 5-H-), if outer edges of square are taken as OX and OY.
8. On axis, 4.9 from corner of square.
9. On axis, 3.98 in. from center of cylinder in direction of larger ball.

10. On axis, 3.4 ft. from base of pedestal.

Page 316 (§ 98)
3.1 base x altitude.
4. 8 b, where a is altitude and & is base of segment.

15
5. > where a is altitude and b is base of segment.

5
6. 2 ira2b ; 8 irab.

Page 317 (§ 98)
7. (6 + 3 c) ; ir[2 ca + 2 be + b2 + (2 c + &)Va2 + &2 ].

3
8. 7.07 T.
9. irabcw, where w is the weight of a cubic unit of the liquid.

10. 2 , where w is the weight of a cubic unit of the liquid.
3

11. 2 c + 3 a)w, where a js the altitude and & the base of the segment
15

and w is the weight of a cubic unit of the liquid.
12. Increase of cw x area, where w is the weight of a cubic foot of water.
13. On axis, from base, a being radius of semicircle.

3 7T

14. On axis, from center of semicircumference, a being the radius.
7T

Page 319 (§ 99)
1.22$. 2. |(5120 it - 8192). 3. f(18-5ir). 4.^. 5.

6 35jra^ 7. — (152 jr + 135V3). 8. i(1792 + 297 it).

Page 320 (§ 99)
9. 21 (33V3 - 16 tt). 10. V(2O 7T + 21V3).



380 ANSWERS

Page 322 (§ 100)
1. f Ma2, a being radius

of circle.
2. 1875.6.
3. 3751.3.

4. 6395.3.
5. A Ma2.
6. H Ma2.
7. 4536.

8. 3483.
9.1 + 3 r,»).

10. J Af(n2 + 3 r22).

Page 336 (§ 103)
1. 8 7T. 3. 4. 7T.

Page 337 (§ 103)

g 3 ira3
4

(3 7T — 4). 9. izl. io. g (56 - 3 TT).

Page 338 (§ 104)

o /3 a 9 ira 9 ira\
2’ \ 8 ’ 64 ’ 64 )' 

ą /16 a H6 & 2 c\3’ \15 ir*  15 ir’ 3 / '

4 (¥-¥•¥)■

Page 340 (§ 105)
1. %%M.
2. I M(a2 + 62).

Page 341 (§ 105)
6. f Ma2. 7. f Ma2.

10. + W + 4À2).

5. On axis of ring, 2 ft. from 
center of shell.

6 /26 a 26 a 9 a\
’ 1,25 ir’ 25 ir’ 10/

7 / 3(tt-2) 3(tt —
’ '8 ir(2 - V2) ’ 8 ir(2 - ’ 16
/ 3 a2(2 &2 — a2) \

°’ 8 [&’ -(&2 - a2)i])'8.

3. ł M(a2 + 62).
4. i M(a2 + &2).

5. 2_a2(15 7r-26)
25(3 7T-4)

8. J M(b2 + c2). 9.
11. AM(3 a2 + 4 h2).

&M(3 a2 + 2 h2).
12. V- Ma2.

2 
ry*

8.1™!.
6

6 + 3

Page 341 (General Exercises)

4 7256 a 256 a\
’ \315 7r’ 315 ir! 

k /4 a 4(a + b)\ 5- (sT 3V~/

6.

7.

264 \
10 + 15 ir/

( 1088V2 0\
\560 + 35 ir ’ /

Page 342 (General Exercises)
Q /IOtt + 16 n\8- \ ~7T + 12 ’ °?

10. On axis of loop,
105 ir

11. On axis of segment, -
of circle. 3

9 / 2 a(88 + 15 tt) 
\ 15(16 + 9 ir)

from 0.
4(a2 - b2)i

’°)‘

from center
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13. On axis,

14. On axis,

15. On axis,

212. On axis,------——— from base of triangle and away from semicircle.
3(ir + 2V3)
4a2 + 2a6V3 + 62frombase 

2(4a + 6V3)
1 1—---- — from center of circle.

32 - 3 ir
~-r‘3) from center of circumferences.

3 ir(r22 - n2)
16. On axis of T-square, 8 in. from bottom.

2 "x/^
17. On axis, in. from center of original hexagon.

5 3
18. On line through centers of square and circle, —-------- from center of

circle in direction away from center of square.
19. On axis, ——— from center of ellipse.

ab - c2
20. On axis, 5| in. from corner of original square.

Page 343 (General Exercises)
21. Y M. 21
22. *(264 ir-225V3). 2f
23. ł Mira2. 21
24. V M. 3(
25. 1 Mira2. 31
26. *(681 ir + 1792). 31

33. ((1024 - 12 ir).
34. J(1024 - 12 ir).
35. >(1024 - 12 ir).
36. (15ir-32).

Page 344 (General Exercises)
44. 45. 4 ir V2.

35
49. ^(3ir + 20-16V2).

cfl 15 ira35°-64—

46.^.
4

16 a3 V2
105

47. 32 a3
9

48.^.
32 6

51.

53.

/3a(15ir-16) n a(315 ir - 512)\ 
t 10(9 ir - 8) ’ ’ 32(9 ir - 8) /
(0, 0, 3*).

Page 345 (General Exercises)
60. *M(3  62 + 4 62).
61. (Ça, 0,

54. |M.
55. * Ma2. .
56. 7 ir.
57. WM.
58. 2^ - rfl M 

5(r23 - n3)
59. |M(4 62 + 3a2).

65.

66.

67. a5

64.
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(The numbers refer to the pages)

Abscissa, 26
Acceleration, 10, 18 ; sign of, 24
Amplitude, of a wave, 141 ; of simple 

harmonic motion, 154
Angle, between straight lines, 35 ; 

between curves, 114 ; circular meas­
ure of, 138; vectorial, 186; between 
curve and radius vector, 195

Anti-sine, 146
Approximations, 46
Arc, differential of, 117 ; in polar 

coordinates, 193
Area, derivative of, 56 ; by summation 

58 ; element of, 61, 263 ; in polar 
coordinates, 196, 264 ; of an ellipse, 
266; of a surface of revolution, 276, 
316 ; as a double integral, 302 ; as 
a double integral in polar coordinates, 
307

Asymptotes, defined, 81 ; of a hyper­
bola, 98

Attraction, 290
Axes of coordinates, 25
Axis, of symmetry, 80; of a parabola, 

90 ; of an ellipse, 94 ; of a hyperbola, 97

Binomial theorem, 203

Cardioid, 190
Cartesian equation, 119
Cartesian space coordinates, 323 
Catenary, 171
Center, of a circle, 87 ; of an ellipse, 94 ; 

of a hyperbola, 97
Center of gravity, in general, 281 ; of a 

curve, 282 ; of a solid of revolution, 
282 ; of a plane area, 309 ; of a 
composite body, 312 ; of a solid, 337

Circle, in rectangular coordinates, 87 ; 
as a special case of an ellipse, 95 ; 
in polar coordinates, 191

Circle of curvature, 159
Cissoid, 84

Compound-interest law, 175 
Computation by series, 207 
Cone, 326, 329
Conics, defined, 100; classification, 

101 ; special cases, 103
Constant of integration, 48, 234 
Convergence of series, 200 
Coordinates, rectangular, 25; polar, 

186 ; space, 322 ; cylindrical, 323
Curvature, 158
Curve, motion in, 118; parametric rep­

resentation, 119
Cycloid, 156 
Cylinders, 324
Cylindrical coordinates, 323

Definite integral, 64, 254
Derivative, 16; of a polynomial, 19; 

sign of, 21 ; second, 38 ; partial, 211 ; 
higher partial, 214

Derivatives, theorems on, 104 
Differential, 43 ; total, 216 ; exact, 220 
Differential coefficient, 43
Differentiation, 18 ; of a polynomial, 19 ; 

formulas for, 111 ; of an implicit 
function, 112 ; of trigonometric func­
tions, 143 ; of inverse trigonometric 
functions, 148 ; of exponential and 
logarithmic functions, 172 ; partial, 
211 ; of a definite integral, 228

Directrix of a parabola, 89
Distance, 84
Double integrals, 300

e, 169
Eccentricity, of an ellipse, 94 ; of a 

circle, 95 ; of a hyperbola, 99
Element, of area, 61, 263; of pressure, 

265 ; of volume, 265, 332
Element of integration, 65, 260 
Ellipse, 92, 100 ; area of, 266 
Ellipsoid, 328 ; volume of, 335 
Elliptic paraboloid, 329

383
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Equations, roots of, 27 ; parametric, 119 ; 
empirical, 177

Focus, of a parabola, 89; of an ellipse, 
92 ; of a hyperbola, 95

Fractions, rational, 252 ; partial, 252 
Function, 16
Functions, algebraic, 80 ; implicit, 112 ; 

trigonometric, 137 ; inverse trigono­
metric, 146; exponential and log­
arithmic, 168

Graphs, of polynomials, 25; of trigono­
metric functions, 140; of algebraic 
functions, 80 ; of inverse trigonomet­
ric functions, 146 ; of logarithmic and 
exponential functions, 171 ; in polar 
coordinates, 186

Hyperbola, 95,100 ; rectangular, 83,99 ; 
equilateral, 99

Hypocycloid, four-cusped, 129

Implicit functions, 112
Increment, 16, 216
Infinite limits and integrands, 261 
Indefinite integral, 65, 234 
Infinitesimals, 261
Infinity, 81
Integral, 48 ; definite, 64,254 ; indefinite, 

65, 234 ; double, 300
Integrals, table of, 347
Integrand, 234 ; infinite, 261
Integration, of a polynomial, 48 ; of a 

power, 125, 235; of trigonometric 
functions, 161, 242 ; of exponential 
functions, 174, 245 ; by substitution, 
246 ; by parts, 250 ; of rational frac­
tions, 252 ; fundamental theorem of, 
260; repeated, 300

Inverse sine, 146 
Isothermal lines, 226

Lemniscate, 189
Length of a plane curve, 273 
Limaçon, 188
Limit, defined, 2; of --• 139; of 

cosh, 140; of + 169
fl

Limits, theorems on, 104
Limits of a definite integral, 65, 254 ; 

infinite, 261

Logarithms, 168; common, 169; natu­
ral, 170

Maclaurin series, 201
Maxima and minima, 39
Mean value, 271
Measure, circular, 138
Moment of inertia, 284 ; polar, 287 ; of 

a plane area, 285, 317; about parallel 
axes, 320 ; of a solid, 338

Motion, in a curve, 118; simple har­
monic, 153

Neighborhood of a point, 208

Ordinate, 26
Origin, 25, 186

Pappus theorems, 316
Parabola, 89, 100 ; referred to a pair of 

tangents, 129; in polar coordinates, 
191

Parabolic segment, 91
Paraboloid, elliptic, 329
Parallelism, 34
Parameter, 119
Parametric representation, 119
Partial fractions, 252
Parts, integration by, 250
Plane, 330
Period of simple harmonic motion, 154 
Perpendicularity, 35
Polar coôrdinates, 186
Polar moment of inertia, 287
Pole, 186
Power series, 200
Pressure, 67, 265, 314
Projectile, 120

Radian, 138
Radius of curvature, 159
Radius vector, 186
Rate of change, 12 ; as a derivative, 

18 ; related, 121 ; of function of two 
variables, 223

Roots of an equation, 27
Rose of three leaves, 188

Segment, parabolic, 91
Series, 200; Maclaurin, 201; Taylor, 205 
Sign, of a derivative, 21 ; of a velocity, 

23; of an acceleration, 24; of-an 
area, 61



INDEX 385

Slope, of a straight line, 29 ; of a curve,
31 ; of a tangent to a curve, 36

Solid of revolution, 72 ; volume of,
72, 315; center of gravity of, 282 

Space coordinates, 322
Speed, average, 3 ; true, 4 ; as a deriva­

tive, 18
Sphere, 327
Spiral, of Archimedes, 189 ; logarithmic, 

189
Straight line, equation of, 33, 34 ; in 

polar coordinates, 190
Straight lines, parallel, 34 ; perpen­

dicular, 35 ; angle between, 35 
Strophoid, 129
Substitution in integrals, 246 
Summation, 56
Surface of revolution, area of, 276, 316;

equation of, 325
Surfaces, 324 
Symmetry, axis of, 80

Table of integrals, 347
Tangent line to a curve, 36, 114
Taylor series, 205
Trigonometry, formulas of, 137
Trochoid, 158
Turning-points, 31, 39

Value, mean, 271
Vector, radius, 186
Velocity, defined, 22; distinguished 

from speed, 23 ; sign of, 23 ; in a 
curve, 118; angular, 151; linear, 152

Vertex, of a parabola, 90 ; of an ellipse, 
94 ; of a hyperbola, 97

Volume, of solid with parallel bases, 71, 
265 ; of a solid of revolution, 72, 315 ; 
of any solid, 332 ; of an ellipsoid, 335

Wave length, 141
Witch, 129
Work, 279
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