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PREFACE

Volumes II and III complete the school course including suitable 
work for university scholars in their last terms at school.

The authors have attempted to concentrate attention on the 
fundamental principles, methods and notation which furnish the 
tools necessary for more advanced work. They believe that many 
of the topics which constitute the conventional course are only of 
value in so far as they illustrate general ideas, and that much of 
what has been called ‘ higher algebra ’ in the school course should 
be scrapped. Only the requirements of certain examinations have 
prevented them from pursuing a more drastic policy than they 
have actually adopted.

The account of the difference (A) notation in Chapter X forms 
an introduction to the study of difference equations in Chapter XI, 
and taken in conjunction with the sketch of the principles of 
probability in Chapter XVIII should enable those concerned with 
actuarial work to learn the essentials of these subjects before 
taking a specialist course. Some of the examples on probability 
may appear to be remote from actual life, but the more practical 
applications do not always provide the simplest illustrations of the 
principles involved. The philosophy of probability lies outside 
the scope of this work.

Difference equations, or recurrence formulae, are of great impor­
tance in mathematics, even apart from their valuable analogy 
with differential equations. Recurring series and continued 
fractions at least have the merit of providing illustrations of 
difference methods.

In Chapter XII the distinction between theorems of real and 
complex algebra is emphasised and for this purpose the authors 
believe that the new terminology introduced on p. 253 will be
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vi PREFACE
found of real service to the student : the mature mathematician 
may find it unnecessary. The main theme of this chapter is the 
fundamental theorem about Af +Bg — 1, and special care has been 
taken to show how the theory of partial fractions can be derived 
from it. In practical decomposition into partial fractions the 
choice of the best method is a matter of experience and therefore 
the various alternatives have been copiously illustrated by 
examples in the text.

In Chapter XIII Descartes’ Rule of Signs has been treated more 
fully than usual and its special value with incomplete equations 
has been emphasised. The importance of the considerations of 
weight and order in the theory of symmetric functions of the 
roots of an equation has been stressed. Newton’s formula has 
been enunciated in a form slightly more comprehensive than is 
customary.

The early part of Chapter XIV is of great importance, because a 
sound understanding of the principles of convergence is essential ; 
but the developments in the later part of the chapter should 
be left for a second reading. Although inequalities are not 
discussed systematically until Chapter XV, simple examples of 
their manipulation necessarily occur in Chapter XIV and the 
fundamental logarithmic inequality which was given on p. 108 
of Volume I is required in some of the examples.

In Chapters XV, XVI, XVII the student is introduced to sub­
jects of special significance in modern mathematics. Although he 
may be well-advised to rely at first on ab initio methods in dealing 
with inequalities, he can profitably make a start at learning the 
forms into which the simple special results can be generalised. To 
pursue this subject further he will naturally take up the study of 
Inequalities by Hardy, Littlewood, and Pólya. Attention is 
called to the introduction of the 8- and e- symbols and the use of 
dummy suffixes. Too often the young student at the university is 
plunged into some subject in which these are the normal working 
tools, although he has had no preliminary training in their use. 
The same applies with even greater force to matrices.
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The subject of Chapter XIX is a fascinating one. Any pure 
mathematician is certain to be attracted by it, even though the 
account here given does not give much indication of the lines of 
modem research in Theory of Numbers.

For the convenience of teachers, the exercises are divided into 
sections A, B, C : both the A and B questions are straightforward 
applications of the bookwork. It is suggested that all tfie A 
questions should be done. The B questions are intended for extra 
practice when this is necessary. The C questions are harder but 
have been carefully graded.

Short books of Hints for the solutions of any examples that are 
not immediate deductions from the bookwork have been compiled 
for Volumes II and IIJ and it is suggested that the student should 
have access to these books. Teachers cannot always find time to 
discuss various methods of handling a problem, and, even when 
the student has not failed to discover a solution, it will often be 
helpful to him to compare his method with another. The hints 
consist, in effect, of a very large number of illustrative examples 
solved in outline.

An index to Volumes I, II, III is given at the end of Volume III.
The thanks of the authors are due to Mr. W. Hope-Jones of 

Eton and Mr. T. A. A. Broadbent for advice on the probability 
and sequence chapters respectively, and to Mr. P. Hall of King’s 
College and Mr. W. G. Welchman of Sidney Sussex College for 
advice about matrices. They have again to thank Mr. J. C. 
Manisty for valuable assistance at the proof stage.

June, 1937
A. R.
C. V. D.
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CHAPTER XV

INEQUALITIES
In this chapter we are concerned entirely with real numbers. By 
definition a >b means that a - b is positive, and a<b means that 
a - b is negative ; the number 0 is neither positive nor negative.

It is sometimes convenient to use such abbreviations as 
a^b^c if for a<b<c if x>y and a>b>c if x<y.

The rules for the manipulation of inequalities are nearly but 
not exactly the same as for equations :

If a^h, then a+rgb+x ............................................................ (1)

because (a + x) - (b + x) = a - b.

If agb, then axgbx if x>0 and axrjbx if x<0................. (2) 

because ax-bx = x(a-b) and has the same sign as a-b if ®>0 
and the opposite sign if x< 0.

If ar>br>0 for r=l, 2, ...,n, then a^ ... aa>bxba... bn ...(3) 

because successive applications of (2) give
°1®2®3 ••• •">^io2a3 an >&i^2°3 ••• >••• >^i^2^3 • •• ^re­

An important deduction from (3) is

If a>b>0, then an>bn if n>0 and an<bn if n<0 .............(4)

and this holds for any rational value ~ (q >0) of n if the convention 

is made that aplg denotes the positive root of av.
This convention will be adopted throughout this chapter.
The reader should note carefully the reversal of the inequalities 

in (2) and (4) when x and n are negative.
367

D.lt.A.A. m
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Quadratic Inequalities.
Any quadratic inequality ax2 + 2bx + c>Q can be reduced to 

one of the forms
(i) (x - a)(x - f}) >0 (ii) (x - a)(x-0)<O

(iii) (x-y)’+8!>0 (iv) (x - y)2+82< 0
In order that (i) may be true, x - a and x - /? must have the same 
sign. This requires that x should lie outside the interval from 
a to f3.

Similarly (ii) requires that x should lie between a and (3.
(iii) is true for all values of x except that if 8 = 0 it is not true 

for x = y. (iv) is never true.

The conditions for ax2 + 2bx + c to be positive for all values of x 
are that either a>0, ac-b2>0 or a = b = 0, c>0.

If a^O, ax* + 26x + c = {(ax + 6)2 + (ac - b2)}/a.
Hence if a>0 and ac-b‘>0, ax2 + 2bx + c>0 for all values 

of x.
If a>0 and ac-b2<0, ax2 + 2bx + c<Q for x= -b/a.
If a< 0, (ax + b)2 + (ac - b2) is positive for all sufficiently large 

values of x, and for such values ax2 + 2bx + c is negative.
If a = 0, the inequality reduces to 2bx + c >0 which is not always 

true unless 6 = 0 and c>0. Hence the conditions stated are 
necessary and sufficient.

Example 1. Solve - 1X — 2
If x - 2 >0, the inequality gives

1> - x + 2, i.e. x>l,
and so it is true for x>2.

If x - 2< 0, it similarly gives x< 1, and so it is true for x< 1 as 
well as for x>2.

This result should be illustrated by the graph of y(x -2) = 1. 
The inequality might alternatively be written in the form

(x-2)’(l/(x-2)+l}>0
and solved as a quadratic inequality.
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Sets. A set of numbers a2, a....... ..  an is denoted by [a].
Two sets [a], [&] such that a1-.b1 = a2:b2 = ... = an-.bn are 

called proportional. This implies that they are proportional 
when al = a2 = ... = an = 0 or b2 = b2 = ... = bn = 0.

A set [a] in which a1 = a1~ ...=an is called a dull set.

Weierstrass’ Inequalities. Suppose that av(v= 1, 2, ... , n) are 
positive numbers whose sum is s. Then we shall prove that

(14-a,) (1 +-a2)... (1 +an)> 1+s.................................. (5)

(1—ax)(l—a2)... (1—an)>l—s if a,<l ............... (6)

(l+a1)(l+a2)...(l+an)<jli if s<l ................(7)

(l-a1)(l-a,)...(l-aB)<j^.................................. (8)

Since (1 + ax)(l + a2)= 1 + (al + a2) + a1a2>l + (ax + a2),

(1 + «i)(l + «2)(1 + as) >{! + (°i + “s/H1 + as) > 1 + (ax + a2 + a3), 
and so on ; this proves (5).

Since (1 - ax)(l - a2) = 1 - (a2 + a2) + a1a2 >1 - (ax + a2),

it follows from 0<a3< 1 that

(1 -ctx)(l -aa)(l -a3)>{l - (ax + aa)}(l -a3)>l- (ux + aa + a3) ; 

hence if alt a2, ... , an lie between 0 and 1,

(1 -ax)(l-a,) ...(l-an)>l-(ax+ «, + ...+«„),

which proves (6).
From (1 - a„)(l+a„) = 1 - a„2< 1 and a„< 1 it follows that 

1 + a„< 1/(1 - a„) and therefore

(1 + ax)(l + aa)... (1 + a„)<l/{(l-ax)(l-a,)...(1 -«„)}.

Also from (6) provided that s< 1 it follows that

1/{(1 -ax)(l -a,)... (1 -«„)}< 1/(1 -a)

which proves (7).
Similarly (8) can be proved by using (5) and 1 - ar< 1/(1 + a„).
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Cauchy’s Inequality. If the sets [a], [6] are not proportional, 
(a1b1+a2b2+...+anbn),< (a12+a22+...+an2)(b12+b2‘+...+bo2) ..(9)

Consider the expression "Z,(avx + b„)2. A value of x such that 
arx + b„ is zero for all the values of v only exists if the sets are 
proportional.

Hence S (aFa: + b„)2> i.e. x^av2 + 2x’Z,avb, + 'Z b„2, is positive for 
all values of x. Also S a„2 >0- Therefore by p. 368,

2a/SbF2-(SaFb,)2>0,
which proves (9).

Alternatively this result follows from the identity 

I U"
I

S»FbF
SV = |S S (aMbF - aFbM)2.

M=1V=1
If [a], [6] are proportional, the sign < must be replaced by = 

in the above result.

Tchebychef’s Inequality
If a2>a2> ... >an and b2>b2> ... >bn

then
0,4-0, + ...+a„ b,+b2 + ... + bn ,0,^ + 0,^ +...+o„bg 

n K n n •
unless [a] or [b] is a dull set.

For if each summation is from 1 to n
SS(a^bM - aMb„) = S(naM&M - %S&) = n£flb - SaS&
V v M

and S S(a„b„ - avbj = ^(na,b, - a„ Sb) = n^ab - Sa Sb.
n V V

Hence n^ab -'£,a'£lb = ISS(aMbM-aMbF + aFbF-aFbM)

= łSS(aM-aF)(bM-b,).

But by hypothesis (aM - aF)(bM - bv) is positive unless one factor 
is zero. And in the double sum the terms are not all zero unless 
a,=o2 = ... = on or b, = b2 = ... = bn.

Hence nSab - Sa Sb is positive, which proves (10).
In this result, if one of the sets [a], [b] is dull, the inequality is 

replaced by an equality.
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By repeated applications of (10) if

...ba>b,>,..^bn,..., ..,^ln,

Zl ^ab...l ,,n
n n " n n

provided that at least two of the sets [a], [&], ... , [Z] are not dull.
A useful special case of this inequality is obtained by taking 

the sets

«ip, “ap........ anv > ai9’ a2Q.............an i ai> ai> ••• • an • •••

of positive numbers, where p, q, r, ... have the same signs and 
p-q + r+ ...=m. From these conditions it follows that if 
a/, a2p, ... , anv are in descending order of magnitude, so also are 
the other sets. Hence

n n n n
unless [a] is a dull set. The form of this result shows that the 
order in which alt a2, ... , an are arranged is immaterial.

Example 2. If a, b, c are positive and not all equal and n is a 
positive integer, prove that (a + b + c)n< 3n~1(an + bn + c").

By formula (11)

a + b + ca + b + ca + b + c . , an + bn + cn
~3---------- 3----------3— ... n factorse —-------

and so (a + b + c)"< 3n-1(an + bn + cn).

EXERCISE XVa

Solve the inequalities in Nos. 1-4.
A

1 1 1
1 -x<x- 2

2. K3a:+74<1
x-7

3. a:(l - x)< 1 4. x(x - a)(x - /?)< 0, (a< 0< P).

5. Find the conditions for ax1 + 2bx + c to be negative for all 
values of x.
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6. If a >0, 6 >0, a + b = 1, prove that
• (i) ‘tab < 1; (ii) (a, + i) + (b + > 12}

Prove the inequalities in Nos. 7-11, given that a, b, ... are 
positive and not all equal.

7. a3b + ab3< a* + b*

8. (a* + 6‘) (a6 + 65) < 2 (a’ + &’)

9. (a + 6)n< 2n-1(an + 6"), where n is a positive integer.

10. (a8 + b2 + c8)8< (a + b + c)(a’ + b3 + c8)

11. (i) (& + c - a)(c + a - 6)<c8;
(ii) (6 + c-a)(c + a- b)(a + b -c)<abc.

12. If x, y, z are positive variables with a constant sum k, find 
the least value of a;8 + y2 + z8.

B
Solve the inequalities in Nos. 13-20.
13. 3 - 5x<2x - 11 14. x2 - 5a; + 6< 0
15. 83 - 8a:8< 8 - 5a;8 16. x(x- 3) >10

17. , 2 + x ,
- l<x---- < 1 18. o J e>4

3-x 3a;8- 5
19. x2 + 5< 2x 20. a:3+ l<a:2 + a:

21. Under what circumstances is
(i) x3 + y3 >x2y + xy2; (ii) (1 +a:y)8< (a: +

22. Express the following so that only positive signs occur. 
Also state the conditions for the omission of the equality signs.

(i) If a>0, b>0, then (V“ - Vb)8>0 ;
(ii) (6 - c)8 + (c- a)2 + (a - b)8>0 ;

(iii) SS(“r-°s)2>0, where the summation extends to all 
possible pairs of values of r and s selected from 
1, 2.........n.

1 1
23. If a; >0, prove that 2<x + -<x3 + —r x x3
24. Prove that (a/x)2 + (bx)2 >2ab unless bx2 = a, and find the 

least value of cx + d/x where c, d, x are positive and c, d are 
constant.
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Prove the inequalities in Nos. 25-30, given that a, b, ... are 

positive and not all equal.
25. cd(a + b)3< (ad + bc)(ac + bd)

26. (a3 + 63)(a3 + 63)(a6 + 6»)< 4(au + 611)

27. (a + b + c + d)’< 16(a3 + 6s + c3 + d3)

28. (a + b + c)3 >3(6c + ca + ab)

29. (a3 + 63 + c3 + d3) (a3 + b3 + c3 + d3) < 4(a3 + 63 + c3 + d3)

30. (a + b - c)3 >4(ab - be - ca)

C
31. If sn = an + bn + ...+ln and a, b, ... , I are positive and not 

all equal, prove that s4s6<s2s,.
32.

33.

34.

If n - 1 is a positive integer, prove that

If 0< x< I, prove that
(1 + x) (1 + x3)... (1 + a;”-1)< (1 - x)/( 1 - 2x + xn)

- x 4.7.10... (3n + 4) 11Provethat 2TÓT 8:T(3n72)>1 + H1 + l + i + -+^M/
Prove the inequalities in Nos. 35, 36, given that a, b, c are 

positive and not all equal.
35. bc(b + c) + ca(c + a) + ab(a + b)< 2(a3 + b3 + c3)
36. (6c + ca + a6)(a + 6 + c)3< 27 (a3 + 63 + c3)3
37. Prove that if a1( a2, ... , b2, b2, ... , cv c2, ... are all positive, 

(CjdjCj +... + anbncn)3< (axa + ... + an3) (6/ + ... + 6„3) (c23 + ... + c„3).
38. By arranging 8, = ax3 + 2hxy + by3 + 2gx + 2fy + c, as a

quadratic in x and using the results on p. 368, prove that 8 is 
positive for all values of x and y if and only if

or 
or 
or

(iii) a = h = g = 0, 6>0, 6c-/3>0,
(iv) a — b=f=g = h = 0, c>0.
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39. If a, b, c are positive and x + y + z = 0, prove that
a2x2 + b2y2 + c2z2 - 2bcyz - 2cazx - 2abxy>Q.

Illustrate this result geometrically, x, y, z being areal coordi­
nates.

Arithmetic and Geometric Means. We shall now consider certain 
theorems which are generalisations of the inequality

a:2 + y2>2a^.
If a, b are positive and unequal, this inequality may be written 

a + ^> ,, U—2_->V(a&)

i.e.  the arithmetic mean of two unequal positive numbers is greater 
than the geometric mean.

It will be shown that the same is true of the means of n positive 
numbers.

The arithmetic mean of a set [<z] of n positive numbers is the 
number which is often called their average ; it is defined to be 

ai + a2 + ■ • ■ + an(j js denoted by A (a) ; the geometric mean is 
n

defined to be ^(a1ai ... an) and is denoted by G(ct).

Example 3. If alt a2, , an are unequal positive numbers in
A.P., prove that s/(a1an)< ^(a^ ... an)<l(a1 + an).

(i) If b is the common difference, and 0<k<n - 1,
ak+ian-k=(ai + kb'){ai + (n~k- W

>a22 + (n- l)a1b = a1an.
Put k — 1, 2, ... , n-2 and multiply, thus

“aX* ... a„_12>(a1an)"-2
a2a2 ... an2>(a1an)n

:. !*/(a1a2 ... an) >V(ai°n)
(ii) a, + an = ak+1 + an_k>2^(ak+1an_k).
Put k = 0, 1, ... , n - 1 and multiply, thus

(a1 + a„)n>2ns/(a12e22 ... an2) = 2na1a2 ... an
^(a1 + an'}>^(a1at...an)

This is a special case of a result now to be proved.
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In the remainder of this chapter we shall be dealing with sets 

in which all the numbers are positive. The inclusion of zero values 
often gives rise to exceptional cases the details of which must be 
left for a more advanced course. [See Hardy, Littlewood and 
Pólya : Inequalities]

Theorem of Means. A(a) >G(a), unless [a] is a dull set........ (13)

Let a^, au be the greatest and least (or one of the greatest and 
one of the least) terms of [a] and denote by [6] the set obtained 
from [a] by replacing aM, av by G and a^aJG, where G = G(a).

Then a1a1 ... an = b1bi ... bn ; .'. G(b) = G(a) = G

Also G + a^aJG a„ = {G2 - Glp^ + av) + a^aJ/G

= - (a^- G)(G - a,)JG.

But as [a] is not dull, a/2>G and G>a„

G + aliav/G<ali + al,

b2 + b2 + ... + bn<a2 + a2 + ...+an. Thus A(6)< A(ct).
Similarly a set [c] can be obtained from [&] such that

G(c) = G(&) = (? and A(c)< A(6)< A(a).
Continuing this process, after n - 1 steps at most a set is 

obtained each of whose terms is G, and the arithmetic mean of 
this set is less than A(u). Hence G< A(a).

When [a] is a dull set, A(a) = G(a).

Weighted Means. More general types of mean are defined by

A(a,p) = (p1al+paaa + ...+pna„)/Pn 
G(a, p) = . a^nylPn

where Pn—p1+p2 +...+pn, and plt p2, ..., pn are positive 
rational numbers called the weights associated with cq, a2, ... , an.

If the weights are positive integers, A(a, p) and G(a, p) are the 
ordinary arithmetic and geometric means of a set consisting of 
p2 numbers equal to a2, p2 numbers equal to a2,..., andp„ numbers 
equal to an. Hence by the theorem of means A(a, p) >G(a, p) 
unless [a] is a dull set.
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If the weights are any positive rational numbers, an integer A: 

exists such that kp2, kp2, , kpn are all positive integers. Denote 
them by qv q2, ... , q„ and put q2 + q, +...+ qn = Qn.

Then A(a,p) = (Sp,a,)/P„= (Sg,aF)/Q„
and G(a, p) = (tta/r)1®’" = (II

Hence, by what has just been proved, unless [a] is a dull set,

A (a, p)>G(a, p) .................................. (14)

where p2, p2, ... , pn are any positive rational numbers.
In particular, if a, fl, ... , X are r positive rational numbers whose 

sum is unity and if a, b, ..., I are positive,

aa+pb+ ...+Xl>a»b^ ... P ..........................(15)

unless a, b, ... , I are all equal.

It is convenient at this stage to introduce the more general 
means defined by

Mr (a) = {(a/ + a/ + ... + a„r)/n} ' 
Mr(a, p) = { ^ a/ + p2 a/ +... +p„a„r) /P„)' 

where Pn=p2+p2 +...+pn and r #=0.
M1(a)=A(a) and M1(a, p) = A(a, p)

It can be proved that limMr(a) = G(a). See Exercise XVc, No. 21. 
r->0

We do not discuss properties of irrational numbers in this 
volume, but it may be mentioned that a special difficulty arises 
in extending inequalities to irrational values of the argument 
because in taking a limit the sign < becomes < .

Example 4. If 3x + 5y = 2 and x is positive, find the greatest 
value of Py3.

By formula (14), if x, y are positive,
</{(ł®)2(fp)3}<ł(3»+5y) = |

unless fa: = fy when the expressions are equal. Hence the greatest 
value of x2y3 if x and y are positive is (J)5(|)2(f)s, i.e. 2’. 3.5“’.

But x‘y3 is negative when y is negative and hence 2’.3.5~8 
is the required greatest value.
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Example 5. If a, b, c are positive and not all equal, prove that 

9a2 b2 c2 < (be + ca + ab) (a4 + b* + c4).
By the theorem of means

|(&c + ca + a6) >4/(bc.ca.ab) = fl(a2b2c2)
and j(a4 + 64 + c4)>^(a4&4c4) ;
hence (&c + ca + u&)(a4 + &4 + c4) >9^/(a666c6) = 9a262c2

Example 6. If 0<n<m, prove that

m2m< (m + ri)m+n(m - n)m~n<

By formula (14) with l/(m + n) and l/(m-n) for a2 and a.
1

fl 1 1 2m 1 + 1 1
1. (m + n)m+” (m - n)m~n) 'm+n+m-n m’

hence m2m< (m + n)m+n(m - n)m~n.
Again by formula (14),

{(m + nr+"(m - n)"-P}^< + n)2 + (m - n)2 ^m2^
m+n+m-n m

(m + n)m+n(m - n)m~n< (m + n2/m)2m.hence

Example 7. If s is the sum of a set cq, a2, 
numbers, prove that unless the set is dull,

.. , an of positive

Let bv b2, ... , &n_j be positive and not all equal.
Then b2 + b2 +...+ bn_2>(n - l)(blb2 ... b^)1!^-^ 

and + + >(n- 1)(\&2 ... bn_1)-1^n~1'>
°z °n-i n-1 J

Hence (&1 + &2+... + &„_i) S j->(n-l)2
v=l °v

• %lł> (n-l)8
v=i \ + b2 + ... + 6n_j

If [&] is a dull set, this inequality is replaced by an equality.
Let [6] be replaced in turn by each of the n sets formed from 

[a] by omitting one term, and add the n results. Since [a] is not 
dull, the inequality holds in at least one case. Hence

n 1 n 
(n-l)S->S

1 1
which proves the required inequality.

(n-1)2 
s - a.
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EXERCISE XVb
A

1. Find the least value of a:4 + yl when x2 + y2 — c2.
2. Find the greatest value of x3y3 when x2 + y2 = 1.

Prove the inequalities in Nos. 3-9, given that ct, 6, ... are 
positive and not all equal.

3. 21abc< (a + b + c)3 4. 8abc< (& + c)(c + n)(a + &)
5. 9abc< (a + b+ c)(bc +ca +ab)
6. 81abcd< (s - a)(s - b)(s - c)(s - d) where s = a + & + c + d.
_ 9 2 2 2 1 1 17. ---- 7-------< 7----------- h -------------1---------- 7 <---- F 7 4----a+b+c b+c c+a a+b a b c
8. <z + & + c<ad6_c + bdc~a + cda~b
9. ac&<i(c + d)c+li<c<:dl^(a + &)c+‘,

10. If n - 1 is a positive integer, prove that
l(n+ 1)< (ll2233 ... nn)2/<n2+n’<i(2ra+ 1)

B
11. Find the greatest value of 12x2(l - 3x2).
12. Find the least value of x~2 + y~2 when x2 + y2 = c2.
13. Find the greatest value of x2y3 when x >0 and 5x + 8y = 7.

Prove the inequalities in Nos. 14-20, given that a, b, ... are 
positive and not all equal.

14. (V® 4" s/b 4- + V(6c) 4- V(ca) I- V(u6)< 4- b 4- c 4- d)
15. 25abcde< (a2 + b2 + c2 + d3 + e2)(a3 + b3 + c3 + d3 + e3)

16. - + - + - + - >4 17. 16abcd<(a2 + b2 + c3 + d2)2b c d a

181 (e+7 + ^)(o + ^+c)>9’ aabb(a + b)a+b<(a2 + b2)a+b

20. nn(p -aj^p -a2)... (p- an)<pn where
p = (a1 + ai + ...+a„)l(n- l)>ar (r = 1 to n).

21. If n is a positive integer and x>0, x^l, prove that
(xn+1 - 1)1 (x - 1) > (n 4- l)x”/2.
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22. If cq >at >... >ctB+1, prove that
(°i - °n+i)n >nn(a1 - a,)(at - <z3)... (an - an+1)

unless aq, cq, ... , on+1 are in a.p.
23. If x, y are positive, prove that {|(® + y)}x+v<, xxyv.

C
24. Kind the least value of yz + zx + xy if xyz = c2(x + y+ z) and 

x, y, z have the same sign.
25. If n is a positive integer, prove that

Vn< «Jn\< |(n+ 1)
26. If n - 1 is a positive integer, prove that

(i) n">1.3.5 ... (2n-l),’ (ii) (n!)»<nn(f(n+lj}‘n

Prove the inequalities in Nos. 27, 28 given that ax, a, 
are positive and not all equal and that s is their sum.

27. (i S------->------r> (u)2—£->—y s -ar n - 1 i s -ar n - 1

29. If cq, a2, ... , an are unequal positive numbers in a.p., prove 
. 2n » 1 .that ---------< V — <

°i + “n lar

;a> ••• > an

(± + ±)
\cq aKz

30. If n - 1 is a positive integer, prove that
1 1.3 ... (2n-1) 1

2^n< 2.4 ... (2n) < >/(2n+l)

31. If (x1-a)(x2-a) ... (xn-a) — bn where 0<a<x„ for 
v = 1 to n, prove that the least value of xtx2 ... xn is (a + b)n

32. If a + fl — 1 and x, y are positive and unequal and if a> 1 or 
a< 0, prove that

33.
x*y&>ax+ fly.

If a>i and x + a > 1, prove that
(X - a)(x + (X + a - I)2®

(*^)'<(>^)
n

34.

35.

(ii) If 0<x<m<n, prove that

(i) If 0<m<n and 0<x, prove that

(1--)"<(1--)’
\ mJ \ nJ 

If 0< m< n and 0< y, y 1, prove that
n(%]y - l)<»»("/2/- 1).

n
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Holder’s Inequality. If [a] and [b] are two sets of n positive 
numbers which are not proportional, and if a + /3 = 1, then 

2(a/b/)<(5a,)“(2b/ if « and p are positive ........ (16)
S(a/b/)>(Sa,)«(Sb,)0 if «>1 or if «<0.................(17)

where each summation is taken for v= 1, 2, ... , n.
(i) First suppose that a and j3 are positive.
Let + ct2 + ... + an — An, bl + b2 +... + bn = Bn.
In (15) take r = 2 and write aJAn, bt,/Bn for a, b.
Thus (avIAn)x(brIBn^< <xa„/An + pbr/B„ 

unless a„IAn = bt,IBn. Adding the results given by v= 1, 2, ... , n,
•Z(a‘b^l(An«BnP)<a+p=l.

Hence S(a/b/)< (SaF)«(2br)*’.
If a,IAn = bJBn for any particular value of v, the corresponding 

inequality is replaced by an identity, but at least one of the 
inequalities will hold unless at,/An = b„IBn for all values of v. 
Hence the inequality in (16) holds unless [a] and [b] are propor­
tional sets.

(ii) Next suppose that a>l, which implies /?<0.
Put «=l/y and y+3=l. This makes y and 8 positive and 

/?/a = (1 - a)/a = y - 1 = — 8.
Also put aF = cFdF and b„ = d„~a^. This makes

a/b/ = c11a = c,1/’' and dv = b,~Pla = b„s.
In (16) write cF1/y, y, 8 for <zk, b„, a, fl.
Then S ckd„< (£c//r)>-(2 d^s)9

i.e. Sfflv<(Sa/V)1/a(Sbv)-^/*
But a is positive (Sa„)"t(Sbl,)0<2(a1,'’tb/)
By interchanging a, b and interchanging a, [3, it follows that 

(17) also holds for p > 1 which implies a< 0.
From (16) and (17) by writing a for off and 6 for b& it follows 

that if the sets [a1/®] and [b1^] are not proportional and if 
a + /8=1, then

S(avbJ< (Sa/)’(Vb/)^ if a and p are positive........(18)

S(aA)>(Sa/)“(Sb/)e if«>lorifa<0 .............(19)
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By using the method employed for proving (16) it may be 

shown that
if [°]> [&]» ••• > Pl denote m sets not all proportional and if 

a, 8, ... , A are m positive numbers whose sum is unity, then
S(<W W<(2>,)W ... (W................ (20)

Minkowski’s Inequality. If [a] and [6] are. two sets which are 
not proportional, each consisting of n positive numbers, and if 
sv = av + b„for v=l, 2, ... , n, then

Mr(s)<Mr(a)+Mr(b) if r>l ..........................(21)
Mr(s) >Mr(a)+Mr(b) if r< 1, r^O.................(22)

(i) First suppose r>l.

Let r' be given by - + —=1, and in formula (18) put a=l/r, 

P= 1/r' and bv = sflr'; then
V(O„V-1) s S(«,V/r')< (SO1/r(S V)l/r' 

unless [a] and [s] are proportional. Similarly 
2(&pV-1X(SV)1/r(SV)1/r' 

unless [6] and [s] are proportional. Hence by addition 
2 V< {(S «/)1/r + (S 6/)1/r}(S V)1/" 

unless [a] and [b] are proportional. But 1 - 1/r' = 1 /r.
Thus (2 sfyl'< (S a/)1/' + (2 bf)1/’’.
Dividing by n1^, Mr(s)< Mr(a) + Mr(b).
(ii) If r< 1, r=#0, then 1/r >1 or l/r< 0. Formula (19) therefore 

gives the opposite inequalities to those used in (i). This proves 
formula (22).

By repeated applications of Minkowski’s inequality, if the sets 
[a], [b], ... , [Z] each consisting of n positive numbers are not all 
proportional, and if s„ = a„ + bv + ... + lv for v - 1, 2, ... , n, then

Mr(s)<Mr(a) + MT(b) + ... + Mr(l) if r>l .................. (23)
Mr(s)r>Mr(a) + Mr(b') +... + Mr(l) if rd, r^O....... (24)

The symbol Mr is undefined for r = 0. But a convention is 
often made to take Mo to mean G because it can be proved that 
Mr(a)->G(a) when r->0. See Exercise XVc, No. 21.
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But if in (24) r->0, it is only possible to infer that 
G(«)>(?(a) + G1(b) + ... + (?(Z).

It is however easy to deduce from (14), p. 376, that
G(s)>G(a) + G(b) + ...+G(l) .........................(25)

unless the sets [a], [6]........ [Z] are all proportional. For

W* f^Y/n< 1(5 + 5 +...
\Sj/ \s2J "\sn/ n\s1 s2 snJ

unless [a] and [s] are proportional, and similar inequalities hold 
for [6], ... , [ZJ. Hence by addition

{0(a) + 0(b) + ...' + (7(Z)}/(Ma ... Sny'n< i (J + £ + ... += 1,
tb \c»i ©2 dnz

unless [a], [6]......... [Z] are all proportional, and this gives the
required result.

Example 8. If 0<r<s, prove that Mr(a)<Ms(a) unless the 
set [a] is dull.

In formula (16) put Zq = b2 =... = bn = 1; thus since [a] is not dull, 
if 0< a< 1.

Substituting aj for a„ and r/s for a,
S «/< (S a/)r/sn1-r/s, 0< r< s.

Hence since r is positive
; pxsy/8

If r< s< 0 or if r< 0< s, then in the proof of Example 8, a > 1 
or a< 0 and therefore the first two inequalities are reversed ; but 
since r< 0 the last inequality remains as it is. Hence

Mr(a)<Ms(a) if r<8, r^O, s^O.

EXERCISE XVc
A

1. Verify that M_r(a)Mr Q) = 1.

2. Express Mr(a, p) in the form Afr(&).
3. Deduce from formula (15), p. 376, that

n / 1 3\ n 1 n 3.

1 11
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Prove the inequalities in Nos. 4-9 :
4. (ax3 + by3)*< (a* + 64)(x* + y*)3 unless ay = bx
5. (apx + bqy + crz)3< (a3 + b3 + c3)(p3 + q3 + r3)(x3 +y3 + z3) 

unless a : b : c—p : q : r — x : y : z
6. (®3 + y3)3<2(x3 + y3)3
7. (ax3 + by3 + cz3)(bc + ca + ab)>abc(x + y + z)3
8- V{(®i + A)2 + (Vi + 3/2)2}< V(»i2 + l/i’) + V(^2a + 3/a2)-
9. (a3x + b3y + c3z)3(y3z3 + z3x3 + x3y3) >x3y3z3(a3 + b3 + c3)3 

unless ax = by = cz.

10. If r>l, prove that S(a/V_,)>(S A)r(S&»)I-r- What
1 11 

happens if (i) 0< r< 1 ; (ii) r< 0 ?
11. If a, fi are positive constants whose sum is unity and x, y 

are variables whose sum is c, show that the greatest value of 
a“xB + b^yP is (a + 6)ac^.

12. If the sets [a] and [6] are not proportional, and r>l, prove 
that

(S AAr),/r + (S A V)1/r >{£ A<A + Wr.

B
13. Verify that Mra(a) = {Ms(ar)}1lT

Prove the inequalities in Nos. 14-18
14. (a3x3 + b3y3 + c3z3)s< (a3 + b3 + c6)3(a:’ + y3 + z5)3
15. (a’ + 63 + c3 + d3)4<4(a4 + 64 + c4 + d4)3 unless a = b=c=d.
16. (a + b)3(^ + ^>(x + y)3

17. V{(o + :c)2 + (& +j/)2 + (c + z)2}< V(a3 + 6a + c2) + *J(x3 + y3 + z3)
18. 4/{(a + :r)3+ (b + y)3 + (c + z)3} < $(a3 + b3 + c3) + &(x3 + y3 -t-z3) 

unless a : b : C = x : y : z
C

19. If Q< t< s, prove that Mr(a, p)< Ms(a, p).
20. If 0<r<8<t, prove that {M,(a)}3<,{Mr(a)}TII{Mt(a)}tQ 

where p : q : \ — t - 8 •. 8 - r •. t - r.
21. Use the relations

log Mr(a) = log Q S a/) = * log {1 + £ £ log a, + O(r3)| 

to verify that Mr(a)-+G(a) when r-*0.
d.b.a.a. in B
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22. Ifa>c>0, b>d>0, ad=tbc, r>l, prove that
(ar + ór)1/r - (cr + dr)l/r< {(a - c)r + (& - d)r}1/r.

What happens if r< 1 1

23. If a+ [3=1, prove that Mr(a&)5Af^a(a)Mr^(&) according 
as a/?r< >0 unless the sets [a1/"] and are proportional.

Calculus Methods. Many inequalities are conveniently derived 
from the theorem that if/(a:) is a one-valued integrable function 

tb
of x which is positive for a<x<b, then the function \f(x)dx is 

also necessarily positive. This method was used on p. 106 to 
obtain the important inequality

w/(l +m)<log (1 + u)<u where l + u>0, u^tO.

or (t —l)/t<log t<t —1, if t>0, t^l ...................... (26)

Alternatively if f'(x)>0 for a<x<b and if /(a)>0, then 
f{x)>0 for a<x<b. And more severe inequalities can often be 
obtained by using the mean value theorem

f(x + h) =f(x) + hf'(x) + lh2f"(x + 6h), 0< S< 1, 
or an extension involving higher derivatives.

If x >0, x^=l, then

xr—l>r(x—1) if r>l or r<0..........................(27)

and xr—l<r(x—1) if 0<r<l .................................(28)

Let f(x) = xr - 1 -r(x - 1) ; ticienf'(x) = r(xr 1-1).

(i) if r>l or r<0, f'(x)<0 for 0<:r< 1 and/'(a:)>0 f°r »>! >
hence f(x) decreases as x increases from 0 to 1 and 
increases when x increases beyond 1. Also /(l) = 0. 
Thus f(x) >0 when a;>0, x=£ 1.

(ii) if 0<r<l, /'(x)>0 for 0<o:<l and /'(a:)<0 for x>l ;
hence f(x) increases as x increases from 0 to 1 and 
decreases when x increases beyond 1.
Thus f(x)<0 when 0<x< 1 and when x>l.
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In (27) writing xp for x and q for pr,

a p _ 1 _ i
 <  for x>0, xj=l, 0<p<q. 

P---------q

Alternatively, this may be proved directly by algebraic methods. 
If n is a positive integer and x > 1,

nxn>l + x + x2 + ... +xn~1 = (xn - l)/(z- 1)
As x - 1 is positive, nxn+1 - n > (n + l)xn - (n + 1)

a.n+1 _ ] xn _ !
>---------n + 1 n

If 0<z<l, the first inequality in this proof is reversed, but 
a: - 1 is negative ; hence the result holds as for ®>1. Repeated 
applications of it prove (xp - l)/p< (a8 - l)/q where p, q are 
positive integers and p<q. If p, q are positive rational numbers, 
a positive integer d exists such that pd, qd are also positive 
integers. Thenfy3”*- \)Kpd)<(y'ii - l)/(qd); hence, putting y— tjx, 
{xp - l)lp< (a;8 - l)/q.

In (27), replacing x by x/y, y/x in succession, where x, y are 
positive and unequal,

ryr_1(x—y)<xr—yr<rxr_1(x—y) if r>l or r<0........ (29)

rxr~1(x—y)<xr—yr<ryr_1(x—y) if 0<r<l ................. (30)

Example 9. If x > 1 and r > 1, prove that
fr(r - l)(a> - l)a/a;< (xr - 1) -r(x - 1)< |r(r - 1)(®- l)2a:r_1

By the mean value theorem, since x is positive,
xr = {l + (x- l)}r=l + (x- l)r+ł(x-l)*r(r- l){l + 6(x- l)}r_* 

where 0<6< 1.
Since ®>1, le 1 + 0(a:- l)er, and hence, since r>l,

{1 + 0(a: - l)}r~*>{1+0(a:- l)}’’-1/x> 1/x
and {1 + 0(a; - 1)}»—«<{1 + 0(a?- 1)}»—*< a?*—*.

Hence the required result follows.

Note. If Oe x< 1 the inequalities are reversed. For the case 
0< r< 1, see Exercise XVd, No. 22.
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Convex Functions. If for all unequal values of x2, x3 in the 
interval a< x< b,

ffi^+xJKjWxJ+ffx,)} ..........................(31)

the function f(x) is said to be convex in the interval.
2/ f"(x) exists and is positive in the interval, the function is 

necessarily convex.
For suppose that a<a;1<a?2<6 and put

l(x2 + x2) = X, l(xt-xI) = h.

Then by the mean value theorem 

fM^f(X - h) =f(X) - hf'(X) + ih'f'tfj 
f(x2) =f(X + h) =f(X) + hf(X) + W'(f2) 

where x1<^l<X<^2<x2.
Hence ^f(x2) +f(x2)} =f(X) + +/"(£,)}

which is greater than f(X) because /"(&),/"(f2) are positive. 
This test for a convex function is sufficient but not necessary. 
When -f(x) is a convex function, f(x) is called a concave 

function.

Jensen’s Inequalities.
If f(x) is convex in an interval a< x<, b, and if xv x2, ... , x„ 

belong to this interval and are not all equal, then

/ (z2 + a>2 + ■ • ■ + a:n)}<{/(Ą) +f(x2) + ... +f(x„)} ...(32)
\7b . J rb

(i) First suppose that n=2m where m is a positive integer. 
Then, since the function is convex,

f(x2) +f(x2) >2f{l(x2 + a;,)}, f(x3) +f(xt) >2f{l(x3 + s4)} 
and + »,)} +f{l(x3 + xi)}>2f(i(x1 + x, + x3 + ®4)}.

Hence f(xf) +f(x2) +f(x3) +f(xt) >2*f{\(x2 + x2 +x3 + x,)}.
By repetitions of this process, it may be proved that 

/(Xi) +f(x2) + ... +f(xn) >nf (x3 + x3 + ... +s„)} 

where n = 2m.
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(ii) Now suppose that the inequality always holds for n = k; 

then it can be shown that it holds for any k - 1 given numbers 
xt, x2, ... , xk_l. For, applying the inequality to the k num­
bers xv x2, ... , xk_1 and xk where xk is the arithmetic mean of 
x2, x2, ... , xk_2

/(®i) +/(^2) + • •• +/(«*) >kf (x2 + x2 + ... + xk_2 + = kf(xk)

f(x1)+f(x2) + ...+f(xk_1)>(k-l)f(xk).

Hence the inequality holds for any k- 1 given numbers.
(iii) But it was proved in (i) that the result holds for

n = 2m ; thus it follows by applications of (ii) that it is true for 
2m - 1, 2™ - 2, 2™ - 3.........and so it is true for all positive integral
values of n.

By using the method of p. 376 it is easy to show that if 
Pj, p2, ... ,pn are positive and rational and if fix) is convex in 
the interval a<,x<.b, then

+ P2f(x2) + ... + pnf(xn)
Pr+P.+ .-.+Pn J Pl+Pt+-+Pn " '

where xlt x2,... , xn all belong to the interval and are not all 
equal.

Formulae (32), (33) are called Jensen's inequalities. Many of 
the inequalities established in this chapter can be deduced from 
them. See Exercise XVd, Nos. 10, 20.

Example 10. If a2, a2, x2, x2 are positive and x2^x2, prove 
that

cqaq log x2 + a,x2 log x2>(atx2+a2x2) log 1122

If f(x)—xlogx and x>0,

f'{x) = 1 + logx, f"(x) — ^>0.

Hence f(x) is convex and it follows from (33) that
a1f(x1) + a2f(x2) > falxl + atx2\.

a2 + a2 J\ a2 + a2 J

Hence the required result follows.
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Example 11. Prove that (1 + x)m + (1 - x)m cannot be less than 
2 if 7n>l, or if m<0 and |x |< 1.

If m>\, t>0, and (1 -«)”* exists, (1 + Z)m“1>(l

j* W{(1 + Z)™-1 - (1 - t)m~1}dt >0 if £K>0.

Thus (1 + z)™ + (1 -x)m - 2 >0 if a:>0 ;

and since (1 + ®)m + (1 -x)m is unaltered when x is changed to 
- x, the same inequality holds for x< 0.

If m<0 and 0<f<l, (l + Z)’"-1<(l-Z)™-»

Hence m{(l + Z)m_1 - (1 - t)m~1}dt>0 if 0<a;<l.

(The integral does not exist if a:>l.)
Hence as before (1 +x)m+ (1 -x)m - 2 >0 if 0<a:<l, and by 

changing x to - x the same inequality holds for - l<x< 0.

EXERCISE XVd

A

1. If 0<a< b and k>l, prove that

kak~1< (bk - ak)/(b - a)<kbk~1.

2. Prove that if a: >0
(i) log x< 2^x ; (ii) log x<n("/a5 - 1).

3. If 0<mi<1 and -l<x, prove that (1 +a;)m< 1 + mx, and 
deduce that (1 + a)1"-1 > {1 + (1 -

4. If f(x)=xy - ax11* - fty11? where ®>0, y>0, 0<a<l, and 
a + /? = 1, find the value of x for which Sf/dx is zero. Hence prove 
that xy<. ax1l‘‘+ ^y1^.

5. If x>0, x^l, prove that n(«/x - 1) decreases as n increases.

6. If <Z5t 0 and if 0< x< y or x< y< - a2, prove that

{I+a*lx)l‘<(X + a‘ly)'>

I
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7. If 0<m — plq< 1 where p, q are positive integers, prove that
(i) if p and q are odd, (1 + x)m + (1 - x)m< 2

(ii) if p is even and q odd, (1 + x)m + (1 - a:)m>2m.
8. If 0<x<y and l<a, prove that

(ax - a~x)/x< (av - a~v)/y.
9. Prove that -logs: is convex and use Jensen’s inequality 

to prove that if [a:] is not dull
(SP„ log a>)/S?F<log (Spxz„) - log

where pv, x„ are positive and v takes the values from 1 to n.
10. Deduce formula (16), p. 380, from the fact that log (1 + ex)

is convex by taking xl = log p^a., xa = log (6a/&j), p2 = |8,
in formula (33), p. 387.

B
11. Prove that (i) ex> 1 + x, (ii) ex< 1/(1 -x) if x< 1.
12. If a and x are positive, prove that x log (a/x)<, a/e
13. (i) If x> - 1, a;=£0, and either m<0 or l<m, prove that

1 + mx< (1 + x)m.
(ii) If a:>0 and either m< 0 or l<m< 1 + 1/x, prove that

(1 +X)™-1 <{1 + (1 - m)x}~1
14. If 0<a:<y, prove that (1 + l/y)1+*< (1 + l/x)i+x
15. If 0<m<n and 0<b<a, prove that

n(ab)n~m(a2m - b2m)<m(a2n - b2n)

C
16. If a: >1, prove that

(i) 2(z - l)/(x + 1)< log x< (x2 - l)/2x
(ii) 2/(2a: - 1)< log {x/(x - 1)}< (2a: - l)l{2x(x - 1)}

17. If x> - 1, prove that x2 >(1 +o:){log (1 +a:)}2
18. If a: >1, prove that 2 + o:’+log x>>J(x2 + 10z - 2)
19. If 0<x<y, prove that + < 1251--

log y log x
Deduce that, if 0<a and 0<m<n, m log (1 + an)<n log (1 + ara) 

and (xn + yn)m< (xm + ym)n.
20. Deduce formula (18) from formula (33) by taking 

f(x) = x1l’‘, x>0, p,-b2^, pllxll = at,bl,
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21. If r< - 1 and 0<x, zź 1, prove that
rxr(x - 1) >xr - 1 >r(x - 1)

and deduce that if x > 1, 1 + x - x3<x~x< (1 -x + a:2)-1
22. If 0<r< l<x, prove that

fr(l - r)(x - l)2z~a< r(x - 1) - (a-r - 1)< |r(l - r)(x - l)2 
and find the corresponding result for 0<r< 1, 0<®< 1.

MISCELLANEOUS EXAMPLES
EXERCISE XVe

A
1. If a, b, ax + by, are constant, prove that x3 + y2 is least 

when x : y = a : b. Interpret the result geometrically.
2. If n - 5 is a positive integer, prove that nl< (in)"
3. If x>0, y>0, y^l, prove that

(®y+l)*+1>jfa!(®+1)®+1
4. If x2, x2, ... , xn are positive variables whose stun is a 

constant k, and m is a given positive integer, find the least value 
of xf1 + a?2™ + ... + xr™.

5. If ar, a2, a3, a4 are positive and mot all equal, prove that
16ala,a3a4< (2 u/)2< (2 “k)(S a/)< 42 «/•

6. If a, b, c, d are positive and not all equal, prove that
16(a + b + c + d)_1< 32(b + c + d)_1< 2 a~l-

7. If n>0, mtl, prove that (n+ 1)"+1<2"+1n".
8. Deduce from Jensen’s inequality (32) with f(x) = log sec x 

that cos x2 cos x2 ... cos cos"0 where
0<a;F<iw and 0—(xl + x2 + ... + xn)/n.

9. If a, b, c are positive and not all equal, prove that
abc(a3 + b3 + c8) < £/{ (b6 c5 + c6 a6 + a6 b6) (a6 + b6 + c6)4}

10. If a, b, c, x, y, z are positive, prove that 
(2^(a3 + :r8)4}8< {*J(al + b4 + c4)8 + *J(x3 + y* + z4)8}4

B
11. Solve the inequality x(x - 3)(.r2 - 4)<0
12. If a, b, c are positive, prove that

be ca ab ., , .7------1--------1- -—r < |(a + b + c)b+c c+a a+b
13. If a3 + b2 — 4, prove that a* + b4 + a-4 + b~*> 8|
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14. Prove that (a -t- b)7< 64(a7 + 67)
15. If n - 1 is a positive integer, prove that

2”>l+nV2n-1
16. Prove that (a1 + 62)(a3 + 63)< 2 (a6 + ft5)
17. If k and n are unequal positive integers and k<2n, prove 

that
(i) (n\)'<k\(2n-k)\ ; (ii) (n!)”<l! 3! 5! ... (2n- 1)!

18. If a, b, c, d are positive and not all equal, prove that
(a* + b* + c4 + d*)(a3 + b3 + c3 + d3)< 4(a7 + b7 + c7 + d7)

19. If a, b, c are positive and not all equal, prove that
a3 + b3 + c3 + 15abc< 2(a + b + c)(a2 + b2 + c2)

20. If x~a2, x - a2, ... , x-an are positive and not all equal 
and a1 + at + ... +an = na, prove that

S(a: - a„)~l >n(x - a)-1.

C
21. If 0<x< 1, prove that

(1 + a:)1-ie(l - aj)1+a:< 1 < (1 + «)1+a;(l - a;)1-®
and deduce that if 0< b< a

abba< (|(a + &)}a+6< aabb
22. Ifn-lisa positive integer, prove that

n< V{(n + l)1+1ln(n - n + 1/n.
23. With the hypothesis of Tchebychef’s inequality (10) prove 

that S(p>,aJS(pA)<S.P.-S(P>.aA) where p,>0.
24. If a,, a2, ... , an are positive and not all equal, prove that 

(Sa„m)2< (SaPm+s)(Ś®ym_s) where s^O and each sum is taken for 
v= 1, 2, ... , n.

25. Prove that l + ł + f + ... + 1/n lies between
n{(n+I)1/" - 1} and n{l + (n + l)-1 - (n+ I)-1/"}

26. If n>0 and x>1, prove that
n(xn+l — 1) >(n + l)(xn - l)«ya:

27. If a >0 and ab >h2 + k2, prove that
ax2 + 2hxy + by2 + af2 + 2h£y + by2 + 2k(xy - > 0.

28. If n - 1 is a positive integer and alf a2, ... , an are positive 
numbers whose sum is s, prove that

(1+«,)(!+ «,)...(!+ «,)<!+ 2(^1).



CHAPTER XVI

DETERMINANTS
Permutations. If <zi; a2, ... , an are the numbers 1, 2, ... , n 

in any order, it is possible to bring them into the ascending order 
1, 2, ... , n by making a finite number of exchanges.

At the first exchange 1 may be brought to the first place ; 
then 2 may be brought to the second place ; and so on. Thus 
after n - 1 exchanges at most the natural order will be obtained.

For example, starting with 53412 the exchange of 5 and 1 gives 
13452 and then the exchange of 3 and 2 gives 12453 ; continuing 
in this way two more exchanges give 12354 and then 12345. 
Often a smaller number than n - 1 will suffice; for example three 
exchanges will bring 214365 to 123456.

The number of exchanges depends on the method employed, 
but it will now be shown that if the number is even for one method, 
it is even for every method and if it is odd for one method, it is 
odd for every method.

Consider the %n(n - 1) pairs of numbers such as ar, as in the 
set a1( a2, ... , an. Each such pair must finally be in ascending 
order.

If in the arrangement

®2’ '*• » 1’ ar» ar+i> ’ as—1’ as» ®s+P

the terms ar, as are exchanged the only pairs whose orders are 
affected are contained in the terms printed in heavy type and are

(crr, (<zr, <zr_|_2), ... , (ctr, <zs_1), (ur, as)
(ar+v as), (<zr_|_2, as), ... , a,).

These are 2s - 2r - 1 in number. Hence one exchange causes an 
odd number of alterations of order.

392
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If then in the original set cq, a2, ... , an, an odd number of pairs 

aT, aa have the descending order, the number of exchanges required 
to produce the necessary alterations must be odd ; and if the 
number of descending pairs is even, the number of exchanges 
must also be even.

It follows that permutations of 1, 2, ... , n may be classified as 
even permutations and odd permutations.

Similarly any permutation iq, b2, ... , bn of the set c1F c2, ... , cn 
may be classified as an even or odd permutation according as the 
number of exchanges required to pass from one set to the other 
is even or odd.

Delta and Epsilon Symbols.

The symbol 8 is defined to mean

+ 1, if a2a2 ... an is an even permutation of b2b2 ... bn
- 1, if a2a2 ... an is an odd permutation of b2b2 ... bn

0, if ala2 ... an is not a permutation of b2b2 ... bn
The upper and lower sets av a2, ... , an and b2, b2, ... , bn are 
interchangeable and one of them must consist of n different 
numbers. Thus 8’*’ = +1, 8*’ = - 1, 8*’ = 0, but 8” is meaning­
less.

When one set is 1, 2, 3, ... , n, it is omitted and e is used instead 
of 8. Thus

o 1 2 3 ...n _Q.a1a2a3 ... an_
da1a2a3...a„~° 1 2 3 ...n ~eaia2a3 ... an

Dummy Suffix Convention. It is often convenient to omit the 
sign S of a summation and to write for example apxp (p = 1 to 3) 

3
instead of 2 (apxp) or alx1 + a2x2 + a3x3, or to write aB!>w 

p=i n
(«=1 ton) instead of £ (apo:bM) or aplbl3 +ap2b2Q +...+apnbnQ.

The convention is made that if a small greek letter occurs as a 
suffix twice in one term, then that term stands for the sum 
of its values for all relevant values of the suffix. The relevant 



394 ADVANCED ALGEBRA [oh.

values are stated unless they are obvious from the context. In a 
sum such as e^x^y it is unnecessary to state the values of A, p 
because = 0 unless A = 1, p = 2 or A = 2, p = 1 ; thus there are 
only two non-zero terms in this sum, which is x2y2 - x2y2.

A suffix to which the convention applies is called a dummy 
suffix because it can be replaced by any other small greek letter 
that does not occur elsewhere in the term.

The convention applies to double (or multiple) summations 
when there are two (or more) repeated suffixes present in a single 
term. Thus a^x^xy (£= 1, 2 ; y= 1, 2) 
denotes On^i2 + (“12 + a2i)xi x3 + Vt2'

A dummy suffix must not occur more than twice in the same 
term. A suffix which is not a dummy is called a free suffix. For 
example x^ypv contains two free suffixes (a, p) and is the same 
as xaYyYi, J also ; but is undefined.

Some other obvious abbreviations, such as denoting the set of 
n equations x2 = ylt x2 = y2, ... , xn = yn, by aqyx (a = 1 to n), are 
also used.

The object of restricting the convention to small greek letters 
is to make it possible to write down a general term such as 
anxn> x™ynfi’ OT amnxmyn without implying a summation. But 
writers are not agreed about this restriction, and another plan is 
to use any small letter as a dummy excluding only capital letters 
from the convention.

The order in which the summation is carried out in such an 
expression as a^x^x* (p = I, 2, 3 ; v = 1, 2) is immaterial: 

(%,«)>,,= (“ip®! + a2>X2 +
= + (a3,x„)x3

”t O/I2x2)xi + (Ugl^l d ^/22X2'iX2 d (^31*^1 A" a32X2)X3 
and xll(x„al2V) = xll(x1alll + x2al22)

= xi(xlia)li) + x2(xIJia^
X1 (xi ail + aq ^21 "t ^S^Sl) "t 4 X2&22 F X3 ^32)

give the same sum, namely S^a^x^x,). This is further 
n v 

illustrated in the following example.
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Example 1. Evaluate <xA&AMcg (A, p=l to 3).
This is the sum of nine terms which may be written down by 

giving to A, p. the values 1,1; 1,2; 1,3; 2, 1; 2, 2; 2, 3; 3, 1; 
3, 2 ; 3, 3, in any order.

The insertion of brackets as in (a^b^c^ or a^b^cj doesnot 
affect the nine terms but gives them in a particular order. For 
example in aA6A/J only the A is a dummy suffix ; hence

(OA6AM)CM = («1 + a2 + °3

y is now a dummy suffix, and the expression equals
ai (&1101 + \2 C2 + &13 03) + a2 (&21 C1 + b22 C2 + fe23 C3>

+ + &32C2 + ^33^3).

Similarly aA(&A/icM) gives the equivalent expression

(«i6ii + a2b21 + a3b3l)cl + (cq&12 + a2b22 + a3b32}c2
+ (cq &13 4- a2b23 + a3 b33')c3.

Example 2. Evaluate a^b? (v=l to n).

anvK = ani^i + °m283+ ••• +ann^n !
but by definition 8J = 1 if p = v and is otherwise zero; hence the 
expression is equal to a^ if p is one of the numbers 1 to n, and is 
otherwise zero.

Example 3. If alt a2, , an and b2, b2, ... ,bn are two permu­
tations of 1, 2, ... , n and if the pairs (a3, b2), (a2, b2), ... , (an, bn) 
are rearranged as (<q, 1), (c2, 2), ... , (cn, ri) and also as 
(1, dj, (2, d2), ... , (n, dn), prove that eC1e2... c„ = ^1d2 • ■ dn

The value of 8 ltn is unaffected by the simultaneous

interchange of ar, a3 and of br, bs ; hence it is unaffected by any 
identical rearrangement of the upper and lower suffixes ; but two 
such rearrangements give 

and e. 1 2 ... n
°d1d2.. .d„

and therefore these are equal. They are equivalent to
e<qc2...cn and edld2...dn.
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EXERCISE XVIa

A
Evaluate the expressions in Nos. 1-6.

2. g23457
4357a

81132
2314

1.

5. 214
213

2’ C24S31

e23458

Write fully the sums in Nos. 7-10.
7. x„xa («=1, 2) 8. axbx (A=lto3)
9. (y=lto3) 10. (A, p = lton)

Write as determinants the sums in Nos. 11-13.

14. Write «lAu,ya3l,eAz<l, 88 a determinant and verify that it is 
the same as a1A(eAflF a2(Ia3„).

15. If cq, a2........ an and 6V b2, ... , bn are permutations of

!> 2........n, prove that = ... an eb1b2...bn

16. If xlt x2, x3 are homogeneous coordinates in geometry of 
two dimensions, state what is represented by :

(i)a pxp = 0 (p=lto3) (ii) ap/xp = 0 (p=lto3) 
(iii) a^x^O (A, p = 1, 2).

B
17. Find the number of permutations of 1, 2, 3, 4 which require 

three exchanges to bring them into the ascending order.
Evaluate the expressions in Nos. 18-20.
18. 8142857

124578
19* *2473651 20.

21. If a, b, c, d, e, f is an even permutation of 1, 2, 3, 4, 5, 6, 
find the values of c, d, e when c< d< e and

(i) a = 2, 6 = 5; (ii)a = 3, 6 = 6; (iii) a = 4, 6=1
22. Verify that e^a^b^^a^b^) («,/?= Ito 3) contains 36 

terms half of which are zero. Show that the other 18 terms are 
also obtained from (alau2p)(eA(i6aA6|8tl) in 9 pairs by evaluating 
the second bracket with a, ft constant and then assigning tox 
a, fl the nine possible values.

23. Give the condition for the tangent at yp to the curve 
apxp2 — 0 (p = 1 to 3) to pass through zp. Also give the condition 
for yp and zp to be conjugate points with respect to this curve.
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24. e234... nl

C
Evaluate the expressions in Nos. 24-27.

25.
a„... a2«i

26. £13 ... (an —1)24 ... (2n) 27.
28. Express as a determinant.

29. Prove that just half of the n! permutations of 1, 2, ... ,n
are odd. •

30. If A, p = 1 to 3, interpret the equations

(>) Ma1,. = °> (“) “‘am^aJ/m + %?A) = 0
in terms of homogeneous coordinates x1, x2, x3 in two-dimensional 
geometry.

31. If two permutations alt av ... , an and blt b2,... , bn of 
1, 2, ... , n are such that whenever = q then 6a=p, prove that 
they are both even or both odd permutations.

Determinants.
A definition of a determinant of the fourth order was given in 

Chapter IX, page 183, and it was stated that determinants of 
higher orders could be defined in succession in a similar way. 
Denoting the general determinant of order n by

“11 “13 “13 •

°21 “22 “23 • • a2n

an2 an3 • • ann

where the first suffix in am corresponds to the row in which 
aVQ occurs and the second suffix corresponds to the column, and 
denoting by the determinant obtained by striking out the 
pth row and the column of A, the value of A may be defined as

S ( - iy+'alrMlr
r=l

or ( - lJ’+’a^Afj, (x=lton) ..................... (2)

In this definition the value of a determinant of order n is defined 
in terms of the values of determinants of order n - 1.
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But instead of proceeding on these lines, we shall give a selt- 
contained definition and shall make use of the notation explained 
at the beginning of this chapter.

Consider the array of numbers
all «12 “13 • .. a,
°21 °22 “22 ’ .. a.

“m an2 “n3 • .. a,
and any particular product of n factors formed by taking one 
number from each row and also from each column ; this term 
may be written

either as ... or as ... an„n

where /q, /i2, ... , p.n and v2, v2, ... , vn are permutations of 
1, 2........ n.

If the factors aM11, a^2,..., are permuted into the order
°ivi> a2r2’ ’ anvn’ this permutation puts /xi; p.2, ... , p,n into the
order 1, 2, ... , n and at the same time puts 1, 2, ... , n into the 
order vt, v2, ... , vn. Hence

“mi1“m22 annn ”aivlazv2 anvn

ep.1 ... p.n = ev1v2 ... vn. (Compare Example 3, p. 395)
There are n! different terms which can be constructed from the 

given set in this way, and this equality holds for each of them. 
Therefore the sums

are equal. Their value is taken as the definition of the determinant 
(1) on p. 397, which is also denoted by | |, by | a |, or by
(anot22 ••• where the elements given are those of the leading 
diagonal. To prove the equivalence of the definitions (3) or (4) 
with (2) it remains to establish the identity of the signs, because 
each definition gives all the terms composed of elements one from 
each row and one from each column. This will be done on p. 401. 
But the fundamental properties proved in Ch. IX for third order 
determinants will first be established for determinants of order n.
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(i) If the rows of a determinant | ag, | are identical with the columns
of I I «o that = bvil, then | <zM, | = | |.

This is implicit in the equality of the sums (3), (4). The value 
of | a | in the form (3) is identical with that of | b | in the form (4).

It follows that theorems established for rows hold also for columns, 
and conversely.

The determinant obtained from | a^ | by transposing its rows 
and columns is called the transposed of | a^ |.

(ii) If two rows (or columns'} of a determinant are exchanged, the 
absolute value of the determinant is unaltered, but its sign is changed.

For when the rth and rows are exchanged, the effect on
... v^... vs... vn • • • anrn t'O replace by aSVr, aTVs.

Exchange of the dummy suffixes vr, v3 restores the original factors 
but alters evx ...vr ... vs ... vn into eV1... vs...vr... vn and this 
involves a change of sign, (the consequence of one exchange).

It follows that an even permutation of the rows (or columns) of 
a determinant leaves its value unchanged, and that an odd 
permutation changes its sign.

In other words if after any permutation the pth, gth, rth,... rows 
occupy the places of the 1st, 2nd, 3rd, ... rows,

| a | is changed into emr ... | a |.
But the expression (4) then becomes ey1viv3 ... at, a„ ...

Hence eV1v2 ... a^a^ ... = epq ... \a\..........................(5)
Similarly e... a^a^ ... = epq ... \ a\ ..........  (6)

(iii) If two rows (or columns) of a determinant are identical, the 
determinant is zero.

The exchange of the two rows evidently leaves | a | unaltered. 
But by (ii) it changes it into - | a |. Hence | a | = 0.

(iv) If each element of one row (or column) of a determinant is 
multiplied by k, the value of the determinant is multiplied by k.

This follows from the fact that each term contains one and only 
one factor from each row.

For the same reason a determinant which has a row (or column) 
of zeros is itself zero.

D.R.A.A.m. o



400 ADVANCED ALGEBRA [CH.

(v) If three determinants | x |, | y |, | z | have all their correspond­
ing elements equal except those of the rth row (or column), and if each 
element of the rih row (or column) of | x | is equal to the sum of the 
corresponding elements of \y\ and | z |, then |x | = | y | + |z |.

If any one of the determinants is written in the form
vn a2vs ••• anvn

the same expression represents the other two except that xrv, 
yTv, zrv are written for arv in the values of | x |, | y |, | z | respec­
tively, where by hypothesis xrv = yn + zrv and so |x| = |3/| + |z|.

(vi) A determinant is unchanged in value by the addition to the 
elements of one row (or column) of any fixed multiple of the elements 
of another row (or column).

This is a consequence of (iii), (iv) and (v).
These results are much used in the practical evaluation of 

determinants. When repeated use is made of (vi) it is convenient 
in describing such a process to use the notation

row 2 + h row 1 + k row 4
to indicate that the elements of the first row multiplied by h and 
the elements of the fourth row multiplied by k have been added to 
the elements of the second row.

Similarly, col 3 - h col 1 + k col 5 may be used.

Minors and Co-factors. If from the determinant | a^ | of order n 
the pth row and column are struck out, the remaining elements 
form a determinant of order n - 1 which is called the minor of 
am and may be denoted by MVQ.

a 2 3 ... n
Thus Mi3 = (a21a33 ... . Vna2v2a3v3 ■■■ an»n

and since | a | = v2 ... alVi a2Vi ... an„n
_ 2 1 2 ... n
— ... •" “"■'n

the sum of the terms of | a | which have an as a factor is equal to
al 2 ... n

“nr2 ... ”• anvn

(7)
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In the original determinant | a |, the row can be brought to 
the top by p - 1 successive exchanges of rows without disturbing 
the relative positions of the other rows, and the gth column can 
then be brought to the left by q - 1 exchanges without disturbing 
the relative positions of the other columns. The determinant so 
obtained is equal to ( - l)p-1( - l)9-11 a |, and the first term of its 
top row is and its minor is identical with the minor of aM in 
| a |, i.e. is MOT. Hence by (7) the sum of the terms of | a | which 
have avq as a factor is equal to ( - l)3’+aaJWAfJ)s.

Since every term of | a | involves one and only one element of 
the pth row

|a| = (-l)»+va1),MOT (p=lton) ..................... (8)
Similarly | a | = ( - l^+’a^(/i=lton)........................ (9) 

These results give the expansion of a determinant by any row 
or column. In particular, putting p = 1,

|o| = (-(p=lton)
which establishes the identity of (2) and (3) as definitions of | a^ |. 

If (- is denoted by AOT, equations (8), (9) may be
written

\a\ = apvA]>v (r=lton) ............................(10)
= (^=lton).......  (11)

is called the co-factor of avq.

Example 4. Evaluate a a3 a* - 1
- b b3 b* - 1

c cs c* - 1
The determinant = a a3 a1 a a3 1

b b3 b* b b3 1
c c3 c‘ c c’ 1

By Example 6, p. 179, A2 = (6 - c)(c - a)(a - b)(a + b + c) ; and 
by the same method,

t\Jabc — (b - c)(c- a)(a- b){h(a3 + 6a + cl) + k(bc + ca + ab)} 
where h, k are independent of a, b, c. Equating coefficients of 
a‘&, a3b2, it is found that h = 0, k=l. Hence

Aj - A2 = (b - c)(c - a)(a- b) (abc(bc + ca + ab) - (a + & + c)}.
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Example 5. Prove that
0 a2 b‘ c* = 0 ad be cf
a2 0 f2 e1 ad 0 cf be
d2 f2 0 d‘ be c/ 0 ad
c2 e2 d* 0 cf be ad 0

This is proved by multiplying the terms of the 1st, 2nd, 3rd, 
4th columns of the first determinant by def, bed, ace, abf respec­
tively, and then dividing the rows by abc, aef, bdf, cde.

Example 6. If XBxQ + Y^ + Z^Zg + Tptg = 0 for p=l, 2 and 
q = 1, 2, and if (a/8) denotes alp2 - prove that

(xt) _ (yt) (zt) (yz) _ (zx) = (xy) 
(YZ)~(ZX) (XY) (XT) (YT) (ZT)

Elimination of T2 from the equations given by p= 1, ?= 1 and 
p = 1, g = 2 gives

A\ (xt) + Y2(yt) + Z2 (zt) = 0
Similarly X2(xt) + Y2(yt) + Z2(zt) = 0

Hence (xt) : (yt) = (YZ) : (ZX), etc.
By this method all the results can be obtained. They have an 

important application in Geometry.

EXERCISE XVIb
A

In Nos. 1-4 give the signs of the terms of the expansions of

2. «i3a27a36a45a61 a6ia72
4. a32<z-61ct24ct16a43a5a

Evaluate the determinants :

1. ®13O24Ct32Ct45a51

3. o31a62a13a24a45

5. a - b b-c c-a 6. 1 be* b + c
b-c c- a a-b 1 ca c + a
c — a a-b b-c 1 ab a + b

7. Verify that the determinants
1 0 I, 1 0 0 1 0 0 0 8* 8,

1 1 X 1 0 X 1 0 0 8a 8s
X y i X y i 0 i 1

X y z 1
and I ] are all equal (fi, v = 1 to 2).
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8. Solve : 9. Express in factors :

a + x b + x c + x = 0 1 1 1
b + x c + x a + x a 6 c
c + x a + x b + x a* 6‘ c‘

Evaluate the determinants in Nos. 10, 11.
10. 1 1 1 1 11. a a a a

a b c d a b b b
a3 b3 c3 d3 a b c c
a1 b* c‘ dl a b c d

B
In Nos. 

of IV I
12-14 give the signs of the terms of the expansions

15. Verify that

Evaluate the determinants in Nos. 16, 17.

\ a b I = a b X = a b X z
1 c d | c d y c d y t

0 0 i 0 0 i 0
0 0 0 1

17.

16. 0 1 1 1
- 1 0 1 2
- 1 -1 0 1
- 1 -2 - 1 0

a & c d
a a + b a + b + c a+b+c+d
a 2a+ b 3a + 26 4* c id 4- 36 4 2c 4- d
a 3a 4- 6 6a + 3b + c 10a 4- 66 4- 3c 4- d

18. Solve the equation X a a 1 = 0
a X b 1
a b ■ X 1
a b c 1

19. Evaluate
C

x* 1 (x+l)3
y3 1 (y+1)3 
z3 1 (z+1)3
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21. Prove that if p,v /i2, ... , p.n and v1( v2, ... , vn are permuta­
tions of 1, 2, ... , n,

20. Prove that bed a a2 a2 = 1 a2 a2 a*

acd b b2 b2 1 b2 b2 b*
abd c c» c3 1 c2 c2 cl
abc d d2 d2 1 d2 d2 d*

„ = n! I c IP-nvn 1 1
§ Mi Ma

•'l^

22. Prove that
I+a2-&2

2ab
. 2b

2ab
l-a2 + b‘
- 2a

-2b
2a

1 - a2 - b2
23. If the rows of a determinant A are a, b, c, d, e ; b, c, d, e, a ; 

c, d, e, a, b ; d, e, a, b, c ; e, a, b, c, d, and if A5 = 1, prove that 
a + Xb + A2c + X2d + A’e is a factor of A and find all the factors.

24. Prove that the sum of the homogeneous products of degree
n in a, b, c is a factor of 1 1 1

a 6 c
an+2 bn+2 cn+2

Express this determinant in factors if n = 3.
25. Prove that

1 + a2 
ai

a2
1 + a2

u3 ... an
a3 ... a„

= 1+112 + a2 + ... + an

ai
and deduce that

a3 ... l + ana2

26.

*1 »1 al
a2

.. a2

.. a2
1 + 2-1 X

an an xn
fu„ = 1 a 0 0 0 0 ...

a 1 a 0 0 . 0 ...
0 a 1 a 0 0 ...
0 0 a 1 a 0 ...
0 0 0 a 1 a ...

n a 1 n^-}n(x-ar) 
-ar> 1

and the determinant is of

order n, prove that un = un_l - a2un_2 and deduce that 
un = {(l + k)n+1-(l-k)n+1}/(k2n+i) where fc=^(l-4a2).
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27. If x — 2 cos 0, prove that the determinant

x 1 0 0 0 0...
1x 1 0 0 0...
0 1x10 0...
0 0 1x10...
0 0 0 1 x 1 ...

of order n, is equal to sin (n + 1)0 cosec 0.

An important application of equation (10), page 401, is obtained 
by considering the new determinant formed from | | by
replacing the elements of the pth row by the corresponding 
elements of the 7th row. This new determinant has two identical 
rows and is therefore zero. But the alteration of the pth row 
does not affect the co-factors Afl, Hence equation (10) gives 

“apAOT = 0 (v- 1 to n), (q*p).

For q=p, equation (10) itself gives aJ)pAJW=|a|, and the results 
can be combined in the form

(12)|a|

Similarly atiaA^= % I ° I........................................ (13)

The symmetrical determinant | a | of order 3 is of special 
importance in geometry of two dimensions and is often written 
as and denoted by A.a h

h b f
9 f c

9

It follows from (12) but it is easy to verify independently that

if A = bc-f2 B = ca-g2 C = ab-h2

F = gh-af G = hf-bg H=fg-ch

then b = aA+hH + gG = hH + bB+fF =gG+fF + cG

0 = aH + KB + gF = hG + bF +JC — gA +JH + cG 

= aG + hF + gC =hA + bH +fG =gH +JB + cF
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Laplace’s Expansion. The expansion of a determinant in the 
form a^A^ can be generalised.

Two such determinants as

A =
Consider for example

ai a2 a3 Pt Pt,
bl b2 b3 ?4

C1 c2 C3 r3
d2 d3 »4

ei e2 e3 «4 h

<=2 

es

&3

C» 

®S

are called complementary minors of orders 3 and 2. -
If all the ten products of such complementary minors (formed 

one from the left and the other from the right of the dotted line) 
are added together after a suitable sign, + or -, has been 
attached to each product, the sum will be shown to be A. It is 
evident that the sum will include just those terms which are the 
product of elements taken one from each row and one from each 
column, that is it will contain just the terms of A. But it is 
necessary to show that the sign attached can be chosen so as to
give all the terms of A with their correct signs.

Consider the general term of the determinant of order m + n
A = “u “12 • • “in fen Am

°ii “12 • • “2n 62i 622 .. • ^2m

asi “s2 • • “sn ^Sl ^82 •• ^sm

where 8 = m + n and bpQ has been written for
This term is ( - ... b^b^ ... b,mm. Here p and v

both refer to rows. Also (- l)r = ep1p2 ... pnv1v2 ... vm and so 
the value of (- l)r is found by counting the number of ex­
changes required to bring ... pnv2v2 ... vm into the order
1, 2, ... , s. These exchanges may be made by first bringing the 
p’s and v’s separately into order of magnitude in the form 
p/p2 ... pn'Vi'v2 ... vm' and then bringing these into the order 
1, 2, ... , s. Symbolically

... Pn' gv/ ... vm'
ePl Pnvl ••• vm~ P! ... Pn ... vm
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tmmBut SH J"and 8"‘ 6V1I ... are the

complementary minors and therefore if the sign of
c f f i r
>1 Mn V1 ■■■ vm

is attached to the product of these complementary minors, the sum 
of such products is equal to A ; this is called a Laplace expansion 
of A.

In practice this sign may be found by examining the sign in 
A of the term which is the product of the leading diagonal terms 
of the complementary minors. In the example given above, 
the sign for (&jC2e3) x (p4s6) is + because the leading diagonals 
give b2c2e3pts6; but b, c, e, p, s come from the rows 2, 3, 5, 1, 4, 
and 23514 is an even permutation of 12345.

In the general determinant of order s if any particular set of 
r rows p2, ... , pr and any particular set of r columns v2, v2, ... , vr 
are taken, the elements common to these sets (taken in the order 
in which they stand in A) form a determinant of order r which is 
called a minor of order r of A. The minor of order s-r formed by 
the elements of A not in those r rows and columns is called the 
complementary minor.
• Thus Laplace’s expansion is the sum of the products, with an 
appropriate sign attached to each, of the minors (of order r) and 
their complementary minors.

In Laplace’s expansion the division of A into two portions may 
not only be made between any two columns or any two rows, 
but by taking any selection of r columns (or rows) and the 
remaining s - r. It is usual to begin by bringing the r columns 
(or rows) to the left (or top). In | |, v indicates the columns.

Assuming that v2, v2, ... , vr are in ascending order of magni­
tude, these columns can be transferred to the 1st, 2nd, ... , rtłl 
places in (>q - 1) + (v2 - 2) + ... + (vr - r) steps, without altering 
their relative order or the relative order of the other columns. 
This multiplies the value of the determinant by
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To determine the sign to be attached to any particular product 
in Laplace’s expansion, it is convenient also to transfer the r rows 
jq, pt, ... , p,r to the top. This multiplies the value of the deter­
minant by (- l)(~e)-i-a------r. But after these transferences the
sign is +, because the product of the leading diagonals of the 
complementary minors is the leading diagonal of A. Hence the 
sign required is (- l)20'+i’).

If then the complementary co-factor of the minor of order r is 
defined to be ( - 1 jSOHd times the complementary minor, Laplace’s 
expansion is the sum of the products of the minors and their 
complementary co-factors.

In the example given above, the values of y for (SjCjeJ are 
2, 3, 5, and of v are 1, 2, 3 ; but (2 + 3 + 5) + (1 + 2 + 3) is even, 
therefore the complementary co-factor of is + (p4s6).

Example 7. Evaluate

zi

0 ai 6i Cl
0 a2 6, c2

- 1 0 0
Vi 0 - 1 0
Z2 0 0 - 1

First Method. Insert the Laplace dotted line after the second 
column, then 7 of the 10 minors formed from the first 2 columns 
are zero, and the remaining three products of complementary 
minors are

1 3/i 2/2 1 Cj I a?i x2 1 CTj by Cj 1 1 Uj by Cj
1 Z1 Z2 1 ct2 b2 c2 1 21 Z2 ^2 ^2 1 3/i 3/. 1 a2 62 c2

-10 0 0-10 0 0-1

For (jqzJ, 5p = 4 + 5, 2>=l + 2, £(/x +v) = 12, therefore the 
Sign is ( - l)12.

Similarly the signs for (xiz2'}> (x^yf} are ( - l)11, ( - I)10.
Alternatively consider the sign of the product of the leading 

diagonal terms.
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Second Method. Col 1 + xa col 3 + y1 col 4 + z1 col 5, 
col 2 + xa col 3 + ya col 4 + za col 5,

Insert the Laplace dotted line after the second column,
^2 + ^2 +C1Z2 I -1 0 0

1 a2x1+b2y1+c2zl ®2*^2 "ł~ ^2^2 ~ł” ^2Z2 I 0 -1 0
0 0 -1

= (aax1 + bayl + ca z1)(a1xa + ba y2 + caza)
- (aaxa + b1y1 + + b2y2 + c2z2)

The equivalence of these two results is established by another 
method in the next chapter, see Example 4, p. 450.

An important identity which can be proved by a Laplace’s 
expansion is given in Exercise XVIc, No. 5.

Product of two Determinants of Order n.
Let | a | and | b | be the two determinants.
Then |a| |6| = |«| ew2 ■■■ Vnb^b^ ... b^.
But by equation (6), page 399,

I « I eMiP-2 ■■■ Pn = erjV2 ... vn a„ilaiaVtll2 ... a„nlln.

Hence | a | |&|=cr1r, ... .... a^b^b^ ... b^
= 6^na - •••

= evi>'2 ... ... c„n„ = \c\ .................. (14)
where cOT denotes a^b^ (fi=\ to n).

In particular if n = 2
1 °11 °12 I I bal blt I —I atl &1X 4- ct12&2i aH^12 + ai2^22 ’
1 °21 a22 1 1 bal b22 1 a21^11 +«22^21 tt21 ^12 + a22 ^22 1

For an alternative method of proving the product formula, see 
Exercise XVIc, No. 8.



410 ADVANCED ALGEBRA [CH.

Other forms of the product are obtained by interchanges of 
rows and columns. It will be found that the standard form of 
product, given by a^b^, is the most convenient; but other forms 
can be obtained by replacing A, A' by their transposed deter­
minants before multiplying.

Inner Products. The inner product of two sets of numbers 
Oj, a2, ... , an and xv x2, ... , xn is the sum a1x1 + a2x2 + ... + anxn 
which we denote by a^x^. It is also denoted by a\x or by

The general element cOT = aI(J6w of the determinant which is 
the product of | a |, | b | and is formed by weaving the pth row of 
| a | into the ęth column of | b | is the inner product of the pth row 
and the column.

Adjugate and Reciprocal Determinants. The determinant | A | 
in which each element is the co-factor of the corresponding 
element of | a | is called the adjugate of | a |.

Let |-B | be the transposed of | A |. Then | B | = | A | and 
Bm = Aqll. Thus the product formula on p. 409

gives
I« I x | B | = | atXBAq | 
I «I x | A | = | a„A AsA |

But by (12) avXAqX equals | a | if p = q and is zero if p^q. Hence 
if | a | = A and | A | = A and n is their order

This is true for all values of ; in other words it is an identity, 
hence (even if A = 0)

A = A"-1............................................. (15)

If A 0, the determinant formed by dividing every element of 
the adjugate of A by A is equal to A-?An and therefore A-1. It 
is called the reciprocal determinant of A.
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Symmetric and Skew-symmetric Determinants.

A determinant | a^ | is called symmetric if for all
values of p, q and is called skew-symmetric if am = - aap. In a 
skew-symmetric determinant avp= -app and therefore aJ)J) = 0.

The adjugate of a symmetric determinant is itself symmetric.
A skew-symmetric determinant of odd order is always zero and 

one of even order is a perfect square function of its elements. 
See Exercise XVIc, Nos. 6, 7, 19. Hence it follows that the 
adjugate of a skew-symmetric determinant is symmetric or 
skew-symmetric according as its order is odd or even.

Example 8. With the notation of p. 405, prove that

(i) A H G =A»
H B F
G F O

(ii) BG - F*=a^
(iii) GH-AF=fA

(i) This is a special case of (15), p. 410, when n — 3.

(ii) From formulae (12) and (14)

(BC-F2)A = aA2; BC-F2 = a\

(iii) This follows in a similar way from the identity

1 0 0 a h g = a h g
H B F h b f 0 A 0
a f c 9 f c 0 0 A

A H G a h g = A 0 0
0 0 1 h b f 9 f c
G F C 9 f ° 0 0 A

Much more general results than those of Example 8 are given 
for non-zero determinants by Jacobi's Theorem which follows.

The minors of a determinant A are proportional to the correspond­
ing complementary co-factors of the reciprocal determinant A-1.

By altering the order of appropriate rows and columns any 
minor of A can be brought to the top left comer. Therefore it is 
sufficient to investigate the ratio

(®n a22 ... urnm) : (Am+Jm+1 ... Ann) —An m.
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[Note the transposition in the second determinant on the left side.]
• • A(A3J A55) — (u11 <z22)A3 

Mss A65) = (“n “22) A2, even if A = 0.

In the general case A, = | ap, | (p, v= 1 to n), is multiplied by 
I Bup I (r> p = 1 to n), where

B„p = % for p<m, B„p = Apv for p >m.
Then the products] cpp | = | a^B^ |,

and if p<m, = 8’= «MP by Example 2, p. 395,

while if p>m, apt,Bpp = apl,App = 8£A, by (12), p. 405.
Hence | cpp | = (an att ... amm)An~m.
Also [ Byp | (-d-m+lm+l ^nn)’

• • ... Ann) (“u “22 • • • “mm) A
When A^tO, A^/A is denoted by am so that the reciprocal 

determinant of | apv | is |aA“'|. With this notation
A(om+im+i ... a«") = (a11 aaa ... amn)

Putting m = 1, 2........ n-1, Jacobi’s Theorem may then be written
ail _ (ail a22) _  (“11 a22 “33) „ __ A

(a22 ... ann)~ (a33 ... ann) (a“ ... ann) '''
When A = 0 and n - m > 1, it follows that (Am+1 m+1 ... Ann) = 0 

and every minor of the adjugate of order >2 is zero.

EXERCISE XVIc
A

1. Find the signs of the following products in the Laplace’s
expansions of | | (i) (a21 a4a)(als a3i ais att)

(ii) (“11 “s2 ®63)(®24 ®4s) (**') (®»1 “12 “«»)(®14 “jS “s«)

2. Find the complementary co-factors in | apy | for
W («U “32)> n~5 (ii) (“si “42 “53)> n=6 (“i) (“31 ®S2®«3). W=7’
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Use Laplace’s expansions to evaluate Nos. 3, 4.
3. 0 1 1 1 4. 0 0 0 a b

1 0 c« 6’ 0 0 e a b
1 ca 0 a2
1 b’ a2 0 0 d 0 a 0

c 0 0 0 b
c d e 0 0

5. Use the determinant whose rows are aq, ylt x3, yv ; x2, yv 
®2> 3L > xa> Hv x3> Va : xt> Vf xf Vi to prove Laplace’s identity 
PuPu+PnPn +PiaPzt = 0 where prs denotes xrys - xsyr.

6. Verify that I 0 a I and
- a 0

0 a b c
- a 0 d e
-b -d 0 f
- c - e 0

are perfect squares.

7. (i) Verify that the skew-symmetric deter­
minant is zero by changing the signs of all its 
elements. Also find the adjugate determinant.

(ii) Prove that any skew-symmetric determin­
ant of odd order is zero.

0 a b
- a 0 c
-b - c 0

8. Prove the formula for the product of two determinants of
3

order 3 by applying the transformations, col 4 4- 2 brl col r,
3 3 1

col 5 + 2 6ra col r, col 6 + 2 br3 col r to the determinant
1 1

ex + ay + bz = 0,

“n “12 “13 0 0 0
“ii °22 “23 0 0 0

°31 °32 “33 0 0 0

- 1 0 0 611 612 613

0 - 1 0 621 ^22 ^23

0 0 -1 6.1 ^32 ^33

9. If ax+by + cz= 1, 
that

bx + ay + cz 
cy + bz + ax 
az + ex + by

X y z and a c b
z X y b a c
y z X c b a

ax + cy + bz 
by + az + ex 
cz + bx + ay

«

bx+cy+az = 0, prove 
have reciprocal values and

ex + by + az =1 
ay + cz + bx 
bz + ax + cy
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10. Obtain the necessary condition for
ax2 + by1 + cz2 + 2fyz + 2gzx + 2hxy

to be the product of linear factors Zla; + m1y + n1z, l2x + m2y + n2z 
by forming the product

z2 z2 0 Z2 m2 n2
m1 m2 0 Z3 m1 n1
n1 n2 0 0 0 0

11. Show that the reciprocal of the reciprocal of a determinant 
A is identical with A, element for element.

B
12. Find the sign of the product (u22 a13)(au n31 a55 a66) in

Laplace’s expansion of | |
13. Find the complementary co-factor of (a23 a35 aS6 a„) in the

determinant | | of order 7.

«x Vi Zi 0 0
x2 y2 z2 0 0

Use Laplace’s expansions to evaluate :
14. 0 a j b c 15. a h g x2 x2

a 0 I c b h b f V1 y2
b c \ 0 a 9 f c z2 z2
c b i a 0

16. Evaluate a + bi 
-c + di

c + di 
a-bi

p-qi 
r - si

and hence express (<z2 + 62 + c2 + d2)(p2 + q2 + r2 + s2) as the sum of 
four squares.

z = c2 + 2ab, s = a2 + b2 + c2,17. If x = a2 + 2bc, y = b2 + 2ca, 
p = bc + ca + ab, prove that

a b c 2 _ X z
c a b y X
b c a z y

= 2bc-
c2
b2

y = 8 P p
z P s p
X P p s
2 C2 b2

2ca - b2 a2
a2 2ab -c2

18. Express b2 + c2 ab ac 
ba c2 + a2 be 
ca cb a2 + b2

as the square of a

determinant and hence write down its value.
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C
19. (i) Prove that the adjugate of a skew-symmetric deter­

minant of even order is skew-symmetric.
(ii) If A = | | (fi, p=l to 4) and A is skew-symmetric, prove

that A is the square of a rational function of its elements by 
showing that Aa122 = A342. See p. 411.

(iii) If A = | | (p, i?= 1 to 6) and A is skew-symmetric, prove
that A3a66a = (411 A22 A33 Ati) and deduce that A is the square of 
a rational function of its elements.

20. If the three distinct lines ax sec <^> — by cosec = c2 given by 
<!> = <!>!, <f>2, </>3 are concurrent, prove that

sin (^2 + 03) + sin (</>3 + ^) + sin (^ + ^2) = 0
by using the product

sin COS sin 2^4 T, COS - COS 0 1
sin COS ^2 sin 2^2 S sin <f> + sin 1 0
sin cos <f>3 sin 2^3 - 1 0 0

21. If A — (cq b2 c3 dt) and if with the notation of p. 412, A-1 is 
denoted by (a1 b2 c3 d3), prove that with the notation of p. 410,

(i) A b3 c3 d3 = a.
aq b2 c2 d2

b3 c3 d3
*4 b3 c3 d*

(ii) A *1 3/i c1 d3 = I ax bx
X2 3/2 c2 d2 1 av by
X3 2/3 c« d3
Xt 3/4 c‘ d3

Deduce that V X2 I 1 “1 a2 1 =-1 ax bx I

3/i 3/a 1 1 &1 bt 1 1 av by
22. Prove that 1 a X ax = 1 bc + ad yz + xt

1 6 y by 1 ca + bd zx + yt
1 c z cz 1 ab + cd xy + zt

d t dt

23. Express as a determinant
2bc - a2 a3 a2 4- -a a a

b2 2ca - b2 b2 c c - c
c* c2 Zab-o2 b -b b

d.r.a.a. m.
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24. Prove that

25. If sk = ak + flk + yk, express as a determinant

0 1 1 1 = - 1 a a

1 a* + a2 ab + afl ac + ay 1 b
1 ab + afl b2 +fl2 bc+ fly 1 c /
1 CLC + ay be + /3y C2 + y2

and hence factorise the first determinant.

«4 «3 a:3 4- a3 Ć3 y3 X2 0

«5 «4 »3 «2 X2 a2 /?2 y2 X2 0

»4 S» «2 X a P y X 0

«3 »2 1 1 1 1 1 0

y3 y3 y 1 0 0 0 0 0 1

26. What identity is found by applying the method of No. 5 
to the determinant of order 6 with rows xp, yv, xv, yB, zv 
(p=lto6)?

27. Verify that

“i 61 Cl A 0 0 = °1 Ci A 0 0

°2 b3 c. A 0 0 “2 b3 c2 A 0 0

a3 b3 c» A 0 0 “3 b3 C3 A 0 0

0 0 0 dl el A -“1 -b, -Cl 0 el A
0 0 0 d3 «» A -«2 ~bt -c, 0 e3 A
0 0 0 A e3 A -“s ~b3 -c, 0 e3 A

and deduce the identity
(afec)(de/) = (6cd)(ae/) - (acd)(6e/) + (abd)(cef) 

where (xyz) denotes the determinant (z, y2 z,).

MISCELLANEOUS EXAMPLES

EXERCISE XVId

A
Factorise the determinants in Nos. 1, 2.

1. a2 ax X1 2. 1 a a2 0
b2 by y* 0 1 a a2
c’ cz z« a2 0 1 a

a a2 0 1
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3. If the equations x2+px2 + qx + r = 0, x2 + ax + b = 0 have a
common root, prove that 1 0 1 a- p = 0

a 1 P b-q
b a 1 ~r
0 b r 0

4. Prove that

a2 + x2 ab - ex ac + bx = X c -b
ab + ex b2 + x2 be - ax - c X a
ac-bx bc + ax c2 + X2 b - a X

5. Find the square roots of yz - x2 
zx-y2 
xy - z2

zx - y2 
xy - z2 
yz - x2

xy - z2 
yz - x2 
zx - y2

6. If am is x or y according as p is or is not equal to q, prove 
that I aliv\ = (x-y)n~1{x+(n- l)j/} (p, v=l to n).

prove

7. Evaluate 1 1 1 1 4- 1 1 1 1
a 6 c d a b c d
a2 &2 c2 d2 a2 b2 c2 d2

an+3 jn+3 cn+3 d"+3 a3 b2 c’ d2

8. If /(z) = a + z h 9
h b-J-z f
9 f c + z

that with the

notation of p. 405,

/(z)/( - z) = A2 - z2£(A2 + 2F2) + z‘£(a2 + 2/2) - z»,

and deduc.e that/(z) = 0 cannot have a y-axal root. Hence prove 
that it has three z-axal roots.

9- If am — 1 for P = ?- 1, ? or g + 1, and is otherwise zero, and 
| a^v | is of order n and is denoted by Dn, prove that

D6m+1 —I, D6TO+2 — D6m+5 — 0, and D6rrt+3 —Z)6m+1— — 1, 

where m is a positive integer.
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B
Evaluate the determinants in Nos. 10, 11.
10. a b 0 0

0 0 c d
d - c -b a
c d a b

(A, p=l, 2; v, p=lto4)

11. a -b c -d
b a d c

— c -d a b
d - c -b a

12. Express | | | bvp |
as a determinant of order 4

13. If + + + for p=l, 2 and g=l, 2,
and (a;8) denotes a1j82 - a2^2, prove that

(JBC) : (ad) = (AV) : (be).

14. Evaluate 0 a b c d
- a 0 e 0 c
-b - e 0 - e b
- c 0 e 0 - a

d - c -b a 0

15. If the equations
a^ + b^2 + c]x + d1 = 0, a2x3 + b2 x2 + c2x + d2 = 0 

have a common root and (pz) denotes y1z2 — y2zv prove that

C

(06) (ac) (ad) = 0
(oc) (ad) + (6c) (6d)
(ad) (6d) (cd)

16. If s = a + /3+y, q=0y+ya + aft, p=apy, prove that
-p

5
-8

1

1 - 8 g
-P 1 - 8

1 -p 1
- 8 g -P

17. Evaluate by means of the determinants in No. 4 :
x2 + a2 - b2 - c2

2(ab + cx)
2(ac - bx)

2(ab - ex) 
x2 + b2 - c2 - a2

2(bc + ax)

2(ac + bx)
2 (be - ax) 

x2 + c2 ~ a2 - b2
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18. If Dn=[afl,] (/x,v=l to n) and awz = w„_3)-a: for p-q, 

am — ~ un-ąx f°r P = 9 + 1, aVq — 1 for p = q - 1, and otherwise 
“M = 0, prove that Dn+l + xDn = u„ul ...un, and find Dn.

19. If alt a2, ... , an are in a.p. with common difference b, prove 
that the value of the determinant whose row jg ar+l, ... , 
an, alt a2, ... , ar_1 is (nb)n~1{a1 + l(n - 1)6}( — l)«(n-i)/«.

20. If the equation/(z) = 0 of No. 8 has a double root z = «, 
prove that z — a is a factor of each minor of the determinant. 
Hence with the notation of p. 405, prove that F : G : H =f: g : h.

ni rr (n+p-1)! ,
. ^=(^l)!(n+p-g)! (P’ 3=1 to n)’ Prove that
I ap« I — r.

22. If a^a forp = q, am=\ for p = q- 1, aS5= - 1 forp = g+ 1, 
and otherwise avq = 0, and if | | is of order n and is denoted by
Dn> prove that Dn = aDn_t + Dn_2 and deduce that

= {[a + ^(a2 + 4)]"+i - [a - V(a2 + 4)]’l+1}/{2"+1V(ail + 4)} 

prove that

and if is the determinant of order 4 formed from A by striking 
out the first and last rows and columns, prove that

A, 1 A A3 A3 = Po Pl Pi 0

0 1 A A3 0 Po Pl Pi
0 0 1 A 0 ?0 Si ?2

0 0 0 1 So 91 ?2 0

ana that the equations a(x) = 0, b(x) = 0 have two roots in common 
if A = 0 and Aj = 0.



CHAPTER XVII

MATRICES
Linear Equations. In the solution of m linear equations

+ ^12*^2 + ••• + amxn h 0

®2v*^r F ^2 I* ^22 X2 + • • • + ^2n^n "f ^2

amvxv + “ amlxl + am2x2 + ••• + amnxn h ~ ®

for n variables, there are three possibilities :
(i) no solution, i.e. the equations are inconsistent,

(ii) a unique solution,
(iii) more than one solution.

For example in the geometry of a plane, the equations
aKx + bKy + cA = 0 (A=lto3)

represent three straight lines, and the following cases occur.
(i) (a) the lines meet in pairs in three distinct points,

(&) two lines are parallel and the third meets them,
(c) the three lines are parallel,
(d) two lines are coincident and the third is parallel to

them,
(ii) (a) the lines are distinct and meet in a point,

(&) two lines are coincident and the third meets them,
(iii) the three lines are coincident.
In (i) there is no common point, in (ii) there is one, and in (iii) 

there is an infinity of common points.
(i) a and (i) b are essentially different from the other cases and 

would be different even in the homogeneous geometry of lines 
a^x + b^y + cAz = 0. Except in these two cases, numbers k2, k2, k3 
not all zero, exist such that
k1a1 + k2a2 + k3a3 — 0 k1b1+k2b2 + k3b3 = 0 klc1+k2c2 + k3c3 — f>

420
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and therefore the first step in the discrimination between the 
seven cases turns on the dependence or independence of the sets 
ai> ci > cj ! a3> &3> cs- Further steps will also be found
to turn on properties of the array of coefficients. It is therefore 
convenient to begin with certain considerations about arrays of 
numbers and dependence of sets.

Matrices. A rectangular array of numbers (elements) con­
taining m rows and n columns is called a matrix. The elements 
are enclosed in square brackets thus :

°ii an °i3 ain
a'2l a22 a23 • * * a2n

am2 ams • • • amn

and this matrix may be denoted by [<zMJ or [a] or by A. It may 
be called an m x n matrix. Some writers use round instead of 
square brackets.

In any element afu, the first suffix indicates the row and the 
second suffix indicates the column in which the element a v occurs.

Various determinants of orders not exceeding m or n are 
regarded as contained in the matrix, but no numerical value is 
assigned to the matrix itself. If m = n, the determinant | | is
called the determinant of the matrix and may be denoted by | A |.

Conformable matrices are those which have the same value of 
m and also the same value of n. Two matrices are called equal 
only when they are conformable and have their corresponding 
elements equal.

The cartesian coordinates of a point in three dimensions or the 
homogeneous coordinates of a point in two dimensions may be 
regarded as forming a row-matrix [x y z] and the coordinates of a 
line in three dimensions are given by the six second-order deter­
minants contained in either of the matrices

rz m n O’1 or pl Vl 21 QL« 0 y L1 L*! Vz Z2 d
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The matrix whose rows are identical with the columns of [otgJ 
is called the transposed matrix of Its columns are identical
with the rows of The transposed matrix of A is denoted by
A' and thus the column-matrix obtained by transposing the*1

xn
row-matrix [aq xa ... xn] is denoted by [aq xa ... xn]'. Alter­
natively it is sometimes denoted by {xa xa ... xn}.

Rank of a Matrix. In applications of matrices to linear 
equations an important idea is that of the rank of the matrix. 
A matrix is said to be of rank r when it contains at least one 
non-zero determinant of order r and no such determinant of 
order r + 1. The rank of a matrix A may be denoted by r(A).

Evidently and r<,n. Also if the matrix contains a
non-zero determinant of order s, it must contain at least one 
non-zero determinant of every order less than s.

The interdependence of the rows of a matrix is connected with 
the rank.

Linear Dependence. The m sets aar, a12, .... aln, ; a21, aaa, ... , 
aan; ......... ; aml, ama, ... , amn; of n numbers each (not all zero
in any one set) are said to be linearly dependent if there exist 
m constants kv k2, ... , Km, not all zero, such that

KjCfn + K2a21 4-...+ Kmaml 0

ki^12 k2®22 "i • * * Km®m2

Ki h k2 ®2n + • • • + Km^mn
and if no such constants exist the sets are said to be independent.

Since some of the constants k may be zero, it is not always 
possible to express each of the dependent sets linearly in terms of 
the others, but it is always possible to express one of them in 
this way. For example, the sets 1, 1, I; 1, 3, 5 ; 12, 32, 52; 
1, 4, 8, are linearly dependent (k1 = 2, k2=10, k,= -1, «-4 = 0) 
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and any of the first three can be expressed in terms of the others; 
but 1, 4, 8 cannot be expressed in terms of the first three.

When sets are linearly dependent, a set which can be expressed 
in terms of the others is said to be dependent on the others ; it 
must be possible to choose the k corresponding to such a set so 
that it is not zero.

If some of the m sets form a linearly dependent sub-set, then 
the m sets themselves are linearly dependent.

Dependence of the Rows or Columns of a Matrix.
If the rank of a matrix of m rows and n columns is r, the rows are 

linearly independent only if r = m<n ; otherwise there are r rows 
on which the remaining m-r rows depend.

Similarly the columns are linearly independent only if r = n< m ; 
otherwise there are r columns on which the remaining columns depend.

W
These general statements may be proved by the same methods 

as are used for the following special examples which represent all 
the possible cases, namely

for which m = 6, n = 8, is of rank 3. Thus r< m< n.

(i) r<m and r<n
(ii) r = n< m

(iii) r = m<n.
(i) Suppose that the matrix °11 °12 °13 °18

a2i O22 °23 * ’ * ^28

a61 a62 °63 ”• °68

Then [a ] contains at least one determinant of order 3 which 
is not zero. Let this be (an a22

The determinant «n ai2

a2i °22

°31 °32

aj)2

a33f*
ai3 ai.q in which p has any
®23 a2q
°33 a3q
^2)3 av«

of the values 4, 5, 6, is zero for ę= 1, 2, 3, because two columns 
are identical, and is also zero for any value of q from 4 to 8 because 
the matrix is of rank 3.
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Regard p as fixed and denote the co-factors of dla, a2q, a3q, apq 
by Ala, A2q, A3q, Apq. These co-factors are independent of q, 
and they are not all zero because Apq = (all a22 a23). Hence the 
relation

^ia“ia + A2qa2q + A3q a2q + Apqa>pq = 0
which holds for q = 1, 2, ... , 8, shows that the row is dependent 
on the first 3 rows ; and p may be 4, 5, or 6.

The argument just used may be applied also when r<n<m. 
For example if m= 13, n = 8, r = 3, p would be any of the numbers 
4, 5, ... , 13.

for which m = 7, n = 3, is of rank 3. Thus r — n< m.
Then contains at least one determinant of order 3 which is

(ii) Suppose that the matrix «n a12 cz13

®21 °22 tt23

J a71 a72 a73

Hence

not zero. Let this be (“n a22 a 53)*

The determinant “n ai2 tt13 ®ie in which p has any
a22 ®23 a2q

“31 a32 a33 a3Q
“pi °P2 ap3 am

of the values 4 to 7, is zero for q = 1,2, 3 because two columns are
identical. The co-factors j 

^2(7’ Apq are not all zero
because AJ,a = (a1I a22 ^33)’ and they are the same for q= 1, 2, 3.

Aia“ivA2qa2v + A3qci3v + A^qapy = 0 (v=l, 2, 3)
where p has any of the values 4 to 7. This shows that each of 
the last 4 rows of is dependent on the first 3 rows.

(iii) Suppose that the matrix “n “12 “13 ■ •• “17

“21 “22 a23 . •• °27

“si “s2 a53 • .. a6,

for which m = 5, n=7, is of rank 5. Thus r = m<n.
Then if constants k,, k2, ... , ks exist, not all zero, such that

*1 “ia k2 Cl2q 4-... + k3 d2q — 0 (q = 1 to 7) 
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every determinant of order 5 in the matrix is zero ; but this is 
impossible because the rank is 5. Therefore the rows are inde­
pendent.

The argument just used may be applied also when r = m = n.
It follows from (i) (ii) (iii) that the rows are linearly independent 

only when r = m<, n.
Similar arguments may be used for columns.

Dependence of Linear Forms.
When the m sets aM, a 2, ... , a n (^—1 to m) of n numbers 

each are linearly dependent, the m functions
(p=lton)

of the variables xy are said to be linearly dependent because the 
n equations

K1all2 + K2aM+ ... + KmamQ = 0 (q=l ton) 
imply the identity

Kifi + Kzfz + • • • + Kmfm — 0

Thus it follows from what has been proved about the rows of a 
matrix that/j./j, ... ,fm are only independent if the rank r of the 
matrix of their coefficients satisfies r = m<in.

n Linear Equations for n Variables.

/isoiA+^i = °
+ \ =0 v = 1 to n.

f n — ^nv^v "b 0

The possible results (see p. 420) can be conveniently stated in
terms of the ranks 8 and e of the matrices

D =
«n

°21

“12 ■

°22 •

■ «m
• a2n

and E =

_am “n2 • • ann_

an ■■■ am
a22 •• • asn

\ •
b2

The determinants contained in D are also contained in E ; there­
fore e>8. Also if the coefficients of xt, x,, ... , xn are not all to 
vanish, 8>1.
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For n=2 the reader should prove the following statements and 
interpret them in terms of the coordinates (x,, xt) of a point in a 
plane.

(i) If 8 = 2 (and therefore «= 2), the equations have the unique 
solution aq : -x2: l = (a12 b2) : (an b2) : («„ a22).

(ii) If 8 = e= 1, the equations are identical and have an 
unlimited number (oo ) of solutions. The value of one variable 
can be assigned at random and the value of the other is then 
uniquely determined.

(iii) If 8=1, e=2, the equations are inconsistent.

For n=3 the equations may be taken as representing three 
planes in geometry of three dimensions.

(i) If 8 = 3 (and therefore « = 3), there is a unique solution (see 
p. 181):

: - x2 : x, : - 1
“ (oq2 ct23 83) : (a21 a23 b3) : (ct11 a22 b3) : (a12 a22 u33).

(ii) If 8 = e< 3, there is an infinity of solutions.
(a) Let 8 = e = 2. Then for y = 1, 2, or 3

A1(1A + A2pf2 + A3(J3 » ApfJp (p = 1 to 3)

where Apv is the co-factor of apv in | a |. And

Apilfp — Apil(apvxv + 6p) (apvApp)xv + (bpApp)

Since 8< 3, | a | — 0, and hence apvApil = 0 by p. 405.
Also, since «<3, bpApp = 0.

••• Alpf1 + A2J2 + A3m/3 = 0 (M = 1 to 3).

Since 8 > 1, the nine numbers App are not all zero and therefore 
fi’ fv ft are linearly dependent.

Thus there is at least one variable whose value can be assigned 
at random. The others are uniquely determined by two of the 
equations since one at least of the A's is not zero. The equations 
are said to have oo solutions.
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•6) Let 8 = e=l. Then every second order determinant of E 

is zero. Hence

°11 : “is - “13 : bi = “21 : “22 : “s, : ^ = “31 = “32 : “33 : bs>

so that the equations are identical. They are said to have 002 
solutions : arbitrary values can be assigned to two of the variables 
and the other is then uniquely determined by one of the equations,

(iii) If 8 + e, the equations are inconsistent.
(а) Let 8 = 2, e = 3. Then as in (ii a)

■^1^/1 + + A3lif3 = (apt,Apil)xl,+ (bpApil) (p=l to 3)
and apvApiJ = O.

But since e = 3, there is at least one value of p. for which 
hpApn^O. Hence for this value of /x

Aipf1 + A3^f3 + A3pf3 0 

and this implies that no values of the variables exist such that 
/1 = 0,/2 = 0,/8 = 0.

(б) Let 8=1, e = 2. Then there is one determinant I a.pT bp I 
that is not zero, and in it either avr or agr is not zero. | aar bg | 
Also because 8=1

| apr fp 1 — 1 apr 1 #= 0
1 ^qr fq 1 | ^qr bq |

Hence no values of the variables exist such that fv = 0,fQ= 0.
(c) 8=1, « = 3 is impossible because 8=1 implies that all the 

third-order determinants of E are zero.

The geometrical interpretations of these results are as follows.
In (i), the three planes have a unique common point.
In (ii a), they have a common line and are called collinear ; it 

may happen that two coincide and the third meets them.
In (ii b), the three planes are coincident.
In (iii a), one plane is parallel to the line of intersection of the 

others ; it may be parallel to one of them.
In (iii b), the three planes are parallel and at least two of them 

are distinct.
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In the general case the equations may be written
/g=%va:p + 6)i=0 (f = 1 to n, v= 1 to n).

(i) If 8 = n (and therefore e = n) there is a unique solution.
Denote as usual the co-factor of in | a | by A^.
If v = q, Aliaa^~ | a |, and if v^q, AIMa^ = O. Also since 8 = n, 

| a | 0.
Multiplying the equations by and adding,

and this reduces to | a |= - A^b^ (q= 1 to n).
Hence if | bq | denotes the determinant whose elements are 

those of E with the gth column omitted,
x, : -x, :... : (- l)"-1x„ : ( - 1)« = | 6, | : | b21 : ... : | bn | : | a |
Alternatively, - | a | xq is equal to the determinant formed 

from | a | by replacing by b^. In this form the result is known 
as Cramer's Rule.

It has thus been proved that there cannot be more than one 
solution of the equations, and it is evident by direct substitution 
that the solution obtained actually satisfies the given equations. 
Hence if 8 = e = n, a unique solution exists. Another method of 
finding it is given on p. 443.

(ii) If 8 = e<n, the equations have an infinity (co"-') of 
solutions.

Let F denote the matrix ®11 ai2 * • • ain fl

a22 - ■ ■ am f.

am anz • •• ann fn

which is formed by applying to E the transformation
col (n + 1) + Xj col 1 + x2 col 2 + ... + xn col n.

Since e<n, it follows from p. 423 that there are e rows of E on 
which the remaining n - e rows dępend. The e corresponding 
rows of F have the same property, because the same values of 
the constants k will serve for F as for E. Therefore there are 
e of the equations /M = 0 whose truth implies that of the others. 
Further since 8 = e, it is possible to choose e of the variables so 
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that the determinant formed by their coefficients in these e 
equations is not zero. If arbitrary values are then assigned to 
the remaining n - e variables, a unique solution is determined by 
these e equations. This solution satisfies the remaining n - e 
equations. Thus the given system of equations has an unlimited 
number (oon_£) of solutions.

(iii) If 8< e, the equations are inconsistent.
E must contain a non-zero determinant E€ of order e which 

involves the column b. The corresponding determinant Ff of 
F is identically equal to Ee, because the coefficients of x„ in F( 
are determinants of D of order greater than 8 or else they 
are determinants with two columns alike. Expansion by the 
f column gives Cvf„ = Fe = Et*O.
Here v has e values, and it follows that no values of the variables 
exist such that /„ = 0 for these e values. •

To sum up : the solution is unique if 8 = e = n, 
there are oo"~£ solutions if 8 = e<n, 
and there is no solution if 8 e.

It can be proved by a similar method that the same statements 
are true if the number n of the variables is not the same as the 
number of equations.

Homogeneous Equations.
Zi“9, ^zvxv= 9, ... , fn — o.nvxv — 0 (v = 1 to n)

are n equations for the n - 1 ratios of the variables, i.e. for 
xi'-xz ••• :«»•

The conditions for the existence of one or more solutions may 
be deduced from the previous work by putting b„=0. The reader 
will find it a valuable exercise to establish them for himself. They 
are as follows :

If 8 is the rank of [a^], then
. (i) if 8 — n, that is if | a | 0, the equations cannot be

true unless x1=xt = ...=xn-0. Thus there is no 
solution for the ratios. In most applications the solu­
tion x2 = xt =... = xn = 0 has no significance.



430 ADVANCED ALGEBRA [ch.

(ii) If 8 = n - 1, then | a | = 0. There are n - 1 independent
rows and there is a unique solution for the ratios, viz.

x1 : x2 : ... : xn = AV1 Ap2 : ... Avn
where Apv is the co-factor of ap„ in | apv | and p may have 
any particular value from 1 to n for which the values of 
Aj,v are not all zero. By p. 412, since | a | = 0,

xl • A • * A — • A • • A........... ■CL'pn~ qi • <22........
(iii) If 8<n-l, there are n-1-8 of the ratios to which

arbitrary values can be assigned, and the others are then 
uniquely determined. Thus there are oon_1_s solutions 
for the ratios. If n - 8 independent solutions are 

aq :®2 : ... : xn = xpl : xp, : ... : xpn (p=l ton-8)
the general solution may be conveniently expressed in 
the form x1:x,:... : xn-Kpxpl : Kpxp2 : ... : Kpo:pn.

Eliminants. In general a system of m equations connecting 
n variables is inconsistent if m >n.

A relation which must hold, between the coefficients so that the 
equations may be consistent is called an eliminant of the system.

For example the n + 1 equations
(/*= 1 to n+ 1, v = 1 to n)

have the single eliminant (alx a22 ... ann bn+l) = 0.
Also the n homogeneous equations

a(tPa:1,= 0 (/x = 1 to n, v= 1 to n)
are said to have the eliminant | apv | = 0 because they cannot 
be true unless this condition holds (except in the trivial case 
x2 = xt = ...=xn = 0\

EXERCISE XVIIa
A

1. Solve: r?/ + z a: + z_l = r9-« 8 -1 ~I
[_7 -1 6 - z J [_»+y x+V J

2. If the second-order determinants contained in Ta, b. c,-] 
are all zero, what can be said about the lines I a 62 c J 
alx + b1y = cl, a,x + b3y = ctl
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3. State the ranks of the matrices

(i) pr y z~l (ii) 1*0 0 0 0*1 (iii) HI 2 3*1
L® y zj La b c d] LI 8 6 J

where x, y, z are not all zero and a, b, c, d are not all zero.
4. Prove that the matrix whose rows are 2, 1, 3, 5 ; 4, 2, 1, 3 ; 

8, 4, 7, 13 ; 8, 4, - 3, - 1, is of rank 2.
5. Find whether the following sets are linearly dependent:

(i) 2, 5, 7 ; 4, 8, 3 ; 16, 34, 23 ;
(ii) 2, 9, 5, 1 ; 10, 39, 47, 11 ; 1, 3, 8, 2 ; 13, 51, 79, 19.

6. Prove that the functions 2x + y - 2z, x - 2y + 3z, x + 8y - 13z 
are linearly dependent.

Solve the equations in Nos. 7-12 (if consistent) and interpret 
the results in cartesian geometry of three dimensions.

In Nos. 8-10, find also the values of 8, e. See p. 425.
7. 4x + 3y + z = 0, 60a:- 24y + kz = 0, for £ = 360. k--8, and 

*=15.

8. 2x+3y + z=ll, x + y + z=6, 5x-y+ 10z = 34.
9. 2x + 3y + z= 11, x + y + z = 6, 3» + 4y+2z=l.

10. 2x+3y + z=ll, x + y + z = 6, 3x + 4y + 2z=17.
11. 2x + 3y + z= lit, x + y + z = 6t, 5x - y + 10z = 341. (SeeNo.8.)
12. 2x + 3y + z= lit, x + y + z = 6t, 3x + 4y + 2z = t. (See No. 9.)

B
13. If

interpret in geometry of two dimensions the following properties

Z/i B = xi 2/i «i c= X1 2/1 21
*3 2/2 x> y2 X2 2/3 Z2

x3 y3 X» 2/3 Z3 x3 y2 zs

X2 Vi 24

(i) A is of rank 1 (ii) B is of rank 1
(iii) B is of rank 2 (iv) C is of rank 2

In (ii) give also the interpretation for cartesian coordinates in 
three dimensions.

14. Find the condition for the functions 3x + 2y + z, 12x + y + 2z, 
ckc + + cz to be linearly dependent.
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Solve the equations in Nos. 15-18 (if consistent) and interpret 
the results in cartesian geometry of three dimensions.

In Nos. 15, 16, find also the values of 8, «. See p. 425.
15. 2x + 3y + z= 11, 4x + 6y + 2z = 7, 3x + 4y + 2z=l.
16. 2x + 3y + z=10, 4x + 6y + 2z=21, 6x + 9y + 3z = 30.
17. x + y = 3, y + z = 2, x-z=l, 3x+2y-z = 7.

18. x + y + z = 9, 3x-2y + 4z = 3.

C
19. Solve a^x^b, ajx =b*, a *x =b* where y=l, 2, 3 and 

cq, at, a3 are unequal and not zero.
20. Discuss the solution of

ax + y + z=l, x + ay + z = a, x + y + az — a*
for different values of a.

Linear Transformations and Matrix Algebra.
The reader is already aware that the theory of complex numbers 

is developed by applying certain laws of combination to ordered 
pairs of real numbers (a, b), and he is probably convinced that 
this excursion into abstract thought is justified by the many 
useful applications of complex algebra.

A matrix is also a collection of numbers arranged in a certain 
way and we shall develop an algebra of matrices by laying down 
laws for their combination. It will not be possible in this book 
to make much use of matrix algebra, but some applications will 
be given on pp. 442-448. These applications will at least show 
that matrix algebra expresses sets of equations in a very concise 
form and that it can sometimes prove a whole set of results in 
one piece of work.

The actual law of combination that we adopt is suggested by 
the consideration of linear transformations. It is sometimes 
desirable to replace variables xlt xt by new variables ylt yt such 
that

J«i =»u3/i + «n3/i
Ui = “u3/i+“ii3/i
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For example in cartesian plane geometry the transformation for 
change of axes without change of origin is of this form. Such a 
transformation is called a linear transformation and Ta,! a12~l is 
called the matrix of the transformation. LĄi an J

If afterwards new variables zv z2 are introduced, and
/ 3/i= ^11 zi d- ^12 zi
136 = ^21Z1 + ^22 Z2

the combined transformation is expressed by

X1 — C11Z1 4 C12Z2

a:2 = C2A+C22Z2
where cu = “ii6ii d-°i2&2i ci2 = an6i2+ “12^22

C21 “ a21^11 “f O22^21 C22 = °21 ^12 °22^22

and it is easily seen that

cu C12 = 1 «11 “12 ^12 I

1 C21 C22 1 1 a21 a22 I *2! ^22 I

The equations of transformation may be written more shortly as

= W* Vv = bppZp (p.,v,p=l, 2)
and the combined transformation is a;/J = cppzp

where cpp &pp btp d" ®^2 b2p~
This last equation stands for the four equations for cllf c12, c21, c22 
which are given above.

In the previous example the matrices of the transformations 
are square. Consider now the transformations given by

— a\xvVv 
Vv bvpzp

(p= 1 to 4 ; v= 1, 2) 
(v — 1, 2 ; p= 1 to 3)

which are equivalent to

where
(p=lto4; p = lto3)
(p= 1 to 4 ; v — 1, 2 ; p = 1 to 3).

This suggests that the product AB of the matrices

A = [%>,] and B = [6,p] 
should be defined as the matrix C given by
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But the nature of successive transformations requires that the 
number of columns in A, being the number of the variables y, 
should be equal to the number of rows in B.

Except in this case no interpretation is suggested for AB by 
the theory of transformation, and it is only when the number of 
columns in A is equal to the number of rows in B that any meaning 
is assigned to the matrix product AB. This implies that BA is to 
be distinguished from AB.

Definition of a Matrix Product
If A = [apv] and B = [&l,p] (y = \ to m, v=l to n, p=l to r) the 

product AB is defined to be the matrix [a^b^].
Denoting AB by C or [cpp] (p = 1 to m, p = 1 to r)

For example

cpp ~ aiw ^vp ~ api ^ip + b2p + • • • + apn bnp’

at «3 = a^ + a^ + a^, a3y3 +a2y2 +a3y3
6i b2 b3 ®1 3/2 b1Xl+b2x2+b3x3 biyi+b2y2 + b3y3
ci c2 x3 y3 cixi +c2x2 + c3a:3 +c2y2 + c3y3
d3 d2 d3 d3x2 +d2:c2 + d3x3 d1y1 + d2y2 + d3y3

has no meaning because the

number of columns of the first matrix is not equal to the number 
of rows of the second.

If

then

1 0 and B = 1 0 0
0 1 0 1 0
0 0

AB = 1 0 0 and BA = 1 0
0 1 0 0 1

0 0 0

Thus A B and BA can exist and be different. In this example they are 
not even conformable which is a first requisite for equality. Also in 
this example even the determinants | AB | and | BA | are unequal.
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If A is an wi x n matrix, the necessary and sufficient condition 

that AB and BA should both exist is that B should be an n x m 
matrix. If A and B are nxn matrices, then AB and BA both 
exist. But they are not necessarily equal; for if A = 1

3
2
5

and B = 3 1 then AB = 7 1 and BA = 6 11 . These
2 0 19 3 2 4

are not equal matrices because they have unequal corresponding 
elements. But in this case of square matrices the determinants 
| AB | and | BA | are necessarily equal because they are equal to 
the product of the determinants | A | and | B This contrasts 
with the preceding example.

In virtue of the definition of a matrix product, the transforma­
tion on p. 433 may be expressed in the form

X = AY Y=BZ

where X = Y = 3/i Z = zr
3/1 Z2

and A, B are the matrices of the transformations.
The same equations also express the transformation

= 2/p = 6vpzp (f=1 to m, v=l to n, p = l to r)

^pv ^pv "f ^pw
and it is denoted by A + B. Thus the stun is found by adding 
corresponding elements and it only exists for conformable matrices.

Evidently A + B = B + A
and A + (B 4- C) = (A + B) + C
where A, B, C are any three conformable matrices. Thus A + B + C 
can be written without any ambiguity.
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A + A is denoted by 2A, A + A + A by 3A, etc.
More generally the product of a scalar and a matrix is

defined to be the matrix [ka^]. In contrast to this, if | | is a
determinant of order n, | ka^ | = A’n | |.

The difference . A - B between two conformable matrices is 
defined to be the matrix D given by A = B + D.

A zero matrix is one in which every element is zero. It is 
usually denoted by 0 because the numbers of rows and columns 
is obvious from the context and because

A + O = A = O + A, AO = O = OA.
But it must not be concluded from AB = O that one of the matrices 
A, B must be a zero matrix. See Exercise XVIIb, Nos. 3, 10,11, 12. 
For special cases in which the conclusion is legitimate, see p. 440 
and Exercise XVIIc, Nos. 31, 32.

The Associative Law of Multiplication
(AB)C = A(BC), provided that the operations are possible.
Suppose that A = [aAJ, B = [6(1f], C = [cfp]

for A = 1 to I, /x = 1 to m, v = 1 to n, p = 1 to r.
By definition [c^] [6^] =

.-. (AB)C = IaJ =
Similarly A( BC) = [aAJ [6^%] =

.-. (AB)C=A(BC)
and it follows that ABC can be written without ambiguity.

If A is a square matrix, AA exists and it is denoted by A2. 
Also, since (AA)A = A(AA), the notation AAA or A8 may be used, etc.

The Distributive Laws
(A+B)C = AC+BC, provided that the operations are possible.
A, B must be conformable and must have the same number of 

columns as C has rows.
Suppose that A = [aAfl], B = [bA/x], 0 = ^]

for A = 1 to I, p.= 1 to m, v = 1 to n.
By definition ' (A + B) C = [a^ + 6^] [c^]

= [(“Am + = ^Ap0^ + ^Am0^
= [aAKC^] + [6AMCMvl = AC + BC.
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Similarly it may be proved that A(B + C) = AB + AC.
It is most important to remember that multiplication of 

matrices is not commutative and that AB = O does not imply 
A = 0 or B = O. But the following laws apply :

A+B=B + A A + (B + C) = (A+B) + C
A(BC) = (AB)C

(A+B)C = AC + BC 
A(B + C) = AB + AC t

Hence it follows for example that
(A+ B)(C + D) = AC + AD + BC + BD

when the order of the factors is preserved.

EXERCISE XVIIb

A
In Nos. 1-4 give when possible the values of A + B, AB, BA.

1. A = 0 r B = 0 - 1
1 i 1 0

2. A = 1 2 3 , B = ~1 1 1
1 3 6 I 2 3

3. A = a b B = b b
0 0 •

i - a - a

4 A = 0 1 B = "1 1 1 r
1 2 1 3 5 7
2 3
3 4I _l

5. Write in full the matrices [a^] and [a,,p] when
(i) P=l. 2; r=l, 2. (ii) p=l, 2; p=1, 2, 3.

6. A has x rows and x+5 columns, B has y rows and 11 -y 
columns, and AB, BA exist. Find x and y.

7. Write [a; y z] as a single matrix.a h g 
h b / 
S' / c

X 
y 
z
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8. If
0
0

v = 1 to 3), prove that

AB=BA = £B.

9. Expand (A + B):, stating when this can be done.

B

10. Evaluate 0 c -b a2 ab ac
■ - c 0 a ba b‘ be

b - a 0 ca cb c2

In Nos. 11-14 give when possible the values of A + B, AB, BA

11. A = 1 1 , B = 1 1
- 1 - 1 - 1 - 1

12. A = 0 1 , B = 1 0
0 1 0 0

13. A = cos 6 - sin 8 , B = COS </> - sin <f>
sin 6 cos 0 sin (f> cos </>

al a2 a3 Pi Qi = a P a
_bl ’ b2 b3 Pi b P b

P3 h

16. Verify that A(B + C) =AB + AC provided that the operations 
are possible and state the conditions for this to be so.

17. Expand (A+ B)(A - B), stating when this can be done.
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C

18. If 1 = 1 0 , i = s on, j= 0 1 , k = 0 3
0 1 0 -8j -1 0 8 0

where 82 = - 1, show that i2=j2 = k2 = - I and ij=k. Deduce that 
ik=—j, kj =—i, ki=j and obtain similar results for ji and jk.

19. With the notation of No. 18, if Q = al+&i + cj+dk and 
Q = al - 6i - cj - dk where a, b, c, d are scalar, Q, and Q are called 
conjugate quaternions, and n(Q), =a2 + &2 + c2 + d‘, is called the 
norm of Q.

(i) Show that Q = a + 8&
- c+ 8d

c+8d
a - 8b

and express Q as a 
two-rowed matrix.

(ii) Prove that QQ = Q,Q = n(Q)l.
(iii) If P, Q are quaternions, prove that PQ is a quaternion with 

QP for conjugate, and that n(PQ) = n(P)n(Q).

20. If a^J^X + g- and 6^ = ^-^ where A=l, 2; fi=l, 2, 3; 
v= 1, 2, find the values of + [&r<t] and [aAg] [&gJ.

21. If A, B, C are the elements of matrices of n rows with 
a, b, c columns where a + b + c = 2n, and O indicates zero elements,
prove that 1 A B O I = ( - J)»>+e+<»6 1 B A O |

1 A O c 1 B O c
where the determinants are composed of the elements in the 
positions shown.

Square Matrices. The matrix (^=1 to m, v=l to n) is 
called square if m = n, and is then called singular when | a | = 0. 
When | a | ± 0, the matrix is called non-singular or regular.

The square matrix defined by

a^ = 0 if and ag(1=l (/*, v=lton)

is called a um'i matrix and is denoted by ln.

The square matrix defined by

0^ = 0 if and al2/1 = k (p.,v=lton)
is called a scalar matrix. It can be denoted by fcln without 
conflicting with the definition of k[a^] on p. 434.
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The scalar matrix is a device for replacing a scalar by a matrix, 
and there is an exact correspondence between the algebra of scalar 
matrices and ordinary algebra. This may be compared with the 
correspondence between real and rc-axal numbers.

In unit and scalar matrices the suffix n is sometimes omitted, 
leaving the number of rows and columns to be inferred from the 
context as in the case of zero matrices.

It is easily verified that if A is a matrix with m rows and n 
columns,

AI„ = A=lmA

Hence if AI„ = O, then A = O,

and if AI„=BI„, then A = B

also if the product AB exists, A1„B = AB. Thus in any piece 
of manipulation a unit matrix which occurs in a product can 
be omitted.

The Transposed Matrix. The matrix whose rows are identical 
with the columns of a matrix A has been (see p. 422) called the 
transposed of A and is denoted by A'. A square matrix may be 
equal to its transposed ; it is then called symmetrical.

The transposed of A' is A, i.e. (A')' = A.
It follows from the definition of a product that if AB exists,

(AB)' =B'A'.
Hence if ABC exists,

(ABC)'= (AB. C)z

= C'(AB)' = C'B'A'

and similarly (AjA2 ... An)' = A,/An_2' ... A/.

The Adjoint and the Inverse. The adjoint of a square matrix 
[a^J is defined to be the matrix [6^], where is the co-factor 
of in the determinant | a |. This co-factor is formed by 
striking out the vth row and the /xth column and multiplying by 
( - 1)"+’’ as explained on p. 401, and it is denoted by A^.
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For example the adjoint of

°13
a33 I

■^11 -^12 -^13 I)ut ^11 -^21 -^4-31

^4-21 -^22 -^23 A A A-^12 -^22 Z132
AAA^31 "rl32 ^33 A A 4^13 ^23 ^33

and A21 denotes

Provided that the square matrix A = is non-singular, it 
also has an inverse defined as [c^], where clu, = Avli+\a\, and 
denoted by A-1. These definitions of adjoint and inverse matrices 
should be contrasted with those of adjugate and reciprocal 
determinants given in Chapter XVI. Mathematical writers differ 
about the precise meanings of these terms.

If A = [<zA(J and A x = [c^], the definition gives = A^-i-\a |.
Hence AA~* = = [aAflAv(J-?-| a |]
But by equation (12), p. 405,

a^A^=\a\ if A = v and a^A^O if
Hence AA~* = l„.
By writing A = [aAft] and A~*= [rf„A] where dvA = A^ 4-1 a | it may 

be proved similarly that A_1A= ln.
Thus AA-1 = l„ = A-1 A. This is a case in which the commutative 

law of multiplication holds good.
If A is a non-singular (square) matrix and AB exists and is equal 

to C, then B = A_1C.
For A-1C==A_1AB= IB= B.

If A is a non-singular (square) matrix and BA exists and is equal 
to D, then B = DA~*.

For DA-»= BAA_l= Bl = B.
In particular, since AA-1= I, it follows that

A = l(A-1)-l= (A-1)-1.
Hence the inverse of the inverse of a non-singular (square) matrix 

is the matrix itself.
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Also the inverse of the transposed matrix of a non-singular 
(square) matrix is equal to the transposed of the inverse.

For (AA_1)'= i'= I, (A-’)'A'=I.

Hence (A_1)'= l(A,)-1 = (A')~1. S

If A and B are conformable non-singular (square) matrices, theh

(AB)_1= B-’A-1.

For (AB)(AB)“1= I, A.B(AB)-1=I,

B(AB)-1 = A-1I = A-1

(ABJ-^B-’A-1.

Similarly it can be proved that if Aj, A2, ... , A„ are conformable 
non-singular (square) matrices,

(A1A2 ... An) 1 = An 1An_1 *, ... Ax *.

Fore and Aft Division
If A is a regular matrix with n rows and n columns, and 

B is another matrix, a meaning may be assigned to B-i-A by 
finding either P such that AP = B, or Q such that QA = B.

AP= B is equivalent to P = A_1B and the existence of P requires 
that B should have n rows.

QA — B is equivalent to Q = BA-1 and the existence of Q requires 
that B should have n columns.

If B has n rows and n columns, both P and Q exist. There are 
then two quotients. These are distinguished as the fore and aft 
quotients and on account of the failure of the commutative law 
of multiplication they are in general different.

Example 1. Solve the n equations given by AX = B
_ — — — — —

where A = °n a12 . • °in\ x- B =
°21 °22 • • ain

*2

anl ««2’ ■ ann_

and A is regular.
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The equations are

autixi+a^x2 + ■■■+aiinxn = bn </‘ = 1 t0 ”)
and except for the signs of are the same as those on p. 425.

AX = B. Therefore by taking the fore quotient,
X = A_1B.

Since A-* = [c(1J where cja, = AF(J-?| a |,
the solution may be written

xn = 4|Av| “ I G“ = 1 to n).

Example 2. If Z11 + ml'-n1I = (1! + m/ + n2s = /3!-mJ! + nJ1= 1 
and ZjZ2 + mlm2 + n3n2 = l2l3 + m2m3 + n2n3 = l3l1 + m3ml + n3n1 = 0, 
prove that Zx2 + Z22 + Z32 = 1, m,1nl + m3n2 + m3n3 = 0, etc.

Let A =
h
h

m1 nl
n2

m3 n3

Then A' =
m2 

n2 n3
m3
n,_

and AA' = “1 0 0 = 1,
t

0 1 0
0 0 1

Hence A'A = A'l3(A')-, = A'(A')-* = Is, i-e.

and, from the equality of the nine pairs of corresponding elements, 
the results follow.

V + W + l,' Z1m1 + l2m2 + l3m3 + l2n2 + l3n3
m1l1 + m2l2 + m3l3 m12 + m22 + m32 m1n1 + m2n2 + m3n
nll1 + n2l2 +n3l3 ni mi + n2 mi + n3 m3

= p 0 o’
0 10
0 0 1

nx2 + n22 + n32

The interpretation in geometry of three dimensions of the 
result of Example 2 is that the direction cosines of three mutually 
perpendicular lines satisfy the given relations ; and (Z,, Z2, Z9), 
(mv m2, m3), (n3, n2, n3), being the direction cosines of the original 
axes referred to the other three lines as axes, must satisfy the 
required relations.
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Inverse Transformations. We have seen that a linear trans­
formation (T) from a?i, x2, ... , xn to yv y2, ... ,yn can be expressed 
by a matrix equation X = A Y where

... a>„] 'f' = \y1yi... y„] A = [a^] (M, v=lton).
If A is regular, it follows that Y = A-1X. This matrix equation 

gives the inverse transformation (T_1) from ylt y2, ... ,yn to 
xv x2, ... , xn, i.e. it gives the n equations for y^ in terms of x)L 
which could be found less concisely by solving the n equations of 
the transformation T.

Cogredience and Contragredience. Sets of variables to which 
the same transformation applies are called cogredient. For 
example in the change from one system of homogeneous coordi­
nates in 2-dimensional geometry to another system, the point 
coordinates x^ (/*=1 to 3) are transformed into by equations 

X = AY i.e. x^a^y, (y, v=lto3).
This transformation applies to all points, and point coordinates 
are therefore cogredient. But it will be found that this trans­
formation induces in the corresponding line coordinates u of a 
line = 0 another transformation, and that this transformation 
has a matrix which is in general different from A, so that the line 
coordinates are not cogredient with the point coordinates.

Substituting for x* from X = A Y,
'Ulixlt=^iiaiu,y,=v,yr, where v^a^u*.

But v„ — is equivalent to V = A'U
where V' = [t>j u3], U' = [iq u2 w3], 

and A is regular, :. U = (A')-1V.
Hence the matrix of the induced transformation is (A')_1 and 

this is in general different from A.
Conversely if U = (A')_1V,

V = A'U, A V' = U'A
Hence [tq, = U 'X = U 'A Y = V' Y s [v„y„].
Two sets such as x^ and wM which are changed (into and »fl) 

by transformations whose matrices are A and (A')”1 are called 
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contragredient sets. Their inner product u^x^ is invariant. It 
is shown above that the point and line coordinates are con­
tragredient. Another example of contragredience is given in 
Example 3. When A = (A')-*, the sets are both cogredient and 
contragredient. (See p. 446.)

Note. The definitions and algebra in the preceding section are 
applicable to sets of n variables with p, v = 1 to n.

Example 3. If u/1 = (p. = 1 to 3), show that the sets (xj, (uj

are contragredient for the transformation

= (l»,v=lto3),
The given transformation is of the form X = AY and it is to be 

proved that U = (A')~lV, where
3

and

U' = [w1m2w3], and

.-. vM = w1a1M + w2a2(i + u3a2A1=upa>,/i

0 _ 0 Sxl 9 3xt 0 Sx3 
SVn 3xa dy^ dx3 dy^

till a21 ®31 «1 =
®12 ®22 tt32

®13 ^23 a33 «. Vi

U = (A')-W

Orthogonal Matrices and Transformations
A matrix A is called orthogonal if A'A= I.
Since |A|2=|A'|[A| = 1, an orthogonal matrix is regular, and 

it follows that A' = A_l and AA' = I.
When the matrix A of a transformation X = AY (see p. 435), from 

variables x^ to variables y^ (g = 1 to n), is orthogonal, the trans­
formation is also called orthogonal.

Since X = AY, X'=Y'A', and A'A=I, it follows that X'X=Y'Y 

i.e. a;i’ + ^’ + -+^„i! = 3/1a + 3/t’ + ...+3/n’.
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This property, regarded as an identity, might have been taken 
as the definition of an orthogonal transformation. For direct 
substitution of a^y^, for gives, by equating coefficients, 

a^a^=1 = (P*?)
where p, q take the values 1, 2, ... , n. These equations express 
A'A=I. In the special case of n=3, they are the equations of 
Example 2.

When the matrix A is orthogonal, (A')_1 = A and the point and 
line coordinates (see p. 444) are cogredient and contragredient.

Miscellaneous Applications. The reader will be aware of the 
importance of the homogeneous quadratic form

ax^2 + bx22 + cx32 + 2/x2z3 + 2gx3x1 + 2Azqx2.
If A is the matrix a h g 

h b f 
9 f c

the form may be written as

[®i V2 ^al' or as X'AX-
Similarly the general homogeneous quadratic form in n variables 

is associated with a symmetrical matrix A of n rows and n columns 
and may be written as [aq x2 ... aqJAfaq x2 ... xn]' or as X'AX.

The determinant | A | is of importance in the theory of quadratic 
forms. If a linear transformation X = M Y, where

X' = [aq x2 ... xn] y2 ... yn]
is applied to the quadratic form X'AX, then this form becomes 
(MY)'AMY, i.e. Y'M'AMY, or Y'BY where B = M'AM.

B is the matrix of the new form Y'BY. Also | B | = | A | | M |2.

If<p = X'AX and <|' = X'BX are two quadratic forms in
*^2’

then <p + A4> = X'CX, where C = A + AB
and if this form is transformed by X = MY, it becomes Y'DY, 
where by the preceding paragraph

D = M'CM and | D | = | C | | M |2.
Thus the roots of | C | = 0, an equation of degree n in A, are the 

same as the roots of | D | = 0.
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This is a familiar result for n = 3 and it has been proved here 

for the general case as shortly as it could be proved for n = 3.

In real algebra the cubic equation in A
a - A h

h 6-A
9 f

9
f 

c -
has three roots. (See p. 286.)

Also if A is a symmetrical matrix of real elements which has 
n rows, then the equation | A - Al„ | = 0 has n roots.

We prove here the following more general result:
If A is a matrix whose elements are complex numbers 

b^ + ic^ such that bfa + icII,=brii-icrlt then all the roots of 
| A - Al„ | — 0 are x-axal.

Using a bar to denote a conjugate complex number, the 
hypothesis may be expressed as = or as A = A' if A is the 
matrix whose elements are the conjugates of the corresponding 
elements of A. Let A denote any root of | A - Aln | = 0 ; then the 
n linear equations implied by

Afaq x2 ... zJ'-Afo x,...xn\' = 0
are satisfied by a set of values of aq, xa, ... , x„ not all zero. For 
these values

Jxn_

where fc is a sum of squares of x-axal numbers and is not zero. 
But [Afc] being a one-term matrix is unaltered by transposition ; 
hence [xa xa ... aqJAfXj x, ... xn]' is unaltered by transposition 
and is therefore equal to the matrix

[«! — «nJA'lA — «„]'•
But the substitution of — i for i also changes it into this same 
matrix in virtue of the hypothesis A = A'. Hence the substitution 
leaves Xk unaltered, and therefore, since k^O, A is x-axal.

d.r.a.a. in.
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This proof can alternatively be expressed by means of dummy 
suffixes as follows.

If A is a root of | A - Aln | = 0, the equations - Xx^ — Q have 
a non-zero solution for xM.

Multiply by and add :

x^a^x^Ax^a^Afc (fc>0).

Changing i into — i, the expression which is equal to Xk becomes 
x^a^x^. By hypothesis this is equal to x a x,, and, by exchange 
of dummy suffixes, to x^a^x^. Hence it is unaltered; and there­
fore A is x-axal.

Two Properties of Determinants

I If A = [apJ and B = [&„p] (p.= l to m, v= 1 to n, p = l tom)
and if m >n and AB = C, then | C | = 0.

By the definition of C and the product theorem for deter­
minants :

For example

*1 xl al ^1 ^1 = a1x2 + a2x2 b1x1 + bixt c2xx + c2xt
yi Vi ^2 ^2 + b1y1 + b2y2 c1y1 + c,yi
zi zi axzx +a2z2 bxzx +b2zt cxzx +c2z2

aixi + a2xt blx1 + b2x2 c1x1 + c,x,
+ b1yl + b2y2 c1y1 + ctyt

alzl+a2z, b1z1+b2z2 c1z1 + c,z,

= 0.
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II If A = [0^] and B = [&vp] (/x= 1 to m, p= 1 to n, p= 1 tom)
and if m<n and AB = C, then | C | is equal to the sum of the 
products of corresponding determinants of order m taken from 
A and B.

A I j = S I ®S I | “r br I = S(°A ~ °A)2-
| va6 | I br bs I | as b, I

The general theorem may be proved as follows :

I C | = | CMp | = epi p2 • ■ • Pm ciPi c2pa ' • • cmpm

— ePlp2 ••• Pm (alv1bvip1')(aH’2bv2p^ ••• ^amvmbvmp„^ 
where each v takes the values 1 to n. This may be rearranged as 
| C I = (“1F1«2V2 ••• amvrr) (ePlP2 Pm ^»1P1^2P2 ■" ^mPm^ (See P' ^94) 

and in evaluating the second bracket vlt ra, ... , vm are fixed and 
are any particular selection of m numbers from the numbers 
1 to n. Denote this selection when arranged in ascending order 
by A,, A2, . ■ ■ , Am and denote the determinant (6A1, b^2 ... b^) by 
l&ml-

Then from equation (5), p. 399
, k k k _ S Ai A« "'I h I
P1P2 Pm br1p1l>vtpt bvmpm m

Here 8 must be used instead of e because v2, v2, ... , vm are not the 
numbers 1 to m but a selection of any m numbers from 1 to n.

Also for the particular set of values v17 p2, ... , vm 
) SAiA2 Am=(a1A a. ... am. )

= I am |, say.
(”) Products l°ml 16m I

(aivx®2V2 *** amv7/r

Hence | C | is equal to the sum of the

obtained by taking all possible selections v,, v,, ... , vm from the 
n numbers 1 to n.
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Example 4. Prove the identity

(®i x2 + y! + C1 zx) (a2 x2 + b2y2 + c, z2)
- (a2 + 6, ?/, + c, zx) (ax + 6X ?/a + cx zf)

= S {(\ C2 - &2 Cx) (yx za - y2 zx)}.

«2
Z/2
Z2

xi
2/i

“l^i + ^l/i + Ci2! «i®2 + 6i3/2 + CiZs 
«2^i + &22/i + c2Zi a2x2 + b2y2 + c2z2

b^ Cj 
®2 b2 ^2

Hence by II
1 a1x1 + b1y1+clzl a1x2 + bly2 + clz2 1=2 61 Cl I I 3/1 J/3 1

a2x1 + b2y1 + c2z1 1 b2 C2 z, z2 \
from which the result follows.

If the order of multiplication is reversed, the determinant of the 
product is zero as in I.

EXERCISE XVIIc

A
1. If A = [a^] (y, v = 1 to 3) and I: is a scalar, write in full the 

matrix A + &l3.

2. Find the adjoint and inverse of 3 5 and of 1 2 3
8 10 4 6 7

5 8 9
and the adjugate and reciprocal of the corresponding deter­
minants.

3. If [cZj a2...an] = [b1 b2...bn]M, prove that, with the 
notation of p. 422, {a2 a2 ... an} = M'{6x b2 ... bn}.

4. If, with the notation of p. 422,
{®i ^2} = [a/n,]{yx y2 y2} (m, »=1 to 3),

express yv y2, y2 in terms of x2, x2, x2, aM, given that [aMJ has 
rank 3.

5. Evaluate the two quotients :
33 69 1 2

129 264 5 7

6. Discuss the solution of the equations 
3x~3y + 4z = 2, x+y+2z~-4, x + 4y + 3z = -11,
2x + 5y+ 5z = 9.
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7. The /xth row of the matrix A is a^, a^, 1 and the vth column 
of the matrix B is 1, - 2&,„ b„‘. If p, v take the values 1 to 4, 
use the product AB to show that | (aM - &„)21 = 0.

the identity
4(Oi Ci - 6j!)(a2c2 - &22) - (ajC2 + a2c1- 261&2)a

8. Use the product (Zj ^1 ^1 C1 C2

a2 ^2 ca - 2&i - 2&2
“1 a2

to prove

= 4(cti &2 - a2 6j) (&i c2 - &2 Ci) - (Oj c2 - a2 Cj )2

9. Show that a b d - c is orthogonal if
b - a c d
c d -b a
d - c — a -b

a = sin 6 sin <f>, 5 = sin9cos<£, c = cos9sin^, d = cos 8 cos <f>.
10. If [a^] (p, v=l to n) is an orthogonal matrix, prove that 

am>anv— bji (v= 1 to n) where p, q take the values 1, 2.........n.

B
11. If the operations are possible, prove that

(i) (A + B)' = A' + B' (ii) (AB)' = B'A'

12. If A = 1 - 1 f
2 - 1 0
1 0 0

find A-1.

verify that A3 = A2A = AAa= l3 and

13. Verify that AB = BA when B is O, I, k\, hn, A-1.

14. If A+l,= 1
- 1
-2

3 4
1 3

-3 1

evaluate (A + l2) (A - l3)

(cw = caJ,) and that A - A' is skew-symmetric (Cj,a= - caj)).

15. If A = 0 - tan 8 verify that
tan 3 0

l, + A = cos 23 - sin 29 (l.-A)
sin 29 cos 29

16. If A is a square matrix, verify that A + A' is symmetric
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17. Use a product of matrices to prove that

2 S 6/ - (S arbr)» = Z(arbs - a,bry.

18. If the sets 1, 2, 3, 4 ; 1, 3, 6, 10 ; 1, 4, 10, 20 ; 1, 5, 15, x 
are linearly dependent, find the value of x.

Discuss the solutions of the equations in Nos. 19, 20.
19. 2a: + 3y + z=llf, 4a: + 6y + 2z = 7f, bx + 9y + 4z = 19f.
20. x + ay + a2z = 1, xa-1+ y + bz= 1, xa~2 + yb~2 + z= 1.
21. Verify that | - 1

-2
2

2 -2
1 2
2 1

is orthogonal.

C
22. Given that [as^J (/x, i/= 1 to 4) has rank 4, find the values 

of x^ for which A^xv = b^

23. Use the product 1 1 x-a a(x - a) a‘(x-a)
a P x-p p(x-p) P2(x-f3)
a1 P

to prove that
A = »o ”1 S2 S3 = 0 , where sk= a.k + fik.

»i 52 S3 »t
»3 S3 «4 S3
1 X X2 X2

24. If A has the same meaning as in No. 23 and
sk = ak + Pk + yk + 8k,

prove that A = 2{(|8 - y)2(y - a)2(« - fi)2(x -a)(x- j3)(a: - y)}.
-... + ank, prove that
= S(«1 - a2)a(i)

(ii) S3
»3

«4

= 2X(«i - a2)(“a - “s)(“3 -

26. If A — B = [&p,], C = [cMJ (y, v = 1 to n), write as shortly 
as possible the sums of the elements of the leading diagonals of 
AB and ABC.

Are these sums the same for BA and BAC respectively 7
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27. If A, B, C, D denote the elaments of matrices with r, s, r, s 

rows and t, t, u, u columns respectively, where r + s — u + t, find 
the ratio of I A Cl to | D B I.

| B D I | C A I

28. If a^= (g + v - l)3 (g, v=I to n), prove that | | = 0
if n >4.

29. If A is an orthogonal matrix, prove that A-1 is also ortho­
gonal. State the results implied by A-1 being orthogonal if

A = [«%,] (g, r=lton).

30. If X=AZ, Y = A'Z, A = 1 c -b , B = A-
- c 1 a

b - a 1
prove that the direct transformation from X to Y is orthogonal by 
showing that AA'= (I + B)(I - B) =A'A.

31. If A is regular and AB = AC, prove that B = C.
32. If AA' = O and the algebra is real, prove that A = O.
33. Prove that (i) if A, B are conformable, r(A + B)<r(A) +r(B),

(ii) if AB exists, r(AB)<r(A) and r(AB)<r(B).
Deduce from (ii) that if A is regular, then r(AB) = r(B).

34. Verify that [dx, dy\ and a a
Sx' Sy are contragredient for

the transformation from x, y to r, 3 where x = r cos 3, y — r sin 3.
35. If A = [aftv] (g, v=l to n) and B=A-Aln where A is inde­

pendent of a^, and if | B | = bn A” + A"-1 + ... + b2 A + 60 =/(A),
prove that /(A) = 0.

36. Write in determinant form the condition of collinearity of 
three distinct points t2, t3 of the rational cubic curve
x: y: z — aot3 + a2t2 + a2t + a3: b3t3 + b2t2 + b2t + b3: c0t3 + c2t2 + c2t + c3 
and show that it reduces to

1 -Si XMs -W,
a0 a2 a2 a3
b0 b1 b2 b3
co Cl C2 c3

= 0



CHAPTER XVIII

CHOICE AND CHANCE
Choice. Most of the principles which underlie this subject 

were discussed in Chapter I. We indicate here some extended 
applications of these principles mainly by illustrative examples. 
The first of these examples was solved implicitly in Chapter V, 
p. 100. The title of the present chapter is the same as that of a 
work by W. A. Whitworth in which the subject is treated in great 
detail.

Example 1. If there are n letters of the alphabet and an 
unlimited supply of each, find the number of ways in which a 
selection of r letters may be made.

If r dots and n - 1 strokes are written down in line, each 
possible arrangement indicates one selection that can be made, 
because the strokes divide the dots into n groups (of which some 
may be empty groups), and the numbers in the groups may be 
taken as the numbers selected of the different letters. It is shown 
on p. 7 that the number of ways in which the dots and strokes 
can be arranged is (n + r- l)!/{(n- 1)! r!}. This is therefore the 
number of different selections.

If the /cth letter of the alphabet occurs ak times, then

a1+ai + ... + an = r,

and so the number of solutions of this equation in which the a’s 
are positive integers or zero is also (n + r- l)!/((n- 1)! r!}.

This is also the number of homogeneous products of r dimensions 
formed from n letters. See p. 100.

454
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We add some examples of distribution problems. The number 
of ways in which n things can be divided into r classes depends 
upon whether

(i) the things are alike or different
(ii) the order of the classes is relevant or not

(iii) the order of things in a class is relevant or not
(iv) empty classes are allowed or not
(v) all the things must be distributed or not.

Example 2. Find the number of ways in which 7 different 
books a, b, c, d, e, f, g can be arranged

(i) in a bookcase of 4 shelves
(ii) in a bookcase of 4 shelves, none of which may be empty

(iii) in a sectional bookcase of 4 shelves or fewer, none of
which may be empty

(iv) in a bookcase of 4 shelves any of which may be empty,
if any of the books may first be thrown away.

(i) This is the number of ways in which 3 like strokes and the
7 different letters can be arranged in line. For example 
the arrangement | bgf 11 ecad leaves the top shelf and 
the third empty and puts the books bgf, ecad, in that 
order into the second and fourth shelves.

By p. 7 the number of ways is

10!-e-3!, =15(8!) = 604,800.

(ii) The letters can be arranged in 7! ways and from each of
these arrangements a partition with no empty group is 
obtained by inserting dividing lines into 3 of the 6 spaces

between the letters. This can be done in ways. Hence

the number of arrangements of the books is

7!(D’ = 20(7!) = 100,800.
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, 7! Hence the total

(iii) When there are 4 shelves the number of arrangements is
7!^g^ ,by(ii). Similarly when there are 3, 2, 1, the numbers 

of arrangements are 7! (j) 

number is 7!(20 + 15 + 6 + 1) = 42(7!) = 211,680.
(iv) If r of the 7 books are retained, they may be selected in Q) 

ways ; and then by the method of (i) they may be arranged 
in the bookcase in (r + 3)!4- 3! ways. Hence the number

7 /7\ lr + 3)i
of arrangements is T, —g*—, = 1,203,328 excluding the

case in which all the books are rejected.

Note. The distinction between (i) and (iii) may be appreciated 
by observing that arrangements like | bgf | | ecad and bgf | ecad | | 
which put the books into different shelves in (i) become identical 
in (iii).

Example 3. In how many ways can the positive integer n be 
expressed as the sum of r positive integers not necessarily different 
(i) if r=2; (ii) if r = 3 ?

Here the order of the integers is irrelevant, the partitions 
a + b + c + d + e, c + a+ e + d + b being regarded as identical, and 
zero values are excluded.

(i) If r = 2, the number of ways is ?n if n is even and |(n - 1) if 
n is odd. It is therefore [fn] if [a;] denotes the greatest integer 
not greater than x.

(ii) If r = 3, suppose that the smallest integer used is k ; then 
the other two are k-k + x, k-k + y where x, y are positive 
integers such that x + y — n-3k+‘2.

Hence by (i), x and y can be chosen in [i (n - 3k + 2)] ways. 
Thus the total number of ways

= S[i(n - 3* + 2)] for ifc = 1, 2........[Jn]
= [|(n- l)] + [ł(n-4)] + [l(n-7)] + ... to [|n] terms.

By writing n in the form Gm + a for a 0, 1, 2, 3, 4, 5, it can be
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proved that the result is the nearest integer to fai*. We leave 
this as an exercise for the student.

The theory of partitions, which deals with the problem of 
Example 3 for a general value of r is beyond the scope of this book.

Example 4. A boy is marked for English, French, and German 
out of a maximum of 7 for each. In how many ways can he 
obtain a total of exactly 7 ? [Fractional marks are not assigned.]

Using the method of Example 18, p. 101, we see that the 
required number is the coefficient of x3 in

(1 + X + X3 + X3+ X3 + X3+ X3 + X7)8
which is the same as the coefficient of x7 in (1 - x)~3, and this is 36.

Note. Examples 3 and 4 should be compared. In the latter, 
not only may zero marks be assigned, but we regard, say, 1 + 2 + 4 
as different from 2 + 4+1 whereas these are reckoned as the same 
partition of 7. It is this kind of distinction that must be borne 
in mind in solving problems in our present subject.

Example 5. How many different selections of n letters can be 
made from 4n letters of which there are n a’s, n b's, n c’s and the 
others are all different ?

If the others are dlf d2, ... , dn, each selection is given by the 
coefficient of xn in a term of the product

(1 + ax + a2x3 + ... +anxn)(l + &»+... + bnxn)
(1 + cx+ ... + cnxn) (1 + d2x) ... (1 + dnx)

and therefore the number of selections is the coefficient of xn in 
(1 +a: + a;a +... + m”)3( 1 +x)n

i.e.  in (1 -x«+i)3(l + a:)n(l - x)~3, and this is the same as the 
coefficient of xn in [2 - (1 - x)}n(l - x)~3, or in
I2" _ (1) 2" 1(1 ~X') + (2) + (-Dn(l-

or in 2n(l ~ x)~3 - n 2n_1(l -x)~3 + n(n - 1 )2n~8(1 - x)~l.
Therefore the required number is

2”_1(n + l)(n + 2) - n 2n~1(n + 1) + n(n - 1)2”-’
which reduces to 2n_3(n2 + 7n + 8).
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Example 6. In how many ways can n different things be 

distributed amongst r men (r<n) so that each receives at least 
one thing ?

We can select things for the first man in ( ” ) ways, and 

then select pt things for the second man in ways, and so

on. Hence the number of ways in which the 1st, 2nd, ... , rth 
men receive pt, pt, ... , pT things where pt +p2 +p3 + ... +pr = n is

/n\/n-pA /n-Pl-p\ /p\ n!
P, 'X Pa S"\p,J’ ’ p^.pj ...pT\

The required number of ways is the sum of expressions of this 
form for all possible integral values of plt pa, ... , pT, not neces­
sarily all different, such that pt +p2 + ... +pr = n, and this is the 

coefficient of a;” in n! (— + — +... H----\1! 2! n!

or in n!(ex-l)r, n!or in

Therefore the number of ways is

rn - ([) (r - 1)" + Q) (r - 2)" -... + ( - If-* Q *_ J 1".

Alternatively, by p. 2, rn is the number of ways in which the 
things can be distributed if there is no stipulation that each man 
must receive at least one. The second term is r times the 
number of ways in which a particular man gets nothing and 
there is no other stipulation, (r — 2)n is the number of ways 
in which two particular men get nothing; and so on. The 
required result can be obtained by alternate subtraction and 
addition. We leave the reader to verify that the number 
of times a particular distribution in which exactly k men 
(0<k<r) get nothing is reckoned in this process (1 —l)fc, 
i.e. zero.

This problem may be compared with Exercise Ie, No. 27, (ii).
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Derangements. Of the n! orders in which a2, aa, ... , an can 
be arranged, those in which no letter occupies its original place 
are called derangements.

Let ur be the number of derangements of r things, and consider 
the n+ 1 letters alt a2, ... , an, b. Their number (wn+1) of derange­
ments is n times the number of those in which one particular a, 
say an, comes last, because b never comes last. When an comes 
last, the other letters ax, a2, ... , on_1, b must either be deranged 
(which implies that b is moved) or else must be arranged as a 
derangement of a2, a2, ... , an_1 followed by b (and these are 
mutually exclusive). There are un derangements of the first 
kind and un_t of the second ; therefore there are un + un_2 
derangements in which an is last.

Hence Mn+i = n(Mn + “re-i)-
This is a linear difference equation with variable coefficients. Its 
solution involves two arbitrary constants which are evaluated by 
observing that wa = 0, u2 — 1. The equation is solved on pp. 232, 
233, where it is shown that

This value of un is called sub-factorial n and is denoted by n j. It 
may also be obtained by the alternative method suggested for 
Example 6.

/
EXERCISE XVIIIa

A
1. Find the number of ways in which 3n unlike things can 

be distributed into n groups of three.
2. In how many ways can 20 different gifts be distributed 

amongst 7 people any of whom may receive none ?
3. In how many ways can 7 different flags be displayed on 

5 distinguishable masts if all the flags and masts are used ?
4. Find the number of sentences of r words that can be 

formed out of n different letters if each letter is used but not 
repeated, every arrangement of letters is regarded as a word, 
and every arrangement of words as a sentence.
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5. A committee of n men elects its own chairman : one man, 
one vote. How many different forms can the result of the poll 
assume if the numbers of votes given to all the members are 
published ?

6. A candidate scores 2n marks on four papers for each of 
which the maximum is n. In how many ways can this be done ?

7. How many different selections of n balls can be made from 
b blue balls, c red balls, and d green balls, (i) if n<b<c<d,
(ii) if b<n<c<d 1

8. In how many ways can 15 similar oranges be distributed 
amongst 7 children if each must have at least one ?

9. In how many ways can 12 different books be bound in 
green, red, and brown, if there must be at least one in each 
colour ?

10. In how many ways can n letters be put into their n 
envelopes without any letter being in the right envelope, (i) if 
n = 3, (ii) if n = 4, (iii) if n = 6 ?

11. n points of a plane are joined in all possible ways by 
straight lines, produced indefinitely both ways. If no two of these 
lines are parallel or coincident and no three concurrent except at 
the original points, prove that there are |n(n - l)(n - 2)(n - 3) 
additional points of intersection.

12. Prove that, if n is a positive integer, 6ra + 1 can be expressed 
as the sum of three positive integers (not necessarily unequal) in 
n(3n+ 1) ways.

B
13. Find the number of terms of the tenth degree in a, b, c, d, e.
14. How many different arrangements of three letters can be 

made from the 26 letters of the alphabet if the letters must be 
arranged alphabetically when any of them are different ?

15. In how many ways can 18 people be divided into groups 
of 7, 6, 5 ?

16. In how many ways can a lady without any thumb arrange 
all her 5 unlike rings on her left hand ?

17. In how many ways can n men and n women sit at a round 
table if no two women may sit together ?

18. What is the result of Example 4 if zero marks are excluded 1
19. Find the number of selections of n-3 things that can 

be made from n things of which 4 are alike and the others all 
different ?
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20. Show that the number of ways in which three men each 
throwing a single die marked 1, 2, 3, 4, 5, 6 can obtain a total of 
15 is the coefficient of a:12 in (1 - m*)3(l - x)~a and find this 
coefficient.

21. In how many different ways can the letters a, b, c, d, e be 
divided into three groups if the order of the groups and the order 
of the letters in each group are irrelevant and no group is empty ?

22. Prove that the number of selections of n letters from the 
2m letters a2, a2, a2, a2, ... , am, am is the coefficient of xn in 
(l+x + o:2)’".

23. Find the number of selections of n letters that can be made 
from n A’s, n B’s, and n other letters all different.

24. In how many ways can I carry 12 identical coins if I have 
5 pockets, and in how many of these ways will there be no empty 
pockets ?

25. Find the number of selections of r letters that can be 
made from n A’s, n B’s n C’s, when n< r< 2n + 2.

C
26. Find the number of ways in which n different books can 

be arranged in the r indistinguishable parts of a sectional book­
case (n >r), (i) if no part may be empty, (ii) if there is no restric­
tion.

27. Find the number of ways in which n different books can 
be arranged in r different shelves (n >r), (i) if no shelf may be 
empty, (ii) if there is no restriction.

28. Prove that from 2n + 1 numbers in a.p. a set of three 
numbers in a.p. can be taken in n2 ways, excluding progressions 
x, x, x, and reckoning x, y, z and z, y, x as the same.

29. n boys are to be arranged in a line and r of them are such 
that no two of them ought to be neighbours. Show that there 
are (n - r)! (n - r + l)!/(n - 2r + 1)! suitable arrangements.

30. Through how many arbitrary points in space of three 
dimensions is it possible to draw a surface of order n 1

31. Find the number of permutations of three letters that can 
be made from the 2n letters a2, alt a2, a2, ... , an, an.

32. Prove that the number of permutations of m things chosen 
from p alike of one kind, q alike of another, etc. is the coefficient
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33. Find the number of ways of giving n + 2 different prizes to 
n boys and n girls so that each girl gets at least one.

34. Prove that n; is the integer nearest to n!-j-e.
35. Find the number of permutations of n different letters in 

which no letter is more than one place away from its original 
position.

36. Two coplanar pencils are composed of p and q lines of 
which no two are parallel and of which the line joining the vertices 
is not one. Show that the plane is divided into pq + 2p + 2q - 1 
parts.

37. Prove that the number of different triangles that can be 
formed from n straight rods of lengths 1, 2, 3, ... , n units is

- 2)(2n - 5) if n is even, and 2lj(n - 3)(n- l)(2n - 1) if n is 
odd.

Probability. The importance and some of the interest of this 
subject are due to the part it plays in the theory of statistics. 
This theory, besides having many industrial and techmeal 
applications, is now used in such subjects as physics and 
biology.

These applications lie outside the scope of this work. The 
reader who is interested may refer to

(i) A First Course in Statistics : D. C. Jones,
(ii) An Introduction to Mathematical Probability : J. L. 

Coolidge,
(iii) Mathematical Theory of Probabilities : Arne Fisher,
(iv) Probability and its Engineering Uses : T. C. Fry.

In the following pages we give little more than a collection of 
examples to show what meaning is attached to the word ‘ chance ’ 
in mathematical language.

If a bag contains 8 balls which are all alike except that 3 are 
red and 5 blue, and if a ball is drawn ‘ at random ’ from the bag, 
the probability or chance that a red ball will be drawn is said to 
be j and that a blue ball will be drawn is said to be f. Also the 
odds are said to be 5 : 3 in favour of blue.

The term chance is used in ordinary language in much more 
complicated examples than that just given, and in many of these 

4
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it is difficult or impossible to assign a definite numerical value to 
the chance.

Even in the examples which are susceptible of numerical 
treatment the chance is reckoned relative to some particular body 
of knowledge stated or implied.

For example, consider the statement:
‘ January 1st, 2501 will be a Sunday unless the Gregorian 

calendar is abandoned.’
To a man who only knows that January 1st will be one of the 
seven days of the week, the chance that the statement is true 
is f. But to one who has made the necessary calculation (or 
happens to know that a century never begins on a Sunday) there 
is no chance that the statement is correct.

The chance of an impossible event is said to be 0, and 
the chance of an event that is certain to take place is said 
to be 1.

Chances of doubtful events are measured by numbers between 
0 and 1 and are assigned so that if there are two or more events of 
which only one can take place, the sum of their chances is equal to 
the chance that one or other of them will take place. In particular 
this sum is 1 if it is certain that one or other of the events must 
happen.

The ideas implied by the phrases ‘ equally likely ’ and choosing 
‘ at random ’ are taken for granted.

When a coin is tossed it is assumed to be ‘ equally likely ’ to 
turn up head or tail. This is interpreted to mean that the chances 
of head and tail are equal. Since either head or tail must turn 
up, the sum of the chances is taken to be 1. Hence the chance of 
head is J and the chance of tail is |.

Again in the illustration on p. 462, when one of the 8 balls is 
drawn out ‘ at random ’, each ball’s chance is |. The chance that 
a red ball is drawn is the sum of the chances of the separate red 
balls, namely f +| +1, and the chance that a blue ball is drawn 
is |. The sum of these chances | and f is 1, it being certain that 
either a red or a blue ball will be drawn.
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The validity of the idea of random choice becomes doubtful 
when there is an unlimited choice. The questions

“If a natural number is selected at random, what is the
chance that it is (i) less than 1000, (ii) prime ? ” 

might be interpreted as
999 Find the values of (i) lim ---- >

n-s-oo n

where 7r(n) is the number of prime numbers less than n. If so, 
the answers are both zero. But in fact when people are asked to 
choose numbers at random they often choose numbers less than 
1000 or prime numbers. These paradoxes may be explained by 
the natural prejudice against choosing numbers that are so large 
that it would take a lifetime to pronounce their names. In fact 
we cannot choose a number at random.

On the other hand if ABC is a straight line and AB = 2BC it 
seems reasonable to assume that we can choose a point P at 
random in AC and to take the chances that P lies within AB, BC 
to be |, | respectively, although this implies that the chance that 
P coincides with B is zero. See also Exercise XVIIIb, No. 24.

Chances are sometimes affected by non-mathematical con­
siderations. For example it is found that people asked to choose 
a number less than 10 have an undue preference for 7. And when 
a coin is tossed there is some chance that the toss will miscarry ; 
if this chance is c, the chances of head and tail are each

Independent Events. Two events are called independent if the 
probability that either happens is unaffected when the other 
event happens or fails to happen.

Example 7. A bag contains 2 red balls and 1 blue ball (Rlt 
R2, Bt) and a second bag contains 4 red balls and 3 blue balls 
(rx, r2, r3, rv bt, b2, b2). A ball is drawn at random from the first 
bag and another is drawn at random from the second. What is 

,-the chance that these balls will be both red ?
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The two events are independent; that is the colour of the ball 
drawn from the first bag does not affect the chance that a red ball 
will be drawn from the second bag.

It is easy to enumerate all the different possible draws :
... , B1 b3. Their number is 3 x 7 and in 2 x 4 of these draws 

both balls are red. Since all the draws are equally likely, the

required chance is x
3x7

8

Now the chance that a red ball will be drawn from the first 
bag is and from the second bag * ; hence the enumerative 
method shows that the chance that both will be red is the product 
of the chances of the two independent events.

More generally if the chances of two independent events are 
p, p', the chance that both will take place is pp'. For suppose 
that the first can happen in a ways and fail in i» ways, all these 
ways being equally likely ; then p = a/(a, + b). Similarly suppose 
that the second can happen in c ways and fail in d ways, all 
equally likely; then p' = c/(c + d). Out of the (a + b)(c + d) 
possibilities there are ac in which both events happen. Hence 
the chance that both events happen is ac-?{(a + b)(c + cZ)} which 
equals pp'.

It follows that if p, p' are the probabilities of independent 
events A and B, then

PP' P<S~P') (l-p)p' (1-p)(l-p')
are the probabilities of the compound events
A and B A but not B B but not A neither A nor B.

No interpretation can be given to the chance p + p' in this case 
of independent events. But since the compound events ‘ neither 
A nor B ’ and ‘ at least one of A, B ’ are such that one or other 
must happen, it follows that 1 - (1 -p)(l -p') is the probability 
that at least one of the two events A and B will occur.

The formula pp' for the probability of a compound event 
‘ A and B ’ where A, B are independent, is sometimes used 
when the proof that has been given is not applicable.
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For instance if two points P, Q are chosen independently in 
the line ABC, where AB =2BC, the chance that both points 
should be in AB would be taken to be j x f.

The chance (aq-N) of an event is often found as in Example 7 
by a direct appeal to the definition. It is the ratio of the number 
of different ways (a) in which the event can take place to the 
total number (N) of equally likely possibilities. In such cases the 
problem is solved by methods that have already been discussed 
under the heading of ‘ Choice as in some of the following 
examples.

Example 8. Find the chance of throwing at least one ace in a 
single throw of two dice.

First Method. Each die can fall in 6 ways ; therefore there 
are 36 possible throws. The cases in which an ace occurs are : 
1,1; 1, 2 ; 1, 3 ; 1, 4 ; 1, 5 ; 1, 6 ; 2, 1 ; 3, 1 ; 4, 1 ; 5, 1 ; 6, 1 ; 
and are 11 in number. Hence the chance is .

Second Method. The chance of not throwing an ace is f for 
the first die and f for the second ; therefore the chance of not 
throwing an ace with either is ff. Hence the required chance 
iq 1 _ as — ix 1:3 1 36, — 36’

Example 9. What is the least number of dice that must be 
thrown so that it is more likely than not that at least one six 
will fall ?

As in Example 8, if n dice are thrown, the chance that no six 
falls is (|)n. Hence n must be chosen so that

(f)"<ł nlogf<log|

n > log 2 
log 1-2

3-8

Hence the least value of n is 4.

Example 10. Find the chance of throwing a total of exactly 
15 with four dice.

It was shown in Example 18, p. 101, that the number of ways 
of throwing 15 is the coefficient of a:15 in (x + x3 + x3 + x3 + x3 + x3)* 
and that this coefficient is 140. See also Example 4, p. 457.



xvni] ’ CHOICE AND CHANCE 467

But the number of possible throws is 6*. Hence the chance is 
140 _ 35
6‘ ’ ~ 324'

Example 11. A car meets witli an accident on an average 
once in 4 years. What is the chance that 12 years elapse without 
an accident ?

Since there is an unlimited number of instants at which the 
accident may happen, this is an example to which the remarks 
on p. 464 are applicable.

Let the 4-year period be divided into k equal intervals. Assume 
that the event can happen just once in an interval and that the 
chance that it does so in any one particular interval is 1 fk. Then 

the chance that it does not happen in the 3k intervals is
/ i\3fc

But when k increases indefinitely ^1 - - J ->e~3. Hence the 

chance that the car will be free from accidents for 12 years is 
taken to be e~3, (—to).

Similarly the probability 'that no accident will occur in any 
assigned period of 4 years is e-1 (— -37). Thus the chance of 
escaping an accident in the 4 years is less than |.

Example 12. Find the chance of throwing exactly r heads in 
n tosses of a coin.

Out of the 2" possible results of n tosses, there are in which 
there are exactly r heads. Hence the chance is / 2n.

This is the (r + l)th term of the binomial expansion of (| +1)".

If a large number of tosses is made, we expect to get about as 
many heads as tails. If the number is 2N, the chance of getting 
N heads and N tails is (2N)l/(N\ 2N)3. This is larger than the 
chance of getting any other particular distribution, say N + k 
heads and N -k tails, though not so large as the chance that the 
numbers of heads and tails will differ by 2. (See also Exercise 
XVIIIc, No. 12.)
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It is interesting to represent graphically the probabilities of 
different distributions. If p is the probability that there are x 
more heads than tails in n tosses, the result of Example 12 shows
that

For n= 10, the values of y corresponding to x — 0, ±2, ±4, ±6, 
±8, ±10 are 252, 210, 120, 45, 10, 1 respectively and these are

represented in the diagram.
This is called a frequency 

polygon because it shows the 
frequency with which the 
different distributions are to 
be expected in a large number 
of trials. In this example 
x can only take even integral 
values. In a problem in­

volving a continuous variable, which implies an infinity of values 
of x, the frequency polygon is replaced by a frequency curve 
y=f(x) such that the number of values to be found in the 
interval x, x + 8x is f(x)8x. The form of the function fix') in 
a case of normal distribution may be conjectured from the above 
example. If (x, y) is the middle point of the side PQ of the 
polygon joining the points given by x = 2k, 2k+ 2

ldy 2 PZ PN- QM 
~ydx~PN + QM ZQ~PN+QM

QM / n \ / n X In - £
and PN~\ln + k+l)^\in + k)~ln + k+l

1 dy 2k + 1 x
y dx n + 1 n+ 1 

Integration gives
— x* 

y = ae 2(n+l)
where a is the value of y for x = 0.

This equation represents a curve which touches the sides of the 
polygon at their middle points. The curve is called the error
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curve or the normal curve of frequency of error because it is found 
by experience that many variations of ordinary quantities, such 
as errors of observation, are distributed in the way indicated by 
this curve. Its properties and use are discussed in books on 
statistics, and an interesting elementary account is given in 
Nunn’s Algebra, Part II, pp. 440-486.

Compound Events and Dependent Events. In the compound 
events such as ‘A and B ’, ‘A but not B ’, considered on p. 465, 
A and B are independent events. In the following example we 
are concerned with a pair of events A, B such that the probability 
of B depends upon whether A takes place or not.

Example 13. One ball was drawn at random from a bag con­
taining 5 white and, 3 black balls ; 1 white and 1 black ball were 
then placed in the bag. Find the chance that a ball now to be 
drawn at random from the bag will be white.

[The chance depends upon the result of the first draw. To a 
man who knows that a black ball was drawn, the chance is f 
because he knows that there are now 6 white and 3 black balls in 
the bag ; and if he knows that the ball drawn was white, the 
chance to him is f. But we are to calculate the chance to a person 
who does not know the result of the first draw.]

The chance that a white ball will be drawn is the sum of the 
chances that the draws are ‘ white then white ’ and ‘ black then 
white ’, because only one of these compound events can take 
place. For the first of these compound events to take place a 
white ball must be drawn from 5 white and 3 black and then 
independently a white ball must be drawn from 5 white and 4 
black. Thus the chance is f x f. Similarly the chance of the 
second compound event is f x f. Hence

the required chance = f f + f f = H-

The next example shows that the chance in Example 13 would 
be different if the addition of the white and black balls had been 
made before the first ball was drawn.
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Example 14. One ball was drawn at random from a bag con­
taining 6 white and 4 black balls. Find the chance that a ball 
now to be drawn at random from the bag will be white.

For the first ball the chances were : white f, black f.
For the second ball to be white, the chance is now f or f.
Hence as in Example 13 the required chance = f f + f f = f

The result of Example 14 shows that the chance of drawing a 
white ball is the same for the second draw as for the first. More 
generally if balls are drawn continually from a bag containing 
p white and q black balls, the chance of drawing white at the 

draw is always p!(p + q1 for l<n<p+g; for in the (p + q)l 
possible orders in which the balls may be drawn, there are 
(p + ę — 1)! x p in which the ball is white.

The method used in the above examples may be generalised to 
show that if the probability of B is x when A has occurred and 
y when A has failed to occur, and if the probability of A is p, 
then the probability of B is px + (1 - p)y.

Example 15. A bag contains four balls each of which is either 
black or white. Find on each of the following different hypotheses 
the chance that two balls drawn at random from the bag will be 
one black and one white :

(i) each ball is equally likely to be black or white,

(ii) the distributions 4 black, 3 black and 1 white, 2 black
and 2 white, 1 black and 3 white, 4 white, are all 
equally likely,

(iii) one ball is black, one is white, and each of the others is
equally likely to be black or white.

(i) By the argument on p. 467 it follows that the chances of the
five distributions are yg, yg, yg, yg, yg and the corre­
sponding chances of drawing one black and one white are 
0, ł, e, ł, 0. Hence the chance = 0 + yg f + yg | + yg « + 0 = 1

(ii) The chance of each of the five distributions is 1 and the
required chance = ł(i + f + f) = ł
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(iii) The distribution must be 3 black and 1 white, 2 black and
2 white, or 1 black and 3 white and the chances of these 
are J, j, Hence the required chance = | f + f t + j f = it-

Expectation. If there is a chance p that a man will win a 
prize worth £M, then £pM is called the value of his expectation. 
It is regarded as the fair price for him to pay to obtain the chance 
of winning the prize. This is based on the assumption that if he 
paid this price on a large number (n) of occasions, he might 
expect to win the prize pn times and thus to recover his outlay.

Example 16. A man throws a pair of dice and is to receive 
£21_n if the first occasion on which an ace appears is at the nt'1 
throw. What is the value of his expectation ?

By Example 8, p. 466, the chance of throwing an ace is H- 
Hence the chance that the ace first appears at the Ah throw is 
(if)7'-1!! and the value of the expectation is

lim 2 {(łf)r“1H21_r} pounds. The limit is U/(l -ff), or ff. 
n—>"o r=l

Thus the value of his expectation is about 9s 4d.

Example 17. (The Petersburg Paradox.) B tosses a coin. 
C promises to pay to B 1, 2, 4, 8, ... florins according as head first 
appears at the 1st, 2nd, 3rd, 4th, ... toss. What is the fair price 
for B to pay to C for this promise ?

The chance that head first appears at the nth toss is 2_n ; and 
if it does, B receives 2”-1 florins. Hence B’s expectation of gain 
by th© appearance of the first head at the nth toss is one shilling. 
This is true for n= 1, 2, 3, ... and therefore B’s total expectation 
appears to be unlimited. ,

It is argued that few people would be willing to pay even such 
a sum as £5 for the promise. The problem assumes that G’s 
wealth is unlimited. If he only possesses £106, B's expectation is 
reduced to about 25 shillings. B should also consider whether 
he can afford to invest even 25 shillings sufficiently often to get 
the run of tails necessary to restore his fortune.
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Inverse Probability. When an event has taken place and it is 
known that its occurrence was due to one of several mutually 
exclusive causes, the calculation of the probabilities of those 
causes or of other events due to them is called a problem of 
inverse probability. Such a problem can only be solved by making 
certain assumptions, and these are illustrated in Examples 18, 
19, 20.

Example 18. (i) One bag contained 8 sovereigns and 16 worth­
less counterfeits and a second bag contained 18 sovereigns and 
6 worthless counterfeits. One of the bags was selected at random 
and a coin was drawn at random from it. Find the chance that 
this coin was a sovereign.

(ii) On a certain occasion the coin so drawn was found to be a 
sovereign. What then would be a fair price to pay for the coins 
remaining in the selected bag ?

(i) The chance of selecting the first bag and drawing a sovereign 
from it is 5 xand the chance of selecting the second bag and 
drawing a sovereign from it is 1 x . Hence the chance of draw­
ing a sovereign =-I A = ll-

(ii) Suppose that the experiment in (i) is repeated a large 
number of times, say 24A7. Now assume that the results will be 
as follows : In 12A experiments the first bag is selected ; in iN 
of these a sovereign is drawn, in the other cases a counterfeit. 
In the other 12A7 experiments the second bag is selected; 
in 9A7 of these a sovereign is drawn, in the other cases a 
counterfeit.

Considering only the 13 A7 experiments in which a sovereign 
is drawn, there are 4A7 of them in which it was drawn from 
the first bag and 9A7 from the second. The total value of 
the remaining coins in the selected bag in these I3A7 cases is 
£(4N.7 + 9A7. 17), i.e. £(181N). Hence £(181N4-131V) is a fair 
price to pay on each occasion. This is approximately £13 18s 6d. 
It is customary to obtain this result more shortly* as follows. 
(See also Example 19.)
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The chance of drawing a sovereign is -j if the first bag is selected 
and f if the second is selected. Hence the principle of inverse 
probability states that when a sovereign has been observed to be 
drawn the chances that the selected bag was the first or second 
are in the ratio J : J, i.e. 4 : 9 and are therefore yj, -/j. Hence the 
fair price = £(j^7 +A 17) = £131f> as before.

The theory of errors shows that the probable error in such a 
statement as that in 24.V experiments the first bag is selected 

■ 12N times is of the order k^N where k is independent of N, and 
the other assumptions are subject to similar probable errors. 
Since (v'.V)4-A-»0 when N->oo, the result obtained above is 
correct if it may be supposed that N increases without limit.

Example 19. A bag contains four balls each of which is either 
black or white. Two balls are drawn from it, are found to be one 
black and one white, and are replaced. Find the chances that 
two balls afterwards drawn at random will be one black and one 
white assuming (i) that originally each ball is equally likely to be 
black or white, (ii) that originally one ball is known to be black, 
one is known to be white and the others are equally likely to be 
black or white.

(i) After the first draw one ball is known to be black and one 
to be white. Hence the problem is equivalent to Example 15 (iii).

The original chances of the five distributions are

4B 3B, IW 2B,2W IB, 3W 4W
_1_ 4
16 16 16

4 „ , , , ,
16 16

and the chances of drawing one black and one white are then 
a 3. * 3. Au a 6 6 "

and therefore the chances of the compound events are
A -Ł.3. _l A Al 0 *
V 16 6 16 6 16 6 V

By the principle of inverse probability the chances that the bag 
contained the 2nd, 3rd, 4th distributions are as 1:2:1 and are 
therefore J. Hence the required chance

13 I 1 4
4 6'26

1 3
4 6
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(ii) The chances of the three possible distributions are

' 3B, 117 2B, 2W IB, 3W
i I i

and the chances of drawing one black and one white are then
3. 4 3
3 6 6

and therefore the chances of the compound events are
i a i a
4 6 Z 6 6 6

By the principle of inverse probability the chances that the 
bag contained the 1st, 2nd, 3rd distributions are as 3:8:3 and 
are therefore A, A, A- Hence the required chance

— -3_a4.J-44._a_a — aa
— 14 6 v 14 6 T 14 6 — 43

EXERCISE XVIIIb

A
1. A coin is tossed five times. What is the chance of (i) five 

heads, (ii) at least three heads ?

2. Four dice are thrown. What is the chance of getting two 
or more sixes ?

3. If the chances that three independent events E2, E2, E3 
occur are p2, p2, p3, find the chance that (i) E2 and E2 occur and 
E3 does not, (ii) E2 occurs and E2, E3 do not.

4. If the chance that any particular day in July will be fine 
is I, find the chance that all seven days of the first week in July 
will be fine.

5. A man applied for three jobs and his chances of getting 
them were J, J, What is the chance that he gets at least one ?

6. m different odd numbers and n different even numbers are 
written down at random, where m < n + 1. Show that the chance 
that no two odd numbers are adjacent to one another is

n!(n+ l)!/{(m + n)!(n-m+ 1)1}

7. Twelve balls are selected at random from an unlimited 
number of red, green, and blue balls. Find the chance that there 
is at least one of each colour.
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8. One bag contained 8 red and 4 white counters, and another 
bag contained 2 red and 3 white. From one of these bags selected 
at random a counter was drawn at random and found to be red. 
If a red counter is worth 5s and a white one 2s, what is a fair price 
to pay for the counters remaining in the selected bag ?

9. What is the fallacy in the following argument 1
A point is chosen at random in a line. Divide the line into n 

equal parts. The chance that the point is not in the first part is 
1 - 1/n. Similarly for the other parts. Hence the chance that it 
is in no part at all is (1 - l/n)n, i.e. about e-1 if n is large.

10. One bag contains b red tickets and c white tickets ; another 
contains c red and b white tickets. One ticket is drawn at random 
from each bag and (after both are drawn) put into the other bag. 
If a red ticket is worth one shilling and a white one is worthless, 
how many shillings would you give for the contents of the first 
bag after the operation ?

11. A bag contained 4 balls, each of which was either blue or 
red but they were not all of one colour, and the distributions 
IB + 3B, 2B + 2B, 3B + IB were equally likely. Two balls were 
afterwards drawn at random from the bag and found to be one 
of each colour. If these are now replaced in the bag and two balls 
are again* drawn at random, what is the chance that these will be 
one blue and one red 1

12. A man put five coins into a purse, deciding at random for 
each coin separately whether it was to be a sovereign or a shilling. 
Two coins were then drawn at random from the purse and were 
found to be sovereigns. They were then replaced. What is now 
a fair price to pay for the contents of the purse ?

13. If in No. 12, instead of two coins being drawn, one was 
drawn and found to be a sovereign and was replaced, and then 
again one was drawn, found to be a sovereign and replaced, what 
is now the fair price ?

B
14. A coin is tossed three times. What is the chance of three 

tails ?
15. What are the chances of winning (i) exactly 5, (ii) 5 or more 

tosses out of 10 ?
16. What is the chance of getting a total of exactly 21 in one 

throw of six dice ?
17. n persons are seated at a round table. n>3. If 3 of them 

are chosen at random, what is the chance that at least 2 of these 
are neighbours 1
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18. One bag contains mp white and m(l-p) black balls and 
another bag contains nq white and n(l - q) black balls. One of 
these bags is chosen at random and a ball is drawn from it at 
random. Find the chance that this ball will be black.

Also find the conditions that this chance is (i) equal to, 
(ii) greater than, the chance of drawing a black ball from a bag 
containing all the m + n balls.

19. From a bag of 9 black and 9 white balls, 9, are drawn at 
random one aFa time, the ball drawn being immediately replaced 
after each draw. Show that the chance that 4 of each kind will 
be drawn is a little less than |.

20. A bag contained 5 balls each black or white and equally 
likely to be either. A ball was then drawn from the bag and 
found to be black. What is now the chance that the bag originally 
contained 2 black and 3 white balls ?

21. There were five coins in a purse, equally likely to be : 
5 sovereigns; 4 sovereigns and 1 shilling ; 3 and 2 ; 2 and 3 ; 
1 and 4 ; or 5 shillings. Two coins were then drawn at random 
from the purse and found to be sovereigns. What is now a fair 
price to pay for the contents of the purse ?

C
22. In an ordinary deal of 52 cards to four players, find, 

approximately, the chance that the dealer receives the whole of 
one suit. [If n is large n! — (n/e)”V(2wn).]

23. A coin is tossed p + q times, p >q. Prove that the chance 
of at least p consecutive heads appearing is (<? + 2)/23>+1

24. Find the chances that a random chord of a circle is longer 
than the radius on the following assumptions :

(i) all distances from the centre are equally likely,
(ii) all angles subtended by the chord at the centre are

equally likely,
(iii) all lengths are equally likely.

25. If 7% of the population escapes getting a cold during any 
given year, how many days must the average inhabitant expect 
to wait from one cold to the next ?

26. If integers m, n are chosen at random, what is the chance 
that m2 + n2 is divisible by 5 ?

27. Three tickets are drawn at random from a set of 6n tickets 
numbered from 0 to 6n — 1. Show that the chance that the sum 
of the numbers on the tickets drawn is 6n is 3n/{(6n - l)(6n - 2)}
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MISCELLANEOUS EXAMPLES

EXERCISE XVIIIc

A
1. Out of n balls of which p are white and the rest are all 

different colours, in how mąny ways can a selection of one or more 
be made ?

2. In how many ways can a party of 9 be divided between 
two cars holding 5 and 4 if only three of them can drive ?

3. In how many ways can one get rid of 6 different presents 
if there are 4 people to whom they may be given, and to what is 
this number reduced if each must have at least one present ?

4. A bag contains 5 white and 7 black balls. What is the 
chance that if 2 balls are drawn at random from it, they will both 
be white ?

5. A pair of positive integers is chosen so that their sum is 75. 
If all pairs are equally likely, find the chance that their product 
is greater than 1100.

6. The chances that 5 particular candidates will pass an 
examination are p, q, r, s, t. Find the chance that 3 will pass and 
2 fail.

7. A pack of 52 cards is dealt to 4 players. One of them has 
6 spades. What is the chance that his partner has the other 7 ?

8. What is the chance of throwing exactly 8 at least once in 
n throws with two dice ?

9. A tosses three shillings and B tossps two. Find the chance 
that A gets more heads than B.

10. A man tosses a coin repeatedly and scores 1 for each head 
and 2 for each tail. Find the chance pn that his score will ever 
be n, by first proving that 2pn=pn_1+pn_2.

11. A bag contained four balls of which one was black, one 
was white, and each of the others was either black or white and 
equally likely to be either. Two balls were then drawn at random 
from it and found to be one black and the other white, and were 
replaced. Afterwards two balls were drawn again with the same 
result and were replaced. Find the chance that it will happen a 
third time*

12. A coin is tossed 2n times. Prove that if n is large, the 
chance that there are exactly n heads is about l/<(njr). See 
Exercise XVIIIb, No. 22.
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B
13. In how many ways can a form of 14 boys be classified as 

a, B, y, 8 ?

14. Fropi p purple tickets, q green tickets, r red tickets, in 
how many ways can a selection of one or more be made ?

15. In how many ways can a candidate obtain 3n+ 1 marks 
out of 4n for three papers with maxima n, n, 2n 1

16. How many groups of exactly n balls can be formed out of 
a, b, c, d balls of four different colours, if a<n<b<c<d ?

17. How many times must a man be allowed to toss a coin in 
order that the chance he gets at least one head is not less than to ?

18. Each of p points in a line AB is joined to each of q points 
in a line AC by an unproduced line. Prove that excluding the 
p + q points, the joining lines meet in \pq(p — 1) (<? — 1) points.

19. In how many ways can the 10 letters from 4 to 7 be 
arranged so that A is not first and J is not last ?

20. A bag contains 3 red, 5 yellow, and 8 blue balls. If three 
balls are drawn at random from it, show that the chance that 
they are of different colours is

21. A bag contained four balls each of which was black or 
white, and was equally likely to be either. Two balls were after­
wards drawn from it at random and found to be white, and were 
replaced. If two balls are again drawn at random, find the chance 
that one will be black and the other white.

22. If n people each write down at random one of the first n 
integers, find the chance that the first r integers (r<n) will not 
all be written, and show that the chance that all n will be written 
is n! n~n.

C
23. If 2n different things are divided into pairs, prove that the 

chance that 3 given things are none of them paired is
(2n-4)/(2n-l).

24. If n is the sum of p positive integers the greatest of which 
is q, prove that it can also be expressed as the sum of q positive 
integers the greatest of which is p.

25. n different things are distributed at random amongst x men 
and y women. Find the chance that the total number received 
by the men is an odd number.
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26. If n is a positive integer, prove that 6n + 3 can be expressed 
as the sum of 3 positive integers not necessarily unequal in 
3n2 + 3n + 1 ways.

27. Prove that n lines of which no two are parallel and no three 
concurrent divide a plane into |(n2 + n + 2) regions.

28. A bag contained n balls each of which was black or white 
and the chances of the n + 1 possible distributions of black and 
white were equal. A ball was then drawn at random and found 
to be white. It was replaced, and again a ball was drawn at 
random, found to be white and replaced. Find the chance that a 
ball now drawn at random will be black.

29. There are two candidates, National and Communist, for 
a constituency of m + n voters. The electors are such that the 
chance that any particular one will vote is p. Also m of them 
will vote National if they vote at all and n of them will vote 
Communist if they vote at all. Prove that the chance of a tie is 
the coefficient of xm in the expansion of

{p+ (1 -p)x}m{(l -p) +px}n.
30. A and B possess a and b counters respectively. They toss 

coins, the loser always giving the winner a counter. If A’s chance 
of winning all B’s counters is /(a, 6), prove that

2/(a, b)=f(a+ 1, 6- 1) +f(a- 1, &+ 1),
and hence evaluate the chance.

31. It takes 5 minutes to cross a certain bridge and 1000 people 
cross it in a day of 12 hours, all times of day being equally likely. 
Find approximately the chance that there will be nobody on the 
bridge at noon.

32. On a line AB two points P, Q are taken at random in the 
order APQB. Prove that the chance that a triangle can be drawn 
with sides equal to AP, PQ, QB is |.

33. A pack of 52 cards is laid face downwards. A person 
names a card, and then this card and all above it are handed to 
him ; he then names another card and the same process is 
repeated and this is continued until none are left. Find the 
chance that during the process he names the top card at least 
once.

34. Each of two boxes P and Q contains one black and one 
white ball. A ball chosen at random from P is placed in Q, and 
then a ball chosen at random from Q is placed in P. This process 
is repeated continually. Find the chance that after n double 
transferences, the balls in P are for the first time both white.



CHAPTER XIX

THEORY OF NUMBERS
The positive or the signless integers excluding unity can be 
divided into two classes : composite numbers which can be 
expressed as the product of two smaller integers, and prime 
numbers which cannot be so expressed. Thus the series of primes 
begins with 2, 3, 5, 7, 11, 13, 17, ...

The theory of numbers deals mainly with properties of numbers 
arising out of this classification, and for the most part it involves 
analysis far beyond the scope of this book. But in contrast 
with most branches of mathematics many of its enquiries can be 
expressed in language intelligible to the non-specialist.

The number of primes is unlimited. For if a: is the product of 
any given set of primes, 1 + x is either prime or else is divisible 
by a prime that does not belong to the set; in either case a prime 
exists not belonging to the set.

On the other hand the answers to the following problems, in 
spite of their apparent simplicity, are as yet unknown :

Is there at least one prime between n2 and (n+ l)2 for all 
positive integral values of n ?

Is there an unlimited number of primes of the form n2 + 1 1
Is there an unlimited number of pairs of primes (like 17, 19) 

of the form 2n - 1, 2n + 1 ?
Can an even number greater than 2 always be expressed 

as the sum of two primes ? This is known as Goldbach's 
problem ; it has been proved that any integer (greater than 3) 
can be expressed as the sum of not more than k primes where 
k is a constant independent of n.

480
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Distribution of Primes. Prime numbers may be found by the 
Sieve of Eratosthenes as follows : write down the integers 2, 3, 4, 
5, 6, 7, 8, ... as far as may be required ; strike out all the multiples 
of 2, then all the multiples of 3, then all the multiples of the next 
number that has not been struck out (5), and so on. The numbers 
that would never be struck out are prime. By the time the 
multiples of, say, 11 have been struck out, the list of primes will 
be complete up to 167, because every composite number less than 
132 must have a prime factor less than 13.

The number of primes less than or equal to a number x is 
denoted by tt(x). No exact formula has been discovered for 
tt(x), but it has been shown that

tt(x) _ 
a^oi/logz”

This is called the prime number theorem ; the proof is too difficult 
for inclusion here. Also a good approximation for n(x) when x is 
large is given by the logarithmic integral li x which is defined as 

dt |
Jl+e log t)

dt p
lim

e->0+

For example -zr(rr)/li x is approximately -94 when z = 1000 and 
approximately -998 when a: =1000000. (See The, Distribution of 
Prime Numbers: A. E. Ingham.)

Again no formula can be given for the nth prime number pn, 
but it can be deduced from the prime number theorem that

lim - = 1
B_w n log n

ir(Pn)~n> tbe theorem gives lim—^^5=1, hence 
Pn

lim (log n + log log pn - log pn) = 0,
lim log n +log log - log = 0 .

For since

and

but

and

iogPn
limlo^logp2 = 0) thus J. logn=1 

logPn logPn
n log n log n n log p,,lim---- — = lim . hm-----—" = 1.

Pn logPn Pn
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Although it is the properties of signless integers that are being 
investigated, it is often convenient to work with positive and 
negative integers, and 'sometimes with a continuous variable, 
e.g. when using li x. In more advanced developments complex 
numbers are used.

Factor Theorems. Two integers a and b are called co-prime 
if there is no integer that is a factor of both ; or, we may say 
that a is prime to b or that b is prime to a. The fundamental 
theorem

if a and b are co-prime, then integers p, q exist such that 
ap + bq= 1, and hence, if a and b are positive, positive integers 
P, Q exist such that ] aP -bQ | = 1,

may be proved by an argument similar to that on page 265. 
The H.C.F. process gives a set of equations

a = bq + r b = rq1 + r1 r = r2q2 + r2 ...

from which it follows in succession that any factor of a, & is a 
factor of r, r2, r2, ... . Also r>r2>r2 >..., so that a remainder rn 
is eventually reached which is either 0 or 1. But if rn = 0, 
rn_2 = rn_1qn and hence rn_2 is a factor of rn_„ ; hence also of rn_3, 
etc., and of a and b. Thus if a, b are co-prime, rn — 1. But each 
remainder is of the form ap + bq ; hence 1 = ap + bq.

A similar argument may be used to show that

if a, b are co-prime and c is a factor of ad and b, then c is a 
factor of d.

For the equations that arise from the H.C.F. process give

da = dbq + dr db = drq2 + dr2 dr — drtq2 + dr2 ...

and it follows in succession that c is a factor of dr, drlt dr2, ... , 
drn ; but drn — d.

In particular, putting c — b, we have the result that

if b is a factor of da and is prime to a, then b is a factor of d.
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Other properties of divisibility can be deduced from these 
theorems or can be proved by similar methods. It is suggested 
that the following should be discussed orally :

(i) If k is prime to a and to b, prove that it is prime to ab.
[If c is a factor of ab and k, and k is prime to a, then c is a 

factor of E]
(ii) If k is a factor of an, prove that k is not prime to a.

[If k was prime to a, it would be prime to an by applications 
of (i) with b = a, a2, a3, ... .]

(iii) If p is a prime factor of an, prove that it is a factor of a.
[Since p is prime, if p is not a factor of a, p is prime to a, 

whereas by (ii) p is not prime to a.]
(iv) If a, b, c are each prime to all of x, y, z, w, prove that abc and

xyzw are co-prime.
[By repeated applications of (i).]

(v) If a is prime to b, prove that am is prime to bn.
[By repeated applications of (i).J

(vi) If N is divisible by co-primes p, q, prove that it is divisible
by pq.

[N =pk and pk is divisible by q, but q is prime to p, therefore 
q is a factor of k, so k = qr and N=pqr.]

Uniqueness of Factorisation. Any positive integer N can be 
expressed in one and only one way in the form 2”‘13”la5’"3 ... pnm", 
where pn is the nfl1 prime number and mr is a positive integer 
or zero and mn =£ 0.

First, N is divided by 2 if possible, then the quotient is divided 
by 2 if possible, and so on, which gives N = 2n'lN1 where is a 
positive integer or zero and N\ is not divisible by 2. Similarly 
Nl = 3m‘N2 where N2 is not divisible by 2 or 3, N, = 5”*3N,, and 
so on. Thus after a finite number of operations

N = 2m* 3™25”*3 ... pnmn = n prm'
r—l

where pr denotes the rth prime number.
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To prove the uniqueness, let

2a3^5y ... = A=2A3M5V ... ;

now if & is a factor of da and is prime to a, b must be a factor 
of d ; but 2A is a factor of N and is prime to 3^ 5V ... ; hence it is 
a factor of 2“. Therefore A < a. Similarly a. < A ; hence « = A. 
Similarly j8 = p, y = v, etc.

Divisors of N. The numbers by which N is exactly divisible 
are called the divisors of N. Unity is included as one of the 
divisors, and sometimes the number itself is included.

n n
If N = nprmr, there are 11(1 +mr) divisors of N including both 

1 1
1 and N.

Each term of the expansion of
n
n(i +pr+pr‘ +... +prmr)
i

is a divisor, every divisor is one term of the expansion, and the 
terms of the expansion are all different. Hence the number of 
divisors (including both 1 and N) is the number of terms, namely 

11(1 + mr).
1

For the sum of the divisors, see Exercise XIXa, No. 3.

EXERCISE XIXa
A

1. Find the number of divisors of 360 excluding 1 and 360;
n

2. If 2V = TI qrmr where each qr is prime, prove that N can be
r—1

expressed as a product of two factors (counting 1, A’as one pair) 
n ’ n

in |{1 + 11(1 +mr)} ways or |II(1 +mr) ways according as A is or 
1 1

is not a perfect square. Apply the results to 360 and 4356.
3. With the notation of No. 2, prove that the sum of the 

divisors of N (including 1 and N) is II{(ęr’”’+1 - l)/(gr - 1)} for 
r = 1 to n.
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4. Use No. 3 to verify that 220 and 284 are amicable numbers, 

i.e. that each is the sum of the divisors of the other (including 1 
but excluding the number itself).

5. Verify that 2, 4, 6, 12, 24 are the first five highly composite 
numbers, i.e. that each has more divisors than any number less 
than itself. Also find the sixth highly composite number.

6. Find the least number which has 28 divisors, excluding 1 
and the number itself.

7. Prove that a polynomial in x with integral coefficients 
cannot be a prime number for all integral values of x. Extend 
the result to polynomials with fractional coefficients.

8. Verify that n! + 2, n! + 3, ... , n! + n are n-1 consecutive 
composite numbers and if n >2 write down a set of n consecutive 
composite numbers smaller than those obtained by writing 
n + 1 for n.

'P p9. Evaluate —— and -------—---------  approximately forn log n n(log n + log log n)
n= 10, 20, given p20 = 71. (It is interesting to note that p100 = 541, 
and that the corresponding approximations are 1-17, -88.)

10. Deduce from the prime number theorem that tt(2x)Itt(x) 
tends to 2 when a:-> oo .

B
n

11. If N= II q,mr where each qr is prime and no mr is zero,
7=1

prove that N can be expressed as the product of two co-prime 
factors in 2”-1 ways including 1, N as a co-prime pair. In how 
many ways can 360 be so expressed ?

12. If a, b are co-prime, prove that (a + b)m, (a-b)mJtre either
co-prime or havó 2m as H.C.F. *

13. If the smallest prime factor of n is greater than £/n, prove 
that n is the square of a prime or the product of two unequal 
primes.

14. Find the least positive integer n for which n2 + n+17 is 
composite.

15. Verify that 6, 28, 496 are perfect numbers. (A perfect 
number is one that is equal to the sum of its divisors, including 1 
and excluding the number itself.)
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7t(x)16. Find approximate values of —,/ and for a: =10’x/log x li a:
given tt( 10’) = 664579 and li (10’) =o= 664918.

17. Excluding unity and the number itself, find the number 
of divisors of the highly composite number 6,746,328,388,800. 
[This number is 2’.34.5*.72.11.13.17.19.23.]

18. If p and q are odd primes, find the sum of the divisors of 
2np and of 2npq, including 1 but excluding the number itself.

C
19. If 2*-l is prime, prove that 2*_1(24-1) is a perfect 

number. (See No. 15.)

20. If pr is the rth prime number, prove that ptp2 ... pn- 1 is 
either prime or divisible by a prime of the form 6m - 1.

21. If N has n divisors including itself and 1, prove that their 
continued product is ^/Nn.

22. If II qrmr is highly composite where each qr is prime, prove
r

that the sequence (mr) is monotone decreasing and that qr is the 
rth prime.

23. Prove that the rth prime number is less than 2” where 
n = 2r.

24. Deduce from the prime number theorem
... jr(x + ax) - ir(x)(!) lunJ------- —1—' = a

s->ao

(ii) lim tt(x + ax) - tt(x) =4-00
x—>00

25. If a, b, n are co-prime and n<ab, show how to express 
n/ab in the form qfa + r/b where q, r are integers numerically less 
than a, b respectively.

26. Prove that the chance that two integers selected at random 
00 ' “ * 

should be co-prime is II I 
r=l

00 1 
evaluate this by means of F —-

\ 1 n

(Assume that if N is an integer chosen at random and p is 
prime, all remainders when N is divided by p are equally likely.)

(1 —where pr is the rth prime and

_ 6"
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The Integer Function. The greatest integer that is not greater 
than x is denoted by [»].

For example [5}] = 5, [7] = 7, [ - f] = - 2, [f] = 0.
It follows at once that [x + y] is equal to [z] + [y] or else to 

[a>] + [y]+l. Hence [® + y]>[a;] + [y].
Also if f, n are positive integers, the number of multiples of f 

that are not greater than n is 
multiple.

this includes f as one

If p is prime, the highest power of p which is a factor of n! is px 
where

n n n

For [n/p] of the integers 1, 2, 3, ... , n are divisible by p, [n/p2] 
of them are divisible by p2, [n/p3] of them by p3, and so on. 
Therefore the power to which p occurs in the product 1.2.3 ... n 
is the sum of [n/p], [n/p2], [n/p3], ...

This series for x is terminated, because [n/pk] = 0 whenever 
pk >n.

The product of r consecutive integers is divisible by r!
Denote the product by (n + l)(n + 2)... (n + r). This is equal to

(n + r)! . (n + r)! . .----- -—, and it is necessary to prove that '—-—j— is an integer.

This follows from page 11 because ■^| ' is the number of ways 

in which n things can be selected from n + r different things.
Alternatively it may be shown that any prime number p which 

occurs in n! r! occurs to at least as high a power in (n + r)! 
For [x + y]> [rc] + [y] shows that 

n + r n
pk pk

r

and the result follows by putting k—1, 2, 3, ... , adding, and 
using the result of the previous paragraph.
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There is much variety in the questions that can arise about 
numbers and their divisors, and also in the methods that can be 
applied.

To prove that TV is a multiple of pq where p, q are co-prime, 
it is sufficient to show that N is a multiple of each separately. 
See (vi), p. 483.

In dealing with a divisor d, it is often convenient to use the 
fact that TV can be expressed in the form kd ±r, where k is integral 
and r is 0, 1, 2, ... , [|d].

Other methods are illustrated in Examples 1, 2, 3. The 
notation M(k) or N(k) is sometimes used for a multiple of k. It 
will be assumed that n is a positive integer, and the convention 
will be extended to other letters occasionally when the meaning 
is clear from the context.

Example 1. Prove that 32n~1 + 2n+1 is divisible by 7.

First method. + 2n+l) = 32n + 6.2"

= 9" - 2" + 7.2".

But 9 - 2 is a factor of 9” - 2” and hence 7 is a factor of

3(32n-1 + 2«+1)

and therefore of 32n_1 + 2n+1.

Second method. The remainders when 31, 33, 36, 3’, ... are 
divided by 7 are 3, 6, 5, 3, 6, 5, ... ; and the remainders for 
22, 2s, 2‘, 25, ... are 4, 1, 2, 4, 1, 2........ These facts are easily
discovered by trial. They may be proved by such arguments as 
these :

if 3fc = Af(7) + 3, 3*+2 = 9TU(7) + 27 = N(7) + 6

if 2* = M(7) + 4, 2*+1 = 2M(7) + 8 = TV(7)+1.

Addition of the corresponding remainders 3, 4 and 6, 1 and 5, 2 
shows that there is no remainder when 3l+ 22, 33 + 23, 35 + 24, ... 
are divided by 7.



XIX] THEORY OF NUMBERS 489
Example 2. Prove that n(n + l)(2n + 1) is divisible by 6.

First method. n(n+ l)(2n + l) = 2n(n + l)(n + 2) - 3n(n + 1).
Either n or n + 1 is divisible by 2 and either n or n + 1 or n + 2 

is divisible by 3. Hence the expression is divisible by 2 x 3.

Second method. l~n(n + l)(2n+ 1) = l8 + 22 + ... +n2, hence 
n(n + l)(2n+ 1) is divisible by 6.

Example 3. Prove that 4” - 18n2 + 42n + 80 is divisible by 108.

First method. If /(n) = 4” - 18n2 + 42n + 80,

fin + 1) - 4/(n) = 4”+1 - 18(n + 1 )2 + 42(n + 1) + 80
- 4"+1 +72n2 - 168n - 320

= 54n2 - 162n - 216 = 54(n+ l)(n - 4).

But one of the numbers n + 1, n - 4 is even ; hence

/(n+l)-4/(n)

is divisible by 108. Therefore if f(n) is divisible by 108, so also 
is/(n+ 1).

But /(1)= 108, :. /(2) = M(108), :. /(3) = A(108), and so on.

Second method. 2.4n = 2(1 + 3)n = 2 + 6n + 9n(n - 1) + M(27)

2/(n) = 9n2 - 3n + 2 - 36n2 + 84n + 160 + Hf (27)
= -27n2 + 81n+162 + M(27) = N(27).

Hence 2/(n), and so also f(n), is divisible by 27.
Also fin) = 4" - 60n2 + 42n(n + 1) + 80 is divisible by 4 because 

n(n+ 1) is even. Hence/(n) is divisible by 108.

The Indicator. The number of positive integers including 
unity, which are less than n and prime to n, is called the indicator 
of n and is denoted by </>(n).

For example <£(2) = 1, and </>(6) = 2 since 1 and 5 are the only 
numbers less than 6 and prime to it.

A convention is made that <£(!) = !.
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If qlt ga, ... are the prime factors of N, so that N=II qrmr where 
mr 0, then 1

1 V
We start by finding the number of integers less than N and not 

prime to it. There are amongst the numbers not greater than N

(i) Nlqr multiples of qr
(ii) N/(qrqs) multiples of qrq3

(iii) Nl(qrq,qt) multiples of qrqsqt

and so on. It follows that the number of integers not greater 
than N and not prime to N (excluding unity) is

?N/qr - ZNI(qrq3) + ^N/(qrqsqt) - ...

To prove this, consider any integer not greater than N. Suppose 
that it is divisible by exactly k of the primes qlt q2, ... , qn. This 
integer occurs k times in group (i), Q) times in group (ii),

times in group (iii), and so on. Therefore the number of times it 
is counted in the expression stated above is 

which is equal to 1 — (1 — 1)*, i.e. 1. Therefore every integer 
(excluding unity) not greater than N and not prime to it is counted 
exactly once in the expression. Therefore since unity is counted 
in evaluating $(N),

^(N) = N - (S Nlqr - s Nl(qrqs) + £ Nl(qrq,qt) - ...} 
= N{l-Sl/9'r + S1/(9’r?S)-Sl/(9r?S?i) + -”} 
=jV (1-1) (1-1) ...(1-1).

\ ft/ \ qtI \ q„S

If N = ab and a, b are co-prime, then cp(N) = cp(a)cp(b)

If the primes which are factors of a are a1, a2, ... , am and those 
which are factors of 6 are /?a, /?2, ... , fln, then all the primes 
aj, «a, ... , am, /?x, fl.,........ /?„ are unequal because a, b are co-prime.
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But ^(a) = onfl--') <£(&) = 6II fl -1)
1 X a/ 1 \ pr/

and ^(afe) = a&nfl-i)nfl-l)
1 \ ar/ i \ flr/

by the preceding result, and hence </>(ab) =
In the same way or by repeated application of this result it 

follows that
cp(a1a2 ... an)=<p(a1)<p(a2) ... <p(an)

where a1, aa, ... , an are co-prime.

Example 4. Prove that the sum of the integers less than N 
and prime to it including unity is

If a: is an integer less than N and prime to it, so also is N - x. 
Hence such integers occur in pairs, whose sum is N and the 
number of pairs is |^(N). Therefore the sum of the numbers is 
W(N).

EXERCISE XlXb
A

1. Sketch the graphs of [xc] and x - [»].

2. If n is an integer, find the values of x for which
[x] + [n - a:] = n - 1.

3. Find the greatest power of 7 which is a factor of 1000!

4. Find the number of positive integers including unity which 
are less than 9000 and prime to it.

Prove the statements in Nos. 5-12.
5. n’ + 5n = M(6). 6. 17aB - 1 = Af(288).

7. 32n+‘-22B = M(5). 8. 2B+a + 3aB+‘ = Af(7).

9. 4B + 6n - l = Af(9).

10. n(n + l)(2n + l)(3na + 3n - 1) = M(30).

11. (2m)!(2n)! is divisible by ml n!(m + n)t

12. (2n)! is divisible by n!(n+ 1)!
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B
13. Find the number of zeros at the end of the number which 

equals 1000!

Prove the statements in Nos. 14-19
14. na + 3n = M(2). 15. n*+ 2n2 - 3 = Af(32) if n is odd.
16. 23an - 1 = Af(528). 17. 132n+1 + 9an+1 = M(22).
18. 72n - 48n - 1 = 114(2304). 19. 32"+a - 8n-9 = M(64).
20. Explain why the numbers less than 30 and prime to it 

must all be prime.
21. Find the sum of the positive integers including unity 

which are less than 600 and prime to it.
22. If n is a positive integer, prove that [[a;]/n] = [x/ri].

C
23. Prove that the number of positive integers less than 65m 

which are divisible by 8 and not by 64 is ^(65m - 1).
24. How many numbers including unity are less than 210 and 

prime to it but are not themselves prime ?
25. If S(x) denotes the sum of the divisors of x including 1 

and x, and if m, n are co-prime, prove that iS(m)S(n) = S(mn).
26. If a, b, c, ... are the integers less than n and prime to it, 

prove that £a, %abc, 'S.abcde, ... are multiples of n.
n

27. If N = n?r”lr, prove that the sum of the squares of the
1 

numbers less than N and prime to it is
iN»n(l-?r-l) + iNn(l-gr).

28. Prove that the sum of the cubes of the numbers less 
than N and prime to it is, with the notation of No. 27,

lN‘n(i-gr-*)+iNan(i-?r).
29. If n is the product of positive integers p and q, prove 

that there are integers less than n which have with n the 
H.C.F. p.

30. Use No. 29 to prove Gauss’ Theorem that £<£(d) = n, where 
the summation extends to all the divisors d of n, including 1 and n.

31. If d is a divisor of Hqrmr, prove that
S^) = n{l + ^(gr) + ^(?ra) + ... + ^(gr’»r)}

and deduce the result of No. 30.
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32. If s(n) is the sum of the digits of the number n when 
expressed in the scale of k, and Q(n) is the highest power of k 
which is a factor of nl, show that (k - I)Q(n) — n - s(n).

Also prove (i) s(n + m)< s(n) + s(m)

(ii) s(rn)<.rs(n)
(iii) s(kTn) = s(n) .

and deduce that s(nm)<, s(n)s(m).

Congruences. Two integers a and 6 are called congruent with
respect to the modulus m if an integer k exists such that

a - b = km.

k may be positive, zero, or negative. The congruence is denoted 
by a=b (mod m) or by a—b=0 (mod m). a and b are also 
called equal (mod m).

For example 10 = 3 (mod 7), and 13 = 28 (mod 5). Also 
a = b (mod p) if a = b + kp.

Sometimes the notation is used in a wider sense : the general 
solution of tan 0 = tan a may be written 0=a (mod it).

It will be shown that the calculus of congruences is so like 
that of equations that no inconvenience arises from using the 
same notation for both. The explicit statement of the modulus 
at each stage of the work is not necessary when the same modulus 
is used throughout. See Examples 6, 7, 8.

If a = b (mod m) and a' = b' (mod m) and if q, r are integers, 
then

(i) qa + ra' = qb + rb' (mod m) (ii) aa' = bb' (mod m).

(i) a-b = km, a'-b' = k'm where k, k' are integers.
:. q(a-b) + r(a'-b') — (qk + rk')m

qa + ra'= qb+ rb'+ M(m)
.'. qa + ra'= qb + rb' (mod m).

(ii) a = b + km, a' = b' + k'm.

aa' = bb' + m(kb' + k'b + mkk')

aa' — bb' (mod m).
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These results show that congruences may be manipulated as 
regards addition, subtraction, and multiplication, with integral 
numbers, just like equations.

As regards division a modification is necessary.
From 26=12 (mod 7), it follows that 13 = 6 (mod 7), but 

91 = 35 (mod 14) only implies that 13 = 5 (mod 2) and not that 
13 = 5 (mod 14).

In general if ax = bx (mod m) and if A is the H.C.F. of x, m, 
then a = b (mod m/h).

x=ph, m — qh, where p, q are co-prime.

Since ax -bx = km, aph - bph = kqh,

p(a-b) = kq.

But q is prime to p and is therefore a factor of a - b. Thus 
a = b (mod q), i.e. a = b (mod m/h).

In particular, if x, m are co-prime, a=b (mod m).

Example 5. Prove that 34"+2 + 52”+1 is divisible by 14.

34”+2 = 9.81” = 9.11" (mod 14)
and 52"+1 = 5.25" = 5.11" (mod 14)
thus 3*n+2 + 52n+1 =14.11” = 0 (mod 14).

Comparison of this example with Example 1, p. 488, shows 
that the congruence notation often shortens the work. It also 
helps by suggesting the procedure to be adopted.

Example 6. Find the remainder when 21000 is divided by 13.
Since 23 = 8, 2“=64=-l (mod 13),

thus 2896= ( - 1)166= + 1, 21000 = 2*= 16 = 3 (mod 13),
thus the remainder is 3.

Congruences are often used as in Example 6 for calculating 
the remainder in a given division.

Amongst the numbers which are congruent to a (mod m), 
there is one, x, which satisfies 0<x<m, assuming a0 (mod m). 
This is called the least positive residue of a (mod m).
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If a and m are co-prime, and the m positive integers
k, k + a, k + 2a, , k + (m - l)a

are dividedby m, the remainders are a permutation of 0, 1, 2,... ,m-l.
In a division by m, these are the only possible remainders. 

Hence it is sufficient to show that no two of the m numbers can 
leave the same remainder.

If k + ra, k + sa leave the same remainder when r, s each have 
one of the values 0, 1, 2........ m - 1,

k + ra = k + sa (mod m)
:. ra = sa (mod m).

But a and m are co-prime ; hence r = s (mod m) from which 
it follows that r = s because |r-s|<m- 1.

The result may be stated in the form :

one of die numbers k, k + a, ... , k + (m - l)a is divisible by m 
and the least positive residues of the others are all different.

For the corresponding theorem when a, m are not co-prime 
see Exercise XIXe, No. 45.

The reader should now work Exercise XIXc, Nos. 1-6.
Degree of a Congruence. The congruence

Aoxn + A1xn~1 +...+An — 0 (mod m)

d.b.a.a. m.

where A„, Alt ... , An are integers is said to be of degree n provided 
that AoAO (mod m).

A value of x which satisfies the congruence is called a root of 
the congruence. If a; is a root and x' = x (mod m), then x' is 
also a root. The solution of a congruence consists in finding as 
many values of x as possible, which satisfy the congruence and 
are incongruent to one another (mod m).

If Al) = A1 = ...=An = 0 (mod m) the congruence is satisfied 
by all values of x and is called an identical congruence.

The coefficients Ao, Alt ... , An of any congruence may always 
be replaced by coefficients a0, at, ... , an which are positive 
integers less than m, or zero. For Ak may be replaced by its 
least positive residue (mod m) or else by zero. Also if the 
congruence is of degree n, a0 A 0, because A^O (mod m).

I
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In the following discussion we consider only congruences for 
which the modulus is a prime number p, though a few examples 
of a composite modulus are given in Exercise XIXc.

Congruences of the First Degree. Every congruence of the first 
degree with a prime modulus has one root and cannot have two 
incongruent roots.

The congruence may be written ax = b (mod p), where a, b 
are positive integers less than p or zero. Also a^O by the 
definition of degree.

By the theorem on page 495, 0, a, 2a, ... , (p- l)a are con­
gruent (mod p) to some permutation of 0, 1, 2..........p - 1.
Hence one and only one of them is b, i.e. one and only one of 
the values 0, 1, 2, ... , p-1 of x makes ax = b (mod p) and is 
a root of the congruence.

A congruence of degree n with a prime modulus p cannot have 
more than n incongruent roots.

The congruence may be written
aoxn + a^"1 +... +an = 0 (mod p) 

where 0<a„<p, 0<ar<p for r=lton.
Let xt be a root. Then

a„xln + a1x1n~1 +... + an = 0 (mod p)
and any root satisfies also

a0(o:n - ajj")+ a1(a;n“1-ajj"-1) + ...+ <z„_1(a: - a:1) = 0 (mod p) ; 
i.e. (x -x1)(a0xn~1 + b1xn-> + ...+bn_1) = 0 (mod p).

As p is ^>rime this can only be true if p is a factor of x - xt or 
of attxn~1 + &Jxn~‘ + ... +bn_l. Hence if x^x.^ (mod p), x can 
only satisfy the given congruence if it satisfies

u0a:n“1 + 61a:”-!! + ... + bn_l = 0 (mod p).
If therefore we assume that a congruence of degree n - 1 

cannot have more than n - 1 incongruent roots, it follows that a 
congruence of degree n cannot have more than n incongruent 
roots. But a congruence of degree 1 cannot have 2 incongruent 
roots ; hence it follows by induction that a congruence of degree 
n cannot have more than n incongruent roots.
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Methods of solving congruences of degrees 1 and 2 are illustrated 

m Examples 7-10. These congruences are called simple (or 
linear) and quadratic respectively.

Example 7. Solve 106a: = 5 (mod 137)
In the process for finding the H.C.F. of 

106, 137, the successive remainders are 31, 
13, 5, 3, 2, 1, and therefore the coefficient 
of a: in the given congruence can be reduced 
successively to these values.

1

2

1

3 106
93

137
106

2 13 31
10 26

1 3 5
2 3---- —
1 2

-31a: = 5, -93a:=15;
but 106a: = 5, 13a: = 20; 26a: = 40 ;
but -31a: = 5, - 5x = 45, - 10a: = 90 ;
but 13a: =20, 3a:=110;
but - 5x = 45, -2a:=155=18 ;
but 3a:=110, . a: =128 (mod 137).

The work can however often be shortened. In this example, 
since - 5a: = 45, and since 137 and 5 are co-prime,

a:=-9 = 128 (mod 137)

Alternatively, express as a continued fraction and calculate 
the last convergent but one. It is shown on p. 244 that this is ff. 
Therefore from p. 245, 53.106 - 41.137 = 1,

.'. 53.106=1 (mod 137), 265.106 = 5 (mod 137);
106a: = 5 (mod 137) is satisfied by a: = 265 =128 (mod 137).

Note. The method of Example 7 can be applied to Example 17, 
p. 246, because y is given by the congruence 106y= - 4 (mod 137).

Example 8. Solve 98a: = 1 (mod 139).

98a: = 1 = 140,

but 14 and 139 are co-prime,
A 7a:= 10= 10 +3.139 = 427,

x = 61 (mod 139).
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Example 9. Prove that 13a:2 = a (mod 5) has no solution if 
a=lor4 (mod 5), and solve it for a=2 or 3 (mod 5).

13a:2 = 3a:2 (mod 5), and its values for x = 0, 1, 2, 3, 4 (mod 5) 
are respectively 0, 3, 12, 27, 48, i.e. 0, 3, 2, 2, 3, (mod 5).

This shows that 13a;2 = a (mod 5) is never true if a=l or 
4 (mod 5), and that the solutions for a = 2, 3 (mod 5) are 
respectively a: = 2 or 3 (mod 5) and a:=l or 4 (mod 5).

In Example 9, the solutions of 13a:2 = 2 or 3 (mod 5) may 
also be found as follows :

3a:2 = 2= 12; but 3, 5 are co-prime, a:2 = 4, 
x=±2=2 or 3 (mod 5).

3a:2 = 3 ; but 3, 5 are co-prime, .'. a:2 = 1,
.’. x= ±1 = 1 or 4 (mod 5).

The positive values of a less than p for which a:2 = a (mod p) 
has solutions are called quadratic residues (mod p); the values 
of a for which it has no solutions are called non-residues (mod p). 
Thus 1, 4 are quadratic residues (mod 5) and 2, 3 are non­
residues. It will be proved later (p. 504) that if p is an odd prime 
there are | (p - 1) residues and |(p - 1) non-residues (mod p).

The process of reducing any quadratic congruence to the 
form x2 5= a (mod p) is illustrated by Example 10, and if a is a 
quadratic residue (mod p), this may be written in the form 
x* = b2 (mod p). It is then legitimate to say that the general 
solution is x — ±b (mod p), because there cannot be more than 
two incongruent roots, and these two values of x are incongruent 
and satisfy the congruence.

Example 10. Solve 3a:2 + 4x = 10 (mod 17).
The process consists in reducing the coefficient of a:2 to unity 

and that of a: to an even number :

3a:2 + 4x - 10= 3a:2 + 72a: + 24 = 3(x2 + 24a: + 8).

But 17 and 3 are co-prime, .’. a:2 + 24a: + 8 = 0,

/. (a: + 12)2= 144 - 8= 136 = 0, /. a:=-12=5 (mod 17).

The congruence in Example 10 is said to have equal roots.
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EXERCISE XIXc

A
Prove the congruences in Nos. 1-4.

1. n5-n = O (mod 30) 2. 3.52n+1 + 23"+1 = 0 (mod 17)

3. n(n-l)(n + 25)(n + 50) = 0 (mod 24)

4. n(n2 - l)(29n2 + 4) = 0 (mod 120)

Find the least positive residues in Nos. 5, 6.
5. 241 (mod 23) 6. 1896 (mod 11)

Solve the congruences in Nos. 7-18.

16. 5a;2 + 7a: = 24 (mod 47)

7. 2x=l (mod 5) 8. 31a:=l (mod 71)
9. 12a; = 6 (mod 5) 10. 12a; = 6 (mod 30)

11. a: = 3 (mod 7) =5 (mod 11)
12. a:2 = 15 (mod 17) 13. 2a:2 = 3 (mod 19)
14. a:2 + 2 =-0 (mod 7) 15. a:2 + 4a: = 22 (mod 23)

17. 2a:2 + a: = 2 (mod 19) 18. 7x2=3x + 2 (mod 29)
19. Give the non-residues (mod 11). Prove that m2 + n2 is 

only divisible by 11 if m and n are both divisible by 11.
20. Solve 5a:2 = n (mod 7) for the values of a other than 

zero for which it is possible.
21. If a?1, x2, ... , xn are incongruent roots of

f(x)=aoxn + a1xn~1 + ... +a„ = 0 (mod p)
where p is prime, prove that

a0(x-x1)(x-x2)...(x-xn)=f(x) (mod p)
is an identical congruence, and deduce that

(mod p).

B
Prove the congruences in Nos. 22-26.
22. 3‘"<=1 (mod 80) 23. 372n=l (mod 1368)
24. 351=-40 (mod 121) 25. 3.4n+1 + 10"_1 = 4 (mod 9)
26. 390=l (mod 91)
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27. Find the remainders when a, 2a, 3a, ... , pa are divided by 
m if the values of tn, p, a are

(i) 7, 6, 5 (ii) 9, 3, 6 (iii) 12, 6, 10
Solve the congruences in Nos. 28-39.
28. 2® = 3 (mod 5)
30. 2x =1 (mod 3)
32. 10® =5 (mod 15)
34. 31®= 13 (mod 71)
36. 95® = 57 (mod 323)
38. ®2 + ®=16 (mod 101)

29. 5®=1 (mod 7)
31. 10® = 5 (mod 3)
33. 235® = 46 (mod 541)
35. 51® = 6 (mod 39)
37. ®2 + ® = 43 (mod 73)
39. 2®2 + 3® + 2 = 0 (mod 11)

40. Give the quadratic residues (mod 13).

41. Prove the rule for testing divisibility by 11 in the scale 
of 10.

Find the least positive residues in Nos. 42-44.

42. 237 (mod 223) 43. 326 (mod 77)

44. 194n+8 (mod 181)

C
45. If the H.C.F. of a and m is h, and h is a factor of k, 

prove that the least positive residues (mod m) of the integers 
k, k + a, k + 2a, ... , k + a(m-h)/h are a permutation of 
0, h, 2h, ... , m-h. Also prove that the residues for further 
sets of m/h terms of the same a.p. are the same permutation.

46. If (...zyx) denotes the number ® + lOy + 102«-I-... in the 
scale of ten, prove that (... cba) is divisible by 7 if

(c6a)-(/ed) + (i)iy)-...
is so divisible.

Show that the same test applies to 11 and 13.

47. For a number expressed in the scale of twelve, show that 
the same test for divisibility by 7 holds as in No. 46.

Find tests for divisibility by 5 in the scale of twelve and for 
divisibility by k - 1 and k + 1 in the scale of k.

48. Write down the general solutions of ®2 = 4 (mod 5) and 
®2 = 4 (mod 7) and find their common roots. What congruence 
has these common roots as its complete solution ?
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49. Show that x2 = a (mod pq) where p, q are co-prime is 

possible if and only if x2 = a (mod p) and x‘ = a (mod q) 
are both possible.

50. If^ is a root of x2 = a (mod p) where p is an odd prime 
and a is prime to p, prove that an integer k exists such that 
X1 + kp is a root of x2 = a (mod p2). Hence solve x2 = 2 (mod 49).

51. Show how to deduce solutions of x2 = a (mod p"+1) from 
those of x2 = a (mod p"), where p is an odd prime and a is 
prime to p.

52. Solve aJ8=l (mod 2s) for k=2, k = 3, k>3.

Fermat’s Theorem. If p is prime and a is prime to p, then 

aP-,=l (mod p)

By the theorem proved on page 495, a, 2a, 3a, ... , (p- l)a 
are congruent (mod p) to 1, 2, 3, ... , p — 1, in some order— 
Hence by the theorem (ii) on page 493,

a.2a.3a. ... (p- l)a= 1.2.3 ...p-1 (mod p)

;. as p is prime to 1.2.3...p-1,
ap_1=l (modp).

An alternative proof is suggested in Exercise XlXd, No. 25.
The result may also be stated in the form

ap = a (mod p)
which holds even when a is not prime to p.

A generalisation of Fermat’s theorem, known as Euler's 
extension, applies to the case when p is not prime. This is proved 
by the same method as follows.

Let qlt q2, ... , qnbe the integers less than m and prime to 
it; gx = 1 and n = Then if a is prime to m, q2a, q2a, ... ,
qna are incongruent (mod m) ; for if qra — qsa (mod m), 
qr = qs (mod m) and since 0<|gr-gs|<m, qr = qs. Also qka is 
prime to m, and hence its least positive residue is prime to m. 
Hence these residues are qlt q2, ... , qn in some order. It follows 
as in Fermat’s theorem that

qta.q2a. ... qna = qtq2 ... qn (mod m) 
and that a*(m>=l (mod m) if a is prime to m.
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Wilson’s Theorem, (p—1) ! = — 1 (mod p), if and only if p is 
prime.

By Fermat’s theorem, if p is prime, the congruence

a;3’-1 -1 = 0 (mod p)

is satisfied by x=l, 2, 3, ... , (p- 1) (mod p). Therefore the 
congruence

(x-l)(x-2)(x-3)...(x-p+l)-(x^-l) = 0 (mod p) 

is satisfied by the same p - 1 incongruent values of x. But its 
degree does not exceed p - 2. It must therefore be an identical 
congruence. Putting x = 0,

( - l)I>_1(p - 1)! + 1 = 0 (mod p)

if p is an odd prime, (p- 1)! = - 1 (mod p). This result 
bolds also for p = 2.

If p is not prime, p and (p - 1)! are not oo-prime; therefore 
(p - 1)! + 1 is not divisible by p.

Wilson’s Theorem provides a necessary and sufficient test for a 
number to be prime, but this is of no practical value on account 
of the labour of calculating (p - 1)!

In the identical congruence used in the proof, the coefficient 
of each power of a: up to and including a:s,“2 must be zero (mod p). 
This proves Lagrange’s Theorem :

The sum of the products taken r at a time of the numbers 
1, 2, 3, ... , p - 1 is divisible by p, where p is prime and r<p - 2.

The following alternative proof of Wilson’s Theorem was given 
by Cayley. See also Exercise XlXd, Nos. 33, 34.

Consider the (p- 1) !/2 polygons of p sides which have their p 
vertices at the vertices of a regular polygon. Of these, (p - l)/2 
are regular. But the irregular polygons can be grouped in sets 
of p obtained by rotating any such polygon about its centre 
through angles 2tt!p. Hence the number of irregular polygons is 
a multiple of p. Therefore

i{(p-l)!-(p-l)} = 0 (mod p)
(p-l)!=p-1= - 1 (mod p).
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Fermat’s Last Theorem. The theorem on p. 501 although 
stated by Fermat about 1670 was first proved by Euler in 1761 
by a method substantially equivalent to that given in the text. 
Most of Fermat’s discoveries were published without proofs. One 
of them, known as his ‘ last theorem ’ is of special interest. In 
the margin of a copy of Diophantus’ Algebra which was edited 
by Fermat, he stated that he had found a general proof that the 
equation xn + yn = zn has no solution in integers if n = 3, 4, 5, ...

No complete proof of this has been discovered, although the 
impossibility has been proved for an unlimited number of values 
of n. This has been done by methods which were unknown to 
Fermat.

The equation x2 + y2 = z2 is satisfied by x = 2kab, y = k(a2-b2'), 
z = k(a2 + b2), and it can be shown as follows that every integral 
solution can be expressed in this form where a, b, k are integers.

If A: is a common factor of any two of x, y, z, it must also be a 
factor of the third, and x, y, z may be replaced by kX, kY, kZ 
where X, Y, Z are all co-prime and X2+ Y2 = Z2.

Also X, Y cannot both be odd, for then X2 + Y2 = 2 (mod 4), 
and so X2+ Y2^Z2. Thus one of X, Y is odd and the other is 
even. Suppose X is even and Y odd ; then Z is odd and Z± Y 
are even.

Let Z+Y = 2m, Z - Y = 2n ; then (|X)2 = mn.
But Z, Y are co-prime, therefore m, n are co-prime. But mn 

is a square, therefore m, n are both squares. Thus m = a2, n — b2, 
and X = 2ab, Y = a2- b2, Z = a2 + 62.

Therefore the general solution is

x=2kab, y = k(a2 -b2), z = k(a2 + b2)

where a, b, k are integers.
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Example, 11. If x, y, z are integers such that a;2 + y2 = z2, prove 
that xyz — Q (mod 60).

By the result just obtained,

xyz = 2k*ab(a* - 6s) (a2 + 62) = 2k3ab(a* - b*)

where k, a, b are integers.
Either a, b, or a2 - &2 is even, :. xyz = 0 (mod 4).
Either a or & is a multiple of 3, or by Fermat’s theorem

a2-&a=l-l (mod 3) =0 (mod 3); xyz = 0 (mod 3).

Similarly a or & is a multiple of 5, or a4-64 = 0 (mod 5) ;

.•. xyz — 0 (mod 5). Thus xyz = 0 (mod 60).

Quadratic Residues. If p is an odd prime, there are |(p-l) 
quadratic residues (mod p) and i(p- 1) non-residues.

The residues are the positive values of a(<p) for which 
xl = a (mod p) is possible.

The values 1, 2, 3, ... , l(p- 1) of x give |(p - 1) incongruent 
valuesofa. Forifr2 = s2 (mod p) where 0<r<s<f(p- 1),

(r + s)(r-s) = 0 (mod p),
and since p is prime, p is a factor of r + s or r - s. But

r-s<r+s<p;

thus r = s. Hence there are i(P ~ 1) quadratic residues. There 
cannot be more than J(p-l) because a;12 = (p - aq)2 (mod p), 
so that the values J(p + 1), l(p + 3), ... , p- 1 of x lead to the 
same values of a as before.

If a is a residue, ał<P-1) = (a>2)ł(P-i) = 1 (mod p) by Fermat’s 
theorem. The residues are the roots of this congruence of degree 
i(P~ !)•

The non-residues must be the roots of the congruence
ai(p-i) = - 1 (mod p),

because residues and non-residues satisfy
ap_1 - 1 = {aHp_1) - l}{ał(P_1) + 1} = 0 (mod p)

by Fermat’s theorem.
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Example 12. If p is prime and x is prime to p, prove that

±i (mod p2).

If p = 2, x = ± 1 (mod 4) because x is prime to 2.
If p is an odd prime, let y = a;1"-1. Then by Fermat’s theorem 

y=l (mod p), yr—I (mod p).
Hence

w!>(p-i) _ 1 —yi> - 1 = (y - l)(y”~i + y3>_2 + ... + y + l) = 0 (mod p2), 

because y - 1 = 0 (mod p) and

yv~l + yJ>_2 + ••• + y +1 =p = o (mod p).
Hence (a:p<3’~1W2 + l')(xv^~1H2 - 1) is divisible by p2. But since 

the two factors differ by 2, and py=2, they cannot both be 
divisible by p. One of them must therefore be divisible by p2. 
This shows that a:p(p-1>/2 = ± 1 (mod p2).

Example 13. If a and b are co-prime, prove that a2 + b2 cannot 
have a factor of the form Im + 3.

Let 2n + 1 be an odd prime factor of a2 + b2. Since a, b are 
co-prime, they are also prime to a2 + b2 and to 2n + 1.

Hence by Fermat’s theorem
a2" - b2B= 1 - 1 = 0 (mod 2n+l).

Thus a2(a2n~2 + b2"-2) = a2B - b2n + b2n~2(a2 + b2) = 0
and therefore (mod 2n + 1).
Similarly a2n-t _ (pn-t = q (mod 2n+ 1),
and by repeating the process

a2 + (- l)"b2 = 0 (mod 2n + 1).
But 2n + 1 is a factor of a2 + b2, and cannot also be a factor of 

a2 - b2 since a2, b2 are co-prime. Hence n is even, and every odd 
prime factor of a2 + b2 is of the form Im + 1.

Since the product (Ikt + l)(4fc2 + 1)... (Ikr + 1) is of the form 
Ik - 1, it follows that every odd factor of a2 + b2 is of the form 
Ik- 1.

When a, b are not co-prime, a2 + b2 may contain a factor 
(Im+ 3)r where r is even.
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Example 14. If 2n+ 1 is prime, prove that
(n!)’ = (-l)n+1 (mod 2n+l).

By Wilson’s theorem, 1.2.3 ... 2n = - 1 (mod 2n + 1).
But

2n= - 1, 2n - 1= - 2, 2n - 2 = - 3, ... , n + 1= - n, (mod 2n+T), 
hence

1.2.3 ... n( - n)( - n+1)... ( - 3)( - 2)( - 1) = -1 (mod 2n+l)
i.e.  ( - l)n(n!)a= — 1 (mod 2n+l).

Alternatively, the congruence
a:2” - 1 - (a:2-l2)(o:2 - 22)... (»2-n2) = 0 (mod 2n+l)

is satisfied by the 2n incongruent values ±1, ±2, ... , ±n, and 
is not of degree as great as 2n. Therefore it is an identical 
congruence. Putting x = 0,

- 1 = (- 1)"12.22 ... na=(-l)"(n!)2 (mod 2n+l).

Mersenne’s Numbers. The only known perfect numbers are 
of the form 2n_1(2” - 1) where 2” - 1 is prime. See Exercise XIXa, 
No. 19. In 1644, Mersenne asserted that the only prime values 
of n up to 257 for which 2" - 1 is prime are 2, 3, 5, 7, 13, 17, 19, 
31, 67, 127, 257.

It has since been proved that 267 - 1 and 225’ - 1 are composite 
and that 261 - 1, 289 - 1 and 2107 - 1 are prime. Mersenne’s 
statement has not been checked for 157, 167, 193, 199, 227, 229.

It is possible that Fermat and Mersenne used some method 
that has not been rediscovered.

EXERCISE XlXd
A

Prove the congruences in Nos. 1-9.
1. n* = 1 (mod 240) if n is prime to 30.
2. n13 = n (mod 78).
3. m12 = n12 (mod 91) if m, n are prime to 91.
4. (?r)3>_1 + (rp)s_1 + (pę)r_1= 1 (mod pqr)

if p, q, r are unequal primes.
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5. 28! = 666 (mod 899).
6. 2. (p - 3)! = - 1 (mod p) if p is prime and>3.
7. (p - r)! (r - 1)! = ( - l)r (mod p) if p is prime and >r.
8. 16"= 1 (mod 437). (Use Euler’s theorem.)
9. = 1 (mod pq), if a: is prime to p, p is prime, and 

q=pn.
10. If x, y, z are integers such that x2 + y2 = z2, prove that 

xy(x2 -y2) = 0 (mod 84)
11. If p is an odd prime, prove that

a:11-1 - 1 ={a:2 + l(p - 1)} {a?3 + 2(p - 2)}
,..{a:2 + l(p-l)l(p+l)} (mod p)

is an identical congruence.
12. By verifying that a:2 + y2 + z2 7 (mod 8), prove that 

no term of the a.p. 7, 15, 23, 31, ... is the sum of three squares.

B
Prove the congruences in Nos. 13-21.
13. n’ = n (mod 42)
14. (2n + 1)6= (2n + 1) (mod 240)
15. n8= 1 (mod 480) if n is prime to 30
16. n2 = n (mod 30) if n>3 and 2n- 1, 2n+ 1 are prime
17. n6=l (mod 504) if n is prime to 42
18. (p - 2)! =1 (mod p) if p is an odd prime.
19. 2.(p - 3)! =p - 1 (mod p2 -p) if p is prime and greater 

than 3.
20. 4.(p - 3)! + p = - 2 (mod p2 - 2p) if p and p-2 are 

prime.
21. (2p-l)!-p = 0 (mod p2) ifp is prime.
22. If 4q + 3 =p where p is prime, prove that

(i) (2g+l)! = ±1 (mod p) (ii) (2g)! =±2 (mod p).
23. If q is odd, prove that

(2q-l)l = q\(q- 1)! (mod q2ql).
24. Prove that an integer of the form 9n ± 4 cannot be expressed 

as the sum of three cubes.
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C
25. If Oj, a2, ... are integers and if p is prime, prove that 

(Sar)J> = Sar!> (mod p) and deduce Fermat’s theorem.

26. Prove that n12 = 1 (mod 65520) if n is prime to 2730.

27. Prove that 18! = - 1 (mod 437).

28. Prove that 3.5.7... (p- 2) = ±1 (mod p) if and only if 
p is prime ai?d p = 3 (mod 4).

29. Use the squares of 23 and 24 to show that 31 is a residue 
and 5 is a non-residue (mod 83). Solve (i) 5®=1 (mod 166),
(ii)3U=l  (mod 166).

30. If 2q + 1 is an odd prime and a is prime to it, prove that 
a2, (2a)2, (3a)2, ... , (qa)2 are all incongruent (mod 2q+ 1).

31. Prove that if each of two integers is the sum of two squares, 
so also is their product.

Given 533 = 232 + 22= 72 + 222, 1037 = 292+ 142= 192 +262, show 
how 533 x 1037 can be expressed as the sum of two squares in 
eight ways.

32. Prove that an integer of the form 16n - 1 cannot be 
expressed as the sum of fewer than 15 fourth powers.

33. Show that the number of regular polygons of n sides 
which can be inscribed in a given circle having one vertex given 
is ł^(n).

34. Show how the 59 hexagons having the same vertices as a 
given regular hexagon can be arranged in :

(i) 7 sets of 6 congruent hexagons

(ii) 5 sets of 3 congruent hexagons

(iii) 1 set of 2 congruent hexagons.
35. Factorise

(ax-by + cz- dt)2 + (ay + bx + ct + dz)2 + (ex + dy-az- bt)2
+ (at-bz - cy + dx)2.

It follows that the product of two integers each the sum of 
four squares can also be expressed as the sum of four squares.

36. Solve in integers x2 + y2 = 2z2 by reducing it to the form 
a2 + 62 = c2.
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MISCELLANEOUS EXAMPLES

EXERCISE XIXe

A
Prove the congruences in Nos. 1-4.

1. U.3n + 3.7"=6 (mod 8).
2. 23n+2 + 21n = 4 (mod 49).
3. (n2 - l)2(n‘-4) = 0 (mod 8640) if n is prime to 30.
4. (q - 2). (q - 1)! = 2 (modg2 + 2ę) if q, q + 2 are prime.
5. Solve 5® = 6 (mod 7).
6. Solve 2x2 + &x + 3 = 0 (mod 13).
7. Find the number of integers less than (n2+l)r which are 

divisible by n but not by n2.

8. Prove that S {«+ (r - l)d}1’-1 = - 1 (mod p)
r=l

if p is prime and d is prime to p.
9. Prove that (mn)l is divisible by m!(n!)m.

10. If x, y are co-prime, prove that a:2 + 3y2 is not divisible by 17.
11. Prove that there is an unlimited number of primes of the 

form 4n - 1.
12. Prove that (i) 2,3=1 (mod 47), (ii) 243=1 (mod 431). 
[This is a verification of Mersenne’s property for n= 23, 43.]

B
Prove the congruences in Nos. 13-15.
13. ns - 5n3 + 4n = 0 (mod 120).
14. p2 = 1 (mod 24) if p is prime and greater than 3.
15. 32"+3 + 40n = 27 (mod 64).
16. Solve 31®= -1 (mod 71). 17. Solve 5®2 = 3 (mod 17),
18. Verify that 16x1151 and 16x 23x 47 are amicable (see 

Exercise XIXa, No. 4).
19. Prove that 23,= - 1 (mod 641).
20. If x and y are co-prime, prove that x2 + 3y2 is not divisible 

by 5 or by 11.
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3>
21. Prove that Ś {(r - 1)! (p - r)!} = - 1 (mod p) if p is an

r=l
odd prime.

22. Factorise 24"+2+l by using the quadratic factors of 
4x* + y2.

23. If a is divided by b, the quotient is q and the remainder r. 
Prove that if a and bq are divided by r, the remainders are equal 
and the quotients differ by unity.

24. Show that the product of two sums of three squares can 
be expressed as the sum of four squares, by factorising

(ax + by + cz)2 + (bz - cy)2 + (ex - as)2 + (ay - bx)2.
25. Express n2 as the sum of n consecutive odd numbers.

C
26. Prove that 3P-2P=1 (mod 49p) if p is a prime of the 

form 6n + 1.
27. Solve x((p- 4)1} = 1 (mod p) if p is prime.
28. Prove that 2" - 1 is not prime if n is not prime.
29. Prove that 2” = 2 (mod n) if n = 37 x 73.
30. If a, /3 are any two of 1, 2, ... , p - 1, where p is prime, 

prove that Ś(a)3)!’_1= 1 (mod p).
31. If P is the product of all positive integers less than n and 

prime to it, prove, that P2= 1 (mod n).
32. If sr= lr + 2r + ... + (p - l)r, where p is prime, prove that 

Sj, s2, ... , sp_2 and sv_1 + 1 are all divisible by p.
33. Prove that 2n! =0 (mod 2n2n~1l2n~2\ ... 8! 4! 2!).
34. Use the quadratic factors of xe + 3y6 to express 38”+3 + 1 as 

the product of three integers.
35. Prove that the product of n consecutive odd numbers is a 

multiple of the greatest odd factor of n!
36. If a, m, n are positive integers of which m, n are co-prime, 

prove that 1 + a + a2 + ... +am~’, 1 +a + a2 +... +an~1 are co-prime.
37. Prove that every factor of n4 + 3n2 + 1 is of the form 4r + 1.
38. If p is prime, prove that the sum of the products p - 2 at 

a time of 1, 2, 3, ... , p - 1 is divisible by p2.
39. If the lengths of the sides of a right-angled triangle are all 

measured by integers, prove that the area is not measured by a 
perfect square.



ANSWERS
Page 371 EXERCISE XVa

1. 1 < x < f or 2 <x 2. -V<^<ł 3. Alla:.
4. a:<aor0<a:<j8 5. (a< 0, b2 <ac) or (c<0 = a = b).

12. \k- 13. x>2 14. 2<a:<3 15. | x | >5
16. x< - 2 or a: > 5 17. x<% 18. |V15<|a:
19. No x 20. x< -1
21. (i) x + y>0, X3=y ; (ii) | a: |, | y | separated by 1.
22. (i) a + b > 2^ab, (ii) 

(iii) (n - l)Sar2>
Sa2 > £ab, 
SS “r°s > a> b, ... not all equal.

24. 2sjcd 37. [a], [b], [\'c] not all proportional

Page 378 EXERCISE XV b
1. jc4 2. V(3’5s8-‘)

12. 4c-« 13. 75/(2.57)
11. 1.
24. 9c2

Page 382 EXERCISE XVc
2- 10. (i) <, (ii) >. 22. < becomes >.

Page 388 EXERCISE XV d
4.

22. |r(l - r)(l - z)2< 1 - xr - r(l - x)< |r(l - r)(l - x)2x~2.

Page 390 EXERCISE XVe
4.

D.B.A.A. m.

11. - 2 < x< 0 or 2<x < 3. 
xxxix
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Page 396 EXERCISE XVI a
-1 2.-1 3. +1

0 6. 0 7. Xj’ + x,*

I **I Sh

1.
5.

9.

11.

4. + 1 (a, b, c, d unequal)
8. a1b1 + a2b2 + a3ba

10. a2p + a2p + a2p +...

*3 12. 1 “ii “n 1
1 “al “11 1

13. xi 
yi

X,
Vi y,

zi Z1 Z3

14.

17.
21.

°n

“as

a3.

«x.
“13

«33

18. -1

16. (i) Any line ; (ii) a conic circum­
scribing triangle of reference; 
(iii) a line-pair.

19. -1 20. 2

aix

a.x

®31

6.
(i) 1, 3, 4 or 1, 4, 6 ; (ii) 1, 2, 4 or 1, 4, 5; (iii) 2, 3, 6 or 3, 5, 6. 

23. 'Zanynzn = 0 (both parts) 24. ( - I)”-1
26. (- !)»(»->)/» 27. 6 28. 6

25. l)n(n-i)/2

«ii X12
z2i *^23

X3l X32 X33

30. A conic and the polar of (ylytyi).

+3. - 4.
8. -J(a + b + c)

1. +
6.
9.

10.
11.
16.
19.
23.
24.

Page 402 EXERCISE XVI b
2. -

(b - c)(c - a)(a - b).
(b - c)(c - a)(a - b)S(“a + be)
(a -b)(a- c)(a - d)(b - c)(b - d)(c - d)(a + b + c + d) 
a(b - a)(b - c)(c - d) 12. - 13. +
0. 17. a4 18. a, b, c
3(y-z)(z- x)(x - + yz)
a + [ib + p.sc + p.3d + ft* e, p. = cis lk-rr, fc=l to 5.
(b - c)(c - a)(a - b)(£a’ + '£a2b + abc)

5. 0

14.

Page 412 EXERCISE XVIc
1.----------
2- — (a33a44°»») > — (<lI4C,3SClS«) > + (“14 °2S “13 “??)

3. S(a4-2b’c’) 4.0 6. a3, (of-be + cd)3.
7. Rows : c2, - cb, ca ; - be, b2, - ba ; ac, - ab, a2
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10. abc + 2fgh - af2 - bg2 - ch2 = 0. 12. -
13. + (a11a42a„) 14. S(a‘ - 2b2c3)
15. S{a(j/i«2 - ZĄzJ2-h 2/(23x2 - zixl)(xiy2 - xj/J}
16. (ap + bq + cr + ds)2 + (-aq + bp-cs + dr)2

+ (-ar + bs + cp- dq)2 + (- as-br + cq + dp)2
18. 4<z262c2 23. Rows : a, b, c ; c, a, b ; b, c, a.
25. Rows : a2, a2, a, 1, 0 ; fi3, fi2, 1, 0 ; y3, y2, y, 1, 0 ;

0, 0, 0, 0, 1 ; y3, y2, y, 1, 0.
- (jS - y)2(y - a)2(a - 0)2(x - a)(x - fl)(x - y)(y - *)(y - fi) X

26. 0 = 0.

Page 416 EXERCISE XVId
1. IRcy-te)
5. ± (x3 + y3 + 23 - 3xyz)

10. 0.
12. pth column : a^b^, c
14. 2de2(a2 - c2)
18. (- l)n(®’»-w,a:«-1 + w(

2. IRl + Aa + a2), A=±l, ±^3
7. N avbqcrd3, p + q + r + s = n.

11. (Sa2)2
^2^5^, 633), biv

17. (x2 + a2 + 62 + c2)3.
Wj®"-2- ... to n+ 1 'terms).

Page 430 EXERCISE XVIIa
1. 1, 2, 3, 4 2. They coincide 3. 1, 1, 2
5. Yes, yes.
7. -4:5:1; a: = 0,«/: a = 1 : - 3; y =--(), x : 2 = 1 : -4
8. 3, 1, 2 ; 8 = <= = 3

10. 7-2*, *-l, *; 8 = e = 2
12. x :y :z = -2 : 1 : 1, < = 0
15. No solution ; 8 = 2, « = 3
17. 3-*, *, 2-*

9. No solution ; 8 = 2, e = 3
11. 3 : 1 : 2 : 1
14. a+ 26 = 7c
16. No solution ; 8 = 1, e = 2.
18. 6*+3, 5-*, 1-5*

19. a1(a3-a1)(a2-a1)x1 = 6(a3-6)(a2-6), etc.
20. a= -2, no solution; a=l, x = *, y = k'} z=l-k-k';

otherwise, - (a+ l)/(a + 2), l/(a + 2), (a+l)2/(a + 2)



xlii ADVANCED ALGEBRA

[a means ‘ add corresponding elements p means ‘ repeat the previous 
answer y means ‘ does not exist ’]

Page 437 EXERCISE XVIIb

1. a, " 1 o t r --1 -1 ■1 2. a, y, y
1 - U L 0 1 J

3. “> - 0 0 “l, ab b2 "1
_ 0 0 J L -« -ab J

4. y, 1 3 5 7_ ,r 6 101
3 7 11 15 L 34 50 J
5 11 17 23
7 15 23 31

5. (i) f °u “12 n > 0, (ii) 1“ a11 “12 “13 "1 > ail ai2
L “

21 a22 J L “21 °22
“23 J

®21 ®22

®31 ^32

6. 3, 8 7. E(ax2 + 2fyz)]
9. A2 + AB + BA + B2; A and B conformable and square.

10. 0. 11. a, 0,
12. “■ r o

L o
0
0
]•[» :]

13. cos (8 + </>) - sin (9 + </>)
_sin(d + <f>) cos (0+ <(>)_

r 14. y, y, O

16. B, C conformable. Number of cols of A = number of
rows of B

17. A2 - AB + BA - B2; A, B conformable and square
18. - k, i
19. T a- 8b -c-8eZ“l 20. T 2 2 2 "1, Til 2 “|

c - 8d a + 8b J [_ 4 4 4 J 14 2 J

Page 450 EXERCISE XVII c
1. au +k “12 °13

» “21 “22 + ^ ^23

“31 “32 “33 + *
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; determinants of the transposed 
matrices

’5 T -2 + 6 - 4
- -3 J - 1 -6 + 5

+ 2 + 2 -2

-1 +3 -2
- -5 -3 2-5
+ 1 +1 - 1

4. yv = Allvx^\ V1 5-

6. No solution.

12. 0 0 1 14.
0 - 1 2
1 -1 1

18. 34 19

r 9 15 “I, r 38 - 1 "1
L 12 27 J L 139 -2 J

x : y = 3 : -2, z = t = Q

- 12 - 12 9
-6 - 13 -4
+ 3 -6 - 18

20. No meaning if ab = O. 
when x = k, y = k', z —

io solution if a = b unless a=l
- k- k'. Otherwise,

a2(l - 6)/(a - 6), 6(a2 - l)/(a2 - aft), (1 - a)/(a2 - a&).
22. = .
26. "aAAa’ yes> no- 27- ( - l)rs+iu : 1
29. AM„A(2a = AwAa, = |a|28j (lton).

Page 459 EXERCISE XVIIIa
1. 3.(3n-l)!-?{6n.(n-l)!} 2. 72» 3. 75600
4. n! (n - l)!4-{(n-r)!(r- 1)!}
5. (2n-l)!-r{n!(n-l)!} 6. J(n+l)(2n2 + 4n + 3)
7. i(n+l)(n + 2), |(6+l)(2n-6 + 2)
8. 3003 9. 519156 10. 2, 9, 265'

13. 1001 14. 3276
15. 14702688 = 18!/(7! 6! 5!) 16. 6720
17. n! (n — 1)! 18. 15 19. |(n-3)(n2 -9n + 26)
20. 10 21. 25 23. 2n~1(n + 2)
24. 1820, 330 25. r(3n-r) -fn(n-l) + l
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26. (i) n! (n - l)!-?{(r - 1)! (n - r)! r!J;
(ii) n! S(n- l)!4-{(r- k)l (n - r - 1 + k)l (r - k+ 1)!} 

for k = 1 to r

27. (i) n! (n-l)!-?{(r-1)! (n-r)!} ; (ii) (n+ r - l)!-r(r-1)!
30. |n(n2 + 6n+11) 31. n(n2 - 1)
33. An(27n + 1). (n+2)!
35. łV5{(l + s/5)n+1 - (1 - V5)"+1}2-b-*

18. l-ł(p + ?)

Page 474 EXERCISE XVIII b
1. JL 1 019

32, 2 144 3. Pi752(l-7’3)>7’2(l-7’1)(l-2’3)
4. 2187 K 3

16384 4 7. 19228 O ni_
19683

10. b- (b-c)l(b + c) 11. H 12. £3 Us 6d
13. £3 8s 4d 14. 1 1 R 63 319

8 •L*J« 256, 512

16. 361 
3888 17. 6(n-3)-?(n-l)(n-2)

(i) m = n or p = q ;
(ii) (m>n, p>q) or (m<n,p< g)

20. 1
4 21. £2 5s 9d 22. 1-6 x 10~12

24. 1 /Q 2 1
2 V °, 3, 2 25. 137 26. 9

25

16. |{(n + l)(n + 2)(n + 3) - (n - a)(n - a+ l)(n - a + 2)}
17. 4 19. 2943360 21.

Page 477 EXERCISE XVIIIc
1. 2n-P(js+l)- 1 2. 105 3. 4096, 1560
4. _A_ R33 v.

17
3 7 6- ~^pqr - ‘I'Zpqrs + lOpgrsZ

7. 4 R
35853 i - (H)" 9. i

10. |{2 + (-2)~n} u- i¥o 13. 414
14. (p+D^+Dfr+l)-! 15. fn(n + 1)

22. S( - I)*"1 Q) (1 - ^)" for k = 1 to r.

25. ł-i{(?/-a:)/(y + a:)}n 28. (n-l)/(4n + 2)
30. a/(a + 6) 31. -001 33. 1 - 52j/52!, =^-632
34. w„ = (l-Ui-...-w„_a)xf xf

={(V5 + I)2”-1 + (V5 - l)2"->}/( 12V5).
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Page 484 EXERCISE XIX a

1. 22 2. 12, 14 5. 36 6. 720
8. + r where m = (n + 1)! and r = 2 to n + 1
9. 1-26, -92 ; 119, -87 11. 4 14. 16

16. 1 07, -9995 17. 10078
18. 2n(p + 2) - p - 1, 2n(pq+2p+2q+2) - (p+ l)(q + 1)
26. 6/tt2 (-61)

Page 491 EXERCISE XIX b
2. x not integral 3. 164

21. 48000 24. 6
4. 2400 13. 249

Page 499 EXERCISE XIX c ,
5. 3 6. 4 7. 3 8. 55
9. 3 10. 3, 8, 13, 18, 23, 28 11. 38(mod 77)

12. 7, 10 13. 7, 12 14. No solution 15. 5, 14
16. 11, 44 17. 3, 6 18. 6, 11 19. 2, 6, 7, 8, 10
20. a = 3, »=±3; o = 5, x=±l; a =6, a:=±2

39. 7, 8 40. 1, 3, 4, 9, 10, 12 42. 1.
43. 36. 44. 162.
47. (ba) - (de) + ... = 0 ; same as for 9, 11 in the scale of 10
48. ±2 (mod 5), ±2 (mod 7) ; ±2 (mod 35), ±12 (mod 35) ; 

xi = ‘k (mod 35)
50. ± 10 (mod 49) 52. ±1 ; ±1, ±3; ±1, ±(2*-*-l).
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Page 506 EXERCISE XIX d

29. 82 ; 41, 82
34. If ABC DEF is regular, the sets are like (i) ABCDFE,

ABFCDE, ABCF DE, ADC FBE, ACDFBE, 
ABFDCE, ACBEDF, (ii) ABFDEC, AFCDEB, 
ACFDBE, ABFCED, ADCEBF, (iii) ABEFCD.

35. (a2 + b2 + c2 + d2)(x2 + y2 + z2 + Z2)
36. k(a2 + 2ab - 62), k(a2 - 2ab - b2), k(a2 + 62)

Page 509 EXERCISE XIXe
5. 4. 6. 3,7. 7. (n-l){(n2+If-l}/n2

16. 16 17. 2, 15.
22. (22n+1 + 2"+1 + l)(22n+1 - 2n+1 + 1)
24. (a2 + b2 + c2)(x2 + y2 + z2)
25. ^(n2 -n + 2r - 1) for r = 1 to n 27. 6.
34. (32n+1 + l)(3zn+1 + 3"+* + l)(32n+1- 3n+1+ 1).



INDEX
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Volume I,
„ II,

HI,

Abel’s Theorem, 339
Absolute convergence, 74, 354 
Accumulation, points of, 329
Adjoint matrix, 440
Adjugate determinant, 410
Algebra of matrices, 435 
Amicable numbers, 485 (No. 4) 
Approximation, 96, 118, 124, 164 
Arithmetic mean, 374
Arrangements, 2-7, 392 
Associative law (matrices), 436

Binomial—
coefficients, 29, 80
equations, 258 
series, 78, 86, 351 
theorem, 22, 81

Bounds, 328
Brouncker, 364

Calculus applications, 31, 45, 82, 
105, 137, 196, 384 •

Cardan, 307
Cauchy— 

convergence tests, 341, 344 
inequality, 370 
theorems, 254, 356

Change, 462
Choice, 454
Coefficients and roots, 154
Co-factor, 175, 400
Cogredient, 444
Column matrix, 422

pages 1-194
„ 195-366
„ 367-510

Combinations, 10
Common logs, 113
Comparison test, 65, 341
Complementary— 

co-factor, 408 
minor, 407

Complex algebra, 253
Complex numbers (for series), 

240
Composite number, 480
Compound event, 469
Conformable matrix, 421
Congruence— 

defined, 493 
degree, 495 
roots, 496

Conjugate complex, 257
Continued fraction, 242, 247, 360
Contragredient, 444
Convergence, 57, 324, 338, 347, 

356
Convergence tests, 62, 64-70, 72. 

342-6
Convergents, 242, 244, 247
Convex functions, 386
Co-prime, 261, 482
Cramer’s rule, 428
Cubic equations, 307

D’Alembert—
test, 69, 344
theorem, 254

Degree of congruence, 495

z
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ADVANCED ALGEBRA
8-symbol, 393
Dependence, 422, 425
Dependent events, 469
Derangements, 459
Descartes—

rule of signs, 287 
solution of quartic, 313

Determinants— 
co-factors, 175, 400, 405 
defined, 172, 398 
factors, 179, 258, 401 
minors, 174, 400 
product, 182, 409 
properties, 173, 399, 448

Difference equations— 
constant coefficients, 227 
Amrr, 218, 230, 231 
variable coefficients, 232

Difference method, 37, 200, 217
Difference notation, 210
Dirichlet’s theorem, 354
Discriminant, 309, 314
Discriminating cubic, 286, 447
Distribution problems, 15, 100, 

455
Distribution of primes, 481
Distributive law (matrices), 436
Divergence, 58, 326, 348
Division of matrices, 442
Divisor, 484
Double root, 254
Double series, 357
Dummy suffix, 393

e, ex, 63, 121, 123, 125
Elimination, 166, 430
Equation, see cubic, difference, in­

complete, linear, numerical, 
quartic, reciprocal, squared 
difference

Eratosthenes, 481 
e-symbol, 393 
Euler—

constant, 331 
cubic, 315 
theorem, 501

Expansion—
binomial, 23, 81, 83, 351 
exponential, 122, 125 
logarithmic, 110 
partial fractions, 94, 277 
recurring series, 236

Expectation, 471
Exponential—-

limit, 128 
theorem, 122

Factor, repeated, 262, 276 
Factorial, 2, 476 (No. 22) 
Factorisation, 254, 483 
Factor theorems, 482 
Fermat’s theorems, 501, 503 
Ferrari, 313
Ferro, 307
Fore and aft, 442
Fourier’s theorem, 297
Free suffix, 394
Frequency polygon, 468 
Function—

cubic, 138
quadratic, 136, 368 
rational, 145, 270

Function symbol, 35

Gauss—
test, 346
theorems, 254, 492 (No. 30) 

Generating function, 237 
Geometric mean, 374 
Goldbach’s theorem, 480 
Greatest term (binomial), 26

H.C.F., 246, 260, 265, 482 
Highly composite number,

485 (No. 5)
Holder’s inequality, 380 
Homogeneous equations, 429 
Homogeneous products, 99, 454 
Horner, J.,

partial fractions, 276 
Homer, W. G., equations, 165 
Hyp function, 105

2



INDEX TO VOLUMES I, II AND III
Idemtical congruence, 495 
Incomplete equation, 289 
Increasing function, 136 
Independent events, 464 
Indeterminate equation, 246, 497 
Indiicator, 489
Indmction, mathematical, 42 
Inequalities—

cialculus methods, 384 
function, xT -yr, 385 
log function, 108 
manipulation, 367 
quadratic, 368 
tiheorem of means, 375
a,nd see Cauchy, Holder, Jensen, 

Minkowski, Tchebychęf, and 
Weierstrass

Infinite continued fraction, 360 
Infinite integral, 342
Infinite product, 348.
Infinite series, 57, 338 
Inner product, 410
Integer function, 487 
Integral test, 342 
Integro-binomial, 197,

200 (No. 33) 
Interpolation, 273 
Inverse matrix, 440 
Inverse probability, 472 
Inverse transformation, 444 
Irreducible, 269, 308

Jacobi’s theorem, 411
Jensen’s inequality, 386

Lagrange, 273, 502 
Laplace’s expansion, 406
Limits, 53, 60, 324, 332, and see list 

after Index
Limits, upper and lower, 328 
Linear dependence, 422, 425 
Linear equations, 179, 420, 425 
Linear transformation, 432 
Logarithm­

common, 113
function, 105-8

Logarithm—
inequality, 108 
natural, 107

Matrix, 421
Means, 374-5
Mersenne’s numbers, 506
Minkowski’s inequality, 381 
Minor, 174, 400
Modulus, 60, 493
Monotone sequence, 330 
Multinomial, 29 (No. 25), 195 
Multiple roots, 254

Napier’s formula, 119
Newton—

approximation, 164 
difference formula, 216 
sums of powers, 302

Non-axal, 253
Non-residue, 498
Non-singular matrix, 439
Numerical equations, 164

O-notation, 346
Order, 299
Orthogonal, 445
Oscillation, 58, 327, 341 (No. 27)

Parity, 287
Partial fractions, 89, 269, 273, 276 
Partitions, 457
Perfect number, 485 (No. 15) 
Permanence, 287 
Permutations—

even and odd, 392 
notation, 5

Petersburg paradox, 471
Power series, 44, 236
Prime number, 480, 350,

366 (No. 22)
Prime number theorem, 481
Probability, 462
Product—

consecutive integers, 12, 487 
determinants, 182, 409

3
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Product—

matrices, 434
Proper, 269 
Proportional parts, 114

Quadratic inequality, 368
Quadratic residue, 498, 504 
Quartic equation, 312,

318 (Nos. 7-10) 
Quaternion, 439 (No. 19) 
Quotient of matrices, 442

Raabe, 345
Random choice, 463
Rank of matrix, 422 
Rational function, 145, 270 
Ratio tests, 69, 344 
Reciprocal determinant, 410 
Reciprocal equation, 316 
Recurring series, 226, 235 
Reducing cubic, 313 
Regular matrix, 439 
Repeated factors, 262, 276 
Repeated roots, 142, 254 
Residue, 494, 498, 504 
Riemann’s theorem, 355 
Rolle’s theorem, 284 
Roots and coefficients, 154 
Roots—

of cubic, 308
of general equation, 254. 283
of quartic, 315
position of, 142, 283

Row matrix, 421

Scalar matrix, 439
Seale of relation, 227, 236 
Selections, 10, 16 
Semi-convergent, 75 
Sequences, 324 
Series—

binomial, 22, 78, 351
exponential, 122

Series—-
finite, 37, 200, 211, 217 
infinite, 57, 338 
logarithmic, 110 
power, 44, 236 
recurring, 226, 236 
and see list after Index

• Set, 369
Singular matrix, 439
Skew-symmetric, 411
Squared differences, 300,

312 (No. 25), 314, 318 (No. 8) 
Square matrix, 439
Steady increase (decrease), 330 
Sturm’s theorem, 292 
Sub-factorial, 459
Successive convergents, 244
Successive differences, 213
Sum of matrices, 435
Sum to infinity, 57
Sums, see list after Index
Symmetric, 411
Symmetric function, 155, 298, 304

Tartaglia, 307
Tchebychef’s inequality, 370 
Transformation, 160, 432, 445 
Transposition, 399, 422, 440

Unit matrix, 439

Vandermonde’s theorem,
33 (No. 13), 198 (No. 10) 

Variations, 287

Weierstrass’ inequality, 369
Weight, 299
Weighted mean, 375
Wilson’s theorem, 502

a-axal, y-axal, 253

Zero matrix, 436
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LIST of SPECIAL
SUMS LIMITS SERIES and SYMBOLS

Finite Sums

(a +x)n, 22 ; (xt +x2 +... +xm)n, 195 ;
Sr2, Sr3, Sr(r + 1), Sr(r + 1) (r+2), 38-42; S{a + (r - l)d} xr~\ 44;
S H{a+(r+k-2)<I}±1, 205
r k

Limits

xr, 56 ; af/rl, 76 ; mrxr, 80 ; (1 +x/r)T, 128 ; raT, Ijr, 334 ; V«> 335 ; 
(log r)/r“, 332 ; 1 + J + J +... + (l/n) -log n, 331.

Series (Convergence etc.)
Sl/r, 64; Sl/rfc, 67; Sl/pr, 350; Sl/r!, 62; Sxr/r!, 75, 122 ; 
S( - l)rxr/r, 76, 110; Sm/, 78, 81, 351; SrV, 347; 
Sl/(rlogr), 343.

*

Symbols

A, [a], [O(J, 421 ; A', A’1, 440-1 ; Ojla, | |, 397-8 ; Aw 401 ;
A(a), A(a,p), 374-5 ; cis, 258 ; A, 309, 314 ; Aur, 210 ; 8, e, 395 ; 
G(a), G(a, p), 374-5; ln, 439; li, 481; mod, 60, 493; Mvą, 400;
Mr(a), Mr(a, p), 376; n!,. 2; ni,■ 459 ; nPr, 5

nCr, (”), cr, nr. 10, 29, 80 ; nHr, 100 ; O, 346; O, 436

Prlqr, 244; r(A), 422; S, 35 ; M, 487 ; 489.
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