THE AMERICAN

(24)

Copyright, 1918

Tife Excyclopedia Americana Corporation

Copyright, 1922

PARTIAL LIST OF CONTRIBUTORS TO VOLUME X

ALDEN, RAYMOND M., Ph.D., Litt.D
Professor of English, Leland Stanford Junio- Uni-
versity ESSAY
BERRY, GEORGE R., Ph.D., D.D.
Professor of Old Testament Interpretation and
ESTHER, BOOK OF
BOGART, ERNEST L., Ph.D.
Professor of Economics, University of Illinois
FACTORY SYSTEM, THE
BOTHNE, GISLE, A.B.
Professor of Scandanavian Languages and Literature,
University of Minnesota
ERASMUS MONTANUS
BREWSTER, WILLIAM T., A.M
Professor of English, Columbia University
ENGLISH LITERATURE, VICTORIAN
ESSAY ON MAN THE

BUCK, H. W., E:E., Ph.D.

Consulting Electrical Engineer, New York
ELECTRICAL ENGINEERING
BUELL, MARCUS D., S.T.B., D.D.
Professor of New., Testament G.D.
Boston University Sh Shool of Theology
EPHESIANS, EPISTLE TO THE
BUTLER, AMOS W., A.M., LL.D.
Zoologist and Anthropologist, Indianapolis ETHNOLOGY
CAIRNS, WILLIAM B., Ph.D.
Associate Professor of American Literature, Univer-
sity of Wisconsin
ELSIE VENNER
FALL OF THE HOUSE OF USHER
CAJORI, FLORIAN, Ph.D., LL.D., Sc.D.
Professor of History of Mathematics. University of
California
EQUATIONS, GENERAL THEORY OF
CANFIELD, ARTHUR G., Ph.D.
Proiessor of Romance Languages, University os ELLE ET LUI
CHAMBERLAIN, CHARLES I, PhD
Professor of Morphology and Cytology, University
of Chicago
EMBRYOLOGY OF PLANTS
CHANDLER, FRANK W., Ph.D.
Professor of Enclish and Comparative Literature,
University of Cincinnati
ELECTRA
EXEMPLARY NOVEI

CHEYNEY, A. R.
PRiladelphia, Pa.
Philadelphia, Pa.
ELECTRIC ALTERNATING CURRENT
CHITTENDEN, FRANK H., Sc.D.
Entomologist, in Bureau of Entomology, United
States Department of
States Department of Agriculture, Washington,
D. C.
ENTOMOLOGY
CHUBB, PERCIVAL
Leader of the Ethical Society of Saint Louis
ETHICAL MOVEMENT AND ETHICAL.
SOCIETIES
CLARK, L. PIERCE, M.D.
New York City
EPILEPTIC CONSTITUTION
COCHRANE, CHARLES H.
Author of "Modern Industrial Progress "
NGINE
ENGINEERING TERMS
COOPER, LANE, Ph.D.
Professor of English Language and Literature,
ENGLISH MAIL COACH, THE
COUMBE, CLEMENT W
Technical Art Expert
ENAMELS AND ENAMELING
ENGRAVINGS
CREIGHTON, JAMES E., Ph.D., LL.D.
Professor
versity of Logic and Metaphysics, Cornell Uni
EMPIRICISM
EPISTEMOLOGY
DARTON, NELSON H
Geologist, United States Geological Survey EXPLOSION CRATERS
DEIMEL, RICHARD F., B.S., M.A
Assistant Professor of Mechanics, Stevens Institute
of Technology ELASTICITY
DEWEY, JOHN, Ph.D., LL.D.
Professor of Philosophy, Columbia University ETHICS

EGLIN, WM. C. L., E.E.
Second Vice-President and Chief Engineer The
ELECTRIC DIRECT CURRENT
EISELEN, FREDERICK CARL, Ph.D., D.D.
Professor of Old Testament Interpretation, Garrect
Biblical Institute
EXODUS, BOOK OF

Contributors to Volume X-Continued

ERSKINE, JOHN, A.M. Adjunct Professor of English, Columbia University ENGLISH LITERATURE, ELIZAPOETRY
FARQUHAR, HENRY H.
Consultant in Industrial Management and Instructor
in the Harvard Business School
FACTORY MANAGEMENT
FERRIS, RICHARD, C. E., Sc.D. Editorial Staff of The Americana ETHER
FORD, J. D. M., Ph.D. Smith Professor of French and Spanish Languages,
Harvard University EL SOMBRERO DE TRES PICOS
FABULAS OF TOMAS DE IRIARTE
FOWLER, HENRY THATCHER, Ph.D.
Professor of Biblical Literature and History. Brown
University EZEKIEL, BOOK OF
GARNER, JAMES W., Ph.D.
Professor of Political Science, University of Illinois ENEMY ALIEN PROBLEMS
GAUSS, CHRISTIAN, Litt.D. $\left.\begin{array}{c}\text { Professor } \\ \text { versity }\end{array}\right)$ Modern Languages, Princeton Uni-
EMILE
GREENLAW, EDWIN, A.B., A.M., Ph.D.
Kenan Professor of English in the University of
North Carolina
FAERIE QUEENE, THE
hale, EDWARD E., Ph.D.
Professor of English, Union College, Schenectady,
N. Y.
ENGLISH LITERATURE
EASARY TALES OF HANS CHRISTIAN
ANDERSEN
haller, william, Ph.D.
Instructor in English, Columbia University ENOCH ARDEN
HAMLIN, ALFRED D. F., A.M., L.H.D. Professor of Architecture, Columbia University EGYPTIAN ARCHITECTURE
ENGLISH ARCHITECTURE
HANFORD, JAMES H., Ph.D. Associate Professor of English, University of North
Carolina EXCURSION, THE
HARRY, JOSEPH E., Ph.D. Author of "The Greek Tragic Poets." EURIPIDES
hayes, DOREMUS A., Ph.D., S.T.B. Professor of New Testament Exegesis, Garrett
Biblical Institute, Evanston, III. EXEGESIS

HIBBEN, JOHN GRIER, Ph.D., LL.D., L.H.D.
EPICUREANISM

HOWARD, WILLIAM G., A.M.
Assistant Professor of German, Harvard University ELECTIVE AFFINITIES, THE
INGERSOLL, ERNEST
Naturalist and Author
EYESIGHT IN THE LOWER ANIMALS
INGERSOLL, HELEN
Naturalist
EVERGREENS
JACKSON, DUGALD C., C.E.
Professor of Electrical Engineering, Massachusetts
Institute of Technology
ELECTRICAL MEASURING INSTRU-
KELLOGG, VERNON, A.B., M.S.
Professor of Entomology. Leland Stanford Junios
University, EVOLUTION
KENNELLY, A. E., Sc.D.
$\left.\begin{array}{c}\text { Professor } \\ \text { versity }\end{array}\right)$ Electrical Engineering, Harvard UniELECTRICAL TERMS
KRAPP, GEORGE P., Ph.D Professor of English, Columbia University ENGLISH CHRONICLES
LAWRENCE, WILLIAM WITHERLE, Ph.D. Professor of English, Columbia University ENGLISH
PERIOD
LITERATURE, MIDDLE

LINDQUIST, DAVID, E.E.

$$
\begin{aligned}
& \text { Chief Esvincer, Engineering Department, Otí } \\
& \text { Elevator Company. }
\end{aligned}
$$ ELEVATORS

MARTIN, THOMAS C., E.E. Secretary National Electric Light Association ELECTRICAL MANUFACTURING INDUSTRY
MAVER, WILLIAM, Jr., C.E. Consulting Electrical Engineer ELECTRIC MACHINE ELECTRIC SIGNALING ENERGY
ELECTRIC UNDERGROUND CABLES AND CONDUITS ELECTRICITY,
Mcgregor, James h., Ph.D. Professor of Zoology, Columbia University EMBRYOLOGY
EMBRYOLOGY, HUMAN

Contributors to Volume X-Concluded

MEADER, JOHN R.*
Editor and Author
EMPLOYMENT MANAGER
EMPLOYMENT MANAGER
MOSES, MONTROSE J., B.S Dramatic Critic
FAITH HEALER, THE
MUNROE, CHARLES E., S.B., Ph.D
The George Washington University, Washington,
D. C. EXPLOSIVES

RISTEEN, ALLAN D., Ph.D.

Dircctor Technical Research, The Travelers Insur
ance Company ELECTRON THEORY
ENERGETICS

PIERPONT, JAMES, Ph.D., LL.D.
Professor of Mathematics, Yale University EQUATIONS, GALOIS' THEORY OF
RINES, IRVING E.
Editor of "History of the United States "
ELECTIONS
ELECTORAL QUALIFICATIONS
ROUSH, G. A., A.B., M.S.
Assistant
Society Secretary. American Electrochemical
ELECTROCHEMICAL EQUIVALENTS
ELECTROCHEMICAL INDUSTRIES
ELECTROCHEMISTRY
ELECTROCHEMISTR
SAMUELS, BERNARD, M.D.
New York City
EYE, THE
SANBORN, F. B., A.B.
Author of a " Life of Emerson "
EMERSON, RALPH WALDO
SCHMIDT, NATHANIEL, A.M
Professor of Semitic, Languages and Literature,
Cornell University
ENOCH, BOOK OF
ESCHATOLOGY
SCHULMAN, A. G., B.A
Department of Art. College City of New York ETCHING: ITS TECHNIQUE AND GREAT MASTERS
SELLARS, ROY WOOD, Ph.D Professor of Philosophy, University of Michigan
EUCKEN, RUDOLF CHRISTOPH
SHERMAN, STUART P., Ph.D.
Professor of English, University of Illinois
EMPEDOCLES ON ETNA EOTHEN, ALEXANDER WILLIAM
KINGLAKE
SINGLETON, ESTHER
LETON, ESTHER
Author of "French and English Furniture,"" "Art
in Belgian Galleries." etc.
EMBROIDERY

SMITH, EDWARD WANTON, Ch.E.
Factory Engineer. The Electric Storage Battery
Company, Phildalphia
ELECTRIC STORAGE BATTERY
SPINGARN, J. E., Ph.D.
Major, Infantry, U. S. A... formerly Professor of
Comparative Literature, Columbia University
ENGLISH LITERATURE, ELIZA-
STEINMETZ, CHARLES P., Ph.D.
General Electric Company, Schenectady, N. Y.
ELECTRICITY
TASSIN, ALGERNON, A.M.
Assistant Professor of English, Columbia University
ENGLISH LITERATURE, VICTORIAN
ENNEY, ALVAN A., Ph.D
Assistant Professor of Sociology, Columbia Univ. EUGENICS
THOMSON, ELIHU, Ph.D., Sc.D. General Electric Company, West Lynn, Mass. ELECTRIC WELDING
THORNDIKE, A. H., Ph.D., L.H.D. Professor of English, Columbia University ENGLISH LITERATURE, ELIZA-
UUSEY SINCLAIR MD
New York City

ELECTROTHERAPEUTICS
TRENT, WILLIAM P., LL.D., D.C.L.
Professor of English Literature, Columbia Univ. ELEGY WRITTEN IN A COUNTRY
CHURCHYARD
GKER MARION
CKER, MARION, Ph.D.,
Professor of English, The Polytechnic Institute of
Brooklyn
EPISTLE TO ARBUTHNOT
EPISTLE TO AUGUSTUS
UNDERHILL, JOHN GARRETT, Ph.D. Representative of the Sociedad de Autores Espanoles
in the United States and Canada

> EL GRAN GALEOTO ELECTRA

VAN DOREN, CARL, Ph.D.
Associate Professor of English, Columbia University
EVANGELINE
Veazie, Walter B., Ph.D.
Department of Philosophy, Columbia University
ESSAY ON THE HUMAN UNDERSTANDING, AN
WALSH, JAMES J., Ph.D., M.D., Litt.D., Sc.D. Author of "The Thirteenth the Greatest of Cen-
EIGHTEENTH CENTURY
EIGHTH CENTURY
ELEVENTH CENTURY
WILCZYNSKI, ERNEST J., Ph.D.
Frofessor of Mathematics, University of Chicago EQUATIONS

2athathe

KEY TO PRONUNCIATION.

E
 ba-tès'ta à agoos-kéthà, Paraguayan a lieutenant-colonel in the war with Uruguay, Brazil and the Argentine Repullic, later being appointed Secretary of War and ottaining the rank of general. He was president o 1896.
EGYPT. (Greek, Aiyuntos, Aiguptos; Hebrew,
 Ham, "The land of Ham" (Ps. cvi, 22)..Assyrian Ef In Hieroglyphics, $\square \mathbf{N O}$, Kamt). Its present name is derived from the Greek, Aiguptos (meaning obscure). The Hebrew name Mizrailn, is the dual form of Mazor (a fortified or walled-in place or country), viz., two Mazors, name upon the monuments and in the papyri is Kami or Kamt "Black land", an appropriate Name, owing to the black alluvial soil in the soil of the in contradistinction to the reddish soil Nile.
Modern Egypt is a vast country extending
From From the Meypt is a vast country extending parallel 22°
southward to 1. , called Egypt Proper, thence southward to the British possessions in equato-
rial Africa, which latter region (known as the Egyptian Sudan) is jointly governed by Great Rritain and Egypt. The eastern boundary is the Red Sea, and on the extreme northeast, Wady-el-Arish, Syria. The western boundary runs
northwest to Tripoli, and thence southeast northwest to Tripoli, and thence southeast
through the Libyan desert, to a point 200 miles west of Wady-Halfa. The area of Egypt (exclusive of the Sudan) is about 363,181 square miles, the country cxtending 675 miles north Topography. 500 miles east and west. times Egypt was always divided into the Upper and the Lower, or the Southern and Northern countries. At a very early period it was furcalled nomes , into a number of departments, probably the usual number. A third great division, the Heptanomis, "seven nomes." preserved in the modern (Wustani) "Middle Egypt," was introduced at the time of the century A.D.). Each nome had a separate local government. In the 5 th century a.d., Fgypt was divided into six eparchies. Augusta Prima
west, Arcadia (the former Heptanomis), The-
bais Proxima as far as Panapolis, and Thebais Supra to Philx. Under the Mohammedans, the triple division, Misr-el-Bahri (Lower Fgvpt);
el-Wustani (Middle); and es-Said (Upper) el-Wustani (Middle); and es-Said (Upper) has prevailed, but the number of subdivisions five governments of principal towns, and 14 provinces subdivided into districts.

Egypt is connected with Asia by the Isthmus of Suez, across which runs the great canal,
about 100 miles long. The inhabited portion of Egypt is mainly confined to the valley and delta of the Nile, the widest part of which docs not excced 120 miles, while in many parts of the valley it is only from 3 to 15 miles wide, and at the southern frontier of Egypt proper,
only two miles. West of the Nile are several oases. Two ranges of lofty mountains, the Arabian Hills on the cast and the Libyan on the west, enclose this valley. The delta of the Nile is traversed by a network of primary and secondary channels and is also intersected by
numcrous canals. merous canals.
Selly recognized inannels or mouths were of which, going from east to west, were the Pe lusiac mouth, the Tanitic, the Mendesian, the Pathmitic, the Sebennytic, the Bollitine and the
Canopic. Now only the Bolbitine (called Rosetta) and the Pathmitic (Damietta), are in existence. The Nile has a current rumning seaward at the rate of $21 / 2$ or 3 milcs an hour and
the stream is always deep cnough for navigathe stream is always deep enough for naviga-
tion. The water becomes a reddish-brown during the annual overflow; it is esteemed highly salubriotus. Near the sca are the lakes Menzaleh, Birket-el-Mariut and other extensive but shallow lagoons.

The openings or lateral valleys of the hills confining the valley of the Nile are comparatively few, or, heing little frequented, are not
well known. Those on the east side with which "We are best acquainted are the Wady-el Tili, "Valley of the Wanderings") (of the children
of Isracl), leading from the neichhorhood of Israel), leading from the neighborhood of
Cairo to the head of the Gulf of Suez and that through which passes the road from Koptos to Kosseir on the Red Sea. A short distance west of the Nile and above the Delta is the fertile valley of Fayum, in the northwest and lowest by a canal or branch from the Nile. The level of the lake is now 130 feet below that of the

Mediterranean. This lake, formerly known as
Lake Moeris, covered a far larger area, and by
means of sluices and other works was utilized means of sluices and other works was utilized west bank of the Nile generally present to view plains of gravel or of fine drifting sand; on the east, the scene is varied by rocks and moun-
\qquad Climate- The atmosphere in Egypt is exand hot, though the heat is tempered dure regular the daytime for seven or eight months of the year by the strong wind which blows from the north river against the stream. The winter months are the most delightful of the year, the air being cool and balmy and the ground covered with verdure; later, the ground becomes parched seen, or simoon, frequently blows into the Nile valley from the desert plains on each side of it, raising lofty clouds of fine sand and causing great annoyance, until the rising of the hver again comes to bless the land. It rains phis the rain falls perhaps three or four times in the course of a year, and in Upper Egypt only once or twice, if at all; showers of hail sometimes reach the borders of Egypt, but the quakes are occasionally felt and thunder and lightning are neither frequent nor violent. gypt is not remarkably healthy, especially in the delta, where ophthaimia, diarrhoea, dysenmany invalids now winter in Egypt, especially in the neighborhood of Cairo, or higher up the river, where the air is dry and pure.
The isteric river Nile Grect Nilus; Hebrew Yeor or Sheck Neilos; Latin Neel (black), is 3,400 miles in length, the longest in Africa and one of the great rivers of the
world. It divides at lat. $30^{\circ} 15$, just below world. It divides at lat. $30^{\circ} 15^{\prime}$, just below Cairo, into two main streams, the one entering other by the Damietta mouth on the east. These two streams carry the bulk of the Nile water to the Mediterranean and enclose a large portion of the territory known as the delta, from owes its existence to the deposits of alluvia matter brought down by the stream. The most remarkable phenomenon connected with the Nile periodical rains which fall within the from the regions and the Abyssinian Mountains. As rain rarely falls in Egypt, the prosperity of the country entirely depends on this overflowing of the river. On the subsiding of the water the land is found to be covered with a brown with a sufficient inundation, it produces twa crops a year, while beyond the limits of the inundation there is no cultivation. The Nile begins to rise about the middle of June and continucs to increase until about the end of course, the water being conveyed to the fields by artificial courses where natural channels fail. After remaining stationary for a short time, the river rises again but subsequently begins to

January, February and March and reaching its lowest in April, May and early June. The over flow water is now to a great extent managed reservoirs and canals, so that after the of subsides it may be used as required. A certain proportion of the ficlds, after receiving the overflow and being sown, can ripen the crop without further moisture; but many others always re-
quire artificial irrigation. now largely used in northern Egypt. Latterly the government has tried to make the farmers less and less directly dependent on the inundation, and the great barrage of the Nile below Cairo, the largest weir in the world, is one Assouan being another.
The native methods of raising water for irrigation are chiefly by the sakich, or water wheel, and the shadouf. The first consists of a horisets in motion a vertical wheel, around which are hung a number of earthen jars, this wheel biver sunk into a reservoir connected with the hring it to a trough on a level with the and nto this trough each jar emptics itself in suc cession and the water is conducted by an inclined channel into the cultivated ground adinto compartments of been previously divided raising the mold into walls or ridges of 5 or 6 inches in height. Into these compartments the cultivator forms an entrance for the water by with the sole of his foot: and this ove or wall of the channels of irrigation and adjustment of the openings from one compartment to the other with the foot is continued till the cultithat each compartment is growth of the plants plied with its proper quantity and duly sup second means of raising water water l_{y} the shdouf, consists of a leather bucket slung at one end of a pole which has a wcight at the othert, a contrivance by which on a vertical supenabled to scoop up the water consider below his feet and raise it with comparative case to the mouth of a channel on a levcl with of great antiquity and is depicted raing water is of great antiquity and is depicted on the walls sculptures of Nineveh. A sufficient rise of the river (the rise varies at different points) is and as the water subsides, the chap the country; on the sakieh is subsides, the chaplet of buckets rising one above the other on the river bank are required. Should the Nile rise above the requisite height it may do great damage; on the height, there is a deficiency attain the ordinary rare exceptions, the inundations are ; but with nearly uniform. See Delta; Irrication.
The Nile Barrage.- One of the greatest wonders of modern times, rivaling the Pyramids of the ancients, is the Nile Barrage. the stupendous work at Assouan and Assiut of taming the Nile, is an accomplished fact. Egyp is no more subject to the caprices of the Nile. The precious fertilizing fluid coming down from

equatorial Africa by way of Bahr-el-Ghazal and Bahr-el-Abyad arc halted and stored in an im-
mense reservoir 200 miles long, with, since 1912 , hy holding capacity of $9,000,000$ cubic feet. By the giving of perpetual irrigation two or
three crops may be raised annually, and the productivity of the soil is increased by 50 per cent. Millions of acres on both sides of the river have been reclaimed. Other works have
been constructed within the past 10 years, showbeen constructed within the past 10 years, showing equally marvelous results. Egypt's pros"seven year famine". recorded in Scripture was the result of insufficient irrigation, and there is an cearlier instance of a similar character rcAfter many centuries of incrtness and decay Egypt lifts up her head and promises to become again the storchouse of the East.
Oases.- The fertile spots peculiar to the deserts of Africa are found in Egypt along the
hollow region of the Libyan Desert, parallel to the general direction of the valley of the Nile, and above 80 miles west of it. The Great Oasis or Wah-el-Khargch, lies immediately west of About 50 miles west of the northern extremity of this oasis lies the Wah-el-Daklileh 24 miles long and 10 miles broad. West by south from the Fayum the date groves of the Little Oasis, or Ware-cl-Baharieh, display their unusual vcrdure. In this forme of ancient construction have been discovered which have a depth exceeding 400 feet. On the road between this oasis and that of El Dakhileh, inclining to the west, occurs half way the Wah-el-Farafrah of 200 milcs from the Nile, lies the oasis of Siwah. The inhabitants of this secluded spot, though tributary to Egypt, are in language and manners wholly libyan. The region of the oases termiNatron lakes. See Oasts.
Fauna.- Owing to the absence of forests in Egypt there are few wild animals, the principal species being the fox, jackal, hyena, the wild ass, the ibex in the Red Sca hills and several
kinds of antelope. The chief domestic animals are camcls, horses, asses, horned cattle and sheep. The hippopotamus is no longer found in Egypt, though it is met with in the Nile above he cataracts and the crocodite is found in of vultures (one of which is very large, individuals sometimes measuring eight feet across the wings), eagles, falcons, hawks, buzzards, kitcs, crows, linncts, larks, sparrows and the beautiful hoopoe, which is regarded with superstitious
reverence. Pigeons, quail and varions kinds of poultry are very abundant and numerous aquatic
birds and pelicans. The ostrich is found in the birds and pelicans. The ostrich is found in the deserts. Among the reptiles are the horned viper (cerastes) and the asp (naja haja), hoth
poisonous. Fishes abound in the Nile and lakes and furnish a favorite article of food. Waterfowl are plentiful and were anciently prepared and salted like fish. The sacred ibis is still a regular visitor during the inundation and the the countless insects are the sacred beetle (Atcuchus saccr) and the migratory becust.
Flora.-. The few trees found in Egypt inAtcuchus saccr) and the migratory locust.
Flora.. The few trees found in Egypt in-
clude the date-palm, tamarisk, sycamore, Christ's-
thorn, carob and two species of acacia. Many trees have been planted in recent times, especially about Cairo, such as the lebbek (Albizzia
Lebbek) and the cucalyptus. The papyrus plant Lebbek) and the cucalyptus. The papyrus plant,
once so important, is now to be found only in one or two spots. A paper was manufactured from it, which was supplied to all the ancient world. Boats, baskets, cords and shoes were also made from it. Wine was abundantly pro-
duced in ancient Egypt and the sculptures bear ample testimony to the extent to which the ancient Egyptians indulged in wine and beer or other intoxicating beverages. The vine is still much cultivated, but little or no wine is made, are sown immediately after the inundation begins to subside and are harvested three or four months later: wheat, barley, beans, peas, lentils, vetches, lupins, clover, flax, lettuce, hemp, coriander, poppies, tobacco, watermelons and cucum-
bers. The following plants are raised in summer chiefly by means of artificial irrigation: durra, maize, onions, henna, sugar-cane, cotton, coffec, indigo and madder. Several varieties of dates fruits such as figs, pomegranates, apricots, peaches, oranges, lemons, citrons, bananas, mulberries and olives are plentiful. The lotus or water-lily is the chief species of flower found in Egypt. There is a high coarse grass called
halfa and various kinds of recd and cancs Geology and Mineralogy.-Granite, coce limestone and sandstone are the principal rock formations found in Egypt. But in the Nile Valley from 25° North Latitude to the Fayum, sandstone predominates. At Syene, the southern nates. Its quarries have supplied the materials for the obelisks and many colossal statues of Ancient Egypt. A great extent of the country is covered with moving sands; the soil bordering
the Nile, owing to the encroachment of the shifting sands of the desert, consists of an argillaceous earth or loam, more or less mixed with sand. This sedimentary deposit shows no trace of stratification. In addition to those already
mentioned, there are various other minerals, mentioned, there are various other minerals,
which were employed in architecture, which were employed in architecture, sculpture,
ctc. These include syenite, basalt, alabaster, breccia and porphyry. Among other valuable products of Ancient Egypt were emeralds, gold from the mines in Upper Egypt, iron from the
desert plains of Nubia and natron from the lakes in the Oasis of Ammon (hence named Ammonia, Latin sal-ammoniacumn). Bitumen, salt and sulphur are also among the minerals of Egypt.
Gove
been held as been held as a suzcrain of Turkey under
the rule of a Khedive. In 1879 it came the rule of a Khedive. In 189 it came and France as sccurity for the European bondholders. During the rebellion organized
by Arabi Pasha in 1882 France rcfused to interby Arabi Pasha in 1882 France rcfused to interof the Khedive's authority the dual control came to an end and the government of the country was effectively controlled by the British authorities, but still under Turkish suzerainty. Since
the beginning of the British occupation great reforms have been carried through in every department of the public service; the finances have been placed on a sound hasis; extensive
public works have been carried through; the

Sudan (q.v.) has been reconquered and the fear per 1,000 males were able to read and write and
of incursions from the south brought to an end. In 1883 an organic law was promulgated by the Khedive creating a number of representative institutions whose functions were almost wholly consultative. In July 1913 this law was repealed by an act bringing into operation a legislative are elective and in which the ministers sit Provincial councils have been organized with powers of regulation over markets, local admin1stration and elementary vernacular educatio Justice.-The
Justice. - The administration of Egyptian four classextremely complicated. There are or Mohammedan courts: (1) The mehkemmehs, to the precepts of courts, conducted according to the precepts of the Koran and the principles
of the Mohammedan religion, and retaining jurisdiction in matters of personal law dnly (2) The so-called mative tribunals, composed of 90 summary tribunals, 8 central tribunals and a court of appeals at Cairo. These deal with crimes committed by natives and civil actions this category has been the creation of village or cantonal courts, having powers analogous to those possessed by English justice of peace courts. (3) The consular courts, which deal with civil cases between foreigners of the
same nationality and also try criminal cases in which the accused are foreigners not within the jurisdiction of the mixed tribunals. (4) The mixed tribunals, dating from 1876, which have jurisdiction in all matters civil and commercial eigners of different nationalities. These courts are admittedly successfull. A code of laws has been published for the greater systemization of Education.- The
Education.- The chicf seat of Koranic edufounded by Saladin aloout 1170 and still $\mathrm{cm}-$ ploying the same methods of instruction that were originally in use. The factilty numbered n 1918 ahout 300 moulahs or priests, many having wide reputation for scholarshin; the
students, some 10,000 , are from India, Turkcy, Syria, Afghanistan and other Mohammedan countrics. There is no regular university organization nor arrangement for the endowment of departments or founding of chairs. Anyone Frequently the professors practise to lecture. clerkships or are connected wilh mosques in Cairo. There is no charge for instruction. Threc-fourths of the students study theology, phy and astronomy are also taught. There are also in Cairo eight collcges and professional schools of excellent grade. The Egyptian Minstry of Prblic Instruction has under its direction schools for engincering, medicine, law and ng schools for teachers. A military schol trainunder the management of the war office. The number of indigenous schools under control of the provincial councils on 31 Dce. 1915 was 3,666 , with a total curolment of 250,575 (225,073 the board of education have an enrolment of 26,662 (20,507 hoys, 6,115 girls). Of native
Egyptians, according to the census of 1907,85

Technical Training.- In 1907 the authorication in Egypt under the direction of eduSidney Wells, which has made remarkable progress despite peculiar difficulties in a country where a technical or an industrial career carried with it a social stigma. It was divided commercial. In the first two branches ously the most important three sections have been organized, corresponding with the socia grades of the people and the needs of the eral educational scheme are the . In the gen lage schools, the primary and the secondar schools. The new plan provides for manua workmen, formen and managers and skilled professional workers. Under industrial educa tion are comprised trade schools, a technica cultural are included farm schools, intermediate schools and a school for agriculture. The trade schools - some called model workshops - provide a system of apprenticeship in trades that prentices, all of the poorer classes and from the age of 12 and with but a very rudimentary knowledge, are taught a four years' course in carpentry, furniture-making, plumbing, shoemaking, tailoring, saddlery, etc. They accep
outside work, and in 191417 such workshops executed orders valued at $\$ 150,000$. The 11 farm schools. afford practical training in elementary agricultural matters to the poorer class.
Demanding primary certificates the Boulac schools deal with the middle classes. The first has three sections in a four-year course - mechanical and electrical engineering, building second, in a three-year course creates in the first case draftsmen, architects, assistant engineers, bulders, clerks and lecturers on technical topics; and also to improve the knowledge of landed, proprictors and to train pupils to fill
managers' positions. The highest schools managers positions. The highest schoolswith the schools of medicine and law, the nucleus for the future university. The course is four years and conditioned on the secondary certificate. Irrigation, engincering and archition, are taught. Graduates are fitted to fill vacancics in the ministrics of public works and agricultture, to become expert lecturers and occupy higher technical posts outside government
service. Besides mere instruction service. Besides mere instruction the depart-
ment encourages local industries and introduces modern methods in carpet making or weaving and will provide new industries after the present war. A specialty has been made in Upper Egypt of the manufacture out of natural co unique design.
Commercial education, the third branch of technical training, is more recent. Evening classes for shorthand and then in typewriting, English, French and Aralic) were established in Cairo, Alexandria and Mansura. Later two
schools of commerce were opened, to include The pottery of Egypt also descrves a word of specializing in accountancy, secretarial work praise, chiefly for the merit of the bardaks o
and general commerce. The authoritics, too, water-jars. Coarse cotton cloths, and cloths o co-operate with the training of girls at the Cairo Trade School where dressmaking, embroidery and stocking-making are taught, the
articles being sold at an adjacent shop. Furarticles being sold at an adjacent shop. Further five economic schools are operated. In
the 51 schools imparting various kinds of instruction are over 5,500 pupils ; nine years ago there were 1,029 pupils in cight such schools. Efforts will be made not to ncglect the many native industries in the encouragement of cer-
tain European trades. Consult London Times Educational Supplement, 7 Sept. 1915.

Religion.-At the present day about 91.84 per cent of the people in Egypt profess the Sunnite (Mohammedan) faith, and 7.81 pcr cent Christian. The Armenians also have a There is an American mission in both cities, but the natives are conservative and not inclined toward religious belicfs other than thcir own. branch of industry for which Egypt is peculiarly adapted by nature is agriculture and large quantitics of cereals, cotton and other agricultural produce are raised; yet, gencrally speaking, arriculture is still in a very low state, dition and extreme poverty of those engaged in it. The Egyptians still adhere to their ancient custom of uniting the followers of cach business or profession into a guild, governed by their sheikh, who acts, if need be, as their rep-
rescntative. These guilds are excecdingly nurescntative. These guilds are exceccingly nu-
merous, as might be expected among a pcople whose social organization dates from a remote antiquity.
Among the crops which the Egyptians grow with success, cotton is the most popular and
profitable. (See Corton). The cotton plant of Egypt differs materially, in one respect at least, from that of other countrics. In America it has been found unprofitable to allow the plants to continue in the ground longer than one year. cotton plant yields five, and sometimes six, consecutive crops before replanting is found to be nccessary. This licing the case, a cotton field once planted is a secure investment for at least
five pears, and as peasants of the Nile do not five years, and as peasants of the Nile do $110 t$
love labor, more cotton is grown in Egypt in proportion to the population engaged in agricul-
ture than in any opher part of the world. In ture than in any other part of the world. In both Upper and Lower Egy.pt cotton is therc-
fore the standard crop, and as it is not tronbled with weevils as in America, and by the method of irrigation the farmer can give it exactly the right portion of moisture and no more, the crop is tolerably rclialle. Boats transport the product to Cairo or to Alexandria, the leading
cotton markets. The exchange in the former city is located on one of the princinal strects, while the market proper is in a public square
opposite the great mosque of Hassan. The time opposite the great mosque of IFassan. The time
of the river journey to Alexandria is from six days to six months, hut, as the Mohamm
The lusisiness of tanning is also one of the dustries in which the Figytians perfectly succeed, ly a process peculiar to themselves. They skin dressed and dyed in a particular manner.
water-jars. Coarse cotton cloths, and cloths of country; silk is cultivated to some extent; and the cultivation of the sugar-cane received a great
impulse from the viccroy, Ismail, who, at a great expense, erected a number of mills. Goods carried by the Suez Canal do not form part o the commerce of the country, and the transit trade proper is of little importance. In 1915,
4590 stcamers of registered tonnage of 12,353 ,573 cleared at Egyptian ports and 1,465 sailing vessels (foreign and coastal) of 85,726 tons. vessels (foreign and coastal of had increased from $5,001,000$ kantars (1 kantar $=99.05$ lbs.) in
$1009-10$ to $6,878,000$ kantars in $1914-15$. In 1915 the area sown and yield of wheat were 1915 the area sown and yield of wheat were
$1,502,085$ acres and $1,060,000$ tons; barley $462,-$ 577 acres and 300,000 tons; maize and millet, 2,194,031 acres; rice, 330,923 acres. In the same year the sugar exports amounted to 26,257 tons,
valued at $\$ 2,868,075$, and of the cotton exports valued at $\$ 2,868,075$, and of the cotton exports
to $6,899,122$ kantars valued at $\$ 95,728,220$. The imports for 1915 were valued at $\$ 96,641,965$ (of which Great Britain sent $\$ 43,692,990$) and exports at $\$ 135,234,360$ (of which Great Britain
took $\$ 69,678,125$).

Finances.- The unfortunate financial situation under the former khedives, becoming bankrupt in the time of Ismail Pasha, was in reality a blessing in disguise for the laboring classes, since it led to the reform of conditions
which had become well-nigh intolerable. The taxes were exacted with brutal rigor, even torture being resorted to in their collection and they were morcover excessive. The principal taxes were the Kharagh or territorial tax,
Werka or income tax and Himl or tax on comWerka or income tax and Himl or tax on com-
merce. From the start the property of the mhedive and his higher officials were exempted. The English regime has lowered the imposts by over $£ 2,000,000$ ($\$ 10,000,000$) annually and has aholished altogether the hated tax on salt, also the bridge and port tolls on the Nile and
those collected from trading barks and fishing vessels. The registration tax on land sales has been reduced from 5 to 2 per cent, also those on water transport, and the customs duties on coal, combustible liquids, building wood, petro-
lcum, meat and foodstuffs. The inland fisheries have been relieved of the vexatious restrictions under which they formerly labored. The postal, tclegraph and railway rates have also undergone a material reduction. Thus it may be said that at present the Egyptians, especially those
dwelling in the citics and towns, are unburdened by imposts of any kind. Up to 1888 the finances of the country were piling up a yearly deficit. This condition has been remedied until there is now an annual surplus and each year there appears less and less necessity of imposing special
taxes for the various public works which the country needs imperatively and the government's rescrve fund has increased and also the sum set aside for the amortization of the forcign deht. There has been established a Farmers' Bank
which has advanced over $£ 9,000,000$ ($\$ 45,000,-$ 000) to the cultivators of the soil through the medium of co-operative societics under the patronage of the government. Until 1885 resi-
dent Europeans were exempt from taxes, ocdent Europeans were exempt from taxes, oc-
cupying a privileged situation, thanks to the cupying a privilcged situation, thanks to the
capitulation privileges granted at the time the

Turks were defeated. In the year mentioned however, the several powers interested declare
resident Europeans subject to several taxes, resident Europeans subject to several taxe such as the house tax, stamps and licenses, etc
but these provisions were not enforced until 1891. The 1913 budget estimated the revenue from all sources at $\$ 8,065,000$ and the disburse ments at $\$ 78,150,000$. The chief sources of
revenue are land taxes, about $\$ 27,500,000$ annureve are land $19 \times 00,000$) $\$ 27,500,011100$ ally, railways ($\$ 19,000,000$, customs and tobacco ($\$ 19,000,000$). The chie items of disbursement are: administration cost (about $\$ 25,000,000$ yearly), the debt servic ($\$ 17,500,000$ yearly) and the railways ($\$ 10,000$, from 1862 when loans were made to wipe out trom floating debt. Other loans followed and finances were subject to the joint direction of
France and England until 1879 . In 1876 the
several issues were consolidated into one debt several issues were consolidated into one deb
of $\$ 455,000,000$. The administration of th finances is almost entirely in British hands. In 1912 the foreign debt consisted of the 3 per cent guaranteed loan of $\$ 36,592,500$, the $31 / 2$
per cent privileged debt of $\$ 155,638,000$, per cent privileged debt of $\$ 155,638,900$, the
unified 4 per cent debt of $\$ 279,859,800$ and the $43 / 2$ per cent dominion loan of $\$ 1,017,100$, total foreign debt of $\$ 473,108,300$, with ycarl interest of $\$ 17,803,475$. Reserve fund estab lished in $1880-90$ amounted in 1911 to $\$ 29$, eign debt was reduced to $\$ 471748,400$ for revenue for $1915-16$ was $\$ 73,780,000$ and the
expenditure $\$ 79,500,000$. In January 1915 the expenditure $\$ 79,500,000$. In January 1915 the
public debt stood at $\$ 470,144,200$, the charges for public debt stood at interest and sinking fund amounting to $\$ 17$, interest
756.330 .

Telegraph Company has (by concessions) lines across Egypt from Port Said to Suez and from Alcxandria (via Cairo) to Sucz. There wer in 1914 1,937 post-offices and stations in Egypt. organization of the Egyptian army was placed in the hands of a British officer, with the title of Sirdar. Military service is compulsory, but since a very small army is maintained only a
very small portion of the men of military very small portion of the men of military age
are in the ranks. The term of service is three years. The forces consist of administration officials, music corps, four squadrons of cavalry nine Egyptian and seven Sudanese battalions of corps, engineers corps, artillery and sanitation veterinary corps. There is a total of 138 F and lish officers, 709 Egyptian officers and 18,381 Eng lish soldiers. The army of occupation, or the English garrison, consists of a cavalry regiment pany of engineers and four stationed in the Delta. Moreover, in the Sudan, there is a battalion of infantry and a detach ment of artillery. The total English force government makes an annual budge Egyptia government makes an annual budgct provision
of $\$ 750,000$ for the maintenance of the English force. The navy consists of a steamer for coast and lighthouse service, five revenue cutters, two of which are steam vessels, five skiffs,
11 schooners and one school ship. On the Upper Nile are three steamers and eight gun hoats. No details are available since the out break of the European War, when the defense of the country was undertaken largely by troops warships in the Suez Canal. See section His tory-Egypt during the European War.
is Ethnology.- The origin of the Egyptians is unknown. Ethnologists have endeavored to establish a relationship with the peoples of the
south, any differences being variations of environment. Philologists have looked to the East for their next of kin as re gards descent as well as speech. It has becn thought by some that an Eastern origin is indicated by the fact that the Egyptian oriented
himself by looking to the south, but this is rather due to the direction of the Nile. Bctween the results thus reached there is an evident conflict, with no obvious mcans of the facts can best be reconciled upon the theory, not of a migration of a whole people but of an incursion of a smaller band who succeeded in establishing their rule over the original people and in gradually forcing thei own language, as that of a ruling class, upon
those whom they had subjugated, while still the ancient ethnological type persisted. This theory is merely a working hypothesis, and it has reference to a time long anterior to any
historical monuments or traditions, for long before the carliest extant inscription Egypt was a united country under the rule of native kings, and possessed of a well and independently developed government and of well-defined classes of society. Judging from the language and the
nhysical condition of the mummies of ancient nhysical condition of the mummies of ancient
Egypt, the population appears to have becr of mixed origin, part Asiatic and part Nigritic and there seems also to have been an aboriginal
race of copper color, with rather thin legs,
large feet, high cheek-bones and large lips; A types are represented on monuments A national name for the people as, such selves they were Romet, men, par excellence; all others were inferior races, "miserable" Cushites Libyans, Asiatics, Shasu. They themselves were the wards of the great gods, and Pharaoh ruled in Egypt. Other peoples were descended from the enemies of their deities, and when Ra had overthrown them at Edfu a portion escaped Ahose southward became Ethiopians, northward Personal ment of observers as to their character Herodotus praises the cleverness of the Egyp tians and their excellence of memory; Diodorus declares them to be the most graterui of people "thoroughly frivolous, unstable, following every rumor, refractory, idle and libelous." The modern notion is that they were so occupied With the thoughts of the future as to be ob degree of the present. There is undoubtedy broader survey shows that they were encrgetic in their undertakings, as is evidenced by thei temples and the Pyramids, still the wonder of the world; possessed of sufficient skill to per-
form by force of numbers labors which would test modern mechanics severely, practical in their methods of utilizing the forces of nature peaceable as compared with other nations, and little given to love of novelty; artistic in their people given to realism, unversed in literar arts, devoted to agricultural pursuits, developed within narrow limits, and little affected by external and foreign influences.
The peasant class, or Fellahin, is the most numerous class in the population of the presen
day and is indigenous. They are to a certain extent descendants of the ancient Egyptians but they have been subjected to crossings and have embraced Mohammedanism. Next in number are the Copts, the descendants of the ancient Egyptians who cmbraced and still cling
to the Christian religion. (See CopTs) Though comparatively few in number (abou 700,000), their cducation and useful talents enable them to hold a respectable position in etc. With these aboriginal inhabitants are mingled in various proportions Turks, Arab (partly Bedouins), Armenians, Betbers, negroes and a considerable number of Jews, Greeks and the principal offices under the government. The great bulk of the people are Mohammedans, the Christians being only about 7.5 per cent The Egyptians in the mass are quite illiterate but under the supervision of the Ministry
Public Instruction progress is being The language in general use is Arabic
The Fellahin, the most superior type of the Egyptian, are a fine race, handsome, of excellen physique, and courteots in their manners. In plexion crowing dhy are of a yellowish com the hue becomes a deep bronze. Mr. Lane, the best authority upon the subject, speaks highly of their mental capacity, and gives them cred
for uncommon quickness of apprehension and readiness of wit. They are highly religious, and are generally honest, cheeriul, humance and population of Bedouins, negroes, Abyssimians, Turks, Syrians, Grecks, Armians and Europcans.
Population. - The population, according to the census of 1907, was $11,189,978$, and is estimated at present to be about $12,500,50$. females. nationality as follows: Egyptians, $10,903,677$; Ottomans, 69,725; Sudanese, 65,162; Grecks, 14,591; Altians, 34,926; English, 20,053; French, 410; Germans, 1,847 ; Persians, 1,385 ; all others 4,925. In 1800 the French estimated the popu ation at $2,460,200$. In 1821 the census return $18826,831,131$; 1897, $9,734,405$; 1907, 11,189,978 According to its religious beliefs the population is divided as follows : Mussulmans, $10,269,445 ;$
Copts, 706,322 ; Orthodox Greeks, 76,$953 ;$ Roman Catholics, 57,744 . Protestants, 12,736; Jews, 38,635 ; others, 28,143 . Of the Egyptian popula tion over 10 years 6.65 per cent was engaged in agricuture and of the foreign element les engage in commerce and industry in which are cmployed 47.85 per cent of the foreigners.

History. - The history of Egypt and its civilization covers a period that the most recen studies estimate as externg ducted the 3,500 years that witnessed the firs stumbling prehistoric effort at expression, and in addition the centuries of Greco-Roman domination, and the period from the beginning of Christianity down to our dus. This leave a period artious, artic, social and political ideas of the people underwent little change, and did no: absorb any elements of the civilization of Asia and the rest of the Mediterranean littoral Egyptian chronology, to which referenc ments executed during the 30 dynastics decmed historical, arrives only at exact historical certitude from the period of the conquest of Alex ander the Great (about 340 B.C.). The divigists are based chiefly on the fragments of Egyptian history written in Greek in the 3 d century n.c. by Manetho, priest of Heliopolis It contained tunately only about one-third of the original has come down to us. (The fragments and lists of kings were published in Muller's 'Frag menta historicorum grecorum, Paris 1848) The exactitude of the periods at which began the scveral dynasties varies greatly. The the latter they subdivided into minutes, second and thirds of seconds; 10 days formed a week, and 3 weeks one month, 12 months (360 days) tian year. In remote times the year consisted of 360 days, but the premature arrival of th seasons bcing noted, in the reign of Pepi II (6th dynasty), the five complementary day
seasons: the first (Shat), commenced 19 July, to the period of the inundation of the Nile; th second (Pert) from 15 November to 15 March and the third (Shmu) from 15 March to 19 July. There is as we have noted above considgard to fixing the dates of the various dynas ties. Myer and Sethe have assigned the beginning of the lst dynasty to a date correspond ing approximately to the year 3400 B.C. Breasted, Erman and Steindorff also favor this
datc. A noteworthy circumstance in this datc. A noteworthy circumstance in this coneclipses in the Egyptian texts so far interpreted The history proper divides itself into six great pcriods: (1) The Pharaols or native kings; (2) the Persians; (3) the Ptolemies; (4) th

The Pharaohs. - The main sources of its his tory under the Pharaohs are the Scriptures, the Greek writers Herodotus, Diodorus and Eratos thencs, and fragments of the writings of Mane From the Scriptures we learn that the Hebrew patriarch Abraham went into Egypt because of a famine that prevailed in Canaan. He found the country ruled by a Pharaoh, Egyptian per aa, meaning "Great house," the Egyptian term
for king. The date of Abraharn's visit, accord ing to the chronology of the Hebrew text of the Bible, was 1920 B.C.; according to the Septuagint, 2551 ; while Bunsen fixed it at 2876 Nearly two centuries later Josenh, a descendant Potiphar, the captain of the guards of another Pharaoh, whose prime minister or grand vizier the young Helirew cyentually became. Joseph's father, Jacob, and his family, to the number of 1,000 or 2,000 dependents, followed their by unate kinsman into Egypt, where they settled n a district called the land of Goshen. There hey remained until their numbers had multiplied into two or threc millions, when under Egypt to conquer Canaan.
Ptolemaic Period.- When Alexander's army occupied Memphis the numerous Greeks who had settled in Lower Egypt found themselves he ruling class. Egypt became at once a Greek
kingdom, and Alcxander showed his wisdom in the regulations by which he guarded the prejudices and religion of the Egyptians. He founded Alexandria as the Greck capital, which became ig for several comuries. P'olemy I of learning for several centurics. Ptolemy I was sucsuccessful in his external wars, built the Mucum, founded the famous library of Alexandria, purchased the most valuable manuscripts, ngaged the most celebrated professors, and had Scriptures into the Greck language hence known as the Septuagint, and the Egyptian hisory to be written by Manetho. His successor tolemy III, Eucrgetes, pushed the southern Philopator ($221-204$ B.C.) warred with Antiohus, persccuted the Jews and encouraged earning. Ptolemy V, Epiphanes (204-180 B.C.) experienced repeated reljellions, and was suc-
ceeded by Ptolemy VII, Philometor
B.C.) and Euergetes ($145-116$ B.C.) by Ptolemy P., Soter 11 and Cleopatra, till 106 B.c. and by Thebes rebelled; then by Cleopatra, Berenice Ptolemy XII, Alexander II (80 B.C.), an Ptolemy XIII, Neos Dionysius (51 B.C.).), and finally by the celebrated Cleopatra. After the battle of Actium (31 b.c.) Egypt passed into always by a Roman governor of the equestrian, not senatorial, rank.
The Egyptians had continued building temples and covering them with hicroglyphic intianity the older religions lost their sway Chris the Christian catechetical school arose in Alexandria, which produced Clemens and Origen. Monasterics were built all over Egypt; Chris tian monks took the place of the pagan hermits Egyptinn Archafology and Explic. Se Egyptinn Architecture; and Egyptian Aroration Egyptian Language and Whiting; Egyptian biterature; Egyptian Music; Egyptian Reli Christian Era.- On the division of the great Roman empire by Theodosius (337 A.D.) into the Western and Eastern empires, Egypt became a province of the latter, and sank deeper and
deeper in barbarism and weakness. It then be came the prey of the Saracens, 'Amribuel-asr their general, under the Caliph Omar, taking Alexandria, the capital, by assault. This hapof the East 641 A., When Herachius was the emperor was under the government of the caliphs it Abhassides - Harun el-Rashid and Al-Mamon and that of the famous Sultan Saladin. The last dynasty was, however, overthrown by the despots the last shadow ef those formidable and civilization disappeared. Selim, Sultan of the Turks, eventually ($1516-17$) conquered the last Mameluke sultan, and Egypt became a Turkish province, governed by a pasha. After his it was the theatre of internal wars by the which was several times nearly extinguished. Confusion and civil war between the different factions of the Mamelukes continued to prevail Napoleon Bonapatte united their chinfs in selfdefense; but the Mameluke army was all but annihilated in the battle of the Pyramids. The French then conquered the whole of Egypt and held it till 1801, when they were driven out by On the expulsion of the French the Ottoman. Porte effectually urged its claim to sovereignty, and the accession of the Albanian soldicr Mohammed 'Ali to the pashalic in 1805 imparted a alvanic prosperity to Egypt by the merciless a disastrous British expedition in 1807 vainly sought to restore), the formation of a regular army, the increase of security, the improvement of the irrigation and the introduction of the
clements of European civilization. In 1816 clements of
Mohammed Ali reduced part of Arabilization. In 1816 hrought it under his sway by the generalship of his son, Ihrahim; in 1820 he annexed Nuhia
his troops, under Ibrahim, occupied variou points in the Morea and Crete, to aid the Turk Egyptian fleet was annihilated at Navarino and lbrahim remained in the Morea till force to evacuate by the French army, under Maison of Syria and in the follewang year of Syria, and in the following year totall which the Porte ceded Syria to Moliamne Ali on condition of tribute. War breaking out again, the victory of Nisib in 1839 would per stantinople: ut the quadruple alizoe of 1810 the tall of Saint Jean d'Acre to the British and the consequent evacuation of Syria, compelle Egypt init his ambition to the pashalic o becile (he died in Mohammed Ali became im sat on his throne for two months, when h died, and 'Abbàs Pasha, Mohammed Ali grandson, succected him, and was succeeded in turn (1854), by Sa'id Pasha, youngest son o the co-operation, M. de Lesseps then oltaine Egyptian govemment in his scheme of the Sucz Canal, which was opened in 1869. Sa'id was succecded (1863) by his nephew, Ismail from the Sultan, (1866) the heredit purchase Khedive. He obtained the hereditary title of Khedive to the throne of Egypt, direct from father to son, instead of descending, according ily, and law, to the cidest male of the famdive the riplits (withdrawn in 1879) of con cluding trcaties and of maintaining an army, and virtually gave him sovercign powers. Thu secure on an hereditary throne, Ismail began series of vast internal reforms, built roads, reorganized the postal service, improved the harbors at Suez, Port Sa'id and Alexandria supported education, and introduced mixa
courts of law. Extending his dominions southward, he annexed Dar-Fur in 1874, and in that and the following year further conguest were made. The condition of the finances le to the establishment of "dual control" by Grea Britain and France, and in 1879 Ismail wa ish 2 ud Fronch governments, and was replaced by his son, Tewfik. His position was soon threatened by the so-called National party with Aralii Pasha at its head, who aimed at his depo sition and at the abolition of European intcr vention. In May 1882, a rising took place 1 and their houses pillaged. The Khedive fled from Cairo, where Arabi remained autocrat The French refusing to interfcre, Great Britai determined to act, and on 11 uly a British ing the rebels to retreat. In August a forc under Sir Garnct (afterward Lord) Wolsele landed at Ismailia, and on 13 September Arabi's forces were totally defeated at Tel-cl-Kchir and the rebellion crushed, Arabi and his asso against Egyptian rule had broken out in the Sudan under the leadership of Mohamme Ahmed, who professed to be the Mahdi or
followers soon became numerous, defeate Egyptian troops that opposed them, and threat in the Sudlan. In 1883 they amnihilated a Egyptian force under Hicks Pasha near E Obeid in Kordofan, and in 1884 Osman Digna, force under Baker Pasha near Suakim. British troops were now dispatched to Suakim, and a El Tcb and Tamai scvere defcats were inficted on the Arabs ly Gencral Graham. Meantime General Gordon had been sent to Khartum 10 he was shut up in the town for nearly a year and perished before the relief expedition under Sir Garnet Wolseley could reach him (Jannary 1885). The Sudan was then given up, and the fixed at Wady-Halfa. In 1892 Tewfik died, and was stucceeded by his son, Abbas Hilmi, who became the seventh viccroy and third khedive of Lgypt. In 1896 a Anglo-Egyptian cxpcation for the reconques Herbert (afterward Lord) Kitchener Dongol was soon occupicd. Abu Hamed was capture in the following ycar, and (8 April 1898), th insurgents wore of the aibar Finally near the 1898) the forces of the Khalifa, as the Malldi' successor was called, were defeated with great slaughter at Omdurman, near Khartum. Th tcritory thus reconquered was placed under governor-gencral, and was rapidly organized A subsequent attempt of France to occupy Fashoda and enforce a claim to the Bahr-cl-
Ghazal "Blue River") Valley led to some friction with Great Britain.
Egypt During the European War-- Owing to the entrance of Turkey into the war on the
side of the Central Powers, and to the adhesion of the khedive to the king's enemics, a British protectorate was declared and the Khedive Abbas Pasha deposed on 18 Dec. 1914. Prince Husscin Kamil, the eldest living prince
of the family of Mohammed, 'Ali, a former viceroy of Epopt was appointed in a forme under the title of Sultan of Egypt. Two unsuccessful attempts at his assassination have becn made (8 April and 9 July 1915). Sir Ar thur McMahon was appointed British high comship made successive attempts to attack the Suez Canal as preliminaries to an invasion of Egypt. The most dangerons of thesc incur sions were: (1) On 2 Feb. 1915 the Turks atiempted to cross near Toussonim, 35 miles north made at the Quatia Oasis, 25 miles east of the canal, on the road to El Kastara; (3) the mos formidable effort was made on 4 Aug. 1916 when 14,000 Turks attacked the British position
near Romani, 22 miles cast of Port Said and just north of Katia oll front of seven or eight miles. The British troops, under the command of Sir Archibald Murray, and com posed mainly of Australians and New Zealand crs, succecled by a strategic retirement in in-
volving the Turks in the sand-dunes, and then fell upon their rear and succected in taking 2,500 unwounded Turkish and German prisoncrs. Scc War, European. Sce also Al.exan-
jria; Cairo; Cromer; Emin Pasha; Gorion,

Gen. C. G.; Khedive; Mad Mullah; Moham medanism; Napoleon; Sudan; Suez Canal Tewfik; Wady-Halfa.
Bibliography.- 'Annuaire Statistique de lEgypte' (Cairo Annual); Arminjon, P., (Sit uation economique et financiere de l'Egyptc)
(Paris 1911) ; Artin, Y. P., (England in the Soudan' (London 1911); Balls, W. L., (Egypt of the Egyptians) (London 1915) ; , Breghier, L., 'L'Egypte de 1789 à 1900' (Paris 1901) ; Colvin, A., 'The Making of Modern Egypt'
(London 1906); Cromer (Earl), 'Modern Egypt') (London 1008), 'Abbas I') (London
1915); Weigall, A. E. P., 'History of Egypt 1915) ; Weigall, A. E.'P,' 'History of Egypt
from 1763 to 1914' (London from 1763 to 1914) (London 1915).
Author of 'Ancient Egypt or Mizrain') Binion, Author of (Ancient Egypt or Mizraim'; Revised
by Editorial Stoff of the Americana. EGYPTIAN ARCH压OLOGY EXPLORATION. ARCHe attention of the world was drawn to Egypt as a rich ficld for scientific exploration in the carly part of the
19 th century. M. Boussard a Frect officer 19th century. M. Boussard, a French officer
under Bonaparte (1799), discovered at Fort Julien, near Rosetta, a large block of black granite, with the remains of three inscriptions, the first in hieroglyphs, the second in demotic Sharacters, the third in Greek. This Rosetta tion of Alexandria (1801), and presented by George III to the British' Museum. It contains a decree promulgated at Memphis, in honor of Ptolemy V, Epiphanes, by the priesthood of Egypt in synod assembled, thanking conferred on them. They ordered it to he sent to all the temples of the first, second and third rank, there to be engraved on stela in
he three forms of writing then used throughthe three forms of writing then used through-
out the land. When found, half of the hieroglyphic portion of the Rosetta copy was wanting, but the demotic and Greck were nearly complete, and the work of decipherment bogan with them. The French orientalist Silvestre de proper names mentioned in the Greck ('Lettre au Citoyen Chaptal sur l'inscription égyptienne du monument du Rosette) Paris 1802); and the Swede Akerblad, following in his steps, employed in the proper names ('Lettre sur inscription égypticnne de Rosette adressée au Citoycn S. de Sacy,' Paris 1802). In 1814 Thomas Young, the English mathematician, whicceded in isolating a number of groups translating some fragments of demotic phrases. Turning to the hieroglyphs he tried to determine the power of the characters, which being enlosed in cartouches or rings, were known to the names of Ptolemy and Berenice but he failed to analyze them exactly; five only of the values which he proposed for the signs turned out to be truc. The problem with four years later by poor success was solved ion, who had felt attracted to the study of the Oriental languages from his carly youth and published at 24 the famous work 'L'Egypte ous les Pharaons) (2 vols., Paris 1814), on by his thorough knowledge of the Coptic he
applied himself to the decipherment of the inscriptions, and ascertained very soon tha monuments, far from representing three inde pendent systenns, were three successive develop ments of one system of writing, of which the demotic the cursive forms., ('De l'ecriture hicratique des anciens Egyptiens,' Grenoble 1821). He then dissected the cartouches which had been studied by Young and proved that phabetically, and that were always taken al ployed for the rendering of the Greck em names was the same that had been used from the time of the first dynasties, not only for proper names, but for the common parts of the system to the Académie des Inscriptions on 22 Sept. 1822, a day famous as marking the foundation of Egyptology. Then he completcd his revelations, and explained fully his method in ciens Egyptiens' (Paris 1824. 1828) the last cight years of his life in working out the principles which he had established for the resurrection of the old Egyptian world. In 1828-30 he searched Egypt from Alexandria to and Italian archæologists. Upon his return he was made professor of Egyptian literature at the College de France. He died 4 March 1832, having overtaxed his strength during the journey to Egypt. His rapid success had raised up criticized his work with a bad faith and virulence which even death did not abate; Spohn and Seyffarth started a rival system, which was rejected in Europe by 1855, but continued States until about. 1880 . The general public, however, had received his labors with delight and after his death men of every nation took up his teachings and advanced the work he had so well begun. Nestor Lhôte, Charles Lenorlini, Ungarelli, in Italy; Scemans in the Nosthcrlands; Wilkinson, Birch and Osborn in Engand. Champollion-Figeac devoted himself to the memory of his younger brother and pubbooks, his 'Lettres écrites d'Egypte) (Paris 1833), and his 'Grammaire Egypticnne) (ib. $1836-41$); his 'Dictionnaire Egyptien en écriture hieroglyphique) ib. 1841-46); 'Monuments de Egypte et de la Nubie' (ib., 1835-75), com-
pieted by Maspero. Since then the story has been a perpetual record of success and discovcries. Lepsius analyzed critically in his (Lettre M. Rosellini sur l'alphabet hiéroglyphique' (Rome 1837) the structure of the old language, and clucidated the origin and mechanism of the syllabic characters, the existence of which had however, early left philological for historical 1885 ancharly ogical researches. From 1837 to 1885 nearly every year was marked by the ap(Dearance of some important work from his penagyptische Königsdynastie'; 'Einleitung in die Chronologic'; 'Uber den ersten āgyptischen Gotterkreis'; 'Königshuch der alten Agypter,'

quated, but they formed the solid ground upon which the chronology and history of ancien stay in the Nile Valley at the head three years mission of German scientists (1842-45) produced the gigantic (Denkmäler aus Agypten und Athiopien' (12 vols., Berlin 1849-59), in were reproduced by the skilful known the time enbach. Bunsen popularized the ideas of Lepsius in his 'Agyptens Stelle in der Weltge schichte) (Hamburg 1849); Brugsch applied
himself to the himself to the demotic texts '('Scriptura Aegypdémotique) (ib. 1885) Berlin 1848); 'Grammaire in Germany, Emmanuel de Rouge commenced his labors in France with his 'Examen critique in which the de M. le Chevalier de Bunsen,' in which the merits of Bunsen's and Lepsius' and tallacious hypotheses were pointed out with a vigor of method and a certainty which placed the young author at the head of EgypChrest. He remodeled the grammar in his he called back to Egyptienne) (Paris 1867-76), cherches sur les monuments qu'on peut attribuer aux six premieres dynasties de Manithon) (ib. 1866), and in his pamphlets, he was the first who really translated whole Egyptian books and He gave a new impulseglyphic and hieratic in France, where Chabas, Deveria, Pierret and Maspero followed him, but also in England, where his influence was felt by Birch, Hincks Renouf, Le Page and in Germany, where Brugsch, Dümichen and Ebers seconded the et
forts of Lepsius Brugsch left many monuforts of Lepsius. Brugsch left many monulost in greater merits. With the exception of Weidemann the more recent German school inclines more and more to grammars and phi-
lology under the lead of Adolf Erman. The French schor the lead of Adolf Erman. has directed much of its strength toward his tory and archæology. Young Egyptologists are sent every year to Egypt to excavate, draw, copy and publish the monuments. They are helped in the work of finding and preserving society, the Egypt Exploration Fund, the first secretary and real promoter of which was Amelia B. Edwards (1882-92). In 1883 they sent out their first agent, E. Naville of Geneva,
and he cleared the site of Pithom in the land of Goshen. Since then Naville, Flinders Petrie, Griffith, Gardner and Newberry have been a work. Naucratis has come to light, Tanis and Bubastis, the Pyramids of the Fayum, the
tombs of Beni-Hasan and El-Amarna have tombs of Beni-Hasan and El-Amarna have and historical lore. The last few years have seen wonderful discoveries in Egypt, for the tombs of the kings of Abydos have been opened and the treasures which have been found Aring us face to face with archaic history slab showing King Nar-mer smiting his enemy an chony table, a bar of gold, gold jewelry, in cluding bracelets, and a royal sceptre. The old est group of jewelry in the world is undoubtZer or Teta (4366 в.c.), which was discovered
with a portion of the mummy in a hole in a
wall. This is 1,500 years carlier than any other wall. This is 1,500 years carlier than any other
jewelry thus far identified. The bracelets show a wonderful perfection in the soldering of gold. They also show the turning point in the development of Egyptian art; the inest bracelets are formed turquoise, each surmounted with a royal hawk. The turquoise hawks are clumsy, of a more archaic form than those on the pieces.
An American archæologist, Theodore M. Davies, has made one of the most interesting discoveries of recent years in excavang the tomb contained the chariot in which he rode at Thebes. Like other royal tombs consisted of After sloping downward for a considerable distance it is interrupted by a deep square well; on one of the walls is a band of paintings. On the farther side of the wall the passage turns back, and finally opens into a marnificent sarconhapus of rate covered with texts from Book of the Dead." On either side are smaller chambers; the floor of one of them was covered with the offerings made sisting of mumsed ducks and geese. Clay seals with the name of the Pharaoh had been attached to the doors of the chambers, and it is stated the raised portions of the seals had been smeared with blue ink berore being pressed on the clay. Thothmes were found to be broken, and this was explained by a hieroglyphic inscription on one of the paintings which adorn the walls of the vestibule to the chamber in which the sarcophagus was found. That inscription states it had been restored as far as possible to its original condition by Hor-cm-heb, the reigning Pharaoh. The floor was covered with vases, dishes, symbols of life and other objects in blue faience. Unfortunately, nearly all of them had breakage had been repaircd in the time of Hor-em-heb. Equally interesting is a piece of textile fabric into which hieroglyphic characters of dif ferent colors have been woven with such wonderful skill as to present the appearance of finest specimens of art that have come down to us from antiquity. Along with the chario was found the leather gauntlet with which the king protected his hand and wrist when using the bow or reins.
Later excavations at Abydos have brough to light the royal tomb of Menes, of the firs
dynasty, in which was found a large globula vase of green glaze, with Menes' name inlaid in purple. Thus polychrome glazing is taken back thousands of years before it was previously known to exist. There are also several pieces of
delicatcly carved ivory of that age. One repre sents the figure of an aged king, which, for subtlety of character, stands in the first rank of such work, and ranks with the finest work of Greece and Italy. A camel's head modeled in 4,000 years Hitherto no trace of the camel had appeared before Greek times. The ivory carv-
ing of a bear also extends the fauna of early Records begin to appear with the 3d dynasty of Manetho. The Sphinx of Ghizeh is certainly older, but being uninscribed, it is not
known to which king or dynasty it belongs. known to which king or dynasty it belongs. A few stele bear the name of Sondon (2 d dynasty), and the step pyramid of Sakkarh pur
ports to be the tomb of Tosiri ports to be the tomb of Tosiri (2d dynasty). unbroken line of monuments only begins ander Snofroni, the last Pharaoh of the 3d dynasty, about (4300 b.c.). From his time to the death
of Pepi II (about 3800 B.C.) the necropolis of Ghizeh, Sakkarh, Dashour and Midoum, tombs of feudal families at Zawret-el-Maietin, at Sheik-said, the rock graffiti of Wadi-Magharah in the Sinaitic peninsula, furnish material
enough to trace the succession enough to trace the succession of the kings and
call back to life the whole civilization of those II primeval ages. The scries breaks off after Pepi II, but a few scarabs and other objects are the only records we possess of the Heracleopolitan housc. With the 11 th dynasty the monu-
ments came to light again in great numbers and are dispersed all over the Nile Valley in the grottoes of Beni-Hasan, Bersheh, Siut, Assouan, in the tombs of Thebes and Abydos, in the temples of Nubia and in the Delta cities Sinai. There are many inscriptions and statues of the 13th and 14th dynasties, and the area of ground they cover from the fourth cataract to the sea shows the extent of the Egypt of tha day. The invasion of the Hyksos suspended for (about 2100 y.c.), and nothing remains of their kings except a few namcs scralched on the statues of the old Pharaohs. Egypt revived after their expulsion and the three Theban dynasties of the New Empire ($1750-1100$ B.c.) en
riched by the spoils of Asia and of Ethiopia covered the banks of the Nile with temples and palaces, the remains of which are counted to day in hundreds. The Roman Casars continued the constructions and the reigns of the
Flavians and Antonines are recorded by many monuments. The impulse died out about 250 A.D.; Philippus is the last emperor whose name is engraved officially in the hieroglyphic char acter. The English have recognized French intervention in the dircction of the Cairo Mu
scum which has a right to one-half of all dis coveries of antiquities, etc., made in Egypt Gaston Maspero was appointed director in 1899 of the Service of Antiquitics, as this branch is known, and was succeeded in October 1914 by
Pierre Lecaw. Several permanent commissions are at work in various parts of the country Consult Champollion, 'Monuments de l'Esypte'
(1843); Marictte, 'Monuments of Upper Esypt) (1843) ; Marictte, 'Monuments of Upper Egypt (1877); Petrie, 'History of Egypt') (1894);
Rawlinson, '(History of Ancient Egypt'

EGYPTIAN ARCHITECTURE. The EGYPTIAN ARCHITECTURE. The
most ancient monuments of the world's architecture in stone are those of the Nile Valley. The ruins of some ancient Chaldean buildings are probably of earlier date, hut they are almost
formless piles of sun-dried brick, while the formless piles of sun-dried brick, while the tombs and pyramids of the carly Egyptian dynasties are many of them in excellent preserably of Λ siatic origin but long-settled along
the Nilc, and were a highly civilized race thousands of years b.C. It is customary to divide periods: (1) the Ancient (or Memphitic) five pire, cir. $3400-2160$ B.c., comprising ten dynasties of kings; (2) the Middle Empirc, with Thebes as capital, $2160-1788$ B.c., two dynasties;
(3) the Sccond Thebaic or New Fmpire (3) the Sccond Thebaic or New Empire (15881150 b.c.), comprising the dynasties xvii-xx, and
separated from the Middle Empire by the artistic interregnum of the Hyksos or Shepherd kings (Arabs); (4) the Decadence or Saitic
period of six dynasties, $115(-324$ period of six dynasties, $1150-324$ 13.C., which in-
cludes the Persian conquest in 525 . cludes the Persian conquest in 525 s.c., and (5) A.D.). Then followed a period of (324 B.C.- -300 centuries during which the only architectural works were Coptic churches and monasterics. The Λ rabs conculuered Egypt in 642 A.D., since which date the architecture has been of th tecture of mosques, tombs, palaces, baths, foun tains and city gates. As, this last period, with its infiltrations of Turkish influence since 1517 is treated of under Moslem Art (q.v.), the
present article will be confincd mainly to the present article will be confined mainly to the erence to the Coptic development.
Materials and Character.- There is evidence that the primitive architecture of the Egyplians was of mud "crude" or sun-dried survived to our time are of stone, except for scanty remains of brick. The stones employed were granite of various kinds and limestone; the coarser stonc being often furnished with
a thin layer of stucco to reccive painted decora a thin. The architecture was almost entirely of tombs and temples, although remains of palaces of the New Empire have been cxcavated, and there are vestiges of forlifications at Semneh
and Gournah. The civilization of and Gournah. The civilization of Egypt was is clearly shown in the architecture. There is little change of style until the time of the Ptolemies; what variations there were came about by imperceptibly slow dcgrees, and an ai of changeless duration marks every work of
ancient Egypt. Yct earthquakes and the destructive invasions of Persians and Arabs have wrecked partly or completely nearly cvery one of these massive structures.
All the Egyptian monuments of antiquity werc built on the post-and-lintel or wall-andminor constructions of brick. But one form of cornice is found - the "cavetto-cornice" - in all the wide range of the ancient monuments through more than 3,000 years. There were no variety of capitals, generally reducible to two chief types, the "bud" and the "floral" or campani form type; and the shafts are with a few exceptions cither round or clustcrect, the former predominating. The "bud" and "floral" types
of capital are either simple or compound, the latter predominating in the later periods. All the walls, ccilings and colimns of the temples were covered with symbolic or historical deco-
rations, incised and painted in brilliant colors, rations, incised and painted in brilliant colors,
and sculptured figures of the deificd king or of the god Osiris, fronted the entrances and the courtyard piers of the temples.

HALL OF COLUMNS IN THE TEMPLE OF KARNAK
(Restored)

Tombs- The religion of Egypt, with its
insistence on a future life, assigned an cnormous importance to the arts of sepulture, and the tombs are far more numerous than the temples. They are of two chief kinds: the
hypogeum or excavated tomb, cut in the rock hypogeum or excavated tomb, cut in the rock
of the western bank of the Nile, with many passages, chambers and shafts; and the structural or built-up tomb. Of this class there were two chief types, the "pyramid (see Pyramid) and the mastaba or "bench." This latter type, rectangular in plan, had usually sloping walls
and a flat top, and contained a variety of chambers and passages, with one or more serajabs or secret chambers, and wells or shafts leading to deep chambers, in one of which the Sarcophagus was deposited. Statues of the de-
ceased ("ka-statue") were secreted in the serdabs in order to assist in preserving the life and identity of the "ka" or spirit while in the tomb, while of the walls were covered with pictures of his daily life and sports in order that the "ka" might by their help enjoy the same sessors to the final home in the underworld. Twors to the final home in the underworld. down and re-erected in the Metropolitan Museum at New York.
gyptian temple was early developed and reEgyptian temple was early developed and re-
mained unchanged in essentials for over 3,000 years. It appears to have been an expansion of the ancient Oriental house-plan, with its enclosing wall, gate, fore-court, reception-hall and living rooms. These became respectively the pylon-gate with its twin truncated pyramid towers or pylons, the fore-court flanked or surrounded with colonnades, the hypostyle or columnar hall for the princes and magnates, and
the sckos or sanctuary, with its shrine or "holy the sekos or sanctuary, with its shrine or "holy
of holies" and its surrounding rooms for the priests. These various parts might be duplicated or variously elaborated, but they are to
found in all the temples, large or small
Memphite Empire there have been preserved to us innumerable tombs and a few templeruins. Of the greatest importance are the pyra-mid-tombs, of which there are nearly a hundred vary in size and shape, some having stepped sides, some being built with two slopes - the lower part stecper than the upper; the remainder are built with a single slope from the square base to the apex. Three of these, at
Ghizeh, are far larger than the rest; they belong to the 4th dynasty. The largest is that of Cheops or Khufu, with a base 764 feet square and an original height of 482 feet. The second, of Chephren or Khafra, is slightly Smaller; the third, of Mycerinus or Menkhaura,
rises 218 feet stepped pyramid of Sase 254 feet square. The possibly from the First dynasty; it is about 350 by 400 feet at the base and not quite 200 feet high. All of these, and most of the others, Were built of limestone with a facing of gran-
ite which, however, has in most peared; they all contain corridors and chambers of elaborate construction. There are also many mastabas and many excavated tombs cut in the these (e.g., the tomb the ka-paintings of some of
detailcd and interesting. The temples of this period are all connected with or adjacent to the tombs, to which they served as chapels.
The best preserved is that of Chephren, known The best preserved is that of Chephren, known stead of columns.

The Middle Fmpire has left us only scanty monuments, of which the most interesting are tombs cut in the cliffs of Beni-Hassan, with columnar porches whose columns somewhat re-
semble the Greek Doric, hence called "protoDemble the Greek Doric, hence called protoof temples of this period at Bubastis and at Karnak.
The New Empire was the great agc of
Egyptian architecture as well as of political Egyptian architecture as well as of political
greatness under a succession of mighty rulers greatness under a successions of mig, Rameses and others of the 18th dynasty, of whom Rameses II was the greatest builder. The tombs of this period are all, or nearly all, deep tunnels cut in the rock, with many chambers and corridors;
the temples are the largest in Egypt, especially the temples are the largest in Egypt, especially
that of Karnak, over 1,200 fet long and 340 wide, whose hypostyle hall with 16 rows of colossal columns, is the grandest ruin in Egypt.
Not far away is the great temple of Luxor, Not far away is the great temple of Luxor,
next to which in size and splendor is the Ramesseum. Others of almost equal extent and splendor are at Abydos and at Medinet Abu; while at Deir-el-Bahari are the remains of the stupendous hemispeos of Queen Hatshepsut, a
sepulchral temple partly excavated and partly sepulchral temple partly excavated and partly
structural. At Ipsambul (Abu Simbel) are two colossal temples of Rameses II and III, entirely hewn into the rocky cliff. Many smaller temples, as of Khonsu at Karnak, are in good preservation.

The Ptolemaic-Roman age created the two temples of Hathor and Isis at Denderah, built
by Cleopatra; the temple of Edfu and the superb group; at Philæ; and the Roman-built temples of Esneh and Koom Ombos, with others in Nubia. All these late temples have
screen-walls between the front columns of the hypostyle hall, crested with carved serpents a new feature; and the capitals of columns are very complex and elaborate.
Coptic Architecture.- This is unimportant except in its relations to later Arabo-Egyptian
art and to the architecture of Christian Europe and Asia of the same period (4th-7th century). The Copts are the Christian descendants of the ancient Egyptians, and erected, during the above period, many churches and monasteries, mostly of small size. These are interesting
chiefly for their use of the arch, of the dome over the sanctuary, and of minutely-detailed surface carving and elaborate wooden screens. It was the Copts who built the carliest Arab mosques in Cairo, and the Arabo-Egyptian style owes much of its character to their work.
See Architecture; Obelisk; Pyramid ; Sphinx.

Bibliography. - Consult for history in genral, Breasted, J. H., 'A History of Egypt from the Earliest Times', (London 1906). For the architecture, any of the general histories of
architecture; also Maspéro, G. C., 'Egyptian architecture; also Maspéro, G. C., 'Egyptian
Archæology' (Paris 1910) ; Perrot and Chipiez: Archxology' (Aris 1910); Perrot and Chipiez:
'History of Art in Ancicnt Egypt,' and the works of Flinders Anctrie, Mariette, Prisse works of Flinders Petrie, Mariett
A. D. F. Hamlin,

EGYPTIAN ARTS. Sculpture, Painting
and Minor Arts.-Sculptors were numerous and Minor Arts.- Sculptors were numerous and very prolific. Several great collections
of extant works have been made in of extant works have been made in
modern times; of these the greatest is that of the Museum of Ghizeh, next come those of the Louvre, British Museum, the Vatican, Florence, Turin, The Hague and Berlin.
Many works, however, are still in situ, in the temples and tombs, both colossal statuary and series of reliefs. Of the Old Empire all the sculptures have been found in tombs. They are realistic and are of value as portraits. In the was developed in connection with temple architecture reaching its greatest period under the Rameses and Setis of the New Empire. Plastic art was carly employed to illustrate the a representation in detail of the person, family and occupation of the deceased, and near the tomb were statues of him or her as they ap-
peared in life. Under the New Empire sunken relief and outline relief come into vogue Methods of quarrying, carving, polishing and
finishing sculptures are represented in styles together with others. Wood was used in sculpture as is testified by the number of wooden statues remaining, some dating from the Old Empire, the most noteworthy being the
famous figure, Sheik-El-Beled. Red famous figure, Sherk-El-Beled. Red granite and while limestone and sandstone were used more in relief. Red porphyry was especially popular in the later periods. The representation was purely conventional, for the purpose of conveying an idea and not creating an illusion.
Perspective was avoided in scenes where several planes of figures appear, the rows being raised one above another. Despite their lack of realism the sculptors were careful of detail. The earliest work of sculpture is the famous Sphinx
of Ghizeh now disintegrating under the changed climate. A common portrait is the seated group of husband and wife, found through all the remains of the Old and Middle Empires. The representation of divinities was usually body, a jackal's head for Anubis; a hawk's for Horus, etc. The gods were worshipped on the opposite walls of a temple and the image of the god was repeated several hundred times on the walls and columns and on the outer pylons. bronze, glazed earth, etc., used for objects of devotion. Another theme might be termed the political; consisting of the giant king, at whose eet cower many captives. There was little variation in the several representations during ong periods. Of particular interest are the persons. A tomb of the Middle Empire represents the migration of a tribe in all its details showing how traveling was done in the age of change to the stiff New Empire there was a change to the stiff and colossal. Greek art was
introduced under the Ptolemies and had a proound influence on Egyptian forms. Painting in ancient Egypt can hardly be called an independent art, being largely an adjunct to archiecture. Wall paintings were popular from the reliefs of the same period in theme and treatment. In portrait sculpture the Egyptians at-
tained extraordinary perfection at an early date, the skill with which they worked in hard stone, such as diorite and basalt, being surprising. Some of the carly statues are of colossal
size, but a higher style of art is shown in those of ordinary size, though a certain conventional treatment is always apparent. The most usual kind of mural sculpture, a kind peculiar to the Egyptians, is that known as hollow or sunk reobject intended to be represented is cut into the smooth surface of the stone, while at the same time the minor forms and rotundity are
represented within the incised outline. By this represented within the incised outline. By this contrivance the details of the sculptures are pro-
tected. Sometimes the outline is excessively deep, at others the surface of the figures is alto gether much lower than the general surface of the wall, and in others the outline is but slightly Wherever the Ecorresponding flatness within. Wherever the Egyptians practised the true baslow relief. The back view of the human figure is never represented in the sculptures excepting in the case of an enemy, and then rarely; the figure is generally represented in profile, and
there are but few attempts at delineating front view of the foot or of the face; however whether the face be represented in front or side view, a profile eye is never found. The figure of the king in battle-pieces, and of the landed much larger scale than the other always on a miece. Statues and reliefs were always in the and when wall painting is employed it is always as a substitute for sculpture. There is no prope perspective, and certain conventionalities of color are employed. The Egyptians are repre-
sented with red and yellow complexions, red ochre for the men and yellow for the The hair of the king is frequently painted blue but that of ordinary men black. In represent ing the various nations with whom Egypt had intercourse, the artists scem to have endcavored to imitate the complexions peculiar to each
Ammen-Ra, the chief divinity of Thebes, is al ways painted blue, and he is further distinguished by two high feathers which he wears in his cap. The inferior divinities are not unsky or heavens are invariably indicated The strip of blue coming downward at the lower side of each extremity, and occasionally having upon it a row of five-pointed stars. Water, of a blue or green represented by zigzag lines yellow color, with red spots upon it have art was at its highest during the period between the 4th and 6th dynasties, and notwith standing its defects it was superior to that of jewelry with rich necklaces and and enamel very early period necklaces and pectorals of a tistic design was skilfully applied by the Egyptians to articles of furniture, ornament and articles of domestic use - mirrors, spoons, hairs, etc. Wood, ivory and various metals were used. The Phcenicians and Greeks spread where they exerted a very great influence on design (Sec ArT; Sculpture). Consult Lepsi11s, 'Denkmáler) (1874) ; Perrot and Chipiez, 'History of Art in Ancient Egypt' (1883).
Russell Sturgis.

EGYPTIAN ARTS. Sculpture, Painting
and Minor Arts....
and very prolific. Sur
 modern times; of these the rache in
that of the Muscum of Ghime atest is those of the Louvre, British Muscum, the Comie can, Florence, Turin, The Hastum, anll Belim Many works, however, are still in silt, belth semples and tombs, hoth colossal statuary aid seres of reliefs. Of the Old Einpire all the
sculptures have been found in tomber ralistices thave been found in tomats. They ate Middle Empire the official and colto sal stye was devcloped in connection with htw, shit arghe tecture reaching its greatest pretini ander the Plastic art was carly employed New limpire daty lite of the sulject. Fi.nd bimb rairaun

 ato subpture ne renresented in these पan is is testime? liy the number of 20and andavy shorki.-Beled. Red granite and - whe invorite material for statuary, What a.. fowe ind sandstone were used more Whed pornhyry was especially popular ate retiods. The represiatation was Heas and not creating an illusin.
nem
 - maloture is the famole Sohtion
 (angole found throurht a!
 4 a mpi.i Coll wat powt sowrei ham! tha image of the Ah.
 loypion th 1 We. We. ior eviect; of

 Chathen to this and culnnil lireek art was Cound and the Pretmen: and had a proIn anciont i coy con hardly foriss, Painting fomert art, sin: Dine, Wall pathionse were dymatar from the relwis of the same pritiod in theme and treat-
ment. is portrait ment. is. portrait scu!pture the Egyptians at
taiaed extriordinary perfection at an early date, the skill with which they worked in hard stone, such as diorite and basalt, being surprisrize, lut it higher style of art is shown in thos incordinary size, though a certain conventional frembient is always apparent. The most usual Leyphas is that known a kind peculiar to the fiel (hats that known as hollow or sunk retijeod hummad to The gencral outline of the hemen thand then represented is cut into pame loue for the stone, while at the fapts atal whila :he icd outline. By this \& - We suriac the thenures is alto-- \quad and is uthers the outine is but slightly angerresponding llatness within. 1. Win the the ibyptians practised the true basbe hack view of the human figure in) the the atod in the sculptures excepting nl the The on oncmy, and then rarely; the thare ar formity repratonted in profile, and itwe ving vi the anderapts at delineating the Whether the facu the derescated in front or side of the kingle inye is newer lound. The firures proprietor in dumestic scences and of the landed much larger scale than the picce. Statues and relinis were ahyoys in the and where wail patation ofere always painted,
a a. sulsithery p.rinely The Onventionalities of alure the Exyptians are repre\#hmy fur har that as is frenuently painted blue, Int that on wracisy men black. In representtuiteregares, the altions with whom to Egyont lad (2) mutate the complexions pecultat endavored domertion, the chief divinity of Thebes, is al Younted liy the the and he is further distinin hised by. The binferiothers which he wears 3 mineorly of the complexions of more not unsky or heavens are invarially indicated. The sidip of hilue coming downward at the lower side of wach extremity, and occasionally having seas and rivers are represented stars. Water of a lilue or arcen color yellow color, with red spots upon it. Fgyve a the was at its hithest durimg the period hetween the 4th and 6th dynsties, and notwithNineneh its deluets in ivas superior to that of fewelry with rich neiklaces and and enamel yery early pertion have come dowil to us. ArEstic resign was skilfully applied by the Engplians to maticles of furniture, ornament and articlu, of domestic use - mirrors, spoons, were used. The Phoenicians and Greeks spreals th. Morks along the Mediterranean littoral Whers. d y exerted a very great influence on denkli (Sce Art; Sculramke). Consult Lep'History of Art in Ancient Ferrot and Chipiez, Russell Sturgis.

HATHORIC COLUMN, TEMPLE OF DENDERA

EGYPTIAN BEAN, a name sometimes given to the bean-like fruits of the Nelumbium speciosum
Africa.

EGYPTIAN BLUE billiant. consisting of the hydrated protoxide of copper mixed with a minute quantity of iron.
EGYPTIAN LANGUAGE AND WRITTNG. To formulate an opinion in regard to the group to which the ancient language of Egypt
belonged, it is best to follow step by step the gradual process of interpretation and secondly in inscriptions of the numerous texts existing ed to the conclusion panvri. By so doing of old ion ohiected to the Semitic family, an opinmodern studies tending to recently. The first rious tongue locked up to elucidate the mysteglyphics were those of the learned Jesuit those of Kircher (1601-80), but they, like centuries, were savants of the 17 th and 18 th ery of a tablet inscribed result until the discovnishod a the key to the history of an ancient civilization, whose annals extended over 40 centuBouscard Fench military officer, Captain M. Saint Julien found in 1798 or 1799 in the fort of un by the priests of Ean inscription drawn phis, in honor of Ptolemy Epiphanes (196 MC) The first inscription was carved in hieroglyphics, the second in demotic characters and the and copies Greck. The inscriptions were copied Rosetta tablet came several academies. The ish in 1801 and now rests in the British MuI), The first Greek translation was that of the Theil and Weston in 1801-02, and about the same time Akerblad, a Swedish Orientalist several demotic the embassy at Paris, deciphered alents of the names of Alexander, Alexandria, Ptolemy and others, being guided principally Subsentition they occupied in the Greek text. the result of Thomas Young published in 1819 ing some rudiments of an this field, formulatfrom the Rosetta Stone and from other monuindicated hiernolyphic possibility of the existence of a Younger, prepared. Finally Champollion the and philology prepared by his studies of history of hier on the subject, revealing the contents His 'Proglyphic writing on many inscriptions. lowed, after his système hieroglyphique' was folof a grammar death in 1832, by the publication tongue. Lepsius, dictionary of the Egyptian others continued the work but without success works in ang the grammatical structure of the Revillont a solid basis. Gaston Maspero and of translation, but considerably to the collection cision of the modern translations was prereached in 1880 when Louis Stern published his his in grammar, and when Erman published wide stendy This last-named work is based on the time that the linguistic variations during a living idinm. It shows the changes of was ferent periods and permits that those who study
this old tongue may now do so with as great security as those who undertake the study of Latin or of Greck. The counts illustrious members in England, Denmark, the United States, Italy and France, are published in the annals of the Berlin Academy of Sciences. From the most recent studies it appears that the ancient Epyptian belonge because of the biliteral roots of the Coptic, it was supposed that the Egyptian language should be classified with the three sub-families of the Hamite group previous to the formation of the Semitic, of which the triliteral root is characteristic. But it was
shown that the biliteral roots of the Coptic had originated from triliteral roots of the early Egyptian and other similarities were shown which prove conclusively that ancient Egyptian belonged to the semitic branch. The ancient language had four periods: (1) that of the previous to our cra; (2) colloquial Egyptian employed by merchants and in social inter course, and which existed from the 6th to the 17 th or 18 th dynasty; (3) the popular period of Roman domination, and (4) the language of the country from the propagation of Christianity until it ceased to be spoken Coptic Centuries ago, except in the liturgy of the Coptic Christians
Ancient Egyptian writing had three forms (1) the Hieroglyphic, the most ancient, employed ontues; (2) the Hieratic, the abbreviated form of the former. It was employed by the priests from the 4th to the 16th dynasty; (3) the Demotic or popular form, which began about the end of the 22 d dynasty and consisted ing was employed with small variation from the 4th dynasty until the 3 d century of our era. The signs were employed in three ways-1st, representing in themselves an obsyllable or part of a word; 3 d , limiting the syllable or part of a word; 3d, limiting the more signs. Phonograms were few, about 100 in all, of which 70 or 80 were in current use. The most important signs are those representing a single letter; in the Old Empire there
were 24 of these. Signs representing two letters were about 50 , and those which represented three letters were formed by combinations of this and the first group. Ideographic signs were represented by hieroglyphs symbolizing an idea, viz.: V a sceptre significd prince or ruler;) the moon; \odot the sun; an inclined wall Hieroglyphs were written horizontally or perpendicularly, reading in the direction in which the signs figuring birds were faced, which was generally from right to left of the reader, except in cases where the horizontal direction door, pylon, etc. To preserve a symmetrical appearance the scribes were accustomed to group the signs in squared areas and by adopting syllabic notation when the signs hindered such symmetrical disposition. Only the conrially to were represented, thus adding mate-
is also complicated by the fantastic writing of various scribes and their errors.
glyphics; Egyptian Literature.
EGYPTIAN LITERATURE. The advance that has bcen made in recent ycars in the de enables us to deal in a very matter-of-fact way with the Egyptian inscriptions. Their chie mysteries are solved, their philosophy is almost
fathomed, their general nature is understood. athomed, their general nature is understood. The story they have to tell is seldom startling when they were written. The heart of man was given to devious ways then, as now and in the days of Solomon,- that we can affirm full well; but his mind was simpler; apart from nowledge of men and the conduct of affairs, the cducated Eby modern boy of 15 , or an intelligent Engish rustic of a century ago
To the Egyptologist by profession the inscriptions have a wonderful charm. The writ ing itself in its leading form is the most attractive that has ever been seen. Long rows
of clever little pictures of things in heaven and earth compose the sentences; every sign is a plaything, every group a pretty puzzle, and at present, almost every phase well understood brings a tiny addition to the sum of the
world's knowledge. But these inscriptions, so world's knowledge. But these inscriptions, so
rich in facts that concern the history of mankind and the progress of civilization, seldom possess any literary charm. If pretentions, as many of them are, they combinc bald exaggeramay be poctical are hcaped together in dis f art. Such are the priestly landations of the kings by whose favor the temples prospered Take, for instance, the dating of a stela erected inder Rameses If on the route to the Nubian
gold mines. It runs:-

 Nubia, and the terror of him Teacheth to the land of the
Kary his name circulateth in al lands becase of the victory
which his arms have won; at his name pold ocmeth forth

 Ra, day by day.

As Professor Erman has pointed out, the
ourtly scribe was most successful when tak-
ing his similes straight from nature, as in the A victorious lion putting forth its claws while roarin aoing. A jackal swift of foot seeking what it may find
 the ki-ki plant with the storm behind it, ilike the strong
fame which hath tasted the fire, destroying until every-
hing that is in it becometh ashes; astorm howling tecriby

Here and there among the hieroglyphic in
scriptions are found memorials of the dead, in scriptions are found memorials of the dead, i
which the praises of the deceased are neatly strung together and balanced like beads in a necklace, and passages occur of picturesque na rative worthy to rank as literature of the olden the biographical epitaph of Ameny who was governor of a province in middle Egypt for 25 years during the long reign of Usertesen (about 2716 B.C.). This inscription not only recounts the achicvements of Ameny and th tells us in detail was shown him, but als charm, discretion and insight by which he attached to himself the love and respect of the whole court, and of the people over whom h ruled and for whose well-being he cared Ameny says:-
I was 2 professor of favor, abounding in love, a ruler who
loved his city Moreover I passed years as ruler in the
Oryx nome. All the works of the house of the King came Oryx nome. All the works of the house of the King came
int my hand. Behold, the superintendent of the gangs of
the domains of the herdsmen of the Oryx mome gave 3000 bulls of their draught stock. I was paraised gare it m
for
he house of the King each year of stock-taking. 1 rendere the house of the King each year of stock-taking. I rendere
al their works to the King's house: there were no arrears
to min any of his offices. 10 me in any of his offices.
The entire Oryx nome
nces. There orys not the served me in numerous attend
wrongeder nor a widow that I oppressed. poor man that wronged nor a widow that I oppressed. There was not
farmer that 1 chastised. no h herdsman whom I drove
away, not a foreman of five whose men I took away for the
works. Therc was not a pauper around mee there was no way, not a foreman of five whose men took away for the
whrks. Therc was not a pauper around me, there was not
hungry man of my time. When there came years of famine I arose and ploughed all the fen there of tame years of tof tomine
boundary south and north, giving life to its inhabitants

Elsewhere in his tomb there are long lists o the virtues of Amenemhat, and from these the
following may be selected both on account of picturesqueness of expression and the apprecia Superintend charact wings which

 day of making division, carefu
gaining reverence on the day
of the officials of the palace.

The cursive forms of writing-hierati from the earliest times, demotic in the latest -
were those in which records were committed to papyrus. This material has preserved to 1 documents of every kind, from letters and
ledgers to works of religion and philosophy To these, again, "literature" is a term rarely
to be applied; yet the tales and poetry occasionally met with on papyri are perlaps the mos pleasing of all the productions of the Egyptian It
It must be confessed that the knowledge of prding in Egypt led to a kind of primitive pedintry, and a taste for unnatural and to us
chidish formality; the free play and naivete of the story-teller is too often choked, and the ar
 pharm, for truth to nature alone gave lasting empted, their rugh adornment was often atment were seldom otherwise than clumsily em ployed.
A word should be said about the strange have con in which most of the literary texts umentai inscriptions contain serious blunders of orthography; the peculiarities of late archaistic inscriptions which sometimes produce a kind of 'dog Egyptian") can hardly be considered as bunders, for the scribe knew what meaning he copies of to convey. But it is otherwise with times these were the productions of schoolboys copying from dictation as an exercise in the writing school, and the blank edges of these papyri are often decorated with essays at executing the more difficult signs. The master of nonsense was produced by the misunderstanding of his dictation, so long as the signs were weil formed. The composition of new works on the model of the old, and the accurate undervery different ancient works, were taught in a oo skill in them. The and few indced attained writing school would read and write a the the clever ones would keep accounts, write letment make out reports as clerks in the governsiderable serve, and might ultimately acquire conApparently men of amysed themselves with puzzling over an ill Written copy of some ancient tale, and with ever, was copy portions of it. The work, howit, they revered the compilations of an elder age and those which were "written by the finger of Thoth himself"; but the science of language matic inborn, and there was little or no systcancient grammar and vocabulary. 'Those who they had passed throuth in scholarship after to go to Heliopolis, Hermopolis or wherever and principal university of the time might be, Who we fancy were reverenced as demigods; and who in mystere reverenced as demighods, gardly hand imparted scraps of knowledge to their cager puppils. Those endowed with special talents might after almost lifelong study Would profictent in the ancient language. hoard of rolls of such a copvist and writer!
There must have been a large class of hackconyists practised in forming characters both uncial and cursive. Sometimes their copies of
religions works are models of deft writing embellishments of models of deft writing, the
eme added to those of the calligrapher; the magnifi vol. $10-2$
cent rolls of the 'Book of the Dead' in th ion of Museum and elsewhere are the admira the eye, and alders. Such manuscripts satisfy Egypt nor ceven the priestly royal undertaker questioned their efficacy in the tomb. Yct ar scholar, fair without but ashes within. On comparing different copies of the same text, he sees in almost every line omissions, perversions, corruptions, until he turns away baticed and dis gusted. Only here and there is the text prac
tically certain, and even then there are probably grammatical blunders in every copy. Nor is it only in the later papyri that these blunders ar met with. The hieroglyphic system of writing especially in its cursive forms, ends itself very readily to perversion by ignoranl and inaltentive long as they are mere copies, are usually cor rupted. The most ridiculous perversions of all date from the Rameses epoch when the dim past had lhest its charm, for the ghires of the 8th dynasty were still fresh, while new im adherence to tradition and isolation
In the 8 th century b.C. the new and the old were definitely parted, to the advantage of each. On the one hand the transactions of ordinary ife were more easily registered in the cursive demotic script, while on the other the sacred brought into order by the priests. Hence, in spite of absurdities that had irremediably crep in, the archaistic texts copied in the 26th dy nasty are more intelligible than the same class fork on the 19 th and 20 th dynasties.
In reading translations from Egyptian, it mains concerning the meanings of multitudes of words and phrases. Every year witnesses a great advance in accuracy of rendering; but the ranslation even of an easy text still requires here and there some close and careful guessor words that are connecting links of passages esort to some conventional rendering that has become current for certain ill understood but frequently recurring phrases. The Egyptologist is now to a great extent himself aware
whether the ground on which he is treading is firm or treacherous, and it seems desirable to make a rule of either giving the public only what can be warranted as sound translation, or else of warning them where accuracy is
doubtful. A few ycars ago such would have curtailed the area such a course a few of the simplest stories and historical inscriptions; but now we can range over almost the whole field of Egyptian writing, and gather from any part of it warranted samples to set before the reading public. The labor, however,
involved in producing satisfactory translations involved in producing satisfactory translations may give something of the sense, is very great; and at present few texts have been well rendered.
Egyptian now sketch briefly the history of Egyptian literature, dealing with the subject in 1. The Ancient Kingdom, About 4400 B.C.3000 B.C. Tye earlicr historic period- from
the 1st dynasty to the 3 d , about 3766 B.C.
-has left no inscriptions to any extent. Some portions of the 'Book of the Dead' (q.v.) proprobably much of the religious literature is of extremely ancient origin. The first book of 'Proverbs' in the Prisse Papyrus is attributed by its writer to the end of the 3d dynasty (about 3766 B.C.). From the 4 th dynasty to
the end of the 6 th (3100 B.c.) the number of the inscriptions increases; tablets set up to the kings of the 4th dynasty in memory of warlike raids are found in the peninsula of Sinai, and funerary inscriptions abound. The pyramids raised at the end of the 5 th and
during the 6 th dynasties are found to contain interminable religious inscriptions, forming almost complete rituals for the deceased kings.
Professor Maspero who has published these Professor Maspero, who has published these texts, states that they "contain much verbiage, many pious platitudes, many obscure allusions
to the affairs of the other world, and among all this rubbish some passages full of movement and wild energy, in which poetical inspiration and religious emotion are still discernible throngh the veil of mythological expressions." the most remarkable is that of Una, an official of King Mer-en-ra (6th dynasty).
Another, later but hardly less important, is
the façade of the tomb of Hehrhuf, at As on the façade of the tomb of Hehrhuf, at As-
wan, and recounts the expeditions into Ethiopia wan, and recounts the expeditions into Ethiopia
and the soutlern oasis which this resourceful man carried through successfully. In HehrEgypt by bringing back for him from one of his raids a grotesque dwarf dancer of exceptional skill; the young Pharaoh scut him a long letter on the subject, which was copied in full on the tomb as an addition to the other records
therc. It is to the 5th dynasty also that the second collection of 'Proverbs' in the I'risse Papyrus is dated. The 7th and 8th dynasties
have left us practically no records of any kind. 2. The Middle Kingdom, 3000-1600 B.C.The Middle Kingdom from the 9th to the 17th dynasty shows a great iterary development. common. The funcrary inscriptions descriptive of character and achievement are often remarkable.
Many papyri of this period have survived: the Prisse Papyrus of 'Proverbs,' a papyrus
discovered by Mr. Flinders Petrie with the discovered by Mr. Finders Petrie with the
'Hymn to Usertesen III,' papyri at Berlin containing a dialogue between a man and his soul, the 'Story of Sanchat,' the 'Story of the
Sckhti,' and a very remarkable fragment of Sckhti,' and a very remarkable fragment of another story; besides the 'Westcar Papyrus of
Tales' and at Saint Petersburg the "Shipwrecked Sailor.) The productions of this period were copied in later times; the royal 'Teaching of Amenemhat' and the worldy 'Teaching of Danf' as to the desirability of a scribe's career aboye any other trade or pro-
fession exist only in late copies. Portions of the 'Book of the Dead' are found inscribed on tombs and sarcophagi.
3. The New Kingdom, etc.- From the New Kingdom, $1600-700$ B.C., we have the 'Maxims of Any,' spoken to his son Khonsu Hetep, numerous hymns to the gods, inclucling that of
King Akhenaten (Amenhotep IV) to the disc of the sun, and hymns to Amen Ra. Inscrip-
tions of every kind, historical, mythological and funereal, abound. The historical inscription of Piankhi is of very late date. On papyri
are the storics of 'The Two Brothers,' of 'The Taking of Joppa,' of the 'Doomed Prince)' From the Saite period (26th dynasty, 160
e.c.) and later, there is little worthy of record in hieroglyphics; the inscriptions follow ancient models, In demotic we have the 'Story o somewhat falsified, a harper's song, a philonicl ical dialogue between a cat and a jackal and others.
Here we might end. Greek authors in Egypt
were many; some were native, some of foreign were many; some were native, some of foreign
birth or extraction, but they all belog to birth or extraction, but they all belong to a dif-
ferent world from the ancient Egyptian. With the adaptation of the Greek alphabet to the spelling of the native dialects, Egyptian came again to the front in Coptic, the language of Christian Egypt. Coptic literature, if such it may be called, was almost entirely, produced in tion Let us hope that it served its end in its day. 'To us the dull, extravagant and fantastic 'Acts of the Saints,' of which its original works chietly consist, are tedious and ridiculous ex-
cept for the linguist or the Church historian. cept for the linguist or the Church historian ancient Egyptian mind to new conditions of life and belief. The bulk of the Egyptian and Translations.The bulk of the Egyptian literature has been preserved in papyri, nearly all of which are scatpapyri out of 10 contain the religious books and rituals which were placed with the mummics in the coffins or in the sepulchral chumbers. The most famotus of them is the 'Book of the Dead, a compilation of prayers and magical in-
cantations intended to ensure the security cantations intended to ensure the security of the
soul in the other world, and to serve it as a sort of password in the travels it was compelled to undertake before reaching the Hall of Judgment and the Elysium Fields. Scveral copies of this book have been reproduced in
facsimile by Lepsius ('Das Todtenbuch der alten Agypter,') Berlin 1842) and by E. de Rouge ('Rituel funéraire des Anciens Egyptiens,' Paris 1861-64) but the standard edition is that projected by the International Congress of Orientalists in London (1874) and executed in
part by Navilte in 'Das thehanische Todtenpart $\begin{aligned} & \text { buch der XVille in 'Das thebanische Todten- } \\ & \text { bus XX Dynastie' } \\ & \text { (Berlin }\end{aligned}$ 1886). It gives, however, only those chapters which are to be found in the manuscripts of the Theban period. Translations of the whole book exist in English, prepared by Birch (in
Bunsen's 'Egypt's Place in Universal History,' Vol. V, 1866) and by Le Page-Renouf in 'Proccedings of the Society of Biblical Archæology.' Rituals proper, that is collections of the cercmonies of prayers performed in the temples and tombs - are very numerous; such are the ritual
for the cult of the Theban Amon. The Opening of the Mouth and the other rites performed ing of the Mouth and the other rites performed
on the day of burial have been preserved to us in the pyramids of the 5th and 6th dynasties and in the private and royal vaults of the Theban cemeteries. The texts in the pyramids have
been collected and translated by Maspero and those of the Theban hypogees by Schiaparelli those of the Theban hypogees by Schiaparelli
('II libro dei Funerali degli Antichi Egiziani,)

Rome 1880-90). Books of magic abound, though they are not as numerous as the ritualistic or religious works. Most of them are un('Le papyrus magique Harris,' Chalons-surSanne 1861) ; Pleyte ('Etude sur un rouleau magique, etc.') and Lefebrure ('Un chapitre de la chronique solaire') give a sufficient idea of the ways in which Pharaoh's magicians were somt to conjure the demons. That they were
somes prosecuted as adepts in the black art is proved by the proceedings of a trial for high treason at Thebes during the reign of Rameses 1II. Magicians often acted as physicians or surgeons, and no remedy could be properly applicd without their help. About 20 treatises
on medicine are known to exist, of which a few have been published ('Papyrus médical de Berlin'). Ebers studied and published comments upon portions of his papyrus which relate to the diseases of the eye. No papyrus treating of astronomy has yet been discovered, but the tables which abound on the walls of temples and tombs at Ombos, Esnch, Edfu, Denderah the Ramesseum, the Memnonium of Alyydos and others, furnish a large quantity of material.
Three mathematical papyri have been found, one of Roman times and one from the 12th one of Roman times and one from the 12th works on philosophy, which was limited to a rendition of moral precepts and aphorisms on the conduct of lifc.
the 'Papyrus Prisse) ten in the 12 th dynasty and has been called "the oldest book in the world." Poems and songs are by no means rare in the manuscripts. The remains of two collections of love-songs have been studied by Maspero ('Etudes Egyp-
tiennes) Vol 1) and the poem on the battle of tiennes,' Vol. 1) and the poem on the battle of
Kadesh, in which Rameses II is made to describe how he fought against the Hittites, is widely known. There was a whole literature of stories akin to the 'Arabian Nights.' De Rouge discovered the first of them in 1852 and
entitled it 'A Tale of Two Brothers' and since entitled it 'A Tale of Two Brothers' and since
then about 20 have been published; the most then about 20 have been published; the most
curious among them are the 'Tale of the Wicked Mariner) (Golenischeff, 'Sur un ancien conte egyptien,' Leipzig 1881), and the 'Tale of Khonfoui and the Magicians' (Erman, 'Der
Papyrus Westcor,' Berlin 1891). They have been Papyrus Westcor,' Berlin 1891). They have been
collected by Maspero in his 'Contes populaires collected by Maspero in his (2d ed., Paris 1890). Even fables were current in Egypt which the Greeks attributed to Fsop; the fable of 'The Lion and the Mouse' (Lanth, 'Thier nabel in
Agypten,' Munich 1868) and ' Dispute of the Agypten,' Munich 1868) and 'Dispute of the
Members and the Stomach' (Maspero, op. cit., Vol. 1). Private letters have come down, many of them scaled and unopened, others preserved in anthologies, where teachers of the 19th and 20th dynasties had inserted specimens of de-
scriptions and poetical epistles, official reports on administrative subjects, as models of elcgant style for the young scribes, their pupils.
Several of these have been published by the Several of these have been published by the
trustecs of the British Muscum in the first volume of the 'Select Papyri' (London 1841-44). The Old Egyptian language has been the subject of continuous research and there are many excellent grammars but lexicography is not so well advanced. For the constant progress in
this field of uncovering the ancient literature o Egypt consult the notes, pamphlets, papers, etc. inserted in the various journals of Europe and
America. Consult also "Transactions and Proceedings) of the Society of Biblical Archæology and (Mcmoirs of the Eryptian Exploration Fund' in England; the 'Zeitschrift der Deutschen Morgenlảdischen Gesellschaft) and the 'Zeitschrift für Ägyptische Sprache und Alterthumskunde,' in Germany; and the Jour nal Asiatique, Revue de PHistoire des Religions, the Revue Egyptologique, in France; (Prince) Ibrahim-Hilmy, 'The Literature of Egypt and The Soudan' (2 vols., London 1886-88). Se Hieroglypfitcs.

Author of 'Ancient Egypt or Misraim.)
EGYPTIAN MUSIC. Our knowledge of the music of ancient Egypt is very meagre and we find specimens of their musical instruments and there have survived numerous illustrations of others, together with scenes representing the singing of odes to the gods, or thei heroes, funcral dirges, and we know that musi-
cians and dancers formed a part of all entertainments. In general their instruments are of the same character as those of the Hebrews and Assyrians, from which we infer that their music was of the same general type as that o hese neighboring civilized peoples. Their firs music was merely an accompaniment to the
dance, as we find representations of singer clapping their hands in rhythm to the motions of the dance. Vocal music was made up of solos and choruses. Women often sang without musical accompaniment, but it appears that men rarely did so. Many songs have been prescrved,
one of the oldest being that of the oxen threshing out the corn. The Egyptians had no clear or fixed ideas of harmony and possessed no system of notation although they had many treatises on music. The harp, lyre, flute, trumpet, drum, cymbals and tambourine were
their principal instruments. We find notices of the harp prior to 3000 b.c. At first it had but 7 strings increasing gradually to 22 . The strings were of catgut. It had no pedals and could be played in but one key. The lyre was
also a popular instrument of from 6 to 20 also a
strings. About 500 B.C. the te-bouni, a kind of banjo, came into use. It generally had but one string, although some specimens have two or three. A houlder harp was also in vogue about this time; it was played when resting on the shoulder. I
was a medium between the harp and guitar. All these instruments underwent considerable development in the course of time and there were also a number of derived instruments. Both women and men played on these, although cer tain instruments appear to have heen peculiar to cients' (London 1864): Mathews of 'Popular History of Music) (Chicago 1894) ; Smith, World's Earliest Music' (London 1904).
EGYPTIAN RELIGION AND SOCIOLOGY. Religion.-No satisfactory treatment of ancient Egyptian religion has ap-
peared, though the subject was one of the first peared, though the subject was one of the first
to awaken interest in modern times. The names
of the deities of the Pantheon are well known and their gencral characteristics are sufficiently the conceptions which gave them force are obscured not only by the most curious inconsistencies but by the fog of mythology which is for the most part unknown to us. Religious conceptions existed during all periods, but never a
religion in any true sense. It is plain enough that the differences in religious belief and practice corresponded to the primitive condition of the land, each district having its chief object of veneration. It was a condition of Henotheism tact produced by the union of the nomoi under a central government, there grew up a system god of the capital gained prc-eminence. The original deities were objects of nature, but nom development was various in the different who represented abstract or cosmogonical ideas. When intimate association occurred there was a resultant confusion of attributes and names. The hegemony of the god of the
capital contained in itself the motives of Monotheism, but there is no indication that Monotheism was the original form of the Egyptian religion or that the people ever advanced to it, in spite of such phrases as "the only god" and the like. When carefully examined these expressions are found to refer to the deity held "city god" or the leader of the local triad or ennead. Endowed temples and independent priests of separate deities prove that a determined resistance was made to any attempt to in the case of Amenophis IV. Ptah was the god of Memphis; Neith, the warlike goddess of Libyan Sais; Chnum of Elephantine was the deity of the cataract regions; Nechebt was goddess of the south in general; Min was the desert deity; Amon of Thebes, Anubis of Tycopolis Tum of Heliopolis, Bast of Bubastis, Sebek of Edfu Fayum, Hathor of Denderah, Horus of Edfu, Thoth of Hermopolis, Mont of Hermonthes are examples of the local gods. The forms of many of the deities are exmal shape but frequently it is a mixture of the two; the human trunk being surmounted by an animal head. Thus Ptah appears as the ApisBull; Hapi, Amon and Chnum as rams; Sebek as a crocodile-headed man; Nechebt as a ser pent; Mut as a vulture; Anubis as a jackal
headed man; Bast as a cat-headed woman Sechmet and Tefmut as lion-hcaded; Hathor as a cow; Horus as a hawk, or hawk-hcaded man Thoth as an ibis. The Phonix is possibly deBieropolis, which appear s a heron.
deities various periods of the history certain nature: Ra, the sun, the ruler of powers of having his sanctuary at Heliopolis, was even in rehistoric times conceived as a person; Horus with Set, the god of darkness; Ra-Harmachis was the rising sun; Ra-Tum the sun at evening Thoth was also worshipped as the moon. The number of mythological beings, such as Nun,
the original ocean, out of which Ra proceeded,
is beyond number. Mat, the goddess of truth, represents a large class which symbolizes
abstract notions. Deitics are also portrayed in pairs, such as Acb, god of eare alh, and Hut, god isis. In Heaven, Shu and Tefnut, Osiris and which is carried out isen the family relation without great confusion. Much of the religion has its explanation only in connection with the
future life. When the soul or "double" future life. When the soul or "double" ($k a$) treme care and deposited in a secure tomb ex the personal existence of the discmbodied spirit depended upon the absolute preservation of the muminged by a future of the individual was de as weighing of the heart by Horus, who coned terbalances it with the symbol of the truth Mat, the goddess of truth, watches the operation, and Thoth, scribe of the gods, registers the asult. In the earliest periods specific beliefs about the individual deities, but these did not become a true mythology till the amalgamation of variant views under the influence of the national union of the nomoi. The confusion little is resulted led to attempts at harmony. But which must have of this mass of mythology to judge by the allusions abounding in every religious text.
The ancient Egyptian religion was, there fore, a kind of philosophical pantheism, the among the different gods of the Pantheon. Un like the Greek, where a god was honored in a separate temple, each Egyptian divinity was accompanied by a paut, or "company" of com-panion-gods.
the 18 ct foreign deities became at the close of system- as Bar, Baal; A htarata, Ashtaroth Aystem- as Bar, Baal; Ashtarata, Ashtaroth: Set, or Sutekth, sometimes identified with Baal. All the gods had human passions and affections, walked on car of action was material; they space in boats. First among the deities ethereal Ptah, the opener, represented as the creator of the world, the sun and moon, out of chaos (ha) or matter, to whom belong Sckhet, "the lioness" and Bast, Bubastis, lion-headed goddesses pre-
siding over fire, and Nefer-Tum, his son, a god siding over fire, and Nefer-Tum, his son, a god
wearing a lotus on his head. Next in the cosmic order is Clnum -- worshipped at Elephantine the ram-headed god of the liquid element, who also created the matter of which the gods were Heka the Frog, or "primeval are the goddesses or "sunbeam" and Anuka, alluding to the genesis of the cosmos. The Theban triad comprised Amen-ra, "the hidden" power of the "sun," the Jupiter; Mut, the "Mother" goddess of "Matter" the Juno; Nit, the "Shuttle," the Minerva; A subordinate type of Amon is Khem or Amsu, "the enshrined," who, as Harmekht, or Powerful Horus, unites beginning and end, or cause and effect.
A great variety of abstract principles and
even animals and vegetahles were, however worshipped by the multitude, there, however, trine of one God was privately taught by the priests to a select few. Many of the ani-
mals, birds and reptiles were held sacred by
the Ancient Egyptians; whocver killed a sacred ancient Egyptians; whocver killed a sacred animal, an ibis or a hawk, was put to
death. If a cat died a natural death every person in the house shaved his eyebrows; if a dog died, the whole body and the head were shaved. The cats were sacred to the goddess Bast and were buried at Bubastis and the dogs in the aults of their own cities, field-mice and hawk at Buto, the ibis at Hermopolis and other ani-
mals where they were found lying. Of all animals the sacred bull, Apis, was the mos revered. His chief temple was at Memphis. The cow, being sacred to Isis, was thrown into the bull was huried in the Serapeum ; and the Apis Of the doctrines of the Egyptian religion ittle is accurately known. The existence of the pirit after death was belicved and a futur tate of rewards and punishments inculcated Which the good dwelt with the gods, while amid perpetual darkness. It was believed that after the lapse of ages the spirit would return o the body, which was therefore carefully $\mathrm{cm}-$ balmed. See Book of the Dead; Embalming Social
Social Organization, Manners and Cusenumeration of Herodotus and Diodorus, who name seven and five classes respectively Herodotus gives priests, warriors, cowherds, meneherds, tradesmen, interpreters and boat shepherds and artisans. All these cxisted, but he enumeration is defective. True caste wa unknown. The population was divided into to great parts - nobles and slaves - while Middle Empire onward its traces from the cluded royalty and those in the service of the state or religion, a ruling class, far removed rom the slave population, foreign and native They formed the backbone of the state, filled their social inferiors. At were obeyed by all ernment stood Pharaoh, "King of the Upper and Lower Egypt, son of Ra, eternal." Ramese II is bombastically called "Horus, the mighty bull, beloved of the Goddess of Truth, pro ector of Egypt, subduer of barbarians, rich Ramears, great in victory, chosen of Ra, called "the consort of the God, mother of he God, the great consort of the king"-god and king being interchangeable terms. She was usually of royal blood, often own sister of the
king, his equal in birth and place-"Mistress of the House." Crown prince and princes came "the ne in order. The upper classes consisted of the nearest fricnd" of the king and friends of various grades, generals, high priests, officers, physicians, overscers, district chicts, judges,
keeper of the seal, master builders, treasurers, an-bearers, scribes and others. Officialdom amified in numberless class gradations, whether he order was priestly, military, literary, archiectural or agricultural. Advancement went by oyal or other favor. The middle class remaine members could not, like kings and nohles, erect ose enduring tombs from which our knowledge of the times is obtained. After the removal of
the necropolis from Memphis to Abydos during
the Middle Empire and owing to the increasing practice of erecting memorial stelae, the mong ing a conception of their number and position. They possessed houscholds similar to those of officials and in many ways appear to have heen their equals. They were merchants, traders, artisans, free workmen, weavers, potters, car-
penters, joiners, smiths, etc. The lowest class was composed of the slaves, native or taken in war, who were hewers of wood and drawers of water, performing all menial offices. They were mere chattels, belonging to temple, necropolis, part of the military establishment. Closely allied to them were the shepherds, the pariahs of Egyptian socicty.
Agriculture, manufacture and trade were carried on in Egypt in the very earliest days. Upon the ancient monuments we find repre-
sentations of the mechanical arts, where we see the blow-pipe, bellows, siphons, press, balance, lcver, saw, adze, chisel, forceps, syringe, harpoon, razors; we have also glazed pottery, the potter's wheel and the kiln; and dated specimens of glass of the time of (Thothmes III, 1445 B.c.).
Gold-beating, damascening, engraving, casting inlaying enameling wire drawing and other processes were practised. Weapons and other instruments of war, shields, cuirasses of quilted leather, helmets, spears, clubs, maces, daggers, bows, battle-axes, polc-axes, hatchets and fal chions are shown. and lanterns were also in use. In agriculture the plow, hoe, sickle and other implements were employed. The processes of growing and preparing flax and making it into thread, string, ropes and cloth, as well as the looms employed, are all depicted. Mats and baskets were palm leaves, or of the outer rind of the papyrus plant, which was used in making paper. Coffins or wooden sarcophagi were chiefly of sycamore or cedar, covered with stucco and
richly painted. The ordinary boats of the Nile richly painted. The ordinary boats of the Nile
were planks of the acacia and had two rudwere planks of the acacia and had two rud painted or worked in colored patterns. Many of the vessels of burden were of great size. The boats made of papyrus were mostly punts for fishing, or for gliding through the canals of the
Delta. Implements for painting ladles, bells, crucibles and surgical instruments have also been found. The commerce of the Egyptians with neighboring nations enriched the country with slaves, cattle, gems, metals, rare animals and objects of curiosity. The Egyptians exniture of the dead, and the paintings acquaint us fully with the various ceremonies followed. In embalming they excelled. Each administrative department had its own troop of laborers under its own oversecr, who kept minute tally
of work performed, rations distributed and of of work performed, rations distributcdual, was the unit. All artisans as well as the slaves were regarded superciliously by the scribes and held in lower repute than the agriculturists, though the products of their skill still command
admiration. Weavers working with papyrus reeds or with linen thread, produced baskets, boats, mats, or the finest linen cloths; joiners though handicapped by lack of good raw material, nevertheless produced creditable work
by the use of instruments most simple in their haced patterns tenaciorough all periods repro tion, but atoned for the rudeness of much o their work by the fineness of their products in faience, the glazing of stone objects being es ecially noteworthy. Metal workers used gold, incr, bronze, iron and tin, the source whence in was derived being problematical. A bronze Objects in bronze and iron have been found among the remains of the Old Empire, though the earliest bronze statue is one of Rameses II he sources on most metals were the mincs o old and a mixture of value silver excceded mentioned. The processes two is frequently well portrayed on the walls of the tombs. The low was simply a sharpened stick dragged rough the ground by oxen; the hoc a broad blade fastened to a handle, a second cord midseed once scattered was trampled in train. The mals. Harvesting was done by a short sickle he grain was carried in shcaves to the threshng floor, where the hoofs of cattle performed he required labor. Winnowing was done with shoyel and wind and the grain was stored in the bearers mounted on ladders. Supplementary irrigation was by a well sweep similar to the modern shadouf. These labors were so essential a part of Egyptian life that the future life was portrayed under exactly the same circumstances, happiness consisting essentially in be avoided. Cattle of all sorts, asses, sheep pigs and goats existed in great herds and were tended by slaves and peasants whose occupations in marshy districts so far removed them detestation markable in view of the evident more rewhich landed proprietors enumerated their flocks.

The schools, "bookhouse" or "house of instruction" presided over by a scribe, was an all classes alike and prepared which received technical education of the special bureau the the New Empire both branches werc combined in the departmental schools. Orthography, caligraphy, style and the formula of etiquette learned by practice. Many corred the rest was exercises have survived, containing school specimens of literature; tales, religious and magical texts, poems, codes of rules, or "instrucof ancient sages for the proper regulation of daily life and statements of the unlovely with the beauty of the scribe's as contrasted nciting to industry on the part of the at onc to profound respect for the teacher. Thes papyri are of great value in affording a knowledge of orthography, language and literature. epresent the various operations of estates in all their complexity of large landed ownership of the soil, of large tracts and even of whole villages, seems to have been a survival rom the time when the princes of the nomo were at the head of the independent districts
which collectively constituted Egypt. A decided change is seen in the New Empire when the title to all land except that attached to temples was vested in the king and when it was worked for the state by slaves or let out about during the Hyksos period or in came transition to the revived native dynasties. The biblical account of Joseph is of interest in this connection. The dwellings of the common people probally resembled those of the fcllahin of to-day, being mud hoyels, whose destruction mark city sites. The dwellings of nobles and kings were more pretentious, but no remains have survived. The only models by which to udge are some ancient sarcophagi of houseord has survived of a representations. Reccubits square.
Farnily Life.- The position occupied b woman was quite extraordinary. In the honsehold there was generally only one wife, though slaves. Actual polygamy wascubines or femal the royal harem often contained 200 , woug Private persons also maintained harems, the number of inmates depending on the financial ability of the individual. Inheritance and geneal ogy were reckoned by the mother, not the descend to his sons, the line mishons migh through the daughter to her sons marriages were contracted upon these consideraions. It was a father's ambition to hand dow "hersicial position to his sons, and the title of hereditary prince" is often met with. The in early periods, but under the pter is met with quite the rule, and the marriage contracts it was fied the amounts which the husband engaged to ive annually to his wife for family purposes. Costume.- There is a constant development observable in the dress of the upper classes.
Royalty set the fashions, and they were followed at intervals by those standing on the various social levels. There was a distinction between king and noble, and between noble and plebeian. The simple apron bound about the loins was always the essential garment. To this the king added a lion's tail, and the noble a panther's
skin cluring the period of the Old ing the Middle Empire the apron took a pointed triangular shape and became longer ; next comes a double apron, a short one beneath, opaque, and a long and transparent one outside. The ever, while the king had advanced to a mode of dress which covered the whole body and was compiex in structure. That which before was holiday attire became the garb of every day. The dress of women was more uniform. It consisted at first of a close-fitting garment and was fastencd by straps over the shoulders, Only in the latest periods were sleeved or sleeveless mantles worn. Transparent cloth was used for female wear, as for the outer apron of males, hut without the inner garment. apron, which in some cases amounted of the a band with pendant ends. These simple articles were made of papyrus mats, leather or cloth.

The hair was worn short, but the shaving of the head does not appear to have been practised used as Wigs of various forms and sizes were of them are not infrequent. Natural beards were not worn except by shepherds and similar persons but an artificial "imperial" beard was one of the marks of royalty and divinity in the tomb representations. Sandals of various sorts
completed the costumc. Egyptian garments of

- completed the costume. Egyptian garments of garded as filthy. The food of the lower classes consisted largely of bread and vegetables. The principal vegetables were kidncy beans, lentils, turnips, radishes, carrots and spinach. Millk omegranates, dates, figs and grapes were pleniful. The flesh of the goat, ox, gazelle, anteope and other animals formed part of the die of the middle classes, the flesh of the hog was not in use, this animal being considered unclean. leese, ducks, turtle doves and hens were abunable income to the laboring classes. Salt was xtracted from the coast marshes and from some deposits in the Libyan desert. The naons beverage was beer, seasoned with variof the grape and the common people the fermented juice of certain palms.
Recreations. - The dance to the accompaniment of the lute was a popular diversion. Acroats and clowns performed in the roya and princely palaces. Checkers and chess much ments. As regards furniture chairs and tables resembled closely those of the present day: Other articles appear to have heen of simple onstruction. The hunting of wild animals wa. coursing with dogs and the use of lassi employed. Fishing was with line or net owling was done in the marshy districts in oats, the weapon used heing the boomerang raps and nets were also used. Wrestling and juggling are often represented in paintings singing and music were the accompaniment o work and play, and at feasts, music and danc ng, performed by members of the harem, en vened the scene. The instruments used were harp the lyre the last two having sometime nearly 20 strings. Assistants beat time by hand lapping. Bow practice was engaged in and game similar to quoits is represented, alon ther games which cance be understoo squares like checker-boards have been found but how they were used is uncertain. The children were not forgotten, for the tombs have ielded several specimens of their toys
Government. - When the king was simply the first among equals, Upper Egypt was diferent grades, each having its nomarch or govcrnor who stood as the head in everythingchief judge, district chicf, military commander, he was also chief priest of Mat, the goddess o ruth. So long as the ko continued, but upo he decay of royal prestige each district chie aspired to leadership. This probably explains
the periods of confusion in the history indicated hy the blanks between the 7th and 11 th and the
13 th and 17 th dynasties. A new order came in $13 t h$ and 17th dynasties. A new order came in
during the period of the New Empire. The during the period ored all his functions to the military official appointed by the king to look aiter his interests and to gathe case might le kind, peaceably or forcibly as the case 'mouths" or "speakers" of the king appear as intermediaries. Some of the more important additional olfices were those of chief judge, governor building-mastcr, treasurer, ovarser of gran standing, a prince or noble, or perhaps a pricst. Beneath, him were several grades in the office Several sat as a court and before them complaint was made, prosecution and defense hear king, according to the gravity of the complaint The prosecutor might he a private person or public official with whom the complaint wa lodged. Confessions were forced with the bastinado. The severest punishments were ting loss of cars and nose, brisoning. Accounts o trials are frequent, but no legal code has sur vived. In the earliest periods there was no standing army. Each nomos had its own mili tia and each temple its soldiers, who appea rather to have becn pol Middle Empire. The chief service rendered by soldiers in these periods was to escort expeditions to the quarrie of Syene and Hammamat and to the mines o S:nai and Nubia. They also rendered servic as laborers. Under Pepi (6th dynasty) a mili ary expedition wast Ethiopian mercenaric formed the bulk of this force. Under Amenemha III (12th dynasty) expecitions to Nubia were mindertaken and a stele of the period, now in Berlin, records the wailing which attended the visits of the conscripting officer, the "military
scribe" who came "to choose out the likely scribe"" who came "to choose out the likcly
youth." About this time the king came to have a body guard and during the contest with the Hyksos the armies were increased. Mercena ries, however, were constantly employed as conscription was little employed. Bowmen forme
the principal arm of the mercenaries; the chario coming into use after the Hyksos wars, was constructed to contain two persons, driver and warrior. Border garrisons were mantained to the cast and south. The native weapons wer the spear and shield, the axe, lance, dagger
sling. Naval warfare was little practised. Bibliography.-Binion, 'Ancient Erypt Mizraim' (1888); Birch, 'Egypt from the Earlicst Time) (1875); Brigsch, 'Egypt under the Pharaohs' (1874); Budgc, 'History of Egypt' (8 vols.) : 'The Gods of the Egyptians' (1904) (1814) ; Frman, 'Life in Ancient Egyn (1894) : Mahaffy (Empire of the Ptolemies) (1895) ; Renouf, 'The Religion of the Ancient Egyntians' (Hibbert Lectures 1880): Wiede mann. Religion of the Ancient Egyptians (the Ancient Egyptians' (1879).

EGYPTIAN SUDAN. Sce SUdAN.
EGYPTIAN VULTURE (Neophron percnopterus), a well-known bird which frequents
both shores of the Mediterranean, southern
India and, during the winter, South Africa. It is the scavenger of Egyptian villages, collecting in numbers where carrion or garbage is deposited, but feeding also on frogs, lizards and small mammals found in cultivated fields. The themselves to particular localities, being only drawn together in numbers by abundance of their favorite food. The name, as also that of Pharaoh's hen, is given because of the frequent ture. See Vulture.

EGYPTIANIZE
EGYPTIANIZED CLAY is the name intreatment of clay by which a clay weak in strength and in plasticity is made stronger and more plastic. In this process the clay is treated products. The treatment reduces the particles of clay to a state so fine that they will pass through ordinary filter paper, and will remain permanently suspended in water. The employment of the extract of straw to make the clay (q.v.), the discoverer to Edward G. Acheson "(q.v.), the discoverer of the process, the name story of the use of straw in the making of
bricks. bricks.
EGYPTOLOGY, the science of Egyptian
antiquitics. Sce Fgypt. antiquities. Sce Egypt.
EHEBERG, ā'è-bèrg, Karl Theodor von German political economist: b. Munich 1855, He received his education at the University of Munich and in 1882 was appointed professor of
political cconomy at Erlangen. He is best
innown known through his masterly presentation is best subject of finance in his 'Finanzwissenschaft) (3 d cd., 1891 ; new ed., 1909). He also wrote Ueber das altere deutsche Münzwesen und die
Hausgenossenschaften schaftlicher Beziehung) (1879) in volkswirthReichsfinanzwesen' (1908). ${ }^{(1879) \text {, and 'Das }}$
EHLERS, âlêrs, Ernst Heinrich, German
zoologist: b. Luneburg 1835 He education at Göttingen and Munich received his became professor of zoology at Erlangen. In parative-anatomy at the University of and com-parative-anatomy at the University of Göttingen. fïr weissenschaftliche Zoologie. He wrote (Zoologische Beitrāge,' with W. Keferstein (1861); 'Die Borstenwürmer' (1868) ; 'Mypophorella Expansa' (1876); 'Florida-Anneliden)' (1887); ' ${ }^{\text {(Zur Kenntnis der Pedicellinen)' }}$ wảhrend der Schwedischen Expedition nach der Magellanslandern' (1900); 'Neuseelandische Anneliden) (1904).

EHLERS, Otto Ehrenfried, German traveler: b. Hamburg 1855; d. 1895. He studied at the universities of Jena, Heidelberg and Bonn.
In 1887 he went to East Africa, and later In 1887 he went to East Africa, and later traveled through India, the Andaman and
Nicohar islands, Siam, French Indo-China, Korea, Japan, the Hawaiian Islands and the United States. In a second tour he again visited India, and went to Samoa, Kaiser Wilhelm's Land and New Guinca. In an effort to traverse the latter country he was slain hy his
guides. He wrote 'An indischen Fuirstenhoffen' (2 vols., 1883; 5th ed., 1898) ; 'Im Sattel durch

Indochina' (1894); 'Samoa, dic Perle der Südsee) (3d ed., 1896); (Im Osten Asiens'
(4th ed., 1900). 4th ed., 1900).
EHLERS
EHLERS, Rudolf, German theologian: h.
Hamburg $1834 ; \mathrm{d}$. 1908 . He received his cation at the universities of Heidelberg, Berlinand Gottingen. For some time he was Berlin at Stolberg, near Aachen, and in 1864 removed to the Protestant Reformed Church at Frank-fort-on-the-Main, where he exercised a wide influence as a theologian. In 1878 he was made
consistorial councillor, and in the following year became one of the editors of the Zeitschrift tür praktische Theologie. He published, among other works, 'Evangelische Predigten') (1873); 'Bilder aus dem Leben des Apostels Panlus'
(1886). (Richer (1886) ' 'Richard Rothe' (1906), and a philosophical work in Latin.
EHNINGER, ān'ing-è, John Whetton, American artist: b. New York 1827; d. 1889 .
He studicd under Couture in He studicd under Couture in Paris and later
studied at Diisscldorf. He left a number of portraits, and landscapes and left a number of portrats, and landscapes and figure subjects, (1867) the Gambler'; 'Autumn Landscape' (1867) : 'Twilight from the Bridge of Pau' (1878); illustrations for Longfellow's 'Miles Standish' (1858) and for Irving's 'Dolph Hey(1867).

EHRENBERG, ä'rě̌-bě̀rg, Christian Gottfinied, German scientist: b. Delitzsch, 19 April
1795 ; d. Berlin, 27 June 1876 . Ater stude theology, medicine and natural history at Leipto Palcstine, Egypt and Abyssinia an expedition Berlin in 1825 . In 1829 he accompanied Hing to bolt to the Ural and Altai ranges and to central Siberia. In 1839 he was appointed full professor of medicine, at Berlin, His great work on 'Infusoria' ('Die Infusionstierchen 1838 , and was at once recognized as the ared in anthority on the subject. It was followed in 1854 by his 'Microgeology.' Ehrenberg's work gave an enormous impetus to the study of microscopic organisms. He was the first to
show that the phosphorescence of the sea is due to the presence of hosts of an the sea is due sult Lane, 'Life) (1895).

EHRENBREITSTEIN

russia, town and fortress on the àren-brit'stīn the Rhinc, opposite Coblenz with which it is connected by a bridge of boats and a railroad bridge. Tobacco, flour, leather, soap, bricks and wine are manufactured and there is a large
trade in corn, wine and iron. large fairs held annually. The fore are severa steep rock, 385 fect above the river. It has massive fortifications and until the advent of heavy siege artillery was deemed impregnable In 1799 after repeated assaults had failed and after a siege of 14 months the French succeeded
in capturing it. In 1801 they destroyed the fortifications and retired. In 1826 destroyed the fortifications were completed. Pop. 5,302.
EHRLE, ār'lé. Francis, German Catholic scholar: b. Isny, Würtemberg, 17 Oct. 1845. He was educated at the Jesuit College, Munster, Westphalia, at the Maria-Laach in Freiburg,
and at Ditton Hall, Lancashire, having been ad-
mitted to the Society of Jesus in 1861. After sevral years in mission work he was transferred studies. In 1800 de administrative council of the Vatican Library, of which he was appointed prefect in 1895 . Hc retired in 1914. He reccived honorary degrees, ot only from Munster (1902) and Louvain (1909), but from Oxford (1899) and Camand its Literature in the Middle Ages) (in German) is lased on extensive rescarches in the rchives of Germany, England, Spain and taly. It is on this work that his reputation Largely rests; but he has further written a 1417, and (with Stevenson) a history of the Vatican. He was placed in charge of the Papal exhibit at the Louisiana Purchase Exposition, aint Louis. His principal works are monographs on the frescocs of Pinturicchio in the 1897; Italian 1899) ; editions of the more important manuscripts in the Vatican Library and Beitrage zur Geschichte und Reform der Armenpflege) (1881).
EHRLICH, àr'liн, Heinrich, German studer on music: b. Vienna 1822 ; d. 1899 . He studied under Henselt and Thaiberg, and
time was court pianist to Gcorge V of Hanover. He was court pianist to Gcorge V of Hanover.
He (emoved to Berlin in 1862 and taught the ${ }^{\text {pianoforte }} 1864-72$ at the Stern Conservatory there in $1864-72$ and $1886-98$. He also wrote musical criti-
cisms and other articles in the Berliner Tagecisms and other articles in the Berliner Tage-
blatt, Die Gegenzoart and the Newe Berliner Musikzeitung. He published (Wie ubt man am Klavier' (2d cd., 1884; Eng. trans.) ; 'Die werken'; 'Dreissig Jalıre Künstlerlebens 186222 (1893): (Schlaglichter und Schlagschatten aus der Musikwelt') (1872); 'Aus alle Tonar-
ten) (1888) ('Die Ornamentik in Beethovens (en' (1888); 'Dic Ornamentik in Beethovens his auf die Gegenwart) (1881): 'Modernes Musikleben' (1895).
EHRLICH, Paul, German medical scicn14 March 1854; d. Bad Homburg, 20 Aug. 1915, He was educated at the universities of Breslau, Strassburg, Freiburg and Leipzig. After graduinto the relationship existing hetween scientific Into the relationship existing hetween scientific
medicine and chemistry experimenting on the effects of various chemicals upon living tissuc. He first chose the anilime dyes, on account of heir effects being visible when injected into animals. With these dyes and their derivatives most brilliant triumphs were gained through their employment. By staining the tubercle acillus with dyes he found that certain of them ossessed a peculiar affinity for this bacillus and this accorded with the view on which he cific affinity of particular chemical substances or particular tissues, more especially for the organisms which cause disease. He next discovered a method of testing the potency of the anti-diphtheria serum by experimenting on guinca-pigs, which made it possible to standard-
ize the serum and accurately measure the dosage. Ehrlich then found a dye called "trypan red" which cured fatal trypanosome in-
fection in mice. A further scries of experiments resulted in his greatest discovery, that
of salvarsan (q.v.) or 606 , a specific drug with of salvarsan (q.v.) or 606, a specific drug with
power to destroy the spirochate pallida, the specific organism of syphilis. This epoch-making discovery has been described as the most potent therapeutic weapon in existence. Ehrlich laid the foundation of modern hæmatology and
also performed some notable researches in conalso performed some notable researches in con-
nection with cancer; he formed the theory "that the growth of cancer depended on food stuffs." Almost every university and learned society throughout the world honored the great scientist ; the Nobel Prize was divided between
him and Metchnikoff (q.v.) in 1908; the number of his decorations conferred by monarchs and princes was greater than he professed to be able to remember. "He opened new doors, to the unknown and left the world his debtor.
EHUD, one of the judges of Isracl, menand viii, 3; he delivered his people by stalibing and viii, 3; he delivered his people by stahbing (o death their oppressor, Eglon, king of historical character of this hero, Consult Kittel,
(Geschichte des Volkes Isracl) (Vol. II, Gotha 'Geschichte des Volkes Isracl' ' (Vol. II, Gotha
1909) ; Moore, (Judges) (New York 1895) ; 1909); Moore, 'Judges' (New York 1895)
Noldeke, 'Untersuchungen zur Kritik des alten Testaments' (Kicl 1869) ; Wellhausen, (1srac tische und judische Geschichte Israels) (Leip lin 1914); ;

EIBAR, á'e-bār, Spain, town in the province of Guipuzcoa, 35 miles south of Jilbao. Small arms and metal articles for decorative purposes

EIBENSTOCK, íbēn-stők, Germany, town miles southeast of Zwickau, with importan manufactures of lace. Its principal edifice is a Romanesque church dating from 1864 . It is an industrial centre, the chice seat of the tambonr chemicals, brush handles, leather, beer and lobacco and is a cattle market. The tin mines nearby have been worked for about eight centuries, but are now practically worked out. It is commected by rail with Chemnitz, about 40 EICHELBERGER
EICHELBERGER, ī-нĕl-bèrg-ér, William Md., 18 Sept. 1865. He was graduated at the University of Johns Hopkins in 1886; was assistant in the Nautical Almanac office in 1889-90 and $1896-98$, and from 1890-1896 served as inleyan University, Comnecticut. Since 1900 he has been professor of mathematics in the United States navy. He was head of the division of meridian instruments in 1902-07, and of astronomical observations in director of the Nautical Almanac. He has at various times been in charge of eclipse stations, notahly at Fort de Kock, Sumatra, in 1901 and Daroca, Spain, in 1905. He is a Fellow or memcontributed papers to government publications contributed papers to government
and to the Astronomical Journal.
EICHENDORFF, i’Hễn-dôrf, Joseph Baron von, German poet: b. Castle of Lubowitz, Silesia, 10 March 1788; d. Neisse, 26 Nov.
1857. He served in the War of Liberation,
1813-15, and held a position (1831-45) in the 1813-15, and held a position (1831-45) in the Prussian Ministry of Education. He was one of Gcrmany. His principal works are (Presage Germany. His Principal works are 'Presage
and Presence); ' (War to the Philistincs) dramatic story': 'The Life of a Good-forNothing, idealizing vagabondage ; the tragedies 'Ezzelin, Von Romano,' 'The Last Hero of Maricnburg ${ }^{2}$; and other plays, and a number of Ethical and Religious Meaning of the New Romantic Poetry in Germany) (1847): 'Gcrman Romance of the Eighteenth Century in Relation to Christianity)
Poctry) (1857). Poctry' (1857).
EICHHORN, ir'hórn, Johann Gottfried German theologian and Oricutalist: b. Dorren1824. In 1775 he became professor of Oriental languages at Jena, and in 1788 at Göt tingen. He is considered the founder of scientific criticism of the literary and historical aspects of the
biblical Scriptures. He edited a Repertory of biblical Scriptures. He edited a (Repertory of Biblical and Oriental Literature) (1777-86); (1787-1803); and wrote 'Historico-Critical Introductions' to the Old and to the New Testament, and to the Apocryphal Books of the Old Testament; a 'Latin Commentary on the Apocalypse.
wig, German plyssician: inobst, Hermann Ludwig, German plyssician: L. Königsberg. 1849 , He received his education at the nuiversity of
his native city and in 1877 became dircctor of the Medical Polyclinical Institute at Göttingen seven years later he was appointed to the chair of pathology and therapy at the University of Zurich. He has published many important Vorks, including 'Lehrbuch der physikalischen 3d ed., 1889) ; 'Handbuch der speziellen Pa hologic und Therapie) (5th cd., 1895-96) 'Handbuch der speziellen l'athologic und Therapic inncerer Krankhcitcn) (1104); 'Hygiene des Herzens und der Blutgefässe im Gesunden und Therapic der Nervenkrankheiten' (1907).
EICHLER, ir'lér, August Wilhelm, German botanist: b. N. Neckirichcn 1839 d. 1887 and in 1871 was appointed professor of botany and director of the Botanical Garden at Graz. Two years later he became professor of botany at Kicl and in 1878 was appointed to a similar extensively on the Conifera, Cycadacex and other plant groups of Brazil. His principal work is 'Blutendiagramme' (1875-78), a description of the comparative study of flowers.
Other important works are (Syllabiss der VorOther important works are 'Syllabis der Vor-
lesungen iuber spezielle und Medizinisch-pharlesungen uber spczielle end Medizinisch-phar-
mazeutische Botanik) (1883); (Tcitrage zur Morphologie und Systematik der Marantaceen ${ }^{\text {² }}$ (1884); 'Zur Entwickclungsgeschichte der Palmenblätter) (1885)

EICHRODT, ${ }^{1} \mathrm{H}$ 'rōt, Ludwig, German poct: b. Durlach, Baden, 2 Feb. 1827, d. Tahr, 2
Feb. 1892. He studied at Heidelberg and FrciFeb. 1892. He studied at Heidelberg and Frei-
burg and published in 1848 in Fliegende Blatter his comic songs, 'Wanderlust,' which had great popularity. Among his works are 'Gedichtce in
allerlei Humoren) (1853); (Leben und Liehc' (1880 . His collected works were published in 1890 at Stuttgart.
EICHSTÄTT, in'stêt', or EICHSTÄDT, Middle Franconia, Bavaria an old town in a deep valley of the Altmuhl, 67 miles north northwest of Munich. Its principal edifice is a fine Gothic cathedral, founded in 1259 . It has marble and bronze and here also is the tomt of Saint Wilibald. Saint Walpurgis' Church is renowned as a place of pilgrimage, Ereat numbers congregating there annually on 1 May
Oiher noteworthy features are the the ancient episcopal palace, now converter intil larracks, the episcopal lyceum, seminary and municipal theatre. It has manufactures of shoes, matches, lithographic stone, etc. It is said that the city grew up about a military sta-
tion of the Romans. In 908 it was chartered as a city. It suffered greally in the many wars of the i8th and 19th centuries, being burned repeatedly by the French The episcopal , see was sccularized in 1802 and added to the diocese Bavaria but was re-established in 1817
EIDER, I'der, a river of the province of from Kiel, flows generally northwest, and after a course of 112 miles, of which 69 are navigable, empties into the North Sca at Tonning where it forms a bay. It is connected with Kiel by the Schleswig-Holstcin Canal.
EIDER DUCK, a bird of the sub-family Fultigulince, or sea ducks, genus Somateria, disof the bill, and closely allied to the scoter ducring The several specics arc confined to the northern regions. The American cider (S. dresseri) and the European cider (S. mollissima) arc closcly similar species which brecd on solitary rocky shores and istands from Maine and the Farne cies wintering as far south as the Delaware River. They are most abundant in Labrador,
Newfoundland, Grcenland, Iceland and NorNewfoundland, Grcenland, Iceland and Norway, where they are stringently. protected by paw. Bork species brecd gregariously and in a person can scarcely walk without treading on them. Their nests are usually formed of grass, dry sea-weed, etc., lined with a quantity of down which the female plucks from her own breast. In this soft bed she lays five eggs, which she natives, who watch her operations, take away both the eggs and the down, and this removal is repeated as often as she lays until the close of the season, when the last lot of eggs is allowed to hatch and the down removed from the nest not, as is often stated fuctish The drake does One female generally furnishcs a few ounces of down. This down, from its superior warmth, lightness and elasticity, is preferred by the luxurious to every other article for heds and coverlets, and, from he great denand for it, Iceland where these birds abound are regarded as the most valuable property and are guarded with the greatest vigilance. Proprictors en-
deavor to attract them by supplying artificial deavor to attract them by supplying artificial
nests and otherwise, and when they settle in
an island off shore, cattle and herdsmen are removed to allow them to breed undisturbed.
The down ing lost its clasticity
The length of the eider duck is about two 1eet three inches, extent of the wings three feet, large and the bill of singular structure, being threc inches in length, forked at the base of the upper mandible in a remarkable manner, running high up on the forehead, and having the feathers on each side descending nearly to the
nostrils: the whole of the bill is of a dull ycllowish horn color, somewhat dusky in the mi dle. The male is black beneath, head and back white, with a black crown. The female is red-
dish dral disth dral, spotted with black, with two white bands across the wings. Eiders associate in which constitute their principal food. They live much on the water, retiring to the shores to rest, particularly on the appearance of an approaching storm. Their flesh is eaten, but lastes strongly of fish. The eggs, however, are
estecmed. These and the down are holl. frecstecmed. These and the down are boll frelet down by ropes from craggy steeps.
Other species are the Pacific eider (S. v-nigra), and the remarkable king eider (S. spectabilis) of high Arctic regions. The now
extinct Labrador duck (4v) is closely related

EIFEL, ${ }^{\text {I'f }}$ fll, The, a barren and hleak Mosellc and Roer rivcrs, showing extensive traces of volcanic action. Its surface is diversified by crater-like depressions and volcanic peaks and riliges. It is 40 miles long and 20 wide, averaging from 1,500 to 2,000 fect in ,
EIFFEL, ā-fel or iffel, Alexandre Gustave, French engincer: 1. Dijon, 15. ITce. 1832 .
He was educated at Dijon and Sainte-Barle, and at the Central School of Arts and Manufacture. In 1858 he was entrusted with the construction of the large iron bridge over the Garonne at Bordeaux, and was one of the first
to introduce caissons worked with comprcssed air. The bridge over the Douro at Oporto, the great viaduct of Garaliit, in Cantal, and that over the Tardes, near Montlucon, and the gigantic locks desinned and partly prepared for the Panama Canal are among later triumphs of
his engineering skill while in the huge framehis engineering skill; while in the huge frame-
work erected for Bartholdi's 'Statuc of Lilb(rty) may be seen the germ of the idea which afterward assumed the form of the colossal iron structure (1887-89) on the Champs-de-Mars in Paris, with which his name is identificd. He also constructed the Acrodynamic Lahboratory
at Auteuil. He is a member of the Legion of Honor and has received decorations from Russia, Austria, Portugal and Spain. Sce Eifirit Tower.
EIFFEL TOWER. A notahle structure in Paris. The plans for the exposition of 1889 melluded a monstrous iron tower, to he raised onn
the Champs-dc-Mars, 1,000 feet high. The designer, Gustave Eiffel, constructed it of iron lat-ticc-work, with three elevators giving access to the summit. The uses of so stupendous an undertaking are many, and it became one of the chief permanent ornaments of the city. Its im-
portance from a meteorological point of view
cannot be overestimated, the tower enabling meteorologists to study the decrease of temper ature at differcnt heights, to observe the varia tions of winds, and to find out the quantity of rain that ralls at different heighs, and the den-
sity of the clouds. Now used as wireless station EIGENMANN, ${ }^{1}$ 'gen-man, Carl H Amer EIGENMANN, Igen-man, Carl fon, AmeriHe was graduated at Indiana University in 1886 and studicd at Harvard $1887-88$. Between 1888 and 1892 he continucd his scientific inves tigations in San Dicgo Biological Laboratory,
the Woods Hole Marine Stations, and in thi he Woods Hole Marine Stations, British Museum in California, Oregon, Idaho, Montana Dakota and western Canada. He was appointed professor of zoology in Indiana Univer sity in 1891 and in 1895 founded and assumed
the direction of the Biological Station of Indithe direction of University. He made scientific explorations in Cuba in 1902-04 and in British Guiana in 1908. He has contributed more than 100 papers to the proccedings of scientific societie, and to scientinic journals, including 'Cataloguc of Fresh-Water Fishes of Central America
and Southern Mexico' (1893): 'Cave Verte brates of America' (1909) ; 'Egg and Development of Conger Eel' (1101) ' 'Frrsh-Water rishes of Western Cuba' (1903); 'Fresh Water Fishes of British Guiana' (1911)

EIGG. Sce Ecc.

EIGHT-HOUR DAY. In the striggle for the shortest hours of labor compatible with the lighest efficiency, begun in Great Britain early
in the 19th century, the first great landmark in the 19th century, the first great landmar
was the Ten Hours' Bill of 1847 , enforcing all trades what had come about in many. But the golden ideal since 1824 (announced as such by Robert Owen in 1817) has been eight hours possibly in remembrance that such was the rulc in medirval England; partly perhaps from the
tempting threcfold division of the day into cqual parts, as in the rlyme "Eight hours for work, cight hours for play, eight hours for slecp, cight 'bob, a day:" The eeight-hour movement began in Anstralia in 1856; by 1877 the short day was estallished for women work-
crs in factorics for miners working undercrs ind factorics, for miners working under
ground and for public service employecs. The ground and for public service employecs. The
movement on the Continent dates from the foundation of the "International" in 1864, and as a world-demand of the social reformers
from the Paris Trades-Union rom the Paris Trades-Union Congress o
1883. In 1916 Ecuador enacted an eight-hour law, of universal application, with cexcmption law, of universal application, with exemption tra work is to be paid 25 per cent overtime, 50 per cent for overtime from six in the evening to midnight, and 100 per cent after that hour. In the United States, till recently, the subject
was left to the States and to private contects the goverument aiding by making short hours in its own works. In 1840 President Van Buren reduced the working day in the government navy yards to 10 hours. The first State 10 in Pennsylvania. The first Massachusetts law was in 1874 and was due largely to the "Knights of Saint Crispin." But the cight-hour movement had long hefore become gencral: in 1866 the demand was formulated at a gen cral workingmen's congress at Baltimore, and
at other meetings; and the National Labor

Union was organized to secure an eight-hour
day. A six wecks' strike in New England and day. A six wecks' strike in New England and
New York, April-May 1866 , attempted to sccurc New York, April-May 1866, attempted to sccurc passed laws making eight hours a legal day "unless otherwise agrced." Pennsylvania fol lowed in 1868 and New York in 1870 . On 24 June 1869 the United States enacted an cighthour day for its establishments; but the managers reduced wages correspondingly, allowing
those who wished to work 10 hours, at the old wages, which aroused such wrath that the President revoked the order. All these laws ware rendered nugatory by the contracting-out
clauses. In 1872 cight-hour leagues were clauses. In 1872 cight-hour leagues were formed in various places, and in Connecticut and New York a mass of strikes among the
wood-working trades won this goal for a while. but the great depression from 1873 on prevented pressing such questions. Since 1880
nearly all the Statcs have cnacted cight-hour nearly all the States have enacted cight-hour laws, subject to conditions, usually restricted
to work for the State, county or municipality. The first great concerted cffort for cight hours was in i88, when strike; it was at an cight-hour mecting in Haymarket Square, Chicago, that the anarchist bomb was thrown. A general strike was announced for this object in 1890 , but was only partially successful; several hundred thousand workmen struck, and many employers yielded,
but soon advanced the hours. The first really efficient national law was of 1 Ang. 1892, enforcing eight hours upon all laborers, mechatics or contractors in the District of Columbia on public works, under pain of fine and imprisonment.
Unquestionably the shorter workday movesame time as in America, had its inception in the desire to protect women and children from being overworked. Soon the labor unions recognized that it was better to ask for shorter hours than for higher wages, and so in various effort for an cight-hour day, at the same wages paid for 9 or 10 hours. Widespread strikes in the building trades, the printing industry, etc., were won by the employees, and the num, bers in the unions steadily increased. By 1912
it was popularly understood, both in Britain and America, that eight hours was fair day's work, and liberal cmployers granted t very generally without pressure. Howeve some large industrics continued to work 10 hours, notably the railways and common car
In 1916 the varions unions of railway workers, affiliated through the American Federation of Labor, made a concerted demand for ejght for 10 hours, and threatened a general strike and tic-up of the railways of the entire United After some months of discussion, and endeavor to olbtain settlement by arbitration, no agrec ment was reached, and President Wilson held conferences with leaders on both sides. He finally succected in getting a promise from the linions that the strike would he declared off if Congress passed a law providing for an eight-
hour day, and a bill was hastily nrepared and rushed through both houses with very little
discussion, being passed by the Democrats, Sept. 1916 by the President, but its constituway interests promptly challenged by the rail-eight-hour day from 1 Jan. 1917, by common carriers and railways, excepting street railways, short independent railways and interurban railways; (2) a commission of three to be appointed to study conditions and report to the President; (3) that, pending the report of the
commission, it shall be unlawful for the railways to reduce wages because of the shortened hours, in other words, they shall pay the 10 hour price for the eight-hour day; (4) a fine
of $\$ 100$ to $\$ 1,000$ or imprisonment not to exceed of $\$ 100$ to $\$ 1,000$ or imprisonment not to exceed
a year or both are the penalties provided for
violation. See Lator Legislation.

EIGHT-HOUR LAW, an act adopted in that in all government employment eight hours shall constitute a day's work. It originated in the agitation which had begun in England in 1833 by the proposition of cight hours as a legitimate working day. The agitation spread itsel among the industrial classes throughout the in 1856, where it was adopted by several trades. The National Laloor Union of the United States demanded it in 1806, and it came into effect in the government navy yards in 1869 , and hortly afterward in all departments of government work: Its universal adoption, however, is agitation among the labor organizations and parties throughout the United States, the British Empirc and on the continent of Europe Consult Rac, 'Eight Hours for Work' (1894)
See EIGht-Hour Day.

EIGHTEENTH CENTURY, The. Car yle made the 18th century for readers. who accepted his iteas, and they were legion, a
period of extreme decadence and even deg radation of interest in all that was best for umanity. He called it "the age of prose, of lying sham, the frandulent bankrupt century the reign of Beelzchub, the peculiar era of
Cant." Frederic Harrison came in defense of the period with the suggestion that "invectives against a century are more unprofitable than indictments against a nation," and pointed ou that almost all of Carlyle's heroes of the modern times apart from Oliver Cromwell are "chilenoch" from Frederick of Prussia, Miraheau Danton and George Washington to Samue Iohnson, Burns, Watt, Arkwright and others The century was so low in its interest in ar chitecture that it is not surprising that Ruskin thundered against it that "Satan must have had a hand in the designing of the churches of the art and education were far below the standard of preceding centuries, but on the other hand it is the greatest of musical centurics, the
pioncer in physical science development, and its sad history of utter neglect for the poor is redlecmed to a great extent by the upward movements which made themselves felt very widcly at the end of the century in politics, cconomics and social welfare, especially as regards the insane, prisoners and the defectives.
The last 25 ycars brought about more social
changes than any other corresponding period was, as has often. Perhaps the reason for this was, as has often been suggested, that about the
middle of the 18th century a great many of the highest and best century a great many of the those concerning fellow-men who needed sympathy and aid, were lower than they had ever been before. Humanity had reached a nadir in social life from which there had to be an scent and fortunately the reaction against the enough to conditions which existed was strong ment toward the a itself felt during the course of the 19 h century and has not been lost even yet. This modern history and therefore of ever so much modern history and therefore of ever so much represents greater immediate achievements. What is particularly notable in the history of the 18th century is its wars in almost unbroken succession dictated by royal ambition or for dyuastic reasons, while during much of monarchs ruled the internal affairs of kingdoms. The war of the Spanish succession (1701-14) began with the century. The same carrying on of what was called the Northern Carrying on of what was called the Northern
War, lasting from 1700 to 1721 . In 1718 war ,roke out between Spain and Austria, in the inidst of which there was a formal declaration of war by England against Spain, and peace Was not made until 1720 . In the meantime the
rebellion in favor of the Pretender, as he was called, the heir of the Stuarts who assumed the name of James III, came in Scotland in 1715 year. The Treaty of Utrecht (1714), which concluded the War of the Spanish Succession, changed the map of Europe as no previous
treaty, not even that of Westphalia at the end of the Thirty Years War (1648), had done, but instead of settling the politics of Europe established a number of foci of irritation eminently calculated to unsettle them. Naples and rule in Italy thus begun was to continue for a century and a half, always the subject of serious disturbance from within and without. Austria received the Spanish Netherlands, now to be called the Austrian Netherlands and to be a Philip V was allowed to rule in Spain on condition that the French and Spanish possessions dividual. Great Britain received Nova Scotia and Newfoundland and the Hudson Bay region, thus preluding the expulsion of French from
North America, and Gibraltar which brought North America, and Gibraltar which brought
with it the command of the Straits but has been a frequent subject of political irritation ever since. These wars of the first quarter of the century were only typical of the period. There was scarcely a year during the century when two important European powers were not at
war; there were long series of years when a war; there were long series of years when a
number of the states were embroiled with each its r . The War whe Spar of the Polish Succession (1733), between Austria, Russia and Denmark, with France,
Spain and Sardinia becoming involved. When the Emperor Charles VI of Austria died (1740),
he left no sons, but had negotiated a treaty, the Pragmatic Sanction (1731), to secure the succession of his daughter Maria Theresa
The very year of his death saw the War of the The very year of his death saw the War of the
Austrian Succession. In 1739 England and Spain were at war and in 1745 Charles Edward Stuart, the Young Pretender as he was called encouraged by France, led an insurrection o the Highlanders. This was terminated by the Cumberland. In 1748 the peace of Aix-la Chapelle was signed and the various countries of Europe made mutual restitution of their conquests so as to assure future peace, only Spain and Prussia beng the gainers. It wa to no purpose, for France and Eiftios. in 1756 came the Scven Ycars War involving most of the important countries of Europe; in 1775 the American Revolution broke out, Spain and France becoming involved in it before the end and in 1792 the French Revolutionary wars began and for more than 20 years France was again the various nations of Europe were drawn into the Napoleonic wars. This by no means tells the tale of all the wars of the century, but at least it will serve to give an idea of the ever
ecurring vain recourse to arms.
The monarchs of the century whose names are best known are the Georges 1, IT, II, in
England and Louis XV in France. The Eng ish were ruled for nearly 100 years by kings who could not speak their language, or but as a foreign tongue, and whose interests wer much more in their German Hanoverian people. Perhaps the political conditions of the ime are best illustrated by the fact that their rule caused comparatively little disaffection in England itself, though fortunately it provoked the American Revolution, which brought in succeeding to the magnificent dominions created by the genius of Louis XIV, whose personality subjugated the French people and set an unfortunate example for other European mon archs, proved utterly unworthy of his grea designing mistrcsses. His reign increased the debt and the taxes of the French nation until Louis XVI fell heir to an impossible situation In spite of Louls XV s weakness, France at the end of his reign (1774) had even more ter ritory than at the death of his grandfather ever sunk to a level almost indescribable and the reaction against them was inevitable and could not be long delayed
Certain great political changes which took place in the 18 th century had far-reaching are only working out to legitimate conclusions in our own time. Apart from the creation of the American Republic, itself of greatest signi ficance for the course of civilization, the three most important political changes were the estabshment of Prussia as a kingdom (1701), the rise began under Peter the Great (d.1725) and th establishment of British power in India which ed eventually to the erection of the British Empire. In the light of recent events probably he first of these must be considered the mos
important. The electorate of Brandenburg, whose ruler was one of those privileged to elect the emperor, came under the Hohenzola narrow strip of territory less than 50 miles east and west of the little town of Berlin. It is the special pride of the family that each one of the reigning heads added something to his ancestral domain. The ruler was known only as Margrave and was considered of no special to them by inheritance at the beginning of the 17 th century had been originally ruled by the Teutonic Knights who had conquered its pagan inhabitants in a Crusade in the 13th century and continued to rule it through their grand master. At the time of the religious revolt in
Germany in the early 16 th century the Tcutonic Germany in the early 16 th century the Tcutonic secularized and out of them the duchy of Prussia erected, the grand master of the time occupying what had hitherto been an elective
office now becoming the Duke of Prussia with the right of inheritance. He was a relative with the right of inheritance. He was a relative of
the Elector of Brandenburg and when this branch of the Hohenzollerns died out the cluchy was united to Brandenburg, the Hohenzollerns now ruling over such distant provinces as Cleves the east. The great clector as he is called suc ceeded in welding these widely separated territories into a strong statc. His son, Frederick I, obtained from the emperor, for military aid rendered, permission to change his title from elector to king though he was but king in Prussia as he did not rule over the whole of Prussia, dut he preferred this titions were outside the Imperial Prussian dominions were outside the Imperial partition of Poland his title became King of

Tussia.
His son, Frederick William I, though noted more for his eccentricitics and for his rude higher, consolidated the Prussian dominions created an army of nearly $100,000 \mathrm{men}$, drilled and trained probably better than any other soldiers of the time. He was almost miscrly in his penuriousness with regard to anything except
military expenses, reduced the number of his court servants, coined the family silver and sold most of the royal jewels at auction. He left his son, Frederick II, a magnificent army and a well-filled military chest. Frederick II,
to be known in history as the Great, whose interest in literature and the arts had disgusted his father in his youth, had no sooner ascended the throne (1740), at the age of 28 , than he proceeded to use the military advantages which his father had secured for him to the utmost Maria Theresa having ascendcd the throne in vantage of the expected weakness of a female ruler, without any reasonable grounds laid claim to Silesia and began the War of the Austrian Succession. He enlarged his territories in every way that he could, showed great military
genius in his campaigns and devoted himself to the encouragement of arts and sciences, the building of public structures for music and libraries and built a series of palaces, not all of them in good architectural taste, but not He especially euriched the city of Berlin with
public buildings and though he encouraged French more than German literature did much for the intellectual life of the Prussian people. Under him Prussia became an important power in Earope.
changes sccond of these great political This was mainly due to one man, Perersia. whom history has given the title of The Greal. The house of Romanoff came to the throne of Russia on the extinction of the dynasty of Rurik
1598 . The 17 th century was spent in reaking the power of the nobles, encouraging mining manufactures and commerce and increasing Russian territory in the west at the expense of Poland. Peter the Great came to the throne in 1699 and reigned till 1725. He insisted on introducing the ways of European civilization,
shaving off the beards of his nobles and cutting short their long gowns himself when they refused to obey his order in the matter, for he declared that pcople so dressed and bearded could not be good soldiers. He made war on the Turks and conquered Azov. Just at the way to Holland because he felt that Russia must have an outlet to the sea and that Holland could teach her lessons in shiphuilding. He worked as a ship carpenter for a while at Zaandam in Holland and studied the shipbuilding methods of the English on the Thames. Russia and the Cossacks under Mazeppa (1707), and then proceeded to take territory away from Sweden which would allow him an his capital, Petersburg, his desired "window into Europe," at immense expense, setting it up on piles in the swamps. In spite of the fact that Peter was succeeded by his wife, Catherine, who reigned for scveral years, and that between of the 181 century Runssia was ruled by women of the most licentious personal character, whose favorites had much to do at least with the internal affairs of the empire, the country conEinued to gather strength and importance in Europe until at the beginning of the 19th cenNapoleon on many occasions. German intrigue riddled the country, however, and especially under Elizabeth and Catherine II succecded in Gcrmanizing the nobility to a great extent and especially the bureaucracy and keeping the Russerfdom and subjection. The third important
18th century was the subjection of India the England. About the middle of the 18th century the French, owing to the genius of Duplcix 1741, came inta prominence in Indian affairs Dupleix dreamed of a French empire in India following the lines of the old Mogul Empire which had fallen at the beginning of the 18th century. Robert Clive who went to India as a clerk took on himself to make head against Dupleix who was unsupported by his own gov-
ernment. In the midst of the wars between England and France which occurred around 1750, the American events of which are Braddock's defeat and the French and Indian War, and during the Seven Years War, Clive grad
conditions that would not have been approved at home but that once concluded were accepted as accomplished facts. As a result at the be-
ginning of the 19 th century some $300,000,000$ ginning of the 19 th century some $300,000,000$ people in India were under English rule.
arently as a revolt on the part of scattered rather disconnected colonies with less than $3,000,000$ of inhabitants and even those by no means strongly welded together, and with a very large party among them who remained loyal to sible, ended with triumph that gave genuine democracy almost its first great opportunity in the world's history. In a new land
tar from the disturbing political conditions of tar from the disturbing political conditions of
European countries and with magnificent reSources to develop, the American Republic proceeded to exemplify what government of the people, by the people and for the pcople may mean. De Tocqueville's 'American Democracy, written 50 years later, is the tribute of
a young enthusiastic European republican to a young enthusiastic European republican to Americas success. Undoubtedly the colonists olution to the aid of the French, though the kingdom of France under Louis XVI was tottering to its fall and that fall was hastence by the very success of the spirit of democracy in America. From Lexington to Yorktown represented seven long ycars of the severest
trials borne with magnificent courage and persistency by the colonists, hampered by a large royalist contingent among them, and these virtues had their own reward. The result was
a solidarity of fecling owing to sympathy and a solidarity of fecling owing to sympathy and served to bring the colonists together. The 13 colonies had been anything but homogeneous in race and character and they were almost infinitely dissimilar in attitude toward religion
and life. The Puritan of New England and and life. The Puritan of New England and
the Cavalier of the Virginias and Carolinas represented opposite poles of feeling in almost cvery way. It was hard enough indecd after the Revolution to bring them together or secure a working modus vivendi for their government,
but it would have lieen quite impossible only but it would have heen quite impossible onty
for the long years of bloodshed and the severe or the long years of bloodshed and the severe
vicissitudes through which they had passed in the period of travail from which the new
Republic of the West was eventually born. It has well been called the greatest fact in modern history; the greatness of that fact has been enpublic, now one of the largest of the nations, has taken in the World War for democracy.
The greatest man of the 18th century was beyond all doubt George Washington. It was One custom sometimes to speak of him as been rather than to inste genius. Having it was said that he succeeded in holding out against the British whose mistakes were so great as to facilitate this until the alliance with France and then with Spain finally brought that combination of regular military strength and
organization which made Yorktown possible and brought a happy ending to the Revolution. Any such view, however, is contradicted by definite knowledge of the man. When scarcely
more than a youth he had saved Braddock from more than a youth he had saved Braddock from
errors. The campaign around Boston added further to his military reputation. The battle of Princeton and Trenton have becn acknowledged by modern military experts as one o under the most discouraging circumstances that have ever been made. The official document of Washington show clearly how large and noble was his mind. His advice is still th best policy of the republic in spite of its broa have imagined in his wildest dreams. His declination of the presidency for the third time and the consequent tradition of but two presidential terms was a precious heritage for the nation, and the final proof of his magnanimity
Time instead of lessening his orestige has added to his reputation and made it clear that he was a great man raised up to fit a great occasion The saddest chapter of the 18th century is that of the social conditions. In order to ex plain the French Revolution so much attention that there has come to be a very general impression that social abuses were at the wors in that country. As a matter of fact with th exception of England the poorer classes wcre better off in France than anywhere else in
Europe. The awful picture of the Ancicn Régime is true, but it should be remembered that the German lower classes were in still worse condition and the Russian serfs wer quite literally slaves and life and death was practically in the hands of their masters. The nobility in all the countries apparently felt themselves to be of quite different clay from the
human beings below them in the social order and treated them accordingly. With the coming of the capitalist class as the result of the in dustrial revolution something of this same feel ing was to develop on the part of rich employer to employecs. Whenever human nature has the not be forgotten that the Declaration of Independence in the last quarter of the century wa written and most strongly upheld by men wh thoroughly belicved in the institution of negro
slavery and insisted on maintaining it for nearly slavery and in
full century. The most shocking element in sociol conditions was the utter neglect of the wards of the state, prisoners, the insane, feeble-minded an the poor. The awful conditions which existed in prisons and hospitals were described by John
Howard toward the end of the century who Howard toward the end of the century wh prisoners were huddled together utterly regard css of their influence on each other, the youn and the old, the first offender and the hardened criminal, and the treatment of women was al-
most worse than that of men. Hundreds of most worse than that of men. Hundreds of gether, some of them women of the streets and some accused of little thefts to keep thei children alive, and with many of the prisoner children were allowed to be there becaus here was no the eare. Nearly 250 crimes to care for them. and were subject to punishment by hanging. Poor women were often hanged for having passed a counterfeit pound note which sometimes they themselves did not know was a counterfeit and the fact
in an early stage of pregnancy was no mitiga-
tion of their offense. The insane who had ever shown any sign of violence were shackled ever were seldom allowed to be free again. The quarters in which the insane were cared for were filthy beyond description and they were often confined in cells underground or chained to the walls of dark rooms into which the
sunlight never penetrated. Quaker philanthropists in England locgan a crusade for the reform of insane asylums which slowly gained ground and the movement spread to America. It had been the custom to permit visitors in search of amusement to stand at windows a small sum of money being collected for this privilege. This amusement hecame so popular that many thousands indulged in it every year and the fee constituted an important source of revenue. Pinel in France dared to strike the shackles off the insane in the great asylum even of his medical colleagues were convinced that it was a dangerous proceeding. The care for the defectives and for the poor in the poorhouses continued to he almost unspeakably bad until well on into the 19th century, and indeed dea of reform in these matters, The serious to take hold of thinking pcople hefore the end of the 18th century. The United States was eader in these reforms. When de Tocqueville isited America and gathered the material for his book on Democracy he was here as a memystem in order to secure the reform of prench pisons.
Personal liberty on the Continent had sunk to a very low ebl) indeed. Most of the rulers were absolute monarchs and there being no written guarantee of rights men had almost no redress against the monarch's ill will in their particularly the king might order the imprison ment of a subject no matter what his rank and keep him in prison for any length of time that he wished. This process was accomplished under a sealed document issued by the king
called a Lettre de Cachet. This prisonment had been very much abused under Lonis XIV, but the abuse reached a climax under Louis' XV when it is said that over 150,000 sealed orders were issued. Sometimes men thus imprisoned would be entirely forgotten and the A clause of Magna Charta made any procedure a violation of the rights of Englishmen, but in other countries the practice was quite common When the Bastille fell (1789) some of these prisoners were found for whose imprisonment no reason could be discovered.
A profound reaction in social matters was lution, in 1789 . Begun as an attempt Revotribute the burdens of taxation more equally on the French, or indeed to solve the problem of the bankruptcy of the country, it developed into a great outburst of the oppressed classes.
As Hilaire Belloc who period better than anyone in our time suggests it was an organized effort to win back for men some of the privileges which they had enjoyed in the Middle Ages. In that sense it continued
ond make itself felt all during the 19th century and down to our own time. It is this aspect o erly appreciated. Hailed by all the liberal thinkers of Eureciated. Hailed by all the liberal think Revolution degenerated into the saddest of hutcheries, and gave place to utter anarchy until the French people themselves, tired of bloodshed, welcomed a military dictator with power to maintain public order. In 1780 the States-Gen1614. This was changed first time since National Assembly. A new constitution the proclaimed in 1790 . in 1792 the monarchy was abolished and the next year the well-meaning hut unfortunate Louis XVI was put to Theresa's beautiful but imprudent queen, Maria had heen the admiration of Europe, followed These events alienated all Europe and the new republic fought them all in combination and won battles that enabled her to extend he territory but finally brought her under the heels
of a military despot. a mintary despo
tury is Napoleon Bonaparte and his career is the index that French affairs had ceareer is point where reaction was incvitable. This product of the time was, to quote Freeman, any other man had been before." "He than himself consul and an-old Greck "He called said that he had made himself tyrant, but was a more absolute ruler than ever Louis XIV Gibben. One of the last reflections made by Gibbon, the historian of the Roman Empire seem to give him a right world history would subject, was that the world would never the see a great conqueror arise who like Alexander or Cæsar might threaten to have the world under his domination. Gibbon died in 1794 , would have been able to witness years more he tradiction of this opinion, thioush the utter condoubt now that most of the learned men is no time and especially those familiar with history would have accepted his reflection as almost so Givious as to be an axiom. In this after all Gtudent of history of a century many a serious not have hesitated to say that he now felt sure hat a great prolonged European war shared y most of the civilized nations of the world as an utter impossibility.
Bonaparte was carried to the height of there he proved to have a genius for Arrived tration that enabled him to maintain himself and that has stamped his influence on all modern legislation. He came to the front in the Italian campaigns of the wars of the French Revolution when his victories in Italy forced
the Emperor Francis of Alstria he Emperor Francis of Austria to surrender clraw from northern Italy with the result that Piedmont and Savoy were annexed to France France was a republic, but there was no republicanism in the spirit of French conquests once the mania of victory developed. Republics
were sacrificed quite as readily to French ambiwere sacrificed quite as readily to French ambi
tion, or rather to the ambition tary leaders, as were monarchies. In return
for his surrender to France of these large to join the French in destroying the ancient commonwealth of Venice, which with all that was oligarchical in its government had at least some show of self-ruling about it. The French tories between them. When in 1798 Bonaparte planned his expedition to Egypt and the French needed money to finance it the Directory of
France calmly proceeded to attack Switzerland, France calmly proceeded to attack Switzerland,
for some six centuries a republic, for no better for some six centuries a republic, for no better
reason than because the town of Berne was known to possess a large treasure. The French failed in its purpose, but it was only an eclipse for a time and in spite of many vicissitudes its century tater work for good for more than a by which a preat many of the presumedly most firmly established things of the old order in Europe were smashed upon the anvil of war to be made over for the better, though the betterment was often not immediate.
The greatest woman character of the century in the best sense of the word was Maria
Theresa, queen of Austria or "king," as her Magyar subjects loved to call her, and finally Austrian empress. Her father had anticipated trouble for his daughter's rule and made the reaty called the Pragmatic Sanction to secure M , but his worst portents wely seated on the throne before she became embroiled in a series of wars for the preservation and integrity of her states. Probably no woman in history has ever taken her duties as sovercign more seri-
ously. On the other hand as the mother of 17 ously. On the other hand as the mother of
children she took her domestic duties quite as seriously and was a model wife and mother. Her letters to Marie Antoinette during the French troubles show her maternal solicitude at its best and her wisdom as a ruler and
administrator. She treated her subjects very administrator. She treated her subjects very much as she did profound wisdom. She practised strict economy, encouraged manufactures and commerce, reformed the army with the idea of preventing bloodshed by being prepared for war, and organized a system of military
colonies on the frontiers so as to prevent invasion and save her subjects from the worst in their midst. Above all Maria Theresa won the love of all the different peoples who composed her multilingual kingdom. It has always been a historical mystery why the heterogeneous peoples who constitute the Austrian Empire have hung together and it hation of armed posed that it was a mere question of armed however, that there was real attachment to the house of Hapsburg and that above all Maria Theresa's long reign of nearly 50 years had much to do weong peoples. Her readiness to do for among these peoples. Her readiness to do for unbounded. It is said that once she was driving through a part of the country where famine was rife and people were starving. Passing by a mother seated at the roadside trying to it with food, the empress threw a piece of
money into her lap and told her to get some thing to eat, but the mother with tears in her eyes insisted that it would be too late to save her baby. The mother of 17 children migh
well be expected to be in a condition to supply well be expected to be in a condition o supply
for lack of infant food, and so the starving for lack of infant food, and so the starving was saved. It is easy to understand that among peoples who had traditions of acts of this kind on the part of their empress queen, deep feelings of affection would be aroused to become a tras a member. The one thing that stains the reign of Maria Thercsa is the partition of Poland. Therc is no doubt at all that she entered upon it with great unwillingness and felt that she was forced to take part lest there should be such a dis
turbance of frontiers and the balance of power in central Europe as would leave her kingdom and pcople open to attack under unfavorable and pcople open to and another fault was the as sociation of her son Joseph II in the government. Maria Theresa was a woman of heart and high administrative powers. Her so Joseph was an intellectual prig who was quit
sure that humanity could be made better b rules and rcgulations and that men could be governed by sweet reasonableness and intellectual reform. His carecr as a ruler was an utter failure. He tried to make himself a jects and was so terribly disappointed by his failure that he died a broken-hearted man before he was 50 .
Women were destined to play an extremely important role in 18 th century history. The rcign of Queen Aune is a great period in
English history but unfortunately unworthy English history but unfortunately unworthy
women were to be the most influcntial charwomen were to be the most influcntial charthese whose carcer is typical in many ways of the lamentable political influences that were at work was Catherine II, the empress of Russia,
who reigned from 1762 to 1796 . She was not a native Russian, hut a princess of AnhaltZerbst in upper Saxony. Her name Sophia Augusta was changed to Catherine on her ad mission into the Greek Church just before her marriage with Peter who had been sclected to succced his aunt, the Empress Elizabeth, on the
throne of Russia. She was not the first thus to be lifted from obscurity to the high position of empress of the Russians, for her earliest predecessor in the 18 th century, Catherine I the wife of Peter the Great, who reigned for two years after his death, 1725 to 1727, was the natural daughter of a country girl in
Livonia. The first Catherine, after having been the mistress of a series of Russian gen erals, attracted the attention of the tsar and liccame his mistress and subsequently his wife. She died at the carly age of 40 , her end being hastened by dissipation. She never learned to men. The second Catherine was quite as dissipated, and had even more administrative ability but she had devoted herself to her own education until she came to be looked up to as one of the scholars of the time. She was a friend was a great believer in the new social philosophy which they preached, and maintained cor-
respondence with them. Her husband frittered away his life in senseless dissipation, but whil he Empress Elizabeth lived, deep influence over her. Her mode of life, however, soon became such as to make the paternity of her children a matter of grave doubt. With the death of Elizabeth the half mbecile Peter, her husband, soon got into serious difficulty with his people and his nobles, tage of this to secure the throne.
All during her life Catherine continued to
ive most licentiously. One lover succeeded live most licentiously. One lover succeeded another, though one favorite, Potemkin, mainained his influence over Catherine for some 15 his mistress's personal inclination for himself suffered an interval or ceased entirely. Cath erine's lovers are said to have cost Russia ove $\$ 100,000,000$ at a time and under circumstance when money was worth at least five times as praved personal character Catherine ruled Russia for Russia's advantage though not for the benefit of her subjects. She pursued relent essly the policy of giving Russia an egress fo its commerce by sea. She succeeded in bring Russian Empire elected to the throne of Poland, and finally brought about the infamous division of Poland - Catherine obtaining about two-thirds of the Polish territory. An insurrection of the people under Kosciusko, the Polish hero of the American Revolution, failed, the Russian army as an independent country was obliterate (1794). It was the foulest deed in history War with the Turks led to Catherine's conquest of Bessarabia and other countries down to the Caspian, and came near realizing the Russian
empress' dream of driving the Turks entirely from Europe and the establishment of her own empirc at Constantinople. She was completely alienated from all sympathy for French deas by the progress of the French Revolutio and prohibited the publication of French work the Semiramis of the North and her caree political and moral, amply justifies the com parison, with the moral balance in favor of the ancient ruler who anticipated Catherine by som 2,500 years. It was the presence of such ruler as herself and Louis XV during the 18th cen monarchical government which was to attrac so much attention during the 19th century.

This century contains the most importan hapter in the history of music. Scarlat (1659-1725) who wrote some hundred operas, number of oratorios and an immense amount ties destined to influence music decply. The wo principal of these are the Sinfonia or Overture and the accompanied recitative. Every country in Europe took up music and mad distinct contributions to it. Purcell's work i he 17 th century in England had finely prepared pleted the organization of the art of music on firm footing. It has been said that "thes wo great composers of the 18 th century, wrote
every combination of musical notes that down to our latest times has ever been employed with good effect." . . "The more the works found to foreshadow the supposed novelties in harmony, employed by subsequent artists." (MacFarren, 'Encyclopædia Britannica'). The period includes also the life and works of Gluck who did so much to unite music and plot in opera into one harmonious whole. war in Paris, was a much less important musician, but he had dramatic power and real musical talent. Haydn, often spoken of as the father of the symphony, contributed greatly to the development of music and some of the during place in the history of husical art Mozart whose untimely death at the age of 35 cut him off in the flower of his achicvement is one of the greatest musicians of all time. Before the end of the century Bcethoven had rounded the symphony into its modern form his marvelous command over notes. The opera comique of the French which dates from early in the 18th century, the distinction from grand opera being that there was spoken dialogue interspersed with the music, provided music that was to occupy so much attention in modern times. What is noteworthy, however in the 18th century is the depth and seriousness of interest of even the general public in music. Handel's oratorios were given to
crowded houses and as Frederic crowded houses and as Frederic Harrison period were often crowded with people who were deeply touched by the sacred music given
and whose emotions were heartfelt and no and whose emotions were heartfelt and not
at all the result of any fashionable or conat all the result
ventional feeling."
The literature of the 18 th century, opening Gocthe's 'Faust,') must surely be considered as of significant import in the history of ditera ture. It includes in Germany the work of youth of Schilles; in France the writings an youth of Schiller; in France the writings of
Montesquicu, of Voltaire and the Encyclopedists, and in England such historians a Hume, Robertson and Gibbon, as well as such potent writers of English prose and verse as Addison, Steele, Samuel Johnson, young
Wordsworth and Robert Burns. Frederic HarWordsworth and Robert Burns. Frederic Har-
rison has suggested that it is the first age since rison has suggested that it is the first age since
that of Augustus which ever left inimitable pictures of its own daily home existence. The Spectator, Walpole's and Fanny Burncy's letters and the novels of Richardson, Fielding and Smollett have given a picture of the times that has probably never been equalled. What is in-
teresting above all about the literature of the 18th century is its interest in ordinary human beings. The problems of men as men were here first stated in literature and sympathy aroused for even the lowest of mortals. Gay's 'Beggars Opera,' Crabbe's 'Tales' and Defoe's and
Swift's romances are representative in this regard. Defoe and Swift wrote from so close to the heart of human nature that their best works are forever popular.
Education reached a very low ebb in the

18th century so that Cardinal Newman suggest ably the lowest pentiod in the history of uni versity education, when the students at Oxfor nd Cambridge scarcely more than "ate thei terms," that is, lived in residence to receiv heir degrees, while Winckelmann, wanting to each Plato at the end of the century, had no Greek edition had been issued in Germany for over 100 years. Philosophy, however, was the subject of a good deal of attention and
exploitation usually on the part of men not exploitation usually on the part of men no
directly connected with the universities. It is the ge of Cocke of Hume and of Bishop Berke ley in England, whose stay in America influenced Jonathan Edwards, of Voltaire and the Encyclopedists in France and of Kant in Ger many. The work of these men lived to in fluence the 19 th century. Religion was at a
ow ebb and it was an age of scepticism. The ow ebb and it was an age of scepticism. Th which proved the incentive for the Oxford Movement of the succeeding century, was th first index of reaction. French philosophy in its atheistic aspects was curiously enough French Encyclopedists (see Encyclopedia) at racted attention rather by the brilliancy o heir style, the keenness of their wit and the biting satire than by depth of thought. "Vol taire himself pronounced the period an "age of rivialities." Rousseau suggested the abant and the going back to the primitive state of nattr because it scemed hopeless to guide men by reason. Adam Smith's 'Wealth of Nations' represented the English philosophy of indc pendent morality applied to practical hife.
The 18th is above all the century of the
andamental organization of the physical scifundamental organization of the physical crystallized the data of scientific information, till then held in solution, and gave the physical sciences he form they have maintained since. Physics, omy, electricity and psychology as well as the elements of social science both in history and statics took shape. Lancisi at the beginning of the century in Italy and at the end of the cen tury Hunter and Bichat in England and France revolutionized methods. Morgagni founded pathology. Jenner's discovery of vaccination marked the dawn of a new era in therapeutics Auenbrugger initiated clinical diagnosis, and the example of such men as Percival Pott, after whom Pott's disease (q.v.) and Pott's accuracy of surgical diagnosis. The Vienna School of Medicine began its work as an inheritance from some great students of Boerhaave at the beginning of the century, and such men as Cullen, Heberden, Currie, Fothergill. Huxham left an indelihle impress upon med-
ical history. Franklin, Galvani, Volta laid the foundations of the science of electricity while Priestley, Lavoisier and Scheele were doing similar work in chemistry. Laplace, La Grange and others were adding to the magnificent work of the 18 th century, recognizing very clearly the surpassing value of their predecessor's work. La Grange declared that Newton, whose 'Prin-
cipia' received its final form in this century, "was the greatest genius that ever existed." Beside him deserve to be named such men as
Halley of the comet, Euler, the Bernoullis, he elder Herschel and Legendre. The century was elder Herschel and Legendre. The century was
also particularly fruitful in mathematical genius. In the biological sciences Cuvier, Bufton, Geoffroy St. Hilaire and Lamarck, most of whose work was accomplished before the century closed, did work that was destined to leave its impress deeply upon their sciences. It required much more the first great steps in these sciences and only positive genius could have done what these men achieved.

The greatest heritage of the century to succeeding generations was what has come to be called the industrial revolution. p had paid very little attention to mechanical inventions and their development. The people of western Europe did their farming, made their cloth and continued to do most of the domestic manufactures at least almost in the same way as the ancients had done. It haseaver of the age of Cæsar Augustus had visited France or England 1800 years later he would have recognized the familiar flail, forge, distaff and hand loom o his own day." (Robinson). All this was to be changed A series of machines came to replace hand labor and accomplish ever so much more in vastly shorter time than before. The essential processes remained the same, only now by the aid of machincry they were accomplished more rapidy.

In 1767 Hargreaves, an English spinner. in vented what was called the spinning jenny wheel could spin 8 or 10 threads at once and thus do the work done formerly by as many spinners. In 1768 Arkwright invented machine for rolling threads. Some 10 year later Crompton combined Hargreaves' spinming was called the spinning mule. With this a many as 200 threads could be spun at once, and when the steam engine came and power wa applied a few hand steam engine by James Watt, who had been called in to repair a model of a steam engin made more than half a century before by an English mechanic named Newcomen, greatly acilitated the development of industry. In 1785 a steam engine was first employed to run 790 and machinery, Arkwis adopted it in tremely common and the factory system replaced the old domestic system of manufacture almost completel
This so called labor-saving machinery threw many out of employment, though it brough of a new class that now developed in the population, the capitalist. John Stuart Mill abou the middle of the 19th century, when he could ce clearly the result of the industrial revolution, declared that all our labor-saving mamankind an hour of drudgery, but on the con trary had made it possible for a large number of workmen to work for a few and usually to
work long hours in unsanitary, ill-ventilated actories, compelling them to live in crowded slums not far from the factories because their ong working day did not allow them the tim dustrial revolution worked an immense amount of social harm, led to the employment of wome and children for such long hours and unde uch unsuitabic conditions as proved seriously etrimental to health, and it took more than necessity for regulating in wakened up to the as to conserve the rights of man.
Author of 'The Thirteenth the G. Walsh, Centuries.)

107. The union of Scolland with England is ratified and
the first parliament of Great Britain assembles 708. The Britith defeat the French at oucenarde
709. Charles XII of Sweden is defeated

June BattIe of Malpeden is diet defeated at Pultowa, 30 June. Battle of Malpliguqet 11 Sept.
713. Treaty of Utrecht signed, 30 March .
14. George I. Elector of Hanover, becom
1715. Scitan Brand reetor Hanover, becomes King of Grea
15. Scotland revolts, the Stuart Pretender appears. but his
supportes are defeated at Sheriftmuir. Louis XIV of
France dies. Supporters are deteated at Sheriffmuir.
Franee dies
The The are defeated at Belgrade.
erickshanl, Norway Sweden is killed at the siege of Fred 1720. The South Sea. Scheme, 7 April-29 September, col-
lapses. Victor Amadeus, duke of Savoy, becomes
King of Sardinia. 1722. Keter of Sardinat. Grat assumes the title of Tsar of Russia.
1725. Death of Peter the Great. Persecution of Protestant 727. George II becomes King of Great Britain.
178. Rise of Methodism in England.
1733. France and Poland at war.
emin-Lung ascends the throne of China. He receives 1739. Nadir, Shah of Persia, conquers the greater part of the 1740. Fredederick the Great begins to reign. Maria Theresa
becomes Queen of Hungary. 1743. The Altiesen of of Hungary the French at Dettingen.
1744. Great Britain declares war atainst Frat
174. Great Britain declares war against France, 31 March.
Commodore Anson completes his voyage around the 1745. Brattle of Fontenoy, 30 April. British forces take Cape
Bretor, N. St Rebellion in Scontland. English forces
defeated at Gladsmur, 21 Sept.
 1747. Duppressed. Defent of the allied army at Lafeldt. British victory
ove the French fleet. The Prince of Orange becomes
Stadtholder. 1748. Treaty of Aix--a-Chapelle between Great Britain, 1752. Spain, Austria and Holland. Bendar revised in Great Britain, Sept. 3 becoming 1756. Sepeven. Years' War begins. Rupture between Great 1756. Seven Years' War begins. Rupture between Great
175. Dritain and Francer Damien's conspiracy against Louis XV. Prussian vic1757. Damien's conspiracy against Louis XV. Prussian vic-
tory at Rosbach over French and Austrians, 5 Nov.
ting of Prusia becomes master of Silesia. 1759. France losses Canada in the final battle of the Heights 170. Abraham. Cegins his reign.
1763. Geerge Years War ends.
1763. Seven Years' War ends with Frederick victorious.
Peace ratifed at Paris between Great Britain, France
and Spain. And Spain.
1764. The British Parliament grants Mr. Harrison, $\$ 50,000$
for discovering the longitude by his chroncmeter. 1766. American Stamp Act repealed.
176. Capthin Cook's discoveries in the Pacific Ocean.
1772. First Partition of Prond by Rusta 1773. Captrain Ceok's Coyage to the Antarctic, reaching 71° 10 5outh latitute.
1774. Louis XVI of France begins his reign.
1775. The American Revolution begins, 19 April. Battle of
Bunker Hili, 17 Juno. Bunker Hilli, 17 June
1776. Claimed Amed 4 Julcan Declaration of Independence pro1777. The surrender of Burgoyne at Saratoga, N. Y.. 7 Oct.
1778. Alliance of the French and Americans. 30 Oct.
177. Slege of Gibraltar. Captain Cook kiled at Hawaii.
1780. 13 Tritish naval yictory over the Spaniards ncar Cape St
 17883. Tr Treaty of Peace between Great Britain and the United 1786. Warren Hastings impeached for misrule in India. Shay's
rebelion in Massachusetts. rebel.ion in Massachusetts.
$1787-88$. United Stated
and ratifled. 1789. The States General meets in Paris. The French Revo-

 1794. Robespierre beheaded. English. defeat the French
feet. Batle Fof Fluaus, 2 J Jne.
1795. Holland invaded by the French. Belgium annered to

 1800. United States capital removed from Philadelphia to
Washington. Union of Ireland with Great Britain
ratified by Parliament.

EIGHTH CENTURY, The. The 8th century is a cardinal epoch in modern history because it witnessed the culmination of the struggle in the east and west of Europe by which be Christian rather than Mohammedan in character. The failure of the Saracens to capture Constantinople in the carly part of the century (718) and the decisive defeat inflicted upon the
Moors at Tours (732) by Chates lowed by Charlemagne's successful campaign (777) which pushed Moorish dominion below the Ebro in Spain definitely settled that Christhanity was to have an opportunity for free
development in Europe. It was the fashion a development in Europe. It was the fashion a
generation or two ago to suggest the possibility generation or two ago to suggest the possibility
that civilization might have advanced more rapidly under Mohammedan dominion than actThally proved to be the case under Christianity. The opinion was dictated primarily by the love of paradox though undoubtedly supported by
the tendency to minimize the really great work of the Middle Ages through ignorance of their genuine achievement and to exaggerate the place of the Moors in education, literature and especially, in science. What actually happened in the Mohammedan countrics in spite of the magnificent incentive afforded them by their is the historical demonstration that their definite repulse in the 8th century was for the benefit of humanity.
At the beginning of the 8th century the caliphs ruled from India over Persia, Arabia. Syria, Armenia, Egypt, Morocco, Spain and as most of the islands of the Mediterrancan and not a little of southern Italy. The backwardness in civilization of all of these regions that remained under Mohammedan rule is the an swer of history to the insinuations of Gibbon might have conferred out humanity. Fortunately in the 8th century there came a division of the caliphates which greatly diminished Moham-
medan power and reunion never took place The raising of the sicge of Constantinople (718) was due more to one man, Leo, known was the Isaurian, than to any other factor. Leo lary and administrative genius to be empero and founded a dynasty. Like self-made men a all times he was confident that he could solve all problems since he had solved so many, and his interference in Church matters separate Christianity into two parts that in spite of again. Leo and his son Constantine Coprony mus declared against the worship of images in religion and encouraged the so-called iconoclasts or image breakers who did so much to this century.
Defeated in their attempts on Constantino ple the Mohammedans forced their way along the northern shore of Africa, crossed the ing Spain. In 711 they won a great victory ing Spain. In 711 they won a great victory
over the Visigoths which made themn masters of the country, and by the end of the first quarter of the century they had overrun the peninsula and were crossing the Pyrences 10
menace Gaul. The Duke of Aquitaine held nenace Gaul. The Duke of Aquitaine hel them in check for a time, but they defeated hinn Tours. Between Tours and Poitiers their im mense host was met by Charles Martel (the Hammer) and completcly defcated in one o the decisive battles of history. There are few authentic details of the battic hough it would flem with have been, as far as we know, the coil fought between men at any time in history ex cept in the late Great War. Charles Marte Was the mayor of the palace of the western Frankish king. The Merovingians had ruled
since Clovis' ince Clovis the, but whengs ascenced the the mayor of the palace, became the real ruler Charles' son Pepin, surnamed the Short, ac quired even more power than his father and nally put to the Pope the question whether th ang should reign when his power was gone he who had the power in the state should 1 king, and so Pepin began the Carolingian dynasty. Pcpin was the father of Charlemagne who was destincd to consolidate France, con-
quered the surrounding countries, including a quercd the surrounding countries, including a portion of Spain from the Moors, put down dominion over northern Italy.
Charlemagne is the heart of the 8th century The only man in history with whose name the djective great has become so thoroughly incor orated that most people think of it as an essential part of his name, and he thoroughly Charlemagne's kingdom was the hulwark of the Christianity of the West. At his death his empire included most of western and souther europe. Thought of usually as a warrior his
 ul purstit of a far-reaching constructive policy. ntegration which had heen at work in Europe snce long beforc the fall of the Roman Empire and he made it possible for men to think of
progress and civilization in place of being constantly occupied with resistance to barbarian their one preoccupation. It was a fitting consummation of his work that he was crowned emperor of the Romans by the Pope at Rome on Christmas Eve of the year 800. It was a striking omen of the new outlook for Europe when in the first year of the 9th century and
of the lmperial reign an embassy arrived with precious Oriental presents from the great caliph of the East whose name is as well known in history and romance as Charlemagne's own Haroun al Raschid.

Charlemagne lives in romance through his expedition into Spain, whither he went 10 put an end to the menace of the heir own stronghold. After some years of war, begun at the instance of an embassy from spain, in the year of the mystical number 777, he succeeded in conquering all the district north of the Ebro, and established there the Spanish March, a name given
to outlying districts of his domain whose rule was committed to special officials called margraves, or counts of the marches, or marks, from which our word marquis. Charlemagne's defeat of the Moors was the first step in the gradual expulsion of the Mohammedans from
Spain which was not to be accomplished in its cntirety for over 700 ycars. On the return from his victorious expedition to Spain the rear guard of Charlemagne's army was attacked and cut to pieces by the Basques in the pass of Roncesvalles, in the Pyrences. The battle of that name, fought by Roland to the bitter end, was celebrated in song and story for many centuries afterward. The prodigies of valor there done tinged even the talcs of chivalry which were 10 occupy so much Spanish attention in the later Middle Ages and whose influence was felt until away.
Charlemagnc lives in history much more as a lawgiver, an organizer of the civil functions of tunitics for intellectual development than even for his success in arms. At his invitation Alcuin, called a Saxon monk by Charlemagne's carliest biographers, but claimed an Irishman (Albinus) by many writers, was invited to organize the schools all over Charlemagne's dominions. He was given the powers of Imperial Minister of Education. He well deserved cuin was truly a scholar; he was familiar with Pythagoras; often cites Aristotle, Homer, Plato, Virgil and Pliny, and is one of the most noticeable instances of the umion of those clements so difficult to harmonize, the spirit of ancient literature with the spirit of Christianity." It is interesting of charlemagne an academy in which the emperor and all his family and all the nohility at court were members. In this academy the emperor hore the name of David, Alcuin took the name of Flaccus, while other
members took such names as Homer, Plato and members took such names as Homer, Plato and
Virgil. We have some 300 of his letters addressed hy this modern Aristotle to the Alexander of the West.
Charlemagne's efforts for the provision of
education for his people included women as well as men. His own daughters as well as those of the nobility attended the Palace
School, and there are letters of Alcuin which show that they were deeply interested in the intellectual problems of the time. The emperor also recognized the social obligations of the ruler and ordered that there should be hospitals in connection with all cathedrals and
monasteries. At this time the word hospital included also refuges for the infirm, the old, the deformed and defective, and even the insane as well as for the homeless wayfarer.
In spite of many vicissitudes, wars, political disturbance and human incidental frailties, Charlemagne's work for civilization bore fruit
down the generations, though his empire broke up and internal dissensions arose mainly through the custom of dividing the realm among
his sons which Charlemagne also followed. He his sons which Charlemagne also followed. He deserves such expressions as that of John
Fiske: "When we think of all the work big with promise that went on in those centuries which promise that went on in those centuries
writers in their ignorance used once to set apart and stigmatize as the Dark Age; ... when we think of the various work of a Gregory, a Benedict, a Boniface, an Alfred, a Chariemagne, we feel that there is a sense
in which the most brilliant achievements of pagan antiquity are dwarfed in comparison with these."
While Charlemagne was reigning gloriously in Europe at the end of the 8th century a ruler in many ways scarcely less worthy than he and
equally famous, Haroun Al Raschid (Aaron the equally famous, Haroun Al Raschid (Aaron the
orthodox), occupied the Eastern caliphate. Haroun was the fifth of the Abasside caliphs, an accomplished scholar, a poet of distinction, who gathered wits, poets and musicians around him. It is for this reason that he is so widely and favorably known for it is to the Arabian is duc. How much of the real greatness of his reign was due to Yalya, his vizier of the Barmecide family, is difficult to say. Haroun's personal character is revealed by his murder of his sister and his nephews when he
learned of her marriage to the brother of his vizier. While all his life he occupied a position of bitter hostility to the Greek emperors, there is a well-established tradition that he sent presents to Charlemagne and endeavored to cultivate his friendship though perhaps only with the idea of thus making less of the rule Europe had freed h
of Mohammedanism attacking from the east and South, but before the end of the century was to witness an invasion of almost more serious nature from the opposite quarter. The Vikings or Norsemen invaded Britain in the
last decade of the century and were to prove a serious foe to civilization for the next three centuries in many countries of Europe. Britain and Ireland had succeeded in developing education and culture, and Gaul had made a magnificent beginning under Charlemagne, but obstacle. Alfred overcame them in the next century for a time in Britain, but the northern coast of France had to be given over to them and they obtained a foothold in Sicily and southern Italy. They represent a much more
serious impediment to the cvolution of civiliza tion at this time than any internal factor. of one of century was the scene of the carecr of one of these men who, forgetting them-
selves in life, are never willingly forgotten This was Boniface, the apostle of German His name was Winfrid (A. S., "win-peace") and he received the surname of Bonifacius from the Latin signifying "good face or the benevolent." Born of noble parents in Devonshire, England, he insisted on devoting himself
to the spiritual and intellectual life in a monastery at Exeter, and when his talents assured his advancement, he obtained permission to be come a missionary to the old Saxons. Some 40 years were spent in missionary labors, and Boniface has been in honor ever since as the to the Gcrman people. Distinction came to him unsought and Boniface was made a bishop and subsequently archbishop of Mainz and primate of Germany. Having solved some of the serious problems of ecclesiastical jurisdiction by his genius in the management of men as
well as his kindliness of disposition he gavi up his archbishopric to become a missionary to the Frisians by whom he was put to death His letters which have been preserved show us the interests of the time better, perhaps, than almost any other set of documents of the period that we possess.
developments in Gert interesting of Boniface's English nuns to help him in his mission. H recognized that the German women still swayed that influence in the communities which ha women auxiliaries would be of great help the mission. Thecla and Lioba, to whom the title of Saints has been accorded, accepted this invitation and exercised great influence Boniface's letters show how thoroughly he ap preciated the nuns as intelligent fellow-laborer:
in his apostolate. The education of the chil dren of the Germans was confided to them and a greater influence was thus brought to bear on the Teuton women than could otherwise have been exercised. It was to the risingy tion of genuine Christianity for it had proved extremely difficult to bend the savage nature: of the Germans to the milder virtues of the Gospel. Saint Thecla particularly did much to organize the rising generation of young German women to carry on her missionary of the low periods of intellectual life in history and yet it contains the careers of three men famous ever after for their intellectual work. The greatest of these is undoubtedly the man to bear the title of Venerable Bede, by which he has been known cver since. Something of the place that he secured for himself in Christian scholarship will probably be best appreciated from the fact that in November 1899 Pope Leo XIII decreed to him the title of
Doctor of the Church. Bede's infuence was very great in his own time, not only in England but throughout all of western Europe, and in spite of the incursions of the Danes which disturbed English Christianity and its influence so

Much, Bcde's work came to be widely known scholar of his time-a writer whose style and critical judgment have made him a favorite author even in modern times. With a literary propriety seldom exhibited in his time he referred all his materials to their sources and insisted on copyists giving all the references
His critical, historical judgment has given him a distinct place among the historians. His ife was a round of study and prayer with occasional visits for a few days to friends and is the ideal scholarly writer's life at all times. The surprise is to find it so well exemplified century.
The second of these great scholars, John of Damascus, or Saint John Damascene, also had the distinction of being enrolled among His intellectual distinction is that of being the first of the scholastic philosophers and his 'De fide orthodoxa' is often hailed as the first work of scholasticism. He undoubtedly had a deep flltence upon the Arabian scholars of his time, and their philosophy owes much to his nspiration for they admired him as much as of his works is that one known as the 'Fountain of Wisdom.? It has a special significance in the history of theology because it is the first attempt at a Sumnia Theologica that has come own to us, though there were to be many such ward. Damascene's work for the Church is due to Leo the Isaurian's attempt to be head of both Church and state and dictate the beliefs his people in the matter of the veneration of mages. When Leo issued his first edict. Joln was chief councillor of the city of Damascus Church traditions, and then, recognizing his lack knowledge for Christian apologetics, he en ered a monastery, gave himself to study and became the great leader of the Christian thought of the time. He suffered bitter prossatellites, but he was vindicated by the Seventh General Council of Nice (787) and came to be known after the Greek fashion of adding title of admiration as John Chrysorrhoas, the "John of the Golden Stream," because Christianity. Damascene is besides one of of world's great writers of hymns, and modern hymnologists have even spoken of him as th prince of Greek hymnodists. Three of his hymns, 'Those Eternal Bowers,' 'Come, Ye Faithful, Raise the Strain' and 'Tis The Day admired in their English version.
The third of the scholars of the 8th century whose name is often still mentioned was Ver gilius, bishop of Salzhurg, who had been an
Irish missionary of the name of Fergal or rish missionary of the name of Fergal or
Ferghil. He was received with great favor by Perging. He was received with great favor by Pepin, then mayor of the palace, and his
talents and learning led to his being made abbott of Saint Peter's at Salzburg. He was deeply interested in mathematics and astronomy and his teachings that there werc antipodes led
to his being tried in the ecclesiastical courts, not, however, because of the scientific doctrine,
tut because it was said that this involved the denial that men had all come from a single origin. Vergilius succeeded in showing that his teaching was not contrary to Scripture and it was after this that he was made bishop of
Salzburg. He was canonized in the 13th cenSalzburg. He was canonized in the 13 th cen-
tury by Gregory IX. There seems no doubt that his belief in the existence of peopic on the other side of the earth and that the earth itself was a sphere was due to his knowledge of the accounts of some of the Irish expeditions that had probably found their way in times of The century closed with a woman, Irenc, the cnly woman who ever occupied the position of empress, in the fullest sense of the word, Basileus, in the Eastern Empire. While she had taken a determined stand against the Iconoclastic party which was disturbing both Church and State, she is distinctly one of history. French historians lave not hesitated to declare that she was as given to intrigue as Catherine de Medici, and spared not even her own son in her ambition. She schemed against his marriage to Rotrud, a daughter of Charlemagne, and forced him to marry
an Armenian totally unsuitable to become his consort. She sanctioned his bigamy with a woman of the court in the hope of ruining his career, and is even said to have blinded him before confining him to prison where he died. She did not long enjoy the fruit of her pharus phorus and passed the end of her life on the

The Pope and the people of Rome took ad vantage of the accession of Trene as the formal empress to repudiate the Eastern Empire and to make a formal break with Constantinople. They-declared that a woman could not be laid open for a new era and a Western Empire. Pepin, as king of France, had come at the request of Pope Stephen III to save Italy from the Lombards, and was hailed as ruler though he received only the name of patrician which Charles inherited from him. This office crowned Chatlemat of emperor, and Pope Leo days of the 8th century.

James J. Walsh,
Author of 'The Thirteenth the Greatest of Centuries.'
principal fivents of the 8 th century.
710. The Saracens conquer Spain. 714 . Charles Marte! natural son of Pepin the " major domo."
719. Boniface of England begins his civilizing mission in
721. The Sermany.cens invade France.
726. Leo the Isaurian interdicts.

732
Tou
Tours. and compels their tetreat to Spain at the Rattle of
almost and
-1most entirely occupy, driving the Goths sto the Aht thurias.
37-74.. Charles Martel, having also suhjected severnl Ger-
752. Man tribes. hecormes duke and prince of the Franks.
754. is made King of the Fharles Martel, succeeds him and
754. Consta
755. Asteries
55. Archbish.
56. The Lombardis of at Daltickurum. oricin, occupying the north of

Italy, are defeated by Pepin, son of Charles Martel and
father of Charlemagne
8. Charlemagne hegins to reign in Western Europe.
774. Charlemagne conguers the Lombards; and Upper Italy Lewer Itay the bry frakes
Charlemagne invades
Tpain.
777. Charlemagne invades Spain.
77. The battee of Roncesvalies.
182

Saxons.

eighth nerve. Sec Auditory Nerve. EIKON BASILIKE, íkőn ba-sili'i-kê (Gr. "the royal image"), a work the full title of
which is E (tкuv $3 a r t \lambda i k i)$: The Pourtraicture of
 ferings.' It was published 9 Feb. 1649, 10 days after the execution of Charles I, and within 12 months ran through 50 editions in yarious languages. It professes to be Charles' own composition in the form of a diary. It is written in an affectedly dignified strain, and contains
numerous assertions of love for his misguided and ungrateful people. At the Restoration, Gandcn, afterward bishop of Worccster, laid claim to the authorship, and a memorandum in the copy of the Earl of Anglesea, lord privythe authority of Charles II and the Duke of York. Milton's answer to it, 'Eikonoklastes' (that is, "imagebreaker") appeared the same year hy order of Parliament. Gauden professed o have begun the work in or about the year 1047 , and to have sulmitted a MS. copy of it
to the king. On the other hand to the king. On the other hand, those who that he had written the first six of its 28 chapters before the battle of Naseby (1645). The question is one of much complexity. Hisorians gencrally, from Lingard to Green, have pronounced against Charles; while some of
those who have sifted his claims are in his favor. (See GaUden, John). Consult Almack Bibliography of the King's Book' (1896); Doble, in the Academy (1883), Scott, E. J. L., 'Comments in Edition of the Work', (1880), ; Basilike? ' (1824-25); Tucker, 'On the Author of Icon Basilike) (Berlin 1874).
EILDON, êl'dón, HILLS, three peaks beonging to a single mass, south of Melrose, in Roxburghshire, Scotland. The highest attains an
elevation of 1,385 feet above sea-level, and all elevation of 1,385 fect above sea-level, and all
command a splendid prospect and are rich in command a splendid prospect and
historic and legendary associations.

EILENBURG, ílěn-boorg, Germany, town of Prussian Saxony, in the government of
Merscburg, mainly situated on an island of the Mulde, 14 miles northwest of Leipzig. It has manufactures of calico, woolen cloth, yarn, dyestuffs, vehicles, basketwork, tobacco, chemicals, eelluloid, becr and agricultural implements Franz Abt, the song writer, and M. Rinckart,
the poet, were born here. Pop. 17.401. Consult Guudermann, 'Chronik der Stadt Eilenburg' Eilenburg 1879).
EILETHYIA (hieroglyph, Nekheb; city of Lucina, now called EL-KAB), a city of ancient Egypt, situated on the right bank of the Nile, a he remains of small temples dedicated eses II to Ra; a Ptolemaic temple dedicated to he eponymous goddess I Lucina by Physcon or Euergetes II, with additions by Ptolemy Alcxander I and the elder Cleopatra; and an ancient
emple dedicated by Amenophis III to the loca deities. The names of othcr monarchs are also important remains are the rock-tombs, some a early as the 13 th dynasty, excavated in the hills. That of Aahmes, tne "captain of the sailors, fecords his services in the wars of the early monarchs of the 18th dynasty against the Hyksos or Shepherds, and other Asiatic and decorated with rich and elaborate paintings epresenting the pursuits of agriculture owling, fishing, ctc. The city was a outpost against the southern tribes, and it ort, a large enclosure of crude brick, was o goddess Suben (Eilcthyia or Lucina) was special protectress of Upper Egypt. Consul Brugsch (Reiseberichte' (Leipzig 1855), an
'Fypt 'Egypt Under the Pharaohs' Wilkinson, 'An cient Egyptians); Mariette, (Ancient EEyptiar
History'; Quibeli, (El Kab) (London (897) EIMBECK, im’leek, William, American geodesist : b. Brunswick, Germany, 29 Americal 1841 He was for two years professor of mechanic and engineering, Washington University, and member of the government solar eclipse expeditions to Illinois 1869 and to Italy 1870 . After
1871 he was an assistant on the United State Coast and Geodetic Survey. He has Steen Fellow of the American Association for the Advancement of Science since 1879, and is the inventor of the invariable reversible pendulum and the duplex base apparatus of coast and
geodetic survey. His chicf work geodetic survey. His chicf work has been in
connection with the western divisions of the 39th parallel triangulation across the continent.

EINBECK, in'bèk, or EIMBECK, Ger many, town of Prussia, in the province of Hanover, on the Ilme, near its junction with the Leine, 40 miles south of Hanover. In the a bronze baptismal font of exauisite choir stalls a the tombs of the Prinzen-Gruibenhagen. The town has vocational departments attached to its school system and maintains a school for police Betts, lincn, carpets, felt, sugar and tobacco are formerly colelrated Fimbecker biet ("1 The hecr) is still made here Finheck (vock of importance in the 15 th century. It was a member of the Smalkaldic League and it figured
prominently in the Thirty Years' and the Seven prominently in the Thirty Years' and the Seven
Years' wars. There are still remains of its old years wars. There are still re
walls and towers. Pop. 0,431 .

EINHARD. See Eginiard.
EINHORN, in'horn, David, American rabbi: b. Dispeck, Bavaria, 10 Nov. 1809 ; d
New York, 2 Nov. 1879 . His first rabhinical position was at Hopstadten, Bavaria, and shortly afterward he became chicf rabbi of the grand duchy of Mecklenburg-Schwerin. In 1851 he was called to Pesth, but his progressive tend
encies aroused shafp opposition and his temple encies arousec sharp opposition and his temple
was closed by order of, the government. In
 Sinai Congregation, of Baltimore, Md. His
activity was now to be rapidty developed, for activity was now to be rapidly developed, for
he issued his prayerbook, which was warmly he issued his prayerbook, which was warmly received hy many reformed Jewish congrega-
tions, and he began the pullication of a scholarly monthly magazine in German, entitled
Sinai, in the interests of advanced reform.

His vigorous onslaughts on slavery in 1861 lec where he Temple and published his catechism. In 186 we was elected ralbi of the Adath Teshurum Temple in New York, where he continued zealous, impassioned and scholarly advocate of reform and the leader of the then radical schoo inil his retirement in July 1879.
EINSIEDELN, in'zè dền, Switzerland own in the canton of Schwyz, 2,895 feet amave sea-level and 26 miles southeast of Zurich, sea fa renowned abbey of Benedictine monk ince the midale of the oth century. It is incus resort of pilgrims who visit the place mage of the Blessed Virgin. For the accommodation of the pilgrims the little town ha more than 50 inns or houses of entertainment hose pilgrimages are made throughout th year, but the great annual pilgrimage culminates on the anniversary of the dedication o
he abbey's church, 14 September. The pres ent albey is the successor of four previous edifees which were destroyed by fire; it wa erected in the first quarter of the 18 th century nd is an imposing pile in the Italian style. The place was visited by Edward Gibbon, the histo
rian, 1755, who writes that he was "astonished by the profane ostentation of riches in the poorest corner of Eurone; amidst a savage scene of woods and mountains a palace appears o have becn crected by magic and it was abled by the potent magic of religion. Wist ence and is annually visited by more than 150, 000 pilgrims. It was plundered of its vast treas dre of silver and gold and precious stones by he French (1798), but it is still very rich, es pecially in literary, monuments, possessing a 1 imore than 1,000 productions of the printing ress in its early period. The leading industr is the manufacturc and sale of religious ohject statues, crucifixes, altar vessects, ctc. The monastery has many historical and religious associa pons; a rreat chanctelier was donated by a
poleon III. The monastery was founded by Meinrad, who built a lady chapel here to hous he statuc of the Virgin given him ly Hildegard. op. 8,438 .
einstein's theory. See Relativity.
EISELEN, i'zë-lén, Wilhelm Bernard, German gymnast: 1 . Berlin, 27 Sept. 1792; gan in Berlin and he was the pupil of the emi nent gymnast Jahns. He soon became promi nent among the young gymnasts of Berlin and 1819 began to teach gymnastics at a school Berlin. He openco a gymnasium in 1828 , and had a number of pupils. The first gymnasinm fo young girls was instituted ly him in 1832. He published many works on gymnastics and fenc g, including 'Dentsche Turrikunst' (in co Soraion Stosfechten's ((1826) (A)
cutschen Stosslechtens' (1826).
EISENACH, īzēenăn, Germany, town in of the Thuringian Forest, at the conflu ence of the Neese with the Hörsel, 17 miles
west of Gotha. The neighborhood is remarkably picturesque, being orilamented with splenplace there is a monument to the memory of those from the neighborhood who fell in the war of $1870-71$, and in the Karlsplatz stands the Luther memorial, unvelied in i895. It contectural importance Among the educational institutions of Eisenach, the most prominent is the gymnasium formerly a Latin school, which Luther and Bach once attended, a school of forestry, a school of design and a teachers
seminary. It has some well-developed manulsemmary interests which comprise coloring materials, white-lead, woolens, beer, leather, pottery, tobacco, cigars, cement pipe, alabaster ware, cabinct-work, lumber, oil, machinery, ctc. The lown has many interesting historical associations. Bach to whom thcre is a statue was born here. Near it is the Wartlurg, where Luther resided for a time for safety. Fisenach was formerly the capital of a principality of the same name. Consin Shelicr, Eisenach und Umgebung, ed. by Kuhuer (Eisenach

ISENACH CHURCH CONFERENCE ee Evangelical Church Conference.

EISENBERG, ízēn-běrg, Germany, town in the state of Thuringia, of great an-

 tiquity, birthplace of the philosopher Krause, whose statue is set up there. It is near the junction of the Sa:ale and Elistcr, 36 miles south west of Leipzig. It possesses a famons castlc, factures including woolens, velvet, pottery furniture, pianos, porcelain and agricultura machines. Statucs have been erected to Bismarck and to Duke Christian of Saxe-Eisenberg, in addition to that of the philosopher Kar Fricdrich Krause. Pop. 10,749. Consult (Chiro (Eisenberg 1843) und des Amtes EisenbergEISENERZ, İzeñ-ertz, Austria, mining town in the north of Styria, 20 miles northwest oflley at the foot of the Erzberg (5,000 feet a mountain so rich in iron ore that the mincrs instead of cutting mines into it and following the metal in veins, quarry the rock from the outside. About 5,000 miners are employed in the quarries on the mountain in summer and 2,800 in winter, the annual output being about $1,000,000$ tons, of which about 40 per cent is metal. The Gothic church of Saint Oswald fortificd type of ecclesiastical architecture Aragonite of the purest white, and rescmbling coral brancles in form, and of the most beaul tiful white is found in caves in the mountain. Pop 6494
EISENMENGER, ízzēn-mêng-cir, August, Austrian fresco painter: V. Vienna, 11 Fch
1830. He studied in the Vienna Academy and carly gained the first prizc in drawing (1845) In 1863 he was appointed teacher of drawing in the Protestant Real-schule of Vienna. His first work of importance was the fresco which cal Amateurs (Musik Freunde), (Apollo with the Muses'; but he has painted many notahle frescocs in other public buildings. He was
appointed professor of the Vienna Academy in
1072, remaining tuntil 1901, and at the same time opened a private school of fresco painting. His more important works included the frieze medallions in the Muscum of Art and Industry, Vienna; a series of historical pictures illustrative of the reign of Emperor Maximilian I, in the decorative painting in the session room of the Chamber of Deputies in the Reichsrat building at Vienna (1885).
EISENSTADT, i'sèn-stãt, or KISMARTON, Hungary, town in the County of Odenburg, at the foot of the Leitha Mountains,
and 25 miles southeast of Vienna. It contains and 25 miles southeast of Vienna. It contains, the magnificent palace of Prince Esterhazy, grounds surround the palace, in the library of which is housed a fine collection of musical manuscripts. Nearby is the pilgrim shrine of Maria-Einsiedel, also the burial place of the omposer Joscph Haydn. Pop. 3,073.
EISLEBEN, īs'lâ-bền, Germany, town in Prussian Saxony, 18 miles to the west of Halle, famous as the place where Martin Luther was
born and died. The royal gymnasium ally founded by Luther, was rebuilt in 1883 The house in which Luther died has been re ently restored. In 1883, on the occasion of the celebration of the 400 th anniversary of Luther's birth, a statue of him was unveiled Andrew are busts of In the church of Saint the tombs of the counts of Mansfeld and Luther's pulpit. Other Lutheran relics are in the church of Saints Peter and Paul. Coppe nd silver are mined in the neighborhood of Eisleben, which has several smelters. A considerahle trade in flower and vegetable seed was called Jslebin. Soon after the year 1100 t fell to the counts of Mansfeld, in whose possession it remained until 1780, when it was given to Saxony. In 1815 it was transferred to
Prussia. Pop. 24,629 .
EISTEDDFOD, i-stet'vōd, the name of an assembly of Welsh bards for the purpose of
musical and poetical contests. They were held at different places for the minstrels of their respective neighborhoods; two noted ones were held at Caerwys, at Aberfraw in Anglesea and at Mathravel in Powys. The judges were appointed by commissions from the native princes, and, after the conquest, from the EngQueen Elizabeth, but the ancient custom has been again revived by the Gwynedigion and Cambrian socicties, and annual meetings for the recitation of prize poems and performances on the harp are now held under the name of
Eisteddfod. The Eisteddfod proper was announced a year and a day beforchand at an assembly called a gorsedd, at which prizes for the previous competition were awarded. At the present time ycarly eisteddfods are held alternately in the north and south of Wales, and in some parts of the United States, essections settled by the Welsh people. Annual meetings take place, in every way similar to the rite in their native land. During the Columbian Exposition at Chicago probably the

most notable Eisteddfod held in America took

EJECTMENT AND EVICTION. Ejectment in law is a mixed action, as it is of land and damages recover the possession holding of it, though the damages are nomind Originally, it was a possessory action - that is adapted to the recovery of the possession of land. It ultimately became a convenient means of testing the title by a series of fictions, The of the fiction) that a lease for a certain number of years had been made to a tenant, "John Doe," who had entered into possession and had been ejected by a person supposed to represent the party to be finally made defendant. This person was called "a casual ejcctor," and was action was then brought, substantially An the following title: "Doc, as tenant of Edwards (claiming the land), against Roe." A written notice was thercupon sent in the name
of Roe by Edwards' attorney to the of Roe hy Edwards attorney to the opposing
claimant (Jones), who is the claimant Bones, who is the person in pos-
session. By this notice Jones was advised to defend the action, otherwise Roe would permit judgment to be taken against him, and the possession would be lost. Jones, on making application to be made defendant, was allowed
to defend on condition that he would admit the to defend on condition that he would admit the ceedings, so that the matter was narrowed down to a trial of the merits of the case. The
action was now decmed to be between Edaction was now decmed to be between Edwards and Jones, although Doe still remained
plaintiff on the records of the court It plaintiff on the records of the court. It was recover upon a legal title, as distinguished from a title in a court of equity. He can succeed upon the strength of his own title, and of its validity, and not upon the weakness of that
of his adversary. He must also have a tiaht of his adversary. He must also have a right
of entry. Where that of entry. Where that does not exist another
form of action must be resorted to. This method of procedure was defective in one particular. Any number of successive actions of ejectment could be brought by the plaintiff, check upon actions of this kind. The only to a court of equity for an kind was a resort vent harassing litigation. In England the fictitious portion of the proceeding was abolished by the Common Law Procedure Act of 1852, and the action placed upon satisfactory grounds. In New York and some other States as 1830 . In 1875 the law in England was modificd to the extent of making an action for the recovery of land similar to other actions, all of which were slmplified to conform to a unified plan. This legislation was copied by many States
of the Union, but in many jurisdictions the of the Union, but in many jurisdictions the stated that an ejectment action may be brought by any person having a legal right to possession, whatever be the character of his interest in it against any person or persons who wrongfully Title must be proven by the an estate therein. Title must be proven by the plaintiff. Substan-
tial damages to the plaintiff are now allowed in most jurisdictions. Consult Blackstone, 'Commentaries on the Laws of England'; Stephen,
'New Commentaries' (1903); P'owell, 'The Law of Ejectment' (1911)
Eviction.- Depriving a person of his lands or tenements. Technically, the dispossession must be by judgment of law; if otherwise it is an ouster. Eviction may be total or partial. Total eviction takes place when the possessor is entirely deprived of his rights in the prem-
ises. Partial eviction takes place when the possessor is deprived of only a portion of them, as if a third person comes in and ejects him from a portion of his land, or establishes a right to some easement over it, by an older title than t
Dispossess
EKATERINBURG, ě-kā" "tě-rēn-boorg', or ATERINBURG, Russia, town, in the overnment and 170 miles southeast of Perm he Ural Moust side, and in the mining district of by Peter the Great and was named after Empress Catharine I. It has a mint, arsenal, cus m-house, mining-school, hospital, meteoro ogical observatory and botanic garden. The art of cutting, polishing and engraving gems, which are found in the neighboring mountains, is here carried to great perfection, and, to gether with mining and metallurgy, and occupation of the inhabitants. In the neighborhood are several platinum mines and also the amous gold mines of Beresov and Niviansk op. 52,230.
EL BRACITO (N. M.), Battle of (Doniphan's name Brazito, Mexican Temascalitos) Doniphan, marching from California to Chihuahua, was assailed at a bend of the Rio Grande, some 25 miles from El Paso, by a bat alion of Mexicans under Antonio Ponce. The Mexicans fired at long range as they charged he Americans waited till they came close, then ompany of 20 horse scattered their cavalry which fled to the mountains. American loss, 7 wounded;

EL BURLADOR DE SEVILLA. Tirs e Molina's drama, y Convidado de Piedra) ('The Gay Scoffer of
Seville and Feast of the Statue'), is the parent source in literature of the famous legend of Don Juan Tenorio, the unscrupulous gallant and blasphemer, subsequently presented vari usly by Moliere and Byron as Don Juan, by Mozart as Don Giovanni, and, in Spain itsel uan Tenorio in the most popular of all Spanish lays. Few characters in the history of letters have attracted the attention of so many writ ars of genius, or have been reproduced so universally and in such multiplicity of styles, less aggregation of amorous adventures, in the course of which the hero seduces a Neapolitan ady, a fisher-girl, a young peasant, and, by a ase deception, Doña Ana de Ulloa, whose father he slays. The blasphemous feast which Don G, at which the statue of the Commander dragging him down afterward with the tomb rom which it has descended and the chape containing it to perdition, is wholly distinct
from the other episodes, which Iirso conceives after the manner of the chronicle play in a succession of loosely related incidents, without dramatic action. His Don Juan is a mere vulgar seducer, by after-thought a blasphemer, whose overthrow does not rise above the sphere of melodrama. Although Tirso must derôn at the head of the Spanish romantic theatre, even the pastoral elements in this play are devoid of picturesqueness and lack the author's customary mellowness and sober impreviously by Juan de Cueva. While of uncertain origin, prevailing Spanish authority traces it to Seville, where Don Juan Tenorio is said to have died at the foot of the statue of the Commander, whom he hadue ine derived from independent sources. The play was first printed in 1630, but has never been translated into English. Consult Cotarelo y Mori, E., in his introduction to the 'Obras de Tirso de
Molina' (in the Nueva Biblioteca de Autores Molina) (in the Nueva Biblioteca de Autores Españoles, Vols. IV and IX, Madrid 1906-07);
Menendez Pidal, R., 'Sobre los origenes de Ei Convidado de piedra' (in Cultura Española, Madrid, May 1906)
john Garrett Underiill.
EL CANEY, èl kä'nā, Cuba, town, on the main road, four miles northeast of Santiago de Cuba. During the Spanish-American War it under General Vara del Rey, and 4,400 Americans under General Lawton. The Spaniards made a desperate resistance, but were finally overcome by the American infantry. The Spaniards lost 320, and 100 were taken prisoners ; the Americans lost 440. This battle occurred 1 July 1898. In 1901 the United States government purchased the battlefield and approaches for a public reservation. See United
EL DORADO. See Eldorado
EL DORADO, Ark., city and county-seat of Union County 30 miles soltheast of Camden on the Chicago, Rock Island and Pacific, the Ei Dorado and Wesson, and the Saint Lotus, Iron Mountain and Southern railroads. It has cotton oil and planing mills, railroad repair shops,
an iron foundry and bottling works. It contains also a courthouse and a county jail. In 1908 it was chartered as a city. The surrounding district is devoted to cotton and peach growing.

EL DORADO, Kan., city, county-seat of Butler County; on the Walnut River; the Atchison, Topeka and Santa Fe, the Missouri Pa-
cific, and other railroads; about 25 miles cast of Wichita. The city is situated in a rich agricultural region, and its principal trade is in grain, livestock and farm and dairy products. There are extensive oil-fields nearby. The city has
machine shops, wagon works and quarries of machine shops, wagon works and quarries of
limestone. It was settled in 1858 and was first incorporated in 1870 . The city has a Carnegie library, and the water supply system is the prop-
erty of the municipality. Pop. (1920) 10,995.
EL GRAN GALEOTO. José Echegaray's 'The Great Galeoto,' certainly the most famous Spanish play of the 19th century beyond the
limits of Spain, and the work upon which the is an exceedingly effective example of the tra ditional Calderonian drama of jcalousy, in which the honor of the husband is attacked by a peculiarly insidious enemy. Gossip here bethe lovers, the use of the title having unites suggested by its appearance in the episode of Francesca in the fifth canto of Dante's 'Inferno,' where it has reference to the relations of Galahad (Galeoto) with Lancelot and Guinevere. Echegaray is an adept in stage effect, yet and dignity which, when tempered with restraint as in this play, impart to his fervid emotionalism a distinction uncommon in the theatre of his time. These qualities, together with a faculty for realistic detail, have led foreign critics to regard him as a psychologist,
and the play as a study of the effects of gossip on the lives of innocent persons, who are influenced by its suggestions to their ultimate ruin. From this point of view, however, the work is curiously incomplete and unsatisfying;
in Spain it has been recognized since its in Spain it has been recognized since its appear-
ance in 1881, as an excellent stage play, which conforms only superficially to the canons of Ibsenism. The mediocre verse of the original has diminished its popularity and importance of late years upon the Spanish-speaking stage. The best English translation is that by Eleanor Bontecou, included in 'Masterpieces of
Modern Spanish Drama' (New York 1917) Other versions are by Hannah Lynch (London 1895), andl by Jacoh S. Fassett, Jr., (Bos-
ton 1914). 'The World and His Wife,' a free ton 1914). 'The World and His Wife,' a free
adaptation made through the German, has been adaptation made through the German, has been
played widely throughout . England and the Ulayed widely throughout England and the United
consult Buteno, For criticism of Echegaray,
Banuel, 'Teatro Español contemporanco' (Madrid 1909).
Joinn Garrett Underiill.

EL-KHARGEH. See Kifargeh.
EL PASO, èl pa'sō, Texas, city, port of entry and county-seat of El Paso County; on the Rio Grande, the Atchison, Topeka and
Santa Fe, the Texas and Pacific, the Rock Santa Fe, the Texas and Pacific, the Rock
Island, Southern Pacific and other railways; on Island, Southern Pacific and other railways; on
the Rio Grande River in the extreme western the Rio Grande River in the extreme western
part of the State. It is opposite Cindad part of the State. It is opposite Ciludad ican Central Railway. EI Paso is about midway between the tide water of the Atlantic (Gulf of Mexico) and the Pacific oceans, about 3,800 fect above sea-level and is central to the
rich tributary regions of western Texas, New rich tributary regions of western Texas, Ncw
Mexico, Arizona and the northern section of Mexico, Arizona and the northern section of
old Mexico; it is 600 miles from any railroad centre that may compete with it. It is the centre of a rich fruit and vegetable growing region, the great Elcphant Butte Dam (q.v.), costing
nearly $\$ 10,000,000$, furnishing ample water for nearly $\$ 0,000,000$, furnishing ample water for
irrigation. By it 200,000 acres are reclaimed. irrigation, By it
El Paso's
nuequaled railway facilities, the proximity in New Mexico of inexhaustible supplies of fucl coal and the demand for supplies and machincry from the mines, ranches and growing towns of its ncighborhood make it onc
of the most important manufacturing cities of of the most important manufacturing cities of
the Southwest. Its most important industry is smelting the valuable ores of the neighhoring region. The El Paso smelters have a capacity
of alout 40,000 tons of ore a month. The monthly payment to nimers for ores brought
in averages nearly $\$ 2,000,000$, a large part of
which finds its way into the stores and facwhich finds its way into the a large part ond fac-
tories tories of the city; the monthly pay-roll of the smelters and other manufactories and the rail-
ways centering in the city is nearly $\$ 300,000$; ways centering in the city is nearly $\$ 300,000$;
and these together give to the financial interand these together give to the financial inter-
ests a stability that is little affected ly condiests a stability that is little affected ly condi-
tions in other parts of the country. It has one of the largest custom smelters in the world giving employment to from 2,500 to 3,000 Other industrial estahlishments are a wood finishing and box factory, fountrlries and machine shops, cement plant, railroad repair shops, and cigar factorics, brass works and flour mills. The United States, Census of Manufactures for 1914 showed within the city limits 117 industrial establishments of faclory grade, employ-
ing 2,815 persons, 2,347 heing wage ceiving annually $\$ 1,663,000$ in wages. The carners, retal invested aggregatcd $\$ 8,666,000$ and the yearioutput was valued at $\$ 6,135,000$; of this, $\$ 3,262$,000 was the value added by manufacture. Many eastern manufacturers, especially of machinery, have large warchouses here. The city carries on an extensive trade in coppcr, silver and lead
machinery, livestock, wool and hides and has important wholesalc and jobbing interests. E Paso has 10 national banks, with resources amounting to over $\$ 27,660,719$, and deposits over $\$ 22,660,485$, as contrasted with $\$ 1,500,000$ and $\$ 750,000$ respectively 30 years ago. El Paso is preeminently a city of homes. The streets planned electric strect-railway system places al parts of the city within easy reach of the business section. The more notable buildings are the Federal building, county courthouse, city of Mines, Fort Bliss, Carnegic libraty Schoo of Columbus Home, Masonic Temple. There are 13 public parks. The city has scveral public schools and parochial (Roman Catholic) schools, a business collcge, and is the seat of Grande Congreght Academy and of the Rio
Granal Training School and Theological Semimary. There are several handsome churches and two well-cquipped hospitals. El Paso is a notcd health resort, havopen cluring the entire year. The of which are ation in 1916 amounted to $\$ 48,736,645$. There are within the city limits nearly 60 miles of asphalt strects, 82 miles of concrete sidewalks and 97 miles of sewers. The city adopted the commission form of government in 1007 . Its
receipts amount annually to about $\$ 2,000000$ while its payments reach about $\$ 1,800,000$, waterworks system, costing $\$ 1,500,000$. The owned by the city. The Spangish explorers visited the site at an early time. The first settlement was made in 1827, and the town incorpooccupied alternately by Federal and Confederate troops and for a time was the base for operations against New Mexico and Arizona. The present charter dates from 1889 with revisions of 1801 and 1907. El Paso has grown more rapidly than any other city in Texas or the
Southwest. The city has had no boom, its increase being healthy and substantial, and in accordance with the dem?nds of commerce and
the development of the natural resources of the in 1915 tributary to the city. The total import which cotton, cattle, copper, silver, zine and lumber formed the principal items imported. Exports were valued in 1915 at $\$ 6,146,655$, of which coal and coke, shoes, bleached cotton and
cotton prints comprised the bulk. Pop. 77,543
EL RENO, Okia., city and county-seat of unction main lines north and south, and eas and west being operating headquarters for the second district of the system; terminal for Saint Louis, El Reno and Western Railway and also for Oklahoma Railway Company Interurban. Near the geographical centre of State, it exploits a rich agricultural district pro-
ducing alfalfa, corn, kaffir, wheat, oats, broom corn, fruits and vegetables. The industries of he city are varicd and growing rapidly. They nclude five lumber yards, two flour mill (daily capacity $3,000 \mathrm{bbls}$.), vitrified brick and ile factory, two ice plants, incubator factory factories, foundries, machine shops, tent and actories, foundries, machine shops, tent and ing mill, gas and electric plants, ice cream fac ory, steam laundry, wholesale groceries, etc El Reno has 15 churches and 7 public schools he new High School costing $\$ 100,000$; schoo enrolment of 1,600 and a teaching force of 45 enrolment of 200, with graded, high school and music courses. There is also a business colege, Carnegie Library and two hospitals. The Masons and Elks possess fine buildings and the El Reno theatre has a seating capacity of 1,400 .
The new office building of the Rock Island system cost $\$ 150,000$, and the city hall cost $\$ 50,000$. New Federal building cost $\$ 120,000$ The El Reno Country Club has a fine club house and maintains one of the finest golf
courses in the State. The Grand Lodge courses in the State.
Masons maintain the State Masonic Home at his point owning 640 acres which the United States rovernment sold to that body recently; fine buildings already built and plans for one of the finest homes in the country are being aid. Old Fort Reno, nearby, has been conerted into a remount station, where horses ar cntled and trained for cavalry purposes fo
use in United States Army. In 1911 El Reno dopted the commission form of governmen he executives being commissioner of public ffairs - ex-officio mayor, commissioner o nance and commissioner of highways. The with a capacity of water plant and extensions, 10 miles of paved streets and 15 miles of sewers. The taxable valuation is about $\$ 7,000$, and surplus of $\$ 175,000$ and average deposits o $\$ 1,500,000$. It was first settled in 1890 , made borough the same year and a city of the first fast, being 7,737 in 1920 .
EL SABIO, Alfonso X, king of Leon and was the son of Ferdinand III and Beatriz daughter of Philip of Suabia and sister of Frederick II of Germany. Most carefully educated. bringing with him to his administrative tasks the
reputation of successes gamed in several campaigns against the Mohammedans. His reign nobles, financial troubles and warlike movements on the part of the Mohammedans. On the death of William of Holland, emperor of Germany, Alfonso laid claim to the throne as
the direct heir. He was opposed in this by the direct heir. He was opposed in this by
most of the nobies of Germany and by the Pope. Nevertheless he maintained the struggle against superior powers for 18 ycars. In this struggle he was often opposed by some of the most powcrful ruling dukes of Spain. Notwithstanding all his reverses he fought stubbornly on, claiming for himself sing of the Romans; and signg his official documents with the great seal belonging to that dignity. He made ready several times to invade Italy and Germany, but trouble at home withheld his arm when he was ready to strike.
Finally the united efforts of his powerful enemics and the threat of the Pope to excommunicate him, combined with ever-increasing trouble at home, forced Alfonso, in 1275, to renounce his claims upon the ancient throne of the Romans. The opposition of the successive
popes to the claims of Alfonso on the crown of popes to the claims of Alfonso on the crown of
Germany was duc to the fact that he was the representative of the Suabian princes, long the bitter and uncompromising enemies of the papacy. Alfonso was the more inclined to make peace with his enemies abroad in 1275 bc cause of the increased trouble which the Mohammedans were givilg him at home. In Grapopulous centres from Murcia to Jerez the Moors rose up against the Christian king in an effort to drive Christianity out of Spain. Alfonso besieged and captured Jerez, MedinaSidonia, Rota, Santucar, Lcbrija and Arcos;
and the Castile fleet, under the command of and the Castile fleet, under the command of In 1264 Jaime of Aragon came to the aid of Al fonso. The former captured the province of Murcia while Alfonso carried on the war against Andalucía. These constant wars and the struggle against Italy and Germany forced
the king to increase the taxes. This estranged many of the nobles upon whom fell this burden of increased taxation; and Alfonso was forced to make concessions to his underlords which gave them great facilities for the oppression of
their tenants. Thus the king ultimately lost the their tenants. Thus the king ultimately lost the
goodwill of nobles and peasants alike. The former, deserting the Castilian king, joined hands with the Moorish sovereigns of Granada, Mahomed I and Mahomed II. The treaty of peace with the Pope and with Germany in 1275, to mowe strenghrary terms with his to make temporary terms with his insurgent
nobles. Alfonso departed for Rome (1275) for an interview with the Pope, leaving the cares of his kingdom in charge of his eldest son, Prince Fernando de la Cerda. The latter sent an army unter Nuño Gonzalez de Lara into Cordoha. There the invading forces met with
considerable success at first; but in a short while they were surrounded by a greatly superior Moorish force and defeated with heavy loss, among the dead being Nuño and over 400 of his bodyguard. The survivors took refuge in the town of Ecipa (May 1275). The regent died in July while on his
orces; and Sancno, second son of King Al expeditionary force which he managed with considerable skill. Alfonso, on his return from taly, made a two years' peace with the Moors, on the conclusion of which the latter again made an attempt to conquer the Christian possessions in Spain. Don Sancho led an army and suffered defeat, losing over 3,000 of his finst knights. Sancho continued with the remainer of his forces on into the heart of Granada burning villages and towns and laying waste the country he traversed. But the Castilians wer orced to retreat to Cordoba (1281). The fol the succession to the throne and the son delared himself in open insurrection against the ather. Sancho stirred up the towns of the country against the king and even sought the Pope threw his influence in favor of Alfonso and most of the nobles, obeying the spiritual head of the Church, returned to their alle giance (1282). Alfouso disinherited his son and carried the war on with the aid of Yacub, ruler rything was turning in his favor Alfonso died.

Alfonso the Wise occupies a prominent place in Spanish history as a legislator. He gave uniformity to the laws of his united kingdom, which were, on his coming to the throne, a conoften at variance with one another, and freQuently subversive of the order of the nation. Out of this confused mass of privileges and local laws he succeeded in creating a certain uniformity of legal observances whose influences were felt in Spain for centuries. He
wrote the 'Septenario,' a work wonderful in its day and for the political conditions under which it appeared. This is a sort of political, moral and religious compilation which has scrved as the basis of numerous legal works
which have developed the law of Spain. In this and other works of a like nature Alfonso shows an intuition of the spirit of law and a knowledge far ahead of his time. His 'Libro del Especulo ó Espejo de todos los derechos? and 'Fuero Real' are works scarcely less notable than the 'Septenario.' They were the reboth appeared together in 1255 . The (Libro del Especulo) (Book of Laws) is a summing up of what appeared to Alfonso to be the most just statutes or custom laws of Leon and Castile, all cases brought before the king's court. The 'Fuero Real) (royal law, in contradistinction to municipal or community law) was a compilation of the laws and usages of the different communities of the kingdom, for use in the courts of the common people. Alfonso's intention in writing the 'Fuero Real' was to
do away with the anarchy in local law which reigned everywhere throughout his dominions. As these laws prohibited countless abuses, their enforcement was bitterly opposed by the nobles and others in high office throughout the land. These works, were followed by the (Libro de los Leyes) (Book of Laws), also on account of its heing divided into seven sec-
tions. It was the first great legal code of the: fonso shows. In this and his other works Al of the laws of the Romans, of the Justinian Code and of Spanish and foreign laws of hi; day and of the ages preceding him. In addition to these virtues, his works have been long cons,
sidered as literary models in their field. They sidered as literary models in their field. They form a wonderfully interesting and useful expoobservances and practices of the age in whick: they were written. The ability, industry, powers of assimilation and excellent judgment of the king are evidently shown in his writings which called for a mastery of three great ficlds of knowledge, common and royal law, canonical doubt, helpers and investigators, but he was himself the heart and soul of it all; and his was the master mind that brought order out of confusion and conceived plans whose broad. ness were a century ahead of their time. Al. relating to law, but also of literature and science; and the extent of his knowledge is oftell surprising. He was a poet of no mean talent and he encouraged the troubadours of Provence and Catalonia. His knowledge of history was very broad and exact; and he had mastered the
extensive mathematical knowledge of the Arabs, so that, even among the Moors, he hat acquircd a reputation as a mathematician. It is not strange, therefore, that he should have done much, by his example and his influence, to advance the gencral culture of his kingdom. Of the many debts that Spain owes to him, one o quence, is the fact that, for years, he labored to make the tongue of Castile the language o the whole country. This tended to create the was disappointed in the result of Though he his lifetime, it bore abundant fruit in days. He encouraged education and estab lished schools of higher learning in Toledo Cordoba and Sevilla, and he welcomed to his and various other works translated the Bible ish, among them books on scientific subject written in Hebrew or Arabic. In addition to his 'Cantigas' numerous other works of a nonlegal nature have been attributed to him, in ome cases apparently with considerable rea Crónica General' and 'Grande y General Esto ria.' Consult Ticknor, 'History of Spanish Literature' (New York, 1854) ; any good history of Spain, or history of Spanish literature

John Hubert Cornyn,
Editorial Staff of The Americana
EL SOMBRERO DE TRES PICOS The Cocked Hat). The journalist and novel with little acclaim for Alarcon (1833-91) met ary performances; in fact he attained to measure of success in his novels. With his short stories, however, he gained a welldeserved repute, and with two of them, the Sombrero de Tres Picos' and the 'Capita Veneno,' which are really long enough to be in the novelettes, he won his permanent place 'Capitán Veneno' is entirely prose fiction Th
vising; the 'Sombrero de Tres Picos,' on the an old narratise the resusly decked out in prose form by the Italian Boccaccio in his (Decameron' (VIII, 8) and refurbished for French readers in the 'Cent nouvelles nouvelles.' Alarcon may have known these versions of the story, but he certainly derived his direct in-
spiration from the treatment accorded to it in two popular Spanish ballads which may be upon his own powers of invention for factors and embellishments which are not present in these verse sources. The subject of the 'Som-
brero de Tres Picos' is one which required delicate handling if the unduly scabrous was to be avoided in the telling. It would have been shoals of what the literary critics now call naturalism in the treatment of a theme which, like this, involves attempted adultery as a necessary element. But there is no indulgence shown
here for the vicious, and whatsoever elements here for the vicious, and whatsoever epopular tradition and are perforce adopted in Alarcón's stery are sufficiently countercd by the fing her own in which the Corregidora, safeg peasant woman seña Frasquita, dispenses poetic justice to her own recreant husband. Humor of that Alarrife in the work. It may be noted that Alar-
con's redaction of the old legend has been utilized for operatic purposes in both French and German. J. D. M. Ford.

ELAAGNUS, čl-ễ-ag'nūs, a genus of The species, of which there are about 40, are natives of the northern temperate zone, and are characterized by deciduous or persistent entire leaves covered with silvery or brownish scales,
solitary or clustered apetalous axillary flowers and one-sceded drupaceous fruits. They are valued in ornamental gardening for their foliage, usually decorative fruits, and mostly fragrant flowers. The deciduous members are hardy in the north; the evergreen ones, which
mostly come from Japan and China, only in the south. They are casily propagad succeed upon almost any well-draincd soil in a sumpy situation. The best known species probably are: (1) E.
angustifolia, the olcaster or white olive, which angustifolia, the olcaster or white olive, which
attains a height of abont 20 feet. It has becn attans a height of atont cent Asia, and has proved hardy in the bleak ornamental prairic States. It is one of the silverberry, a native of the colder parts of Canada It seldom northern border of the United States. and is perhaps the most popular native species. (3) E. multiflora, the gumi, a specics introduced from eastern Asia. It is gaining in favor. It attains a height of about six fect and, like the preceding, bears edible, slightly acid fruit of pleasant flavor. This last species became of horticultural importance during the produces good crops of fruit in climates too rigorous for most of the other fruit-locaring shrubs and trees.

EL 閏S, èlễis, the name given to a genu of palms. The seven species are dicecious or monoecious, the flowers, especially the males, in dense masses, packed very closely together irregular. E. gutineensis, the naba or oil-palm of the West African coast, has hicads of large ruits. The outer or the oil rises to the sur face and may be skimmed off. In its native country it is used for butter. It constitutes one of the chief commercial, products of western Africa. E. melanococca also furnishes oil
ELAEOCARPUS, ē-lē-ō-kār'pūs, a genus of
EL 历OCARPUS, ē-lē-ö-kar'pus, a genus of plants of the liaocarpacce.
shrubs and trees and are found chicfly in New Zealand. Ausiralia and southeastern Asia. From the secd-stones of E. ganitrus the natives of Anstralia make necklaces. The New Zealanders ind anectics furnish one of the and in India several species furnish one of the

EL ÆODENDRON, ê-lê-ō-dẽn'drơ̆n, genus of the staff-tree family (Celastracece). The plants of the genus are generally trees, natives of southern Asia, western and solthern Africa and South America. The drupes of E kubu are caten at the Cape of Good Hope while the bark of E. roxised by the Hindus as an external water, is used by the Hindus as an external
application to swellings of all kinds. E. glau cum, a native of Ceylon, is sometimes called he Ceylon tea-tree. Saffronwood is the product of E. croceum, and an oil in com
mon use in Africa is made from E. argan.
ELAGABALUS, è-la-gāb'a-lŭs, or HELIOGABALUS, hē"lī-ō-gãb'a-lus, Roman em peror: b. Emesa 204 A.l.; d. 222 . His rea youth he was appointed high priest of the SyroPhonician sun-god Elagabol and assumed the name of that deity. Soon after the death of his cousin Caracalla, Elagabalus was proclaime cmperor by the soldiers in opposition to the egitimate sovereign, Macrinus. The rivals me feated and Elagabalus assumed the purple. Hi cign of thrce years and nine months was in famous for the debaucheries of every kind i which he indulged. He instituted ceremonie in honor of the god Elagabol and it is believe in an insurrection of the Prætorians and was succeeded by his cousin and adopted son, Alexander Severus, whose assassination he had twice attempted. Consuli Bulce, (New Studies

$$
0 .-908
$$

ELAINE, è-la'inn, or ELAIN, the oily prin Ciple of fat, obtained by submitting fat to the crystallize and then evaporating the alcoholic solution; or by the simple process of pressin any oily or fatty substance between folds of blotting paper, the oily matter or elaine is absorbed, while the stearn remains. The pape in the elaine. It possesses much the appear ance and properties of vegctable oil, and olcin (q.v.) ; is liquid at the temperature of $60^{\circ} \mathrm{F}$ and has an odor derived from the solid fat rom which it has been cxtracted:

ELAM, the ancient name of a country or region in Asia, east of the Lower Tigris. The Elam conquered Babylonia and Assyria about 2300 b.C. The later ancient writers call this country Susiana, the name being derived from its capital, Susa or Shushan, one of the most ancient cities of the East. It is now known as
Khoozistan. Both the country itself, which seems to have been of considerable importance at an early period, and its capital, Shushan, are mentioned in the, Bible. Consult Sayce, 'Inscriptions of Mal Amir): Loftus. (Travels and Researches in Chaldæa and Susiana'; Billerbach, 'Susa'; Dieulafoy, 'L'Acropole de Suse';
Meyer, Ed., 'Geschichte des Altertums (1913); Scheil, De Morgan, and others in 'Mémoires de la delégation en Perse' (190)13).

ELAND, elland, the largest antelope (Oreas canna) found in Africa. It is as big as a fully
grown horse, weighs 1,000 pounds or more and grown horse, weighs 1,000 pounds or more and stands fully six feet high. The early settlers
in South Africa called it "elk." The eland has a short, smooth coat of rich fawn color; strong straight horns about 20 inches long, and a broad ringed dewlap falling about to the knees. The hide makes excellent harness leather and the flesh is decisively palatable. The clands move so slowly and are such gentle creatures as to exterminated in their native haunts. At present very few are found. In the equatorial region of western Africa is found the stil rger species (Oreas derbianus).
ELAPHURE, name for David's deer (Ceruns davidianus), whose habitat is Northern China and Manchuria. It is commonly kept in parks by wealthy Chinese and even in Europe. It has long shaggy hair and has no brow tine to its antlers.
 Colubrida, including venomous snakes having They are more nearly related to the harmles colubrines than to the vipers, but have a poisonapparatus of the proteroglyph type. The group s a large one and is found in most parts of the World, but is most numerous in the tropics the whole race of cobras (q.v.), and others. The genus Elaps is entirely American and is represented by a single species in the United States, the coral or harlequin snake of Florida
See Coral Snakr.
ELASMOBRANCHII, ĕ-lăs-mõ-brằng'kī- ̄̄, a sub-class of fishes, containing the sharks and rays. The skull is cartilaginous with only subones; the gills fixed and shaped like pouches the upper jaw is the pterygo-palatine bar, and the lower jaw Meckel's cartilage, attached to the skull by a large hyo-mandibular element: the exo-skeleton consists of tooth-like granular is cartilaginous. The ventral fins are far back and bear claspers in the males; the heart has but one auricle and one ventricle; and the intestine is provided with a spiral valve. The group is nearly coextensive with Cuvier's Chon-
dropteryyia or cartilaginous fishes and the Placoider of Agassiz, and has reccived various Cope distinguishes as orders the Selagiostomi. which includes all living as well as many extinct forms; and the Ichthyotomi, which arc exclusively carboniferous and have simple claspers and extensive cranial calcifications See Doc-Fish; Ray; Sawfish; Sharks; Skate

ELASMOSAURIANS, è-lãs-mô-sâ'riảnz gigantic marine fossil reptiles of the orde living animal it was contacean beds. As Plesiosaurus, of the same order, which abounded in the eastern hemisphere, and as fossil has been found in Europe and New Zealand. Elasmosaurus had a lizard-like, elongated body, sometimes 45 feet long, flat-paddle-shaped tail which assisted its motion through the water. The heal was proportion ately small and with the neck performed twisting motions much like the corresponding parts body indicate the contents discovered in the other rapacious fish, which it was able to seize with its crocodile-tecth. The fossil has been raised from cretaceous beds in New Jersey
and in Kansas.

ELASMOTHERIUM, ê-lăs-mō-thê'rīkim Russianct rhinoceros which inhabited Siberia, Russia and Germany during the Pleistocene size and bore an bone of the skull, but no nose-horn. The tecth are very long-crowned, with the enamel ridges strongly crenulated, indicating grazing habits. Some of the native siberian legends are suppomporary of early maninal; was a conRifinoceros.
elastic limit. See Strength of MaERIALS.
ELASTIC TISSUE, fibrous tissuc in most ases mixed with the fibres of. areolar tissue. of the jaw, etc., also in connection with arteries, veins and lymphatics. It is found in the animal structure whenever an extensible and hghly astic materin is required
ELASTICITY. Every solid, no matter how rigid we may think it to be, will have its dimensions changed upon the application of
force. If the resulting distortion does not exceed a certain amount it will disappear when the force is removed. Bodies which recover from the distorting effect of force and resume their original configurations are said to be elastic. The relation between force and the title elasticity; the harmful effects under the tion and the proportioning of materials safely to resist given forecs belong to the strength of materials ($\ddagger . v$.$) . The behavior of gases comes$ minder thermodynamics, of liquids under hydrodynamics. In the mechanics of rigid hodies points; actually, they are distributed over surfaces. We are concerned here with the area of action as well as with the magnitude of the
force, and shall therefore use the word stress to denote force per unit area. Stress, consynonymous with force, and what we here cal stess is commonly called "intensity of stress" or "unit stress." Stress as defined in this arti $M L^{-T} T^{-a}$ and the its dimensions are $F L^{-2}$ or square inch and the dyne and kilogram per square centimeter. A force oblique to a sur facc can be resolved into normal and tangential components. The resulting normal stress is accompanied by change of length. The change of length per unit length is called linear strain;
there are likewise areal and volumetric strains Strain is a pure number without dimensions Tangential stress or shear stress produces angular distortion due to the sliding of one layer of material with respect to the adjacent layers. For instance, if the two covers of a book are relative sliding of the leaves. Any straight line drawn on the top or bottom end of the hook will change its inclination; the clange of a right angle is called shear strain. It is the province of the theory of elasticity to investigate mathematically the consequences which result
from an experimentally found relation between stress and strain. The first experiments - on the rupture of beams - werc made by Galileo 'Discorsi e Dimostrazioni matematiche' (1638). His results were of no value because he supposed the fibres of a beam to be inextenSible, yet his work was the impulse to subse-
quent inquiries. It was not until 1678 that any telation between stress and strain was published. In that year Hooke in his 'De potentia restitutiva,' announced the law known by his name in the form of an anagram ceninosssttur containing the letters of Ut iensio sic vis, i.e.,
the force varies dircctly as the extension claimed to have discovered it in 1660 . Until the end of the 18th century only special problems on beams, columns, and plates were attacked; this period was almost barren of experimenta work. The foundation of the mathematical theory was laid by Navier, 'Memoire sur les
lois des corps solides élastiques,' Mémoires de l'Institut, Vol. VII, which was read to the Academic des Sciences in 1821 Progress was rapid after this in the hands of Such masters as Cauchy, Clapyron, Green, long labors of Barré de Saint-Venant (17971886). For the detailed history of the subject through the time of Saint-Venant consult Todhunter and Pearson, 'History of the Theory of Elasticity and of the Strength of Materials (Cambridge 1886) ; subsequent investigations are noted in the introduction to Love, The Mathe bridge 1906). tween stress and strain, we shall study the small displacements suffered by an infinitesimal element $d x d y d z$ within a medium in any state of stress. Fig. 1 shows the projections of two concurrent edges on the $x y$ plane bcfore and
after displacement. the $y z$ and x diagrams are omitted for brevity. Let (x, y, z), the corner nearest the origin, be displaced u, v, w, where u, v, w are small compared with x, y, z
Then, to terms of the first order, the ends of vol. 10-4
$d x$ and $d y$ reccive the axial displacements showil. For if a variable increases infinitesimally, the function will increase differen-
tially; thus if the left end of $d x$, distant x from the origin, moves u parallel to x, a point

infinitesimally further from the origin will move infinitesimally more, i.c., $u+\frac{\partial u}{\partial x} d x$, the derivative being partial to indicate that the inx crement was due only to a change of x. The of the elongated length
$d x+\frac{\partial u}{\partial x} d x$, which, since x is infinitesimal, is itself the now length of $d x$. Hence the stretch of $d x$ is $\frac{\partial u}{\partial x} d x$ and if the linear strain at x, y, z is denoted by $e_{x x}$
$e_{x x}=\frac{\partial u}{\partial x} \quad, \quad e_{y y}=\frac{\partial v}{\partial y} \quad, \quad e_{z z}=\frac{\partial w}{\partial z}$
the other two components being derived by cyclic permutations of the letters. By defithe right angles formed by the concurrent the right angles formed by the concurrent $e_{x y}, e_{y z}, e_{z x}$ in the co-ordinate planes it is cvident from. Fig. 1 that $e_{x y}=a_{x}+a_{y}$. Since a_{x} is infinitesimal by hypothesis, it equals its tangent $\frac{\partial v}{\partial x}$; likewise $a_{\mu}=\frac{\partial u}{\partial y}$.

$$
\begin{aligned}
& \therefore e_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \\
& e_{y z}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z} \\
& e_{x x}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x} \ldots \text { (2) }
\end{aligned}
$$

The six quantities $e_{x x}, \ldots \ldots, e_{x y} \ldots \ldots$ are point $(x, y$. The shear strain suffered by an element rotates it as a whole, the amount being measured by the rotation of its diagonal. Consider the effect of a partial strain $\frac{\partial u}{\partial y}$ all other displacements being zero. There will be
no loss in generality if we take a square inno loss in generality if we take a square in-
stead of a rectangle in Fig. 2, because the strain components are independent of the mag-

nitudes of $d x, d y, d z$. From Fig. 2

$$
d y=\left(d x+\frac{\partial d}{\partial y} d y\right) \tan (45-d \theta)
$$

Now $\frac{\partial u}{\partial y} d y$ is small compared with $d x$ because
u is by assumption small compared with x;
then as $d y=d x$, the equation reduces to

$$
d \theta=\frac{1}{2} \frac{\partial u}{\partial y} .
$$

In the same way $\frac{1}{2} \frac{\partial v}{\partial x}$ is the couniterclockwise rotation of the diagonal due to shearing of the
right side of the element. The resultant posiright side of the element. The resultant posi-
tive (X toward Y) rotation about the Z-axis
likewise $\quad \omega_{x}=\frac{1}{2}\left(\frac{\partial v}{\partial y}-\frac{\partial v}{\partial z}\right)$.

$$
\begin{equation*}
\omega_{y}=\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right), \tag{3}
\end{equation*}
$$

ω_{x} and ω_{y} being obtained by cyclic permutation. These are the component rotations;
when they vanish the strain is irrotational or pure. There are always at least three orthogo nal lines whose directions remain unaltered by strain; they are called the principal axe and the planes normal to them the principa planes. If u, z, , w are climinated from equa of the form

$$
\begin{equation*}
\frac{\partial^{2} e_{x x}}{\partial y^{2}}+\frac{\partial^{2} e_{y y}}{\partial x \partial y}=\frac{\partial^{2} e_{x y}}{\partial x \partial y} \tag{4}
\end{equation*}
$$

and three of the form

$$
2 \frac{\partial^{2} e_{x x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(\frac{\partial e_{x y}}{\partial z}-\frac{\partial e_{y}}{\partial x}+\frac{\partial e_{x x}}{\partial y}\right)
$$

$$
, \ldots \ldots(4)
$$

the others being written by permuting x, y, z. These are the equations of compatibility and lem in elasticity. Many of the formulas derived in the strength of materials are not compatihle with theory although they may be reasonably in accord with experiment.

Stress.- A stress will be denoted by a capiscript to show theate its direction, with a subacts. Thus X_{x} is parallel to X on a plane $(Y Z)$ normal to X and is a normal stress;
Y_{z} is a shear parallel to Y on the $X Y$ plane. Y_{z} is a shear parallel to Y on the $X Y$ plane.
Fig. 3 shows an element under coplanar stress,

all stresses parallel to Z bcing zero. It will be seen from the theorem about to be derived to the paper if there is none normal to the paper. Taking moments of the forces about the upper right-hand corner (edge) we find, after rejecting terms which vanish in the limit,

$$
X_{y}=Y_{x} \text {; }
$$

it is to be observed that the weight and the moment of inertia of the clement are vanishmgly small. The diagram shows that the
shears on two orthogonal faces both point away from, or both toward the edge, hence the Theorem: Shear stress on any plane is accompanied by equal shear stress on a per pendicular plane, both acting away from or toward the edge of intersection and both being This is due

$$
\begin{aligned}
& \text { to Cauchy. For the other shears } \\
& Y_{z}=Z_{y}, Z_{x}=X,
\end{aligned}
$$

$$
Y_{z}=Z_{y}, Z_{x}=X_{z}
$$

The translations of the element in Fig. 1 are u, v, w, whence the axial accelerations are $\frac{\partial^{2} u}{\partial t^{2}}, \frac{\partial^{2} v}{\partial t^{2}}, \frac{\partial^{2} w}{\partial t^{2}}$; the derivatives are partial because they must denote only time-changes and not space-changes. From the general free body of which Fig. 3 is a special case we get by resolving the forces axially

$$
\begin{align*}
& \frac{\partial X_{x}}{\partial x}+\frac{\partial X_{y}}{\partial y}+\frac{\partial X_{z}}{\partial z}+\partial X=\partial \frac{\partial^{2} u}{\partial t^{2}} \\
& \frac{\partial Y_{x}}{\partial x}+\frac{\partial Y_{y}}{\partial y}+\frac{\partial Y_{z}}{\partial z}+\partial Y=\partial \frac{\partial^{2} y}{\partial t^{2}} \tag{5}\\
& \frac{\partial Z_{x}}{\partial x}+\frac{\partial Z_{y}}{\partial y}+\frac{\partial Z_{z}}{\partial z}+\partial Z=\partial \frac{\partial^{2} w}{\partial t^{2}}
\end{align*}
$$

where ∂ is the density and X, Y, Z are the components of the applied forces (eg. At the surface the internal stresses the extern \ldots must be in equilibrium with the external or applied stresses.
erial is clastically isotropic when it A mastress with equal intensity in all directions. Crystals, fibrous materials, and metals which
have been heavily roiled or otherwise worked are unequally strong in different directions; periment that for many bodies

$$
\text { stress }=C \times \text { strain }
$$

C is called the modulus of elasticity. It is constant for a given isotropic material but depends upon the kind of stress; an eolotropic body has several moduli for each type of stres. The law takes the following special forms. in the direction of p
E is called Young's modulus after Thomas
Young who introduced it in 1807 . For granular materials like cast iron and stone a more accurate form is $p=E e^{n}$ where n lies between 1 and 1.1: we shall assume that $n=1$. (See Strength of Materials).
The longitudinal strain e is always accomsions; for a given material

$$
e^{\prime}=\sigma e
$$

where σ is constant for isotropy. Thus if a rod receives a longitudinal strain e the strain of any straight line in a cross-section is σe, σ_{e} is not an areal strain. In engineering $1 / m$ is used for σ. σ is called Poisson's ratio after Poisson, who in 1828 calculated it to be $1 / 4$ for all materials; experiment has not verified his (2) For
(2) For shear stress q and strain ϕ
$q=\mu \phi$;
μ is the modulus of shear or of rigidity.
Young was the first to point out that resistance to "detrusion," as he called shear, was different from resistance to stretching. But he did not introduce the shear modulus; this was done by Navier in 1833. The symbol μ was first
used by Lame in 1852; in books on the used by Lame in 1852 ; in books on the
strength of materials N and G are used for μ. (3) A constant normal stress p over the entire surface of a body produces a volumetric strain Δ, called the dilatation, where

$$
p=k \Delta \text {, }
$$

k being the bulk modulus or modulus of com pression.
For isotropic bodies there are thus four constants of elasticity: E, μ, σ, k. It will be
shown later that only two of them are independent. Stokes in 1845 ('Mathematical and Physical Papers,' Vol. I, p. 75) pointed out that μ and k are of basic importance in theoretical work; in engineering E and μ are more For eonvenient
For eolotropic substances we may still asstrain, in which case the generalized forms of Hooke's law are
$X_{x}=C_{11} e_{x x}+C_{12} e_{y y}+C_{13} e_{z z}+C_{18} e_{x y}+C_{16} e_{y z}+C_{16} e_{z x}$ $y_{y}=C_{21} e_{x x}+C_{22} e_{y y}+C_{23} e_{z z}+C_{34} e_{x y}+C_{23} e_{y z}+C_{23} e_{z x}$ and so on for $Z_{z}, X_{y}, Y_{z}, Z_{x}$, the 30 coefficients, C_{11} to C_{68}, being the elastic constants. Green in 1837 proved that for conservative systems $C_{m n}=C_{n m}$ whereby the constants reduce to 21 for colotropy. For isotropy they strains for isotropy consider the effect of a single tension X_{x}. By Hooke's law it produces a strain X_{x}^{x} / E in its own direction, and
according to Poisson's ratio, a lateral compressive strain $\sigma X_{x} / E$. Hence if a parallelepiped is acted on by tensions $X_{x}, Y_{y,}$, and Z_{z}, the resultant axial strains will be given by

$$
\begin{aligned}
& E e_{x x}=X_{x}-\sigma\left(Y_{y}+Z_{z}\right) \\
& E e_{y y}=Y_{y}-\sigma\left(Z_{x}+X_{x}\right)
\end{aligned}
$$

$$
E e_{z z}=Z_{z}-\sigma\left(X_{x}+Y_{y}\right) ;
$$

$e_{x x}, e_{y y}, e_{z z}$ are called the equivalent simple strains, and when multiplied by E, the equivalent simple stresses. By addition
$E\left(e_{x x}+e_{y y}+e_{z z}\right)=\left(X_{x}+Y_{y}+Z_{z}\right)(1-2 \sigma) ;$ the first parenthesis is the volumetric strain because the change of volume is
$\left(1+e_{x x}\right) d x\left(1+e_{y y}\right) d y\left(1+e_{z z}\right) d z-d x d y d z$ $=\left(e_{x x}+e_{y y}+e_{z z}\right) d x d y d z$ if the strains are so small that terms above the first order are negligible. The volumetric strain or dilatation Δ is then
Now it is obvious from Fig. 2 that the infinitesimal shear $\frac{\partial u}{\partial y}$ does not change the area of the face $d x d y$; if one does not, none will, so that shear does not change areas. In the same way it follows that infintesimal shear will not alter volumes; this is why the dilatation contains only linear strains.
equation following (6)
$3(1-2 \sigma) X_{x}=E \Delta$
whence, as $p=k \Delta$

$$
k=\frac{E}{3(1-2 \sigma)}
$$

If $\sigma>1 / 2, k$ is negative whence volumes would be increased by compression and decreased by ceed $1 / 2$. Furthermore a negative σ would mean lateral expansion under tension; this is not true of isotropic materials. Therefore σ is a positive fraction not larger than $1 / 2$; experiment verifies this
$X_{x}=E_{x x}+\sigma\left(X_{x}+V_{2}+Z_{1}\right)-\sigma X_{x}$
and the parenthesis eliminated by means of the
$X_{x}=\lambda \Delta+2 \mu e_{x} ;$
similarly $\quad Y_{y}=\lambda \Delta+2 \mu e_{y y}$
where

$$
Z_{z}=\lambda \Delta+2 \mu e_{z z}
$$

where

It will be proved later that μ is the modulus Y med above; hence
No Navier, Poisson, and Cauchy, the founders of
the theory of clasticity, derived their equations from a hypothesis of intermolecular actions the consequences of which demanded that $\lambda=\mu$; then $\sigma=1 / 4$ contrary to experiment. They belonged to what Pearson has called the rari-constant. as opposed to the multi-constant, is in favor of the necessity of two constants for specifying the elastic properties of isotropic materials. To interpret μ in the equations just found, consider a cubical element under
tension p on one pair of faces and compression p on a perpendicular pair, as on the fullthe squaded corner cut off by a 45 -degree-body and resolving the forces (stress \times area) parallel and normal to the oblique surface, we find

that a stress $q=p$ on the oblique face is necessary and sufficient for equilibrium. That is, orthogonal, equal, unlike normal stresses produce pure shear of equal magnitude on any plane at 45 degrees. Take now the dash-line
square as a free-body: it is in pure shear of magnitude $q=p$. Since the change of a rightangle is the shear strain ϕ, the change of $\theta\left(=45^{\circ}\right)$ is $\phi / 2$. As the sides of the inner square are not altered in length, D is constant in

$\qquad D=l \cos$	whence $\quad \frac{d l}{l}=d \theta \operatorname{ctn} \theta$
But $\theta=45^{\circ}$	and $\quad d \theta=\frac{\phi}{2} \quad \therefore \frac{d l}{l}=\frac{\phi}{2}$
By eq (6)	$\frac{d l}{l}=\frac{p}{E}+\frac{\sigma p}{E}$
and as	$\phi=\frac{q}{\mu}=\frac{p}{\mu}$
	$\mu=\frac{E}{2(1+\sigma)}$

For the purposes of integration it is convenient to eliminate the internal stresses from
cquations (5). Substituting equations (7) and (8) in (5), replacing the strains by their values in (1) and (2) and using the symbolic abbreviaion - the Lapacian operator-

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

$$
\begin{align*}
& \text { we find } \\
& \qquad \begin{array}{l}
(\lambda+\mu) \frac{\partial \Delta}{\partial x}+\mu \nabla^{2} u+\rho X=\rho \frac{\partial^{2} u}{\partial t^{2}} \\
(\lambda+\mu) \frac{\partial \Delta}{\partial y}+\mu \nabla^{2} v+\rho Y=\rho \frac{\partial v}{\partial t^{2}} \\
(\lambda+\mu) \frac{\partial \Delta}{\partial z}+\mu \nabla^{2} v+\rho Z=\rho \frac{\partial^{2} w}{\partial t^{2}}
\end{array}
\end{align*}
$$

The internal motions specified by these equa-
tions are vibratory since they arise from small clastic displacements within the medium. The furnishes complete evidence of experimentally of Hooke's law, of our assumption that the displacements are small, and of the validity of the analysis.
Applications.-We shall now solve a few typical problems in order to show the use of fortunately give rise to Most problems unpartunat differential equations. the difficult methods of integration are fully discussed in the works by Love and Riemann-Weber cited at the end of this article.
(1) A cylinder of density ρ and length l s suspended from one end and hangs vertically.
below the upper vertical with the origin stress at any point, is due to the weight of the material below that point, $Y_{y}=$ goy; the five remaining stresses are zero. There are no surface forces except at the upper end where
the entire weight of the cylinder is uniformly distributed over the supporting surface there the internal and external stresses balance. Hence
$E e_{y y}=g \rho y, e_{x x}=e_{z z}=\sigma e_{y y}, e_{x y}=e_{y z}=e_{z x}=0$ Now

$$
\begin{align*}
& e_{y y}=\frac{\partial v}{\partial y}=\frac{g \rho y}{E} \\
& v=\frac{g \rho y^{2}}{2 E}+v_{0} \tag{a}
\end{align*}
$$

where v_{0} is a function of x and z because the derivative is partial. Since there is no
shear, v must satisfy shear, v must satisfy

$$
e_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}=0, e_{y z}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}=0
$$

whence $\quad \frac{\partial u}{\partial y}=-\frac{\partial v_{0}}{\partial x}, \frac{\partial w}{\partial y}=-\frac{\partial v_{0}}{\partial z}$
(b)

By differentiation

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v_{0}}{\partial x^{2}}, \quad \frac{\partial^{2} w}{\partial y \partial z}=-\frac{\partial^{2} v}{\partial z^{2}} \\
& \text { But } \tag{c}\\
& \frac{\partial u}{\partial x}=\frac{\partial w}{\partial z}=-\frac{\sigma g \rho y}{E}
\end{align*}
$$

so that $\quad \frac{\partial v_{0}}{\partial x^{2}}=\frac{\partial^{2} v_{0}}{\partial z^{2}}=\frac{\sigma g \rho}{E}$
The value

$$
\begin{equation*}
v_{0}=\frac{\sigma g \rho}{2 E}\left(x^{2}+z^{2}\right)+a x+c z+k \tag{d}
\end{equation*}
$$

will satisfy equation (c) ; substitution in (a) gives

$$
v=\frac{g p}{2 E}\left(y^{2}+\sigma x^{2}+\sigma z^{2}\right)+a x+c z+k
$$

At the upper end
$y=0$ and $k=-\frac{g \rho \rho^{2}}{2 E}$ when $x=0, y=l, z=0$
The solution must be correct when the rod is rigid; in this case $E=\infty$ and $v=0$ so that $a=0, c=0$.
Hence $\quad v=\frac{g \rho}{2 E}\left(y^{2}-l^{2}+\sigma x^{2}+\sigma z^{2}\right)$
The formula obtained in books on the strength
of materials is $\quad v=\frac{g \rho}{2 E}\left(y^{2}-l^{2}\right)$
which is therefore correct only along the axis; it is, however, approximately true at any point the radius. Integrati
posing as above that $E=\infty$, we get

$$
u=-\frac{\sigma g \rho x y}{E}, \quad w=-\frac{\sigma g \rho z y}{E}
$$

if the upper end is free to contract.
(2) A straight uniform rod is twisted by Saint-Vent was
eral problem in his great me to solve the gen1855, although Cous great memoir on torsion, succeeded in finding the twisting moment offered by a circular cylinder. The following
is a brief sketch of Saint-V enant's method,
its axis along Z. Since there is no shear on the mantle, $X_{y}=0$ and $e_{x y}=0$

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

As there are no external normal forces the normal strains vanish and

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{\partial w}{\partial z}=0
$$

Equations (5) with $X_{x}-Y_{y}=Z_{z}=X_{y}=0$ become

$$
\frac{\partial X_{z}}{\partial z}=\frac{\partial Z_{y}}{\partial z}=0
$$

Where $X_{z}=\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right), Z_{y}=\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right) \ldots$ (d) By cquation (b) w does not contain z and by c) and $(d) u$ and v are linear functions of z.
the above equations will be satisfied only by

$$
u=-\tau y z, y=\tau x z, w=\tau \phi
$$

(e)
where ϕ is a function of x, y. The values of u and v show that since $u^{2}+v^{2}=\tau^{2}\left(x^{2}+y^{2}\right) z^{2}$ and the cross-section is (1) normal to the radius eross-section is (1) normal to the radius vector; (2) proportional to the radius vector; section from the origin. Therefore radial straight lines remain straight and of constant length and the boundary of any section is not istorted in transverse planes. If ϕ is not zero these lines will be warped in the direction ing function τ is the ande of twist
g function. τ is the angle of twist.
Equations (e) substituted in (d) give

$$
X_{z}=\mu \tau\left(\frac{\partial \phi}{\partial x}-y\right), Y_{z}=\mu \tau\left(\frac{\partial \phi}{\partial y}+x\right)
$$

As there is no shear on the mantle the resultant of X_{z} and Y_{z} must be normal to the boundary of
any section, i.e. $\quad \frac{V_{z}}{X_{z}}=\frac{\partial y}{\partial x}$
\because from (f)

$$
\begin{equation*}
\left(\frac{\partial \phi}{\partial y}+x\right) d x=\left(\frac{\partial \phi}{\partial x}-y\right) d y \tag{g}
\end{equation*}
$$

This is the differential equation of the boundary The of any section. moments of the shear forces on any section, i.e.,
$M=\int\left(x Y_{z}-y X_{z}\right) d x d y$

$$
\begin{equation*}
=\mu \tau \int\left(x^{2}+y^{2}+x \frac{\partial \phi}{\partial y}-y \frac{\partial \phi}{\partial x}\right) d x d y . \tag{h}
\end{equation*}
$$

The angle of twist, found by differentiating (f and eliminating $\frac{\partial^{2} \phi}{\partial x d y}$, is

$$
\begin{equation*}
T=\frac{\mu}{2}\left(\frac{\partial Y_{i}}{\partial x}-\frac{\partial X_{z}}{\partial y}\right) \tag{i}
\end{equation*}
$$

The differential equation of a circle is $x d x=$ -ydy; equation (g) reduces to this when ϕ is
constant. As there is no lengthening of the cylinder there is no translation of a cross-section and $\phi=0$. Now if $\phi=a x+b y(g)$ is the equation of a circle, but as the centre of the circle is at the axis of the cylincer it wil for a circular section $\phi=0$ and cross-sections remain plane. In this case equation (h) gives the well-known engineers' formula.
Equation (g) will represent the ellipse

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \phi=\frac{b^{2}-a^{2}}{b^{2}+a^{2}} x y
\end{aligned}
$$

provided

$$
=\overline{b^{2}+a^{2}} x y
$$

Since $w=\tau \phi$, the contour lines found by giv ing ϕ a series of constant values are equilater the ellipse the displacements will be negative and in the other quadrauts positive. Equation (h) gives

$$
M=\mu \tau \pi \frac{a^{3} b^{3}}{a^{2}+b^{2}}
$$

(3) Vibrations in an infinite elastic medum. If there are no external forces, $X=Y=Z=0$ Let all quantities in the $X Y$ plane be constant so that the same state exists throughout tha plane; then the x and y derivatives in equ

$$
\Delta=\frac{\partial w}{\partial z}, \frac{\partial \Delta}{\partial z}=\frac{\partial^{2} w}{\partial z^{2}}
$$

Likewis

The equations of motion thus reduce to

$$
\begin{align*}
& \rho \frac{\partial^{2} u}{\partial t^{2}}=\mu \frac{\partial^{2} u}{\partial z^{2}} \\
& \rho \frac{\partial^{2} v}{\partial t^{2}}=\mu \frac{\partial v^{2}}{\partial z^{2}} \tag{a}\\
& \rho \frac{\partial^{2} w}{\partial t^{2}}=(\lambda+2 \mu)
\end{align*}
$$

Equations (a) are satisfied as substion verify, by any function of $z \pm \sqrt{\frac{\mu}{\rho}} t$, This function must be periodic for otherwise the displacement would become infinite in course o time or would remain as a permanent set. Experiment contradicts both of these supposi(b) is satisfied by a similar function. If at a point $z+d z$ at a time $t+d t$ the displacement is in the same phase and of the same magnitude as it was at z at a time t
$z+d z+c(t+d t)=z+c$
where $c^{2}=\frac{\mu}{\rho}$ for (a) and $c^{2}=\frac{\lambda}{\rho}+2 \mu$
$\frac{d z}{d t}= \pm c$.
which is the velocity of propagation of the dis turbance: not the velocity of a material point but of a state of motion. Equation (b) defines the longitudinal, and (a) the transverse wave an infinite elastic medium.
Bibliography.- Love, 'The Mathematical Theory of Elasticity' (2d ed., Cambridge 1906); Theory of Elasticity) (Cambridge 1886) ; Föppel, 'Technische Meckanik' (Vols. III and V) ; Webster, 'The Dynamics of Particles and of Rigid, Elastic and Fluid Bodies' (Leipzig ential Gleichungen' (Vol. II, Brunswick 1901). R. F. Deimel

Assistant Professor of Mechanics, Stevens In
stitute of Technology
ELASTIN, an insoluble proteid substance, of which the elastic fibres of connective tissue are composed. It may be conveniently prepared ether and alcohol (to remove the fats) and afterward by prolonged boiling, successively with water, strong acetic acid and concentrated caustic soda and subsequent successive treat ment with weak acetic acid, water, hydrochloric acid and water. When so prepared, clastin is known solvent. It dissolves with decompositio in concentrated sulphuric acid, however, yield ng leucin, but not tyrosin. Elastin is digeste both by pepsin and by trypsin and it contain o sulphur. Its percentage composition, accord $16.19 ; O=20.89$.

LAtEA. Sce Citiferon.

ELATER, èlā-tér, a genus of beetles in the Elaterida. They are familiarly known as "click eetles" or "skip-jacks," from their habit jerking themselves with a slight noise into th air when they land or are placed on their backs. The body is arched upward and suddenly which lifts the animal from the ground. The legs are too short for the ordinary method o ighting the body. The larve are only to familiar as "wireworms." Some tropical forms are phosphorescent. See Fire-flies
ELATERID \mathbb{E}, èt-a-tĕr $\mathfrak{1}$-dề, a family of Coleoptera (click-bectles), tribe Pentamera, sub-tribe Sternoxia. It contains the insects placed by Linnxus in his great genus Elater, flies; Elater.
ELATERIN, a neutral chemical substance having the formula $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{5}$ and obtained by alcoholic extraction of the greenish precipitate thrown down by the juice of the slightly unripe squirting cucumber, Ecballium elaterium It crystallizes in hexagonal tablets which melt at $400^{\circ} \mathrm{F}$. and are insoluble in water, but Elaterin has a hitter taste and is a powerful purgative, the dose being from the 40 th to the

10th of a grain. A crimson color, changing 10
a scarlet, is produced when sulphuric acid is a scarlet, is produced when sulphuric acid i this reaction serving as a test for its presence

ELATERITE, an elastic, asphalt-like miridark brown with a specific oravity ranin from 0.9 to 1.2 . It occurs abundantly in Derby shire, England, and a mineral closely allied to t has been found at Woodbury, Conn.
ELATERIUM, êl-a-tè'rī-um, a mixture of principles formed as a precipitate, occurring spontaneously in the juice of the fruit of the
wild or squirting cucumber, rium, the active principle of which is claterin The squirting cucumber is a small perennial, of the cucumber family, indigenous in Persia India and the warmer Oriental countries, and has been extensively cultivated even as far north as England. The fruit itself is $1 / 2$ to 3 inches long by 1-3 to 3-4 of an inch, oblong and yellowish green in color. It is firm externally. As the fruit ripens fermentation takes place in the interior with the formation of gas. This accumulates in sufficient quantities to exert considerable pressure, bursting the frui tance. In this manner the fruit is distributed Elaterium has been used for centuries as a cathartic, the phenomena of the squirting secds having suggested its function. Elaterin itself is a ncutral principle of the formula $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{8}$ without odor and with a slightly crystals bitter taste. Elaterin is one of the most active of all the hydragogue cathartics. It operates with violence even in minute doses. It is par ticularly of service in conditions in which there
is general dropsy and no inflammatory condiis general dropsy and no inflammatory condidoses of from $1-40$ to $1-10$ of a grain.

ELBA Italy (I at Iva, Gr Aithaid)
island in the Mediterranean Sea, off the soast of Tuscany, and with several much smaller isles, lying at the mouth of the Gulf of Piom bino. The island of Elba is 18 miles from east to west, with a width varying from $21 / 2$ to 12 milets of the island yield large quantities of superior iron, copper, tin, lead, marble lodestones and alum, besides wines and fruits. Tunny and sardinc fishing and the extraction of sea salt are other important industries. On the first abdication of Napoleon in 1814, Elba was assigned to him as a residence and empire
Here he accordingly took up his residence, in the month of May; and on 26 Feb . 1815, he secretly left the island, and, landing in France began that brief and final career, known in history as the "Hundred Days." During his sojourn here Napoleon lived at the Villa San
Martino in the town of Porto Ferrajo. It still Mands. He caused a road to be constructed between Porto Longone and Porto Ferrajo Elba has had a chequered history; it belonged successively to Pisa, Genoa, Sora and Piombino. After 1815 it was given back to Tuscany,
and in 1850 with the latter it became part of and in 1850, with the latter it became part o
the Kingdom of Italy. Consult Fatichi, 'Isola d'Elba' (Florence 1885). Elba was a place of celebrity in the time of the Romans, and famed
then, as now, for its yield of iron. It has a Mining, healthful climate and the soil is fertile. nhabitants to the exclusion of agriculture. Two ood ports are Porto Ferrajo and Porto Lonre, both well fortified. Pop. 25,480.
the ELBASSAN, el-bas'sän, Albania, town on stands scumbi, 35 miles east of its mouth. It hearby in the centre of a fertile plain and There are a number of hot sulphur springs Copper. Pop. about 15,000
ELBE, èl'bě (ancient Albis; Bohemian in Eure a river of Germany, one of the largest the Europe. It rises on the southwest slopes of Resengebirge Spe or Snowcap, one of the Fromgebirge, between Bohemia and Silesia ohemia fort $1 t$ hows ncarly due south in the west, and after about 40 miles takes a seneral north-northwest direction till it emptie the North Sea, intersecting Saxony, onsiderable portion of Prussia, and in th on its part of its course separating Holstein ength, including windings, is upward of The niles. The principal affluents arc on the right he Iser, Schwarz-Elster and Havel; on the eft, the Alder, Moldau, Eger, Mulda and Saaie. In the lower part of its course the river is divided by five large and seven smal slands into several arms, which unite again cpth is 10 fcet, average breadth 900 feet s more or less navigable for about 470 miles, at its estuary at Cuxhaven is much encumcred with sandbanks. It is well stocked with Elbe was 1 July 1870, the navigation of the Melnik in Bas declared free from Hamburg to sstem of canal navigation in connection with Elbe, Hamburg, for instance, being in this way connected with Berlin
ELBERFELD, èl'bèr-fēld, Germany, town in the Prussian Rhine province, 15 miles eas oth sides of, in the beautiful valley, and on hills. It has the Wupper, enclosed by lofty portance. Its prosperity has been acquired nostly within the last century and is due to the otton manufacture, of which it is the central irregty in Rhenish Prussia. The old town was rregularly built with a maze of narrow streets, with buildings of the latest style bordering hem; the principal of these are the courthouse and the Rathaus. The city has some fine public monuments. It is an important industrial centre, especially dealing in textiles, their manulacture and dyeing. In addition to cotton, silks, furniens, etc., it manufactures chemicals, leather paper, machinery and glass. It is also a grea Commercial centre and has many foreign con schates. It contains a gymnasium, polytechnic school, school of industrial drawing, an institute railroads serve the city and in addition there are electric roads to nearby centres. During the Middle Ages the town grew around Elbernan Castle and hecame a city in 1610 . Silk toward the close of the 181 h century and there-
after Elberfeld grew rapidly. It was early united to Prussia It has a unique poor-relie system, which has been copied in many parts of the world. Pop. (1919) 157,218. Consult
Schnell, 'Geschichte der Stadt Elberfeld) (Elber Schnell, 'Geschichte der Stadt Elberfeld' (Elber-
feld 1900): A. Shadwell, 'Industrial Efficiency' feld 1900): A. Shadwell, 'Industrial Efficiency'
(London 1906); Jorde, 'Führer durch Elberfeld (London 1906); Jorde, '(Führer durch Elb
und seine Umgebung'
(Elberfeld 1902).
ELBERFELD SYSTEM, a system of poor-relief which originated in the appoint cations for aid, in the manufacturing town o Elberfeld, Prussia. The city was subsequently divided into districts, the number of visitors was increased and the operations developed,
until by 1852 what has become known universally as the Elberfeld System was adopted. It main features are the division of the city into 26 districts subdivided into 364 precincts, each precinct being administered by an almoner who Investigates each application, in case of emer gency provides immediate assistance and as long month. Money relief is granted fortnightly according to a fixed schedule, any earnings in the meantime heing deducted; when needed, working implements are provided. A meeting of the almoners under the presidency of an overseer takes place every fortnight to discuss cases and being laid the next day before the directors who are chosen from four councilmen and four citizens with the mayor as chairman ex officio. The directors superintend and advise on the whole city's work. The positions of almoners, overseers and directors are of a purely honorary character. The advantages of the system poor have been strongly apparent, the ratio of persons assisted in 1889 being 7 per 1,000 as against 17 per 1,000 in 1855. See also

ELBERON, N. J., sea-coast summer resort the Monmouth County, on the Pennsylvania and the Central Railroad of New Jersey. Pop. (q.v.) was taken after he was shot by Guiteau, 6 Sept. 1881, and died here 19 Sept.

ELBERTON, Ga., city and county-seat of Elberton County ; on the Southern and the Seaboard Air Line railroads; 90 miles northeast of Atlanta. It is in a cotton-growing section cultivating, shipping and manufacturing with the ton. It contains manufactories for cottonseedoil, cotton goods, compressing cotton, fertilizers, harness, carriage and wagon shops, ironworks, a number. The city contains a public library and owns the waterworks and electric-lighting plant. Pop. (1920) 6,475.

ELBEUF, ellbẻf, France, town in the department of Seine-Inférieure, 11 miles southsouthwest of Rouen, situated in a beautiful valley on the left hank of the Seine. It contains two great churches, Saint Stephen's and Saint John the Baptist's, both of which have
fine ornamental glass. In the town and also ine ornamental glass. In the town and also manufactories, mostly flannels, double-twilled cloth and waterproofed cloth and light woolens. There are schools for instruction in all the
branches of the local industry. Until the revo-
cation of the Edict of Nantes there werc upward of 60 cloth manufactories here, but the dislocation caused at that time was not remedied until 1790 , and the industry did not recover
. Pop. 18,290
ELBING, seaport town, in the province of West Prussia, on the Elbing, near its entrance of Dantzig. It is divided into the old and new towns, the former of which was once surrounded by turreted walls and gates, but these for the most part have heen removed. It has shipbuilding yards, which do a considerable manufactures include machinery, chicory, Its ber, flax and hemp yarn, woolen and cotton cloth leather, soap, tobacco and beer as well as trade in agricultural products. There are also oi manufactories, iron foundries, dye and print works and the famous Schichau shipbuilding
works for the construction of war vessels. works for the construction of war vessels. Ell)steamboat communication with Dantzig and Königsberg. By means of a canal it has connection with the Vistula, and the harbor was improved by the opening in 1884 of a mole 3,500 13th century by colonists who were natives Bremen alid Lubeck. The town natives of around the fortress of the Teutonic Knights. It hecame a Hanse town but Poland took it in 1454. During the religious wars the place was in turmoil and also suffered much during the 1772 it was annexed to Prussia. For many decades it declined but within the present generation has once more become a thriving centre
Pop. 58,636 .

ELBOW. Sce Arm.

ELBOW JOINT. See Arm.

ELBOW PIECES, a mediæval armor, the plates used to cover the junction of the pieces which covered the upper and lower half of the arm. These plates were mostly disc-formed, cup-formed, or articulated. Consult Ashdown,
Arms and Armor' (Ncw York 1909)
ELBRUZ, èlbrooz, or ELBURZ, (1) A miles along the sotuthern border of the Caspian Sea. It has a number of subordinate parallel ridges, enclosing extensive and fertile valleys; and unlike most Persian ranges, it has numerous Drominent spurs, the highest peak bcing Mount Jiver is the Kizil Uzen, which flows into the river is the Kizil Uzen, which flows into the
Caspian Sea. The average altitude is 5,000 feet. (2) Elbruz is also the name of the loftest summit of the Caucasus.
ELCESAITES, el-sē'sa-īls, or ELKESAITES, a sect founded in the $2 d$ century, during the reign of Trajan. They derived their supposed to have been inspired by an angel Their system seems to have been a commingling of Oriental philosophy with Sudaism and early Christianity, prolahly put into practice with he idea of satisfying the want of those persons seriously troubled by the religious chaos of the day catised hy the mighty conflict of greater
creeds. The followers of Elkesai or Elxai are often confoumded with Ebionites (q.v.). The
best account we have of the Elcesaites is given by Hippolytus in his chief work, 'Philosophu-
ELCHE, êl'chā, Spain, town of the province of Alicante, 13 miles southwest of the province That name, on the railway joining Alicante and Murcia. The surrounding groves of palm trees Supplies all Spain with palm leaves for Palm
Sunday, and the dates are exported in large
ciuantitics. There is also a cutantities. There is also a trade in pomegran-
ates. Brandy, oil, woolens, shoes of esparto brass, woolens, shoes and sandals soap and leather are the principal manufactures. The tow'n has a fine, lofty-domed church, a bishop's palace and a hospital. Elche is of Koman origin and was early a place of importEnce. In the middle of August every year drama- La Festa ó Misterio de Elche) some respects it resembles the 'Passion Play,' at Oherammergau and deals with the Assumption of the Virgin Mary. For the festival cona Elche, l'Espagne) (in Fetes de l'Assomption CXCII, p 156, 1898). Elche has a population of about 30,000 .
ELCHINGEN, êl'rīng-ěn, Bavaria, village on the Danulbe, nine miles northeast of Ulm, which gave the title of Duke of Elchingen to 14 Oct. 1805 , In here defeated the Austrians 14 Oct. 1805 . In the neighborhood are the founded in 1128. There are two villages, Ober and Unter Elchingen, the former on the same hill with the abbey, the latter to the northeast of it. The hill on which the abbey stood was in Ulm; while N, who had his headquarters in Ulm; while Ney, on the right bank of the the passage of the river, and took Elchingen by storm.
ELDER, John, Scottish engineer: b. Glasgow 1824 ; d. 1869 . Educated in Glasgow, he
was first cmployed as director of the drawing was first cmployed as director of the drawing a member of the great ship-huilding firm later was known after 1860 as Randolph, Elder \& Company, cmploying more than 4,000 men. His lame rests upon his invention of the compound or combined high and low pressure enWillian per cent of fue
ELDER, William Henry, American Roman 1819; d. 31 Oct. 1904 . When 12, 22 March he entered Mount Saint Mary's College, Maryland, and at 18 was graduated and sent to Rome, where he was ordained priest 29 March 1846. Returning to America, he accepted the profess-
orship of theology at Mount Saint Mary's, orship of theology at Mount Saint Mary's, beconsecrated bishop of Natchez, 3 May 1857 On one occasion, when the Federal authorities who had taken possession of the city, bade Bishop Elder offer certain public prayers and command his clergy to do likewise, he stoutly refused, declaring that in thus ordering him
they were usurping the right of religious liberty, and rather than comply he accepted imprisonment; when the casc was reported at Washington he was promptly released. In 1878 Natchez was visited by an epidemic of plague, which carried him to the point of death.

In 1880 he left Natchez to assume the duties nati, Ohio, who At once retired, leaving Bishop Elder to settle the perplexing difficulties that disturbed the diocese. Unon the death of Archtishop Purcell, in 1883, Bishop Elder succeeded to the archbishopric of Cincinnati.
ELDER, Sambucus, a genus of shrubs or small trees and a few perennial herbs of the 20 natural order Caprifoliacea. There are about opposite distributed species characterized by usually in compound cymes, and black, red, white or green, juicy fruits (berries or drupes). Many of the species are used in ornamental planting, since they are readily propagated by root and stem cuttings, succeed well upon nearly ail soils, are of rapid growth, graceful form,
and are attractive both in flower and fruit. The best-known species in America is S. canadensis, the common or sweet elder, which is frequently seen in fence-rows, along roadsides, and on the margins of woods throughout southern Canada and the greater part of the United States. It ant fragrant flowers in midsummer and black berries in early antumn. These fruits are used where they can be obtained plentifully for making pies and elderberry wine. Scveral horticultural varieties have heen introduced for their
golden or gith or variegated foliage, and one variety
wruits was introduced in 1890 . The flowers are used for making a wine, a perfume, and a "water" used in confectionery. Economically this species ranks as a minor fruit. Like some other members of its genus, it has also been used in medicinc, but is rapidly giving place to other drugs. Prohably S. nigra, the portance. It is much larger, often attaining a height of more than 20 feet. The yellow, hard, tough wood is readily polished and is used for making skewers, fishing-rods, needles for mak-
ing fish-nets, and as a substitute for boxwood. It is also employed for the same horticultural It is also employed for the same horticultural
and economic purposes as the preceding species, and has numerous fancy-leaved varieties. Other well-known species are the scarlet elder (S. racemosa), an Old-World species, and the red-
berricd elder (S. pubens), a native of North America, considered by some hotanists to be plants which are popularly known as elder, as box elder (Negundo accroides), wild elder (Aralia hispida), also known as bristly sarsaparilla, and marsh-elder (Iva frutescens)
ELDERS, in certain churches, a body of men elected by the communicants from among their number to aid the minister in portions of his work. With the minister, they consti-
tute the executive hody of the congregation. Among the Jews the elders were the rulers or magistrates of the people. The instinct of mankind considers the old fitter than the young to rulle, and at first probably every "elder") was designation ultimatcly came to be used more of office than of age. "The elders of the congregation," or simply "the elders," are mentioned as early as Lev. iv, 15 . Seventy of them xi, 16). They are comhined with the officers (Deut. xix, 12), with the princes (Ezra x, 8),
with the priests (Lam. i, 19). In the New Tesrency to traditions (Matt. xv, 2), and taken a chief part in compassing the death of Jesus (Matt. xxvi, 59; xxvil, 20), etc. There were elders, also, of single towns, as of Succoth (Judges viii, 14), and of Jezrcel (2 Kings x, 1) form of lay assistant well adapted to their systems of church government. Where the Church and State have some interrelation, the election of such officers is regulated by civil law. In the Baptist churches, the pastors were calle sively to the missionaries later on. In the Presbyterian Church, the ruling elders have the function of assisting in the government of the Church, under the supervision of the Presbytery. In the Dutch and German Reformed churches, the elders and deacoling assist the Methodist Episcopal Church has a similar office, but the ruling elder is an ordained clergy man appointed by the bishop. The Shakers have four elders, two male and two female. The elders in the Mormon Church are the enty, the patriarchs and the high priest are included in their number, and it is their duty to preach, ordain other priests and deacons, to lead meetings, baptize and bless.

ELDON, John Scott, 1st Earl, of, English jurist and Lord Chancellor: b. Newcastle, 4
Jume 1751 ; d. London, 13 Tan. 1838 . He was June 1751 ; d. London, 13 Jan. 1838 . He was
educated at Oxford, at University College, receiving his M.A. in 1773 . In 1771 he won an English prize by his essay on 'The Advantages and Disadvantages of Travelling into Foreign orders, but gave up the idea in order to marry Elizabeth Surtees, the daughter of a wealthy banker of Newcastle-upon-Tyne (1772). Scott was readmitted to the university and entered the Middle To and study of law and supported himself hy tutor-
ing. His success in the law was rapid. He became a member of the bar in 1776 , a bencher in 1783 , and in the same ycar was made one of the king's counsels. His sound knowledge of the law atoned for his ineffective oratory and he entered Parliament in 1783, where he soon thinker. He supported the Pitt ministry and in 1788 was knighted. In the same year, he was made solicitor-general. On Thurlow's dismissal from the new Parliament he offered his resignation to Pitt, but was induced to return, ald as Attorncy-Gencral. His association with the rigorous administration made him exceedingly inpopular. His measures in the state rials, his strict interpretations of the treason laws and the vigorous laws he assisted in promulgating heightened the effect of his severity. In 1799 he was chosen to succeed Sir James Pleas, and also became sergeant-at-law and a member of the privy council and board of trade. He was also raised to the peerage as Baron Eldon of Eldon, in the county of Durham, where he had bought an estate. He hecame of England. Throughout the king's illness be
administered affairs with great surety and force
After the death of Pitt, he was forced to with draw, but was returned in 1807 in the Port foremost member, where he soon became the his able energies to the subjuge bent al Napoleon. He was the king's strongest ad herent and served him with all his powers. In 1811, when the king's lunacy became chronic Eldon immediately undertook to gain the confidence of the prince. In spite of attacks by his encmics, he succeeded and by assisting in entrenched the Tory policies. He arranged for the marriage of the Princess Charlotte with Prince Leopold of Saxe-Coburg. His resistance to the queen's plans rendered him again unpopular with the mass of people, but gained him the loyalty of the Prince, who just before the titles of Viscount Encombe and Earl of Eldon. However, this marked the highest point of his carecr. After the death of the queen, Canning's party came into power and Eldon take an interest in politics and his opinions were highly esteemed by his fellow Tories. He survived to take oatlis of fealty to Queen Victoria.
Eldon was an able jurist and administrator, of fascinating personality and an agrecable comstrict letters of the law, his sophistry and his insistence on hair-splitting definitions and distinctions. His decisions were never hasty nor
ill-founded. Consult Townsend, 'Lives of ill-founded. Consult Townsend, 'Lives of
Twelve Eminent Judges' (London 1846); Twelve Eminent Judges) (Life of Lord-Chancellor Eldon) (ib. 1844); Surtces, 'Sketch of the Lives of Lords Stowell and Eldon' (1846)
of the Chancellors' (1874).

ELDORA, Iowa, city, county-seat of Hardin County, near the Iowa River, on the Iowa Central, and the Chicago and Northwestern railroads; 122 miles west of Dubuque. The city
is the seat of the State Industrial School for Boys, has a Carnegie library and a public Agriculture and stock-raising are its chief interests, hut fire and brick clay and coal are found nearby. It has manufactures of brick, tiles, flour, foundry products and lumber. The waterworks are the property of the municipal-
ity. Pop. (1920) 3,189 .
y. Pop. (1920) 3,189.
elodorado, Ill., city in Salinc County, Cleveland, Cincinnati, Chicago and Saint Louis the Illinois Central, and the Louisville and Nashville railroads. It has coal mines, flou mills, bottling works, a machine shop and medicines, candy, cigars and brick and tile. mop. (1920) 5,004 .
ELDORADO (from the Spanish El Do rado, the Gilded Man), the region of undis covered treasure in South America. In the article Dabaiba we have traced the famous Eldorado myth back to those stories which, at the beginning of the 16 th century, were current among the Indians of Darien about 'a
temple lined with gold,' and have shown why the Spanish explorers failed to recognize in distant Cuzco, with its temple of the sun-god, the real basis of such accounts. The name Eldo-
rado, however, with which the ever-receding or has been stamped the subject of all those stories, a place but of a person; and the name-giving addition to the myth is localized very precisely in the table-land of Bogotà, as follows: Lake Guatavita (north of the present capital of Cowas regarded by Indian miles above sea-level) was regarded by Indian tribes dwelling in that
neighborhood in the 15 th century as a holy place, and pilgrims who resorted to it often cast their offerings of gold and emeralds into its waters. Whenever a new chief of Guatavitá was chosen. nobles and priests of his tribe bore him to the low) has written (upon a barrow hung with dises of gold. His naked body was anointed with resinous gums and covered all over with gold-dust.' The chicf plunged into the lake; spectators made the usual.offerings of gold and jewels; and, on the conclusion of this ceremony went down to dance and feast in Guatavita village. The Chibchas (q.v.) conquered Guatavita about the end of the 15 th century, and under their general government this extraordinary local custom had been discontinued for a number of years before the first Spanish settlethere was no longer an independent Guatavit chief to signify his acceptance of the local religious beliefs in a fashion so dramatic; but native folk-lore continued for a century, at Ieasi, to make much of this glittering symbolic
figure and the sacred lake. In 1520 , Dalfinger figure and the sacred lake. In 1529, Dalfinger, set out from his little capital of Coro and probably reached the edge of the high plain of Bogota by way of the Magdalena River; there he resistance of the Indians obliged him to urn back. Four years later the report of the vast treasure secured by the conquerors of valued at $3,933,000$ ducats of gold and 672,670 ducats of silver) appeared to justify ventures undertaken in reliance upon the wildest Eldo rado tales. It is also true that a fresh outbreal of the gold-fever affected the Spanish colonists everywhere in America, more or less, but and that leaders of those colonies, in order to retain their men, were obliged to make fresh efforts to find treasure. In Santa Marta, an expedition was organized to ascend the Magvon Speyer organized a campaign for, Gcorg ploration of the Meta plain, far inland. The former expedition under command of Quesada in 1537 reached the old home of the gilded chief; and although Guatavita cither hid its gold or was actually poor (40 years having passed since it had ceased to be a place of pilborhood, principally at the villages of Tunjia and Iraca, was officially valued at 246,676 pesos in gold, or about $\$ 1,200,000$, besides $1,815 \mathrm{~cm}-$ eralds. Von Speyer went astray among the tributaries of the upper Orinoco, but his lieutenant, the German, Nicolaus Federmann, leading a company from Coro, reached the Bogota high-
lands in time to mect there not only but the conqueror of Ecuador Benalcazar, who came up from the south, having also heard the
story of the Gilded Man. Each of these leaders and they proceeded together to Spain, to submit their claims to the Spanish court, leaving their forces to hold the Eldorado which had been despoiled by the Chibchas, ransacked by themSelves.
re, therefore, unable to agree with the says thished American archrologist when he ver-excited imagination of the white men, the vision of the dorado appeared, like a mirage, enticing, decciving, and leading men to destrucon on the banks of the Orinoco and the Amathat Hart "Gilded Man" had been located, and cxplorations were planned to discover rich Countries which were Eldorados only in the modern sense of the word; and we find that the word was used with nearly its present significaceived the time when the Amazon River received its name. The legend is especially noteVenezuelan settlement under the direction of he German Welsers. Having reccived the provmine from the Spanish crown practically as a
mortgage security for money loaned, Welser mortgage security for money loaned, Welser and his associates tried to recover the advances they had made from the revenues of the disbe less profitable than they had expected, they engaged in one Eldorado expedition after another. Dalfinger, Federmann, and Von Speyer have been mentioncd; before the utter ruin and failure of the colony at Coro, Von Hutten's expedition penetrated to Omagua, a region near
the Amazon, west of Rio Negro and the Cassiquiare. The Spanish conquerors of Peru and Ecuador werc led by the search for further tores of wealth to make the most important geographical discoveries east of the Andes. the fano Pizarro set out from Quito to explore the forests (1539-42), hoping to find spices people went around adorned with gold." His ieutenant, Francisco de Orcllana, with 53 men in a bark, becoming separated from the main ody of the expedition, went on down the Amazon to its mouth. The Dominican Cartook part in the fighting against the Spaniards, and that a captive Indian spoke of a tribe of Amazons rich in gold living north of the river. Compare Prescott's 'Conquest of Peru,' II,
$164-65$, note). Wandering Indians brought to Perıs about the middle of the 16 th century reports of countries rich in gold and silver, use of the Fidorado fever thus excited to rid Peru of a large number of disorderly persons. with women, set out from Santa Cruz de Capawith women, set out from Santa Cruz de Capacoba, proceeding in boats, canoes and even upon the leadership of Pedro de Ursua. In January 1561, Ursua was murdered by conspirators and eventually Aguirre, chief conspirator, transpiratical the remnant of expedition into a piratical band; captured the island of Margarita and invaded Venezuela. At least four
Eldorado expeditions proceeded from the north coast toward the interior before the end of the century, in addition to that one which Sir Wal-
ter Raleigh led in 1595. Consult Bandelicr A. F. A., 'The Gilded Man' (New York New 'World' (New York 1868 and 1896).

Marrion Wilcox
ELDORADO SPRINGS, Mo., city in Cedar County, 100 miles southeast of Kansas City, on the Missouri, Kansas and Texas Rail road. The principal industry is the bottling of stock raising are carried on also. The waterworks are owned by the municipality. Pop 2,503.

ELDRIDGE, Shaler W., American abolitionist: b. West Springfield, Mass., 1817; d. Lawrence, Kan., 17 Jan. 1899. He removed to Kansas in 1855, and became proprietor of the ized as the headquarters of Freesoilers. In 1856 Eldridge opened the Frec-State Hotel in Lawrence, but soon afterward a pro-slavery court issued a writ of indictment, declaring the place a nuisance, and it was destroyed by a posse led ry excitement among the Freesoil men, who commissioned Eldridge to visit Washington with a petition in their behalf and also o sit in the convention that nominated Fremont. Later he became a member of the National Republican Committee and agent to last authority he led a large number of settlers o Kansas. During one of these trips, with a party of 350 men, he was taken prisoner by United States troops. Subsequently he recruited a party of Freesoilers, who retook the arms from the United States officers at Lecompon. He was instrumental in giving much aid to the Free-State cause by smuggling large Kansas Territory. During the Civil War he served in the Union Army.
ELD'S DEER, a deer (Cervus eldi) native o the Malayan region. It is about four feet tall, ives in swampy places and is often found in arge herds. Its habits are like those of the ndian swamp-deer. The antlers are peculiar in head and that the upright part has numerous points.
ELEANOR OF AQUITAINE, queen of France and afterward of England: S. 122; d. Fontevrault, France, 1 April 1204. She was the Duke of Guienne or Aquitaine, and was married 2 Aug. 1137, to Prince Louis, who in the same ycar succeeded to the throne of France as Louis VII. She was gay, frivolous, a lover of poetry and art, and could not sympathize with the ascetic spirit of her husband. She
accompanied him on the second crusade to accompanied him on the second crusade to
the Holy Land in 1147 . At that time he complained of her preference for other men, and on their return from Asia they were divorced 18 March 1152. A short time afterward she bestowed her hand upon Henry Plantagenet, the future Henry II of England. This alliance, which made Henry master of Eleanor's vast protracted wars between France and England. She hore him many children, but his infidelities and neglect changed her love into hatred. She
incited her sons Geoffrey and Richard Cour and has a bitter aromatic taste. Elecampanc is de Lion to rebel against their father, was imuntil after Henry's death in 1189, when she was released by his successor, Richard I, who placed her at the head of the government on his departure for the Holy Land. She nego-
tiated his marriage with the daughter of the
king of Navarre, and went to Germany his ransom from captivity. She afterward retired to the abbey of Fontevrault and surviving Richard, lived to see him succeeded by one of her other sons, John Lackland, the signer of Magna Charta. She was a favorite personage with the troubadour poets of the day and apfrom that in which she is represented by French and Norman chroniclers. Consult Adams, 'History of England, 1066-1216' (London 1905).

ELEANOR CROSSES, memorials of

 Eleanor of Castile. She was the wife of Edward I of England, and d. Lincolnshire 1290 . Ficr body was taken to London by her sorrowment, terminating in a cross, at every spot where her funeral train had rested. These places were Lincoln, Grantham, Stamford, Geddington, Northampton, Stony Stratford, Woburn, Dunstable, Saint Albans, Waltham, East Cheap and Charing Cross, but the list varies crosses at Geddington and Waltham remain although considerably altered by restoration in the latter case. That at Charing Cross, detroyed in 1047, was replaced in 1863 by a new ne reproducing the original.ELEATICS, ē-lē-āt'̂̀ks, a Grcek sect, so called because founded at Elea, in Sicily, by who flourished 464 b.C.; Empedocles, 435 Zeno, and Melissus 428 b.c., were leading philosophers of this school. That which from the commencement distinguished the Eleatic school from the onic was its method, which in the one case was he observation of external nature, the Ionians endeavored to discover some elementary principle, as water, air, fire or a combination of lements, by the action of which the phenomena hey observed might be accounted for. The Elcans made the abstract idca of Bcing or God, as a whole, their starting-point; and their reasonings sometimes led them to deny the reality of external phenomena altogether. This was the result of the development which the rinciples of Xenophanes received from his folwers Parmenides and Zeno, the latter of whom enied the existence of variety in any form Xenopianes; Zeno. Consult Windelband History of Philosophy, Consult Windelband
ELECAMPANE, ěl-e-kăm-pån (Inula helenium), a plant of the sunflower family (Composita). The stem is threc or four feet high, thick, pubescent and branching above; the radical leaves are often two feet or more in plant is a native of Europe and Asia, naturalized in in the United States. It grows abundantly along roads and in waste places. The root is perennial
and has a bitter aromatic taste. Elecampanc is and the flowers are sometimes used to adulterate in medicine, but has fallen into disuse. It contains a number of active principles, the most important being a volatile oil, a camphor, inulin and helenin. By reason of the camphor and the oil the action of the drug is somewhat very much used in the Elecampane was once very much used in the treatment of bronchitis serves practically the same purpose as camomile ca, being a good diaphorctic.
ELECTION, in lare, the voluntary choice between two or more permissible lines of conduct. In equity the choice is between two or
more alternative rights or claims which wore plainly intended by the person who which were hem to be mutually exclusive. In criminal law t is the choice incumbent on the prosecution to procecd on one of a number of independent felonies of the same degree. In the law of whlls the widow's election is her choice whether
she will make her claim under her she will make her claim under her husband'r.
will or under the statute, which gives her a right to a specified part of her husband's estate. An clection may be explicit and announced or it may be implicit in the conduct of the person bound or entitled to elect. In neither case is the election binding unless made with a but if these facts are known, the election is
final.
ELECTION, in politics, the mode of deter mining the person who is to fill an office by the votcs of the qualificd electors. Alternative methods are selection by somcone already in authority or by lot. The electors may be the entire body of those of the citizcns of the
region concerned who fulfil certain very requirements, as is the case in the various State elections for governor or the election of senators and representatives, or may be some relatively small body of officials, as in the "in direct" election of senators by the State legisla tures, which was alone legal until 1913, when
the Scventeenth Amendment to the Constitution was ratified. In the case of the elected king of Poland and Hungary and of the Holy Roman emperor, the election was in the hands of a greater or smaller group. The clection of
the President of the United State nominally entrusted to a representative body men-the electoral college is now to all intents and purposes of the direct type, as by custom the electors are mere mouthpieces of the popular vote. The honesty and fairness of clections is secured by stringent laws and ballot. These are discussed under the head of ballot. Sce also Elections; Corrupt Practices Acts; Electoral Frauds and Safeguards Against; Vote, Voters, Voting.
Election is a very old political
election by acclamation political device. While nized means of determining the chicf in cectainsavage communities, it was in the city-states of Greece and in republican Rome that the ballot first became the basis of the government This right was organized civilized community. restricted class of free citizens, and was gener
ally exercised in an open assembly not unlike of Athens England town meeting - the Ecclesia period when the empire first made the comitia mere form and then abolished it altogether the reappearance of the assembly of the people as a custom of the northern barbarians, politics. It survived in a measure in the Church and it reappeared in a very limited form as the method of selecting the Holy Roman emperor. The first renascence of a genuinely popular election after the races of the north custom of settling disputes and electing thei chiffs in the council of the warriors, was in the form of the election of the officers of the uilds and of the free towns. (Sce article, Ele.ctions and cross-references thereunder) Consult Aristotle, 'Politics'; Freeman, 'Com parative Politics' (London 1873); Jones, (Read States' (New York 1912): Stanwood 'History (P the Presidency' (Boston 1912); Woolsey
olitical Science) (New York 1877).
ELECTION, in theology, the word (singuar) is applied to the act of God in selecting ome persons from the race of man to be re sanctified, and to receive other spiritual gift in this world, with eternal life in the next The Calvinistic doctrine makes this election take place by God's mere good pleasure, with ut any foreseen merit in the individuals chose The Arminian one considers that God choose the Gospel he foresees will accept the offer o The third chapter of the Westminster Confes ion, entitled "Of God's Eternal Decree," use nore decided language. The strongest adher churches this view are in the Presbyterian he harsher features of a tendency to softe Saptists hold the same doctrine, as do the Cal inistic Methodists.

ELECTION DISTRICT. See District.
ELECTIONS. As defined by the courts election is the act of choosing a person to II an office by any manifestation of preference ut usually by the vote of those entitled to exercise the clective franchise, as distinguishe or officer, as a king, president, governor or mayor. Sec Appointments.
Classification of Elections.- If the great body of the voting population decide between candidates, the clection is said to be popular hemselves have been chosen by the mass of oters, the election is said to be indirect o representative. The choice of United State Amators by the State legislatures until the 17 th Amendment became law is an example of s elected by the Presidential electors chosen in he various States but in practice these electors ote for the party candidate. (See Electors, nitfod States Presidential). Elections a lso classified as national. State and municipal, ccording to the status of the office to be occuEarly Colonial Elections- F
st colonial days, local officials in New England
were chosen in a meeting of the "freemen," much as they arc 10-day in town meeting. Prob ably the first elections held in America were of the delegates who attended the Virginia
legislative assembly in 1619 . The earliest date legislative assembly in 1619. The earliest date
specified is that of the election of John Winspecified is that of the election of John Win-
throp as governor of Massachusetts "bv the throp as governor of Massachusetts "bv the
general consent of the Court," 18 May 1631 . The next in order is the election at Plymouth 1632-33, although elections were authorized in this colony in 1620 and in the colony of Massachusetts in 1630, and undoubtedly they were held from that time onward. A few years late by proxy, chosen deputies casting the votes of the freemen at the "court of elections." Ac cording to some authoritics proxies meant us ually the carriage of the votes, at first the bal lots themselves (slips of paper or grains o of the process is hard to interpret. In New Hampshire elections were held from 1633 on ward, and in Rhode Island after 1636-38. I Connecticut the earliest election was in 1639 in Maryland 1638 . All the southern colonies except Georgia elected assemblies almost from
the start, and summonses for one session were issued in Georgia. In New Amsterdam (now New York) the right to elect its own magis trates was long withheld by Director Stuy vesant. "If," he said (1653), "the nomination and election of magistrates were to be left to the populace who were the most interested, own stamp, the thief for a thief, the rogue, the tippler, the smuggler, for a brother of iniquity that he might enjoy greater latitude in his vices and frauds." In New Jersey elections did no begin till 1668, although authorized in 1665 The first clection in Pennsylvania was in 1683 In the Carolinas the first recorded elections held as early as 1663 . In Georgia all officials were appointed up to 1754 . Elections.-To b
Authority to Hold Authority to Hold Elections.- To be valid an election must have some lawful author
ity behind it; unless the power be expressly ity behind it; unless the power be expressly
granted by the constitution or by the legislature acting under constitutional authority, the righ to hold an election cannot exist or be lawfully exercised. The legislature may prescribe the forms to be observed in the conduct of electhe people at free popular clections may bo mandatory (such as those setting the day of clection, requiring the vote to be by ballot, or establishing places within the designated pre cincts where the clection shall be held), or directory (such as provisions prescribing the
conduct and return of an election). Minor irregularities in observing the directory law which do not prevent electors from frecly and fairly exercising their right of suffrage or from having their votes properly counted do no vitiate an election, providing such irregularities
do not constitute infractions which the law dedo not constitute infractions which the law deviding for the holding of a local election usually require the presentation to some loca authority of a petition signed by the prescribed number of qualified persons; when properly presented, the authorities appointed to call the is issued it is not open to collateral attack

The time and place of holding regular elections are generally appointed in the public laws, and law and accordingly would receive notice from the statutes themselves, no proclamation or notice is mandatory, but proclamations for special elections must be issued by the authority named in the statutes and in strict accordance with those statutes. This notice is particularly vacancies caused by death, resignation or removal, where the statutes do not require that the vacancy be filled at the next general election. Usually the statutes require that, for a certain time before election day, notices of a more newspapers or posted in the form of handbills either at the polling places or at a number of public places. In elections to determine specific questions, the notices must fully inform the voters of the questions to be decided and such notices must not only clearly show the
authority for the order but also that they themselves have been signed by the proper officers
Time and Place of Holding Elections.To be legal the time and place of holding an election must be fixed in advance, cither by law or by legally authorized officials; and votes the eligibility of the candidates voted for. If the time be fixcd by general law no other time will be legal, save where the statutes provide for special clections; if the statutes fix the time, no power may adjourn the election to a subse-
quent day, unless the constitution or statutes quent day, unless the constitution or statutes
permit such adjournment, though legislatures are within their province in postponing elections in order to do away with frequent and unnecessary elections. A slight change in the voting place should not invalidate otherwise properly conducted elections, provided no voter is mis-
led or deprived of his vote by reason of the change. Under some circumstances the voting place may even be outside the election district, but the electors of the district who vote thereat would not be disfranchised on that account. Congress has power to determine the time of
choosing the Presidential electors and on 1 March 1792 enacted that the choice should be made within 34 days preceding the first Wednesday in December. On 23 Jan. 1845 Congress enacted that Presidential electors be chosen on the ber in each guadrennial year and later 2 Feb ber in each quadrennial year, and later 2 Feb.
1872) provided that, beginning with 1876 members of the House should be elected on the same day in biennial years ("even" years), though some exceptions were allowed under the amending act of 3 March 1875, whereby certain States were permitted to continue holding their elec-
tions at an carlier date. Amendment XVII to the Constitution (effective 31 May 1913) provides for the election of senators by the direct vote of the people but makes no stipulation "when the of election, merely providing that When vacancies happen in the representation ity of such State shall issue writs of election to fill such vacancies: Provided. That the Legislature of any State may empower the executive thereof to make temporary appointments the legislature may direct." Presumably, there
fore, elections of senators are held the year preceding the expiration of the incumbent term of office, the time being designated by the
State legislature. Most of the State and in many cases local and municipal election are held on the same day as the national elec tion, but in many States minor officials are no elected in the same year as the governor and
lieutenant-governor. All the States hold their lieutenant-governor. All the States hold their elections in November with the exception o the first named occurring in April and of the latter two in September. If a vacancy occur in an elective office, the governor of a State may call a special election or hold the choice ove Clasificar regular election.
dependent, Popular, Preferential Coting - In sory.- See Vote, Voters, Voting.
Modern. Qualifications, Colonial and rights .- Details respecting the franchis rights and privileges of the various States wil in the United States; Electoral Qualifi cations; Naturalization; United StatesSuffrage in the; Votes, Voters, Voting Voman Suffrage.
Terms of Office, Age Limits and Quali fications, Terms of - See Electoral Qual Ofications, Terms of and Qualifications fo
Party Nominations, Primaries, Etc.-The four principal methods of choosing candidates are by the delegate convention system, the direc primary, the non-partisan primary, which is use in many municipalities, and nomination by petiplied to the preliminary elections held by the political parties to nominate candidates or to choose delegates whose duty is to nominat candidates to compete in the following regula are allowed to vote in the party members onl candidates for local offices announced their candidacy or perhaps were nominated by a informal caucus; the legislative caucus nomi nated candidates for State offices; and aspirant or the Presidency were nominated by the Con ressional caucus (sce Caucus); but the latte
wo caucuses were soon discarded and by 1832 wo caucuses were soon discarded and by 1832 adopted. (See Convention, Political). Thi system was so indirect and complicated and so flagrantly abused that regulation of nominations hecame imperative and by 1900 party election ions as the regular elections. Beginning with 900, however, the convention plan has been rapidly supplanted by the direct primary, under which candidates are selected by the direct vote of the party. Some States also allow each nominees. (See Primary, Direct; Primary Presidential Preference; and in this connecUion see also Iniriative; Referendum; Recall). Under the non-partisan primary (which really is not a primary at all) the whole electorate to be voted upon at the regular elections. This system has been developed in connection with the commission form of government (q.v. See also City Manager) as worked out in Des Moines, lowa, and other places. The two can-
the four commissionerships recciving the high est number of votes may participate in the second and final election. In all clections, party emblems, circles, or other designations are pro In some cities (as Berkeley, Cal), if any cand date receive a majority of all the votes cast, a second election is unneccssary so far as that particular office is concerned. In some localities preferential voting has heen adopted so that national political parties will be eliminated from constituting a political party be entitled to make nominations in the usual way and to have the names of their candidates placed upon the official ballot, they may present to the proper official signatures of qualified electors and their nomi nees may enjoy the same privileges on the official ballot as accorded to those regularly hominated by an existing party. Nominations by petition are used chiefly in local elections, and, unless required by statute, no party emwith the names of candidates. Under a law passed in 1907 Wisconsin permits nominations to be made by petition only; but after nominafions are filed upon petition of 5 per cent of called electors a preliminary clection may be called to select the two candidates for each
office and those two only are voted upon at the final election. In many States a declaration of party affiliation is necessary under the primary law. Illinois further prohibits the participation in a primary of anyone who has voted in the primary of another party within the preuse a system of party registration similar to that uscd for general elections. When the por registers at that time an opportunity is presented to him to declare his party affiliation, party voters is compiled which is used as of party voters is compiled which is used as the
registration for the ensting primary election. The California law of 1899 and the Oregon law of 1901, which allowed electors to vote for cither party without divulging party preferences,
were declared unconstitutional.
Under the Were declared unconstitutional. Under the
Wisconsin law of 1903 the ballot is absolutely date of the voter may vote for choose hut he may not vote with more than one party at any election. The "open primary" eliminates
the party test which is applied in the "closed primary." In the non-partisan primary no party test can be applied since the elector votes for party ties.
See B See Ballot; Brtbe; Congress; Corrupt Prac-
Ves Acts; Electoral Frauns; Lobby, Etc.
elections Districts.- So that participation in elections may be easy, counties, cities and towns
are divided into small precincts or election districts, each containing a few hundred voters and operating under the supervision of an clection board. Whether composed, as at different periods and in different States they have been, of counties, cities, townships, boroughs, wards ways indicate subdivisions of the State's territory marked out hy known boundaries prear-
ranged and declared by public authority. As vearly as possible, city precincts contain an
rqual number of voters; they must be entire wards or contained wholly within one ward o one town and cannot be composed of parts of
adjacent wards or districts. The election district, however, is never used as a unit of repre sentation in local government nor as an administrative division in the conduct of municipa business. See District.

Polling Places- The law designates the manner of the internal arrangements of polling places so that the voter will have perfect freeWhere the Australian ballot is used, the statutes require that polling places contain booths of sufficient size to accommodate one voter and so constructed that the voter will be should be shut off by guard rails and no un authorized person allowed to go within these confines. In most States no official ballot may be taken outside the polling place. Official bal lot boxes are required at all elections, and must be opened for public inspection. During primaries and elections the polls are policed in accordance with the law (though the presence of a police officer at each polling place is not authorized by express statutory provision), and
in some cases election officers may exercise in some cases election officers may exercise
the authority of justices of the peace and punish election offenders. Stringent laws have been passed in many States to protect the voter from undue influence while in the act of voting In most States electioneering is prohibited within a certain distance from the polling place in some States polling places must he a certain
distance from saloons; and in the advanced States saloons are closed on election days Oregon requires that no "political badge, button, or other insignia shall be worn at or about the polls on any election day.)
Registration of Voters.-All persons possessing the constitutional qualifications of electors may be and in nearly all the States must be officially registered on the voting lists in the
districts wherein they reside in advance of each election, the period varying in the several States. If a State constitution or statute mak registration a specificd time before election day an imperative prerequisite to the right to vote
those not so registered cannot vote even i their other qualifications comply with constitutional requirements. Nevertheless the courts have held several times that even if a person be not a qualified voter under the constitution on the day the registration books are
closed, yet if he acquirc the necessary qualilosed, yet if he acquirc he necessary qualilawfully be rejected merely because he has not registered. While the constitutional qualifications must be left intact, without excision or adtlitions, the legislature may prescribe reg-
ulations to determine if the prospective voter possess the required qualifications; hence the passage of a registry law requiring registration as a condition precedent to the right to vote is not unconstitutional: where such a law exist an election held without such registration is the legislature shall enact a registration law and the legislature fails to do so, an election without registration is valid. Arkansas and Texas do not require registration; in Oklahoma registra-
tion is required in all cities of the first class
in Kansas and Ohio in cities of the first and
second classes; in Kentucky in cities of the first,
second, third and fourth classes; in Washingto in all cities and towns and in voting precincts with a voting population of 250 or more; in more inhabitants; in Maine in citics and towns of over 2,000 inhalitants; in Iowa and Ncbraska in cities of 3,500 and 7,000 or more inhabitants, respectively; in Missouri in cities of 100,000 or more inhabitants; and in all cities of
Pennsylvania. In all incorporated cities, vilPennsylvania. In all incorporated cities, vil-
lages and towns of 1 Ilinois which have adopted lages and towns of Ilinois which have adopted registered persons may not vote, but clsewhere they may swear in their votes if they produce a creditable witness to prove their electoral quali-
fications. In Rhode Island non-taxpayers are fications. In Rhode Island non-taxpayers are
required to register each year before 30 June. rexpuired to register each year licfore 30 June. son before the registering officers, but in rural districts the voter often is registered by official declaration and the registration list is compiled by local authorities, subject to revision on demand of interested partics. In order to prevent personal identification laws. The old suffrage laws of the Southern States and the complicated registration laws practically eliminated the negro vote, and even under the recent suffrage amendments to the constitutions, voting by negroes is a difficult task since registrars must
determine whether an applicant determine whether an applicant possesses the
required suffrage qualifications, can "read the constitution, or understand it when read to him or give a reasonable interpretation thereof," or understands "the duties and obligations of citizens under a republican form of govern-
Reg
Registry Boards.- The election process is
controlled by official (and usually compensated) boards of registrars, who must be qualifie voters in the election districts wherein thei duties are to be performed; their duty on the days designated as registration days is to precheck lists at the polls. If registration officer wrongfully and wilfuily refuse to enter the name of a qualified elector on the voting list they are liable in a civil action for damages. The boards are usually bi-partisan and are generally supplemented by watchers from the
various partics which have nominated candidates. At election time each party usually has one or more challengers who endeavor to prevent election frauds by challenging those illegally attempting to vote or those whose right to citizen who believes an elector is attempting illegally to cast a ballot has the right to challenge him and to state his objections. In
Massachusetts cities and towns, at spcified Massachusetts cities and towns, at spccified times preceding elections, the registry boards are in session for the purpose of allowing apquired suffrage qualifications, but in Boston the police, under the supervision of a special listing board, make a house-to-house canyass to enroll voters. Under the New York law of 1908 the recgistry boards in cities of over $1,000.000$ inhabitants must very carefully examine the voter, not only as to name, age, dence in State and at address, and where and
when he last voted, but also if he be married or room and which one; and they only a floo the name of lessec of the building, etc. Hence, if challenged when voting, a comparison of the voter's answers with the data previously sup identity, which can also be more accurately determined by a comparison of signatures, since those who can write must sign the registry book. All lists of registered voters are public records and are open to reasonable inspection
by the public. The Voting Process.- The names and residences of voters are recorded in the pollboo places, after which as the election official polives the voter a bailot usually corresponding in in thm ber with his number in the pollbook, thoug the courts have decided that, where a Stat constitution requires that popular elections shal numbering of ballots with figures coirrespond ing with the figures placed opposite the voter name on the poll list is unconstitutional and oid, since it utterly destroys the secrecy of the ballot. The voter then retires to the booth secretly, but should he be unable bo marke write or be physically incapacitated he may request assistance from one of the election offi-
cials. All members of the election board (but no one else) may witness the preparation o the name of the person for whom the electo has voted. After marking the ballot the voter iolds it so that the contents may not be seen and hands it to the designated election officer who deposits it in the ballot box, which is kep locked, the key boing in the custody of the ess and a clerk records in the polboop fact that the clector has duly voted. Should a ballot be mutilated, the elector may obtain perfect one from the election officers on surrendering the defective one. Legislatures may any other. they may also provide the use of on the ballots the names of regularly nominated candidates or of independent candidates, provided in so doing they do not violate the voters constitutional right to vote for the perto restrict electors in their choice of empowered or to prohibit them from voting for others than those whose names are on the ballots. Nominations entitle nominees to places on the official ballot, printed at public expense but the voter may write or paste on his balnominated or not by any convention cus or meeting) other than those printed hereon, and this right is generally recognized since blank spaces next to the printed The rige left for such writing or pasting. lenged if his an elector to vote may be chalfective or if he be suspected of sonve fraudulent practice. An oath or affirmation is then adminstered to the challenged elector under which he swears truthfully to answer all questions respecting his qualifications, but if the elector right to vote. If the answers to these ques-
tions seem to estallish the elector's right to
vote and the challenge be withdrawn, the elector, again under oath, must declare that he possesses all the legal requirements. He may then vote but the act of voting, after taking the oath, renders him liable to criminal prosecu The his declarations be proven false.

The Ballot.- See Ballot.
Counting the Vote.- Usually pen from early in the morning until a desig nated hour at night, after which no more voters are admitted. Immediately after the last bal sometimes publicly, sometimes in a brivate room), the details being recorded on the official and standard tally sheets with which each pollg place has been furmshed. The chairman unlocks the hox, extracts the ballots, one by ne, opens each and announces the candidate or illegally marked by the voter the ballot may be rejected; thourh ballots should not be reected because of tearing or of slight irregularies in marking unless such mark or mutilation appear to have been made for corrupt purposes with the valid ballotse set aside and returned test, the proper judicial authorities may examine them. All valid ballots are recorded by the clerks as announced by the chairman and are then filed in the form required by law The clerks kecp two or more independent tally shects which are totalled at the end of the
counting and the results officially announced. The pollbooks and the tally shects (proper authenticated by the election officials of the district) are then scaled and turned over to some essignated official, such as the county clerk or are larger cities to a special board. The ballots are locked and sealed in the baliot boxes which some cities, as New York, to the police who preserve them for a stipulated period so that a recount may be made in case of a contested election. After the tally shects have reached the election board or other designated official, Such as the county clerk, they are reviewed to officially published. In State elections, county or municipal restults are usually dispatched to the secretary of state who reviews them with the aid of a State hoard of canvassers. In some States the individual voting districts send
their returns direct to the secretary of state: in other States these returns are scnt to the presiding officers of the two branches of the legislature and are opened and canvassed in their presence. In other States the returning boards It is the certain specially designated officers. tificate of clection to canvassers to issue a cerof the returns indicates to have been elected Should a candidate (who may or may not have lieve present at the count of the ballots) bevoting he has been defeated by fraud, illegal test notice with the count incort he may file an conwhich not only may order a recount biction, also enforce its judgment as against the conclusion of the election official. Unless a specific grant of power be made in the State constitu-
tion or by the legislature in conformity with constitutional provisions, the dutics of county vol. $10-5$
and State canvassing boards are wholly minis the returns, to decide upon the legality of the voles cast nor to throw out the votes of a pre-
cinct or district in which fraud is alleged.
Duty to Accept Office
Duty to Accept Office.-. Under the common law every citizen, in peace as well as in war, owes his scrvices to the State when re-
quired; hence, after having been regularly clected and duly appointed, persons may be compelled to take the oath and qualify themsclves as public officers under pain of indictment or any pecuniary penalty; the only defenses are illegal election or appointment, legal the office is incompatible.
Contested Elections.- See Elections, Con-
Testen. Federal Control of Elections.- Sce Elections, Feneral Control of
Electoral Frauds and Safeguards Against
Minority and Proportional Representa-tion.-See that title
Majorities and Pluralities.-There is no legal, philological or popular agreement as to the use of the word "majority" in matters of clection. In computation it may mean the the lesser, if but two numbers are comparced or the amount by which the greatest number excceds the total of the lesser numbers; or the amount hy which the greatest number exceeds the next to the greatest. For the last case we Customarily use the word "plurality," but in
England the normal designation is "majority" and candidates have been clected with regard only thereto from time immemorial. The veight of American usage restricts "majority" to excess of the greatest number of yotes over lhe total of the rest, and we say that for a sary. This practice dates from colonial necesIn Massachusetts, New York, Now times. South Carolina and Georgia, a majority seems o have been required; in other colonies as a rule a simple plurality sufficed. New York put and most of the other States followed of 1777 ample, but the belief in the virtues of an absolate majority lingered in the New England States till the middle of the following century. Propositions to go back to the absolute majority plan are now very rarely heard, and in the matimportance only because the Constitution has the United States requires an ahsolute maiority of electoral votes for the choice of President. In conventions the majority rule yet prevails occasionally entailing hundreds of hallots, and in the Democratic national conventions a twomarics and caucuses the plurality plan prevail ly almost invarialle custom, voters everywhere being unwilling to give the time required for repeated ballots.
Under the Constitution a majority vote in the clectoral college may clect a President who of the popular votes cast thoug or a plurality framers of the Constitution intended that President should be elected without substantial support in a considerable number of States. Often delegations are divided under the system
of State-wide popular votc. This is possible electors of that State be chosen by districts, This system was followed by Maryland up to 1832 and in 1892 the Michigan legislature changed the districts and thus divided the State electoral delegation. But as a rule all electors, save those chosen by legislatures, have which reason the ticket that onet since 1836, for of the popular votes elects all the electors of that State. Sometimes, however, when the vote is close, the clectors with the highest vote onl one ticket may defeat the electors with the lowest vote on another ticket. This happened
in California in 1880 when, of the 161,000 votes cast, the difference on the head of the ticket was only 78, with the result that one Republican and five Democratic electors were chosen. In the same State in 1912 two of the Democratic electors overran the lowest two on the Progressive ticket, so that the State sent a
divided delegation to the electoral college of 11 Progressives and two Democrats. Often the electors represent a minority of the State votes, and sometimes the majority of the electoral vote may represent a minority of the popular vote. In 1824 Jackson received 50,550 votes more than Adams, but received 40,300 In 1844 Polk received 38,000 votes more than Clay but the combined vote for Clay and Birney put him in a minority of 24,100 . In 1848 Taylor had a plurality of 139,000 but a minority of 151,500 . In 1856 Buchanan had a plurality of 497,000 but a minority of 377,000 . Douglas but nearly 950,000 votes less than all his opponents combined. In 1876 Hayes, though chosen President by one electoral vote, not only had a minus plurality of 251,000 but was in the minority by about 345,000 . In 1880 Garfield had a plurality of 7,000 over Hancock hut was
in the minority by over 310,000 . In 1884 Cleveand received about 62,000 votes more than Blaine but was in the minority by about 230,000. In 1888 Cleveland received nearly 100,000 more popular votes than Harrison bur the latter was elected even though he was in
minority of 500,000 . In 1892 however, Clevea minority of 500,000 . In 1892 , however, Cleverison but was in a minority of 950,000 . In 1912 a striking discrepancy occurred between the electoral and popular votes, Wilson carrying 43 of the 48 States and having a clear he had a plurality of $2,150,000$ over his nearest opponent, but was in the minority lyy $2,500,000$. Hence, with the exception of Hayes and Harrison, all the Presidents would have been lected by at least a plurality if the election had been directly popular. On the other hand a small popular majority for the electors in one State may swing the election, as was the
case in New York in 1884 and 1888 ; in the former year Cleveland carried the State by 1,047 which gave him the 36 electoral votes of that State and decided the election in his favor; in 1888 these votes were turned over to Harrison by a plurality of about 15,000 , thus
electing him President. In 1916 was cast the lecting him President. In 1916 was cast the
argest vote till then in the history of America. Wilson had a plurality of nearly 570,000 over Hughes but an electoral vote of only 276
against 255 for Hughes, this being the naran election since 1876 . So even was the voting an elcetion since 1876 . So ever1 was the voting
in some of the States that Wilson won New Hampshire by only 56 votes, New Mexico by 2,400 , North Dakota by 2,600 , California by 3,700, and Nevada by 5,600 , whereas Hughes
gained the electoral votes of Minnesota by 392 gained the electoral votes of Minnesota by 392 votes, Delaware by 1,273, West Virginia by Island by about 5,000 cach. In spite of the closeness of the election no split delegations of electors were sent to the electoral college. See United States-Disputed Presidential Elections; Electoral Commission.

Bibliography.-Ashley, R. L., 'The AmeriC. A., 'American Government and Politics' (ib. 1914), and 'The Ballot's Burden' (Boston 1909) ; Bacon, E. M., and Wyman, M., 'Direct Elections and Law-Making by Popular Vote (ib. 1912) ; Bryce, James, 'American Common-
wealth) (rev. ed., New York 1914) wealth) (rcv. ed, New York 1914); Burch, Colonies) (Philadelphia 1902) ; Bullock, E. D., 'Short Ballot') (New York 1915); Becker, Carl',
'Nominations in Colonial New York' (in 'Nominations in Colonial New York' (in American Historical Review, Vol. VI, pp.
260-275, Lancaster, Pa., 1901); Brooks, R. C., 260-275, Lancaster, Pa., 1901) : Brooks, R. C.',
(Corruption in American Politics and Life) Corruption in American Politics (History of
(New York 1910); Bishop, C. F., 'Hist
Elections in American Colonies)' (ib. 1893) Elections in American Colonies) (ib. 1893); (ib. 1907)' ; Childs, R. S., 'Short Ballot Principles' (Boston 1911); Clarke, J. H., 'The Pith of the Short Ballot') (Clevcland 1912) ; Coolcy, T. M., 'Constitutional Limitations' (7th ed., toral System of the United States', (New York
1906); Dallinger, F. W., (Nominations for 1906); Dallinger, F. W., ‘Nominations for Elective Offices' (Cambridge, Mass., 1914);
Dickcy, F. W., 'The Presidential Preference Dickey, F. W., 'The Presidential Preference
Primary) (in American Political. Science RePrimary) (in American Political Science Re-
Ficw, Vol. IX, pp. $467-487$, Baltimore 1915); Fanning, C. E. 'Sp. 'Selceted Articles on Direct Primaries) (Minneapolis 1911); Ford, H. J., Rise and Growth of American Politics' (New
York 1898); Glasson, W. H., 'The Australian York 1898); Glasson, W. H. ' 'The Australian
Voting System' (Durham, N. C., 1909) ; Garnoting System' (Durham, N. W., W., Introduction to Political Science)
ner, J. Wew York 1910) - Griffith E C (Rise and Development of the Gerrymander) (Chicago 1907); Hart, A. B., 'Exercise of the Suffrage) (in Political Science Quarterly, Vol. VII, pp. 307-329, 1892) and (Actual Government) (New York 1908) ; Haworth, P. L., 'The Hayes(Cleveland 1906) ; Haynes, F. E., 'Third Party Movements since the Civil War) (in The Nation, Vol. CIII, pp. 511-512, New York 1916); Haynes, H. G., 'The Election of Senators' (New York 1906); Humphrey, J. H.,' 'Proportional Representation' (London 1911); Jones, C. L.,
(Readings on Parties and Elections in Unadings on Parties and Elections in the
United States) (New York 1912); Laprade W. T., 'The Nominating Primary' '(in North American Review, Vol. CC, pp. 235-243, New York 1914) ; Lowell, A. L., 'Pull) ic Opinion and Popular Government' (ib. 1913) ; Lowrie S. G., 'Corrupt Practices at Elections' (Madison, Wis., 1911); Luetscher, G. D., 'Early (Philadelphia 1903) ; Ludington, A. C., 'Ameri-
can Ballot Laws, 1888-1910' (Albany 1910)

Mechem, F. R., 'Law of Public Offices and Officers' (Chicago 1890); McCrary, G. W.,
American Law of Elections' (ib. 1897), McKinley A Law of Elections (ib. 1897), Thirteen English Colonies) (Philadelphia 1905): Macauley, Ward, (Reclaiming the Bal(E) (New York 1916) ; MacMillan, D. C., 1898): Macy Jesse (Party United States' (ib. 1898) ; Macy, Jesse, 'Party Organization and
Machinery' (ib. 1912) ; Macy, Jesse, and Gannaway, J. W., 'Comparative Free Government' (ib. 1915) ; Meyer E. C., 'Nominating Systems) (Madison, Wis., 1902) ; Merriam, C. E. 'History of American Political Theories'
(New York 1910) and (Primary Elections') (New York 1910) and 'Primary Elections' (in 'Cyclopedia of Law and Procedure,' Vol. XV, pp. 268 465, New York 1905) ; and also the articles 'Votc) (in id., Vol. XL, pp. 224-228, New York 1912) and 'Ballot' (in 'Corpus Juris,' Vol. VI, pp. 1173-75, ib. 1916) ; Ostrogorski, M., 'Democracy and the Party System C. S., 'The Convention System and the Presidential Primary' (in American Revicw of Reviews, Vol. XLV, No. 5, pp. 561-566, New York 1912) ; Rhodes, J. F.' 'History of the (inited States,) Vol. VII (ib. 1906); Ray, P. tical Politics' (ib. 1913) ; Reinsch, P. S., 'American Legislatures and Legislative Methcids' (ib. 1907); Shaw, A, 'National Lesson
from Adams County' (in Reviere of Reviews, Vol. XLIII, pp. 171-180, New York 1911); Sihepard, E. F., 'Compulsory Voting' (ib. 1891) ; Schaffner, M. A, Corrupt Practices at Rections' (Madison, Wis., 1906) and (The iory of the Presidency' (Boston 1912); ; Sloane, S. M., 'Party Government in the United States' (New York 1914) ; Taft, G. S., 'Senate
Election Cases) (Washington, D. C., 1903) Throop, M. H., 'Law Relating to Public Officers' (Chicago 1892); Tyson, R., 'Various pp. 59-64, 1908) ; Woodburn, J. A., 'Political Parties and Party Problems' (New York tions) (in National Municipal Review, Vol. III, (pp. 577-581, Philadelphia 1914); Wilcox, D. F., Wigmore, J. H. 'The Australian Ballot System' (Boston 1889) ; Woodruff, C. R., 'Election Reforms' (in National Municipal Review,
Vol. V, pp. 611-619, Philadelphia 1916) ; 'Recent Experiments with the Primary' (in 'World's

Irving E. Rines,
Editor of 'History of the United States.'
ELECTIONS, Contested. Under the Constitution, when the electoral college fails
to cast a majority vote, the election of Presito cast a majority vote, the election of Presi-
dent is referred to the Honse and of Vicedent is referred to the Honse and of Vice-
? resident to the Senate. The former decided the election of Jefferson in 1801 and of J. Q. Adams in 1829, and the latter elected R. M. Tohnson Vice-President in 1837. But in 1876 a dispute arose over the validity of the elec-
tion of rival groups of electors in four States tion of rival groups of electors in four itates
(see Electoral Commission) and in 1887 Congress enacted a law providing that each State under its own laws should designate tribunal to determine the legality of its elec-
toral votes; but should no such tribunal have been appointed in case of double returns, the vote of the State is lost unless the two houses are the legal votes. Under Art. I. Sec. 5, II of the Constitution, each branch of Congress is the judge of the election, returns and qualifications of its own members. Although the law may be disregarded, the House usually
conducts its investigations of contested elecconducts its investigations of contested elised
tions under sections 105 to 130 of the "Revised Statutes." If an election is to be contested, notice must be given within 30 days after the result of the election has been determined; the same period is allowed for an answer; and the testimony must be taken within
the House the task of investigating these contests is assigned to three committees, but in the Senate this work is performed by the committee on elections. The investigating comhas a majority in that branch of Congress and its report is seldom rejected. In most of the the elections and qualifications of its own members, and this power is granted also to the councils of many cities. As these bodies are supreme within their respective spheres of action, courts are without jurisdiction to hear and determine contested elections of their is empowered to decide gubernatorial contests and contests over one or more of the other State offices, but in California, Delaware and Pennsylvania these contests are tried by a joint committee of both houses. In some states all elections are virtually decided by the liting as the supreme canvassing board If a specific mode of contesting clections has been provided by statute, that method alone can be employed. In the absence of any statutory proceeding the only common-law remedy is quo warranto proccedings, under which the court demands proof of the authority by which a ousts him if he cannot show proper and legal authority. Strictly speaking a quo warranto proceeding is not a contest between two persons for the same office but merely determines if the person holding the office be or be not a the judgment is that he be ousted, whereupon the proper officials will execute the supposed will of the people by placing the candidate actually elected in possession of the vacated office. Consult Michael, W. H., 'Elections' (in 'Cyclopedia of Law and Procedure, ${ }^{\text {' }}$ Vol. XV, pp.
$268-465$, New York 1905) ; Mechem, F: R., 'Law of Public Offices and 'Officers' ' Chicago 1890) ; McCrary, G. W., 'American Law of Elections) (Chicago 1897); Rammelkamp, C. H., 'Contested Congressional Elections' (in Political Science Quarterly, Vol. XX, pp. 421442, Boston 1905) © Reinsch, P. S., 'American
Legislatures and Legislative Methods' (New York 1907) ; Rowell, C. H., 'Historical and Legal Digest of Contested Flection Cases in the House of Representatives, 1789-1901' (Washington 1901); Taft, G. S.,' 'Senate Election Cases' (Washington 1903); 'Compilation of
Senate Election Cases, 1789-1913) ('Senate Senate Election Cases, 1789-1913) ('Senate
Document' 1036, 62d Congress, 3d session, 1913); and authorities cited in article ElecTIONS.

ELECTIONS, Federal Control of. Under the Constitution the Federal government possesses a large measure of control over elections at which senators and representatives are
chosen. Each State legislature possesses the power to prescribe the times, places and manner of holding Congressional elections but Congress is authorized to make entirely new regulations or to add to, modify or alter such regulations, save those relating to the choosing of senators (Art. I, Sec. IV, II 1). In 1842 Congress provided that members of the House
should be chosen by districts and this procedure is still in vogue; an act passed in 1866 prescribed the manner of choosing senators by the State legislatures. On 31 May 1870 Congress enacted a law providing that all persons otherwise qualified should be granted the right to vote at all elections, irrespective of race, color being supplemented by another (28 Feb. 1871) relating particularly to the election of representatives. This act stipulated that voting should be by ballot and also provided for the appointment by circuit judges on application of being to break up the prevailing corrupt practices. Federal courts subsequently declared unconstitutional some parts of this law and in 1894 the sections providing for Federal super vision were repealed. On 2 Feb. 1872 Congress definitely established the Tuesday following the as the date for Congressional elections but some exceptions to this rule were allowed under the amending act of 3 March 1875 . Since that time (apart from the direct election of senators by constitutional amendment) the Federal government has concerned itself chiefly with legis-
lation pertaining to party activities, and passing acts relating to corporation contributions to campaign funds, publicity of campaign funds, corrupt practices acts, etc. See Corrupt Practices Acts; Electors; Elections, Contested.
ELECTIVE AFFINITIES, The. Goethe's (Wahlverwandtschaften' (Elective Affinities), first intended for insertion among the numerous
short stories in the second part of (Wilhelm short stories in the second part of 'Wilhelm
Meister,' grew beyond the limits of availability for, such use, and was published independently in 1809 . Its composition is in the leisurely and somewhat oracular style which makes many of the episodes in 'Wilhelm Meister) seem more like the deliverance of a seer than a mirror of actual life; but here as elsewherc Goethe develops a significant motif in terms of human experience, and the symbolical title what happens to a particular group of persons invites the mind to ponder the inscrutable laws governing human behavior in general. The analogy between chemical reactions and the solution of personal bonds in the moral sphere has Goethe's romantic contemporaries ; for us, howGoethe's romantic contemporaries; for us, how-
ever, as for them the issue raised is momentous, and the treatment -in many respects romantic-leads us to examine the sanctions of the first of all social institutions.
The story deals primarily with a wedded couple into whose domestic circle two other young girl Ottilie is the one upon whom our
attention is focused. The others, even the wife, persons of experience in the world, may conditions accommodate themselves to changed conditions; with Ottilie we profoundly sympa-
thize; for she, a being of celestial purity and devotedness, becomes unwittingly involved in the toils of earthly life to which she is a stranger, and must by renunciation and death atone for an involuntary fault. Conceived in dramatic terms, the theme might be said to be the confict of individual right with social convenmoral question or any dramatic demonstration; it is with the martyrdom of a hapless maiden, considered in its psychological aspect. The work, too restricted in scope to be called a novel, too diffuse to be a
Novelle, is a study of singular penetration and completeness in the inner life of a beautiful soul. Translated by J. A. Froude and R. D. Boylan, London 1854. Consult (The German Classics) (New York 1913, Vol. II)

Willyam G. Howard
ELECTIVE AFFINITY, a term formerly used in chemistry, in connection with the supposed fact that when a given chemical substance is mixed with two or more others with which preferential affinity for one of them, and combine with that to the exclusion of the others. This view of chemical action is now known to be incorrect. See Eoutlibrium, Chemical.
ELECTIVE COURSES and ELECTIVE STUDIES, as applied to colleges and universities in particular, and to all schools in genin education which permits the student to choose his own subjects of study during the time of attendance at school.
The "elective" or "optional" feature of educational systems is not new: it was in existence in many of the leading schools of the Medixval Ages, and even earlier. In the United
States the principle first appeared in the curriculum of the University of Virginia in 1819 . Harvard introduced it in 1826, and from that time on it received more or less recognition throughout the country. However, so few availed themselves of the privilcge of making the elective choice that more and more it came
to be required that students should pursue certain studies in order to obtain the degree of bachelor of arts; and such restriction eventually led to the exclusion of all studies that did not contribute to the obtaining of the desired degree. Gradually the secondary schools adopted colleges, and crowded out many of the studies that might fit the student for business life without going the college road. The special commercial, scientific and art schools came into existence to meet the wants and needs of a the addition of many new branches of study so enlarged the educational resources of the larger institutions that a selection of studies became a necessity, and it seemed wise to al-
low the student to elect a course which should definitely aid him in preparing for a chosen occupation after leaving college. The difficulty course has been found in the fact that the choice made by the untutored mind of the average
student was likely to be ill-balanced. This defect is overcome wherc able instructors, those
who understand human nature and its needs, guide the immature student; or, to use the modern term, where there are wise "advisers." administrations where the entire course is rigidly prescribed to those where every study is elective. In most colleges a part of the course is prescribed and the remainder elec tive. The tendency, however, is toward System in which, while there are prescribed
courses, the student is encouraged or pethaps required to concentrate his energies on some special line of study, and to round out his course with studies wholly elective, with the advice of the professors. In order to ascer tain what colleges and universities sanction elec-
tive courses it is necessary to obtain the lattive courses it is necessary to obtain the lat-
est changes direct from the college authorities As an illustration of the policy of the educational institutions in the United States the following summary gathered from 29 State universities and 55 other colleges and universities is of interest. English is required in 78 of least) forcign language is required in 68 ; elective in 14. Mathematics is required in 61 : elective in 23. Natural science is required in 52: elective in 32 . History is required in 41 : elective in 43 . Physical education is required in 32: elective in 46. Philosophy is required in 21: elective in 63.

Evolution of Educationa Theory' (1912); Baker, 'American Problems' (1907) ; Burns, Elective System of Studies in Colleges) (Catholic World, Vol. LXXI, 366) Says, 'Educational Reform' (1905); and 'Es tration of the College Curriculum' (1911) Hanus, 'Problem of Electives' (Popular Sci ence Monthly, Vol. LVIII, 58) ; Phillips, 'Electives in American Education' (Pedagogi cal Seminary, Vol. V1II, 206); Shaler, Thur ber and others. (Elcetive Studies in Sccond-
ary Schools) (Educational Review, Vol. XV, 417) ; Thurber, 'Some Problems of the Elcctive System' (School Revierw, Vol. IX, 79). ELY.
electoral college. See Electors. ELECTORAL COMMISSION, 1877. The electoral vote in the presidential election of 1876 showed 184 undisputed votes for Tilden; 163 or Hayes; four States with 23 votes - South Carolina, 7; Florida, 4; Loutisiana, 8; Oregon, cans won all the contests, Hayes was elected by one vote. Of these States, the first three returned popular majorities for Tilden electors but the "carpet-bag" governments in each had constituted "returning boards," whose function was to throw out enough Democratic votes, on the ground of intimidation of negro voters, to reality of the intimidation, nor the arbitrariness of the assumption that but for it the negrocs would all have voted and all voted Republican, is now disputed by either party. Oregon chose Hayes electors; but as the returning boards States, and therewith the election if upheld, the

Democrats ousted a Hayes elector on a technicality and replaced him by a Tilden one, as a basis of compromise or a menace. Obviously, and win; and as they held the administration and the army, they could defy threats. The Scnate was Republican, the House Democratic; there was therefore a deadlock on the admission of returns, as the 22 d Joint Rule, throwing out disputed States, had been repealed by the Finally, as an alternative to a most dangerous anarchy, both sides agreed on a joint commission to pass on all the contests; the Democrats being confident that it could establish no guiding principle whatever, of going behind the returns or not, accepting or rejecting State cer-
tificates as conclusive, which would not give them at least one of the disputed States. They underestimated the intellectual resources of their opponents. The act creating the commission was approved 29 Jan. 1877; its decisions could only be reversed by concurrent action of both Houses. The body was to be composed of five
members of each House and five associate justices of the Supreme Court; the latter as indicated were two Republicans and two Democrats, and were to select a fifth. The Senate appointed three Republicans, - G. F. Edmunds of Vermont, O. P. Morton of Indiana and F T. Frelinghuysen of New Jersey; and two G. Thurman of Ohio, the latter taken sick and replaced by Francis Kernan of New York The House appointed three Democrats,-H. B Payne of Ohio, Eppa Hunton of Virginia and J. G. Abbott of Massachusetts; and two Re-
publicans,- J. A. Garfield of Ohio and G. F. publicans,- J. A. Garfield of Ohio and G. F
Hoar of Massachusetts. Obviously, therefore the odd justice would have the deciding voice The Republican judges were William Strong and Samuel F. Miller; the Democratic, Nathan Clifford and Stephen J. Field; they chose Joseph P. Bradley as the fifth. The counse were-Democratic, Charles OConnor of New man Trumbull of Illinois, R. T. Merrick of th District of Columbia, Ashbel Green of New Jersey, Matthew H. Carpenter of Wisconsin George Hoadley of Ohio, W. C. Whitney o New York; Republicans, W. M. Evarts and
E. W. Stoughton of New York, Stanley Mat thews and Samuel Shellabarger of Ohio. Other lawyers appeared on special points. The State were taken up in alphabetical order,-- Florida Louisiana, Oregon, South Carolina,- and the vote upon each was cight to seven for the Re publicans, on every contested point, Mr. Justice
Bradley sustaining all the contentions of that Bradley sustaining all the contentions of that
side and the Republican candidate was de clared elected. The broad decision was, that Congress cannot, as it had done repeatedly before, go behind the returns and take cvidence as to the manner in which State majorities for electors have been ohtained. On other point
the decisions varied with the cases. In partic ular, the Democrats contended that the question as to the eligihility of an elector who is also a government official - a combination forbidden by the Constitution - was decided in two different ways within two days, on the Florida and Louisiana cases, in both to the profit of the defense of his action, The court adjourned
sine die on 2 March. The peaceful acceptance of the decision was much helped by the Democratic speaker, fandaly of Pennsylvania, who "filibuster." The proceedings of the Commission may be found in the 'Congressional Record' (Vol. V, Part IV, '1877). Consult Haworth, 'The Hayes-Tilden Disputed Presidential Election of 1876' (Cleveland 1906).
ELECTORAL FRAUDS AND SAFEGUARDS AGAINST. The most common electoral fraud is bribery (q.v.), consisting of the gift of money or the promise of some reward either to vote "right" or to remain away
from the polls. Employers of labor have bcen from the polls. Employers of labor have been
accuscd of attempting to influence the votes of their employees by thrcats of loss of work, retheir employees by thrcats of loss of work, re-
duced wages, etc.; physical violence has been used many times; and sometimes the threatened loss of social caste has operated to sway the voter. Priests have no right, either in or out of the pulpit, to influence electors to vote a
particular way, by threats of excommunication, partucular way, by threats of excommunication, they do so, it is, according to court decisions, an undue influence which may vitiate the election. The insertion of fictitious names on the roll, the registration of non-residents or noncitizens, etc., is almost impossible under present
methods of registration. One source of election evil is found in faulty methods of identifying voters. The fraud that results takes the form of "impersonation" (voting on another man's name), or "repeating" (voting more than once). Sometimes forged naturalization papers are issued to prevent the discovery of fraudulent
voting. Floaters are employed in many cases, especially in the crowded districts where election officials do not know the individual voters. Where a party has too many votes in one precinct and too few in another, colonization is sometimes practiscd (see Blocks of Five; and in this connection see also GERrymander); from a "safe" precinct to a "doubtful" one and still fulfil the letter of the law if only a brief residence be required. To lessen the likelihood of these crimes, some States require every voter to establish anew each year his right to
vote; others allow a name once on the lists to vote; others allow a name once on the lists to dropped. With our dread of red tape and formalities, we hesitate to adopt the ultimate remedy prevailing in France, where every man, as he steps up to the ballot-box, must produce his "electoral card" on which are inscribed his is issued by the mayor of the town where the yoter lives, after the latter has established his identity and majority by the production of a properly attested "act of birth." Each electoral card is numbered, and when it is presented at the polls, the judge of elections takes it, and
calls off the number and name, while two other judges, with the official poll-list before them, repeat aloud the number and name and check, off on the register. Then, and not till then, the first judge accepts the ballot from the voter and drops it into the box; and before handing back the card, he tears off a corner of it, which renders it useless for further voting that day.
These bits of card are strung on a wire and are counted, at the close of the polls, to see if
they tally with the number of ballots in the box efficacy of a thods are employcd to destroy the efficacy of a ballot after it has been marked by the voter. False counting of ballots has
been an easy and common way to vitiate clecbeen an easy and common way to vitiate clec-
tion results. Knavish counters may nullify ballots by adding marks or altering them; ballots may be rejected on trivial grounds; and sometimes ballot boxes may be stuffed before the polls open. Defective ballots may be printed by omitting or shifting the position of candiElection f
Election frauds developed early, and an esof lands, so as to enable the grantees to vote for a certain candidatc. The election laws of Rhode Island, New Jersey and Virginia for the decade $1760-70$ declared penalties for these
frauds. The illicit use of money in frauds. The illicit use of money in elections began almost at the beginning of political his-
tory in America. Rhode Island, for instance, found it necessary to pass a general act against bribery and corruption in 1737, and 10 years later replaced it with one even more stringent. Judging by its provisions the evil must have
been persistent in that colony. On 14 Oct. 1643 the General Court of Massachusetts ordered "that if any freeman shall put in more than one paper or bcane for the choyce of any officer,
he shall forfett 10 s id for every offence ; and any man that is not free, putting in any vote, shall forfett the like somme of 10 s 1 d ." The necessary, but all the others had them save New York and Maryland. In England the parchase of votes was for centuries as natural a thing as the sale of boroughs, and no serious attempt to prevent it was made until 1854, when bribery, forbade certain petty expenditures and required publicity of election expenses of a certain character. Despite this and other legislation, the evil did not greatly diminish and in 1883 a more drastic measure was adopted, which has served as a model for legislation else-
where. In England and Scotland if the number where. In England and Scotland if the number
of clectors does not exceed 2,000 , the Parliamentary candidate's maximum allowance for expenses is $£ 380$, with an additional $£ 30$ for every 1,000 electors above 2,000 . In Ireland (which contains many small borough elecforates), where the number does not exceed 500 , £250; exceeds 1,000 but does not exceed 1,500 £275. After this number has been reached, the rate is the same as in England. In the counties where the number of electors does exceed
2,000 (in England and Scotland) the maximum allowance is $£ 650$, with an additional Ireland, for the samete number of electors, the maximum allowance is $£ 500$ and $£ 540$ respectvely, with an additional $f 40$ for every com. plete 1,000 above 2,000 . These itcms do not include returning officers' fees or the personal expenses of candidates. In the United States
all the States have cnacted laws penalizing those who commit offenses against the suffrage. Most of the States have provided means to control the use of money in elections, some limiting th amount that may be expended by cach candidate and compelling a sworn statement of re-
ceipts and expenditures; some defining the obceipts and expenditures; some defining the ob-
quiring campaign financial committees to render a detailed statement of sources of receipts and objects of expenditures; and many prohibiting political party, committee or organization by any corporation or joint-stock company. The more recent enactment of direct primary, initiative, referendum and recall measures (qq.v.) has also done much to rid politics of corrupt infuence. Morcover, if at all possible, the courts prefer to give effect to elections, particuducted fairly and honestly; and even the most glaring irregularities not actually constituting
fraud have been held not to invalidate an elecfraud have been held not to invalidate an election. See Corrupt Practices Acts; Ballot, etc. Consult Brooks, R. C. 'Corruption in
American Politics and Life) (New York 1910) ; Ford, H. J., 'Rise and Growth of American Ford, H. J., 'Rise and Growth of American Development of the Gerrymander) (Chicago 1907); Lowrie, S. G., 'Corrupt Practices at (Elections' (Madison, Wis., 1911) ; Shaw, A., 'National Lesson from Adams County' (in Review of Revicws, Vol. XLIII, pp. 171-180,
New York 1911): Schaffner, M. A., Corrupt Practices at Elections) (Madison, Wis., 1906) ; and authorities cited under article Corrupt Practices Acts.
ELECTORAL QUALIFICATIONS: TERMS OF AND QUALIFICATIONS FOR OFFICE.- The theory that suffrage is a natural, inherent right, belonging to every
man, is now generally discredited. Political man, is now generaly discredited. Political dissenting opinion in the case of Amy vs. Smith (1 Litt. [Ky.], 326, 333, 342), one judge said:
"A State may deny all her polititical rights to an individual
and yet he may be a citizen. The rights of office and suffrage
are political purely, and are denied by some or all the States
 then, is one who owues to government alle aleziance. service, and
noney by way of taxation, and to whom the government. in turn, grants and guarantees liberty of person and of con-
science, the righ of acquiring and possessing property. $\begin{aligned} & \text { of } \\ & \text { marriage and social relations, of suit and defence, and security }\end{aligned}$
met in persen, estate and and reputation ont and defence, and security
with some others
which might be enumerated, being guaranteed and secured which might be enumerated, beink
by government, constitute a citizen.
Again the Supreme Court has held that ."The fact that one is a subject or citizen determines
nothing as to his rights as such. They vary in different ocalities and according to circurnstances. Citizenship has
no neeessary connection with the franchise of oting eligi-
bility to office, or indeed with any other rights, civil or

That suffrage cannot be termed a "right" is obvious since no community can ever enfrancluded from participation in governmental
clits affairs because legally they are infants and, as such, unfitted to cope with government problems to the benent of the State. Hence there is no necessary relation between citizenship and the right to vote. Minors and, formerly women,
(the latter save in those States having woman suffrage) do not usually possess the right to vote, although they are citizens; and on the other hand, some States and many municipalities per mit persons to vote who have no claim to citizenship merely because they are residents and possess "popular vote" does not exist since millions of
residents have not yet been vested with full sufrage ; in many States bigamists, bribers, idiots, insane persons, etc., cannot vote; certain classes franchise; paupers, as dependents, do not participate in shaping the government on which they are a burden and to which they contribute nothing; and the criminal, by his very acts, has exhibited his total incapacity to understand his citizenship privileges. Nevertheless, afra in
spite of the above restrictions, the suffrage is spite of the above restrictions, the suffrage is
gradually widening and broadening, partly due to the victory for woman suffrage.
The Right to Vote and the Power to Confer It.-As previously stated, the elective franchise is a privilege rather than a natural right;
its extension to any excluded class is a quesits extension to any excluded class is a ques-
tion of political expediency; it may be taken away by the power which conferred it and if this be done no vested right is violated nor bill of attainder passed. Subject to the restricions of the national Constitution as to racc, Solor and previous condition of servitude, each power to regulate the right of suffrage and to define the qualifications of its voters, however unwise, unjust or even tyrannical its regulations may be or seem to be in this regard. Hence the clauses in some state constitutions requiring of voters the ability to read, undersuch constitutions are not in contravention of the United States Constitution. Once granted by a State constitution, the right to vote cannot be abridged by the legislature; if they be to the qualifications of voters nor create other classes of voters, nor dispense with any of the onstitutional qualifications nor enact provisions mposing upon a particular class of citizens conditions and requirements not imposed upon may enact laws to regulate the exercise of the elective franchise, if those laws do not deny
the right of the franchise itself. Under the national Constitution Congress cannot prescribe the qualifications of electors in the States, but Congress may penalize a criminal by forfeiting his United States citizenship, and if under the State constitution only United States citizens a person of the opportunity to enjoy a right which helongs to him as a citizen of the State, even the right of voting, but cannot deprive him of the right itself. The Constitution does not confer the right of suffrage upon anyone individually nor upon any class of persons-the in the States. It is true that the Fiftecnth Amendment is usually interpreted as giving the negro the right to vote, but it merely exempts from discrimination in the exercise of the elective franchise and no negro possesses the right to vote unless he conform to all the State constitutions upon white voters But Congress may punish any State official who refuses to perform the duties necessary to qualify all colored citizens. Thus the right to vote in the States is conferred by the States but the right of exemption from the prohibited disment.
shall be chosen by the people of the several States and that "the electors in each State shall have the qualifications requisite for electors of lature" (Art. 1, § 2, T1). The States do no define who shall vote for Congressmen but merely prescribe the qualifications of those who vote for the popular branch of their own legislatures and the Constitution says that the same persons vote for Congressmen. Hence Convote to the State law in any sense which makes the exercise of the right exclusively dependent on the law of the Statc. Since the right to vote is not natural, the State, unless expressly prohibited by its constitution, may confer the right only on those who pay taxes for the support of the government ; and even though the
constitution fix the qualifications of voters at general elections, yet the legislature, in grant ing municipal charters and providing for special local elections, may make the payment of taxes a condition precedent to the right to vote at such elections. If United States citizenship be a requisite qualification of an elector, a forprovided a regular legal trial and conviction be shown. Many of the State constitutions provide that persons convicted of infamous crimes or crimes of a high degree lose the privilege of voting and it has been held also that a conviction of crime of a disqualifying nature in a
Federal court has the effect to cxlude the son convicted from office and suffrage the same as if he had been convicted in a State court. A general absolute pardon of the exceutive restores the convicted person to the full enjoyment of his civil rights, including the right to vote, and a Presidential pardon likewise re-
stores the right to those convicted in Fcderal Stores the right to those convicted in Federal the criminal to the rights and privileges of a citizen of the United States, it does not, without the assent of the State, restore him to the exercise of that right if the sovereign power of the State has excluded him from the right of
suffrage. Unless pardoned by the executive sufrage. this connection the existence of a double citizenship in the United States should be mentioned. One authority says
"There is a clear distinction between national citizenship
and
ata
atate citizenship. the United States and a resident of o particular state is
ecessarily a citizen of that State. On the other hand a
隹 necessarily a citizen of that sestate. On the outher hatid a
person may be a citizen of the United States and not a titizen
of any particular State. This is the condition of citizens person may be a citizen of the United Staten and not a citizzen
of any particular State. This it the condition of citizens
residing in the District of Columbia, and in the territories

 do will invest a foreigner with. the rights and privileges of a
itizen of the United States." (Corpus Juris,' Vol. XI, p.
隹 777).

Colonial Electoral Qualifications.- The

 principal qualification required of the early colonial electors was that they should be "freemen," a term of various interpretations evenin the colonies themselves, hut held generally to mean persons of recognized responsibility negroes were not allowed to vote. In South

Carolina and Gcorgia the privilege was restricted to white men, but the law was not rigidly enforced, for free negroes were recorded as voting in South Carolina in 1701 England could vote; in Massachusetts, after 1664, only Englishmen could vote. In South Carolina, however, the French Huguenots had cqual franchise with the English "freemen." In general, the voter was required to be of good moral character and obedient to the laws; immoral behavior might result either in temmouth voters were to be "orthodox in the fundamentals of religion." Massachusetts in 1631 demanded also, "to the end that the body of the freemen may be preserved of honest and good men," that "henceforth no man monwealth but such as are members of some of the churches within the limits of this jurisdiction." This provision, however, lasted only until 1664 or 1665 . Massachusetts excluded Quakers, but they were permitted to vote in Rhode Island and Connecticut, which colonies the other colonies their reluctance to take oath usually operated to dcbar them from the franchise. In most of the colonies Roman Catholics were not allowed to vote, New Haven and, for a time, Maryland being notable exceptions. New York excluded Catholics in
1701 and Jews in 1737 . Virginia was the only colony specifically debarring women from the franchise, though they were effectually excluded in South Carolina, Georgia and Delaware; but the others incidentally excluded them by according the vote only to "frecmen," or by years of age. However, the laws often read "frecholders," rather than "freemen," and it is impossible to tell how far under this the women voted, though at least a few voted in New Jersey. In Virginia a property qualification was required: a voter must be a "housekeeper,"
either as owner or tenant. Massachusetts, Delawither as owner or tenant. Massachusetts, Delaleast $\$ 200$; after 1699 New York required that voters for members of the lower branch of the
legislature be "frceholders" of an estate valued legislature be "frecholders". of an estate valued at not less than $£ 40$, but in Albany and New Rork city all "freemen" were allowed to vote. sess "competent estates," which, later, were defined as the possession of $\$ 500$, or a rental list of at least $\$ 10$ (afterward $\$ 50$, and still later, Delaware Maryl Pennsylvania, New Jersey, Carolina and Georgi North Carolina, South of 50 ares of lard of which the possession ing) portion should be under cultivation. Virginia required the possession of 100 acres of land if untenanted, and 25 acres if a residence not less than 12 feet square were built upon the land and occupied. The same size of house requirement in this respect. At Wilmington only those could vote who had oecupied brick houses at least 16 feet wide and 20 feet long, and for at least three months preceding the election. The residence qualification in other colonies varied from six months in Georgia to two years in Pennsylvania and Delaware
also United States - Suffrage in the.

Broadening of the Suffrage. When the the United States carries as much weight in Constitution was framed in 1787 suffrage qualithat no attempt was made to impose restrictions and the States were allowed to modify their electoral qualifications as they deemed wise, the only restriction being that contained in Article 1 , $\$$, 1 elected by people in the various States "who have the qualifications requiof the State legislature." At that time this distinction was of great importance since al the States requircd the payment of taxes or ownership of real or personal property varying in value from $\$ 33$ to $\$ 20$. Noreover, North Carolina dingush be to members of her legislature; to vote for a mem-
ber of the lower house the elector need only to have paid taxes, but to vote for a member of the senate he must own a frechold of 50 acres. New York required that all voters for members of the assembly own a frechold valued at $£ 20$ or pay rent of 40 s. and hat taxes must year; while the person who voted for senator must be possessed of an unencumbered free hold valued at not less than $£ 100$. Gradually these requirements were eliminated, the property test being abolished by Maryland in 1801 and 1809, New York and Massachusetts 1 n 1821, Tennessec in 1834 , New Jersey in 1844 ,
Connecticut in 1845 , Virginia in 1850 . South Carolina in 1865 , North Carolina in 1854 and 1868; and the tax-paying test being abolished by New York in 1826, Louisiana in 1845, Ohio in 1851 and Virginia and Mississippi in 1882 Nevertheless, many States continued to insist upon the poll tax and Rerson who has not paid during the previous ycar a tax upon his property in the State valued at $\$ 134$ at least from voting for city councilmen or upon any meas ure of municipal finance. Some of the othe States now have tax or property tests as wil appear in the suljoined table. The next great extension of the suffrage was an outcome of
the Civil War, when during the Reconstruction period (see United States-Reconstruction in THE) the Fourtecnth and Fifteenth Amendments to the Constitution were adopted, for bidding the States to discriminate against the negro. Finally women have won voting privi leges on an equality with men-in1
(1869), Colorado (1893), Utah (1896), Idaho (1896), Washington (1910), California (1911), Kansas (1912), Arizona (1912) Oregon (1912), Alaska (1913), Montana (1914), Ne-
vada (1914). New York (1917, cffctive 1918). In (1914), New York (1917, effective 1918). In other States they possess a restrice, for details of which sce Woman Suffrage. Sce also Ballot; Vote, Voters,

Modern Electoral Qualifications.- Most of the States have uniform laws for electors of every officer to be elected in the State, though this statement must be qualified as to those States which formerly permitted women to mittees, or which allow women who are taxpayers to vote upon financial measures. Unlike some European countries, such as Germany, the vote
of the lodging-house dweller, the loafer, etc., in
the United States carries as much weight in
the election as the vote of the wealthiest or most distinguished citizen. Most of the States
require that their voters be full-fledged United States citizens. As a rule the State constitutions require that a voter be at least 21 years of age, who is a citizen of the cad or either native or naturalize, ang "male" provision frimerly included, of course, is inoperative since the passage of the Federal Amendment granting the suffrage to women. Some States, particularly those that are anxious to obtain immigrants as agricultural laborers, extend the privilege of voting to an and a certain period of time before election-usually six months to a year. Such a voter is not bound by an oath of allegiance to the United States nor has he foresworn allegiance to his native land; hence a situation might arise under which this voter woung United States government and the next day the United States might become involved in a dispute with the government of his native country over some question respecting his citizenship. Courts have ruled that if a father bccome a naturalized citizen of the United
States before his son shall have attained his States before his son shall have attained his
majority, the latter, though alien-born, ipsofacto becomes a citizen and need net undergo the formality of naturalization if dwelling within the United States (Revised Statutes,' Title XXX, \& 2172); but the son of an alien cannot be vested with citizenship by implica-
tion merely because the father declared his intion merely bccause the fatizen prior to the time the son attained his majority. Basing his statements on court decisions, one authority says "While it has been held that citizenship will not be presumed merely ir having held an elective office, , seems that
having voted, or having particied in elections and having held electiv
having

 United States, the act
acceptance of such State
Juris, Vol. XI, p.
Some States enfranchise men of Indian descent, native of the United States, while others grant the privilege to
declared citizens of the United States by act of Congress and to civilized Indians, not members of any tribe. As a rule, idiots, insane per sons and felons are not allowed to vote and sometimes vagrants, patipers, persons convicte. of treason, bribers, embezziers, bigamists, Chi nese, etc., are excluded Soliers and seamen gain no voting residence by being stationed in the State, while the residents of the District o Columbia, when it became the seat of the general government, lost the right to vot thercin for national officers or on matters of national concern.

Educational and Other Tests.-T The educational, property, tax, and good character to exclude many thousands of voters - partictilarly the negro voters of the South. Connecticut in 1854 and Massachusetts in 1856 led the other States in rcquiring of voters the ability
setts) to write their own names. To some
extent the national naturalization laws have offset the effects of these tests since ans have cant for citizenship must sign the application in his own handwriting and when taking out his final papers must be able to speak the English language. (Sce Aliens; Citizensinip in the United States; Naturalization) was undertaken to assure permanence white rule, since the negro, during the Reconstruction period, had displayed a total unfitness to govern. Constitutional amendments were adopted to attain this end by law In addition to a ncw registration or fraud in vogue, the Mississippi constitution of 1890 required that a prospective voter be registered, a payer of a poll tax, and, a fter 1 Jan. 1892 , able to read any portion of the constitution or
to understand it when read to him, or to render to understand it when read to him, or to render
a reasonably accurate interpretation of it. The
South Carolina constitution of 1805 permitted the registration of an otherwise qualificd person, "provided that he can hoth read and write any section of this constitution submitted to him by the registration officer, or can show that he owns and has paid all taxes collectible during the previous year on property in this Louisiana constitution of 1898 contained similar clauses, but for would-be voters, who might bc cxcluded by these tests, the constitution pro-
vided that any male person "who was on 1 Jan. vided that any male person "who was on 1 Jan. to vote under the constitution or statutes he any State of the United States, wherein any such person not less than twenty-one years of age at the date of the adoption of this Constitution" should be allowed to register and vote at all elections without possessing the
educational or property qualifications. In 1901 educational or property qualifications. In 1901
Alabama incorporated a provision requiring that voters be of "good character" and "understand the duties and obligations of citizenship under a republican form of government.") Virginia has imitated this qualification. (Sce also
United States-SUfFrage in the). The constiUnited States-Suffrage in the). The consti-
tutionality of these provisions has not been tutionality of these provisions has not been
definitely decided by the Supreme Court, definitely decided thy the supreme though several cases have been considered. Regarding the Mississippi constitution (Williams vs. Mississippi, 170 U . S. 213), the Court declared that the qualifications did not "on their
face discriminate between the white and negro face discriminate between the white and negro-
races, nor amount to a denial of the equal proraces, nor amount to a denial of the equal pro-
tection of the law secured by the Fourtcenth Amendment to the Constitution; and it has not been shown that their actual administration was evil, but only that evil was possible under
them." The Court further stated (Giles vs. Harris, 189 U. S. 474) - "Relief from a great political wrong, if done as allieged, by the people of a State, or by the State itself, must be
given by them, or by the legislative and political departments of the government of the United States."
On 21 June 1915 the Supreme Court dcclared void the "grandfather clatises" of the Maryland and Oklahoma constitutions. In erning elections in various citics. In 1908 it
was inserted in the law governing municipal elections in the city of Annapolis. It authorof the city assessed for at least $\$ 500$; all duly naturalized citizens, all male children of naturalized citizens 21 years of agc, and "all citizens who prior to 1 Jan. 1868, were entitled to vote in the State of Maryland or any other State of the United States at a State clection, and the lawful male descendants of any person who prior to 1 Jan. 1868, were entitled to vote
in the State of Maryland or in any other State of the Unitcd States at a State election." The constitution of Oklahoma, upon which that Territory was admitted to the Union as a State, gave something very like manhood suffrage. amendment was adopted restricting the fer, an chise. The amendment in part was as follows "No person shall be registered as an elector of this State
 1866, or at any time prior thereto, entitide to vote under
any form of governmenti, or who at any time resided in some
foreign nation and no lineal descendant of such person shall
oe denied the right to register and and

The contentions of the election officers as plaintiffs in error, rcally setting forth the posijustice: "It said the States have the power to fix standards for
sufrage and that power was not taken awny by the Fifteenth
Amendment, but only limited to the Amendment, but only limited to the extent of the prohibitions
which the amendment established. This being true, as the stanch the amend fixed does not intablished. This terms make any dirue, and the
on account of race, color or previous conation on account of race, color or previous condition of servitude,
since all, whether negro white who come within its require-
ments, enjoy the privilege of voting, there is no ground upon ments, enjoy the privileg of voting, there is no ngoround upon
whith to trast tho contention that the provision violates the
Fifteenth Amendment. This, it is insisted, must be the
 case unless it is intended to expressly deny the State's right
th provide a standard for suffree. or what is equivent
thereto. to assert: (a) That the judgment of the Stateevericed
in the execution of that powcr is subject to Feceral judicial in the execution of that power is subject to Federal judicial
review or to supervision, or (b) that it may be questioned
or be brought within the prohibitions of the amendment by or be brought within the prohibitions of the amentostiont by
attribting to the legislative authority an occult motive to
violate the amend attributing to the legislative authority an occult motive to
volate the amendment or by assuming thata an execcise of
the othcrwise lawful power may be invalidated because of

The government insisted, on the other hand, that the "real question involved is the repugnancy of the standard which the amendment 1 Jan. 1866 , because on its face and inherently considering the substance of things, that standard is a mere denial of the restrictions imposed by the prohibitions of the Fifteenth Amendment and by necessary result creates and perpetuates the very conditions which the amend
ment was intended to destroy"

The chief justice summed
the court in these words: $u p$ the opinion of "There seems no escape from
that there seems even escape from the conclusion that to hold
would be but to dibectility for dispute on the subject would be but to declare that the Filleenth Amendmentent not
only had the self-executing power which it has been recon to have from the beginn power which ut has been recognized
wholly inoperative because susceptible of provisions were
being rendered Wholiy inoperative because susceptible of being rendered
inapplicable by mere forms of expression embodying no
exercise of judgment and resting upon exercise of judgment mand resting upon no disernerible reason
other than the purpose to disregard the prohibitions of the other than the purpose to disregard the protibitions of the
amendment by creating a standard of voting which on its
tace was in substance but a revitalization of the condition tace was in substance but a , revitalizization of the condition
which, when they prevailed in the past, had heen destroyed
by the self-operative foic of

The Court took the view that under ordinary circumstances the State should decide the question whether the nullification of the exceptions of the grandfather clause would at the
same time make void the general literacy test to which it was appended. In the absence of a decision by a State court the Chief Justice, however, said that the Federal tribunal would pass upon the question. Ordinarily a provision like the literary test, which is legal in itsclf, would not be destroyed by the wiping out of an
illegal accompanying provision. But the plain megal accompanying provision. But of the Oklahoma constitution was that the reading test should not be used to disqualify lineal descendants of voters prior to 1866 . As this would be accomplished in many cases by continuing the reading test without the of-
fensive exemptions, the whole provision was fensive exemptions, the whole provision was
stricken out. Accordingly in 1916 the Oklahoma stricken out. Accordingly in 1916 the Oklahoma
legislature passed a proposed constitutional legislature passed a proposed constitutional
amendment (approved by the governor 21 Feb. 1916), which prohibited any property qualifcation; it contained the reading and writing clause but this clause was inoperative if, prior to the adoption of the amendment, a prospec-
tive elector had served in the land or naval tive elector had served in the land or naval
forces of the United States or of any State or forces of the United States or of any State or 1812, Mexican War, or on either side in the Indian wars or the Civil War; and all lawful descendants of such persons were included But this amendment was rejected at the election
of August 1916 and now the only restriction on suffrage in Oklahoma is a universal registration ture in 1916.

Residence and Absentee Voting.-Generally speaking, an elcctor must vote in the precinct wherein he resides, if he have a fixed
place of abode. As employed in the statutes place of abode. As employed in the statutes
and constitutions in defining political rights, a and constitutions in defining political rights, a
residence is synonymous with home or domicile, denoting a permanent dwelling place to which the party when absent intends to return. An absence for months or even ycars, provided the
party intended it merely as a temporary arparty intended it merely as a temporary arformer home, would not constitute an abandontormer home, would not constitute an abandonment of such residence or home or deprive the mere act of abiding in a place for a definite time and for a specific purpose, with no present intention of remaining and making it a perentitling the party to vote. A person who removes from the jurisdiction, intending to rehe may afterward change his intention and return; nor can he vote until he has re-estab-
lished his residence by remaining in the juris-
diction the statutory period. Courts have held diction the statutory period. Courts have held, resident of a county but has no fixed residence or domicile in any particular precinct therein, he may vote in any precinct wherein he may happen to be on election day. In 1915 Vermont enacted a law permitting a voter who changed his residence within 15 days prior to election to Connecticut and California allowed the voter to retain a voting residence in the town from which he moved. Colorado, Iowa, Michigan, Montana, Washington and Wisconsin passed laws permitting voters absent from their home precincts to vote elsewhere in the State. In 1916 Virginia and Oklahoma provided for ab-
sentee voting, the former allowing absent clectors to vote by registered mail and the latter permitting an elector absent from his county to vote in another precinct. Absentee voting occurs sometimes when large bodies of citizens are called into some branch of governmental scrvice, such as the army; this happened in the
elections of 1916 and 1917 when the National Guard troops were on the Mexican border, or in France or in cantonments preparing for service abroad, special provisions being made for the balloting at the camps. In the election of November 1917 Massachusetts adopted an amendment enabling the legislature to establish arrangements for absentee voting.
Voting in Territories

- As previously stated, residents of the District of Columbia do not vote, the government being in the hands of a board of commissioners appointed by the President. From 1802 to 1855 white taxpayers were permitted to vote for local officers; subsequently the taxpaying male citizens white or black were granted the franchise if not disqualificd by the Fourteenth Amendment; but in 1874 all suffrage rights were abrogated. Prior to becoming a territory of the United States, Hawaii required that electors of members of the senate be possessed
of a substantial amount of property, but under the organic act of 1900 all persons may vote who are duly registered citizens of the United States, 21 years of age, resident in the islands one year or more, and who can speak, read and write either the English or Hawaiian language; Porto Rico all malc citizens, 21 years of age or over, who had resided in the island one year might vote if they passed a property or an educational test similar to that of South Carolina, but in 1904 a law was passed renewing the property qualification and requiring that after
1906 all rcgistrants should be able to read and 1906 all registrants should be able to read and
write, but permitting those who already were write, but permitting those who already wert
voters to continue their exercise of the voting privilege. In 1907, in his proclamation for an election of delegates to the Philippine assembly, President Roosevelt denied the right of representation to the Moros and other nonChristian tribes, and required that each voter be capable of reading, writing or speaking Eng-
lish or Spanish, that he be an owner of property or a taxpayer, and that he take an oath of allegiance. In Alaska both men and women enjoy full suffrage rights.

$\begin{aligned} & \frac{?}{4} \\ & \frac{1}{2} \end{aligned}$							
						年	
䋨	$\stackrel{\text { b }}{\text { ¢ }}$		号	\％	官	d	
	音			－		吕	！
穊	家	－	号	\％	号	！	
边	$\frac{1}{c}$	2	边	\％	$\stackrel{5}{2}$	家	5
$\begin{aligned} & \frac{2}{8} \\ & \frac{2}{2} \\ & \frac{2}{1} \\ & \frac{1}{8} \end{aligned}$							
	3			啫	䦽		宕

$\dot{\ddot{0}}$	．	－		－－${ }^{\text {a }}$	$\begin{aligned} & \dot{8} \\ & \dot{户} \end{aligned}$	$\stackrel{\ddot{0}}{\dot{d}}$
\cdots	\cdots	\cdots	＊－	\cdots	نㅁ	$\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{8}{2} \end{aligned}$
$\begin{aligned} & \dot{6} \\ & \stackrel{\rightharpoonup}{E} \\ & 0 \end{aligned}$	品 品	㽞	\cdots	$\begin{aligned} & \dot{8} \\ & \stackrel{e}{0} \end{aligned}$	ت்	\cdots
$\stackrel{\text { 上 }}{-}$	－	$\stackrel{\text { 号 }}{\sim}$	$\stackrel{\text { 号 }}{-}$	$\begin{aligned} & \dot{6} \\ & \text { ö } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\text { ¢ }}{\text {－}}$	$\begin{array}{\|l\|} \hline \dot{0} \\ \vdots \\ 0 \\ \hline \end{array}$
	$\begin{aligned} & \text { Male or female, } 21 \text { years } \\ & \text { old, citizen of U.S. } \end{aligned}$		若			
			$\begin{array}{\|c} \mid \vdots \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \end{array}$	㻤	\vdots \vdots \vdots 0 0 0 3 3	

\％号苞	$\begin{aligned} & \ddot{0} \\ & \stackrel{O}{0} \end{aligned}$	若 .	$\stackrel{\rightharpoonup}{8}$			\because	¢
	-ロ்	品	＊	＂	朆．	¢	安
	$\dot{8}$	$\stackrel{\rightharpoonup}{0}$		$\stackrel{5}{-}$		\％	吕
$\begin{gathered} \text { gin } \\ \text { 合 } \end{gathered}$	兑	$\begin{array}{\|l\|l\|} \hline \dot{0} \\ \vdots \\ \vdots \\ \hline \end{array}$	点	$\underset{\sim}{\underset{\sim}{S}}$	菏	$\stackrel{4}{2}$	5
		－	2 3 3 2 2 2	䢒			$\begin{aligned} & 0 \\ & E \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 5 \end{aligned}$

$\begin{aligned} & \frac{2}{3} \\ & \frac{0}{0} \\ & \frac{y}{4} \\ & \frac{1}{4} \end{aligned}$					
$\begin{aligned} & \frac{2}{8} \\ & \frac{0}{4} \\ & \frac{6}{2} \\ & \frac{b}{2} \end{aligned}$					
遥	$\stackrel{\square}{\square}$	启	\％	$\stackrel{\square}{\circ}$	－
	－	＂	萛	．	¢
	$\stackrel{\square}{\circ}$	$\stackrel{\text { gr }}{\text { \％}}$	号	吕	1\％
喑	$\underline{\square}$	－	$\stackrel{4}{4}$	5	S
$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{8} \\ & \frac{1}{8} \\ & \frac{8}{8} \end{aligned}$					
	竞		0	篂	

terms of and qualifications for office.
Federal.- Presidents are elected for four years, senators for six years and representaConstitution requires that senators and representatives, members of State legislatures and all executive and judicial officers, State and National, "shall be bound by oath or affirmation" to support the Constitution, but "no religious test shall ever be required as a qualificaUnited States." No sublic trust under the or Federal office holder may be a Presidential elector (Art. II, § 1, ๆ 2). The Constitution states that "no person except a natural born citizen, or a citizen of the United States at the time of the adoption of this Constitution, shall shall anly person be eligible to that office who shall not have attained to the age of thirty-five years and been fourtcen years a resident within the United States." (Art. II, § 1, I 5). Hence, foreign-born citizens are excluded from this office but children born of parents residing abroad
temporarily are not considered foreign-born. No restriction is placed by the Constitution upon the number of terms a President may serve but Washington's precedent of two terms has always been followed. A senator must be at least 30 years old, nine years a citielection an Unhabitant States and at the time of election an inhabitant of the State represented. years of age, seven years a citizen of the United States and at the time of election an nhabitant of the State represented (Art. I, § 2 , IT $2, \S 3, \pi 3$). This does not prevent their estalishing homes in Washington while maintainsented. Article I \& 6,12 sars: "No Senator or Representative shall, during the time for which he was elected, be appointed to any civic office under the authority of the United States which shall have been created or the emoluments whereof shall have been increased during such time; and no person holding any office either House during his continuance in office" Accordingly, if a senator or representative accept any Federal office, his seat in Congress thereby becomes vacant, but if an office-holder e elected to either branch of Congress he may retain his position until his active duties in the eccomes vacant Regarding the judici office Constitution makes no stipulations, the justices being appointed by the President with the adice and consent of the Senate. The same provision holds true of Cabinet officials, save that no one interested in the import trade may become Secretary of the Treasury; though all members of the Cabinet are expected to sever
all business or outside connections. (Sce CABInet and Cabinet Government; Executive). All other Federal offices are filled by appointment, which is subject only to the restrictions and limitations of custom or Congressional enactments. Appointive offices may he held by to Office; Tenure of Office

State- The States quite eft
State.- The States quite effectively control the Constitution as first adopted regarding State

* Not stated in constitution. \ddagger Merely duly qualifid elector. See preceding table. \ddagger No specified time required.

£600; representatives must have a freehold of $£ 100$ or "any ratable estate" to the value of $£ 200$; right, of a frechold, within the commonwealth, of the value of $£ 1,000$." In New Hampshire eligibility to the lower branch of the legislature consisted of being a Protestant and possessing an estate worth $£ 100$; a freehold of tloo above all debts in New York; a "personal Maryland; in North Carolina an assemblyman
office-holders was that they should "be bound by oath or affirmation" to support the Consti Fifteenth Amendments provided that "No State shall make or enforce any law which shall abridge the privileges or immunities of citizens of the United States" and that "the right of citizens of the United States to vote shall not be denied or abridged by the United States or by any State on account of race, color or previous condition of servitude." Hence any prives a negro citizen of the right to vote or to hold office would be unconstitutional, but the courts have upheld laws which indirectly disquality certain classes of negroes and therefore stitutions are to be found lumerous state contests for office-holders. The man ressesing moderate means might vote, but legislation was restricted to well-to-do Christians, and in some States none but a rich Christian could aspire to the governorship. In New Hampshire, New Jersey and South Carolina, no Hebrew, atheist none but a Christian in Massachusetts Delaware, Pennsylvania, Maryland and South Carolina. Maryland did not open public offices to Jews until 1826. In some Ncw England States church members alone could vote, while the the privilege to "every free of 1778 extended other person, who acknowledges the being of a God, and believes in a future state of rewards and punishments." The carly constitutions also required in many cases that officeholders be "Christians," or "of the Protestant religion," or should believe "in the Trinity and 1776), or should declare themselves "to be of the Christian religion" (Massachusetts 1780) In New York, Dclaware, Maryland and Georgia no priest nor minister of any creed could hibition is office, though in Georgia the proEdwin is limited to the asscmbly. (Wiley, States,' Vol. Vines, Irving E8-99). E. 'The United Master says:

Most of these requirements have been elim nants, among them being South Carolina, whose constitution of 1895 (Art IV \& 3) provides that no one may be governor "who denies the existence of the Supreme Being." Property qualifications also have been eliminated gradually from the State constitutions. In our early history religious qualifications were not deemed sufficient; heavy property qualifications were governor must not only be pious but rich; the
importance of the office determined the amount of property. According to the South Carolina
constitution of 1775 governors and lieutenantgovernors "shall have in this State a settled plantation or freehold in their and each of housand poind currency, cue of at ebt" while the estate of a senator must be valued at $£ 2,000$ currency and of a representative $£ 3,500$. The Massachusetts constitution of 1780 provided hat senators must possess a freehold of the

in fee simple or for life of a freehold of 100 in fee simple or for life of a freehor of of land or property worth $£ 250$. Usually the qualifications for membership in the upper house were the same as those for the lower house, save that values were twice as great Some of the recent constitutions of the South ern States contain provisions regarding prop erty or payment of taxes incorporated with he object of excluding negroes from votin and holding office.

4

Some of the early constitutions required that governor should be native born, but Connecticut (1818) merely required citizenship, Massachusetts (1817) a citizenship of 20 years and the present time citizenship is almost universally required of a State office-holder but the erm of residence varies widely - from the next preceding the election. The same variance is seen in the age requirements, ranging
from 21 to 35 for governors, 21 to 30 for senasome States the only requirement for while wo offices is to be a duly qualified elector and some constitutions contain no limitations whatever. The preceding table gives the terms o fice of governors and State senators and rep esentatives, together with their age require State or district
Few of the State constitutions place any limitations on the judiciary, though some contain exceptional provisions. Oregon requires that her judges be citizens, residents of the State for three years and residents of the dis-
tricts wherein they discharge their tricts wherein they discharge their official du-
ties. California stipulates that members of th Supreme Court shall be attorneys licensed to practice before the court, while in Colorado and New Mexico the attorney-general must be a lawyer licensed to practise before the Su preme Court. Until 1920 in all States, save those stricted voting to "male citizens" but many constitutions were silent regarding office-holding and therefore women gradually established their right to hold elective offices. But this privilege which denied them in States the constitutions of holders must possess the qualifications of elec tors. Most of the minor State offices are not subjected to constitutional provisions but are regulated by legislative enactment, many of them coming under the civil service laws. Suffrage in Michian) (in (Puistory of Suffrage in Michigan) (in 'Publications) of
Michigan Political Science Association, III, pp. 1-56, Ann Arbor 1898) ; Ambler, C. H., 'Disfranchisement in West Virginia' (in Yale Revieur, Vol. XIV, pp. 38-59, 153-180, New Haven 1905) ; Blackmar, F. W., 'History of Suffrage in Legislation in the United States) pp. 28-34, Meadville, Pa., 1895) ; Baldwin, S. E 'Early History of the Ballot in Connecticut' (New York 1800); Beard, C. A., 'American Government and Politics) (New York 1914); Bassett, J. S., 'Suffrage in the State of North' American Historical Association for 1895 , American Historical Association for 1895 , pp. ditions Affecting Suffrage in Colonies) (in Annals of the American Academy of Political and Social Science,' pp. 78-101. Philadelphia 1902) ; Baker, F. E., 'Brief History of the Elective Franchise in Wisconsin' (in 'Proceedings of the Wisconsin State Historical So-
ciety for 1894 , Vol. XLI, pp. 113-130) ; Bishop, C. F., 'History of Elections in American Coloies) (New York 1893) ; Beard, C. A., and Beard, M. R., 'American Citizenship', (ib. 1914); Chandler, J. A. C., 'History of Suffrage in Virginia) (in (Johns Hopkins University Studies in Historical and Political Science,
Ser. XIX, Nos. 6-7, Baltimore 1901): Caffey, F. G., 'Suffrage Limitations at the South' (Boston 1905); Donaldson, W. T., 'Compulsory Voting) (in National'Municipal Review, Vol. IV, pp. 460-465, Concord, N. H., 1915); DuBois, W. E. B., 'Disfranchisement' (New System of the United States) (ib. 1906) ; Fox, (in Political Science Quarterly, Vol. XXXII,
pp. 252-275, Lancaster, Pa., 1917) ; Guentzer, (New York 1901): Hamilton, to Obtain It Suffrage and Congressional Representation' (ib 1910) ; Hemphill, J. C., 'The South and the Negro Vote) (in North American Review Vol. CCII, pp. 213-219, New York 1915): Hart A. B., 'Exercise of the Suffrage') (in Political Science Quarterly, Vol. VII, pp. 307-329, 1892) 'Retual Government' (New York 1908), and 'Realities of Negro Suffrage' (in 'Proceed-
ings) of the American Political Science Association for 1905, Vol. II, pp. 149-166, Lancaster Pa., 1906) ; Haynes, G. H., (Representation and Suffrage in Massachusetts, 1620-1691) (in 'J. H. 1894), and 'Educational' Nualifications 8alti the Suffrage in the United States) (in Pons to Science Quarterly, Vol. XIII, pp. 4 $45-513$, New York 1898) ; Jones, C. L., (Readings on Partie and Elections' (ib. 1912); McMaster, J. B., 'The Acquisition of Political, Social and Industrial Rights of Man in America) (Cleveland and Officers' (Chicago 1890) ; McCrary, G. W., 'American Law of Elections' (ib. 1897); McKinley, A. E., 'Suffrage Franchise in the Thirtecn English Colonies in America) (Philadelphia 1905) : MacMillan, D. C., (Elective 1898) : Michael, W. H. 'Elections) (in 'Cyork pedia of Law and Procedure,' Vol. XV, pp. Government of American Cities) (New York 1913) ; Mellor, F. H., (Legal Qualifications for port) ' (the Am, 1899, Vol. I, pp. 87-154) ; McGovney, D. O., 'American Citizenship' (in Columbia Law Review, Vol. XI, pp. 231-250, 326-347, New York Citizens of the United States) (New York 1894) ; Phillips, J. B., (Educational QualificaStudies, Voters) (in 'University of Colorado Remsen, D. S., 'Suffrage and the Ballot' (New York 1892): Rose, J. C., 'Negro Suffrage' (in American Political Science Review, Vol. I, pp. 17-43, Baltimore 1906) ; Steiner, B. C., 'Citizen1895) : Shepard, W. in Maryland (Baltimore of Suffrage) (in 'Proceedings' of the American Political Science Assocation for 1912, pp. 06-136, Balitmore 1913) ; Smith, W. R., 'Negro Suffrage in the South)' (in 'Studies in Southern History and Politics,' New York 1914); ment) (ib. 1907) ; Tucker, H. St. George 'Woman's Suffrage by Constitutional Amendment) (New Haven 1916) : Thompson, R. H., Suffrage in Mississippi' (in 'Publications' of the Mississippi Historical Society, Vol. I, pp. United States' (Rochester, N. Y. 1904) and 'Treatise on the Law of Naturalization' (Washington 1907) ; Wise, J. S., 'Treatise on American Citizenship) (Northport, L. I., 1906) Wolfman, N., 'Status of a Forcigner Who Has Declared His Intention of Becoming a Citizen view, Vol X States) (in American Lawe Re1907) ; Wolfe, A. Bp., (Manhood Suint Louis he United States' (Chicago 1913): (Just a Few Ways in Which the South Will Still

Prevent Negroes from Voting) (in Everybody's
Magazine, Vol. X XXIII, p. 251-252, New York 1915). The provisions of the various State constitutions adopted up to the various State
in Thorpe, F . N., 5 Federal and State Constitutions, Colonial Charters and Other Organic Laws of the States, Territories and Colonies' (ols., Washington, D. C., 1909 ; issucd as 'Hous Document' 357, 59th Congress, 2 d Session) ound relating to woman suffrage will be qualifications rights, powers, duties, liatilities etc., of public officials will be found in the articles "Officers," "States," "Term." "Terriories," "United States" and the cross-references appended thereto in 'Cyclopedia of Law XXXVI, pp. 844 869; XXXVIII, pp. 184-187, ctween citizenshio and suffrage and court isions regarding these points will be found in he article "Citizens" in 'Corpus Juris,' Vol.
XI, p. 774 et seq. (New York 1917) and for XI, p. 774 et seq. (New York 1917) and for "Aliens") ibid, Vol. II, pp. 1039-1132.

ELECTORAL REFORM. Sce E
EI ECTORAL SYSTEM of the STEM of the Unite Federal offices, are in all States conducted by allot. To save the expense of distinct polling it has been long usual to take the pollings for a varicty of offices at the same time. The details of the procedure previous to, during and ive enactments. These deal specifically pith registration, the election process, counting o he votes and the various safeguards instituted or the purity of elections.
Registration.-Official lists of voters are prepared in advance by registering those eligi-
hle to vote. Personal registration, usual in the arger centres of population, requires the per onal appearance of the prospective voter a he registration office. Registration by official declaration is common in the less densely popu ated regions; the local authorities make up the list, but a revision may be demanded by any s in force in some large cities in order to pre ent false registration. Counties and cities ar divided into small parts, each with a few hunred votes. The election is controlled by official highest at the previous election. The ballot s printed at the public expense and except in Georgia and South Carolina the secret ballo as been adopted. In general the ballot conains the names of all candidates which are placed in party columns, altliongh the Massachusett the title of the several offices. The voter on entering the polling office states his name and ddress, which are entered in the pollbook by a lerk. He is next handed a ballot which is often numbered to correspond with the numbe the pollbook, the voter enters the enclosed space provided int folds it as required play law so that the markings are concealed He next hands it to he election officer who deposits it in the ballot box. The right of an elector to vote may b hallenged for canse, in which case he is put rtain questions r
ing his qualifications as a voter. When the polls are closed at the legal hour tally sheet are taken up by the election officers. The hallo
box is opened and the ballots arc withdrawn one by one. The chairman announces the name of the candidates voted for and the officer duly mark their tally sheets. At the close o the count, the results are officially announce tally sheets and pollooks are next sealed an delivered to the custodian designated by law to sent to some central authority where they ar kept for a certain time in case they may be needed if an election be contested in the courts. Bribing or bestowing gratuities to influence gratuities, elections, the acceptance of suc qualified, threats, violence or intimidation o voters, voting more than once, "colonizing" inducing voters to remain away and any othe attempt to influence the proper course of a election are severely punished by statute in al the States. Considerable legislation has bec the use of money at elections, many States re quiring a sworn statement of all campaign ex penses from each and every candidate. See Ballot; Elections; electoral Qualifica Thons, Corrupt Practices Acts; Electoral frace: Auen. Crtizenship; Caucus; Conven tions, Political. Initiative. Reiebendum Recall; Primary; Voting Machines; an consult Beard, C. A., 'American Governmen and Politics (Ncw York 1914) ; Bryce, American Commonwealth (ib. 1914); McLaughlin and Hart, 'Cyclopedia American Govern

ELECTORAL VOTES, the votes cast by the presidential electors or electoral college fo President and Vice-President. Prior to 180 each elector voted for two candidates for Presiber of votes was deceived the largest num one recciving the second largest vote wa elected Vice-President. The votes for the firs
 Adams (Mass.) 34, John Jay (N. Y.) 9, R. H Harrison (Md.) 6, Jno. Rutledge (S. C.) 3, and scattering 7. In 1912 the electoral vote cast by the electoral college were as follows For President, Woodrow Wilson 435, Theodor Roosevelt 88, William H. Taft 8; for Vice Prsident, Thomas R. Marshall 435, Hiram Mc Stanwood, 'History of the Presidency from 1788 to 1897) (Boston 1898). (History of th Presidency from 1897 to 1912 ' (ib). 1912). Sce electors: Electoral Commission
ELECTORS, German Imperial (Ger. Kur furst), certain princes of the old Holy Roma Empire who had the right of electing the emfixed at seven by er of the electors was early cluding the archbishops of Mainz, Cologne an Trèves, the king of Bohemia, the Count Palatine of the Rhine, the Duke of Saxony, and the Margrave of Brandenburg. An election as king of the Romans was held by the German princes to include the imperial title of Holy Roman emperor, but this was contested by the popes, who claimed the exclusive privilege o
granting the title. In 1648, by the Treaty of and in 1710 to Hanover. In 1802 the Bavarian electorship had expired, the archbishops of Cologne and Treves were excluded, and the number of electors was increased to 10 by conferring the rank on the rulers of Baden, Württemberg, Hesse-Cassel and Salzburg. In 1806 the emperor gave up the imperial title, and the elecBryce, 'The Holy Roman Empire)' (London Bryce,
1892).

ELECTORS, United States Presidential (as a body, termed the Electoral College, a term informally used since about 1821, probably suggested by the College of Cardinals "college of clectors" appears in the Act of 1845), the intermediate body for whom, and votes are cast every four years. As originally ordained they were meant to constitute a council of the ablest men in the country, exercising an independent choice of a chief executive. The theory has never been fact for a moment, and since the third election not even a pretense;
the institution is retained for very different reasons, and perhaps stronger ones. As a fact he electors are only registers of the already pronounced party choice in candidates, and acept the office under a tacit pledge to act only as such. The electoral colleges are State odies, and their integrity as such is scrupu hers as the State's consist of as many mem houses of Congress; therefore a State canno have less than threc, and New York has 45 he method of appointment is left absolutely o the State legislatures. Till about 1820-2 they were appointed direct by the legislature superseded this method in all but six, and b 1828 in all but one--South Carolina, which retained it till 1868. The district system, which divides the State's electoral vote, has some times been tried as a party compromise; but at present all partics prefer having all the appoints the place of meeting of its own electoral college. Congress has fixed the time the second Monday in January - to prevent a failure of any mecting through the refusal of a minority house of a legislature to join with the majority house in setting a date. The State, by act of 3 Feb. 1887 , is made absolute
judge of all disputes over appointment or rejurge of all its certificate is decisive between two sets of returns, and Congress can only inter vene if the State itself is unable to decide But what is the State? This was preciscly one of the questions before the Electoral Comseem to leave room for party decision as there; and no Electoral Commission would ever be possible again. In case of vacancy in the electoral loody, by death, resignation, refusal to serve or any other cause, the State may pass laws to fill it; if it has no such law, that vo is lost, as happened in Nevada in 1864 lege no organization is required; but it is customary to organize and elect a chairman. Separate hallots (which remain the property of the State) are cast for President and Vice-
I'resident. In the first threc elections, each
simply voted (as required by the Constitution) or two persons, onc a resident of a differ ne State, without designating the office; the one with the highest vole became President, as soon as parties gained firm organization, mere party loyalty would invariably produce a tie; and in 1800 Jefferson and Burr were so tied (sce Jefferson-Burr Imbroglio), the resulting scandal and danger leading to the 12th Amendment, which obliges the electors to The constitutional provisio
1804 and in force now is as fon amended The electors shall meet in follows
States and vote by ballot in their respective Vice President, one of for President and not be an inhabitant of whom at least shal themsclves; they shall name in their ballots themsclves; they shall name in their ballot tinct ballots the person voted for as Vice President; and they shall make distinct lists of all persons voted for as President, and of al persons voted for as Vice President, and of the number of votes for each, which list they the seat of the Government of the United States, directed to the President of the Scnate the President of the Senate shall, in the pres ence of the Scnate and House of Representa tives, open all the certificates, and the votes shall then be counted; the person having the President, if such number be a majority of the whole number of electors appointed: and if no person have such majority, then from the persons having the highest numbers, not exceeding three, on the list of those voted for as President, the House of Representatives shal choose immediately, by ballot, the President. shall be taken by States, the representation from each State having one vote; a quorum for this purpose shall consist of a member or members from two-thinds of the States, and a majority of all the States shall lee necessary to a choice.
And if the House of Representatives shall And if the Housc of Representatives shall not
choose a President, whenever the right choice shall devolve upon them, before the 4 th day of March next following, then the Vice President shall act as President, as in the case of the death or constitutional disability of the President. The person having the greates number of votes as Vice President shall be the of the whole number of electors appointed and if no person have a majority, then from the two highest numbers on the list the Senate shall choose the Vice President; a quorum for the purpose shall consist of two-thirds of the the whole number shall be necessary to a choice. But no person constitutionally ineligible to the office of President shall be eligible to that of Vice President of the United States." After voting, they make three lists of the persons, offices and number of votes, and the
names of the State electors certificd names of the State electors certificd by the
"executive authority" of the State; seal them, and certify each; transmit two to the president of the Senate, one by messenger and one by mail, and deposit the third with the Federal judge of the district. They have then no
further functions.

On the second Wednesday in February, in the Representativcs Hall and in presence of
both Houses of Congress assembled, the president of the Senate opens and counts the State eturns, and announces the result. In case of a ach House decides by a majority of States, President, the Senate decides in the same way If no one candidate has a majority, the Houses decide in the same manner, choosing from the 1824 hohn Quincy Adams was elected Thus, in by the House ; in 1837 Richard M. Johnson was elected Vice-President by the Scratc. But suppose the third and fourth are ties. This quite probable contingency has not been provided for, and may cause trouble. There was formerly a custom, when a State sent in conficting elecoral returns, of announcing the final result "in without, the disputed returns; but the Act of 1887 ends this, and it was always unworkable where the disputed votes were vital to the election. By the 22 d Joint Rule of Congress ip to 1876, in case of dispute the returns from of State were thrown out, but in anticipation Re the struggle over the returning boards, the rule.
In order to obtain the electoral votes of a State, a party must carry the State. In other
words, the electoral vote of a State is determined by the highest popular vote cast in that tate. The popular vote for electors is unless a State is carried Conscquently the maller partics which have not had a large nough popular vote to carry a State have not had the State votes in the clectoral college, and must therefore be counted by popular vote only, having

The electoral system, despite its wide diergence from the intent of its originators, and criously menaced utility in settling the presidential question at once on the counting of State votes. With dircet popirlar vote, where parties are closcly haps for months.
In accordance with the Reapportionment Act of, 1911 the number of electors in the several State colleges is as follows

Alahama		Nebraska	
	3	Neva	
Arkansas.		New Hampshire	
Colorado	${ }^{13}$	New	14
Colorado	6	New Mexico	
Conn	3	Ne	
Plorida	3	North Carolina	
	4	Ohio	
	4	Oklahoma	
Illinois	29	Oregon	
Indiana	15	Pennsyivania	
Iowa.	13	Rhode Island.	
Kansas	10	South Carolina.	
Kentucky	1.3	South Dakota.	
uisiana	10	Tenncssee	12
Maine.	6	Texas	20
Massachusetts	8	Utah.	
Miassachusetts	18	Vermont.	
Michigan.	$\begin{array}{r}15 \\ 12 \\ \hline 18\end{array}$	Virginia.	
Mississippi	10	West Virgin	
Missouri	18	Wisconsin	13
Montana	4	Wyoming.	

The whole number of electors in the United States, until another reapportionment is made to secure an election to the presidency will be 266. See Apportionment

Consult Dougherty, J. H., 'Electoral System the United States) (1906).
ELECTRA, in Greek legend, the name of several personages. (1) One of the Oceanides, wife of Atlas, and mother of Dardanus by Zeus, came one of the Pletas and Pleione, who be Agamemnon, king of Argos, who incited he brother Orestes to avenge their father's death gy killing their mother, Clytemnestra. Orestes and she became the mother of Strophius and Medon. She is the subject of a number of dramas, both ancient and modern

ELECTRA. Benito Pérez Galdós' drama Electra,' one of the most conspicuously success ful, as well as one of the shortest-lived of modern Spanish plays, was performed for the frst time in the face of violent protest at the
Tcatro Español, Madrid, in 1901. Constructed with the author's customary skill, it is written in a spirit of broad tolcrance, the didactic touch never being entirely absent from its pages. Yet as a thesis drama the play is unconvincing In particular, the solution of the conflict be tween the scientific spirit and the Church, typi
fied in their struggle for the soul of a young woman, is precipitated at the denoucment by means of an apparition which effects a reconciliation between the demands of science and religion through supernatural aid. Undoubtedly this cvasion was not without utilitarian justifi-
cation, and made the performance of the play cation, and made the performance of the play years with a program of social, political an literary reform, which had brotight to his ai a host of admirers, among whom the great bod of the more intelligent of the youth of his coun try was included. In 'Electra,' he turned to
attack directly the forces of conservatism and reaction, and in the sharpness of the issue then joined lics the chief significance of the play With its production the influence of the autho reached its zenith, and his victory assured the succeeding generation that freedom of expres sion which was essentia An English transl
Chicago, 1911. Authoritative published at Galdos may he found in Alas, L., (Galdós) (Madrid 1912) also Martínez Ruiz, J., (Azorín) (Lecturas españolas) (Madrid 1912)
John Garrett Underhill..

ELECTRA. Although Hugo von Hof mannsthal possesses no original genius, he is the most musical of poets who in recent time have contributed to the drama in German. His dramaturgic skill or his understanding of chat acter, entitles him to praisc. A Viennese, he is an æsthetic cosmopolite. In (Venice Pre served' he has reworked the English tragedy
of Otway and in 'Electra' and 'F.Eipus and of Otway and in (Electra' and '(F.dipus and the Sphinx' the Greek tragedies of Sophocles,
embroidering his models with fresh details and intensifying passion His reversion to Greck was inspired by the presentation at the

Burg Theatre in Vienna of Aschylus, translated into German by Wilamowitz-Mollendorff and by the suggestion of the critic Paul Schlen-
ther that modern playwrights should render classic themes in a free fashion. 'Electra' appeared in 1903; and in 1908, in the version of Arthur Symons, it was played in English with Mrs. Patrick Campbell in the title role. It has also served as the libretto for an opera by
The piece is

The piece is in one act and dispenses with the classic chorus, partly because this would be counter to our stage conventions, and partly because it would detract from the lyrical fervor of the individual characters. The Sophoclean her brother Orestes to whom the return of the task of avenging her mother's murder of her father is repeated, with the weakness of her sister Chrysothemis, the appearance of Orestes as a messenger come to announce his own death, and his slaying of his mother, Clytemnestra, and her paramour, Egisthus. effort to achieve the noble dlignity of the Greek. Instead, he has sensualized Electra, whose lust for vengeance on her guilty mother becomes hysterical and insane. Hatred, she says, has been her bridegroom; curses and despair have been her children. When Orestes finally slays joy. As an American critic, Mr. W. P. Eaton, has remarked: "Pity and fear are not aroused by von Hofmannsthal's play, but curiosity and horror. The emotions are not purged, but scraped, irritated, made to shiver and crecp." Aue best account of von Hofmannsthal is Dr. (1907); he is discussed in English by Elizabeth Walter in Poet Lore (1915), and by Ashley Dukes in 'Modern Dramatists' (1912).

Frank W. Chiandler. ELECTRIC ALTERNATING CURRENT MACHINERY. A loop of wire reof an alternating current generator The direction of induced electromotive force in the two halves of the loop, which cut the magnetic flux in opposite directions, is such that the combined electromotive force at the terminals is double that of either revolving conductor alone. This induced electromotive force is proportional to the rate of cutting the magnetic lines, and there-
fore to the sine of the angle by which the plane fore to the sine of the angle by which the plane
of the coil differs from the plane midway beof the coil differs from the plane midway be-
twe flux. At its zero position, or when the planes coincide, the coil is cutting no lines of force and we have sine $a=0$. The electromotive force, however, grows as we depart from this zero position, assuming uniform speed, until, when 90 degrees is reached the rate of cutting of the Passing on, the electromotive force dice away until 180 degrees is reached, when the value again is zcro. From this to 270 degrees we have an increasing electromotive force, but of opposite polarity and at the end of the revoluwe have in one revolution in ach zero. Thus we have in one revolution in a two-pole field
two waves of pressure of the same form but of opposite sign. The one is called the posilive wave and the other the negative. One such
revolution, or one positive wave and one negative wave, constitute what is called a cycle, or nated by which in technical literature is designated by the symbol $=$ one sine wave. The great majority of systems have a frequency be-
tween 60 quencies are standard practice in this country and the values between are chosen for special cases. Owing to the high frequency of commer cial systems, alternators are built with more volving pair of poles, in order to keep the reAverase and
Average and Effective Values.- If we plot ordinates, with time as abscissa, we have a correct representation of the generation of alternating currents, and the shape of the wave. When the total number of lines cut per revolumains the same, the average induced electromotive force remains constant, regardless of the distribution of the magnetic flux. The effective value, however - the value read by the metre and the value which corresponds in its heating effect to the direct current value - is not

The Place of Alternating
tems. - The direct current for Current Sys550 volts, and for the lighting and power systems of the densely populated centres of our large cities in the Edison three-wire system 110 to 220 volts, seems to have become standard practice. out excessive cost radius of distribution withvolt railway system with a grounded return, makes necessary a great multiplicity of moder-ate-sized or small plants, operating at low efficomes. It is here that the alternating current can be built for collecting diremmutators (q.v.) volts, alternators can be built for 12000 volts and step-up transformers of high economy are quite possible at 75,000 to 100,000 volts. Rcmembering that the copper cost is inversely as the square of the voltage, the great possibilities of the alternating current system are at once seen.
Energy from Waterfalls.-Electrical energy from waterfalls that a few years ago were to hundreds of cities in North America. There are numerous power plants of from 50,000 to 200,000 horse-power capacity, sending currents with voltage from 25,000 to 150,000 to distances up to 250 miles. See Hydro-Electric Develop-
The Alternator.- Small alternators and hose of moderate potential usually collect their current from insulated rings mounted on the: shaft and connected to the ends of the armature: winding. Through hrushes, the current is takelt lo the external circuit. In some machines a rectifier is added for supplying sufficient undimen-
sional current to produce the necessary additional field to overcome the drop due to increase of load. All commercial alternators are supplied with an exciter, or direct current dynamo, whose function is to supply current to the field windings. The field spools are usually connected in series. The amount of current thus
necessary on a full non-inductive load varies from $11 / 2$ to 3 per cent of the total output of the alternator. Owing to the difficulty of collecting

Fig. 3 Diagram of simple three-phase alternator

Fig. 5 Diagram showing winding of a two-pole, three-

Fig. 7 Diagram showing " signs" of rotor bars under the

Fig. 2 Diagram of simple two-phase alternaior

 ary coils

Fig. 6 Diagram showing "signs" of rotor bars if there

[^0]large currents by means of brushes and of prescrving good insulation between the rings and Shaft, the revolving field type of machine is now current from the exciter being supplied through cast-iron rings mounted on the shaft, or in the case of the inductor type, consisting of an annular ring surrounding the inductor or re volving element, which consists of laminated The poles suitably spaced and keyed to the shaft. moving connections stationary, there are no or the main current of the machine. In either lype the alternating current is taken from the terminals of the windings, usually at the bottom

Pe frame
Polyphase Machines.-If two armatures, of the shaft at 90 degrees from each other, and to yolved in a bi-polar field, and each terminal be joined to a collector ring, we have two separate electromotive forces differing in phase by 90 degrees or a two-phase machine. With 120 degrees phase difference and three sets of armatures we have a three-phase winding. By prop-
erly interconnecting the three circuits, we may use but three wires for transmission, or four, in accordance with the system used. The construction of multiphase machines is similar to that of the single-phase type, excepting that in he former we have as many armatures, serie Connected, as there are phases.
In the two-phase three-wire system, the wire ries the common junctions of the phases carThe electromotive force between the outer wires is also $V 2 \mathrm{E}$, when E is the electromotive force per phase, or between either outer wire and the common return. When this system is used it is important that the load be carcfully balanced on as high as possible in order to keep the voltage on the phases nearly alike at the receiving end Single phase motors or lamps may be connected to either or both phases, but it is very important that no load be connected between the outerwires, as the effect is to badly
voltages on the different phases.

In the three-phase star connected system the line voltage is $V 3=1732$ times the voltage on the coils of the machine, or the machine voltage, which is the pressure between any one of the three line connections and the common neutral. The line current in this system is the curwindings. In the delta connection, the line voltage is the same as the voltage across any phase of the machine, while the line current being the resultant of two currents, is $\vee 3=1.732$ times the current flowing through any phase of the machine.

Energy Polyphase.- In a two-phase circuit, whether three or four wire, the energy
flowing is the sum of the products of each phase current by the phase pressure. Two wattmeter are used. In the three-phase system when $\mathrm{E}=$ volts between lines; $\mathrm{I}=$ amperes on lines; $\mathrm{W}=$ total watts output of machine, - then; whether the conncction be star or delta, the total output is $\frac{3 \mathrm{E} \times 1}{\sqrt{3}}=1.732 \mathrm{EI}$, always supposing the system be balanced. Thus the output of the
machine is not changed by changing the connections from star to delta. In the balanced three-phase system, one wattmeter will register the total output if its constant be multiplicd by
1.732 . Two wattmeters are usually cmployed Regulation of Alternators.-The regulation of modern alternators varies from 5 to 6 per cent, which means that in case the full, noninductive load of an alternator be taken off, the speed and excitation being kept constant, the terminal pressure will rise by an amount correof its full load voltage. Close regulation means a much better voltage-regulation on the system and stronger synchronizing power. A certain amount of armature reaction is necessary to of one or more machines oncrating in parallel in the attempt to preserve the same terminal voltage. The efficiency of large alternators is about 96 per cent to 97 per cent.
Frequency.- In regard to the frequency best dapted to transmission work, or to local distribution, various factors enter into the problem. At $60 \sim$ both arc and incandescent lamps are smaller and cheaper than at $25 \sim$ and motors are very satisfactory both as to low first cost, range of speed, and good starting torque q.v.). Frequencies over $60 \sim$ have been abandoned. The line drop, due to reaction, increases with the frequency: a change of frequency from $25 \sim$ to $125 \sim$ would, on the same as a rule $60 \sim$ apparatus is cheaper than that for $25 \sim$ yet the increase in polar speed often becomes difficult without increasing the number of poles to an undesirable extent, which, in 60 apparatus, may be sufficient to make nected alternators quite difficult. Sele alternators quite dificult.
duced into a circuit a magnetic ficld is is introsurrounding the conductor, the rise of which causes a counter electromotive force. This electromotive force is called the electromotive force of self-induction. The effect of self-induction the effect of inertia on a material body. It is hat quality that tends to hinder the introduction, variation or extinction of the current in a circuit. As this effect is greatest at times of most rapid change of magnetism set up by the current, alternating current circuits, it becomes a maximum when the inducing current is passing tromotive forcc of self-induction lags 90 degrees behind the current in the circuit. It also follows the sine curve provided the current flowing is sinusoidal.
In a circuit containing several impedances in series, the joint impedance is not the sum of the the square root of the total added reactances squared plus the total added resistances, squared That is, Impedance $=$
$V\left(R_{1}+R_{2}+R_{3}\right)^{2}+\left(2 \pi f_{1}+2 \pi f_{2}+2 \pi f_{3}\right)$ The joint impedance of several impedances in parallel is found as follows. Construct a parallelogram from the reciprocals of two of the impedances, each expressed in its proper will give the phase of the resultant im-
pedance and its reciprocal amount will give the reciprocal of its length. For more than two, The effect of self-induction varies with the frequency of the current supplied, and as the square of the number of turns in a circuit. The self-induction in the armature of an alternator has two effects. The first is to produce a lagging current and thus lower the terminal voltage, and the second is a demaghetizing effect. produces lines of force directly opposed to the ficld and thus lowers the voltage by reducing the total flux. The effect of armature reaction depends upon whether the current is leading or lagging in phase. A lagging current lowers the voltage of an alternator and a leading current
Capacity. - All insulated conductors have the quality of being able to hold, stored on their surfaces, a certain quantity of static electricity, and are thus condensers. The charging and discharging of an alternating current circuit causes the current to flow from the generator into the line and then back into the
generator again, with the frequency of the alternator, in order to keep up the static potential on the line. As this charging current is greatest when the rate of change of electromotive force is greatest, a sinusoidal wave of capacity electromotive force with 90 degrees tive force is produced. This leads electromoelectromotive force ly 90 degrees and is thus directly opposite to the electromotive force of self-induction. If we have a circuit in which the clectromotive force of self-induction is just equal to the capacity electromotive force, and these two parts of the circuit are in series, as in direct currents, $\mathrm{W}=\mathrm{E} \times \mathrm{C}$.
The Transformer- - The one piece of apparatus that more than all clse has made possible the electrical transmission of energy to long distances is the transformer. This is the apparatus that receives in one set of coils the it into whatever potential is desired for lights or motors, which are supplied from an entirely separate winding. The transformer consists of a magnetic circuit of laminated iron or mild steel interlinked with two electric circuits, one, the primary, receiving elcetrical energy and the other, the secondary, delivering it to the con-
sumer. The effect of the iron is to make as many as possible of the lines of force set up by the primary clurrent cut the secondary winding and there give rise to an electromotive force of the same frequency, but different voltage.
Not only does the transformer make possible the transformation of voltages, but it also permits of changing from one system to an-
other. Thus a single-phase primary may supply a three-wire Edison system, of course, with Iternating current. A two-phase system can he changed to a three-phase or vice versa; a four-wire two-phase may make a threc-wire two-phase, and many other useful combinations changing two-phase to three-phase, or the opposite, uses but two transformers. One has a ratio of, say 10 to 1 , with a tap at the middle
of its secondary coil. The other must then have a ratio of 10 to $.866=10$ to $\sqrt{\frac{3}{2}}$. One terminal of the secondary of this transformer is and the remaining free ends of hoth secondaries form the three terminals of both secondacircuit. The value $\sqrt{\frac{8}{2}}$ is the altitude of an equilateral triangle of which the base is unity, and thus we may consider the current to be
taken from the corners of an equilateral triangle, which represent, in phase and potential difference, a true three-phase system. The current in the transformer of secondary, 866 bcing the resultant of the other two-phases, is greater than under normal two-phase conditions; and,
therefore, the windings must have about 15 per cent more copper. If two similar transformers are used the secondary of each has taps giving
50 per cent and 86.7 per cent of full voltage. In many large installations, notably at Niagara Falls, we find two-phase generators feeding threc-phase lines through Scott connected stepup transformers. In small systems standard to 1 and 9 to 1 respectively, and the results will be quite satisfactory
The Induction Motor.- Acting upon the well-known fact that a copper disc cotuld be made to revolve by rotating a horseshoe magnet so that the lines of force cut the disc, Ferraris, the present type of induction have developed the present type of induction motor. The credit tating field caused by currents of displaced phase probably belongs to Tesla. At the present day the value of these discoveries in the transmission and distribution of power can hardly be estimated. The induction motor is somewhat similar to the direct-current shunt
motor. Both motors have field and armature windings. In both cases, also, the field is connected directly across the mains. In the shunt motor the armature current is supplied through brushes and a commutator to the windings, rent is an indirect current, the armature curthe primary of a transformer of which the armature is the secondary. In both motors the efficiency is inversely proportional to the armature resistance, as is also the speed regulation
of the motors. The less the armature resistof the motors. The less the armature resistance the higher the efficiency and the closer the regulation of speed between no load and
full load. In practice, cither element may be the one to revolve. The rotation is produced by the reaction of the armature, or indirect current, on the revolving magnetic ficld, which results in dragging the moving element around in order to keep up with the field flux, as it passes around the face of the primary windlings. This field, being the resultant of two or more with the polar frequency of the supplied voltage The secondary winding is made up of copper bars set in slots in a laminated iron core and running across the armature parallel with the axis of rotation. This scparating of the old copper disc into narrow bars constrains the ducing torque and avoids the waste of the unconstrained Foucault currents in the Arago dise, and thus makes the motor much more
efficient. Sometimes the secondary winding are joined to heavy short-circuiting rings a both ends, resulting in the squirrel-cage type of motor; and in other cases the secondary wind the secondary be the rotating element, and starting resistances are inserted in series to lessen the reaction due to excessive starting current and thus improve the starting torque. Whe up to speed these resistances are cut out and the terminals short-circuited as in the squirrel-cage pe.
The Asynchronous Generator.- If the ource be driven by power from an outside low in the truc synchronism, no current will or field current will be wholly made up of the wattless exciting current, just as in a trans ormer at no load. The slip, or amount by the motor speced at full oad differs synchronous speed, may be as little as 2 to $21 / 2$ per cent of the speed of synchronism in large or more. If the motor above mentioned be forced above synchronism the motor becomes generator, provided the connection to th he same amount as full load slip as a motor is reached, the generator will be giving out its full utput at the same frequency as the exciting ircuit. The possibilitic of this The Sy.
The Synchronous Motor.- The synchrogenerator mor is merely an alternating current alternators have a direct current field and an alternating current armature. The operation o a synchronous motor, when once brought up to specd and thrown into circuit, is the same as that of an alternator in parallel with one or
more alternators. When the back pressure of the motor is equal and directly opposed to that of the line no current can flow. The friction, however, causes the revolving element to la lightly behind the ine pressure, and a cur rent is driven through the motor by the generator. This current increases directly with the increased load. A good synchronous motor while always revolving at the same polar speed as the alternator supplying the line current, wil carry a load of five or six times full load bc ore it breaks out of step, and becomes prac rent which passes through such a motor on short circuit, while held down by the inductance of the windings, is yet sufficient to rapid damage the insulation if not cut off. The great advantage of the synchronous over the induc tion type of motor is that the power factor can field strength af a synchronous motor the cur rent taken by the motor may be made leading and hence help keep up the line voltage on a heavy inductive load. This is of the greatest importance in practice. It is good practice to set the field strength for a good power factor at full load. At light loads the motor is assisting the generator to maintain the required
pressure. Another advantage of the synchronous motor is that it can easily be built for very high voltage, especially the revolving field type -a 12,000 volt motor is not at all unusual
practice - thus the use of transformers may be Thene Rotary Converter. - The rotary con-
The verter is a specially designed direct-current generator provided, at proper points in the winding, with taps to collector rings, from which, if the machine is run as a motor from the direct-current side, an alternating current may be taken. Usually the alternating current
is taken from the secondaries of suitable transis taken from the secondaries of suitabie trans-
formers and supplied to the rings, driving the rotary as a synchronous motor, the direct cur rent being taken from the brushes on the com mutator. As the reaction of the incoming al ternating current about balances that caused by the outgoing direct current, the armature reaction of such a machine is very small and the
brushes can be always kept in one fixed position. If the taps from the armature are taken off at points differing 180 degrees from each other, electrically, we have a single-phas rotary. If connections are made 90 degrecs apart we have a two-phase rotary, using four armature for our taps we have a three-phase rotary, using three collector rings. By adding to the number of taps and therefore to the num ber of rings we may have a six-phase rotary The output of a rotary is greater than its out put as a direct-current generator, chiefly on and because at certain positions the current flows straight from collector ring to commutato and thus avoids the loss due to heating. The rotary converter, with its step-down trans former, is the most efficient means we now have of transforming the high tension polyphase cur current for the Edison system, and for railwa purposes. This piece of apparatus is wound cither shunt or compound, in accordance with the use for which it is intended. As in the case of the synchronous motor, the rotary is a valuable help to the central station by running the fields the current taken by the rotary becomes leading and helps to hold up the voltage of the central station in case of a heavy load of induction motors by means of the armatur reaction of the gencrators. Owing to very high commutator speeds at the higher frequencies,
rotaries are not much used on frequencies above 60 degrees. At this frequency they operat satisfactorily. At lower frequencies, however rotaries are at their best, and will stand enor mous overloads, sudden changes in load and other disturbances, with perfect satisfaction Totary is that of the peak of the sine wave of the alternating pressure, and thus a voltmeter across the collector rings would read $\frac{\mathrm{E}}{\sqrt{2}}$ where E is the direct-current electromotive force in single and two-phase rotaries. In the threephase system the ratio between the alternating commutator brushes is $\frac{\sqrt{3}}{2 \sqrt{2}}=612$. Edison system operatin Ehave to transform down to $250 \times .612=153$ volts at the secondary of the transformers. While rotaries can be started up without field, from
the alternating current side, it is not good prac ticc, excepting in certain special cases. Gen motor, synchronized, and then thrown upon the alternating current line. When a rotary is started up from the alternating current side, on closing the field switch it is impossible to tell what the polarity will be. Rotaries operate in parallel with perfect satisfaction, as a rule, sides. The storage battery is always used in a large rotary installation to ensure against any possible contingencies. On compound rotaries the equalizer must be used, just as in the case o direct-current compound generators. See Electric Machine.
A. R. Cheyney

Station Superintendent Philadelphia Electrical Company.
ELECTRIC ANNEALING, a process of annealing by the heat generated by the passage of an electric current through the body to be
annealed, or in which heat generated by a electric current is used in place of ordinary heat. The heat developed in a conductor by an electric current is equal to the product of the conductor $=\mathrm{C}^{2} \mathrm{R}$. An interesting experiment showing the fusing power of the clectric current is made in the following manner: Provide a glass or porcelain vessel containing a mixture of sulphuric acid and water. Introduce a lead positive pole of a continuous-current generator positive pole of a continuous-current generator.
Connect by a flexible wire the negative pole to a stout pair of metal pliers. When, by means of the pliers, a metal rod is immersed in the acid solution, the liquid is secn to boil near the
rod, which is brought to a dazzling whiteness in a fcw moments and presently whiteness in a fcw moments, and presently begins to the liquid or the body of the rod has not time to become hot. In a short time a temperature
of $7,000^{\circ} \mathrm{F}$. may be developed, and with a very of $7,000^{\circ} \mathrm{F}$. may be developed, and with a very
strong current a temperature of $14,000^{\circ} \mathrm{F}$. has strong current

ELECTRIC ANNUNCIATOR, a form of annunciator used in private houses, offices and hotels. They are used to call messengers, to
announce an alarm and to indicate the source of the alarm in connection with clectric bur-glar-alarm apparatus, and for numerous other purposes. In some forms of annunciator the source of the call is indicated by the movement of a needle on the face of the case opposite a given number; in others a shutter drops, disoffice. See Electric Signaling.
ELECTRIC ARC, the intensely hot bright lame that forms where an electric current also voltaic arc. It tends to curve in an are following the lines of force, hence the name. This is the source of light in an arc lamp. (See Elfciric Lighting). The lamp carbons, which constitute the electrodes, are usually en-
closed to retain the carbon vapors. The carbons have to be set at a slight distance apart, and as they burn down require to be moved so as to maintain the correct distance for permitting a good arc. In burning, the carbons create
carbon vapor, which is a conductor, and the
current flows along this vapor conductor in an arc of visible flame. If the electrodes are im current passed across the gap, the so-called current passed across the gap, the so-calle
"flaming arc" results, of varying color, accord ing to the salts employed. Vacuum tube light ing is also accomplished in a somewhat similar principle. Sce Electric Lighting and Eeectric
Furnaces- Arc Furnace
FURNaCES-Arc Furnace.
ELECTRIC AURA, a current or breeze of electrified air employed as a mild stimulan in electrifying delicate parts, as the ey
ALARM. See Electric Signtic FIRE ELECTRIC BALANCE
for measuring the attractive or an instrument of electrified bodies; a form of electrone force consisting of a graduated arc supported by a projecting plate of brass which is attached to a perpendicular column. A wheel, the axis of which is supported on anti-friction rollers and is concentric with that of the graduated
arc, carries an index. Over this wheel in a arc, carries its indcx. Over this wheel, in one end of which is attached a light ball of gilt wood, and to the other a float, which consists of a glass tube about one-fifth of an inch in diameter, terminating in a small bulb, so weighted that the index may point to the centre
of the graduated arc. The difference between the weights of the float when in and out water is known, and the diameter of the wheel carrying the index is such that a certain amount of rise or fall of the float causes the index to move over a certain number of graduations on
the arc. See Electrometer. he arc. Sce Electrometer.
ELECTRIC BATH, a solution in a vat or silver, gold etc and of some metal, as copper tive pole of a battery or dynamo. A current being passed through, the metallic salt is deposited on the negative pole, or more strictly
speaking, on the object to be plated, connected with the on the object to be plated, connected with the pole. The process is called electro-
deposition. Chemistry). The name electric bath is also sometimes applied to a hot water bath through which a weak electric current is sent, for the treatment of patients. Its therapeutic value is
questioned by many. questioned by many.
ELECTRIC BATTERIES. The electric battery is a device by which electric energy is
derived directly from chemical action. There are two types of electric batterics. (1). There are two types of electric batterics: (1) primary,
and (2) secondary. Secondary batteries are usually called "storage batteries") or "accumulators" and are discussed in another article.
The battery unit is called a "cell." The simple primary cell, or Voltaic cell, as it is often called, from its inventor, Volta, consists of two different metals immersed in a weak
water solution of some acid which will act with unequal intensity upon the two metals. The greater this inequality of action, the larger
will be the difference of electric potential between the two metals; and, as the current excited in the cell depends upon this difference of potential, the greater will be the strength
of the current. The two metals form the electrodes of the battery cell, and the solution is The chemistry of the primary cell is thus
The
explained: When a piece of metallic zinc is placed in sulphuric acid diluted with water, rinc zinc combining to form the new substance brought about a certain that his may be must be obtained to complete the combination, and as neither the acid nor the zinc can supply it, it is taken from the water lying next to the zinc, and which is thus decomposed - the hydrogen formerly in combination with the clingen being set free in little bubbles which cover the zinc and slow down the formation of zinc sulphate until it nearly ceases. If now Strip of copper be placed in the same vessel, but
not in contact with the zinc, the conditions rcnot in contact with the zinc, the conditions re main as they were; but if the ends of the pieces are leaned copether so as to touch above th are leaned together so as to touch above the
water, the chemical action is vigorously renewed, but the hydrogen bubbles now appcar on the copper. The action of the acid upon the zinc so reduces its electric potential that when contact is made with the copper an electric current immediately moves to restore the elecchemical action - the formation of zine sulphate - is free to go on, and thus the cycle continues until the zinc has been entirely transformed into sulphate. And all the time the tinually procecding the dectric current is conIf, instead of tipping the two metals in the cell If, instead of tipping the two metals in the cell
until they touch, a metallic conductor is placed so that one end tonches the zinc and the other the copper, the current will traverse the whole length of the conductor; and this conductor may be cut and a machine inserted, so that the passing current may be made to expend part to flow from the zinc anode to the copper cath ode within the battcry. Outside of the battery the current flows through the conductor from the copper toward the zinc. From this external movement the copper has reccived the negative pole positive pole and negative pole.
The force
The force or pressure which causes the (commonly abbreviated to E.M.F.). It should be understood that the words "current") and a liquid are not used in the same sense as with a liquid like water. A bctter understanding is carrying a high pressure of steam. When a valve into an empty pipe is opened, the pres sure of steam in the boiler is transmitted to the further end of the pipe. In this case the steam fills the pipe carrying the pressure with it. In the case of the electric current passing along a conductor only the pressure (E.M.F.) is material substance.

The electromotive force of a cell is dependent to a large degree upon the kind of acid used to dissolve the zinc. When the two plates are immersed in other acids than sulphuric, a conof electric potential set up in the cell, and it is to be borne in mind that it is upon this differ ence that the strength of the current depends
The electric energy produced or released by a The electric energy produced or released by a
cell depends on the number of pounds of zinc
and acid consumed in the formation of zinc sulphatc. The zinc is the battery fuel and is oxidized just as coal is oxidized in a furnace.
The sulphuric acid does not dissolve the zinc The sulphuric acid does not but dissolves the oxide as fast as it forms, thus making the action of the cell continuous.

If a simple cell is put in circuit with a galvanometer, it is observed that the current gradually diminishes in strength, due to the film of hydrogen bubbles which adhere to the If the bubbles are brushed away, the current resumes (nearly) its former strength. It becomes necessary then to establish some mechanical means of removing the hydrogen or to use some chemical substance in the cell which wil combine with it and so remove it as fast as it
forms. Mercuric chloride is sometimes used forms. this purpose. In the bichromate cell the oxygen of the bichromate seizes upon the hydrogen and combines with it to form water. In the Leclanche cell the depolarizer is manganese dioxide. Another method of avoiding polarization is a cell construction which admits of using
two separate liquids, the metal on which the two separate liquids, the metal on which the
hydrogen collects being placed in a solution of some chemical which combines with the hydrogen as it forms.
Another phenomenon which affects the strength of current passing through a ccll and thence through the conductor which connects the two dry poles of the battery is what
called "resistance." This is of two kinds or divisions: internal and external. The former is that within the cell itself - the metals and the liquids; the latter in the outside conductor If this conductor is of some substance wh:cl has a low degree of electric conductivity, like lead; or cuen if of high conductivity, like
copper, but is very long, or of very small cir copper, but is very long, or of very small cir move along it very sluggishly, as if being held back by some obstacle - a resistance. Thi has the effect of slowing down the chemical action in the cell, and the result is what is termed a "weak current." With a short and comparatively large conductor of a high degree duced to a minimum. The internal resistance of a cell is increased by polarization, as already mentioned, and this is remedied by using a depolarizer. The internal resistance may also be further reduccd by giving the metallic com-
ponents large areas and placing them quite close together, making the travel of the current through the electrolyte as short as possible.

Primary electric batteries are classified a wet batteries and dry batteries. In the firs group liquids are used as clectrolytes; in the second, chaldicas wish for long time take the place of electrolytes.
WET BATTERIES.

Wet batteries are divided into one-liquid batteries and two-liquid batteries. The former are those which contain one homogencous elec-
trolyte; the latter have two distinct electrolytes, and the cell is usually divided into two parts by a porous cup which contains one of the metallic electrodes and one of the electrolytes.
One-Liquid Batteries.- Among the prin-
cipal one-liquid batteries now in use for
economic purposes and in general laboratory
work are the following. ork are the following: plate hung between two zinc of a platinum trolyte of dilute sulphuric acid. The platinum plate is roughened by an electro-deposit of platinum, forming a surface to which hydrogen bubbles will not adhere. The platinum is often substituted by silver, which, however, is A variation of this cell has a grid platinum. rods instead of the platinum plate the surface of the rods being made hydrogen-proof by carbonizing o. 1 them jackets of velveteen.
Bichromate, consisting of a zinc plate suspended between two carbon plates, which are gripped together at the top above the jar. The electrolyte used is a mixture of separately pretassium bichromate. With this cell the pinc plates have to be raised out of the electrolyte when the battery is not in use, to prevent continuous chemical action, and therefore waste of ergy.

Leclanché has a solution of sal-ammoniac into this dips a zinc bar in one corner of and square glass jar. The other pole is a bar of carbon within a porous jar, the space within being closely packed with a mixture of manganese dioxide and powder coke. The whole is immersed in the electrolyte. The oxygen escaping from the dioxide prevents polarization of the cell, and the porous jar prevents
the oxygen from reaching the zinc, while opposing no barricr to the passage of the clectric current. This cell is useful only for intermittent work, such as ringing bclls and buzzers. Harrison.- The negative (internal) pole or
cathode is a rod of hard lead around which is cathode is a rod of hard lead around which is compressed a jacket of lead peroxide. The of a very thick tumbler which is supported by an amalgamated copper rod running down through it and riveted in the centre of the bottom. Around this rod the tumbler is partly filled by pouring in melted zinc amalgam. The electrolytc is dilute,- sulphuric acid, or a
solution of potassium bisulphate, or of sodium solution of potassium bisulphate, or of sodium
bisulphate. This is a very powerful battery. Caustic Alkali or Copper Oxide Cells. This type of cell was introduced in 1881 by Lalande and Chaperon, France. Their cell consisted of a glass jar, in the hottom of which the oxide of copper was contained in an iron cup; the rinc plate was supported in the solution of
caustic potash by a wire, from the cover of the caustic potash by a wire, from the cover of the
jar. To prevent the carbonic acid gas of the air from combining with the caustic potash, the solution was covered with a layer of petroleum oil. This cell has undergone many modifications at the hands of Edison, Gordon and others.

Edison Primary Battery.-An oxide of copper battery. The elements employed in it are zinc and black oxide of copper. The solu-
tion is of high grade caustic soda, in the proportion of 25 parts of caustic soda to 100 parts of water. The initial electromotive force of these cells is .98 volt; on closed circuit, 0.7 volt. Their internal resistance varies with the size of the nlates from ohm to .02 ohm.
The capacity of these cells, as commercially
constructed, ranges from 50 to 600 ampere vours. The oxide of copper cell has the ai use, inasmuch as the continued reduction of metallic oxide from the oxide of copper in creases the conductivity of the plate; in prac tice, however, a film of metallic copper is deposited in advance on the copper oxide plate The containing resistance at the start.
The containing vessel of the Edison cell is a porcelain jar having a porcelain cover, through
which the connecting wires or rods of the plates enter the cell. The copper oxide plate is obtained by roasting copper turnings, which are then ground to a fine powder and mixed with 5 to 10 per cent of magnesium chloride. The oxide is then molded into plates, which are held in a copper frame in the cell, as at cc, Fig. 1; this frame being attached to the cover of the the zinc plates, one on each side of the copper oxide plates. Batterics of the oxide of copper

FIG. 1.- Edison Oxide of Copper Battery.
type are extensively employed in connection with spark coils for gas-engine work, and for numerous other purposes requiring continuous batteries. They can also be used as open circuit batteries
Gordon.-A copper oxide cell used exten-
ively sively for working fire, police and railway sig-
nals, and of cconomical use anywhere though designed for closed circuit work it does well also on open circuits. The outer jar is of glass, porcelain or enameled ware, with a cover of the same matcrials, or of tin, or compressed fibre. A perforated cylinder of tinplate is suspended in the centre of the cell by an iron rod. This cylinder is filled with black of the cylinder at equal distances are attached three L-shaped lugs of porcelain which support a heavy zinc ring, and at the same time insulate it from the tin cylinder. The clectrolyte is a solution of catustic soda, and the surface or the cell is covered with a layer of heavy
of the caustic. As commonly used these cells esc six months' service before rencwal is nec essary. iiquid - Liquid Batteries.- Although the onepolarizing have proved to be adequately nonpain a hold on the market two-liquid cells rethem there is a large demand.
Daniell, an annular vessel of copper in the Dottom of a jar is piled with crystals of copper sulphate, and within it stands a jar of porous The enware in which is suspended a zinc bar. phuric acid or sometimes, zinc sulphate The electrolyte in the outcr jar is a saturated Solution of copper sulphate. This is a closed circuit battery which has been used extensively for telegraph work.
the Gravity, a cell with the same components as The Daniell cell, but without the porous jar sheet copper spreading its legs over the bot tom of the jar. This copper form is completely covered with crystals of copper sulphate, o sometimes there is a perforated copper disc laid upon the spider and the copper sulphate is jar is hung a thick seven-toed crowfoot of zinc-from which this form of cell is often called the crowfoot battery. The electrolyte is of dilute sulphuric acid. A concentrated solution of copper sulphate will soon occupy the the light of the jar, and above it with floa ever, some zinc sulphate solution - with, howtions meet.
ity chotto, a cell in all respects like the Gravity cell, but with a flat mat of cloth stuffed copprand or sawdust fitted snugly above the Copper sulphate to keep the two solutions quite way signal work in spite of the fact that its internal resistance is very high - from four to Six times that of the Gravity cell
Fuller, the approved ccll for telephone work consisting of a carbon cathode hung in a depolarizing liquid, a combination of dilute sulphuric A porous inner cup or potassium bichromate. the zinc anode and a little mercury is placed in the bottom. The electrolyte in the porous cup is usually pure water; occasionally a very hittle sulphuric acid is added.

Grove, a cell consisting of a hollow cylinder a strip of platinum. The electrolyte in the porous cup is strong nitric acid, and in the outer jar is dilute sulphuric acid. This cell is used chiefly in laboratory work.
cell Bunsen, a cell very similar to the Grove forexcept that has a bar of carbon in the

> DRY batteries.

The ordinary commercial dry cell is viris in the form of paste instead of a liquid. It is, therefore, not accurately a dry cell but a moist cell. It is made inside of a cup or Cylinder of sheet zinc which forms the anode. sorbent pulpboard or layers of blotting paper which are saturated with the electrolyte, a convol. $10-7$
centrated solution of sal-ammonac. Through the centre of the cell runs a carbon bar constituting the cathode, and around this is packed the depolarizing paste. The composition of this paste is a trade secret, cach manufacturer havstood that the absolutcly essential ingredients and their usual proportions are as follows manganese peroxide, 100 parts; powdered coke, 80 parts; vitrified graphite, 20 parts; sal-ammoniac, 20 parts; zinc chloride (30° Baume), 7 parts. Other ingredients which are known dextrine common the composition are glucose, hichloride, hydrochloric acid and plaster of Paris.
After the paste is firmly packed in nearly to the top, the lining is foldect down upon it, a thin layer of sawdust is laid in, a snug collar is spread on; and upon this is melted in the is spread on; and upon this is melted in the cells place next to the zinc, instead of the pulpboard lining, a prepared paste of flour dextrine and gum tragacanth, with possibly other ingredients.
A strictly dry cell is made in the same way of dry materials withont moisture. This cell is the wetting by making the carbon bar hollow and perforating its sides. The end is closed with a rubber cork. When the battery is wanted for use, the cork is removed and water poured in. These absolutcly dry batterics are made par-
ticularly for shipping long distances across the ocean, as in the Egyptian and African trade. (See Electric Storage Batteries). Consult Cooper, W. G., 'Primary Batteries: Their Theory, Construction and Use' (London 1916); Schneider, N. H., 'Modern Primary Batteries' (London 1905).

ELECTRIC BELL, any bell made to ring cuit. Common forms are here an electric cirfamiliar design has two electro-magnets, paralel and in serics, having at their extremity a vibrating armature in close proximity pivoted between them; fixed to this armature is a clap-

power, and frequently a single coil of wire, wound around an iron core; a vibratory armature, pivoted at one end, is arranged to operate the clapper.
hown colls are used in the electric door-bell description see Electric Signaling.
ELECTRIC BLUE-PRINT MAKING, a modern process of wholesale photographic printing by the aid of machinery, the electric
light and the blue-print (q.v.). One of the light and the blue-print (q.v.). One of the best machines is continuous in its operation,
and is fed by the operator with great lengths of and is fed by the operator with great lengths of tracings and blue paper in much the same man-
ner as the washerwoman feeds the wet clothes into a wringing machine. The large wooden drum, around which the tracings and printing paper pass, is moved either by a connection with the shafting or ly an electric motor mounted on the apparatus, the specd of the drum being regulated by a device shown on the
top of the machine. A traveling apron of top of the machine. A traveling apron of in the printing frame of the ordinary type, and as it is under tension at all times, it ensures an even and close contact at all points. This apron is wound on a small drum at the top and after passing along the large drum where the contact drum below; after the printing operation has drum below; after the printing operation has the upper drum. In the rear of the machine are three arc lamps with reflectors, which concentrate the light on the tracings which, with the exposed prints, drop out into the box in front. The blue paper may be kept in a roll
ready for usc on the upper front part of the ready for usc on the upper front part of the
machine, or may be fed in small sheets with the tracings where the work being done is of ordinary sizc.
The machines are made in two widths, 30 and 42 inches; the apron supplied with them
is 70 feet long, and prints of this size can be made as readily as smaller ones where it is desired. The ability to make prints of this size greatly enlarges the sphere of usefulness of the blue-print.
ELECTRIC BREEZE, a breeze or stream of par point.
ELECTRIC BURGLAR-ALARM. Sec Electric Signaling.
ELECTRIC CABLE. Sce Electric Unlerground Cables and Conduits.
ELECTRIC CALL-BOX SYSTEM. See Electric Signaling.

ELECTRIC CANDLE, a modification of the arc form of clectric light, in which the carbon pencils are parallel and separated by a 1877 by Jablochkoff, a Russian engincer. This invention is noteworthy as having revived an interest in electric illumination. See Eiectric Ligiting.

ELECTRIC CLOCKS. See Clock.

ELECTRIC CONDENSER, a construction for accumulating electricity, through the effect of mutual induction between conducting plates, as of tinfoil, separated by a dielectric,
as of oiled paper; or some similar device as a Leyden jar. When an insulated conductor is
charged with electricity by friction, a battery or other source of electromotive force, it will excite or "induce" in any neighboring conductor
a charge of electricity. If the electricity in the a charge of electricity. If the electricity in the
first body be "positive," that induced in the neighboring body will be "negative." Thus, in neighboring body will be negative. 1 , which A and 13 are metal plates
Fig. Feparated by air, glass, mica or other insulating
material, if A be charged by the positive material, if A be charged by the positive pole of battery b it will induce a charge
of negative electricity on the plate B. Such of negative electricity on the plate B. Such
an arrangement of plates is termed an elecan arrangement of plates is termed an elec is one of the most useful instruments employed in multiplex, printing, automatic, wireless and other systems of telegraphy. It is also indispensable in telephony and has found a field in electric light and power circuits. The electricity held or "bound" in the plates is termed
static electricity. The quantity of or "charge" accumulated at the plates is equa to the product of the electromotive force of the charging source by the "capacity" of the condenser. In fact, however, what the condenser holds is electrical energy, which, when
discharged, is given up as work and heat. The discharged, is given up as work and heat. The pounds) thus stored up by the condenser is

$\left(\mathrm{K} \times \mathrm{E}^{2}\right) \div 2.712$, where K is the capacity of the charged condenser in farads, and \mathbf{E} is the shown that the charge of a condenser rests on opposite sides of the dielectric, and that in charging the condenser as much electricity leaves plate B as enters plate A. The capacity of a condenser varies with the distance between
its opposite plates, being greater the nearer they its opposite plates, being greater the nearer they
are together, and increases with the surface of the plates. The capacity also varies with the insulating material or dielectric used to separate or insulate the plates. The property of dielectrics to which this so-called inductive effect is due is termed specific inductive capacity. The ingly imparts to conductors is termed electrostatic capacity, or "capacity." The inductive capacity of air is taken as the standard. Air being unity, the specific inductive capacity of paraffin is about 2 ; vulcanized India-rubber, 2.94; gutta-percha, 4.5 ; mica, 5 ; flint glass, 6.5 10 10. The Leyden jar is a wcll-known type of
condenser. The most common form of concondenser. The most common form of con-
denser is generally constructed of many sheets of tinfoil, separated by thin sheets of insulating material, such as paraffin paper, mica or glass; the alternate sheets of tinfoil are connected together metallically at their ends as indicated in Fig. ${ }^{2}$.

In making a condenser for radiography, the and durable, and also much lighter than oil-
immersed types. Photographer's negative glass, tinfoil and shellac are the materials. The foil
should be cut to the required size $(6 \times 8$ inches is convenient) and carefully smoothed to take out all wrinkles. The glass should be cleaned out all wrinkles. The glass should be cleaned covered with the foil, and rolled or "squeegeed" so as to be perfectly smooth. In assembling A plates lugs should be placed between them. A unit may be made of 10 plates which are
bound together with wire or suitable tape, and immersed for one hour in a bath of equal parts of hot melted rosin and beeswax, then allowed to drain and dry. This gives a condenser unit thoroughly moisture proof, with a capacity of .01 microfarad, which is suitable
for the ordinary half-kilowatt wircless transformer for the standard 200 -metre wave-length. It is good practice to make four such units, placing two multiple sets of two in each series; out altering the capacity. They may be mounted in sulstantial open-side wooden boxes to protect he plates from injury.
ELECTRIC CONDUCTIVITY, the property that a substance, as a metal, pos-
sesses of conducting an electric current, that Sesses of conducting an electric current, that
is of permitting a current to flow more or is of permitting a current to flow more or
less readily: called also conductance. It is less readily: called also conductance. It is
the opposite of electric resistance. All the metals possess some degree of conductivity and some degree of resistance, iron being conspicuous in presenting an almost equal degree of
these the following talle of comparisons that silver is the best and mercury the poorest conductor.

Metal.	Electric resistance in Microhms at $\mathrm{O}^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Relative } \\ & \text { Electric conductivity, } \\ & \text { Mercury }=\mathrm{I} \text {. } \end{aligned}$
Silver.	1.52	66
Copper	1.61 2.08 2	62 48
Aluminum	2.94	34
Iron.	${ }_{9.82}$	10
Mead...	1985	5
Mercury	99.74	1

ELECTRIC DIRECT CURRENT, as distinguished from the alternating current, is
so-called because of the fact that it travels in one dircetion along a conductor. If this conone direction along a conductor. If this con-
ductor joins the terminals of a source of energy, as a dynamo, the current is said to rom the positive pole of the machine along the Probably the first man to detect current clecricity was Galvani about the year 1786 . To credit of first developing a practical electrochemical cell. In the year 1800 Volta exhibited a cell known as the "Voltaic Pile," consisting of a serics of discs, copper and zinc, alternately separated from each other by a cloth saturated with brine; on joining wires to the by touching with the tongue or moistencd fin ger the two terminals simultaneously. This simple device was the starting point of all the electro-chemical batteries of the present day. With the discovery of Volta of the laws of wherence of potential between diffcrent metals electrolyte in contact or joined by a fluid many varieties of cells, all on the same very ciple; yet even now, the two metals he chose,
zinc and copper, constitute the elements of the Daniell cell very frequently used for telegraphic purposes. The changes which would readily suggest themselves in Volta's first cell would
be, increasing the amount of corroding liquid and placing the clements, zinc and copper, in a vessel which would properly contain the fluid.
The theory as given by Gore of the electro-
chemical cell is as follows:
"The essential cause is the stored-up and ceaseless molecular energy of the corroded metal and of the corroding element or liquid
with which it unites, while contact is only a static condition; and chemical action is the process or mode by which the molecular motion of these substances is more or less transformed into heat and current.)
The electromotive force of chemical generators is small, rarely exceeding two volts per cell. This necessitates a large number of cells
connected in series; that is, the positive terminal of one connected with the negative terminal of the adjoining cell, the electromotive force thus produced being the product of the electromotive force of one cell by the number of cells. By connecting the two positive and
the two negative terminals of two rows of cells, an increased quantity of current can be obtained, at the potential of one row. The first method is called joining battery cells for intensity, and the second for quantity. It is known that the energy generated in a chemical cell is produced by the consumption of zinc. The cost of this energy must necessarily be high, a
both the zinc and the chemicals are expensive so that the use of current electricity was quite limited until the introduction of the dynamo electric machine, which might be called the mechanical method of transforming energy from some source, such as a steam-engine, into current electricity, as contrasted with the chemica
In the year 1831 Faraday discovered and an-
nounced the principle of electro-magnetic innounced the principle of electro-magnetic inmight be called the commercial generation of current electricity. The principle discovered by Faraday, which forms the basis of all dynamo
electric machines, is that if a wire is moved in a magnetic field, so as to cut the lines of force, a current will be generated in the wire, and it is upon this principle that all dynamo electric machines depend for their action. The converse of this law he also announced, namely, that when an electric current is applied to the dynamo by some external source such as a bat
tery or another dynamo, the machine will fur nish mechanical power. Hence a dynamo elec tric machine may be considered either as a generator or as a motor.

All dynamos consist of two essential parts, one, the field magnet, which is usually stationary, and the other, the armature on which the
copper conductors are mounted and which recopper conductors are mounted and which re-
volves on a shaft between the poles of the field magnet. This armature is so arranged as to cut the lines of force flowing between the magnetic poles. The limes of force are imaginary lines flowing from the north pole to the south pole of any magnet. They can easily be traced net and sprinkling on this paper iron filings.

If the paper be covered with mucilage the fil ings will maintain a permanent position so that they may be studied at the leisure of the student.
The field magnets may be made of steel, magnets made of soft iron over which a coil of wire is wound carrying a current of electricity which induces magnetic lines in the iron It is to be noted that if the ends of the mag net are bent in the form of a horse-shoe, the
lines will be intensified by the reduction of the air space between the poles, and as the amount of current induced in the wire depends amount of current induced in the wire depends induced will be greater, the greater the strength of the field magnets.
Considering first the ideal simple dynamo:
This would consist of a single loop of wire This would consist of a single loop of wire poles of a magnet, placed horizontally, each poles of a magnet, placed horizontally, each which in direct current machines is called a commutator, and is mounted on the shaft outside of the poles, and insulated therefrom. If the loop is placed at right angles to lines of volved through 180 degrees, each side will pass through the whole number of lines of force flowing between the poles which will induce a current in one direction in the loop. If the rotation is maintained in the same direction during the next 180 degrees, the loop will cut the the lines of force will be passing through it in he opposite direction to that in the first case. This will induce a current which will be in the opposite direction from the current induced hrough the first half of the revolution; so that the current will be pulsating, first in one direction If the collector or commutator be cut into two halves parallel with the shaft and the ends of the loop be connected one to each half, and if a pair of brushes be supplied to collect the current, one above and one below the commutator, then when the loop is vertical the brushes will change contact from one end
of the loop to the other, and as no current is hen being generated, the change is made without sparking and current flowing in the same direction continuously can be obtained from the brush terminals. During the moment of changing from the one contact to the other, the circuit is momentarily opened or interrupted. ector, were it not that the brushes are placed at a point at which the current is practically zero. This is found in practice to be slightly in advance of the theoretical neutral point on account of lines of force being dragged
To advance from the ideal simple d
the next step is to reduce the air gap between he poles of the field magnet and concentrate the lines of force in the effective space. This is accomplished by placing an iron core on the armature which in the first place reduces the magnetic resistance of the air gap and thus in-
creases the number of lines of force through he armature conductors, and also serves as a support for them. Other machines were built with shuttle wound armatures, the arm-
ature consisting of an iron shuttle cut out with grooves longitudinally to take the conductors. These were usually wound with a number of turns of copper wire, the ends being Electric Alternating Current Machinery). The next step was to add to the number of coils on the armature so that during each portion of a revolution some part of the armature conductors would be doing maximum the ideal generator, at right angles ade the first coil, the capacity of the machine will be doubled. This complicates, to some extent, the collector rings and may necessitate the opening of the circuit when current is flowing so as to cause sparking and burning of the brush. A machine adapted for generating small currents as the sparking at the brushes would be otherwise very destructive to the commutator. Machines of this type are known as open coil.
The next important step was made by Gramme and Pacinotti, which was to close the coils with themselves so as to form a con-
tinuous circuit in the armature and connect one collector section to each coil at its junction with the next one, the number of sections being the same as the number of coils. In the fourcoil armature, the current generated can either pass to the collecting brush directly, or when it moves out of position so that the contact is current can flow through the armature coils to the same brush if necessary, and when that coil passes from one polar position to another and is giving current of opposite polarity this current can flow directly to the other brush, and so continuous current is generated. There is
also no point at which the circuit is There may be a slight sparking as the section moves from the brushes, but violent sparking is reduced as there is always another path for the current to flow to either brush.
The drum armature is distinct from the ring armature in that the wires are wound on the This type is frequently called the "Siemens" armature on account of the number of successful machines built by Siemens. Of the whole number of lines of force passing between the poles and through the core, there are very ew lines passing in the inside, they being diverted by an iron core so that they pass through
the wires on the outside of the core; the conductors inside of the core are thus of little use, their only function being to complete the circuit and carry current between the successive turns on the outside of the core; so that by winding the wires on the outside surface only, the amount of idle wire is reduced, the only necting pieces at the ends.
The Gramme ring was use
arly machines for the reason that it afforded means for easier mechanical construction, and machines of this type were generally successful, on account of their simplicity. Pacinotti dewheel. In this way the air gan to a gear armature and pole pieces could be reduced somewhat, resulting in an increased number of lines of force. It also afforded an additional
support to the coils and added to the mechanstrength of the machine.
To be considered next are the field magnets: there are a number of constructions which may stecl magnet which consists of a bar or bars of steel bent to the shape desired, tempered and magnetized. The method of magnetizing these maguets consisted of placing them in contact The preser magnets or with an elcetro-magne bar present minod would be to insert the sted in a short time carrying a heavy current and The dynamos built with permanent steel mag th of this type are what is known as magneto lynamos. The chief objection to this form o as onet is that a steel magnet cannot be made ized sized or, as it is commonly called, excited from permanent magnets were used, but a great step advance in dynamo design was to arrange the magnet poles so as to be self-excited. A portion of the current generated in the armacore is sent around the coils wound around At first, however, magnets were substituted Consisting of soft iron upon which was wound coil of copper wire, the current for energizing hese pole picces being first supplied from mall magneto generator or a voltaic battery Sometimes the machine will not generate on cite the magnets and it is necessary to excite hem from some external source so as to give the initial strength to the magnets and allow them to build up from the current gen erated in the armature. It is usualy found
that there is sufficient residual magnetism left in the iron of the field magnets, after the machine has once been in operation, to start he current in the machine and properly build up the fields
In regard to field windings, two distinct ypes are used: (1) the series winding, in which all the current generated in the armature passe around the field poles and thence out to the line portion only of the current is used in the ield, the connection being made across the main terminals of the gencrator. In the firs case the wire on the field windings is necessawhic large so as to carry all the current 10 ond case it is a small wire of many turns the product of amperes and turns being about the same in either case. In another design, bot a shunt and a series winding of a few turns is mployed, constituting a compound winding. the will be scen that in the first case, that o pend ncluding the resistance of the armature the field winding and the external circuit. In a machine of this type the voltage or pressur mencrated will vary in proportion to the de mands. This is the standard winding for the series arc machines used for city lighting, such as the Brush and Wood types. In the case of in the field coil depends upon the pressure beween the generator terminals, so that with an increased output and consequent loss in the
armature the voltage will fall off slightly, thus reducing the field strength. This necessitates some means of varying the field current so as to maintain a uniform pressure at the gener-
ator terminals. This is usually accomplished by means of an external resistance in the field circuit composed of German-silver or iron wire which can be varied by means of a switch-hear so arranged as to cut out certain portions of this resistance step-by-step and so increase the current through the fields, thus preserving a uniform voltage.

In a combination of series and shunt windings commonly called the compound type, as is a greater flow of current through the series windings and consequent increase of magnetic strength of field so that it is possible to compensate for the loss due to the resistance of th voltage at the generator terminals. The voltage as well as the output of the dynamo depends upon the strength of the field magnets the magnetic permeability of the material and the rate at which the lines of force are cut by the armature conductors, so that the higher the dynamo. In the early machines very high speeds were common, armatures of small diam eters being employed. These were objection able for mecharlical reasons so that the design was changed in order to increase the number of pole pieces. poles, it was arranged so com greater number of poles could be used, this type of machine being known as the multipola dynamo. As each conductor would pass between a number of poles during each revolution the speed could be proportionally reduced The dynamo, as previously stated, is a machine for converting energy in the form of versa, so that a motor is a machine for convert ing energy in the form of electricity into mechanical power. The early types of motor were based on the principle that a magne would attract the opposite pole of another mag net, and if one set of magnets is arranged on a
wheel, and the other stationary, the movable magnets will be drawn around. To make thi effective it will be necessary to interrupt th forces at what might be called the dead centre so that the wheel would have continuous motion. This is accomplished by either introduc ing a screen, or, more satisfactorily, by the use
of electro-magnets with a movable contact so that the magnets are energized intermittently allowing the whecl to revolve in accordance with impulses reccived from the magnetic poles When we consider the dynamo as a motor the current supplied to the terminals may take two paths, one through the armature and the
other through the field coils. The field current energizes the pole pieces, and the current traveling in the armature is similar to another mag net inasmuch as a coil carrying the current will be attracted or repelled by a magnet according to the direction of the current through the coil, so that the wire will be forced around by at-
traction and repulsion. By considering the effect of the commutator the motion is seen to be continuous. When the armature starts to revolve the conditions then existing will be
similar to the armature in action as a dynamo, and an electromotive force will be generated in site direction to the incoming current. This is what is called the counter electromotive force of the motor, and will tend to reduce the amount of current which will flow through the armature conductors. It is, therefore, evident that when a motor is started there will be a rush of current through the armature, as the
resistance is very small, and as there is no counter electromotive force while the machine is not in motion to check the flow. For this reason, in the direct current motor it is necessary to introduce an external resistance into the armature circuit to hold back the current which would flow, until the machine approaches full
speed. The resistance is then gradually reduced until full speed is obtained. The effect of this counter electromotive force when the resistance is cut out entircly is materially to assist the self-regulating qualitics of the machine. Any load applied to the motor would by also reducing the counter electromotive force and allowing more current to flow through the armature, tends to kecp the speed from falling much below normal in the shunt motor. Motors can be built either with a plain shunt field winding or with a series and shunt winding, depending on their requirements. The of the current through the armature. To reverse the rotation, therefore, it is only necessary to reverse the current in the armature, leaving field connections as they are. If the current is changed in both field and armature, the result would naturally be that the machine
will continute to revolve in the same direction as before.
To reduce the speed of the direct current motor it is only necessary to add resistance to the armature circuit so as to limit the current flowing therein, and by so doing almost any deup to full rate of speed. There are a number of other methods by which variable speeds can be obtained, one of them being by varying the field strength. Any motor, however, operating at a lower ficld or armature current than normal conditions would require is naturally operating at reduced power. On account of the valuable features in relation to speed control,
reversibility and the atumatic speed control inherent in the shunt machine, together with the large torque of the series machine, the direct current motor fulfils more nearly than any other the practical requirements in machineshops, textile mills and general manufacturing Ftablishments.
For electric railway work, in which the direct current is employed (sce Traction, Elec-
TRIC), the compound wound generator and series motor is the usual standard practice. Often this type of generator is overcompounded so as to more than overcome the drop through the armature resistance and allow higher voltage at full load than at no load, so
as to overcome, in a way, the drop of potential as to overcome, in a way, the drop of potential
on the feeders and prescrve the uniform voltage over the system. In lighting and power work the shunt and compound dynamos are
both used. (Sce Efrectric Ligiting). And
in the business centres of our large cities where the direct current is generally used, the rotary converter fed from a high tension alternating with storage battery Direct current wi
the carlier installations of electric distribution in preference to alternating current, for the reason that the direct current motor was developed before the alternating current motor; tages in their ability to be operated advanspeed from slow speeds up to the at any speed for which the motor was designed, and also permitted the use of storage batteries directly connected to the system, thus ensuring continuity and reliability of service.
The shunt and series motor each has its own starting torque and rapid acceleration powerful essary the series motor is used, as in the case of street railway, electric locomotives, electric cranes; and on steamships where the direct Kurrent alone is used, as on the Kentucky and Kearsarge, of the United States navy, not only is electricity used for lighting, but also for
operating ammunition hoists, hoisting anchors, operating boat cranes, and even the steering gear of the ship itself.
In machine-shops and manufacturing estabhishments where a more or less constant speed may be required, and in elevator work, the comployed. The shunt motor is very well adapted for operating at any speed desired, and for machine tools it is at present without a peer for Un efficient and casily regulated source of power. Unlike the scries motor, where the speed varics
with the load, the shunt with the load, the shunt motor is practically a lines it rapidly comes up to normal speed, and then from no load to full load will not greatly deviate therefrom unless purposely thrown to a slower point by the controller. As a series motor would run away if left in a circuit with a sometimes the compound (which is used in order to preserve an absolutely uniform speed from no load to full load, and is necessary in few places where absolutely constant speed is required) is the standard motor for driving textile machinery in large mills, factories and other establishments
quirements of the consumers, as it is of the requirements of the consumers, as it is available
for motors of any size; for lighting; for chemical action, such as charging storage batteries or in electro-plating; or for electric heating.
of With the large increase in the requirements of indlividual consumers, the advantages of
direct current over alternating current are not direct current over alternating current are no
as important to-day, for the reason that trans lating devices have been simplified so that alternating current may be converted, without serious difficulty, into direct current, for any special requirements.
Second Vice-President and Chief. Engin, Second Vice-President and Chicf Engineer,
The Philadelphia Electric Company. ELECTRIC DISCHARGE,
of electricity, whether slowly and silently more quickly and violently, from any receptacle or generator.

ELECTRIC DOOR-BELLS. See Elecric Bells; Electric Signaling
ELECTRIC DRILL, a drill for metals or rock worked by an electromagnetic motor
For metals a cating or percussive action, is imparted.

ELECTRIC EEL (Electrophorus electricus), a great eel inhabiting the marshy belongs to the llanos in South America. It Plectospondyii (q.v.), and with a few allied species is distinguished from all other eels by the partial coalescence and modification of the anterior vertebrex. It is remarkable chiefly for
the great size of its electric organs, which consist of two pairs of longitudinal bodies between the skin and the muscles of the caudal region, divided into about 240 cells and supplicd by more than 200 nerves. The eel can discharge sufficient electricity to kil an animal of conwhen in full vigor, to knock down a man and benumb the limb affected, in the most painful manner, for several hours after communicat ing the shock. By frequent use of this faculty of ecomes impaired, and a considerable interva erties According to Humboldt the natives of South America make use of horses in taking the electric eel. The animals are driven in a body into a stream or pond where the fishes abound, and the latter, having exhausted their stores of lectricity by repeated attacks upon them, are
then casily taken. The horses are sometimes so then casily taken. The horses are sometimes so and are drowned. Specimens of the Electrophorus electricus are reported to attain the length of six or seven fect, but ordinarily they are about three and one-half or four feet long See Electric Fishes
ELECTRIC EGG, an ellipsoidal glass vessel, with metallic caps at each end, which may an elatric machine actior on it after a vacuum an electric machine acting on it

Electric Elevators. Sce EleTORS.
ELECTRIC ESCAPEMENT, a device actuated by electric impulse which intermittingly strains the motion of the escape-wheel and re-
sta a pulsative motion -acting in fact, in the place of a pendulum.

ELECTRIC FARMING. The greatest agent for the advancement of agriculture is
electricity. It is the emancipator of the toiler. A motor of even diminutive dimensions accomplishes more work than a man-at less expense - since the power developed by the human machine is the most expensive that man ises. In supplanting manual labor, electricity has a most appreciable effect upon agriculture,
due to the fact that agriculture requires great labor with a minimum of skill. In reducing manual labor ly the use of electricity, the farm operatives, with the exercise of but little mechanical knowledge, may direct the operations of numerous large electrical units and accomplish an aggregate of work that would be tions.
In the installation of clectricity on the farm,
it is necessary, however, that the farmer -
user of many and infinitely varied implements of the co-operation of the engineer; taking advantage of the skill and experience of the latter in adapting the new method to his needs, in
order to increase the production of his land. order to increase the production of his land.
Rural industry in general must look to the Rural industry in general must look to the
enginecring profession more and more for the enginecring profession more and more natural resources through the medium of electrical energy. Industrially considered, the farm is a large user of power, but the sources from which it is derived are at present uneconomic and inadequate in comparison with industrial standards gaged in gainful occupations in the United gaged in gainful occupations in the energies to agriculture. In addition, upward of 90 per cent of all the horses and mules in this country are devoted to farm labor. The sub-
stitution of clectric power, therefore, for even stitution of clectric power, therefore, for even
a small proportion of the work of farm animals a small proportion of the work of far
will result in great national cconomy.
There is so form of service that can supplant manual and animal labor on the farm or country estate as expeditiously from every standpoint, considering expense and convenience, as electricity, and it will be found superior In steam or to any internal combustion engine. able to supply the three necessities - light, heat and power-from one and the same source. Due to this fact, hours of labor on the farm or in rural communities may be regulated, as are those of the manufacturing and commercial inmunities may be made attractive as much or more so than that of the cities, where the struggle for existence is incessant, and living accommodations - or what corresponds to home life-fall short of the pleasant and healthful surroundings of the countryside.
The giant industrics of the country are of but they now surpass any branch of the agrarian pursuits. This is a condition readily explained, due to the employment of the services of the traince engincer to the advantageous upbuilding of the great manufacturing industries. On the trics, and the most basic - has been neglected, even to the point of being abandoned in many places.
The machines and implements of use on a farm are manifold-ploughs, rollers, reapers, fodder cutters, wood saws, pumps, horse and sheep clippers, and apparatus for unloading and hoisting hay, corn fodder and like products. Another phase of farm life in which a great saving of labor is effected by the use of electricity is in the operation of washing machincry, and laundry appliances, none of which could well be served by any other agent than electricity. Besides the preceding partial enumeration of the possible applications of electricity, for power, the electric energy - supplied to its motors cither from an outside source or from its own ce
Where connection cannot be made with a should have his own generating station, which
may be operated by water, steam, gas, gasoline oil or windmill power. Where a streann runs through a farm, or is in the neighborhood,
cheap power, both as regards first cost and cheap power, both as regards first cost and
operating expenses, may be derived from this operating expen
natural source.

In generating
In generating the current by steam power, Somewhat better results may be obtained with a gas-producer plant, which, instead of burning the coal in a steam boiler and using the steam for driving the engine, burns the coal gradually in a producer, generating gas for operating the
gas engine. Gasoline,
the same principle as the gas engines work on of the internal combustion type. Great strides have been made during the past decade in this type of engine, so that it operates with an economy and
tle attention.

Another source of energy for the generation of elcetric current for farm and country residences is the windmill. The early ${ }^{\circ}$ Dutch windmills were built with sweeps of from 50 to 100 fcet in diameter, while our modern Amcrican feet, but gencrate more power than the to 18 typc, with less attention.
All of the above primary powers may be connected to the electric generators by belt, gearing or couplings, and their control may be regut little attention tain matters in their operation of course, cerhas shown to be of advantage. For instance the greatest quantity of energy being required for the daytime, and the load for illumination being small and wanted principally in the evening, it is therefore not profitable to operate the use of the storage battery is therefore of treat service in supplying electric energy at periods of small demand, when the gencrators are shut down. In connection with the storage battery, and with the development of the low-voltage he maintenance, the cost and sizc, as well as reduced by proper engineering.

The great advantage, in which lies the superiority of a farm operated by electricity, is on the fact that the farmer has at all times under his drea control the entire supply of public service enterprise or suplied by his individual plant.
Electric farming, while in general use in Germany for the past 20 years, has recently made rapid strides in the United States, particularly in the West and on the Pacific Coast, where central station enterprises encourage the There are, however, to be found in the State of New York several notable water-power installations on farms. For instance, there is a 100 -acre farm near Oriskany Falls, Oneida County, N. Y., devoted to hop raising, mixed farming and dairying, on which has been in-
stalled a 17 -horse-power hydro-electric plant, supplying electricity for lighting the farm huildings and for operating various electric motors. The power-dam, of timber-crib construction, is 36 feet long, raising the water four fect, is carried on heavy concrete sills cast in a
2×1.5-foot ditch dug across the stream bed. A row of 12 -inch flash-boards held erect by chains dropping the pins removable by a capstan above the crest of the dam. There is also provided a supplementary 40 -foot spillway, its crest being slightly higher than the main dam, per mitting the discharge during heavy floods. A downstream to the power-house, where 17-horse-power turbine wheel has been installed 12.5 kitlow, by means of belt drive, operates a 12.5 kilowatt generator at 1,100 revolutions per minutc. The power-house is 12×16 feet in size The drainage area of Oriskany Creek at the point utilized by this plant is 14 square miles, ficient to drive the plant at full load under the avalable head of six feet. The distance from the power plant to the farm buildings is 1,700 feet, the current being carrice on an aluminum wire stretched on 20 -foot poles, 100 feet apart.
From the power generated, practically every bit of machinery on the farm is operated, comprising a circular saw, machine lathe and drill press, vacuum cleaning system, adapted likewise for the operation of the milking machines in the 25 -stall cow-house, a cream separator, churn, grindstone, ventilating and cooling fans,
electric iron, sewing machine and electric iron, sewing machine and pump. In tric heaters are operated, maintaining a constant temperature of 75° throughout the winter. Engineering estimates place the cost of the entire equipment at about $\$ 1,800$ - dam, power-house, line and equipment-but in its efficiency it is
worth many times this sum. worth many times this sum.
is the installation of a rural central much abroad ble of supplying a number of farms; local industrics and country estates with electric generated by steam, water, pupplied with power the co-operative feature resulting ine, oil or gas, ing in the production of electric energy An example of the service supplied by a single central station in supplying a farming community may be seen in that of Lottin, Germany. Here a water power of 300 horse power is utilized. However, during certain seasons of
the year, when the water is low, a steam gencrating set of 180 horse power is put into use to keep up the service. It is obvious that this supplemental power may be pressed into use at any time, should the demand for power exceed the capacity of the hydro-clectric station. tion is 82 miles long. The electric energy is used on 61 farms, including rural industries, and five villages, a total of 24,700 acres. Altogether, 102 consumers are served, these having some 150 motors with a total of 1,500 horse power, the lighting equipment comprising 4,850 the consumption amounted to 440,000 kilowatt hours. There are 50 farms, with an acreage varying from 60 to 1,800 acres per farm, under cultivation by the plough, with a total of 275 horse power in motors, 1,200 incandescent lamps
and 20 arc lamps. Of these farms, 12 contain and 20 arc lamps. Of these farms, 12 contain with a capacity of 122 horse power. 12 motors In order to give in concrete form of electric energy necessary on a farm, the fol-
electric farming

1 Portable Motor Driving Corn Sheller
owing figures from a 100 -acre farm are given. It is assumed that two-thirds of the product re of a stalk nature, and that the live stoc consists of 3 horses, 10 cows, 15 swine, etc. Th gures are an average, taken farms. It is also electric energy for power pu poses is 5 cents per kilowatt hour, which is reasonable figure for current used for pow purposes only, when purchased from a public ervice corporation.
he average amount of water consumed on 100-acre farm is as follows: for the house cattle, from 12 to 15 gallons per head; for wine and sheep, 1 to $2 x / 2$ gallons. For pumping ,000 gallons to a tank elevated 35 feet, the power necessary is about one-eighth kilowa our, so that the yearly average energy for $\$ 4$.
For a threshing machine of the smaller size, capable in 10 hours of threshing, cleaning and sacking, ready for the market, 80 to 200 bushels to 5 electric horse 160 to 240 are required. Fo to 7 horse power are necessary; and from 300 o 800 bushels, from 10 to 20 horse power are required. The energy required for the various products to be threshed and cleaned, per 100 ushels, is, for rye, 25 ; wheat, 22 ; oats, 19 ; 22 barley, 21 kilowatt hours, or on the ave ate $\$ 0011$, per hushel. If hay-baling machines are attached to the thresher, from four to six additional horse power are required. Fodder cutters, varying from one to two horse power, consume 1.8 kilowatt hours per 100 pounds of fodder, costing $1 / 16$ cent a curt, and pounds of cut beets, etc., the total cost annually for the energy used to operate the fodder machines is 50 cents per head
One of the by-products of cotton-seed or linseed-oil mills is sold as meal or as cake, and Such a machine often has a capacity of from 2,000 to 3,000 pounds per hour. The average amount of food per head of cattle is from 2 to 3 pounds per day, which amounts, for 10 head, to about 9,000 pounds per year. The cost 25 cents per year for each animal
cents per year
As grain per day per head to 3 pounds of are 10 altogether in the 100 -acre supposition, a motor-driven grain-crusher is required, capable of crushing some 9,000 pounds per year. This might be prepared at one operation by a large ing from 3 to 5 horse power, according to the size of the mill employed, will do the work conveniently. To grind 100 pounds costs $\$ 0.03$ for the energy consumed, or for the 9,000 pounds, $\$ 2.70$ per year
For rimning the cream separator, a small motor of about one-fourth horse power can three-tenths of a kilowatt hour, at an expense of $\$ 0.011 / 2$. As the average production for 10 cows is amout 30,000 quarts per year, the yearly
cost of operating the separator is $\$ 1.50$. cost of operating the separator is $\$ 1.50$.
average conditions, requires from one-fourth to
one-half horse power, as also does the butter kneader, and the cost is negligible.
A washing-machine, including wringer, oping complete $\$ 165$, is used 260 hours per year or some 5 hours per week. As other work may be done by the woman operating it, her time amounts to but 65 hours during the year The machine turns out three washes an hour and the total expense of the whole 780 washe every expense including overhead charges, and the same applies to the figures for the following machines.
A horse-groomer, costing $\$ 75$, operated by a one-horse power motor, cleans 4 horses in 36 or 2,190 groomings, and requires the services of but one man. The cost amounts to $\$ 72.93$, o $\$ 0.031 / 2$ per horse per grooming.
A cream-separator having a capacity of 1,350 pounds per hour is operated by a $11 / 2$ horse power motor, and costs complete $\$ 30$. It 237,900 pounds of milk at a cost of $\$ 88$, or $\$ 0.037$ per 100 pounds.
A butter churn having a volume of 300 gallons and a capacity of 100 gallons per churning operated by a 2 -horse-power molor, cost $\$ 118.50$ It is operated 88 hours per year, churning 15,000 pounds of butter at a cost of $\$ 36.60$, or $\$ 0.002$ and working the butter ready for packing. A root-cutter with a capacity of 6 tons of turnips an hour costs $\$ 26.30$, and is operated by a 2 -horse-power motor costing $\$ 86$. It is used 52 hours per year, principally during the winter months, cutting 300 tons of beets turnips at a cost of $\$ 35.94$, or $\$ 0.119$ per ton.
A fodder-cutter, having a capacity of tons per hour of dry fodder, costs $\$ 128.10$, and is operated by a 10 -horse-power motor costing $\$ 118.50$. The outfit is used 88.70 hours per year, and will cut 180 tons of fodder at a cost
of $\$ 54.85$, with one operative, at a cost of $\$ 0.30$ of $\$ 54.85$,
per ton.
Onc of the means by which the farmer may secure his electricity at a low rate is to make his consumption as nearly uniform as possible during the whole 24 hours. The cost of clectricity is based on the cost of fuel or water
power, attendance and the amount of capital nvested in the installation, including generator and transmission system. It will be seen that if all the farmers on a line demand electricity during the same few hours of each day, larger and more expensive machinery must be installed or its generation than would be necessary tricity were spread over a greater part of the day.
Consequently, by using power for food-chopping, meat-grinding, dairy purposes, wood-sawing, cooking, washing and general purposes uring certain hours of the day, light for morning and evening, and pumping water for ine household during the night, the farmer may, under the direction of a central station, so consume his electricity that it may be generated at the lowest cost possible.
It is the custom of the central station concerns to deliver electricity to the consumer's premises,
where usually the user installs his own distributing system through his house, barns, etc.,
inasmuch as the majority of farmers can as a rule afford to buy their own machinery, par-
ticularly the smaller sizes. In the case of large installations, however, a number of method may be availed of to secure the benefits of such machinery without its outright purchase, usually through the co-operation with the central station concern. Many such enterprises are only too wire installation on the frnic motors, and make wire installation on the farm premises - for
both light and power - at a small yearly rental or on low instalment payments. In conscquence, the farmer may have the cost of his machinery spread out over a number of years, the saving far more then manual and animal lahor being far more than sufficient to pay for the invest-
ment. He will eventually become the owne of the equipment, the while making a handsome profit through its use. It has already been demonstrated that farm efficiency can be ac complished in no way more advantageously than through the extension of the use of electricity the farm
ELECTRIC FIELD, any space wherein
ELECTRIC FIRE-ALARM. Sec Electric Signaling.

ELECTRIC FISHES, several quite unrelated fishes which possess several quite unproperty of communicating an electric shock to animals with which they come in contact. The organs which are the source of this power hav been much studied by both anatomists and physiologists. They are in all cases - with the
possible excention of Malapteriusus - formed by the modification of muscular tissue, and consist of a mass of numerous closely packed prisms, each divided into a series of compartments filled with a gelatinous substance. One surface of the fibrous discs thus formed receives a rich nerve supply and is electrically negative,
the opposite surface being positive. The entire organ may therefore be likened to a group o voltaic piles. Among the Elasmobranchii (q.v.), many of the skates possess rudimentary electric organs, which reach a high degree of development in the torpedo and an allied genus (Hypnos). In these two gencra the
organs occupy a large area on each side of organs occupy a large arca on each side of
the head and the prisms are arranged vertically and are supplied by large nerves, four pairs of which arise from a special electrical lohe of the hinder part of the hrain, while a fifth is a branch of the trigeminal. In the elecNile, and some allied species, the entire body is enveloped by an electric layer beneath the skin and the muscles. In the clectric eel (q.v.) and all other electrical fishes the organ is placed by the side of the tail and the prisms are disposed longitudinally. Not alone in structure but in the phenomena of rest and activity these or-
gans bear a striking rescmblance to muscles, gans bear a striking rescmblance to muscles,
which also normally exhibit weak electrical currents. ELECTRIC FLUID THEORY. To ex"theory of electric fluids." as it is called, is as follows: That every body contains an indefinite quantity of an imponderable subtle fluid,
that this fluid is composed of two fluids which are self-repulsive but mutually attractive. When a body is in its natural state, the two fluids are act of electrification consists in the forcible separation of the two fluids, whereby one is diffused over the body rubbed and the other over the rubber, one kind of electricity never appearing without an equal quantity of the other. This theory, however, must be regarded as a mere provisional conception, and not
proved scientific truth. See Electricity.

ELECTRIC FURNACES. These furnaces are devices for localizing the heat of an elecare devices for localizing the heat of an elec
tric cuit and utilizing it. In the usual technical use of the term it signifies a device or receptacle in which a comparatively high temperature is developed for the purpose of effecting a chemical reaction or producing a change
of state in the substance to be treated such fot instance, as the reduction of an ore, the formation or disruption of a compound, or the fusion or volatilization of a metal or compound. Electric furnaces comprise means for developing the necessary heat at the point or points desired
and for subjecting the material to be treated and for subjecting the material to be treated, ence of this heat. The several types or classes of electric furnace will be briefly described according to the principles employed. The heat devclopment in any given portion of a circuit is proportionate to the resistance offered to the passage of the current; hence those portions of the circuit external to the furnace proper are current well, and generally of copper or aluminum, whercas the resistance of those portions of the circuit in which the heat is to be localized is relatively high. These latter portions of the circuit may consist of gases, in which case an are is formed and the localization of the heat boiling points, in a state of fusion, when an clectrolytic effect, to be hereinafter more fully referred to, usually supervenes; or of solids such as platinum and other difficultly fusible metals, carbon, graphite and carbonaccous mixtures, or such bodies as the oxides of the alka-
line earths which become conductive when heated. These three classes of furnacc, wherein the heat is localized in a gas, a liquid and a solid, respectively, may be convenicntly designated by the terms arc furnace, electrolytic furnace and incandescent furnace, although as will appear it is not always easy to apply one or
another of these names to the actual constructions. Although electrically developed heat is relatively costly, the fact that it can be locally applicd, within the interior of the charge if so desired, is an important advantage, and the its use represents a real often so complete that its use represents a real economy. The heat
lost is that which is carried from the furnace by the escaping products of the reaction, and that which is conveyed by radiation, convection or conduction, from the walls, the electrodes and other exposed portions of the structure. Inasmuch as the exposed surfaces of a furnace are rollghly proportionate to the square of its
dimensions, whereas its capacity varies as the dimensions, whercas its capacity varies as the
cube, it is evident that, other things being equal, the larger the furnace the less will be the
percentage of total heat which is lost and the
greater will be the efficiency. This indicates the employment of large units. It is always pos
sible to reducc the expenditure of electrical energy by making use of heat otherwise generated, such heat being employed for raising the temperature of the charge previous to its introduction into the electrically heated zone, or for heating the exposed surfaces of the furnace structure in order to check conduction from are conducted, as, for instance, those in which calcium carbide is produced, often yield gaseous products which are not only themselves very highly heated, but are capable, by combustion, of further heat development. It has frequently been proposed to utilize this heat by conducting charge or by burning or around the incomin the furnace, but the greater complexity of the structure and the difficulty of purifying the large volume of dust-laden gas constitute prac-
tical difficulties of a serious nature.
The Arc Furnace.- When an electric are is formed in air between carbon terminals there of are which can be maintained with length current strength; furthermore this limit, which at first increases almost in proportion to the current strength, increases very slowly as the current density reaches higher values. The The temperature of the carbon terminals may attain $3,500^{\circ} \mathrm{C}$., at about which point, under atmospheric pressurc, carbon volatilizes. The temperature of the incandescent gases of the are is perhaps a thousand degrecs higher. It
follows that the arc furnace, in its simplest form is adapted particularly for subjecting small charges to extremely high temperatures, and its value for experimental work is apparent. For use upon a commercial scale it is generally necessary so to distribute the heat from the arc that a comparatively large body of the charge may be acted upon at a given time. This result
may be accomplished by establishing a plurality of arcs in adjacent portions of the charge, by exposing the charge to the heat radiated rom causing several arcs not in contact or by moving the charge through or past the arc. The temperature of that portion of a charge which is in immediate contact with an
arc may be practically that of the arc itsclf and are may be practically that of the are itsclf and
is uncontrolled; the operations for which this is uncontrolled; the operations for which this are relatively few The high temperatures which the electric furnace is capable of producing have opened a new field to chemistry, but in order to insure the formation, in theoretical quantity and in a state of purity, of many compounds, a carer te is tures are carable not only of aitainable temperatures are capable not only of giving rise to ncw
combinations but also of breaking them down, resolving them into similar bodies or even into their elements. A single instance of the importance of heat regulation may be ofered: If a mixture of sand and coke be cautiously heated in an electric resistance furnace a partial reduc-
tion of the sand occurs, and a product containing silicon oxygen and carbon and known as "siloxicon" is formed; at a somewhat higher temperature the reduction is complete and there
results an amorphous body having the essential composition of carbid of silicon and technically perature ranges this amorphous body passes into the crystalline carbid of silicon "carborundum," a compound approximating in hardness the diamond itself; and at still higher temperatures, approximating those of the arc, this carborundum is broken down, its silicon escapes as a vapor, and its carbon remains in the form of
graphite. The effect of high temperatures upon reactions is twofold: in the first place the velocity of the reaction is increased, so that chemical changes which at lower temperatures occur slowly or not at all take place rapidly or even with explosive violence; in the second lished and the chemical clements, entering into that combination which, under the circumstances, is the most stable, sometimes give rise to compounds not before known. To produce a given result, however, it is usually necessary
to work within definite temperature limits, and to work within definite temperature limits, and since the heat of the arc cannot well be con-
trolled, it is necessary to govern the temperature of the charge by limiting the duration of its exposure to this heat. As alove pointed out, this may be accomplished by moving the arc through or near the charge or by moving the charge through or past the are, the duration of contact being so adjusted to the quantity of
charge and to its specific heat as to bring it to the desired temperature. As a rule, however the arc as a source of heat is both wasteful and inefficient.
The Electrolytic Furnace.- When a direct current of sufficient volume is caused to pass through a molten salt not only will the salt be maintained in fusion hy the heat "eveloped by that is to say, it will be decomposed in such manner that one of its component parts, which may be a metal, will tend to accumulate at one electrode, while another component, which was before in combination with the metal, will appear at the other electrode. The electrode at molten bath, and at which the negative or nonmetallic portion of the compound appears, is called the "anode," while the other clectrode, which receives the positive or metallic element and at which the current is considered to leave the bath, is designated the cathode. fhus if traversed by a dirct current, the nerative element chlorine will appear at the anode and the metal sodium at the cathode. If the substance of either electrode be such that the element liberated in contact with it can combine with or dissolve in it, the corresponding compound or solution will be formed: if, for instance, the anode of carbon and a cathode of molten lead, chlorine will be evolved at the anode and escape from the bath, while sodium, dissolving in the lead, will yield an alloy from which the metal sodium, or its hydroxide caustic soda, may be obtained. In electrolytic furnaces also it is cssential carcfully to regulate the temperature,
not only because an unnecessary high temperature means a waste of energy, but because of losses arising through volatilization of the bath and the recombination of the separated prod-
ucts of the electrolysis. So important is thi last factor that in certain cases, as, for instance molten caustic soda, it is absolutely essential to the success of the process that the temperature be maintained within limits of a few degrees only.
The Incandescent Furnace. -This term is commonly applicd to those furnaces wherein the through a body which initially at least is solid Such body may comprise a rod or core of carbon or corbonaccous mixture; a granular bed or core consisting of fragments of cokc, retort carbon or graphite; the charge itself, often admixed with a quantity of carbon sufficient for conductive and possesses a volatilizing point sufficiently high to permit the necessary temperature to be attained; or a pyroelectrolyte that is to say, ant oxide or mixture of oxides which is normally non-conductive or substantially so, but which while remaining unfused above the normal of carrying the current. Each of these resistance materials possesses its ad vantages for particular lines of work, but al have in common the advantage of permitting accurate and ready adjustment of the temperaThese incandescent furnaces current passing the widest applicability, and in case the resistance material used is carbon the maximum temperature attainable is probably not inferior to that of the terminals of the clectric arc. The above defined types are not always sharply disproceeds under two or perhaps all three of methods. Thus if the resistance consists of fragments of carbon, the current may traverse the interspaces in the form of minute arcs and if this fragmentary carbon be commingled with a suitable ore or compound there may be present also an electrolytic effect; the primary
fusion of an elcctrolyte is often accomplished by means of a resistance rod connecting the electrodes, or this fusion may be accomplished by the arc. Furthermore a given furnace structure is often capable of either mode of operation according to the character of the charge ence thereto. The most important as well as the most characteristic applications of the electric furnace have relation to certain elements and compounds which cannot be produced directly, if at all, by other means. See Electrochemistry; Electrochemical Industries.
Commercial Furnaces.
furnace employs a continuous core of coke between the electrodes. This core of broken coke constitutes the resistance, and a high temperature is obtainable. The material lor making the carborundum is finely divided coke, sand and sawdust. These being packed around the
core, the current is turned on at about 200 volts pressure, and when the furnace heats this may be reduced to less than half the voltage. The coke core changes to graphite and the mixture into crystalline silicon carbide in from 30 to 36 hours. The great Acheson carborundlum furand 42 feet cross section. For electrodes caron rods two feet long and three inches diameter are grouped in bundles of 60 . The resisting
core of coke is nine feet long and two thick a furnace horse power are required to run such a furnace, and the product is about one-quarter
pound oi carborundum per kilowatt hour There is a considerable by-product of graphite and the principle of this furnace is made use of in the manufacture of graphite, for which there is an increasing demand.

For the manufacture of calcium carbide furnaces with carbon electrodes are employed Or electrode may be formed of a mixture of broken coke and lime in a crucible, while a carbon or a set of connected carbon rods may constitute the other clectrode. Alternating cur rent is usually employed. An are being formed, bines with some of the carbon, forming carbon monoxide, which gasifics and passes away leaving the pure calcium to unite with the remaining carbon as calcium carbide. A temperature of about $2,000^{\circ} \mathrm{C}$. is desirable for the process, though calcium carbide can be formed at a considerably lower heat. The King furnace TRIES.
A similar type of furnace answers for the manufacture of phosphorus; the materials supplied are phosphoric acid and coke. The phosphorus comes ontit as a vapor and is caught in a phosphorus may he made continuously by providing means for feeding the furnace with new material and carrying off the product.
In the aluminum furnace a continuous current is employed, the positive electrode being at the top, so that the current may pass downward
through the fused mass to the negative electrode, which may be of either iron or carbon. The liquid is thus electrolyzed on the wet principle. The metallic oxide alumina is fed into a fused mass of fluoride of aluminum and sodium (cryolite, $\mathrm{Na}_{3} \mathrm{AlF}_{6}$), the fluoride being alectrolyzed. The oxygen uniting with carbon the bottom, and may be drawn off through a tap-hole, the process being continuous. Over $150,000,000$ pounds of aluminum are annually produced by electrical furnaces in the United States, and large factories have recently been
built at Whitncy, N. C. The electric furua

The electric furnace has been tried for smelting a great varicty of ores, with many insuccess in smelting zinc ores concerns announce nace, one being at Kcokuk, Iowa, where there is cheap hydroelectric power. It is practically certain that within a few years there will be where electricity is obtainable in large guantity at low cost
The smelting of iron ores in an electric furnace was begun in Italy, where Captain Stassano patented a furnace in 1898, and by 1900 ferroalloys were being produced commercially, and made in electric furnaces, of which 114 were known to be in operation and 30 building in different countries just before the European war of 1914. Of these 14 were in the United France and the majority in Germany, Anstria, do not pretend to compete with the great blast furnaces in cheap production of iron and steel,
but their product is superior in the case of mand for known exact percentage, and the deing, the future of the electric furnace is assured. As the cost of clectrolytic iron becomes lowered there is a tendency to introduce the furnaces or commercial iron in regions where coal is scarce, as in California. There are large deare liable to become of commercial importance when electrolytic reduction is better developed, as they have the advantages of cheap oil as a reducing agent.
The first electric iron-making furnace at thesta, Cal., was completed in 1907, being of duction furnace. It had to be rebuilt and
dit rebuilt again, and was not deemed a commercial success until 1911. The furnace proper is a

Steel shell 27 feet long, 13 wide and 12 high. is especially adapted to refining molten metal. The bottom slopes toward the tap-hole which is It is built in sizes up to 15 tons capacity, somecentrally placed in front. There are five 24 -inch thing like a great steel converter, having an
stacks, extending 15 fect above the roof. Cylin- enormous steel tank, mounted on rollers and stacks, extending 15 fect above the roof. Cylindiameter and four feet long. They last about 30 days, but the working is made continuous by fastening a new one to the stump of the one partially consumed. Thrce service transformers supply threc-phasc current at 40 to 80 volts to the electrodes. They are each 750 kilowatts, and
are water-cooled and oil-immersed. The metal ise water-cooled and oil-immersed. The metal is not necessary to shut off the current during the charging, so the operation is continuous. The charging is done by cars, running to a platform at the level of the tod of the shafts. A normal charge is 500 pounds of magnetite iron
ore, 140 pounds of charcoal, $31 / 2$ pounds of
well-burned lime and $121 / 2$ pounds of quartz watt year, the cost of these items and for consumed electrodes is $\$ 6.87$ per ton of pig iron product.
New electric furnaces under construction have an average capacity of $41 / 2$ tons. A 25 ton furnace and another of 22 tons wcre comthe war broke out. In 1911 Germany produced over 60,000 tons of clectrolytic iron or almost as much as all other countrics combined. The United States production is now (1916) nearly as large. The Heroult furnace, developed in France, is the most popular type and is used in
California, South Chicago, Worcester and other places in the United States. The first Swedish furnace was the Kicllin, which was superseded by the Rochling-Rodenhauser, and tipped sideways for pouring. Onc of these has -ilowatts, furnished by a 25-cycle current at 480 volts.
The success of the electric furnace in the iron and steel industry is due to the fact that the product of these furnaces is much purer ing the blast furnace product has heen vastly improved in purity. Pure iron is essential to making alloy stecls with a known percentage of this or that other metal, required for produtcing certain results. For further details con-
sult 'Electric Furnaces for Making Tron Steel,) issucd by the Burean of Mines.

ELECTRIC GAS-LIGHTING, a metho of igniting illuminating gas by which one or a ously by an electric spark. In the figure a simple form of electric gas lighter is shown. A
 metal tongue t, insulated from the burner, is supported near the tip as indicated. A metal rod carried on suitable levers
brushes across the tongue t when the knob k is pulled down, thereby closing and opening, as it docs so, an electric circuit which includes the rod r
tongue t, lattery b, of two tonguc t, battery b, of two
or three dry cells, and a spark coil m, consisting of a bundle of iron
wires surrounded by a coil of copper wire. A wires surrounded by a coil of copper wire. A the reopening of the circuit a spark occurs at longue t igniting the gas. For lighting the gas
jets in large halls an electric circuit is carried from one jet to the next and two terminals of the circuit are upheld over the gas tip. The spark jumps across from one terminal to the other when the spark coil or static machine is operated, thereby igniting all the jets in the circircuit are arranged in multipterminals of the
ELECTRIC GENERATOR. See Elec Machinery. Fiectric Didect Cuting Current Machinery; Electric Direct Current
ELECTRIC HEATER. If a wire of more or less resistance is wound on a frame, and a by the current develops heat, and this is the principle of the electric heater. The hot wire or metal is surrounded by some non-inflammable substance that is a good conductor of heat, as porcclain. In a well-known type a metallic paint is fired upon mica strips, which heater can be built up of any sets, so that a units. For heating an clectric car some six
sets of conducting wires are coiled around sets of conducting wires are coiled around
porcelain tubes, the current being supplicd with porcelain tubes, the current being supplicd with
the motor. The cost is stated at about 60 cents a car per day. The method of heating is wasteful where the source of heat is coal, and it cannot be generally substituted for house heating; but it is excellently adapted for small in-
dividual heaters, where the cost is less importdividual heaters, where the cost is less importles, saucepans, dinner plates, soldering tools, oasters, dishwashers and cookers. The industry of manufacturing such small heaters already
runs into several million dollars annually in the United Statcs. A recent new use for the clectric heater is the stimulation of petroleum wells that are running dry. Heating coils are lowered into the well to melt out the heavy oil he manufacture of armatures flow frecly. In the mantifacture of armatures, time has been re-
duced by the use of electrically heated ovens to dry out the moisture. The temperature can be regulated so accurately that there is no danger of melting the solder. In enameling iron the electric heater has also found a field of usefulness, because it maintains a high and unicaused the manufacturers of linotype machines
to make an electric heater for their meltin pots.

ELECTRIC INDUCTION. See Induc TION.

ELECTRIC LIGHTING. In 1800 Si Humphry Davy discovercd that if two pieces o electric current, and such pieces momentarily touched together, so that the circuit is complet and a flow of current established, upon thei separation for a short distance, a flame is emit ted, and, if the current be sufficiently powerful become intensely hot and emit a brilliant light. In separating the carbon points, the extra potential induced by the self-induction of the circuit is sufficient to leap the small air gap and thereby vaporizes a small quantity of carbon. Carbon vapor, being a conductor, allows the high resistance, and therefore it is heated to a high temperature. In 1809, Davy exhibited his are light before the Royal Institution of London, his carbon points being charcoal from the willow, and his source of current a voltaic pile. We
We do not know in which direction an elecare many reasons for believing that it flows both ways at the same time. It is usual, however, to assume that it flows in one direction only, namely-from what is called the "positive pole" of the generator, through the exter-
nal circuit to what is called the "negative pole." According to this view, when a negative pole." ous current flows between two slightly separated carbons so as to form an arc, the electricity tears away particles of carbon from the positive negative and deposits some of them upon the burned in the passage, so that both carbons waste away; but the positive carbon wastes the faster and becomes hollowed cut, while the negative one wastcs less rapidly and assumes a to melt th. The temperature is high enough fint, platinum and the diamond points emit the larger portion of the light, and the positive point more than the ncgative. The resistance of the arc may vary from 1 to 100 3 to 10 amperes, and a minimum electromotive 3 to 10 amperes, and a minimum electromotive
force of 40 to 50 volts, to maintain a satisfactory lighting arc
Davy used wood charcoal for his electrodes, and while they were of excellent quality, on account of thcir softness they lasted only a short time. As the arc would burn away, it was necessary continually to adjust them, or the essary to have carbons of sufficient density to last a reasonable time, and purity so that the ight might be steady. Also to have a mechanism automatically to feed the carbons, and keep hem a constant distance apart, as well as auto he are Refined oregether in order to star coke, or lamp black is now taken for the has material, thoroughly ground and mixed into stiff paste, dried and carhonized out of contact is the air. A very hard and uniform carbon length ohtained. in any desired size, the usual

7/10, $1 / 2$ or 56 inch. Broadly, the lamps may each system into two sub-divisions: the open and the enclosed
The electric energy loss from the point of generation to the lamp may be expressed, $\mathrm{W}=$ CR; where W is encrgy in watts, dissipated as R is in conductors, C is current in amperes, and K is resistance of circuit in chms. loss is in proportion to the square of the cur rent, so long as R remains constant. Therefore, in distributing electric energy to a number of arc lamps, it is more economical to keep the curseries. Tw.
Two types of lamps were evolved to meet the conrent at a constant quantity (1) the differential lamp; (2) the shunt lamp. In the differential lamp, the current must remain at a a pair value. The main curres is carried to wound in opposition thereto, is a coil of high resistance called the shunt magnet, the terminals of which are cut around the arc itself. When current is thrown into the lamps, the main curpotential is potential is obtained at the arc to force current
through the shunt magnet, which neutralizes the main magnet, therely securing a balance, and maintaining the potential at the arc constant. In the shunt type lamp, the shunt magnet circuit is so arranged as to trip the clutch holding
the carbon rod, thereby allowing the carbons to come carbon rod, thereby allowing the carbons to are excecd the predetermined amount. This lamp will burn upon any current strength, providing it is cnongh to operate the main magnet. series lamps arc: (1) As the carbons burn away, they must be fed down gradually and not certain voltage. (2) Should the carbon rod stick, or anything happen to disarrange the amp, protective deviecs called cut-outs come into operation, so the lamp will not be burned
up, or the circuit opened. These open types of up, or the circuit opened. These op
lamps are now practically obsolete.

The Enclosed Arc.- The open arc was Superseded ly what is called the enclosed arc. by a narrow, nearly air-tight globe, it greatly modified the character of the light and the carpreventuld last much longer. The small globe prevents the air from having access to the carlamp is started, it soon exhausts the oxygen contained in the globe, and if the globe is tight, the carbons will last from 80 to 175 hours.
This type of lamp held the market for some This type of lamp held the market for some
years and then the flame arc lamp became popuducing This was based on the principle ore introcreased flame arc, somewhat as the Welsbach mantles increase the luminosity of a gas-flame. Calcium chloride, and the oxides of iron, titanor less surcess. In the making of the carbons (which are commonly of petroleum coke dies and dried), the metallic oxides are cither mixed with the mass or introduced in a metallic core. An increased voltage is required, as
he electrodes are drawn farther apart to get ong flame; in some forms, as the magnetite permanent knob of copper, while the upper negative electrode carries the mineral salts. Such lamps give a large body of arc or flame and do not burn a crater in the carbon, but
consume a comparatively flat surface when diconsume a comparatively flat surface when di-
rectly opposed. In one form two carlons are employed, positioned like the sides of a V. The quantity of vapor given off by the flame are lamps necessitated an open globe at first, but later it was found possible to draw out the Glowers and Vapor Lamps.- The Nernst Glowers and Vapor Lamps.- The Nernst of carbons it cmploys what is known as a glower, this being a little tube, something over an inch long, and made of the oxides of thorium, zirconium, yttrium, etc., mixed with a binding paste and baked into a condition resembling porcelain. This tube is coated with On passing a current it emits a soft white light. The glower has to be heated to start it, and a coil called a heater is provided for the purpose, here is also a ballast or resistance to avoid overheating. Aiter the lamp glows it provides switched out. These glowers are of about 50 candle power and when more light is demanded, several glowers are included in one lamp. The life of a glower is about 600 hours on direct circuit and 400 on alternating current, thus far outclassing the arc lamps. They are made for both 110 and 220 volt circuits.
A distinct advance in durability and long life een scored by parts of an electric lamp has lamps, in which a long tube is exhausted of air and then supplied with a small quantity of metallic vapor, as of mercury, which lights up emitting a very soft diffused light, that does not rouble the eyes with its glare, as is the case with most strong lights. The Cooper-Hewitt mercury vapor lamp was first tried out in 1903 , at the office of the Evening Post, in New York, and has since been largely introduced for genploys a tube from 20 to 50 inches long and of perhaps an inch diameter, backed by a metallic reflector. At one end of the tube is an iron mercury cup serving as the positive electrode, Whe a glass Per Plat rent. The air is exhausted from the tube, which is then sealed. When the current flows, a little mercury is allowed to vaporize in the tube and a soft greenish-white ight of great intensity is obtained. Induction coils are placed in the body of the fixture, also an adjuster resistance, chain operating a switch starts the light, and if the current fails and it coes ont through any accident, an automatic device can be had for relighting it. Lamps are made for both direct 3750 alternating current. A tube gives normally 3,750 hours' service, or the equivalent of 10 hours a night for one year. These Cooper-
Hewitt mercury vapor lamps are also manufactured with tubes of a great variety of lengths and doublings, for use in factories, mills, machine shops, stores, photograph and moving-pic-
ture studios, etc. They bring illumination wherever it is wanted commercially, closely reproducing daylight conditions and obviating strain on the eyes from glaring lamps. For outdoor use the Cooper-Hewitt quartz lamp is supplicd, which employs a short tube of fused perature and stronger current for brighter ifumination, as in railway yards, parks, etc Such lamps have lasted for months without attention.
The

The Moore vapor tube glow lamp is manuactured in various forms, and is much valued proximation to daylight conditions. By the apployment of different vapors it can be made to yield blue, white, yellow or rose light. It requires renewal of carbon dioxide after 1,000 hours' use, but the tubes will last four or five at 23 amperes.
The Incandescent Lamp.- The great obection attending the use of the arc system of ighting was that the light was too intense for most purposes required inside. It could not e readily subdivided. From the earliest days ored to subdivide the light. The indea endeavcontinuous conductors, instead of the discontinuous as in arc lighting, was tried in almos every conceivable form. These conductors were to be heated to a white heat and rendered incandescent by the passage through them of an the fact that to give useful results, the working temperature of the material was so near its melting point, that any slight increase in the current would destroy the conductor. In 1878 a great improvement was effected in the platinum in a condition safcly to withstand obtained greater current strength. The filament was placed in a vacuum, and slowly heated therein The occluded gases were slowly liberated, and it was discovered that if a high vacuum were maintanned and the wire raised to a point just raised, and the physical character of the wa was considerably changed. This lamp, however, was never a commercial success.
Various inventors experimented with the platinum lamp, enclosed in vacuo, but the greatest improvement was made by the substitution done by an American, J. W. Start, This was ployed plates inside a glass vessel containing a Torricellian vacuum. Many patents were taken out in all countries for lamps of various types, but none were commercially successful; many, perhaps, for the want of a cheap method of enerating the electrical energy, as well as The advent of the first succe
cnt lamp dates from about 1879 when fandesgave us the carbon incandescent lamp, and from that time the growth of the incandescent electric ighting industry has been extremely rapid.
Every such incandescent lamp consists of a a glass bulb in which a vacuum is formed, and finally a threaded base attached to the bulb, and designed to hold the lamp in its socket.
The following is in a general way the method
by which the lamps are made. The bulbs are
blown at the glass factory whence the manu nipulation consists of preparing the first ma flament. The nature of the filam for the with different systems. There are threc kinds employed. Some (Swan) employ cotton Kreads; others gelatine or vitrified cellulose (Khotinski Lave-Fox); and others use vegetable a natural fibre submitted to a chemical employ (Langhans Cruto Secl). Form is given to the filament according to its nature, cither by means of a die, or between cylinders, or by cutting i out while in a plastic mass. The fibre thu prolonged baking at a into compact carbon by crucible or by heating with the electric current itself. To give the filament homogeneity an the desired resistance a layer of carbon should be deposited on its surface. This deposit is affected in many ways. A vcry simple method termed "flashing" consists in immersing the fila in that liquid. The filament being cut to the desired length, Edison clamps the carbon with platinum wires and covers the points of attach ment with a layer of electrolytic copper; Lave Fox and Swan deposit a greater quantity of a special cement or solder. The filaments may be fixed in the bulb in two ways: either the two wires are fused into a piece of glass called the budge, which is next fused into the neck of the bulb; or else the wires are fixed separately on the edges of a glass socket, which
is then fused into the bulb is then fused into the bulb. A small tube is provide for the production of a vacuum. The exhaustion of the lamps takes place hy means of mercury pumps. The vacuum obtained, the lamp is tested. Then the luminous intensity and the resistance when cold are measured luminous intensity of the lamp; they should be proportionately greater as the normal intensity of the lamp is higher. These dimensions depend also upon the specific resistance of the carbonized substance. As to the form of the section of the filament, the circular one is preferable a given surface. given surface.
bulb is that if the fithdrawing the air from the air the oxygen of the air would combine with the carbon, causing combustion and consequent estruction. Even enclosed as it is in a vacuum heat at which it is operated. Aside the intense advantage named is the fact that there is no heat-conducting medium between the filament and the globe, practically all the heat that is emitted being that which radiates from the filament (a small amount is lost by conduction hrough the leading-in wires). If there were duct additional heat to the glass walls, and also dissipate heat by convection, so that with a given current in a given filament the temperature of the filament would be reduced, and, therefore, less light would be obtained. The destruction bustion hecause as just explained there is no oxygen left in the bulb. There is a disintegra tion of the filament by some process that has
never been positively identificd or explained, the are deposited on the inside surface of the bulb, causing a gradual darkening of the glass that s readily discernible.
The leading-in wires are made of platinum because that metal has the same coefficient of expansion by heat as that of glass. Were the coefficient differcnt, small cracks would form
in the bulb and the vacuum would be spoiled. Carbon is an exception to the general rule that almost all conductors increase in resistance when the temperature is raised. Its resistance
decreases rapidly with an increase in temperadecreases rapidly with an increase in tempera-
ture up to the red point. Thereafter, up to ture up to the red point. Thereafter, up to The ordinary carbon filament, when at its working point, has about one-half the resistance as when cold. The standard filament gives out a mean illumination of 16 -candle power at right
angles with the axis of the lamp from base angles with the axis of the lamp from base to top.

The power required for the usual 16 -candle watts, depending upon the temperature at which the filament is operated. The higher the temperature of the filament the higher the efficiency in watts per candle power, and also the shorter will be the life. The life of the filament in this way limits the efficiency of the lamp. The
candle power of the incandescent lamp may be greatly increased by simply increasing its filament temperature by the simple expedient of increasing the current, but therehy its life is shortened. The increase in candle power is not directly in proportion to the increase current but in a considcrably higher ratio. the terminals of an incandescent lamp at the normal working point. Any slight excess materially shortens its life. The resistance of an ncandescent lamp filament is much lower when hot than cold, approximately in the ratio of two to one; that is, the resistance is twice as
high cold as when hot when at normal burning emperature. The illumination is rated in candle power and power consumed in watts
per candle measured when the lamp is giving per candle measured when the lamp is giving
its rated candle power, but this condition is not its rated candle power, but this condition is not
obtained with any incandescent lamp through a arge portion of its active life. When a new
argent lamp is placed in circuit it will nsually give the full candle power or a trifle more at the start, and the candle power will rise to a value from per cent to 11 per cent higher than the rating. soon, however, logins to fall off with a The risc and fall of to the breaking point. The rise and fall of candic power are due to esistance at first decreases, allowing more current to flow and consequently higher temperature and more. light. This is indicated by the
rise of the curve from 16.2 candic power to 17.3 ise of the curve from 16.2 candle power to 17.3
candie power during the first 50 hours. Then the diminution of resistance ceases and is folowed by the gradual wasting away of the esistance, by reducing its cross section. The with the decreased surface of the filament and the deposit of carbon upon the globe, causes the in candle power is not directly proportional the decrease in current, thus the energy per
vol. $10-8$
andle power increases rapidly after the first Thundred hours.
thes ment has revolutionized the incandescent lighting industry and is reducing the use of arc out, and the old-fashioned arc lamps are being replaced cither by groups of tungsten lamps or Nernst or vapor lamps. The tungsten filament made of twice that durability, whereas 125 to 200 hours is long for other filaments and arc lamps. The tungsten also has the advantage of diffusing the light more, there being more turns in the filament, and it is closer to dayautomatic light, requiring no attention beyond an occasional dusting. Tungsten is not so rare a metal as once supposed, and its great resistance to heat - it melts at $3200^{\circ} \mathrm{C}$.- renders it a most fit metal for filaments. At first it was found exceedingly difficult to form it into the ceedingly brittle and fragile, and early attempts to draw it through fine dies, such as are used for making the most delicate strands of copper and stecl wire, were failures. Kuzel solved the problem by making a solution of tungsten, evaporating the surplus moisture and squirting
the residum through a die, getting a thread which would bear handling. Such a filament is "flashed" in a mixture of steam and hydrogen, and as the steam decomposes the oxygen unites with the carbon of the filament. Later a method of drawing the metal was worked out successfully and is preferred to the squirted
film. The character of tungsten is such that a very long and frequently lapped filament is equired to give the necessary light. This is an adyantage, reducing the glare.
In recent tungsten lamp practice nitrogen gas is introduced in the bulb after extracting the air as fully as practicable. of has been tards the wasting of the filament, more than offsetting the heat lost by its introduction to the bulb. As tungsten lamps can he made of 1,000 to 2,000 candle power, and show a life of 1,000 to 2,000 hours, they have naturally become very popular
Wiring and Fixtures.-The building rcgulastringent regulations as to the wiring of buildings, the result of somewhat numerous fires caused by careless wiring in the carly stages of introducing electric lighting. Cables carrying street wires are now abundantly insulated, and fully insulated and protected from accidental abrasion. At the point of entering a building, a switch-box is usually placed, with accommodation for one or more fuse-wires. These are short connections made of casily fusible wire, as a mixture of lead and zinc, so that when the fuse is instantly burned out, and the current can go no further, having no wire conductor. Wires for incandescent lighting are usually covered and boxed in, under certain regulations of safety, and led to the various points of use - to ceiling fixtures, pendants, electroliers, with flexible cord that can he swung to any convenient point within its radius, is casily the
most popular lamp. The modern idea of interior lighting of dwellings involves the use o thin porcelain, within which the light is hidden casting its full glare upward toward a white ceiling, from which a soft radiance is reflected downward over the surroundings. This plan diffuses the light in a most acceptable manner
The low value of the common radiants is due to the fact that they are based upon the incandescence of carbon.
If the conversion of coal into light is through the medium of the incandescent lamp we throw away 95 per cent of theoretica energy, and secure as light only $95 / 100$ or pracHowever, the incandescent light is almost perfect light. Since it gives off no waste products of any kind, it has no deleterious effects upon the atmosphere of the rooms or buildings in which it may be utilized. Its light is white soft and brilliant, yet not dazzling. The lamp lends itself readily to external ornamentation without danger of fire, since of course it gives off no flame. Nevertheless, by way of caution it may be noted that, comparatively insignificant as is the heat which the incandescent lamp give out through the glass bulb, it cannot be allowed to rest for an undue time in touching proximity
to inflammable materials, since experiments have shown that when such a lamp is encased i_{n} two thicknesses of muslin for about six minutes, and fresh air is admitted to the interior the muslin has burst into flame. Again, an article of celluloid pressed against the lamp for three minutes has ignited; and a newspaper, under
similar conditions, ignited in three-quarters of an hour.
ELECTRIC LOCOMOTIVES. See Tric
ELECTRIC MACHINE, or Dynamo Static Machine (now extensively employed in therapeutics), for exciting electricity by fric tion or by static electric induction, as distinguished from dynamo electric machines in which electricity is excited by cutting magnetic lines of force. The excitation of electricity by
friction was observed by the ancients, and the word electricity is derived from the Greek word clectron signifying amber, in which the attracting power of electricity after frietion was first noticed. Sce Elecctricity, Frictional. It was subscquently found that a glass rod or a rod of sealing wax also possessed this elec-
trical property when rubhed. Later on, other methods of exciting static electricity, such as by the electrophoris, were discovered. Such methods were, however, slow and laborious and better devices were sought for, resulting in the development of two general types of dynamo static machines, namely, frictional machines the rubbed glass rod or wax type; the second the electrophorus type. These machines provided means whereby the rubbing and the induction might be performed continuously and mechanically.
Frictional Electric Machine.- The first continuous frictional machine, due to Nairne,
consisted of a glass bottle, or hollow cylinder consisted of a glass bottle, or hollow cylinder,
mounted on a horizontal axis, well insulated, and turned by a wituch or handle on suitable
supports. (See Fig. 1). On one side of the culinder and pressing firmly against it, is placed with horse-hair, and sometimes faced with amalgam. From the upper edge of the cushion a silk flap, s, passes over the cylinder, reaching half way round. A brass cylinder, or a wooden cylinder plated with metal, e, termed the prime
conductor, supported by a lass or conductor, supported by a glass or cbonite rod R , is placed as shown. A metallic comb is at
tached to the left end of the prime conductor, as indicated in figure.

Before the machine is set in operation an amalgam of zinc and tin or other suitable metals, is sprinkled or pasted on the surface of the rubber. When the cylinder is turned clec tric sparks are seen and heard to play on the cylinder from the edge of the flap, negative clec-
tricity being accumulated on the amalgam sur face and positive electricity on the surface of the cylinder, due to the friction between the glass and the amalgam coated surface of the rubber. As the cylinder is a non-conductor of

electricity this positive charge is held on its surface until the cylinder in revolving brings it beneath the comb, where it acts inductively on the prime conductor, P , attracting negative electricity to its near end and repelling positive electricity across the points of the coml as an electrical breeze, or brush discharge, uniting with and neutralizing the positive electricity on the glass cylinder opposite the comb, which portion of the cylinder is then ready to take a positive charge as lefore when it again reaches the rubher. When the prime conductor by these suc-
cessive charges of positive electricity has attained a high potential, sparks scveral inches in length will jump from its far end to the hand or any other ground connection. To oblain a continuous supply of electricity from the prime conductor, P , it is necessary to connect the rubber, C, to the ground, which is usually steel plate on the back of the cushion to lic on the floor or table, this permitting the negative electricity excited in the rubber to escape to earth. In this way also a negative stream of electricity may be drawn from the machine. The of largely increasing the rubber has the effect cushion, and also provides a substance of the tween which and glass the surface friction for the exciting of static electricity is greater than that between leather and glass
The quality of the glass used in clectrical machines is important, that containing most silica, such as the material from which ordi-
nary pale green bottles are made, being most suitable for this purpose are made, being most

Plate Electric Machine.- This is anothe orm of the frictional machine. The principle der its operation is the same as that of the cylinCircular plate of class, or chonite, e. Fig. 2, in place of the cylinder. Two sets of rubbers, s, s

Fig. 2.- Plate Frictional Machine
are placed on opposite sides of the plate, and as the plate is rotated positive electricity is devel oped on the glass, and is collected by the prime conductor, p , virtually as in the case of the cyl der machinc.
Static Electric Induction Machine.-These machines depend for their action upon static inof the electrophorus which may be briefly described here.
Electrophorus.- A simple electronhorus consists of a cake of resin or vulcanite 12 or 15 inches in diameter and one inch thick, resting on a tin or iron plate. A disc of metal, termed
the cover or carrier, somewhat smaller than the cake of resin, is provided with an insulating handle. When the cake is rubbed with dry flan el it becomes negatively electrified. If now the cover be placed on the cake, its positive electricity is attracted to the side of the cove s not discharged into the cover, however, because, on account of the slight accidental irreg ularities of the two surfaces, the cover will be in actual physical contact with the resin at only few points, - perhaps at not more than thre of true contact will be discharged, but not that at other points, because the resin is a non-conductor, and so its electricity cannot pass directly to the covering plate by conduction. Now if the over be touched by the finger, its negative electricity will escape to earth. If now the cover tive eled from the cake it will contain frec posia condenser or Leyden jar. The cover may again be placed on the cake and the foregoing process may be repeated a number of times beore the charge in the resin will be entirely exhausted. The cake when electrifice, with the dise in its place, and undisturbed, will retain its A number of
A number of induction machines based on among the best known being the Holtz and the Wimshurst, which are sometimes termed continuous electrophori.

Holtz's Electric Induction Machine.-This feet in diameter, placed side by side and sep arated by a very small air space. One plate is fixed; the other is rotated, the fixed plate bein slightly larger. The moving plate is mounted on a well-insulated axle. On diametrically opposite points of the fixed plate there are two sector-shaped holes or windows. On the back
of the fixed plate, at the windows, are glued paper inductors or armatures, blunt tongues from which they are caused to pass through the windows until they nearly touch the moving plate, which must be rotated in the direction opposite to that in which the tongues point Opposite the inductors there are placed metal which carry brass balls that at their terminals are movable to and from one another. In starting the machime the two balls are brought to gether and a negative charge from a rubbed ebonite rod is given to one of the inductors then when the plate is rotated and the balls are separated, sparks jump across the space. The
action of the machine is very complicated and need not be gone into here further than to sa that in effect it is virtually similar to that o the electrophorus, the imitial charge imparted to the armature inducing opposite electricity in the rotating disc, which in turn delivers a charge to the metal comb, which charge by successive ad
ditions as the disc rotates is augmented until it attains a potential of 50,000 volts and more These discs are rotated at a speed varying from 120 to 450 revolutions per minute. Sec ElecTROTHERAPEUTICS.

Wimshurst's Influence Machine.-This machine, due to Mr. James Wimshurst, is one of the most efficient and rcliable of the inducdises, which in practice have varicd in size

from $14 \frac{1}{2}$ inches to 7 feet in diameter. These discs suitably mounted on insulated axles are placed side by side and both are rotated. but in opposite directions. On the outer surface o cach disc thin metal strips, or sectors, M, arc
glued, as indicated in Fig. 3. Two adjustable
metal "neutralizing" rods, R, R, terminating in metal "ncutralizing" rods, R, R, terminating in
small brushes that glide over the metal strips, are supported as shown, at oblique angles to one another; one opposite each disc. U-shaped col ectors, U U, carrying metal combs, diametric cally opposite to one another, are metallically connected to the electrodes or prime conductors c c. These collectors are supported on meta
rods that rest in what are practically Leyden ars or condensers, J J. The best position of he brushes on rods, R R, relatively to each other and to the combs is microphone, foun by actual test to be virtually as shown in the figure.
The object in employing condensers, $J J$, is to add capacity to the prime conductors, thereb accumulated, and hence increasing the energy of the discharge, and this use of condensers is common to all static electric machines. The action of this machine in operation is also complicated. The Wimshurst machine is self-excitapplied electric charge, as is requisite with the applied electric charge, as is requisite with the
Holtz machine. It has been thought that the initial charge is due to the friction of the air in the space between the two oppositely volving plates, this space not exceeding one eighth of an inch. Apparently the metal sec tors are the equivalent of the inductors in the Holtz machine; the neutralizing rods serving to allow the repelled electricity in one sector to same plate, where it in turn acts inductively on the opposite sector on the opposite plate, the frce electricity when it reaches the collector being carried off as a discharge by the prime conductors. Frequently a small Wimshurst machine is used to excite a larger Holtz machine. All static electric machines, owing to the high potentials which they develop, require ex-
tra precautions as regards insulation, even the damp atmosphere of a room preventing thei successful operation. Some other insulating materials, such as ebonite and gutta-percha, are less hygroscopic than glass, but these material. are not so durable as glass; hence the latter is chines. But to add to their insulating qualities they are always covered with a shellac varnish, and are enclosed in a glass chamber o box from which moisture is extracted by sul phuric acid or other desiccators, contained in suitable vessels within the chamber. These machines are now usually operated by electric mooped by these machines is very high, the current oped by these machines is very high, the current,
owing to the high resistance of the machines, is comparatively low. Thus tests have shown the output of a Holtz machine to be, with a sixinch spark, 71,000 volts and .00048 ampere, equal to 34 watts, and with a spark of 18 inches, 180 , (Sheldon). The efficiency of the machine is, in the first instance, 27 per cent, and in the second 19.5 per cent. The current is approximately directly proportional to the rotation of the plates. The Holtz machine and others of its lype are continuous current machines, and at a given speed their current output and clectro-
motive force are constant. By efficiency is meant the encrgy given out by the machine a compared with that expended in driving it. (The
efficiency of a dynamo electric machine is often over 90 per cent.) The electric power ex-
pended in driving these was, in the first case, 126 watts, and ind the second case, 180 watts. Later tests by Sheldon on other static machines show an efficiency of 40 to 46 per cent, with an output of 10 to 12 watts.
To

To increase the volume of current from static electric machines, the number of plates is
increased. Hence machines of the Holtr and other more or less similar types are constructed with from say 6 revolving and 6 stationary plates to 16 revolving and 16 stationary plates or more as may be desired. In many cases the stationary plates are square or oblong sheets of glass. For therapeutic purposes, machines, givvisable. Plates made of micanite have been tried for static machines, but with some doubt as to their durability. See Electrotherapeu TICS.

William Maver, Jr.,
ELECTRIC MICROPHONE. The prin ciple of this instrument was discovered by Prof London, who announced the discovery in a paper delivered before the Royal Society, London, is 1878. The microphone, as the name implies largely amplifics sounds. It consists of a verti cal carbon pencil pivoted loosely at both end in solid carbon receptacles which are fastened to a thin sounding board, which board is suit
ably upheld by one edge on a solid block or base. When the carbon pencil is made part of an electric circuit in which are also a small battery and a telephone receiver, sounds are many times amplificd; even a small cotton ball dropped on the block is heard in the telephone like a bullet falling on the floor. A number o tion of the micen advanced to explain the accourts in America in a case in which the validity of the Berliner telephone transmitter was an issue, bcing that the action is due to varying the electrict of sonorous vibrations in varying the electrical resistance at a loose con-
tact between solid electrodes. The most comtact between solid electrodes. The most com-
mon form of carbon telephone transmitters in use to-day are varicties of the microphone. It may be added that Professor Hughes gave this instrument to the world gratis. The principle of the microphone has also been utilized in a stethoscope and in a telephonic relay
ELECTRIC MOTOR. The electric motor is simply a dynamo reversed, a machine for cal power. It takes its power from off a wire as sent by a dynamo from the source. To understand the technique of its construction and operation, consult the articles on Electric Direct Current; Electricity and ElecTrical Allernating Current Machinery.
The small electric motor has displaced the stcam engine in a great many uses, and continues to supplant it. In 1909 there were more than half a million small motors made for manufacturing establishments in the United States, with a total horse power of nearly $3,000,000$ power is being produced in large plants more power is being produced in large plants itilizsending out current, much of which is used for

Small clectric motors, driving individual machines. Users of machinery in almost all lines
now accept it as the best practice to equip all low accept it as the best practice to equip all
large machines with individual motors, and in his way not only make their operation inde pendent of other machines, but also save the ex pense of surplus power and of running shaft Ig and belts when the machines are idle Wile electric motors have cost more in som ascs than steam or gas engines, and while higher than for direct steam power, yet the Convenience and the doing away with cumbersome overhead shafts and belts has more han offset these. The individual motor per o machines to be located without reference shafting lines, and makes for greater efticlency and output. With each added machin ing out of central engine plants to make wa or larger. The small electric motor may be built in as a part of the machine, or it may be bolted to the floor or ceiling. It may be di rect-connected if the speed of the machine is appropriate, or it may be connected by reducing rawhide. Belt connection is often used direct or through cone pulleys, and where the powe transmitted is light, a friction connection is made satisfactory by covering the smaller of the pposed pulleys with a leather face. Where machines are small it is common to group hem for motor-driving; four or six machines ocated in coupled to one motor, conveniently
Mopufonturare wind motore in

Manufacturers wind motors in an almost in finite number of ways to suit an endless variety of conditions. By placing resistances in the shunt circuit, a considerable variety of speed is permitted. For printing presses a motor is made with a continuous current transformer of out loss, as a small current at full pressure is instantly convertible to a large current at low pressure. Continuous current series motors are preferred when the work is irregular, as in tarting under heavy load, as with a cranetion or dampness, as with cotton spinning machines on a day of high humidity. Single-phase alternating current motors have special uses, but are not well adapted to sudden changes of load. Motors that are both shunts and series wound are in large demand. This type is used on passenger elevators. The driving drum that the elevator is commonly driven by this type of motor. To secure the needed gear reduction without grinding noise, a steel worm and gunnetal spur gear are run in oil. When the operator pulls the rope or lever in the elevator ef turns the starting switch or controller on or against band-brake on the motor shaft guards against racing, and is normally held out of
operation magnetically. Thus if the current fails the brake slows up the clevator. An automatic switch is placed to shut off the current at the top and bottom of the elevator's travel. ee Electrical Manufacturing Industry.
ELECTRIC NAVIGATION. Vessels of Small draft are now propelled by electricity. screw propeller. The current is generally sup-
plied by a storage battery. From their noisefessness electric boats are peculiarly availabl versal equipment of modern warships with elec tric lighting and power plants makes their use possible at all points. This type is often termed an electric launch, and most of all electric boats fall under this category

ELECTRIC PEN, a pen invented by Thomas A. Edison, bearing on its head a smal magnet, arranged to rapidly reciprocate
needle so that it protrudes and withdraws from the point. When connected with a battery thi pen may be used to write or make drawing which appear on the paper as a serics of per forations. The paper so perforated can be used for stencil printing, and several hundred copies struck off

ELECTRIC PENDULUM, a form of electroscope consisting of a pith ball suspende by a non-conducting thread.

Sec ELECTRIC POLICE SIGNALS. See Electric Signaling. ELECTRIC
electric Railroad. See Traction, Electric.

ELECTRIC RAILROAD BLOCK SIG nal System
ELECTRIC REPULSION, the mutual tendency of similarly electrified bodies, or
similar electric charges, to repel one another.

ELECTRIC RESISTANCE, that nonconducting property of a substance that resist characteristic that goes to make a good nonconductor or insulator; sometimes called re uctance. It is defined mathematically as cqua o the electro-motive force divided by the cur-rent-strength. All metals present some resist ance to an electric current, mercury being the most resistant. For the relative resistance o The resistance of a conductor varies directly a its length and inversely as its cross section. A box containing coils that are designed to resist or impede a current is called a resistance-hos or rheostat. The starting-box of an electric car and the controllor of a machine run by motor are based on this principle. The unit of clectrical resistance

ELECTRIC SIGNALING. While it is true in a broad sense that any method of communicating intelligence to a distance is embraced in the term telegraphy, in the present inployed to cover the signaling systems and methods described in this article. This term is peraps the more appropriate inasmuch as certain f the systems to be outlined in reality partake means of nature of mere sig is gencrally understood. Almost without excepion electro-magnetism is employed in the opNETISM.

The Electric Door-Bell.- This is perhaps
the best known and one of the simplest methods
of electric signaling In its operation it emof electric signaling In its operation it em-
ploys a primary battery, a push lutton at the door, a vibrating bell within the house, and a wire connecting the push button and the bell. The bell and its armature, the connecting wire, the push button and the battery, comprise the electric circuit. The push button is merely a key consisting of two strips of metal which
when pressed together allowed the current to When pressed together allowed the current to
flow. The electric bell consists of a coil of wire wound around a soft iron core. Its armature carries at its free end a small hammer which, when the armature is attracted, strikes against a small gong, ringing it. The vibration of the hammer is brolght about by a very
simple device. Normally the armature rests against a contact point which is a part of the circuit ; the armature itself also being a part of the circuit. The circuit is normally open at the push button. When this button is pressed the circuit is closed and the armature of the bell is forthwith attracted, its hammer striking the
gong at that instant. In the act of moving forward, however, the armature leaves the contact point against which it had been resting, with the result that the circuit is opened at that point. This has the effect of permitting the magnet of the bell to lose its magnctism, where-
upon the armature falls upon the armature falls upon its contact point, the armature is again attracted, which action is continuously repeated so long as the push button is pressed in. A small spiral or tension spring suffices to keep the push button normally open.

Annunciator Signals.- The "annunciator" or call-bell systems so generally used in hotels
and offices utilize the principle of the door bell. Andunciator systems in fact might be termed multiple electric door-bell systems. Usually a wire runs from each room to a central point or office where the annunciator is placed. This annunciator contains within its case a small
electro-magnet for cach room. One battery is elcctro-magnet for each room. One hattery is
caused to supply the current for all the circuits by simply connecting the wire from each room to the terminals of the battery. In a similar way one bell at the annunciator is caused to respond to all the calls that come. The armature of each electro-magnet within the case
carries a small shutter, on which is placed the carries a small shutter, on which is placed the is connected. This shutter is held out of sight by means of a small catch hook attached to the armature of the magnet until the push button in a given room is pressed, whereupon the armature is attracted, releasing the
shutter, which instantly drops, showing the shutter, which instantly drops, showing the
number. At the same time the annunciator bell rings, directing the attention of the clerk to the call. In other forms of annunciators the falling of the armature is caused to deflect a small arrow on the face of the case, bencath where is marked the number, name or letter of the
room. There may be almost any number of room. There may be almost any number of
rooms for 1 up to 100 or more connected with one annunciator. In practice a single wire, called the "common return" wire, is usually run from the hattery and ammunciator to all rooms. From each room a separate, individual wire is then run, from the "common return" in the
room, through the push button and then down to the electro-magnel in the annunciator, there-
by supplying a separate circuit for each room In order to restore the shutters to their normal
position after the call has been received, a rod position after the call has been received, a rod
is provided with a knol) at its lower end which projects below the nuder side of the case con taining the annunciator magnets. By pushing up the rod a cross-bar within the case is raised and this cross-bar in turn lifts up and rescts the shutter and armature for the next call. In
the later form of annunciators which are now frequently operated by alternating current of low voltage, the shutters of the annunciato arc electro-magnctically reset by merely pushing a button, thereby closing the circuit of at electro-magnet.

Burglar Alarm Signals. - For simple domestic purposes the arrangement employed for systems just described, the main difference being that the finger putsh button is displaced by a circuit closing contact in the frame of a window or the jaml) of a door. To bring
alout the result desired the circuit close is ahout the result desired the circuit closer is
placed on the frame of the window in such a placed on the frame of the window in such a
way that the movable portion of the circuit way that the movable portion of the circuit
closer projects beyond the surface of the window frame. The contacts of the circuit closer are held apart normally by a simple spring. In order that when the window is closed this projection may not be depressed, a piece is cut out of the window sash at a point
directly opposite the projecting circuit closer In an analogous manner the circuit closer is attached to a door jamb. The wires leading to the circuit closer are concealed lehind the woodwork, When a window is raised or a door is opencd by an intruder the contact points
of the circuit closer are bronght torether of the circuit closer are brought together
whereupon the annunciator bell is rung, giving whercupon the annunciator bell is rung, giving
the alarm, and at the same time the room wherc the door or window has been opened is indicated by the dropping of the corresponding shutter in the annunciator. The annunciator is located in any desired part of the house,
usually in a bedroom. The method described is termed an open circuit method. In such systems what is known as open circuit batteries such as the ordinary dry loten circtuit batteries, may be used. In some cases, to guard against a momentary opening of a door or window, such as would only occasion a short ring of the alarm bell not sufficient perhaps to arouse a slecper, an
auxiliary arrangement is provided at the anatuxiliary arrangement is provided at the ant
nunciator consisting of a drop arranged to close the bell circuit continuously until the drop is reset. A small switch is provided near the annunciator by means of which the alarm circuit may he opened during the daytime so tha needless alarm may not be given by the ordi-
nary opening of windows. Other switches are also used for the purpose of testing the various circuits to see that they are in proper working condition. See Electric Annunciator. Central Office Burglar Alarm System.This system, as the name implies, relates to one in which the ringing of an electro-magnetic presence of intruders in the building or buildings in which the protecting apparatus is installed. The central office may be any convenient distance from the protected buildings. These systems are freruently tcrmed electric protective systems. The plan usually adopted
lions, across floors, skylights, etc. These wires are part of a circuit extending to the central
office, and the said wires are so connected with the circuit that any interference with them, after they have been "sct," will cut out a high, resistance, consisting of a coil of wirc, suitably placed in the circuit of the protected building. The cutting out or short-circuiting of this recurrent in the circuit as to strength "of the current in the circuit as to operate a "double-
balanced" instrument in the central office. If on the other hand the resistance is not "cut out," but instead the wircs of the circuit be cut or broken, by accident or design on the part of
iniruders, the consequent absence of current, or intruders, the consequent absence of current, or even a slight decrease of current, witionkewise
cause an alarm in the central station. The couse an alarm in the centanced instrument at the central office is usually a relay, the armature of which point, from which point it may be deflected in cither direction. An increase of current on the circuit deflects it in one direction-a decrease it in the other direction. In either case, the alarm is given when the needle moves and an attendant is despatched to the premises from which the alarm has cmanated. Fach relay is of course suitally numbered or otherwise designated in the central office so that the building
with which it is connected is known.
Signals..- This service relates to the supplying or calling of messengers, policemen, firemen, etc., at the call of or by a "sulsscriber," in Whose house or office a "call box" has been placed. This call box is clectrically connected ly means of a wire with a central office at
which the messengers are located, and from which the messengers are located, and from
which office communication with police and fire headquarters can quickly be made. Each call tex is numbered and is supplied with what are termed "make and break" attachments which are sct in operation by the turning of a crank
on the cover of the box. These attachments, When thus operated, transmit automatically to at cence ind office the number of the hox, the signaling box. The construction and operation of the call box are as follows: A crank is mounted rigidly with a recoil spring on a shaft.
On this shaft is also mounted, but loosely, a On this shaft is also mounted, but loosely, a of slots in its periphery, is geared with the cogwheel in such a manner that it receives a tendency to turn in a given direction, but it is
normally prevented from turning by the engagement of a pin on its side with a curved cam which is attached to a prolongation of the turned to. Say the right, preparatory to sending in a call, the cam is automatically moved ont of the path of the said pin and the break-wheel is then free to move. By a suitable pawl and ratchet, the cog-wheel is prevented from moving when the crank is turned to the right. The spring of turning the crank is spring. When the crank is let go the spring
unwinds and turns with it the break-wheel which completes a revolution?; at the end of Which it is again held hy the pin as before. The
break-wheel is made part of the circuit leading break-wheel is made part of the circuit leading
from the box to the central office. A flat metal
spring which is also part of the said circuit cests on the periphery of the break-wheel in
such a manner that when the wheel is making such a manner that when falls into the slots on the said periphery and opens the circuit as many times as there are slots provided. If, for instance, the number of a given box is 24 , there will be cut on the periphery two slots in close
succession, then an interval of unbroken metal surface followed by four slots in succession. The circuit in such a case, as the wheel rotates, will be opened twice in succession, closed for an interval, and then opened four times in succession, with the result that a bell at the central office will give out, first two strokes, and then
four strokes, on its gong. Λ large number of four strokes, on its gong. A large number of
such boxes can be placed on one circuit without causing confusion. The call box just described suffices to send in a swift call for a messenger. When it is desired to make it possible to call a policeman, doctor or fireman by the same type of box, it is provided with a "stop" that projects
through the cover in such a way that the crank cannot be moved beyond a certain point. The ordinary position of the "stop" would be at the messenger call, in which case the number of the box only would be sent in when the crank is turned. $1 f$, however, a doctor should be desired, the stop is moved to a point marked
"doctor", on the cover of the box and in turning the crank it is moved up to that point. This farther movement of the crank has the effect of bringing into operation one or more additionel slots on the periphery of the breakwheel in consequence of which the box number is preceded by one or more single strokes on the bell, which indicate to the central office as the case may be, is desired.

Fire Alarm Telegraph Signals.- The importance of electricity as a time saver in announcing the existence of a fire can scarccly be overcstimated. A special fcature of the electric fire-alarm system is that it not only gives the cation of the fire, or within a very short distance thereof. It may be noted that a simple fire-alarm systen is in many respects similar to the systems just described, in that it consists of a central office or station in which alarm apparatus and battery are locatch, and of signal transmit alarms to the central office. A wire connects the central station with the various signal boxes in the strects and fire-engine stations. In each signal box is placed a break-wheel, practically similar to that used in the call-boxes of the district messenger or emergency service;
the main difference being that owing to the the main difference being that owing to the and their greater relative importance, more substantial boxes are employed. In general these signal boxes are supplied with an miner and outcr door to protect the apparatus from the elements. The signal hoxes are provided with a crank or a hook which on being operated
causes an alarm to be sent to the central stacauses an alarm to be sent to the central sta-
tion giving the number of the box from which the call has emanated. The signal box is also provided with a small electric gong, which rings each time the circuit is opened. This intimates to the one serdig inc alarm that the
serves the purpose of intimating to anyone who might open an adjacent box to send in an alarm therefrom, that the alarm is already being sent, station and the various fire stations a gong i struck a number of times corresponding wit the number of the box from which the alarm manates. In the same circuit also an ink-re ording register in the central office marks on a paper strip the number of the signaling box Inasmuch as it is not good practice to put more than 25 or 30 signal boxes on one circuit, but yet is very important that all the fire stations in a given district should receive th alarm, a repeating device is utilized at the cenne of the circuits and thereusen from any omatically or manually to all the olher cir cuits. It frequently happens that two or more strect boxes on the same circuit are pulled simultaneously by different people. To prevent the confusion of signals that this would ordidevised, termed the non-interfering succession signal fire-alarm boxes. These boxes not only prevent interference with the signals already in process of transmission by any given box, but also permit every box that may have been pulled simultaneously to send in its signal in
Antomati Fire Automatic Fire-Alarm Signals.-In many
of the large cities of the United States an auxof the large cities of the United States an auxing of some form of thermostat included in a circuit in the building to be protected, is employed. This system again is somewhat analogous to the messenger telegraph system de one case the signal box is manually operated while in the other case an increase of temperature, due to fire, by affecting the thermostat causes the alarm to be transmitted. Thermostats are of different types. One type consists of a crescent-shaped spring, made up of two other. One end of the spring or strips is fastened to a support, the other end is adjacent to a contact point of an clectric circuit. As the metals named do not expand equally under in creascd temperature the spring as a whole bends or buckles when the temperature in-
creases, and the movable end makes connection creases, and the movable end makes connection
with the contact, thereby closing the alarm circuit with the result desired. Other types of thermostats are made of easily fusible alloys Still another form of thermostat consists of a drum-shaped box, holding substances which have a high expansion under increased temperature. The expansion causes the ends of the Police Electric Signals.-These may be considered as more or less amplified fire-alarm systems, consisting as they do of signal boxes placed on poles and in booths along the routes of the policemen; from which boxes signals of all kinds may he transmitted to and from police by a suitable wire with headquarters; and cach box has a break-wheel, carrying the number of the hox. A telephone outfit is also placed in the box by means of which the policemen may converse with the main station. In fact the tele-
phone is used nearly exclusively, the policeman as he arrives at a signal box sending in a signa which intimates to the attendant at headquarters the number of the box at which he has arrive tendant communicates with the policeman and takes his number, thus getting a record of his whereabouts. If the officer desires to send in a special signal of any kind, as for an ambulance or wagon, or for assistance, he can do so by a special arrangment within the box. In some the signal boxes. Such citizens are anthorized to send in signals for police assistance in cases of emergency, and thus the police force is practically augmented by a volunteer service. In many cities also the police signal apparatus is kept in a kiosk or sentry-box on the sidewalk
curb. On the top of these boxes an electric colored lamp is placed and so connected that it may be lighted from police headquarters to call a policeman to the post for instructions.

Railway Electric Block Signals.- A block system in brief consists of a means of showing manually or automatically certain signals which tain portion or section of the track before him is "clear" or occupied. The road is divided into sections or blocks which are of various length depending in a great measure on the topography of the route and the amount of traffic. The length of a block varies from 600 feet to severa
miles. The signals employed in ""block" miles. The signals employed in a "block" are
cither "safety," "caution" or "danger," represented by a white light or sign, a green light or sign and a red light or sign, respectively. The sign usually consists of the well-known sema phore arm or blade. In automatic electric sysso arranged that the entrance of are generally "block" sets the danger signal and that signal is displayed until the train passes out of that block into the next, when the danger signal is lowered and the caution signal is shown. When the train passes into a second block ahead the caittion signal is lowered and safety is shown. The phese signals consists in actuating electro-magnets which are placed in circuits capable of being opened, closed or short-circuited by the car wheels of a train, which electro-magnets are caused directly or indirectly to operate the signals. In what is known as the Hall Block
Signal system the blades are operated against Signal system the blades are operated against
gravity by an electric motor placed in a case at the top or foot of the pole supporting the signals; suitable battery being provided for the operation of the motor. Thus when a train enters a given block a circuit is closed which starts the motor which in lurning, by a system of cog-wheel gearing, raises the blade to a precuit is automatically opened and the signal is held in position by an electro-magnet until the train moves out of the block, when the blade is released and falls by gravity, means being provided to graduate and safeguard the fall of
the blade hy means of friction, due to the action of a centrifugal governor. Another electric hlock system uses a disc enclosed in a drumshaped box on the top of a pole. This dise is operated by an electro-magnet, the latter being attracted by an electric current which is under
control of the engine, the latter operating, as it track. There is one of these circuit closers a the beginning and end of a block. The engine thus sets the signal to danger as it comes into a block and sets it at clear as it leaves the block. A device named the Miller Cab signal is different from the foregoing systems. I
consists of suitable apparatus and battery for operating certain clectric lights in the engine cab. Normally a white light is burning, but when there is another train on the block in Which the train enters, the circuits are so oper cuit that the white light is cut out of the cir notifies the engineer of the near proximity o another train. Sce Block Signal System.

For a more detailed and illustrated account of the foregoing systems, the reader may be referred to the author's 'American Telegraph and Encyclopxdia of the Telegraph.

Author of 'American Telegraphy,
ELECTRIC SMELTING. Sce Electric Furnaces; Metallurgy.
ELECTRIC STORAGE BATTERY The. Electrical energy is developed in commercial quantity at the present day almos machine, driven in turn by a steam engine, gas engine, water wheel or ofher prime mover. A complicated, so as to reguire skilled care in its operation, the electrical energy is available only while the machinery is in actual motion, and at such points as are connected with the gencrating plant by suitable electrical distributing

a

A device to supply electrical energy, under instantly available over long periods of time is therefore an almost imperative necessity and the device which science has developed for this purpose is known as the electric storage The
The storage battery does not, as its name but rather in the chemical, and hence it belong to the gencral family of electro-chemica apparatus.

Electro-Chemistry of Storage Battery-The essential "working parts" of a battery active material of the positive and negative plates, respectively, and the electrolytic solu tion, surrounding and clectrically connecting the fwo.
For the purpose of causing these working parts to function as a battery, there are required whose duties are mainly mechanical and electrical in their nature. The active material con Sists of a more or less ecmented mass of
powder, possessed in itself of very little powder, possessed in itself of very lit1le mechanical strength. To retain this material In working condition there are required the
"grids," which, as the name implies, are in most cases flat metallic plates of very open grid-like structure, with projections or "lugs at one corner, to serve for making the electrica
comuctions.

Note. - The senle of sizes of the various figures refers in
all enses to linear dimensions.

Since the plates of opposite polarity would quickly discharge themselves if allowed to touch, they must be kept apart, and this is "separators" between them.
As the electrolyte is almost invariably a liquid, rarely a jelly-like substance, there is ber jar lead lined tank or steel jar, according as the case may be
Reference to Figs. 24 and 25 will make clear the general construction; the plates, alternately positive and negative side by side, with seprators between, and resting or hanging in a jar which holds the electrolyte. A very neces-
sary detail of design is that there shall be left sufficient clear space beneath the plates so that the sediment which gradually collects may settle there without contacting with the plates and causing a short circuit.
While attempts have becn made to utilize all sorts of materials as "working parts," the until to-day there are practically only dwo in commercial operation.
The older and far the most generally used is known as the lead-sulphutic acid type; the newer as the alkaline, or, more generally, the Edison type. A description of each type separately will he fol
Equations of the Alkaline Battery.- The Edison battery is chosen as the representative of the alkaline type bccause, atthough other varieties have been developed, and have met with limited success in Europe, yct Mr. Edison has carried the development of the type so much beyond any of the others that to-day his importance.
The positive active material consists of nickel peroxide; the negative of spongy, metal lic iron; the elcetrolyte of caustic potash or
caustic soda solution. The chemical affinity of caustic soda solution. The chemical affinity of The sponge iron for oxygen constitutes the
chief working force of the cell, diagrammatically represented in Fig. 1, in which A and B are the positive and negative plates and C the active material, immersed in the electrolyte within the retaining vessel.
The reaction of discharge may be explained "hus: KOH readily splits up into the two to the negative plate, and there combine to form $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$; while the K ion tends to travel to the positive plate, and there combine with part of the oxygen of the NiO_{2} and with water from the electrolyte, thus forming again KOH , exactly equal to the initial quantity $3 \mathrm{Fe}+8 \mathrm{KOH}+6 \mathrm{NiO}_{2}=\mathrm{Fc}_{3} \mathrm{O}_{4}+8 \mathrm{KOH}+2 \mathrm{Ni}_{3} \mathrm{O}_{4}$.
It will he seen that the net result is a transfer of oxygen from the positive to the negative accompanied by a concentration of caustic potash at the positive and a dilution at the
negative; the total amount of caustic in solution remaining constant throughout. The re action of dischasge is held in check, and the electricity is furnished to the electrodes much as in the lead cell, described more fully on a subsequent page. During the process of charg the reactions are exactly reversed, with metallic
iron as the result at the negative plate and nickel peroxide at the positive. The reaction on charging. however, does not of current, with the result that the charge munt always considerably exceed the charge minst order to restore the cell to its ine discharge in Morcover, the active materials in discharge are never completely converted according to the reactions shown; there always remain large proportions of metallic irnn and nickel peroxide, even in a discharged cell.

Description of Edison Cell.-Caustic potash solution has but slight effect upon steel plated sheet steel conslitutes an ideal material for almost all the structural parts of an alkaline cell, and is used for positive and negative plates, as well as for retainer.
The positive plate, Fig. 2, consists of a number of thin-walled steel tubes placed side
by side and united by a surrounding frame

Discharged Eonson CeLL Fig. 1.
Diagram of Edison Cell.
likewise of shect steel, nickel plated. Each tuhe is made up of a spirally wound, and (louble seamed, strip of thin sheet steel very finely perforated and filled with the active material,
nickel peroxide. This material, however pens to be an extremely poor clectrical conductor, and in order to give it the necessary conductivity the material within the tube is interspersed with extremely thin transverse discs of metallic nickel, about 80 of them per inch length of tube. The nickel is prepared in
the shape of extremely thin flakes, and a measured quantity of these is fed into the tube alternately with a measured quantity of nickel hydroxide (which is later converted into mickel peroxide). After each double charge of flake
compresses the contents which are thus gradit is pinched off and later assembled with others

Fig. 2.
Edison Positive Plate - Vehicle
and General Service- $\mathbf{1} / 3$ size.
into a complete plate. The usual diameter of the tubes is alont one-fourth inch, though latterly a smaller size is also used to some extent. In asscmbling the plates right and left wound tubes are used alicrnately to eliminate twisting

Pra. 3.
Edison Negative Plate-Vehicle
and General Service- $1 / 3$ size.
tendencies, and each tube is strengihened by a inlumber of tight-filting stecl rings at frequent intervals.

This detail with which the manufacture of his plate has been worked out is extremely infull description limitations of space preclude a - The negative
imilar in negative plate (Fig, 3) is somewhat active material, in this case difference that the initially introduced as oxide of ingonge is ison, taincd introduced as oxide of iron, is conof perforated sheet stecl. The surface of the boxer is corrugated to give strength, but as the iron inside is a good conductor there is not required the mechanical pressure which necessiThes the cylindrical form of the positive tubes. The pockets are about one-cighth inch in thicking and are locked by pressure into a surroundthe frame of

Positive and negative plates are assembled alternately, with small hard rubber insulating strips between; and the plates of each kind are united by a bolt extending across the whole group, through the holes at the 10 p corner, as
shown in Fig 4 . Hard rubber frames around

Fig. 4.
 to show method
the edges and hottom of the group insulate it effectively from the sleel case which holds the clectrolyte and retains the whole cell as a working unit.
The steel case is closed hy a cover of the as to be perfectly air tight. This feature is
necessary in order to exclude the carbonic acid of the atmosphere, which is readily absorbed
liy caustic solution, and which if allowed thus to enter into an alkaline cell exercises a very detrimental effect upon its operation. A check valve in the cover permits the egress of oxygen
and hydrogen liberated during charge, while it

discharged lead Geu
Fig. 5.
Diagram of Lead Cell.
excludes all atmospheric air with its contaminaion of carbonic acid
The Edison cell of to-day is a very highly developed piece of electro-chemical apparatus, liearing ample witness to the genius of its inventor. The fact of its being built of nickel plated steel throughout gives it a ruggedness
and a finished appearance which can hardly be matched by other types. If operated under favorable conditions it will last for a long time, ften upwards of 1,000 cycles of charge and discharge.
It possesses on the other hand certain apparently inherent properties which very much clude it from many of the fields to which storage batteries are applied ; under the heading of characteristics these points will be more fully brought out.

Electro-Chemical Equations of the LeadSulphuric Acid Battery.- The oldest and mast Sulphuric Acid Battery.- used type of storage battery employs as its active materials peroxide of lead for the positive plate, spongy metallic lead for the negative, and for the clectrolyte an aqueous solution of sulphuric acid, of about 25 to 40 per cent strength.

A cell of this kind is diagrammatically shown in Fig. 5, in which A and B are the positive and negative plates, respectively, each with a contact with it, while hoth plates are immersed
in the sulphuric acid electrolyte, held in a Between sulphuric lead there exists a strong chemialic sponge which constitutes the basic operating force of the lead cell.
mo soon as the internal reactions are permitted to take place, by the closing of the gins to split up, SO \& going to the negative plate there combining with the sponge lead to form lead sulphate, PbSO_{4}, and in so doing liberating at the negative plate a quantity of minute nega"ions") (as these disenge the individual SO_{4} and at the same time the hydrogen, H_{2}, proceeds to the positive plate, there combining with one part of the oxygen of the lead peroxide to form water, and giving up an equivaent quantity of minute positive charges, carried PbO , which results from Simultaneously the with another part of $\mathrm{H}_{2} \mathrm{SO}$ to form lead stulphate and a second molecule of water. The reaction may be represented as follow $\mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{PbO}_{2}=\mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{PbSO}_{4}$. The discharge thus results in the formation of lead sulphate at both plates, the disappearance of sulphuric acid, and the formation of
water at the positive. It may be said, in brief, water at the positive. It may be said, in brief,
that these reactions are held in check by the fact of the charge upon the negative plate acting to repel the negatively charged SO. ons; while the charge upon the positive plate in like manner repels the positively charged H ions. Immediately the respective charges upon he two plates are lessened by closing the extween them is reduced), the equilibrium between electrical and chemical forces ceases and the ons rush to the respective plates and discharge heir minnte unit charges, thereby maintaining constant.
But if there be applied to the cell terminals potential difference slightly greater than that of equilibrium, the chemical forces are overbalanced by the electrical, with the result that these various internal movements are reversed,
so that the original condition of the "working parts" is restored, as indicated in Fig. 5.
During charge there are thus restored to the electrolyte the two parts of $\mathrm{H}_{2} \mathrm{SO}_{4}$, ahsorbed by the plates in discharge, and simulaneously there are removed the two parts of emains a surplus of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in solution
It is to be noted that in charge
ctions are quite complete, so that the active materials are entirely converted into metallic lead and peroxide of lead, respectively; but that on discharge they are never in' practice carried to the theorctical limit, and a large metallic lead and lead peroxide remains even after a cell is completely discharged. The fully charged condition, however, is not accomplished with 100 per cent efficiency; the charge (in ampere hoturs) must exceed the discharge by $0-15$ per cent, the loss manifesting itself by he evolution of hydrogen and oxygen.
ery.- The lead storage battery of to-day exists in several distinct types, and as each is the
survivor of many unsuccessful attempts, and as development has been gradual, it is cont venient to treat it historically
with a number of electrolytic, experimenting couple of lead plates in a vessel containing weak sulphuric acid, through which, in series with a galvanometer, he passed an electric current. After the current had flowed for some time in two cell terminals together was surprised to find from a reverse swing of the galvanometer, still in circuit, that the cell gave back some of the electrical energy that had been applied to it. Repetition of the experiment showed that the cell slowly but steadily gained in capacity for greatly accelerated the gain.
The explanation of the phenomenon as we now understand it is this: Metallic lead, wher placed in sulphuric acid, is immediately at tacked, with the formation of a thin skin o the metallic lcad inside and prevents frotects action. Electrolysis, however, converts the sulphate upon the positive to peroxide of lead and permits the sulphuric acid to work a little further into the metal beneath; and it is thus that the action is cumulative and the amoun tinually increases. Electrolysis affects the nemtive, however, mercly in reducing the lead sul phate to metallic lead, so there is here but littl cumulative action, and hence occasional reversal is necessary to build up the thin skin of "activ material" on both plates together.
Months of charge, discharge and reversal thick to make a battery of useful capacity Hence other inventors set about to shorten thi arduous process, known as "formation," and nally Faure, in France, and Brush, in Americ about simultancously discovered that they coul oxide, made into a sort of putty-like paste with sulphuric acid, which, by means of a single slow charge, was converted into thoroughly porous active material.
Subsequent improvements on Plante's process have shortencd it until now it is about as quick and as cheap as Faure's process, so that ployed, the Faure very much the more extensively.
Plante and Pasted Types Compared.The Plante and "pasted" types as now used electrically the difference is much less than would be expected. The Plante plate consist of pure lead, upon the surface of which ther is "formed" a thin layer of "active material" having a thickness of the order of a few hundredths of an inch. The layer is necessarily thin in order to prevent its peeling off readily;
hence a very large surface is required, and this is usually obtained by making the lead plates in the form of a number of parallel transverse leaves, as shown in Figs. 13 and 14.
The surface is increased hy this construction anywhere up to 8 or 10 times that of a plain sheet of equal superficial area.
hand, is characterized by a relatively thick mass of porous active material, retained by an open-

Work grid or lattice of lead-antimony alloy hown in Figs. 6, 7 and
Both types of plate can be used as either make the one or the other better suited to particular classes of service, as will appear
Negative Plates.-Exide Negative- The negative plate of a lead storage battery, at leas theoretically, is quite a simple matter; the sponge lead which constitutes the active ma-
terial has considerable mechanical tenacity and is therefore relatively easy to hold in place upon the skeleton frames or "grids" to which it is applied. There is no destructive action upon the lead-antimony alloy of which these grid are made, and they may therefore be as light shows a negative grid of the type which is now standard in the United States, and which is still best known under its original name of
the "Exide." Fig. 7 shows a cross-section of the same grid, and shows how the active material occupying the interior spaces is locked

Fig. 6.
Exide Negative Grid.
About $1 / 5$ size.
in place so as to be both retained and protected mile Fig. 8 shows the finished plate, the active material filling all the interior spaces. This square inches surface up to 700 , in thickness

Cross Section - Exide Grid
from three-thirty-seconds to one-fourth inch nd for every variety of purpose for which lead eries are employed.
Box Negative.- For some purposes, howgive the maximum possible life, consequent increased weight being a secondary consideration.
To meet this requirement the "box" negative
shown in Fig. 9 is used. This plate may be considered as a development of the exide type,
inasmuch as the active material is held within

Fig. 8.
 Exide Negative Plate - Vehicle and General Service.

Approx. $1 / 5$ size.
two protecting surfaces, which, in the case of the box plate, consist of dinely perforated lead
sheets, while in the exide type they consist of parallel bars with relatively large openings letween.

The box plates are used almost entirely where long life is the main consideration, bu the greater weight of grid, with consequent greater cost, has caused them for most purpose

The grids of the Exide type are
the grids of the Exide type are castings of consistent with necessary mechanical and elec trical conductivity. The box grids are composite, consisting of perforated lead shcets, upon which are cast intersecting ribs, or bars, o antimony-lead alloy, which gave the necessar
strength; and each plate consists of two part riveted together, with the active material enclosed between them.

Fig. 9.
Box Negative Plate -General
Stationary Service $-1-10$ size.
While any oxide of lead may be used for the active material of negative plates, a long process of climination has finally resulted in
the universal adoption of litharge PbO , for this purpose, applied as a putty-like mass, made by
mixing the litharge with dilute sulphuric acid An initial charge, or "formation," converts the litharge into metallic sponge lead, giving the plate a characteristic light slate color.
Plante Negative.-There are still a few Plante negatives used, in America only, such a one being shown in Fig. 10, but their weight almost a thing of the past.
Positive Plates. - The positive plate offers a more complicated problem, chicfly because lead peroxide, under the conditions which exist in a storage battery, does nol possess much
sustained mechanical strength, but gradually sustained mechanical strength, but gradually plate, falls to the bottom of the cell and thenceforward plays no useful part in the life of the battery.

To maintain the capacity over an extended period of charges and discharges three distinct methods are employed.

Frig. 10.
Plante Negative Plate for Tr
Lighting- $-1 / 6$ size.
Pasted Positive.-In the pasted type of plate, when new, only a part of the lead peroxide is available for entering into the chemical reactions of the cell, as the acid penctrates only partially into the interior of the mass. As the
surface wears away the action penetrates farher in, and thus the inner part of the mass acts as a reserve and maintains the capacity for a number of cycles, roughly stated at 300 oo 500 . By making the plate very thin, say of the order of one-eighth inch, the reserve of active material is cut down to a minimum, hence of wcight, but of relatively shorter life per
Positive plates of the pasted type are un versally employed where lightness, or maximum capacity for given weight, is the primary con sideration, and the correct balance between hick, heavy plates of long life and thin, light is a contimual problem to the designer. The encral trend of modern practice, however, is loward much thinner plates than were though practicable a few years ago, a thickness of ree-thirty-seconds inch being quite common The Exide type of pasted plate, Fig. 11,
hich has become standard in the United States, and largely so in Europe, is very similar to the negative plate, except as to its active material The grid, Fig, 12, is, however, more substantial
in its design than the negative, in order to tresses to which it is subject Wher mechanical oxides, or mixtures of such, are used by differ-

Fig. 11.
Exide Positive Plate-Vehicle
and General
Ad General Service
ent manufacturers as positive active material the usual material is red lead, $\mathrm{Ph}_{3} \mathrm{O}_{4}$, mixed to a putty-like mass with weak sulphuric acid or ammonium sulphate solution. The initia charge, or formation, converts this into lead peroxide, a material which whent dry has about characteristic dark chocolate brown color.
Plante Positive-- The Plante plate is also
subject to the continual, slow washing away of its lead peroxide, but the original layer is more durable than the peroxide made from red lead

Fig. 12.
Exide Positive Grid.
About $1 / 5$ size.
thinness. Moreover, all the while that the original layer is disintegrating and falling away, into the metallic lead of the plate and forming

Presh active material, in the manner of the betwe formation, and thus there is a balance plate is maintained for a 1

 Fic. 13.
 Not to scale.

Wo or three times as long as in the case of the
asted plates. For effecting this extended life however, there is required a large reserve o ure lead; so that in actual practice the Plante plates weigh from two to three times as much
s pasted plates of equal capacity.
Figs. 13 and 14 show a Plante type of plate argely in Europe, and consisting of an integral ne-piece casting; while Fig. 10, though actually negative, may be used as illustrating the Gould type, made from rolled shect lead, by a nning process.
In this country and in England a modificd largely superseded all of the above chief ccount of its superior mechanical construction The Plante plate is made of pure lead, becaus his metal is attacked by the electrolytic action at about the right rate to replace the loss of lead peroxide; but pure lead is very soft, hence these plates are much subject to buckling and differs in that a rigid grid, or frame, of anti-

Fig. 14. Tudor Positive. Plate for Train
Lighting. $1 / 5$ size.
mony-lead alloy furnishes mechanical strength, While small, pure lead, spirally wound "but(Fig. 17) furnish the active material which
performs the electro-chemical function of the plate.

The comhined mechanical and electrical endurance of this type of plate has given it a very triple the pasted type, and its conscquent cost constitute its chicf limitations.

Fig. 15.

$$
\begin{aligned}
& \text { Manchester Positive Plate- } \\
& \text { General Stationary Scrvice. } \\
& 1 / 10 \text { size. }
\end{aligned}
$$

Ironclad Type.-During the past five years a third type of positive plate has come into prominence in this country, founded on the part, in France, ahout the year 1898. This

FIG. 16.
plate, known as the "Ironclad," is shown in Fig. 18, and differs from those heretofore discussed in that a porous exterior envelope retains the active material in place, so that the large eserve necessary with other lypes is her unnecessary.

Fig. 17
Section of Manchester Plate.
Approx. $2 / 3$ size.
The plate consists of a number of cylindrical pencils, one of which is shown in section in Fig. 19; a central-lead ant mony core furrounding mass of active material, itsclf again enveloped by the perforated hard rubber tubes (Fig. 18). The perforations in the tube consist
of minute saw cuts of the order of one onehundredth inch wide; and so effective are these ploy them have a life approximating 1,000

Ironclad Positive Plate - Vehicle
and General
Approx. $1 / 5$ sizve.
cycles of charge and discharge, being two to three times that of the flat plates, Fig. 11, in The life of the Ironclad plate is thus about the same as that of a Tudor or Manchester plate, while its capacity-weight ratio is about on a par with the pasted types.
ing out of the active material is reduced to a

Vertical Section Ironclad Tube
minimum, and, contrary to what might be expected, tine protective rubber tube offers but very slightly increased resistance to the passage of the electric current.
This type of plate, in conjunction with an exide negative of suitable thickness, is fast
hecoming standard in this country in all porlable service where durability is a prime factor.
Separators.- Thus far we have limited ourselves to the question of the plates of the lead hattery; but though they undoubtedly constitutc the greater prohlem of storage battery design, yet the manner in which they are assembled is
almost as important as the design of the plates themselves; and next in order of importance
come the "separators." Considerations of space, weight and electrical resistance all demand that adjacent positive and negative plates be main touching anywhere. To fulfil these requirements spacers or separators of some sort are inserted between them. Here again countless schemes have been tested out, but to-day prac tically only two types have survived, and these often used in conjunction.
The older of the two is the perforated rubber separator, shown in Fig. 20, as a flat shect of perforated hard rubber, and often, when
used alone, provided with a series of parallel ridges on one side, to afford sufficient acid

space between plates. When so used, however even though the holes be small, "trees" of lead are very apt to develop on the negative plates,
which in time find their way through to the which in time find their way through to the
positives and cause short-circuits. positives and cause short-circuits.
The ferlorated rubber separator used by almost entirely replaced by the examples of which are shown in Figs. 21 and 22.

$$
\begin{gathered}
\text { Fig. } 21 . \\
\text { Grooved Wood Separator- } \\
\text { Vehicle and General Service. }
\end{gathered}
$$

In the one case the separator is a veneer about one-sixteenth inch thick, with split wood dowels slipped over it to give the necessary space
between plates; in the other it is made of a
thicker piece, grooved, and in either instance treated by a special chemical process. The disit is not perforated, with the result that shortcircuits are practically eliminated, while its electrical resistance is nevertheless almost negligible.

Flat Wood Separator Gencral Stationary
Service. $1 / 10$ size.
In many cases the grooved separator and plain perforated rubber are used together, the lat of the wood against the negative plate, this making an excellent combination, used in most able batterics propulsion and many other portThe flat
chiefly in large stationary batteries, where the grooving would constitute too great a wastage of wood

Containers.- The vessels which contain the complete clement - plates, scparators and acidwherc. lightness and ruggedness are recpuired, that is, for all kinds of portable service; glass jars for stationary service in the smaller sizes; lead-lined wooden tanks for the larger stationary installations.

Electrolyte. - The electrolyte in lead batteries is dilute sulphuric acid of the highest

cording to conditions. Where space and weight are of ulmost importance, stronger acid, about
1.280 specific gravity, is employed, but where these items are non-essential a greater bulk of weaker acid, say 1,200 specific gravity, answers
better, in liat it causes less loss from local action, especially on the negative plates. vor. 10-9

General Assembly.- So much varicty exsts in the details of assembly employed by dif-
erent manufacturers and for different purposes

Ironclad Exide Cell for Vehicle and
General Service. About $1 / 5$ size.
that jt will be possible to mention only a few f the controlling factors and to give a few illustrations of complete cells (Figs. 24, 25 and 28).
In all present-day designs, positive and negative plates are placed alternately side by side, "groups" by means of "lugs" which project from the upper corners. Fig. 23 shows a posi-

Manchester-Box Stationary Cell.
$1 / 10$ size.
tive and a negative group as used in the small rations also sttcry of Fig. 26; and these mus-
the plates are united, by a lead welding process to the connecting
nals of the cell.
The corrosive action of the acil electrolyt makes this lead welding necessary, and in most instances it is applied, not only in fastening the plates to the cell terminals, but also in fastening adjacent cell terminals logether, so that

there is a solid metallic contact from cell to cell throughout the whole haltcry.

Between the plates, and thas keeping them proportioned as to fill the container, tightly in portable batteries, somewhat loosely in stationary ones
The

The plates are usually either supported upon ridges projecting upward from the bottom of top of the jar (Fig. 25) or from the lid or in some equivalent manner.
Tight covers for the containers have to be provided only for portable service; stationary cells are generally left open for ready inspection and access.
Assembly.-- Till now of Complete Battery Assembly.-- Till now we have dealt with only
the single cell, which forms the electrical unit of which a battery is built up. This unit has a current output dependent upon the number and size of plates which it contains, while its
electro-motive force has a fixed value, roughly electro-motive force has a fixed value, roughly
two volts, virtually independent of its size. Hence the current requirements of a given battery determine the size of cells to be cmployed, and the voltage requirements the number of

$$
\begin{aligned}
& \text { Inter-cell Connector - Auto } \\
& \text { Starting Service. Approx. } 1 / 4 \text { size. }
\end{aligned}
$$

cells to be used in series. As the field of the storage battery is very broall, so the design varics greatly, including almost every conceivable combination from the small three-cell hattery for auto starting (Fig. 26) to the large
central station battery of 150 cells, as shown in Fig. 30.
Inter-Cell Connectors.-For connecting the individual cells together electrically various forms of "connectors" and "hus hars" are in use,
usually made of lead or lcad-antimony alloy, occasionally of
of electro deposited lead. In Fig. 27 is shown a connector as used, not only for auto starting
batteries, but for most other portable and semi-

Large Stationary Cell. Stand -by
Service. Contains 45 phats. as in
portable types. Composed of lead, or alloy, it is made to fit over the tapered terminal posts by means of a hydrogen flame, or its cequivalent, which melts the lead of both post and connector till they flow together and become united
In Fig. 25 there are no connectors proper, the pure lead straps to which the plates are attached having prolongations adapted to be bolted together from cell to cell

In the large stationary batterics the plates welded directly together, each plate (Fig. 29)
having a projecting "lug" which reaches part way over the edge of the cell where all are united to a substantial lead bus bar, as in Fig.
30 and at "D" in Fig. 28. The bus bar "C" in this figure is one of the battery terminals, and the lead is reinforced by a large tapered plate of copper, to which is bolted the copper bar that connects the battery to the switchboard.
In Fig. 30 are shown a number of these Inminals with the large coppers leading off. the number of cells in circuit may be varied

Fig. 30.
Large Stand-by Battery, 150 Cells. 167 Plates (Fig. 29) each.
Capacity 12,40 amp. for one hour. Each cell
stands about four feet high.
by means of a motor operated "end cell switch," so as to vary the voltage at will, or more usually to maintain the voltaye constant by throwing in additional cells as the $E M$ F of each falls off cluting ithe progress of discharge.
Insulation.- In the small portable batteries, Such as the auto starting type, insulation of the rubber jars themselves, which accordingly are placed side by side in a box of suitable size. When, however, a number of such cells, say 40 or more, are connected in series, as in Fig. 36 , it is found necessary to divide the each one preferably containing not more than 8 or 10 cells.
In small stationary batteries a flat glass tray under each cell is often used, as shown in Fig. 25, a little sand being placed in the bottom to give an even seat for the glass jar. Larger double insulation of some kind; thus in Fig. 28 the tank rests upon a glass-oil insulator, "B," which in turn is supported by a large inverted
Stoneware cup, "A." The primary useful quantities furnished by a Storage battery are electromotive force, or
P.D. (measured in volts), and current (measured in amperes) ; since the time during which a given current may be maintained is frequently of controlling importance there arises a third quantity called the capacity, the product of the current and the time which the battery can fur-
nish it. Frequently the relation of these three primary attributes to the weight of the battery is a vital factor; while the effects of internal resistance and temperature are scarcely less
mportant. The characteristics of a battery therefore consist of the relations of these quancussion the unit considered is in cvery case a single cell.
In speaking of the discharge of a battery, the term discharge rate is very frequently used commonly expressed in terms of the time during which the discharge can be maintaincd; the
four-hour rate for instance being that rate which the battery can hold for four hours. The so-called "normal rate," originally that for which the battery was intended, is actually of but little significance, since the modern battery may be discharged at almost any njury.
a point whity is limited by the fall of voltage cing again arbitrary ence fairly well defined as about $1.60-1.80$ for he lead cell, about $0.6-1.0$ for the Edison type.
Many variations exist in the design of modits own characteristics; the curves which folow are chosen as fairly representative, but of course cannot pretend to fit all cases.
Characteristics of the Edison Cell.-Capacity-Temperature.-The capacity of a given Edison cell is very nearly a constant quantity inding under ordinary conditions to about 11.5 ampere hours per pound. The capacity is, however, very markedly dependent upon temperature, to an extent which varies with the discharge ratc. This variation with temperaure is so great that there results a critical practically inoperative; and since this point is from $30-50^{\circ}$ F., depending on conditions, it constitutes one of the chief limitations to the usefulness of this form of battery. If given a chance to discharge rapidly, when slightly below ually warm itself; but for immediate action at low temperatures it is unworkable.
Voltage - "P.D."- Fig. 31 shows a typical voltage curve of an Edison cell during its "normal" or five-hour rate of discharge, and during the corresponding charge. At lower at higher rates it becomes lower. Fig. 32 summarizes a number of discharge curves by giving the initial, the mean and the final voltage at rates up to six times the normal. It is noticeincreasing discharge falls of very rapidly with mum current obtainable is only about 14 times the normal, while the maximum watt output is reached at about seven times the normal rate. It is of interest to notice that the mean voltage of the Edison cell is about 60 per cent that of the lead lype and that the percentage drop Edison. It is thus necessary to employ at least 65 per cent more cells of Edison type for a given discharge voltage; and still more than this if the discharge rate be high.

Efficiency.- Comparing the mean values of the two curves of Fig. 31 we arrive at the ciency; the corresponding ampere hour efficiency is approximately 88 per cent, while the watt hour, or energy efficiency, the product of these two, is 63 per cent.

In actual practice, the charging is freçuently done from a fixed source of voltage equal to present case: hence under these conditions, the present casc; hence under these conditions, the cent.
Also, in practice the charge required is
greater than that shown in Fig. 30 , so that
show that at ordinary temperatures and modcrate discharge ratcs the Edison battery may give excellent service At high rates, or low
temperatures, however, its performance is so temperatures, however, its performance is so
limited that it is now seldom used where such conditions prevail. It is these conditions which have excluded it entircly from the field of auto self-starting; while on the other hand, in other

TYPICAL CHARGE ND DISLHARGE CURVES OF EDISON CELL-NORMAL RATE Fig. 31
actually the ampere efficiency is ahout 80 per scrvice, as for instance, train lighting and mine cent. The commercial watt hour efficiency of lamps, it has proved very satisfactory. Cell.-
the Elison hattery, where worked to its full Characteristics of the Lead Capaty
capacity and charged from a source of constant
Capacity. The capacity of a given lead cell is capacity and chargal from a source of constant voltage, is thas found in actual practice to average hardly above 55 per cent. Where where worked to partial capacity only, the effi-Capacity.- The capacity of a given lead cell is mainly dependent upon two variable factors (1) the rate at which it is discharged, and 1. The effect of varied discharge rates is

MMFLEES IN MULTIPLES OF NOEMAL DISCHREGE RATES
volage characteristics of Eonson cells
Fig. 32
ciency may be much higher, depending on actual conditions.
Capacity and Weight.- The energy capacity
of the Edison cell at normal of the Edison cell at normal rate and tempera-
ture is about 14 walt hours per pound Vith ture is about 14 watt hours per pound. With falls very markedly.

Summary.- The characteristics noted above
shown hy the curved line in Fig. 33, from which t will be seen that the capacity varies inversely with the rate, though not in dircct ratio. While the alscisse of this figure show the discharge rate in terms of the normal, vertical lines at
intervals give the rate in terms of the duration of discharge.
tic of all lead batterics, though differences in end modify it appreciably. Thinner plates more sloping one
A very important corollary of the variation of capacity with rate exists in the fact that a lead cell which has been completely discharged at a high rate, if allowed to stand for
some hours, will largely recover, so as to rive some hours, will largely recover, so as to give
a considerable further discharge. In the case of a continuous discharge of diminishing rate, we ultimate capacity approaches that which Would have obtained had the final rate been maintained throughout. In the operation of an electric vehicle the rates on slarting, up
grades, etc., exceed the normal rate by five to one or more; yet owing to the periods of rest, or low rate, the capacity attainable is practically identical with that of a continuous normal rate discharge. The normal rate for

Voltage ano Capacity Chapacteristics of Lead cell

Fig. 33.

proaches a slanting straight line. Referring again to Fig. 33, the three upper lines, with
the scale of ordinates at the right hand side summarize the effect upon voltage of various discharge rates up to 10 times the normal It is of interest to note that at 10 times normal the mean voltage has lost but 20 per cent 25 times normal; and that short circuit gives alout 50 times normal discharge current. Comparison between these curves and the corresponding ones for the Edison battery, Fig. 32 is very significant. The Edison battery is inferior (a) in that it has a much greater per
centage drop in voltage during discharge at any given rate, and (b) in that the lead battery can discharge at about three times as high a rate as the Edison.
as the Edisoln.
2. Acid Change ("Gravity"). - It has been
pointed out in discussing electric-chemical cquations, that the amount of free sulpnuric

Sponding to a continuous discharge of four or five hours.
2. Temperature at time of discharge exerextent of alsout $61 / 2$ per cent per 10 degrecs F. It thus comes about that at 0° the lead battery has about 54 per cent normal capacity, and that it is perfectly workable at temperatures much lower even than this, especially where
the discharge rate is lower than normal.
Discharge Phenomena.- - 1 . Voltage (or of a battery is its voltage characteristic, a typical curve of which is shown in Fig. 34. is arting off at approximately two volts, there is a gradual falling off, till the end approaches, When the voltage rapidly drops below a use-
ful value. The curve shown is for the normal rate, but is fairly indicative of the gencral behavior of a lad cell on discharge. With higher rates, however, the curve is lower hroughout its length, and more nearly ap-
acid varies as discharge proceeds, and the third curve of Fig. 34 shows for a particular
case what this cliange amounts to. Barring case what this change amounts to changring acid, measured by hydrometer, varies directly with the ampere hours drawn from the cell but the amount of change depends so entirely upon the relative volume of acid contained in a given cell, that the numerical values of this
curve in Fig. 34 have no general significance 3. Temperature Change.- The lead cell to a slight extent is a thermo-clectric accumulator, inasmuch as a slight disappearance of heat accompanies the discharge. This phenomena is graphically shown in the lower curve of Fig. 34, where it is seen that the temperalige dropped rates, the heat generated by internal electric friction overbalances that absorbed, and at the one hour rate the temperature rises about to the same amount as it dropped a normal rate. The absorption of heat on dis
charge, while of much theoretic interest, is of ittle practical value. valuable attributes of the of the mos high conductivity, which enables it to yield up its stored energy at extremely high rates. It is impossible to state the resistance definitely owing to variation of design; but by way of type from which Fig. 34 was taken, having a normal rate of 35 amperes, has an internal resistance of about .0014 ohms at beginning, and 0028 ohms at end of discharge. Since it is mainly through its influence upon voltage that internal resistance is of interest, the data fur ical information required better than prac tempted formula for calculating resistance. Efficiency.- During charge, the P.D. of ead cell starting at about two volts rises gradu-
ditions, the volt efficiency is about 75 ner cent the watt hour efficiency about 65 per cent.
These conditions are the most prevalent, except when a battery is charged directly from generator, whose voltage is made to vary ac cording to the charging curve.

Capacity Weight Ratios. - The capacity pe unit weight of lead storage batteries varies al the way betwcen 1.4 ampere hour per pound of
cell in the heavier stationary types, such as Fig. 25 , to about 5.5 in the lightest thin plate types for portable service, Fig. 26. These figures, a a basis of comparison, refer in all cases to a discharge rate approximating the five-hour. T, find the corresponding values for other rates reference should be had to the capacity curve
of Fig. 33 , bearing in mind that 100 per cent in this figure corresponds to an actual capacity of 4.6 ampere hours per pound.
Since the mean discharge voltage under

TMPICAL CHEGE N: DISCHARGE CURVES OF LEAD CELL-NGRMAL RATE
Fig. 34.
ally and finally becomes constant at a rather these conditions is approxinately 1.95 it fol definite valuc, from 2.5 to 2.6 volts, following the general trend of the upper curve of Fig that of the discharge curve 1.95 volts. Hence
the volt efficiency is 85 per cent.
In commercial operation, it is found neces sary that the charge exceed the discharge by about 15 per cent, so that the ampere hou efficiency about 75 per cent. When worked to less than 100 per cent capacity, both voltage and current efficiency are higher; so that in such cases it may reach or even exceed 90 per cent as in regulating service, where charge and disfew minutes duration only

Where a battery is charged from a fixed voltage, on the other hand, this voltage must a least equal that at the end of the charge; hence where worked to full capacity under these con
these conditions is approximately 1.95 it fol-
lows that the cnergy capacity of a conservain Fig. 24) is about 9 watt hours per pound fo the lightest types in commercial use (Fig. 26) about 11 .

It is a prevalent and quite natural idea that because the ordinary storage battery is made o lead, it is therefore unduly heavy. But when it
is stated that each pound weight of battery can store up 24,000 foot-pounds, it may be readily appreciated that the electric storage battery o to-day is by far the most effective piece of mechanism known for storing energy. Put in slightly different form, it may be stated that the modern battery of conservative and substantial
design, as in Fig. 24, can give out, in the space design, as in Fig. 24, can give out, in the space
of five-hours, electrical cnergy sufficient to lift itself approximatcly five milcs high.

Care and Operation.- To give a complete treatise on battery operation, covering the whole
varied field to which batterics are applied, would undament the scope of this article; but a few all cases may be briefly stated

1. Care of Electrolyte.- Evaporation of the water of the electrolyte is constantly taking place, especially while the cell is gassing frech at the end of charge; this must be made up lyy eriodic additions of water. Since the amount tery is many times the original amount contained, any impurities in the water accumulate quite rapidly. Hence it is very important to use only pure water for this purpose, and mong the impurities commonly present chlorine and iron in any form are especialiy to
be avoided. Addition of acid should be avoided. 2. Regulation of Charge.- If a battery be habitually charged too little, the active material becomes gradually more and more converted unction Sulphate, until in time it ceases unction. Very long continuled charge is the If on the other hand it be charged too much he gas bubbles liberated from the plates give ise to a softening and croding action upon the ositive matcrial, which detaches it from the plates, and in time leaves the grids bare, and no that best results are obtaincd wher each charge exceeds in ampere hours the previous discharge by about 15 per cont.
Several methods are in use for determining the correct amount of charge, as follows: (a) he "ampere hour" metre shows directly, both he current withdrawn on discharge and that egulated; a very generally effective metho When the discharge current is not too low, say 10 per cent of the normal. (b) The battery nay he charged till the voltage ceases to rise The of the older and less reliahle methods. (c) hat based upon specific gravity of the electroyte. If the specific gravity be read at regular intervals during charge, it will be found to rise teadily for a time, and then become constant. When three successive readings covering : ravity, it means that chemical actionange lates and electrolyte has ceased and hence that he charge is complete, and should he stopped This method of determining charge is fa he most reliable, and should be used whereve possible; and in any case should be used from charging is being done correctly. A single cell usually selected as a "pilot") for taking read gs with this method.
While the life of a battery may be much increased by careful regulation of the charge courding to the abds phnciples, yet many essful operation, where the only care observed in charging is to arrange that it is ample re ardless of other considerations.
The strength of electrolyte used in storage atteries is not standardized, hut varies with different makes and designs, and cven with the where weight is a prime factor, higher gravity isually alout 1.280 specific gravity, is nsed here weight and hulk are not important lower gravity, 1.200 or eveu 1.180 , are preferably em-
ployed. In the former case the volume of acid is small, and the drop of acid during discharge is correspondingly large, so that in discharged
condition it may be 1,150 ; in the case of a stationary cell, where there is no close limit to bulk, the acid which reads perhaps 1,200 on charge will drop during discharge to about the
same point as the other, namely, $1,150-1,170$. It same point as the other, namely, $1,150-1,170$. It is thus impossible to give any generally ap-
plicable values for the specific gravity of the electrolyte, but the theory of charging till a maximum is reached holds universally truc.

The specific gravity of sulphuric acid of the concentration used in batteries varies with 003 specific gravity; and as a matter of refer ence it is usual to correct all readings to $70^{\circ} \mathrm{F}$ Applications of the Storage Battery. The field of the storage battery to-day is $s 0$ broad that a few of the most important appli cations only may be enumerated, as follows: Propulsion of Automobiles and Commercial
Trucks.-Usually 40 or 42 cells, capacity of 100-250 ampere hours, type of cell as per Fig. 24.
Propulsion of Mine Locomotives.- 40-88 cells, 200-300 ampere hours capacity. Fig. 36 Propulsion of Small Industrial Trucks.-
Usually 12-16 cells, $100-200$ amperc hours Usually 12-16 cells, $100-200$ amperc hour
capacity, type of cell as per Fig. 24 . Propulsion of Submarine Torpedo Boats, while ruming submerged.-Usually 120 cells, 4,000-14,000 ampere hollrs capacity

Electric Lighting of Railuay Trains.- Each car equipped with a hattery, usually 16 cells 150-350 ampere hours capacity. Fig. 35.

Fig. 35.
Two Cell Unit af Train Lighting Battery which
consists of 16 Cells in all. Approx. $1 / 10$ size.
Starting and Lighting of Automobile.Usually 3 cells, designed to give $150-250$ am peres for short intervals of a few minutes duration. Fig. 26.
Airplane Motor Ignition.-Usually 4 small
cells, to insure motor reliability cells, to insure motor reliability.
Mine Lamps.- Onc or two cells, 8-12 am pere hours capacity.
Railuay Signal Service, for operating the signals which control the movements of trains Wircless Telegraphy as the source of power both ashore and afloat, in army and navy, a Telephone Stations furnish
ephone systems. Practically power for the telephone systems. Practically every central is dynamo, and for the purpose of assuring con-
tinuity of operation. Batterics from 15 to 2,400 ampe
typical cell
Liyht and Power Plants, in great variety Fig. 37 shows a small 16 cell battery, charged from a low power gasoline engine and dynamo,

Fig. 36.
Electric Locomotive Battory. 48 Cells, 21 Plates each,
capacity 210 amperes for 1 hour. Approx. $1 / 25$ size. and suitable for lighting the buildings on a station hattery used as a reserve or stand-hy in station hattery, uscd as a reserve or standertion with a large central power station.
connect Between these extremes, batteries of all kinds and sizes are employed, in stcam, water and oil operated power plants.
As an indication of the importance of the storage battery in the United States, it may be

Fig. 37.
[16 Cell Battery for Small Isolated Lighting Plant-
Capacity 8 amperes for 8 hours. About $1 / 30$ size. stated that their manufacture gives direct em ployment to some 14,000 persons, with many three largest consumers of lead in the country and that the annual output approximates 2 , 000,000 horse power hours capacity.

Bibliography.-- Dolczalck, 'Theory of the Leal Accumulator) (tr. hy Van Fnde, 1904) Lyndon, Lamar, 'Storage Battcry Enginecring' (1911) ; Morse, Harry W, 'Storage Batteries)
(1916) ; Wade, E. J., (Sccondary Batteries'
(London Edinari, Wanton Smitir, Ch.E.,
Factory Enginecr, The Electric Storage Battery
Company, Philadelphia.
ELECTRIC STORM, a sudden and violent change in the normal magnetic currents of the earth, with oscillations of potential, interfering with the action of telegraph and telcphone instruments, sometimes suspending their opera-
tion and evcn diverting the current so as to stop trolley cars: called also marnctic storm stop trolley cars; called also magnetic storm-
Without any advance warning the magnctic necdles will swing a long way out of normal positions, because of the disturbed earth currents. The electric potential of the earth is ordinarily
stated as zero, and all electric currents are measstated as zero, and all electric currents are measured from that hasis or standard, which represents the halance that electricity seeks. The
earth is a huge dynamo, with magnetic currents continually: flowing, and it will absorb any amount of electric current that the machines
of man can collect without any apparent effect on this vast storchousc of nature. But the sun
is also a natural dynamo, of vastly greater acis also a natural dynamo, of vastly greater ac-
tivities and subject to electric stresses of a violence far transconding anything we have or can experience on this earth. One of the apparent effects of the electric and chemical activitics of the sun is displayed in the sun-spots, which occur there with irregular frequency, ap-
pearing to come and go in undetermined cycles. pearing to come and go in undetermined cycles. tural, but the view is gencraily accepted that they represent openings or vortices in the outer gascous envelope of the sun. However this may be, it is apparent that they are in some way connected with the clectric storms or violent These electric stresses occur at intervals that cannot be predicted, but are comparatively frequent, and perhaps once or twice a year the violence of the magnetic changes is sufficiently abnormal to be characterized as a great storm,
which for a short time paralyzes the action of which for a short time paralyzes the action of
more or less clectric machincry, much as a great storm of wind and rain paralyzes the traffic of a large city.
For the past 25 years or longer many scientists and a number of obscrvatories have becti more or less cngaged in studying the phenomena
of these storms and have striven to formulate a correct theory of their origin and progress. The clifficulty is not that reasons cannot he found for such irregularities of the carth's potential, but rather that there are so many plausible explanations which cannot all be true, that the investigators are puzzled which clucs to
follow. Early observations disclosed a periodicity in the electrical storms, that clearly tended to follow the displays of sun-spot activity. If these spots were the direct cause it would be reasonable to expect the following electrical
storm on the earth to come at a definite interval storm on the earth to come at a definite interval; but the fact is that an electric storm always the way from a few hours to a few days. While the avcrage lag is about 38.4 hours, the lag in great storms is only about 20 hours, indicating that the more violent the influence the swifter the travel.
Another sort of evident periodicity in elec-
trical storms is their recurrcnce at periods of about a month. Some ohscrvers have figured numerous intervals corresponding with the lunar month, while others have noted a close
correspondence with the synodic months of 29 correspondence with the synodic months of 29
and a fraction days, this synodic month repreand a fraction thes on which the earth, sunn and senting the dates on which the earth, suln and
moon come almost or quite into a direct line. This suggests that the storms are influenced hy the stin and moon jointly, or that in some way the moon directs these extraordinary electric activities of the sun toward this planet.
Certain other well-estahlished phenomena
have been estahlished with reference to these storms. Not only are they coincident with sun-spots to a marked degree, but also with displays of the aurora borcalis or "northern lights." Evidently the aurora is but a visual evidence of magnetic disturbance. Another pertinent fact discovered is that the magnetic storm is ahout twice as apt to occur in the night-
time as in daylight, which is accounted for on the supposition that the ravs strike the earth's atmosphere at a great height and are deflected
by the carth's magnetic currents, being mainly manifest on the hemisphere opposite the sum. hemisphere; in fact they frequently strike the earth and circle it several times before their nege is spent. Prol. Institute at Washington, discovered that in two great electrical storms (in 1902 and 1903) the magnetism circled the earth at a
speed of about 7.000 miles a second, requiring speed of about 7,000 miles a second, requiring $31 / 2$ to 4 seconds only to complete the cir-
cumference. It had previously been supposed that all magnetic needles felt the storm at the rave instant. He not only demonstrated from west to east, others from cast to west. Other things we know about electric storms arc that the smaller storms are comparatively local, being termed equatorial storms and polar
storms according to the portion of the earth's storms according to the portion of the earth's nized as positive and negative storms.
Within recent years a new theory has developed, which may be summed up with the idea that pencil-shaped emanations or shafts of Roentgen or cathode rays, or perhaps of negasun during periods of sun-spots, and that when the earth runs into onc of these the effect here is an electric storm. This hypothesis assumes that the same electric activitics that produce sum-spots also produce these pencil-shaped shafts of rays and not that the sun-spots are
responsible for them. Professor Bauer points out that the fact that electric storms may travel in either direction around the earth is against this pencil-like shaft theory, as these should intercept the earth always in the same way. The professor has also noted that these storms seem to break at a height of about 75 miles in closer to the surface their effects are felt more severely. He contends that the energy of elec tric storms is supplied by the earth itself and not by the sun or sun-spots; that the same activities in the sun that cause sun-spots, set in motion the elcetric storms very much as a trigin a gun. Prof. Kr. Birkcland, of Christiania, has made exhaustive experiments with vacuum tube
apparatus of his own designing, in the effort to prove the theory of cathode ray origin or cating much of the phenomena of the electric storm and made many valuable records, but his theories have not been generally accepted.

ELECTRIC STRESS, the force that causes the deformation of the surface of a sulbstance within an electric field.
ELECTRIC SUNSTROKE, a stroke that prostrates a person in a manner rescmbling sunstroke, brought on hy prolonged exposure to
a strong clectric light.
ELECTRIC TELEGRAPH. See Telegrapity.
ELECTRIC TELEGRAPH CABLE. See Cable; Telegraphy.
ELECTRIC TELEPHONE. Sce Telepione.

ELECTRIC TENSION Sce Elfctri Barect Electricity; Eiectro-motive Force.

ELECTRIC TORPEDO, a torpedo operated by electricity. There are various kinds of electric torpedoes. The Sims-Edison torpedo is driven by an electric motor and its motions ane orpedo proper is carricd some distance below the surface of the water by a vessel immediately above it, from which it is suspended by two rigid bars. In the torpedo is a cable recl on which the conducting cable is disposed. An electric motor and controlling gear are also explosive is placed it in driven by a screw propelier actuated by the electric motor. As it moves it pays out cable so that it has no cable to draw after it through the water, the cable ying stationary in the water behind it. This maintenance of the torpedo at a proper depth is one of the advantages of the system over other methods.
ELECTRIC TRANSMISSION OF ENERGY, Long Distance. An electric transmission of energy obviously occurs when the relay of a Morse telegraph circuit, or the sensiresponds to the feeble current impulse originated at the transmitting end of the wirc. It is also obvious that we have the electric transmission of power in the ordmary use of electric light or electric motors even when the generator or power is used. But generally speaking the or power electric transmission of energy denotes the transmission of energy on a large scale by means of overhead or underground conductors or cables and its transformation into light, heat, chemical energy or mechanical power at the remote end of the conductors. When the di.slance to which this electric power is trans-
mitted exceeds say 15 or 20 miles it is usually spoken of as the long distance transmission of electric energy or power.
In cities like New York where electric encrgy for lighting, power and railway traction is transmitted distances ranging from less than a mile
to 15 or 18 miles from the power house the conductors are usually placed in cables in underground conduits and the maximum electromotive force transmitted is about 11,000 volis. This pressure is directly generated by a steamdriven alternating current generator and is where by means of step-down transformers the pressure is dropped to say 600 volts alternating current which when direct current is desired by rotary convericrs is converted into direct current for the strcet mains, the feeders of the railway system and for charging storage battimes of heavy demand or when otherwise required; or when alternating current is required for service mains the 11,000 volts is transformed to say 240 volts. When water power is available, as at Niagara Falls and innumerable other places in this and other countries, the electric tances of $25,50,100$ and 200 miles from its source is not uncommon.
In order that clectric power may be transmitted economically to long distances the use of high clectric pressure or tension is essential, ductors would be excessive. For example: It
has been calculated, on the basis of 5,000 volts that to transmit 2,356 kilowalls a dislance of
100 miles would require about $22,862,737$ pounds of copper in the conductors, assuming a line electro-motive force, whercas with 40,000 total the total amount of copper required would be about 357,230 pounds. Even doubling the pressure would quarter the amount of metal required for a given distance and given line drop In the electric transmission of power to long
distances the use of alternating curtent is distances the use of alternating current is gen-
cral, and transformers are utilized to increase the electro-motive force on the transmission line and for reducing it at the points of distribution Where the electro-motive force on the line docs not exceed 10,000 volts generators developing that electro-motive force may be cmployed. When that line voltage is exceeded the station
voltage adopted is about 2,300 volts; this being stepped up by transformers to the electro-motive force desired on the line. This moderate voltage admits of the use of lighter copper wires or conductors in the station apparatus than higher voltages would require. In present day pracuncommon and line insulators and transformers to withstand this pressure are now employed Indeed, manufacturers are prepared to supply transformers capahle of operating at 200,000 volts. In North Carolina and South Carolina over 1,000 miles of 100,000 -volt transmission circuits are in operation on the system of the power mainly from hydro-electric devclopments. In California there is a 150,000 -volt circuit from Big Creek to Los Angeles, a distance of 240 miles, on the system of the Pacific Light and Power Corporation. The conductors of this circuit are supported on stcel towers. In addi-
tion this company has in operation 105 miles of 60,000 -volt circuits, 240 miles of 50,000 -volt circuits and 831 miles of 15,000 -volt circuits. These laits circuits are supplicd with current from the 150,000 -volt circuits at various distribution points by means of step-down transformers in sub-stations.
Modern usage in the matter of type of alternating current employed leans largely toward
three-phase. (See Electric Alternating Current Machinery). For cach circuit this requires three conductors which are arranged on the poles and cross-arms usually in an equilateral triangle, the wires being separated from one another by a distance of six or eight fect.
The wires are in some cases transposed on the poles, to form in effect a long horizontal spiral This is generally done to prevent inductive effects on the telephone wires used for signaling on the same or adjacent poles, although some engineers also think that spiraling the conductors diminishes the impedance of the cir-
cuit. So far as the telephone line lelonging to cuit. So far as the telephone line luclonging to
the transmission company is concerned the simplest way to avoid inductive effects is to spiral the telephone circuit. While, as just intimated, the long-distance transmission of energy is carriced on chiefly by means of the alternating current, transformers, ctc., high potential transmission in at least one instance in Eurone has instance the line pressure is 60000 volts which is generated directly on the line by six dynamo
machines in series, each generating 10,000 volts. Ai the point of distribution six motors are con-
nected in series and cach motor is caused to nected in series and each motor is caused to
drive a generator which in turn develops elecdrive a generator which in turn develops elec-
trical energy of a desired potential and current output.
For the supports of the transmission line the choice is practically betwecn the use of
wood poles or stecl towers. The kind of wood wood poles or stecl towers. The kind of wood employed for the poles varies somewhat with States and redwood in the Pacific Coast States States and redwood in the Pacific Coast States. ample clearance from ground and sufficiently strong to withstand wind strains, etc. Poles fitted to meet these requirements and to carry two threc-wire circuits should be at least 35 to 40 feet in height, set 5 to 6 feet in the carth and be 121014 inches in diameter at the butt and at least 8 inches at top. The use of
steel towers permits longer spans and consequently diminishes the total number of insulators necessary. With wooden poles the maximum length of span is 180 feet; minimum 80 feet. With stecl towers using 12 to the mile the span between towers is 440 fect. On one up of four galvanized angle iron posts 40 feet in length, 3 inches by 6 inches with three-sixtcenths inch angles, the posts being stayed with suitable angles and cross rods.

For the very high potentials used on longdistance transmission lines extra precautions as lo insulation are requisite, both where the wires towers. For insulating the conductors from the poles or towers large porcelain discs are now commonly used, in a series of four or more (arranged somewhat like Japanese dinner gongs), termed suspension insulators, the upper
disc of which is attached to the pole The conductor is attached to the pole or tower. Much care is required in the manufacture of these insulators. This series arrangement of insulators has largely increased the amount of electro-motive force that can be successfully

Power House Terminal of Transmission Line.
employed in clectrical transmission of power as ine electric potential is divided between the
individual discs. Other types of instlators for high tension service consist of large petticoat the top, 12 inches in height and weigh 18 to

20 pounds. They are supported on the crossarms or on the pole itself by wooden or iron pins. For pressures up to about 25,000 volts Wooden pins are found fairly satisfactory, but
above that pressure they are found to char by above that pressure they are found to char by a peculiar action of the current, and it is adreasons, to employ cast iron or metal composition pins. These pins are from 15 to 17 inches in height and they maintain the insulator about 12 inches from the pole or cross-arm. (See illustration, which shows an iron tower, a threewire circuit, with cross-arms, pins and porcelain insulators; also the openings in the gable of ductors pass out)
The choice of metal for the conductors in nis service is virtually confined to copper and aluminum. It is known that there is a tendency to a brush discharge, termed corona, in the air
between conductors conveying currents at high pressures that leads to a waste of electric encrgy When with wires of given diameter a critical electromotive force is reached. The critical
electromotive force also varies with the disclectromotive force also varies with the dis-
tance between the wires. It was at one time tance between the wires. It was at one time
thought that this effect would constitute the limiting factor in the long-distance transmission of electric power, hut in Prof. Harris J. Ryan's paper, 'Conductivity of the Atmosphere at High Voltages' (consult '(Proccedings' American In-
stitute Electrical Enginecrs, Vol. XXI, No. 3), stitute Electrical Engincers, Vol. XXI, No. 3), he shows that, regardless of the metal employed,
by increasing the diameter of the conductors, whereby the clectric gradient is kept below the breaking down point of the air in the vicinity of the wire, this cffect is avoided. For example, to avoid atmospheric losses between conductors
separated by an air space of four fect, with separated by an air space of four fect, with
barometric pressure of 29.5 inches of mercury, temperature $70^{\circ} \mathrm{F}$., the conductors must have,
ter for an operating electromotive force of 50,000 Volts, a diameter of at least .058 inch; for
100,000 volts 192 inch. for 150,000 volts, 430 100,000 volts, .192 inch; for 150,000 volts, .430
inch; for 250,000 volts, .990 inch. On this account it has been deemed advisable in numerous cases to employ aluminum conductors, since than that of copper.
For instance, on a 150 -mile line in California transmitting 745 kilowatts (10,000 horse power) at 40,000 volts, aluminum conductors sevencighths inch in diameter are used. In a 100 -mile, wire three-eighths inch in diamcter is used. The transmission line from Shawanigan Falls o Montreal, Canada, employs aluminum convoltors carrying 12,000 horse power at 50,000
voleel-cored aluminum conductors are volts. Steel-cored aluminum conductors are also used for this purpose and in some of the
latest high tension transmission lines steel-cored copper conductors are utilized.
To provide a system that will be as nearly ahsolutely reliable as practicable duplicate cirin order that if one circuit becomes inoperative in order that if one circuit hecomes inoperative
the other may immediately be brought into
serven eases the two chers two separate pole lines are built. Wherever possible private rights of way are
obtained for the transmission line and it is of advantage to have this way so wide that danger
way along steam railway tracks are not considered desirable for the reason that the smoke from the engines very soon so impairs the
insulating quality of the insulators that frequent insulating quality of the insulators that frequent
cleaning and washing of the insulators is cleaning and washing of the insulators is
rendered necessary. Even on private routes the rendered necessary. Even on private routes the
cleaning of the insulators is at times essential to maintain the insulation.
The distance to which electric energy can be profitably transmitted from a source of electric power is not yet definitely determined.
Much depends on the cost of fuel at the disMuch depends on the cost of fuel at the dis-
tributing points and the amount of energy to be tributing points and the amount of energy to be
delivered. In California, where coal is dear, electric energy is now being commercially transmitted from a number of water-power plants in that State to an amount exceeding 100,000 horse power at a pressure of 40,000 to 60,000 volts and to distances ranging from 50 to 230 miles. power is transmitted to the point of consumption and sold at $\$ 20$ per horse-power hour per annum. There the price of coal is $\$ 6$ to $\$ 8$ per ton, but labor is cheap. Electric energy generated by the force of falling water and transmitted 85 miles by wire is sold in Montreal, a profit. But while as stated the distance to which electric energy may be commercially transmitted is yet undecermined, calculations have been made by reputable electrical engineers which indicate that under proper conditions electric power may ulimatelv be profitably
transmitted in large quantitics, say 200,000 kilowatts, and at a pressure of 170,000 volts, to a distance of 500 miles. This transmission would entail the employment of copper wires of a diameter so large that the dissipation of energy by brush discharges between the conductors wealized it would obviously bring New York, Chicago and other large cities within reach of he electrical energy developed at Niagara Falls. Indeed the calculation just referred to was based upon the amount of mechanical power
utilized in New York Consult (Proceedings utilized in New York. Consult 'Proceedings
American Institute of Electrical Engineers, Dccember 1904.? See Power, Transmission or.

> William Maver, Jr.,

Consulting Electrical Engineer.
ELECTRIC UNDERGROUND CABLES AND CONDUITS. In the first attempts to ago, both in America and in Europe, the wires were placed in cables underground; but owing to imperfection in the methods of insulating the wires, as well as in the type of in which or pipe employcd, and of the manner in which the conduits were laid in the earth,
the cables and conduits failed after comparatively short service and the use of overhead wires supported on poles was resorted to and became the universal practice, which continued almost without interruption for a quarter of a century.
Begin
Beginning about 1890, however, there has Amen a movement in all the principal cities ot America and Europe to place all electric wires freed from the encumbering poles and overhead wires. In New York city, especially, the movemersistently, with was carried on vigorously and persistently, with the result that for many years
there has not been a pole supporting telegraph telephone, electric light or trollcy wire in any placed in cables in conduits under the surface
of the strects. Electric Underground Cables.- The type of underground cable used for telephony, telegraphy and electric light and power purpose
varies greatly. For example, the conductor used in telephony have a diameter of .040 inch; those for telegraph purposes about .080 inch; those for electric light and power range from one-quarter of an inch to one inch and over in diameter. The smaller electric power wires are light current work; the larger wires in low tension and heavy current work. It is thus fcasible to place about 400 telephone conductors, or 100 telegraph conductors, in one cable in a three-inch underground duct or pipe, while it most, five electric light or twower conductors in a similar duct. The insulating material used for telephone conductors is usualiy a wrapping of tissulu paper in narrow strips, laid on spirally over each conductor. The instlating material of telegraph underground cables is usually a
rubler compound or strips of paper saturated rubler compound or strips of paper saturated
with oils, the thickness of the wall of which is about 038 inch. The insulating material of electric light and power cables is usually a rub) ber compound, oil paper or varnished cambric, which is from one-eighth of an inch to nearly half an inch thick, depending on the electric
pressure to be withstond, which, in the case of pressure to be withstond, which, in the case of
low potential circuits, is ahout 220 to 600 volts, and in the casc of high potential circuits may range from 1,000 to 30,000 volts. Gutta-percha which has been employed for the insulation of long submarine cables, is not used for underground cables, owing chiefly to its low softening not infrequently encountered in subways in cities.
Calles designed for underground work are encased in a lead cnvelope to protect the insulating matcrial from water, moisture and the effects of gases, acids, ctc, in the underground
conduits. For crossing rivers such cables are also armored with iron wires in addition to the lead covering, as a mechanical protection.
The term calle includes the conductor ("core"), the instlating material, the lead covering and the armor when the latter is employed. Copper is practically the only metal
used for the conductors of electric cables. Aluminum is not used because of its bulk for a given conductivity, which bulk is about 1.6 greater than copper. The increased amount of insulating material and lead covering, as well as space in the conduits, that would be required luctivity would be virtually prohibitive of its use for underground cables.
The copper wire used in cables is drawn to the required size in the wire factory. If the wire is to be insulated with a rubher compound it is "tinned" to prevent any chemical action hetween the sulphur used in the rubber com-
pound and the copper. When the covering is paper, linen or filre the wire is not tinned. The tinning process consists in passing the wire hrough a vat of molten tin. For electric light and power cables, when the conductors do not
exceed 204 inch diameter, they are usually solid, or of one wire; above that size they are wires are stranded to obtain flexibility. The one process, the wircs being wound on reels, which are held on suitable spindles on the frame of the machine. A single wire is held in the centre of the frame and is slowly drawn through
a guide. The wires for the first laver are a guide. spirally wiresud the central wire; the wires for the second layer are held on another frame and are laid over the first layer in an opposite direction, and so on for the additional aycers required. The strand is wound upon a drum and
Rubber Insulation. - The rubher used in the insulating material for cables is pure Para rubber. After the rubber has undergone treatment by washing and kneading to remove the mpuritics whe it it always contains in its crude state, it is ingen mixce, hy suitanle machincry, compound, such as litharge, whiting, bhe lead and sulphur. The compound is then ready for placing over the wirc. There are two general methods by which this is done, termed, respectively, the scam and scamless methods. In dered into a sheet of any required thickness, which is then cut into long strips. These strips are then passed between two grooved rollers having sharp cutting edges. The wire to lie covered also passes in the centre of the grooves strips are pressed closely around it the knife edges of the rollers cutting off the surplus rubber strip. The wire thus insulated is fre-

quently wrapped spirally with a tape, after vulcanized In placel in a vulcanizing ove and pound is placed in a plastic condition around the conduits by pressure, while passing through die. The conductor, C, Fig. 1, is drawn through a metal chamber or box,, , which con-
tains the plastic compound. A worm gearing w within the chamber, pushes the compound toward the opening or die, d, in the end of the chamber. The compound is fed into b at the aperture A. The chamber is kept at a desired emperature by a hot water or steam jacket. After leaving the chamber the insulated wire is drawn slowly along a lable, through powdered talc to prevent sticking, to a drum, on which it
is then taken to the vulcanizing hox or receptacle, unless it is first to be taped. The aping process is somewhat analogous to that of stranding the wirc. A vertical taping machine is shown in Fig. 2, in which the insulated wire w is seen coming through the floor to
the guides c c, in each of which there is a slot through which tape from the small recls $\mathrm{k} k$ passes to and around the wire. The wheels on which the recls R R are carricd revolve in opposite directions, this action laying the tapes on
the wire in reverse spirals. The wire thus the reel D . In the case of rubber-covered wires the next proceeding is to immerse them in a water tank for 12 or 24 hours, after which they

IG. 2.- Taping Machine
are electrically tested for defects in the insulation that may be due to air-holes, foreign subslances in the insulation or any other cause.
he insulated wirc in an oven, where it placing

Fig. 3.- Paper Covering Machine.
at a temperature of 250° to 300° F. until the rubber compound is brought to a desired degree off hardness and tenacity, the proper time for effecting which is a matter of experiment and
varies with different compounds. Sulphur is the
hief ingredient in the compound that brings about these results. The compound usually enters the oven a yellowish compound and
comes out a dark-blue color. This color may be varied by using different ingredients in the

EIG. 4. - Telephone Cable, Yaper Covered.
compound, and in some cables certain of the onductors are colored by this means to act as purposes.
Paper Insulation.-The conductors intended

Fig. 5. - Telegraph Cable.
for telephone work are covered very loosely with two layers of dry, soft paper, laid on spirally, in practically the manner in which tape is placed over the rubber insulated wire.
This type of insulation is found to be the most

Fig. 6.- High Tension Cable.
satisfactory yct devised for telephone cables, its per mile of conductor. The insulation resistance of each conductor is about $500,000,000$ ohms per mile. The wires thus insulated are twisted in

Fig. 7.- Duplex Cable, Electric Light
pairs with a lay of ahout three inches, the pairs being laid up in reversed layers and built up into cables of 50.100 and 200 pairs, atter against moisturc. Paper cables for electric light
and power and telegraph scrvice are made up of reversed layers of strips of manila paper to a
desired thickness by means of a paper-covering desired thickness by means of a paper-covering
machine such as is indicated in F.g. 3. In this figure w is the wire moving in the direction of the arrow. By suitable motive power the reels R carrying the paper strips are revolved in opposite directions around the wire.

When thus covercd the conductor is wound on a reel and placed in an oven until all moisture is driven out of the paper. The reel, with the
insulated conductor, is then immersed in a va of boiling oil for several hours until the paper is thoroughly impregnated with the oil.

Varnished cambric insulation consists of strips of varnished and oiled linen cambric, which are placed ovcr the conductor in as many between the layers.

When insulated the conductors are ready for their lead covering, if to be used as single conductors; or if to be employed in cables, they are now rcady for cabling. In the latter case the number of conductors in a cable will vary
with the purpose for which the cable is designed. Telephone cables for underground use may consist of as many as 400 conductors, which are first twisted in pairs and are then cabled by a cabling machinc virtually similar to a stranding machine. For telegraph uses single conductors to the number desired, are laid up spirally in
the usual way. The copper ribbon over each insulated conductor is grounded by connecting it with the lead covering of the completed
cable. The static lines of force set up by the telegraph currents in the conductor expend their energy in setting up induced currents in the copper ribbon and thus the conductors proper are protected or screened from the effects of parallel static induction.
For electric light and power purposes, espe-
cially for high potential circuits, cially for high potential circuits, three conduc-
tors in one cover are now generally used. Thesc conductors are laid up spirally and taped, the spaces between the conductors being filled with jute rope, in the act of cabling. In other instances the three conductors are bunched and a "jacket" of paper is laid over them. This
is termed a jacketed cable or "split" insulation. is termed a jacketed cable or "split" insulation. it is ready for the lead covering.
The process of lead-covering cables is as follows: The cable is drawn through a dic in a die-block, and, as it nasses through this die,
hot lead in a semi-plastic state is pressed in a hot lead in a semi-plastic state is pressed in a
uniform thickness around the insulating material uniform thickness around the insulating materia sure excrted on the end of this ram sometimes amounts to 500 tons.
nllustrations of var
Mlustrations of various types of underground cables are given in the accompanying figures. Fig. 4 represcnts a clepraph cable; Figs. 6 and 7 a one-conductor and two-conductor cable for high tension elec tric light and power circuits, respectively; Fig. 8 a low tension, heavy current cable for electric light and power; Fig. 9 a three-conductor electric power cable for 10,000 -volt cirup of a strand of 37 copper wires, cach .082 inch in diameter. P is the oil-saturated paper or
varnished cambric around the conductor, .17 varnished cambric around the conductor, 17 inch thick. F is the jute filling. J is the paper jacket, also .17 inch thick. L is the lead covering, 13 inch thick. The lead is usually alloyed
with 2 or 3 per cent of tin. The outside with diameter of this cable is 2.56 inches. The weight of each conductor is 4,000 pounds per mile; the weight of the lead covering is about 13 tons per mile.

Rubber and paper cables are now made to withstand pressures of 25,000 volts, and some are to-day in operation in underground conare to-day in operation in but the ordinary operating pressure to-day is from say 2,000 to 11,000 volts for underground cables.
mostectric Underground Conduits.- The ground would be to provide a tunnel under the strects, in which not only the electrical conductors but also the gas and water pipes of a city might be placed. This method is. howcver, so expensive that it has only been adopted in two or three places in the world, and then
for only comparatively short distances in very for only comparatively short distances in very crowded such tunnels in London, England, namely, the Holborn Strect tunnel, about seven feet in height by 12 wide; the Queen Victoria Street subway and the Victoria Embankment
tunnel, seven feet by nine feet. The total length of these London tunnels is about six miles and they cost approximately $\$ 140,000$ per mile, including ventilators, side passages and entrances.

In some of these tunnels, water and gas pipes, pneumatic tubes and telephone, telegraph and electric-light wires have been placed. In Paris at one time some of the sewers were utilized
tor the same purpose, but this plan was not tor the same purpose, but this plan was not

greatly favored and has sot been followed elsewhere. Tunnels for electrical conductors were also built in Detroit, Mich., the longest of which is about 232 feet in length. It is six feet six inches by three feet six inches in the cross-sec| tion. |
| :--- |
| So |
| |

Solid Conduits.-Another plan which has becn utilized for this purpose is one in which
the conductors are well insulated and laid dithe conductors are well insulated and laid diare laid in notches in a tube or duct, by which means they are kept apart. The tule is then filled with an insulating compound, which, when it hardens, holds the conductors securely, in po-
sition. This is termed a solid" sition. This is termed a "solid" conduit. One
of the earliest forms of solid conduit was that used by Morse, between Washington and Baltimore. This consisted of five wires insulated with cotton and placed within a lead tube which was laid directly in the earth. In different parts of Europe, in the middle of the last century and afterward, wires were laid directly in the material arout other covering than the insulating material around them, which was usually a bitu-
men compound or gutta-percha. Insulation laid men compound or gutta-percha. Insulation laid
in this way is not long lived. One of the first solid condurits used in America for electric lighting was onc in which a lead-covered cable
is laid directly in a wooden trough, the cable cing uncoiled directly from a cart recl, the box being then filled with an insulating compound. To protect the cable from injury, a thick plank was placed over the box.
In many European cities solid conduits are

Fig. 10.- Sidewalk Conduit.
laid on a bed of sand, s, as indicatcd in Fig. 10. A galvanized iron wire netting, 1 , is placed over the sand, separating it from a hed of conerete, IVid upon which the asphalt, n, of the sidewalk is
The olject in using the wire netting is to warn workmen of the presence of the cables.

Edison Solid or Iron Tube Conduit.- Thi is the conduit adopted by Edison for the distribution of electric current by the three-wire system, for light and power in cities. It cont
sists of an iron tube about 20 feet in length, into which the three conductors, usually copper

rods, separated from one another by hemp or jute cords, are inscrted. An insulating cominto the tube at a temperature of about $300^{\circ} \mathrm{F}$. The copper rods project about two inches a each end out of the tubc. The tubes are laid end to end in the carth, when the conductors in one tube are connected to those in the next by
a flexible copper strand. A split iron box is then jointed and clamped over the ends of the tube and the box is then filled with an insulating compound through an opening, which is then closed by a screw plug. In this system no manholes are employed, but instead, at suitable distances, water-tight junction boxes are used,
into which the conductors are led, as outlined in Fig. 11. This is really a switch-box, by means of which the current from the "feeder" conductors is distributed to the "mains" or "scrvice" conductors. These boxes are also utilized to break up the mains into shorter secor testing and othe purposes.
in case disadvantage of "solid" conduits is that of repairing them in the cables there is no means Neither is it convenient to add to or take from or to increase or diminish the size of conductors used in the "solid" system. These disadvantages do not exist in the case of what is termed
the "drawing in" conduit system, to be described presently.
Bare-wire Conduits. - Still another plan utilized in some parts of Europe, and known as the "bare wire" conduit, consists of uninsulated, or bare, strips or rods of copper placed
in tubes underground and held in position by in tubes underground and held in position by
insulators, or else the conduit itself is cominsulators, or ef of instlating material and is protected from moisture. This plan is not in extensive

Drawing-in Conduit. - The method which is now most-generally employed in this country
this system as many ducts as may be necessary are laid in a trench side loy side and in layers,
and manholes are built at intervals of 200,300 and manholes are built at intcrvals of 200,300
or 400 feet to give access to the conduits and or 400 feet to give access to the condutits and

Fig. 12.- Standard Manhole.
drawn into the ducts. In a "drawing in" conduit system the ducts containing the "fecder" "trunk") ducts and are usually the lower tier or layer of ducts. The ducts carrying the distrib)uting cables are termed "distributing ducts" and are placed at the top. So-called "hand-holes" are laid flush with the surface of the strect
every 40 or 50 fect to give access to the distrib)every 40 or 50 fect to give access to the distrib)power service. One type of manhole is shown
in Fig 12. This is a brick manhole; otloers are made of concrete. The hand pump shown is used to provide fresh air where gas is prevalent in the streets. The size of the manholes and
number of ducts varies with the rerpuirements number of ducts varies with the reçuirements
of a given locality. Some manholes are from 4 to 5 fect square : others are 12 to 15 feet deep and 6 to 8 feet wide. The number of ducts in a conduit may range from 2 to 3 ducts to 200 or 300 dacts; the larger number usually being ncar the power-house or the telcphone or telegraph headquarters. The manholes and handSome of the covers are designed to make the manholes air- and water-tight; other covers are perforated to ventilate the conduits, to prevent the accumulation of gas from adjacent gasmams, which occasionally causes explosions in
cables are joincd together by twisting or by copper sleeves, in the manholes; the conductors being separated from one another by insulating
material. A lead slecve is then placed over the material. A lead slecve is then placed over the
joints and soldered to the main cable. A hot joints and soldered to the main cable. A hot insulating substance, as wax or paraffin, is
poured into the sleeve through a small hole in poured into the slecve through a small hole in
the slecve, the holes being soldered thercafter. For telegraph and telephone distribution, pipes are run from the manholes into the vaults of an adjarent luilding, from which point the wires are led to the subscribers' oflices in the block.

The cables are drawn into the ducts by means of a rope and windlass; they are usually
too heavy to be drawn by hand. Electric motors carried on wagons are also used to draw in the cables, the currcut for the motor being supplied by a storage battery, an adjacent power wire or a portable gas engine. In order to get the rope through the ducl, a wire is sometimes
placed in the duct as it is laid. More frequently, however, the ducts are rodded by means of a stiff steel wire, or by means of screw and socket rods, similar to those used by chimncy sweeps, one rod being screwed into its predecessor, Which is then pushed along the duct tuntil the
distant manhole is reached, when a rope is attached to one end of the rods and drawn through the duct
For the ducts used in the drawing-in system different material and varying lengths of
pipe or tube are employed. At one time, wrought-iron pipe, 3 inches in diameter and 20 feet in lengeth, joined together by thread coupsively used in this country. About $5,000,000$ feet of such pipe were laid and are still in service, hut in recent ycars carthenware, terra-cotta or
vitrified brick, stone and cement-lined pipe are vitrificed brick, stone and cement-lined pipe are mostly cmployed. The iron pipe and cementameter. Many of the holes it the vitrified brick ducts are square, with an opening of about threc inches. Fig. 13 illustrates a section of cement-lined. pipe under construction. These lubes are of riveted shect wrought iron and ment. The tubes are six to seven feet long and two to three inches in diameter, as required. A large quantity of these tulies are in use in this country and Grcat Britain.

In Fig. 14 is shown a 12 -duct vitrified clay conduit entering a manhole. Conduits of this type are made in hlocks of two, three, four and
six ducts. The four- and six-duct blocks are six fect long; the two- and thice-duct block
are three feet in lengtli. These blocks are laid in cement, end to end, and are held in position relia tive to one another by dowel pins. The walls thick. A wranping of wet muslin is laid around each joint and over the muslin cement mortar is placed. Farthenware conduits are also made in single ducts, 18 inches in length.
Wood pipe conduits consisting of wooden Withes which have been especially prepared to Withstand decay are used quite largely. The have socket are about cight feet in length and rench in tiers, the lower tier resting on plankig. In the various types of underground conuluts mentioned and others the ducts are "hroken" to add strength to the structure. Care is taken in laying these ducts to exclude cement struct or injure the cables in the "drawing in" process.

Fig. 14.- Vitrified Clay Conduit.
In the case of conduits for electric traction, he ducts are laid at the side of the track underground, and wide manholes are provided
at street intersections. For the "feeders" and at strect intersections. For the "feeders" and
other cables of the New York subways, conduits are laid in the wall is given luy openaings in the wall at suitable intervals.

It is well known that frequent interruptions overhead telegraph and telephone lincs arc occasioned by severe wind, snow and sleet Sorms in this comntry and Europe, and in con-
sequence the question of placing all such wircs in underground conduits has frequently been raised. The great cost of such an undertaking however, together with the fact that the speed of telephoning and telegraphing would be greatly diminished, owing to the increased with overhead lines, combined with compared trical obstacles, has heen prohibitory of the attempt to carry out such a plan in this country on a large scale. In Great Britain an emergency underground cable system has been laid butween Birmingham, London and Edining a 76 -conductor telegraph iron pipe containings at certain intervals to pive access to the cable, is employed. In the United States long stretches of underground telephone cables have Phi constructed, notably between New York, hilardelphia and Washington, D. C. The successful operation of underground telephone
(metallic) circuits at such distances has been made possible by the use of the Pupin inductance coils placed at certain intervals along the vol. $10-10$
the audion tclephotic
Er-Electrician Cilam Maver, Jr., Ex-Electrician, Consolidated Telcgraph and Electrical Sibway Co.,
ELECTRIC VEGETABLE GARDEN ING. Experiments carried on at the government agricultural station at Amherst, Mass.
since 1900 , show that the use of electricity by the farmer is a distinct and valuable stimulu to nature and cxerts a marked influence upon the germination of seeds and the growth of farm products. Scicutists arguc that roaming around loose in the atmosphere there is a vas
fund of electrical force, which, lyy means of specially devised apparatus, can be attracted to specially devised apparatus, can be attracted to
the earth and distributed through the gromnd where the gardener has sown his secds. The apparatus by means of which the electricity is caught and harnessed has been tested at Amherst and has proved to be a complete success copper spikes which are elevated at the top of a 50 -foot metallic pole. These spikes gather the electric fluid from the atmosphere and convey it to the foot of the pole, where it is caugh by wires buried a few feet beneath the ground and distributed over as large a scetion as the and distribute enough electricity to cover sevand distribute enough electricity to cover sevperiments have been made which may be summarized as follows: After seeds have been subjected to the electric treatment for a period of 24 hours, it was found that over 30 per cent more seeds were germinated by the aid of electricity
than in a like quantity of seeds sown in ground that lacked the electrical stimulant. As the scientists in charge of the experiments wished to make a very complete test, the electric current was applied to seeds that were allowed to stay in the ground for 48 hours. In this case it was found that 20 per cent more secds had
germinated in the clectrified ground than in the soil where the seeds had been left to sprout under normal conditions, and in 72 hours this percentage had dropped to 0 , thus showing that the use of the current for the purpose of stimulating germination under all the tests wa a decided success.
a temporary current of seds subjected to only found to show the effect for a few hours and then resume their normal growth. In one in stance, to produce a constantly beneficial effect it was necessary to apply the electricity every
hour to germinate growing plants or seeds. Another interesting experiment, made in 1902, was planting in two sections of ground, the soil in both of which had been carefully selected to ensure it being exactly alike, seeds of the following vegetables: parsnip, lettuce, carrot turnip, radish and onion. To one of the secwas applied. The following day the plants in the electrified plot began to appear, the turnips sprouting first. The rapidity of growth of those planted in the clectrically treated ground was far in advance of those treated in the ordinary ground. The second day plants broke through garden showing considerably the more rapid growth; the foliage was rank and when har-
vested was nearly twice as high as that of the non-electric plot. The roots also were larger electricity. One peculiarity was that in the eleca pound of tops was produced, while in the other case for every pound of tops there grew 143 pounds of root, but the difference in the total was all in favor of electricity. With refercnce to the other vegetables, the lettuce proved a failure in both plots. The carrots showed a marked superiority in the electric bed over
those in the non-electric. The onion plants came up in both beds and grew finely for a time, then blasted and not one developed, neither electric nor non-electric.
Besides the electric treatment of the soil, experiments have been made with the electric light for stimulating the growth of plants and the
general effect has been to hasten the maturity of lettuce, spinach and similar products. It has been found that the electric light has the stimulating effect of daylight upon the plants and crops thus encouraged by light from arc lamps have showed 50 to 60 per cent increase. In short it has been elearly demonstrated that by mans of electricity nature can be forced to do products. Sce Electroculture of Plants.
ELECTRIC VEHICLES. The first vehicles operated by electric power from a storage
battery appeared in 1892 , but they failed to battery appeared in 1892 , but they failed to
attract the attention of the general public until attract the attention of the general public until
1900 , when the very superior performance of 190, when the very superior performance of city of Cleveland, Ohio, gave them immediate city of Cleveland, Ohio, gave them immediate in 1904, and continued to be the prevailing type
until 1908, when the shaft-drive for the smaller until 1908 , when the shaft-drive for the smaller
vehicles was adopted. Up to that time electric vehicles was adopted. Up to that time electric
vehicles were equipped with pneumatic tires. vehicles were equipped with pneumatic tires.
By 1912, however, solid rubber tires had been generally substituted and the battery had been enlarged to 40 cells. These two changes were the cause of a great improvement in the
quality of the metal used in constructing the quality of the metal used in constructing the
electric car, in order that the jars of the road might be completely absorbed and the additional
weight safely carried. The result has been that the electric vehicle is one of the best of all self-propelled cars.
For city use and for the short haul, the electric possesses many advantages over steam and gasoline vehicles, the most considerable being its simplicity of construction. There are
only three parts to the mechanism : the battery, only three parts to the mechanism : the battery,
the motor and the controller - no gears, no clutch and no engine as in the gasoline and steam driven cars. The motor is an engine of the rotary type, delivering a continuous torque at any desired speed up to 25 miles per hour, without the crude and bulky mechanism which controls the two or three speeds between which
choice must be made with the gasoline car. Moreover the operation is noiseless. There are no nauseous odors of gasoline and burnt oil,
and there is no danger from fire. The car can and there is no danger from fire. The car can
be started instantly and surely by simply throwng a switch and there are no jerks or jolts in either starting or stopping abruptly. No chauffeur is needed, the car practically taking
care of itself and seldom needing any repairs or expert attention. The great drawbacks are
two - the weight of the storage battery which supplies the current and the limited radius of operation from a single charging of the battery,
about 30 to 35 miles. In some European vehiabout 30 to 35 miles. In some European vehlcles the radius of travel is as high as 60 miles,
the weight of the battery being doubled. The usual type of battery constitutes about onethird of the weight of the car and costs about $\$ 350$. The lead battery is good for 10,000 miles and then has to be replaced with a new
one. The Edison battery costs a good deal one. The Edison battery costs a good deal
more, but is guaranted for four years, during which a car may easily make 60,000 miles, so that while the Edison battery costs more to inlong it is very much more conomical in the is about 100 watt-hours per ton mile.
But it is not as the passenger or pleasure car that the electric vehicle demonstrates its greatest utility. This lies rather in the comrate capacity is widely in use, in as many as 124 lines of trade. As taxicals in citics where the speed limit is 15 miles per hour, the electric excels, showing almost no delays for
derangement of machinery, no tire trouble, derangement of machinery, no tire trouble, great elasticity in movement in crowded thor-
oughfares, no repair account and the cheapest motive power. The last-named feature has become still more marked as the cost of gasoline goes up and the cost of clectric current is continually diminishing. An electric taxicab on trial in Detroit made the remarkable record of 12,000 milcs in one year without any repair
whatever. Another field in which the elecwhatever. Another field in which the elec-
tric has made good is as the light delivery wagon, especially for the large department wagen, especially for the large departmen
sor this use the slow-speed type of motor is in favor, running about 800 to 900 revolutions per minute, at 80 volts and 28 amperes, 4 pole series type, unsaturated. The winding is arranged for either 60 or 80 volts
on larger trucks, to be used with a 60 -cell Edison or 42-cell lead battery, respectively. These motors run without attention except an occasional renewing of the brushes and lubrication, for from eight months to a year. The control most generally in use is the horizonta lever, and there is a motor brake besides an
efficient foot brake. The standard hattery equipment is 42 cells of 15 plates each for the equipment is 42 cells of 15 plates each for the
Icad type, or 60 Edison cells of the G-7 type. For the establishment which runs its own electric plant the matter of charging the bat teries becomes merely a matter of adjustment to the other work of the plant. In scvera cities the battery rental plan has proved popu1 can be bought without the battery and this be supplied at a stated rate per month, the battery being charged as often as exhausted The cost of such service is not excessive, being about half the initial cost of a new battery, and there are no delays while the hattery is lifted out and the fresh one put in its place.
The electric type, however, is not limited to the lighter service, as five-ton trucks are operated successfully in the transportation of coal, ice, flour, sugar, lumber, beer, etc. Fire engines
to run at a speed of 25 miles per hour are in use to run at a speed of 25 miles per hour are in use truck being able to divert its motive nower to

Taising a 90 -foot ladder, which is accomplished in 10 seconds. In several of the larger cities trucks to move mail in bulk then electric 20 cks to move mail in bulk, there being
20 of these in New York alone. For motive power for baggage and freight trucks in been proad terminals and on docks, electricity has ceen proved highly efficient. These little vehicles have a speed of seven to eight miles miles hour when empty, and five to six to run about one cent per mile. Other adaptations of the electric vehicle are the truck crane for loading and unloading and moving materials in foundries and other manufactories yards, as proad macts and in workshops and their warehouse trucks for moving goods and delivering them to gangways, as mine locomotives and in place of hand trucks in loading and unloading vessels.
electric of the incidental advantages of the in insurance ice is the very considerable saving and for the premises in which it is stored. At present there are over 35 concerns engaged in building electric vehicles and the number in use in the United States is estimated at above 60,000
ELECTRIC WAVES, a motion or districbance of the ether or medium in which elecircity manifests itself and appears to move, of
a character similar to light waves, of varying a character similar to light waves, of varying
length, according to the nature of the discharge but with a velocity similar to that of light. The wave theory was early held by was first demonstrated by Heinrich Rudolph Hertz (q.v.), who began experimenting about
183. He discovered that electric waves would produce a slight sparking betwcen metals when produce a slight sparking betwcen metals when
very nearly in contact. About 1887 he exhibited a special form of condenser, which he termed a radiator, but which would now be called an oscillator, as it discharges across a spark gap with oscillations. In connection with
this he employed what he termed a resonator, but which would now be styled a wave-detector. By radiating electricity at different oscillations and detecting the waves at certain harmonious distances, while demonstrating their hon-appearance at intermediate points, Hertz proved the theory of wave action and that
electricity travels in the same way as light, and paved the way for the later invention of wireless transmission. Hertz also reflected and refracted and polarized the waves, thoroughly demonstrating their action under the same laws as light waves. For a time the waves were ceferred to as Hertzian waves in honor of his Contribution to science. The study of the waves
was at once taken up by numerous students of electrical phenomena, and Lodge, Kelvin, Poinelectrical phenomena, and Lodge, Kelvin, Poincreased knowledge of the subject. Bose designed an instrument for producing very short electrical waves so they should be more easily studied. Later Brady of Paris devised an improved form of detector, and E. Rutherford Outclassed later by William Marconi's coherer, and that has yielded place to still more accurate Graphy, Wireless.

ELECTRIC WELDING. The heat of an electric arc may be employed in fusing or welding metals, or the heat given out in the bassage meta acting as a resistance to the passage of a heavy current, without any arc
or spark, may effect that result. The are method appears to have been first employed by De Meritens in 1881 . In this instance leaden pieces designed to be united in the form of storage battery plates were arranged together as an extended positive electrode, and an arc rod manipulated by means of an operating handle. Part of the heat energy of the arc served to melt the lead and canse union of the adjacent pieces, but much the larger proportion of the energy escaped by radiation and convec-
tion. The electric arc was thus akin to tion. The electric arc was thus akin to a gas the construction of tanks for the chemical industries. Follawing De Meritens, lieating by electric arcs has been applied to the fusing and welding of metals, notably of iron and steel, by Bernardos and Olszewski, Coffin and others. method, the carbon electrode is made positive to the work, carbon is transported through the arc and is likely to enter the metal undergoing the This , which constitutes the negative pole. This addition of carbon may render iron or steel hard and unworkable, and cause cracks to at the joint or filling. By the employment, instead of carbon, of an electrode of the same metal as that of the work, Slavienoff overcame this difficulty. The gradual melting of the meints or for furnishes metal for forming oints, or for repairing or supplementing cast-
ings which are defective; such as those which are incomplete or contain blowholes. More recently the work is made the positive pole and this results in a greater proportion of the energy than formerly being expended in heating as the conditions of the operation. Inasmuch taining the are are but little different from those often found in the commercial operation of arc lamps from constant potential mains, arc welding may often be practised by connecing resistance is mains. A choking or steadyare in a branch from direct current lines at a potential difference of 200 volts or thercabout. With work such as that to which the Bernardos and Olszewski method has been found to be applicable, the current in the arc may vary rom 150 amperes up to 500 or more. The potential across the arc itself will generally trode used by Slavicnoff the current needed will be greater and the arc potential less than the above amounts. It appears that in certain cases the current may even surpass 4,000 amperes.
While a moderate application of these are processes for fusing and welding iron and steel they are suited is somewhat limited and their success depends largely upon the skill of the workman. He must protect not only his eyesight from the glare of the large arc, but also the surface of his body, and must avoid the irritating vapors which arise from the flame.
be employed, for motion of the air tends to disA large proportion of the energy is radiated or carried off in the hot gases from the arc. To these energy losses must be added that duc to the use of the steadying resistance for obtaining stability in the current of the arc. On the other hand the appliances needed for are fusing or energy often conveniently found in existing electric circuits. One of its most recent uses has heen in adding metal to rail surfaces where worn at the joints, particularly street railway rails in situ. A considerable extension of the use of arc welding has recently taken place,
owing to improvements in materials and methods and to increasing demand for its use in original construction and repair work.
Werdermann, in 1874, proposed to deflect an electric arc formed between the usual carbons by a jet of air, forming thereby an electric blowpipe. More recently Zerener has in a similar sort of blowpipe for welding iron. In addition, the curious electric heating action first published by Hoho and Lagrange has been proposed for welding metals. If a negative electrode of a to 150 volts is of small surface a potential of 100 that of the positive electrode when both are immersed in a liquid bath, such as a solution of potassium or sodium carbonate, the surface of such negative electrode, where immersed, glows with light, gas bubbles arise from it, and the electrode itself heats rapidly in spite of its imhe negative electrode may thus be brought to incandescence and removed for welding, or it may even be melted under the liquid of the bath. The loss of heat in such a liquid heating process s necessarily somewhat great.
The Thomson process of electric welding, operations above described, was first announced in 1886 . It has since gone into extensive com mercial use. No electric are is employed, but the heat which effects the welding is solely due o the resistance of those parts of the metal pieces at the contact where they are to be welded together. This resistance is, of course extremely low, and the delivcry of sufficient of the passage of relatively enormous currents. Their potential is only two or three volts, more or less. The metal pieces to be welded together are held respectively in massive clamps or vises of highly conducting metal such as copper, with form the joint. These projections of the pieces are brought together in firm contact, for which purpose at least one of the clamps is made movable toward and from the other, both of them being mounted on a firm support. The pieces having been adjusted to meet in correct relation them, an electric current sufficient in amount to heat the meeting portions of the pieces to the temperature at which they soften and unite, is passed from clamp to clamp, thus traversing the joint and the short projecting portions of the pieces between the clamps. So heavy is the
current at command that a solid bar without break spanning the space between the clamps could be heated and melted. The completion of
he weld after heating is effected by pressure which results in a slight upsetting or extrusion of metal at the weld called a burr. For copper a pressure of about 600 pounds per square inch of section is usual, while with iron it is 1,200 and with tool stect 1,800 pounds or more. Nearly all of the metals, even those like antimony an bismuth which are brittle and crystalline, may be anited by this process, and many different metals as with high carbon steels, a flux such as glas of borax, is employed to facilitate union at temperatures not high enough to burn or destroy the texture of the metal. Mild steel and iron weld are usually made, as in ordinary forges, at weld dinary black oxide scale upon the metal heavy welding currents cannot be conveyed without great loss to distances of even a few feet unless conductors of prohibitive section and cost be uscd. The welding clamps are in practice carricd directly upon the secondary Thomson welding transformer is a construc ion like a lighting transformer in which the isual secondary circuit of numerous turns is eplaced by a very massive conductor constituting ordinarily only a single turn around the iron magnetic core. The primary or inducing circuit is similar to that of the ordinary trans lied from alternating current dynamos or lines as usual in such work. It will be seen that the secondary conductor is unique in character, bcing often a bar or casting of many square inches of section of copper of short length. The circuit by the meeting ends of the work pieces in the clamps. It will thus be evident that the chief resistance or opposition to the flow of the low voltage current in the single secondary turn will be at the proposed joint or weld between the clamps. Here it is then that the trans as heat, the section of metal which can be welded depending upon the scale of the apparatus uscd and the energy of the primary source which is available. The welding transformer has found convenient application in the heating of metal pieces for forging, bending, shaping,
brazing or the like, in addition to welding. It has also in the Lemp process been divested o its welding clamps and applied to the loca? annealing of the hardened face of armor plates so as to facilitate drilling and tapping, or cutting into desired shapes. The welds made by
the Thomson process are usually butt welds though lap welds are also made with almost equal facility. In butt welding there is of course an upset, burr, or extrusion of metal at the joint. In many cases this is not removed, and it renders the joint stronger than other adjacent sections. Oftentimes the joint is pressed or
forged while still hot so as to remove the burr at the joint. In other cases the joint is finished by filing or grinding. The welding clamps are modified in form and disposition to suit the shape and size of the pieces to be held, and the pressure used to effect the weld is either manually applied by levers or is obtained from a strained spring, or again, int large work, by valves. The heating effects of the electric cur-
rent are so perfectly adjusted by regulating ap garded as unweldable of metals formerly rethe process. Even leaden pieces, such for example, as sections of lead pipe, may be joined together with great ease. The operation of formity, eltric welder is characterized by unihess, accuracy and economy cleanliness, neatextensive application to repetition work; single machines making sometimes as many as 2,000 welds per day of 10 hours. It is used widely in the wagon and carriage industry for tires axles, bands, fifth wheels, etc., and for wire parts of hicycles and automobiles are many by electric welding. In the construction of tools and parts of machinery and particularly in the Wire industry it plays an important part. Another important field is in the welding of wire or strip into hoops or bands for barrels, tubs, pails, etc. Machines are in operation producing
electrically welded wire fencing in which the wires which in the fence are horizontal are welded to verticals at intervals, the action somewhat resembling that of a loon. In joining pipe into continuous lengths or coils, and also in Welding in situ strect railway rails into a concial adaptability An interesting application of the clectric welder is found ing the production oi steel tubing by the progressive welding of a longitudinal seam. A long strip of flat sheet or skelp is rolled up so as to cause the lateral calges to meet. It then passes between welding traverses the meeting edges current locally The operation is progressive from one end of the pipe to the other as it is fed through the machine. The result is a pipe of uniform diameter with walls of even thickness, having a delicate bead along one side where the weld pipe bee subsequently mandrel drawn with the duction of its diameter. In the carlier electric welders the operations of clamping the pieces in place, applying and cutting off the electric current and exerting mechanical pressure, were usually manually controlled. Machines more or In recent types are now frequently employed work upon identical pieces, the action is entirely automatic; the machine runs continuously and its sequence of actions is definitely determined by its construction. These machines are clamping the movements bcing imparted for chime, for closing the current switch, for exerting pressure to complete the weld, for cutting off the current and for releasing the picces from the clamps aiter the operation. In wire fence mathan machines the stock is itself fed automachine is stopped or the material exhausted The naturally varies with the size of the pieces and with the material. It also depends upon the time consumed in the work, which time may be tade shorter or longer even with exactly simi of somes. The following table gives the results iron, mild steel brass and copper in the form of bars. The figures are only approximate and would vary considerably if the welds had been
made in times different from those given. In lessen the total power used but require larger apparatus for the increased output required during the welding:
energy used in electric welding by the thom-

	Section, Sq. in.	Kilowatts of welder	$\begin{array}{\|c} \text { Time } \\ \text { in } \\ \text { seconds } \end{array}$	Total kilo watt seconds
Iron and Steel.	0.5	8.5	33	280
	1.5	${ }_{23.5}^{16.7}$		
	2.	29.	65	1885.
	${ }_{3}^{2.5}$	34. 39.	70 78 8	2380. 3042
	3.5	${ }_{44}{ }^{39}$.	85	3042. 3740.
	4.	50.	90	4500.
Brass.	0.25	7.5		
	. 5	13.5		297.
	. 75	19.		
		25.	33	825.
	1.25	31. 36.	38 42	1178. 1512.
	1.75	40.	45	
	2.00	44.	48	2112.
Copper.				
	. 25	14.		154.
	. 375	10.	13	247.
		${ }_{31}^{25 .}$	16 18 18	400. 558.
	. 75	${ }_{36.5}^{31 .}$	${ }_{21}^{18}$	${ }_{760} 558$.
	. 875		(3122	946.
	1.00	49.	23	1127.

One of the recent and most important developments of electric welding by the Thomson process is known as "Spot" welding, and is particularly applicable to the union of sheet metal overlapped. The process is known as stitute for riveting with the advantage of leaving the metal sheets united in spots but without rivet heads or other deformation projecting. The surfaces of the sheets may, in fact, be left smooth or with only slight indentations. To "scomphish this result the two sheets to be and, as it were, pinched logether between two hcavy points or electrodes from a welding transformer secondary circuit. These electrodes being placed opposite each other press the sheets together at any desired spot, the current is then sent through them, when the sheets, where they are in contact, instantly attain the welding heat
and the joint is effected in a spot with unwelded metal around it, as in riveting. The electrodes used usually have at their ends the form of truncated cones; that is, they narrow toward the work, in this way concentrating the current flow at the limited spot to be welded. On cutreleasing the pressure of the electrodes on the sheets, they may be moved to a new position, another spot weld effected, and so on until as many are made as desired
Projection welding is a modification of spot welding in which the sheet metal pieces are first given small projections by stamping or are placed between the sheets at spots where the weld is to occur. Then the whole is pressed between the current carrying electrodes which may now be of such spread as to cover a num-
ber of such projections or spots at once, al being welded simultaneously. Spot welding in its various forms finds a large and rapidly
extending application, particularly to sheet steel structures, such as steel car bodies, automobile bodies, metal containers, etc. It has become the general method of uniting stamped metal pieces merly, for example, handles were riveted to sauce pans before enameling and the rivets were plainly to be seen under the enamel. By spot electric welding the union is effected without visible change in the metal surfaces and the covering of enamel is in conse
rupted and without projections.

The process is capable of further great extensions in its application to the union of overlapped sheets or plates. Riveted joints, always more or less unsightly and often disadvan tageous to construction by taking up room and giving an irregular surface, can often be abol ished and the spot weld substituted therefor
with benefit. Besides its advantage of leaving a smooth surface, it effects a great saving of time and economizes material. As in the case of electric welding generally, the spot weld gives rise to new modes of construction o metal objects and greatly assists the substitution of pressed steel for castings or forgings.

ELECTRIC WIRELESS TELEGRAPH See Deforest Wireless Telegraph System

ELECTRICAL ALARM, or THER

 MOSTAT, an instrument arranged to give an alarm or announcement when the temperature in its vicinity reaches a pre-determined degree.(See Electric Signaling, Automatic Fire Alarm Signals). Thermostats are also employed to automatically maintain a given temperature by opening and closing drafts, through the medium of electro-magnetically operated devices. Thermostats are operated on open or closed circuits, as desired. There are electropperate by expansion of a gas or mercury, respectively.

ELECTRICAL DIAPASON, a tuning fork the vibration of which is maintained by electro-magnetism Signaling). This instrument, provided with a resonator, was employed by Helmholtz in his notable
sounds.

ELECTRICAL ENDOSMOSIS. See

 Osmosis.ELECTRICAL ENGINEERING. Elecrical engineering is probably the youngest of all the professions, for it has hardly been recognized as a regular profession for more than 15 years past. As a result, the men who have reached prominence in it to-day have attained
their positions from widely different courses of Their positions from widely different courses of
preliminary training; many of them are men preliminary training; many of them are men
who started life in other lines of work and afterward turned to electrica! pursuits on account of the sudden growth and importance of the business. In consequence of this, all methods of preliminary education are represented
and their relative values can be estimated. The argument runs largely between two classes of men - one represented by the so-called "prac-
tical man" and the other by the theoretical electrician; the graduate of the machine shop and the graduate of the university. Both of these types have attained success, but the correct answer to the argument will probably be In the past some of the most successful electrical engineers have belonged distinctly to the class of practical men with little theorctical training, but the conditions have changed. In the early days of the profession, there was little theory or predetermination of results and
work was carried on largely by guesswork or by cut and dry approximations. At the present time, however, such a state of development has been reached that exactness of result is essential to success and work based upon exact theory becomes imperative. In a stationary condition of an art a man with practical experience only types of apparatus and, knowing their various applications, may qualify, to an extent, as an cngineer. But the extraordinarily rapid growth of the electrical arts places electrical engineering apart from all the other engineering branches, for new discoveries and theories
make radical changes from year to ycar in the construction and operation of electrical machinery. The enginecr whose education is based only upon practical experience cannot keep up with the progress and change resulting from it, and falls behind; whereas, the man with knowledge of the theory, and a mind trained by the
theoretical studics and scientific reasoning, easily grasps the theory of the change and readjusts his mind to the new without difficulty or delay. Many instances can be cited of men who have been prominent as electrical engineers, who have been dropped out of place in the course of the rapid progress which has been foundation in their knowledge. Those who have retained their positions throughout the growth of the art have done so by persistent study along theoretical lines.
In its present state electrical engineering is the most scientific of all engineering professions. A man must be to a great extent a well as be familiar with machinery and its design, in order to be a worker in the broadest field. Many of the problems connected with other branches of engineering can be solved by common sense and by one's sense of proportion as guided by experience and hy the eyc. But most of the problems in electricity are invisible,
so to speak, and can be understood only through their expression in the form of symbols. Probably no one will dispute to-day that the preliminary education of an electrical engineer demands a special training in those theoretical branches, mathematics, physics, chemistry and mechanics, sufficient to train his mind into ac-
curate methods of thought and reasoning and to supply him with the actual technical information which he will need in the practice of his profession. But theory alone is not all. The human mind is such that it works with difficulty in pure theory without a series of mental
pictures to fix and co-ordinate the ideas, and
the study of theory is likely to make little lasting impression unless the physical meaning of tion with actual apparatus which demonstrates the application of the physical law. The best course of training for an electrical engineer in general subjects at the preparatory school before entering college, with practical work, if possible, along lines of simple mechanics, such as carpentry, in order to train the mind into a which of proportion and the relations of parts, Which is the basis of all engineering. Next, a ear, and afterward, for the remaining years of the course, those general and theoretical subjects which have a direct bearing upon the practice of the electrical profession, such as mathenatics, mechanics, physics, chemistry, theoretical electricity, and magnetism and thermoactual daily practical work with machinery opcrating by the principles covercd by the heory studied and demonstrating all the phetiomena incident to the theory. After graduanome an apprentice course should be pursued in ome large electrical manufacturing establishknowledge acguired in college can be clearly set forth. Large machines can be operated which are not available at a college and experience in the installation of large plants can be obtained, 2nd experience gained in the designing departments where all kinds of commercial apparatus re laid out
After a few years of this training specializa-
ion may begin along the lines selected for the life work but preferably not before. A man makes a mistake to consider himself a qualified from colleal engineer after he has been graduated been college, for he is not one. His mind has readily absorb the principles of the electrical profession, but the principles of the electrical ipprentice training is as important as the colpoint course, in order to acquire the broad viewthe direction which to make the correct start in verhaps means which a man is best fitted. It sraduation from college, but it means after ore at the end of five years. But theory and ractice are not the only elements necessary for the successful engineer. There are many qualsions. required in common with other profesDresence of mind and ability to knowledge, herve and mind and ability to handle men; machinery in times of emergency, are all necesary to the successful engineer. These elements annot be acquired in the study of theory an high in alone, and many men who have stood ward in their college courses have failed after of a lack of these qualities. The study of emistry becomes more and more important e profession advances, for the branch of likelyo-chemistry is rapidly developing and is application to beome one of the largest fields in the above all comes a training ince. And almost guage all comes a training in the English lan clarly and concisely in writing or in conversa can hope to attain a prominent position in
his profession. The education of an clectrical as completed. The art advances so rapidly that constant study is necessary, even to keep up with the progress of the times. But an electrical engineer should be willing to do more than this. He should s.tudy to keep ahead of
progress and do his share toward the instruction of others.

Consulting Electrical Engineer, New York,
ELECTRICAL MANUFACTURING INDUSTRY. The conditions as to the elecStates are fairly well revealed in the statistics of the Bureau of the United States Census, giving the latest authentic figures available, although these can be supplemented by later up to date and that illustrate the swift and enormous expansion of the various electrical arts and applications. Electrical applications divide themselves into two large groups. One of these comprises the production of apparatus; and the other, many times larger, embraces the utiliza of what are known chielly through the agency telegraphy telephony electric utilities," such a supply and electric traction. One group of in dustrics manufactures operating materials; the other group manufactures "service." In the United States, as sharply contrasted with Europe, these agencies are in the hands of private capital to an overwhelming degree, and the comparative figures of efficiency, economy
and earning power are equally on the side of and earning power are equally on the side of As to the production of electric
apparatus and supplies, the data are miven here with for 1919, when the total output for 1404 establishments was placed at a value of $\$ 1,063$,526,297 , against which may be placed the fact that in 1916, three concerns billed a total sales of not less than $\$ 305,000,000$. In 1914 the total value of all products in this industry was $\$ 359$, 432,155 ; as compared with a value of $\$ 240$, figures are revelatory of many new These figures are revelatory of many new con-
ditions governing the electrical arts, such as the change from steam engines to steam turbines in the generation of electrical energy, the increased use of water power, the invasion of electricity into many new fields of supply, in-
dustrial, commercial and domestic use of the electric motor; the advance greate use of the electric motor; the advance of elec-
tric heating; the supersession of the arc light by the larger incandescent; the complete conquest of the incandescent lighting field by the tungsten filament lamp; the irresistible intrusion of the electric locomotive, not only into steam railway terminals but into the operation of power is available for the gencration of current.
It will be noted that generators have greatly increased in size, and have fallen off in value, owing to this fact. In the early days of the elec-tric-light and power industry it was customary to employ high speed, single valve automatic steam engines for driving belted generators, as
the best regulation of speed could be obtained
with engines of that type, for incandescent lighting. The steam cconomy of those engines was usually as low as a consumption of per hour. The mechanical efficiency was rarely as great as 85 per cent and the electrical efficiency of the generators was rarely 75 per cent. Corliss type engines were used for are light circuits where the load essential. Their economy rarely exceeded 30 pounds of water per one horse power. For incandescent lighting there was an average consumption of at least $10 \pm / 2$ pounds of coal per kilowatt hour and for arc lighting 8 pounds of coal per kilowatt hour. This compares with the present Interborough Rapid Transit 50,000 kilowatt stcam turbo gencrators requiring as
little as one and one-half pounds of coal per kilowatt hour; while it is understood that the Connell Creek station of the Detroit Edison Company has an economy even superior to that. There is a $60,000 \mathrm{k}$. V. a. triple steam turbine under construction for the Interborough sys70000 which will have an actual capacity of economy of 11 pounds of steam per kilowatt hour. The increase in the size and economy of hydro-electric generating units is equally notable. The largest water turbines for electrical service are the threc single runner units installed in the plant of the Tallassee Power Company on the Yadkin River, North Carolina,
with a guarantecd rating of 31,000 horse power under an effective head of 180 fect, and 27,000 horse power under 165 feet at 154 r. p. m. The turbine runner weighs 20,000 pounds, is a single piece of solid bronze and is probably the largest casting of its kind ever mad
It is to be understood, however, that the manufacture and production of electrical apelectrical industry as a whole. The total capitalization is placed as high as $\$ 12,000,000,-$ 000 , the gross sales and carnings are rated at above $\$ 2,500,000,000$, and the number of persons employed at more than $1,000,000$. The accompanying figures were published during 1916
which while based on earlier data can be shown to be in many respects far short of the actuality. A conservative estimate for the total service and output value of electricity in 1917

ESTIMATE OF ELECTRICAL INDUSTRIES OF THE UNITED STATES,

Central electric stations...
 Street and electric railways - power generation, distribution
and application. Street and electric railways - railway operation
Electrified divisions of steam railroads...........
Electrphone. (land and ocean).
Telegraph (
 products of other industries). Electrical dealers an
made and published by the writer is as follows ELECTRICITY IN UNITED STATES, 1917

As to the production of apparatus alone 000,000 , and one concern reported at the end of 1917 orders on hand to the value of $\$ 240$, 000,000 . The increase is by no means wholly in output but must take into consideration the tric street railway material, is pertinent in many respects to the electrical field as a whole:

1914-16 PER CENT INCREASE IN PRICE IN
TWO YEARS.

A $=$ hree concerns reported a total around $\$ 300$, increase in prices as exhibited in the following lable which, while applying principally to elec

Material	Use	Approxicent increase present nh price ${ }^{25}$ with price years ago
Copper	Overhead system, stations and	
Steel	Track and shops	300
	Babbitt, solder, cables and over- head..	110
Lead.	Babbitt, solder, cables and over-	
Speiter	All galvanized material.	
Alloy metais.	Tool stecl, special work Poles, ties and shop work	${ }^{200} 125$
Leather	Belting.	
${ }_{\text {Rubber }}$	Belting, hose, insula Fabrics insulation	110 to
Glass	Windows	125
Varnish	Car work	135
${ }_{\text {Paint }}$	Cars, buildings and pole line. Insulation.	${ }_{125}^{125}$
Rattan	Seats and swcep	
	Stationery and printed ma	150 to
Dry colors.	General paint shop work.	$\begin{gathered} 400 \\ 260 \end{gathered}$
Linseed oil. Gears and and	Shop work, buildings and pole line.	
pinions...\|	Motors and air-brake equipment.	125

Investment or capitalization	Persons	Annual earnings or sales
$\$ 3,038,000,000$	$\begin{array}{r} 104,000 \\ 52,000 \end{array}$	$\begin{array}{r} \$ 403,300,000 \\ 201,600,000 \end{array}$
2,681,800,000	165.000	350,500, 0000
	165.000 15.000 15	$350,500,000$ 30,300000
1,262,760,000	237.000	329,900, 00011
231,600,000	44,000	75,300.00
469, 100, 000	185, n00	383,300,000
	50,000 6,000	$120,000,00$ $80,000,00$
\$12,129,660,000	1,023.000	\$2,324,700,0

In general, most of the estimates are based upon returns of the United States Bureau of the Census. A comparison the estimates in different sections of the industry on isolated electric stations made it apparently reasonable to assulu that the totals for this branch are one half of those for central stations
Statistics for the electrified mileage of stean railroads are based up
Statistics for the electrified mileage of stean railroads are based upon the latest available figures of miles of track
which were applied the approximate averazes of electric and steam railroad statistics. The very costly terminals wert

1 Operators Reading at the Testing Tables, General Electric Works, Schenectady, N. Y.
2 Dynamo Electric Machinery Under Test, in the Testing Department, General Electric Works,

WORKS OF GENERAL ELECTRIC COMPANY, SCHENECTADY, N. Y.

Departments (1) No. 18; (2) No. 60, Works of General Electric Company, Schenectady, N. Y

PRODUCTION IN UNITED STATES OF ELECTRICAL MACHINERY, APPARAIUS AND SUPPLIES -

- Products	1919	$1914{ }^{1}$	19091
Total value.	\$1,063,526,297	\$359,452,155	\$240,037,479
The electrical industry -			
ectrical machinery, apparatus and supplies Subsidiary electrical products of other industries.	$997,968,119$ $6,558,178$	$\begin{array}{r} 335,170,194 \\ 24.261,961 \end{array}$	$\begin{array}{r} 221,308,563 \\ 18,728,916 \end{array}$
Generators (other than small dynamos under 10 kw): Alternating current Steam-turbine driven, under $2,000 \mathrm{kw}$.			
Steam-turbine driven, $2,000 \mathrm{kw}$ or o Number		600,185 $83,895,291$	
Kilowatts	1,236,827		2,909
Other Value...	88,262,802		70,524
Number	3,123	2,137	
Kilowatts.	821.597 54.403 .290	\$3,542, $\begin{array}{r}\text { 22, } \\ \hline\end{array}$	
Direct Current Steam-turbine driven			
Kilowatts	408,866	14,916	
OValue.	\$2,704,503	\$398,379	
Other Nucluding, water-wheel-driven Number...................			13,882
${ }_{\text {Kilowatts }}^{\text {Kin }}$	485, 266	206,305	${ }_{414.222}$
Small dynamos (under 10 kw), starting motors, and automotive genera- tors, not including control equipment -			
Vamber..	61,357		
Number.	382,929	115,843	76,729
$\underset{\text { Kilowatts }}{\text { Valua }}$	14,484,179	2,644,794	1,635.429
Under 50 kw	\$25,560,901	13,120,065	88,801,019
Number.			
soo kilowatts or over Number			84,616,187
	\$23,083,265	\$0,788,378	82,674,963
onverting apparatus - synchronous condensers, motor generator sets, double-current generators, dynamotors, frequency changers, and			
			83,154,733
$\xrightarrow{\text { Number........ }}$			
Horsepower Value. Direct current -	$3.791,062$ $\mathbf{7 6}, 171,558$	2,882,795	, 410,369
Direct current - ${ }_{\text {Value. }}$			
Number.	380.182 734.601	133,492 980	
Altarue...	\$20,200,313	\$13,316,489	\$257,223
Number			24,604,938
Horsepower........ Value.........	2,550,526	1.901,975	
Horsepower Value....	490,845 $\mathbf{3}, 54,0864$		
Marine $\begin{aligned} & \text { Vatue } \\ & \text { motors }\end{aligned}$			
(- $\begin{array}{r}2,630 \\ 8,428 \\ \hline\end{array}$		
For vehicles and rarways -			
Number $\begin{aligned} & \text { Norser } \\ & \text { Horsepower }\end{aligned}$			
Horsepower Cor	351,286	36,858	12,471
For fans-- ${ }_{\text {Value. }}$			
Number.			
Horsepower........ $\begin{gathered}\text { Value } \\ \text { Vor }\end{gathered}$ Viscellaneous uscs -	$\begin{array}{r} 66,915 \\ \$ 9.008 .001 \end{array}$		
For malue miscelianeous uscs -			
Number.	198,305 441.610		
Partaue......	\$4,920,311	\$1, 190,564	\$1,942,874
Parts and supplies.	\$18,722,295	\$4, 512,230	\$2,794,779

PRODUCIION IN UNITED STATES OF ELECTRICAL MACHINERY, APPARATUS AND SUPPLIES -

is Electric Light and Power Statistics.-It as to the four that the authoritative statistic utilities which manufacture "service" as comphled by the government - telegraphy, telephony, electric light and power ${ }^{\circ}$ and electric neriod railways - do not come down to a later of Congress 1912. Their figures under an act Bureaugress are the Census every the United State being compiled in 1912 and the next not being fore until 1917, and not becoming available before the end of 1918 at the earliest. The data fect to the therefore presented herewith subaverage the expansion up to date under the revealed.

	1912	1907	1902	$\begin{aligned} & \text { Per cent } \\ & \text { of } \\ & \text { increase: } \\ & \text { 1902-1912 } \end{aligned}$
Number of st				
Commercial	5,221 3,659	$\begin{array}{r}4.714 \\ 3.162 \\ \hline\end{array}$	3.620 2,805	44.2 30.4
Total Municipal			- 8185	91.7
Light, heat and power, including free service	$\begin{array}{r}\text { \$302,115,599 } \\ \$ 286,980,858 \\ \hline\end{array}$	$\$ 175,642,338$ $\$ 109,614.691$	$\$ 85,700,605$ $\$ 84,186,605$	${ }_{2}^{25.5}$
Total All other sources	\$286,980, 858	\$109,61,091	\$84,186,605	240.9 899.7
Total expenses, including salaries and wages ${ }^{3}$	\$234,419.4788	\$134, 176.911	\$68,081, 375	244.3
Total norseer of persons employed.	79,335 $7,528,648$	4,098.188	($\begin{array}{r}30,326 \\ 1,845,048 \\ \hline\end{array}$	161.6 308.0
Steam engines and s		4,098.188		
$1{ }^{\text {Number }}$	$\begin{array}{r}7.844 \\ 4.9462 \\ \hline\end{array}$, 80,054	6. 295	24.6
Water wheels -	4,946.532	2,693,273	1,394,395	254.7
Number	2,933	2,481	1,390	
	2,471,081	1,349,087	438,472	463.6
Gas and oil engines Number				
Kil ${ }_{\text {Number }}$	111, ${ }_{1}^{116}$	463 55.828	12.185	
Out putt capacity of dynamos	5,134,689	2,700, 225	1,212,235	${ }_{323.6}$
	11.532,963,006	5,862, 276,737	2,507,051,115	
Arced number of lamps wired for service				
Stazionandescont and other varieties	76,507,142	541,876,332	18,194,044	31.0 320.5
Number..........				
Horse power capacity	4,130:619	$\begin{array}{r}167.184 \\ \hline 1.649,026\end{array}$	101,064 438,005	330.9

same The term "station" as here used may represent a single electric station or a number of stations operated under the
2 E . ${ }^{2}$. ${ }^{2}$. ${ }^{2}$ EXeclusive of $\$ 36,500,030$ in $1912, \$ 20,093,302$ in 1907 and $\$ 7,703,574$ in 1902 , reported by street and electric railway
companies as income from sale of electric current for light or power or from sale of current to other public servicc
ment I_{n} addition to salaries and wages, includes the cost of supplies and materials used for ordinary repairs and replaceand, advertising, fuel, mechanical power, elcetrical energy purchased, taxes, and all other expenses incident to operation
mantenance, and for 1912 charges for depreciation and charges for sinking fund arges for sinking fund.
to light their own properties. Lamps used for such service were included in the total number reported in. 1912 . Various items in connection with the central though in projection and searchlight use it has here be noted. Statistics power industry may made such strides that an are search light regularly compilcd by the Electrical World on a visible in Philadelphia, 90 milcs away. There

 asis and others that there were not less than

6,000,000 customers in 1916. At least 10,000,000 devices for consuming current, outside of power and light purposes, were then in circuit - flat-
irons, vacuum cleaners, coffee percolators, grills, toasters, etc.- but electrical refrigeration except in bulk and especially in the production of "raw water" ice had not advanced very far. In the use of electric power some States in the South and on the Pacific Coast showed enor mous gains in the period 1905-12, running up
to 4,000 per cent, due in both sections to the utilization of water power, and in the South to the electrification of the cotton goods industry as a whole. As to lighting, one of the most interesting deveroment has been the relativ r street and com-

Commer $\mathrm{Total}_{\text {Municip }}^{\text {Mincme }}$ Lisht

tal
tapenses, including saiaries and wages
tal horser of persons employed.....
Steam engine
Water w
Nu
No
Gas
No
N

mated number of lamps wired for servic
Stationardescont and other varieties is also a large use of arc lights in theatrical and motion picture work. Owing to the advancing perfection of the incandescent lamp
through the stages of carbon, metallized carbon, tantalum and tungsten filaments, the number of spherical candle power hours delivered for one cent has risen from 13.9 in 1885 to 71 in 1916, an increase of nearly 500 per cent in about 30 years, during which time the price of the lamp and the price of electrical energy have isth decreased enormously. The rate here given
is figured on operation at 1,000 hours of energy at 10 cents per kilowatt hour for current. Among the chief advances of the period in
electrical development outside of railway work cent. The item of residence lighting reveals have been those in electro-chemical and electrodoubtedly by the great war and both dependent upon the supply of cheap current. Thus one plant building in 1916 in California was to use 2,500 horse power of electrical encrgy generated by a hydro-electric company, with an output of 5,000 tons of caustic soda and 10,000 tons of gen and oxygen has increased enormously, so that over $300,000,000$ cubic feet of hydrogen per year are thus manufactured in the United States. It is interesting to note, however, that while the electrical fixation of atmospheric nitrogen has increased enormously abroad,
representing about 300,000 tons at the beginning of 1916, or a gain of over 200 per cent in three years, requiring $1,000,000$ horse power, little corresponding activity has been shown in the United States up to this time of writing; although several processes of proved value are of American origin.
ment of the electric steel furnace has been remarkable. Electrical castings command a premium where unusual durability and resistance to stress are needed. On 1 Jan. 1916, about 73 electric steel furnaces were in operation in the United States with an output of about 100,000 tons per year, hut a terrific jump was made furnaces was at least doubled, while their output has been estimated at $1,000,000$ tons by a conservative authority. Probably the United States has now more electric furnaces than any other country.
The business of the central station has a constantly growing diversity factor. The
revenue of one leading system in 1916 was derived as follows: Commercial lighting, 37 per cent; power for industrial and general purposes, 22 per cent; residence lighting, 18 per
cent; power for electric railway use 23 per

UNITED STATES ELECTRIC RAILWAY STATISTICS

	1912	1907	1902	Per cent of increase 1					
				1902-1912	1907-1912	1902-1907			
Number of comp	1,260	1,236 945	987 817	19.3	1.9 3.2 1	${ }_{15.7}^{25.2}$			
Miles of line	30.437.86	25,547.19	16.645.34	882	19.1	${ }_{51.2}$			
Miles of single track	41.064. 82	34,381.51	22,572.52	81.9	19.4	52.3			
Roiling stock: Cars number									
${ }_{\text {Cars, }}$ namber	94.016 76.162	83,641 70,016 10.6	66,784 60.290	40.8 26.3	12.4 8.8 8.8	25. ${ }_{16.1}$			
All ${ }^{\text {Anserger }}$	17,854	13.625	6.494	174.9	81.8 31.0	109.8			
lectric locomotives Persons employed by operating companies:									
Number......................	282,461 $\$ 200.820,939$	\$ $\begin{array}{r}3221.429 \\ \$ 150.991 .099\end{array}$	3140,769 S88,210,165	1007	27.6 33	57.3 71.2			
Salaries and wages		\$150,991,099		127.7	33.0	71.2			
Number Salaries.	$\begin{array}{r} 23,271 \\ \$ 26,128,786 \end{array}$	\$12, 909,466	\$7,439,728	226.5 251.2	$\begin{array}{r}98.9 \\ 102.4 \\ \hline\end{array}$	64.1			
darners --									
Average number	+ 2.59 .190	$\begin{array}{r}\text { \% } \\ \mathbf{\$ 1 3 8 , 0 8 1 , 6 3 3} \\ \hline\end{array}$	$\begin{array}{r} 133,641 \\ \$ 80,770.449 \end{array}$	116.4	23.6 26.6	56.9			
Horse power, total Steam (including turbines) and gas engines Number. IIorse power.									
	3,665,051	2,519,823	1,359,285	169.	45.4	85.			
	2.312	3.409		-12.8	32.2	28.5			
	3,193,744	2,427,862	1,310, 132	143.8	31.5	85.3			
Water wheels Number	${ }_{38}^{38}$	228			68.0				
$\xrightarrow{\text { Harse } \text { power }}$	471.307	91, 961	49, 153	858.9	412.5	87.1			
Kilowatt capacity of dynamos, Output of stations, kilowatt hours.	2.508, 066	4, $\begin{array}{r}1,7593 \\ \hline 180.416\end{array}$	898.362	${ }_{179}^{17.2}$	${ }^{45} 5$				
	6, ${ }_{2,967,318,781}$	4,759,130,100	2.261.484.397	167.6	27.2	110.4			

	2 1912	1907	1902	Per Cent of increase		
				1902-1912	1907-1912	1902-1907
$\xrightarrow[\text { Traffic: }]{\text { Passengers }}$						
Revenue....	9,545,554,667	7,441,114,508	4,774,211,904	99.5	28.3	63.3 55.9
Transfer Pree	2,423.918.024 165.869 .025	- 1.995 .658 .101	1.062. 403,392	128.2	${ }_{72}^{21.5}$	87.8
Revenue car mileage	$1,921.6290 .025$ 1 1,885	1.617.731,300	1,144.430,466	67.9	72.2 18.8	41.4
${ }_{\text {Passenger. }}^{\text {Express, mail and }}$ freight	1.885.870.157 35		1, 120, 101.944	68.4	19.15	41.4
enue car' ho	190,478, 140	151,338,944	65, 869.342			
${ }_{\text {Passenger... }}^{\text {Express, mail and freight }}$	187.,590,223 2.887 .917	+148,678.052 $2,660,892$	65,403,287			
Express, mail and reight. Average number of revenue pas sengers	2,887,917	2,660,892	466,055			
Per mile of track operated,	232,556	216. 522	212. 217	9.6	7.4	. 0
Per revenue passenger car hour.	48.38	43.06	$\begin{array}{r}\text { 4.26 } \\ 33.28 \\ \hline\end{array}$			
Gross income -	\$585,930,517	\$429, 744, 254	\$250,504.627	133.9	36.3	71.6
Transportation rev-	67,511,704	18,187,858	247,553,999	129.2	35.7	68.9
	520, 184, 773	390, 276, 347	235,997,005	120.4	33.3	65.4
revenues.........	47, 426,931	27,911,511	1,556,994	309.5		141.5
Operating expenses. ${ }^{\text {Income from }}$ ($18,418,813$ $332,896,356$	11,556, 396	,	524.2	59.4	291.7
Operating expenses. ${ }^{\text {arain }}$ Net earnings (operating rev-	332,896,356	251,309,252	142,312,597	133.9	32.5	76.6
lues less	234,615,348	166,878,606				
Gross income, less operating	234,615,348	160,878,606	105,241,402	122.9	40.6	58.6
Deductions from income.	$\begin{aligned} & 253,034,161 \\ & 191,123,408 \end{aligned}$	$\begin{aligned} & 178,435,002 \\ & 138,094,716 \end{aligned}$	$\text { 108, } 192,030$	133.9 146.3	41.8 38.4	${ }_{78}^{64.6}$
Taxes Interest on funded and	35,027,965	19,755,602	13,078,899	167.8	77.3	51.0
floating debt and mort gages.	98,025,338	63,740,744	38,085,911	157.4		67.4
						67.4
$\underset{\substack{\text { terminals............ } \\ \text { Miscellaneous......... }}}{\text { det }}$	44,784,521	48,022,596	25,518,225	75.	-6.7	88.2
Net income Divide Surplus S	${ }_{61} 61.910,753$	40,340, 286	30,596,977	102.3		
	51,650,117	26,454,732	15, 882,110	225.2	95.2	66.6
	10,260,636.	13,885,554	14,714,867	-30.3	26	5.6
Lessor companies Gross income	35,605,367					
Rentals from operating companies		47,913,249	26,138	36	-25.	83.3
	521	47,500,933	26.116,884	34.6	-26.0	81.9
	16,090,372	19,465,984	.77	83.3	-17	121.7
Interest on funded and other debt.		,				
Net Miscellaneous deductions.	15, 234, 132	18,030,522	$\begin{array}{r}8,376,559 \\ \hline 102,735\end{array}$	81.	-15.5	115.2
	19,514;995	28, 447, 265	17,3.59,605	12.		156.4 63.9
Divid	19,342.101	28,030.542	17,157	12.7		63.9 6
Capitalization: Total. .	172,894	416,723	202,544	-14.6	-58.5	105.7
					- 24.7	63.558.4
Operating companies		2,811.876, 374	2,775,468,781			
	+ 751.8 .8 .10 .118	- 9622.895 .722	+532,813,318	122.9 41.1	-21.9	80
Operat	1,957	2, $1,543,269,002$	1,315,572,960		13.7	
Lessor	427,044,364	, 554,439,854	332,603,890			
Oded debt..	2,324,223,62	1.677.063.240	992,709,139	134.1		
Operating corapan Lessar companies.	1,999.417.874	1,268, 607.3	792, 499, 711	152	57	60.1
 companies...... $324,805,754$ $408,455,868$ $200,209,428$ 62.2 -20.5 104.0						

1 A minus sign ($-(-)$ denotes decrease.
2 Includes track 1 lying outside the United States, namely - $1912,31.91$ miles; 1907, 27.52 miles; and $1902,4.20$ miles
Exclusive of track not operated.
8 For 939 companies in 1907 and for 797 companies in 1902.
Nur os companies in 1907 and for
Number employed 5 Sept. 1912 .
Figures not available.
${ }^{6}$ Number employed 16
Represents 899 companies in 1912, 734 companies in 1007 and 390 companies in 1902.
8 Exclusve of companies doing freight traffic only and in 1902 of four companies
Rxclusive of six companies in 1907 and of 18 only and in 1902 of four companies not reporting revenue passengers.

- Exclusive of 12 companies in 1902, which failed to furnish this information failed. to furnish this information.

Telephony and Telegraphy. - The general triostics of the telegraph and telephone indussively of the country are shown both comprehenThese and comparatively in the following table the como branches of the great modern art of and communication of intelligence are separate their physical relationships; and at various times and in various ways have been largely conducted financially as one business. The economic
reasons for such a combination are not far to seek and are recognized in the existence in most countries of a united telegraph and telephone Governmental administration; whereas in the United States such a policy, under the prevailing private ownership, has been declared
illegal. American telephone and telegraph systems as to apparatus used and results oblained are in general infinitely superior to anything prevailing elsewhere. A point to be noted in
the accompanying table is the relatively dis- depots, being placed at 30,000 . The annual rc^{-} proportionate magnitude of the younger art, port of the Western Union Telegraph Company telephony, in all respects, particularly invest ment and earnings

TELEPHONE AND TELEGRAPH SYSTEMS - COMPARATIVE SUMMARY: 1912, 1907 AND 1902.

	Census	Total	Telephones ${ }^{1}$	Telegraphs ${ }^{2}$	PER CENT OF total	
					Telephones	$\begin{aligned} & \text { Tele- } \\ & \text { graphs } \end{aligned}$
Number of systems and lines	1912 1907 1902	32.261 22.998 9.161	32,233 22,971 9,136 9	$\begin{aligned} & 28 \\ & 27 \\ & 25 \end{aligned}$	$\begin{aligned} & 99.9 \\ & 99.9 \\ & 99.7 \end{aligned}$	0.1 0.1 0.1
Miles of single wire	1912 1907 1902		20,2488,326 112.949 .364 4.900 .451	$\begin{array}{r} 11,814,196 \\ 1,577,961 \\ 1,318,350 \end{array}$	91.8 89.2 88.8 78.8	8.2 10.8 10.8 21.2
Ocean cable, nautical miles	1912 1907 1902	67,676 (4) ${ }^{46,301}$		(9) $\begin{array}{r}67.676 \\ 46.301\end{array}$		100.0 100.0
Employees and salaries and wages Average number.	1912 1907 1902 1902		$\begin{array}{r}183.361 \\ 144.169 \\ 78.752 \\ \hline\end{array}$	$\begin{aligned} & 37,295 \\ & 28.034 \\ & 27,627 \end{aligned}$	83.1 83.7 74.0	16.9 16.3 26.0
Salaries and wages.	1912 1907 1902 1902	$\$ 121,005,535$ $\$ 856$ O27, 376 $\$ 51,295,294$	$\$ 96,040,451$ $\$ 88,279.127$ $\$ 36,255,621$	$\begin{aligned} & \$ 24,964,994 \\ & \mathbf{5 1 7}, 808,849 \\ & \$ 15,039,673 \end{aligned}$	$\begin{aligned} & 79.4 .4 \\ & 79.3 \\ & 70.7 \end{aligned}$	20.6 20.7 29.3
Capital stock and bonds outstanding.	1912 1907 1902			$\begin{aligned} & \$ 222,504,835 \\ & \$ 220,293,575 \\ & \$ 162,946,525 \end{aligned}$	$\begin{aligned} & 81.7 \\ & 79.3 \\ & 68.1 \end{aligned}$	18.3 20.7 31.9
Income.	1912 1907 1902			$\begin{aligned} & \$ 64,762,843 \\ & \$ 51,583,868 \\ & \$ 510,930,038 \end{aligned}$	$\begin{array}{r} 79.8 \\ 78.2 \\ 68.0 \end{array}$	20.8 21.8 32.0
Expenses	1912 1907 1902	$\$ 262,133,861$ $\$ 182,681,918$ $\$ 86,112,805$	$\$ 203,754,909$ $\$ 140,802,305$ $\$ 65,164.771$	$\begin{aligned} & \$ 58,378,952 \\ & \$ 41,879,613 \\ & \$ 30,948,034 \end{aligned}$	$\begin{aligned} & 77.7 \\ & 77.1 \\ & 67.8 \end{aligned}$	22.3 22.9 32.2

Includes farmer or rural lines, and in 1907 and 1912 systems reporting annual incomes of less than $\$ 5.000$; therefore, Includes farmer or rural ines, and in 1901 and 1912 systems reporting annual incomes of less than $\$ 5,000$
except for number of systems or lines and miles of wire, figures do not agree with those shown in other tabies.
2 Does not include wireless telegraph systems.
${ }_{3}^{2}$ Does not include wireless telegraph systems.
3 Exclusive of
?
inot reported
iNumber emplo
yed 16 Sept. 1912

The extent to which the condition of the times affect electrical utilities is strikingly shown in the fact that while for the period of 1917 the American (Bell) Telephone and Telegraph Company's earnings rose from $\$ 171,608,490$ to not less than $\$ 194,337,712$, the operating net income was but $\$ 47,439,392$ as compared with $\$ 47,586,666$. The whole gain of nearly $\$ 23,000,000$ was thus negatived with $\$ 150,000$ more thrown in; but the gain was
there all the same, and in duc time the larger interest charges due to rapid increases of capital will work out to advantage. On the basis of total operating revenues of the Bell system of $\$ 270,000,000$ the year 1917 will show at 10 per cent increase an amount well in excess of $\$ 290,000,000$. For telephony as a whole, including the independent systems, a total of, say
$\$ 425,000,000$ might be set down. The physical statistics of the Bell telephone system and its growth are strikingly shown in the accompany ing table.

Telegraphy.-As an industry the telegraph showed a remarkable recovery following the outbreak of the European War, and at the end
of 1917 there were no fewer than 60,000 telegraph operators engaged at telegraph centres graph operators engaged at telegraph centres, distinctively telegraph offices, including railroad
showed that the company in 1917 experienced the most prosperous ycar in its history. The equal to $\$ 12.79$ per share as against $\$ 12.42$ in the previous year. This amount was earned on almost $\$ 100,000,000$ stock. During 1917 the company paid $63 / 4$ per cent dividends, compared with $51 / 2$ per cent in 1916. The statement for 1917, with comparison, follows:
\qquad
These significant figures are matched by those with regard to wireless telcgraphy. Thus, graph of America have nearly doubled during the period of the war, while expenses, including taxes, were less during 1917 than in 1914. The company's net income for 1917 was $\$ 600,430$, and
undivided profits and reserves on 31 Dec. 1917 amounted to $\$ 2,150,000$. The capital stock is

$\$ 10,000,000$.

Electrical Export Trade.- The effect of
the European War has been fell generally in this export of American manufactures, but in spicuous item. The foreign demand for Amerithe severere limitaratus and supplies, even under and many closed markets tased by lack of ships electrical exports from $\$ 19771,757$ in the strictly ending 30 exports from $\$ 19,771,757$ in the year
$\$ 5215$ to no less an amount than The 2158,773 in the corresponding period 1916-17 rabe chief gains were in insulated wires and cables from $\$ 1,911,850$ to $\$ 7,191,684$; electrical

docolalima 70 it 	December 31, 1910	$\begin{aligned} & \text { December } \\ & 31,1915 \end{aligned}$	December	Increase
Total miles of pole lines. .	282,877	330,602	337,289	6.687
f underground conduit (length of single duct).	30,165	44,510	47,120	2,610
Mies of underground wire Miles of submarine wire. Miles of acrial wire.	$\begin{array}{r} 5,992,303 \\ 24,636 \\ 5,625,273 \end{array}$	$\begin{array}{r} 10,536,837 \\ 3, .314 \\ 7,9.32,394 \end{array}$	$\begin{array}{r} 11,468,525 \\ 41,172 \\ 8,340.618 \end{array}$	$\begin{array}{r} 931,688 \\ 4,858 \\ 408,224 \end{array}$
Total miles of wire.	11,642,212	18,505,545	19,850,315	1,344,770
Coraprising toll wire. . Cotriprising exchange	$\begin{aligned} & 1,963,994 \\ & 9,678,218 \end{aligned}$	$\begin{array}{r} 2,453,483 \\ 16,052,062 \\ \hline \end{array}$	$\begin{array}{r} 2,682,910 \\ 17,167,405 \\ \hline \end{array}$	$\begin{array}{r} 229.427 \\ 1.115,343 \end{array}$
Total.	11,642,212	18,505,545	19,850,315	1,344,770
Miles of phantom circuit	115,506	196,841	221,994	25.153
Notal oxchange circuits. Number of central offices	$\begin{array}{r} 2,082,960 \\ 4,933 \end{array}$	$\begin{array}{r} 3,174,271 \\ 5,300 \end{array}$	3,459,069 5,397	284,798 97
Number of boll stations (owned)*	$\begin{aligned} & 3,933.056 \\ & 1,949.663 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,968,110 \\ & 3,183,111 \end{aligned}$	$\begin{aligned} & 6,545,490 \\ & 3,301,702 \end{aligned}$	$\begin{aligned} & 577,380 \\ & 118,591 \end{aligned}$
Number stations...	5,882,719	9,151,221	9,847,192	695,971
umber of employees.	120,311	156,294	179,032	22,738
$\mathrm{N}_{\mathrm{m}} \mathrm{mber}$ of connecting companies, lines and sy	17,845	28,306	30,358	2,052
Toll enge connections daily .	21,681.471	25,183,799	28,530,073	3,346,274
Thin connections daily	602,539	819,030	889,860	70,830

* Includes private line stations.

batteries from $\$ 967,146$ to $\$ 3,286,674$; electric formers from $\$ 624,483$ to $\$ 1,265,459$; telegraph instruments from $\$ 76,271$ to $\$ 539,389$; incanescent lamps from $\$ 575,072$ to $\$ 2,301,407$; Electers from $\$ 2,818,743$ to $\$ 5,895,696$. field ectrical Ships. - A decided novelty in the of electricalrical manufacture is the equipment familiar with propelled ships. The world is storage batteries and with submarine boats in the ch the same motive power is employed; but in by modern electrical ship propulsion is secured turhine me of electrical cnergy fed from steam on the generators to electric motors mounted method in the United. The success of this Would in the United States collier Jupiter in the seem to be very emphatically evidenced 180 great battleships or cruisers each requiring shafts horse power delivered to four screw lutions turning at full speed at about 250 revothroug per minute, which yield a rate of travel of the ships is to of 35 knots per hour. Each urbine-driven generating units, similar to theed
responding to the present direct steam-driven has yet ventured on such an. No oher natio has yet ventured on such an experiment.
ecretary National Elactric
ELECTRICAL MEASURING INSTRUMENTS. The four fundamental electrical quantities which are being constantly measured watts. Another quantity of much commercial importance is watt hours
The usual method of measuring ohms, that is, the electrical resistance of a circuit, is to use a Wheatstone Bridge, which is described elsewhere. The electrical resistance of a cir"fall of also be measured by what is called sending a measured current through the circuit and measuring the difference of potential between the terminals of the circuit, as illustrated in Fig. 1. When the current is measured in amperes and the difference of potential is measured in volts, the resistance is obtained by taking the ratio of the volts to the amperes

In mea In measuring amperes, advantage may be effects of any one of three different physical

tro-chemical effect, (2) the magnetic effect, and (3) the heating effect. Instruments which are tage of the first of these phenomena are called voltameters. When an electric current is passed through a dilute solution of sulphuric acid and water, the water is electrolyzed and the component gases, oxygen and hydrogen, are given off respectively at the two metallic terminals leaves the water. These two terminals may be placed in the two limbs of a vertical U tube, such as the arrangement illustrated in Fig. 2, where A and B are the two ends of the U tube and $E E$ are the two metallic clectrodes. The arrow shows the direction of the flow of is provided to maintain the supply of acidulated water as the gases collect in the upper limbs of the tube.

A water voltameter such as is here illustrated has not lieen found convenient or satisfactory for measuring currents, and voltameters in which
the electrolytes are the solutions of salts of metals are preferred for actual measurements Copper plates in a solution of copper sulphate
may be used or silver terminals in a solutio of nitrate of silver. Vollameters are not no used in practice, as they are not sufficientis convenient for general use; but the silver volta
meter at one time proved to be so satisfactor meter at one time proved to be so satisfactor
for use as a standard that the Internation unit of current (the ampere) is defined as the current which flowing for one second throug a suitable voltameter will deposit .001118 gram of silver on the cathode.
Most of our common instruments for meas uring currents depend upon the magnetic effer
of the current for their indications, and eac is really a modified galvanometer provided wit a pointer to indicate the deflections of the needle or movable coil. Such instruments ar ranged for convenicut, everyday measurement of electric currents are generally called am
peremeters or ammeters, and they arc mad in numerous forms, some of them intende o be mounted npon switchboards in dynam ooms, and others made up in more or tes portable form so that they may be carrie around to be used at any convenient place. Th conded to be mounted on switchboards-ar used in large numbers in clectric lighting plan or works, where they may be seen mounted upo marble or slate boards along with switches controlling the current. They are there u to show the dynamo attendants how much cu rent is being generated by the plant at b each dynamo.
Portable forms of these instruments a ordinarily used in laboratories for experiment work.
According to the mechanical details entering may be rourghly divided into three classes: (Those having soft iron parts which are move by the magnetic attraction set up by the curren in the coils of the instrument; (2) those havin permanently magnetized parts which are act upon by the magnetic force set up by a curr 0 or the magnet moving under the influence the magnetic force: (3) those having no ir in their construction, but having two coils, o of which is moved by the magnetic force ${ }^{\text {cr }}$ erted between them when a current flows oth.
The moving parts of these instruments a usually mounted on pivots which are carefuli and the instruments may he considered equiva ent to galvanometers arranged with the movil parts mounted on pivots, instead of bell provided with a pointer arranged to play ove a scale graduated to read in amperes.
If the magnetic force caused by the currel in the coils of an ammeter had nothing exce the friction to overcome, every current capal across the scale As the instrument should constructed so that the range of movement the pointer is proportional to the current the windings, a proper force must be arrang to hold the pointer hack, and this may be dol by properly counter-weighting the parts or 15 in set up by the current
Instruments of the first class may be cheal
bo tritructed, and formerly were commonly made blants, dyumo builders for use in electric light pants, but it is difficult to make them extremely prevents because the cocrcive force of the iron magnetic changes. For this reason instruments of the first class cannot, as a rule, be used Were great accuracy is essential, but only where accuracy within from 2 per cent to 5 per thire is sufficient. For measurements that rethire greater accuracy, instruments belonging and thescond or third class are usually used, do not vary more than one-half of 1 per cent rom true values when the instruments are used Theper care.
of a hest form of such instruments consists a a modified D'Arsonval galvanometer with movable coil mounted upon pivots and ar-
ranged with a pointer to play over a scale, Which was first successfully produced by Dr. Edward Weston. The Weston ammeters and volta-

meters made of this construction may he prop measure to have revolutionized the everyday Fig. 3 shows amperes and volts.
for messuring direct currents Wesion ammeter he binding posts of the ammeter through which he current may be led to and from the instruand W W are wires within the instrument etw consists of a series of conducting shunts coil C is connected by W wires w movable ininding posts, and through this movable coil there flows a fixed proportion of the current Which bears a ratio to the total current dependF upon the electrical resistance of the shun and of the movable coil. The movable coil of mounted on pivots within the magnetic fiel which is caused by the magnetic effect of a urrent flowing through the coil is opposed by ef smiral spring D. The spring and the pole piece the the magnet M are carefully designed so that ne movement of the coil shall he directly pro coil, and the the current flowing through the S hy the pointer B that is attached to the scal
Fig. 4 shows a sectional end view of the Working parts of one of these instruments. A stationary soft iron cylinder is mounted within ing movable coil C for the purpose of produc the radical direction and uniform density o
e space between it and
vol. 10-11
the pole pieces of the magnet, within which space the conductors of the movable coil move. great deal where accurate portable current measuring instruments are required, and instruments

Fig. 4.- Sectional end-view of mechanism of Weston Di-
following this type are now manufactured in large numbers in this and foreign countries. class are frequently called electrodunanometers because their indications are caused by the magnetic effect of the current in the fixed coils acting on the current in the movable coils. Fig. 5 shows an early form of electrody namometer which is arranged for use as an amperemeter. This is often called the Siemens fastened to the frame of the instrument, and the coil marked M, which stands at right angles to the first, is suspended by a heavy silk fibre or a wire so that it is free to rotate. The end of the conductor composing the movable coil dip into little cups C C containing mercury,
and these are connected with a circuit arranged so that a current can enter and leave the movable coil. The spring G is attached at one end of the movable coil, and at the other end it

is connected to a thumbscrew T called a torsion head, by means of which this spring may be twisted. When a current flows in the coils, the magnetic force tends to turn the movable coil so as to place it parallel with the fixed coil.

This force is balanced by twisting the spring by means of the thumbscrew. The amount of
twist is shown by the pointer B, and it is protwist is shown by the pointer B , and it is proportional to the force exerted by the coils on he square of the current flowing in the circuit The pointer S indicates when the movable coil is at its zero position.

Very accurate and permanent standard instruments have been designed for measuring currents by this direct magnetic action, but they have not been made sufficiently portable to of these are the current balances of Lord Kelvin, one of which is illustrated in Fig. 6. The fixed and movable coils in these Kelvin balances are parallel to each other and horizontal. The force with which the coils tend to move with respect to each other when a current flows in
them is directly balanced and weighed by means of a slider moving on a scale beam. In order to avoid any disturbing effect from the earth's magnetism, coils are placed at both ends of the balance arm.
Instruments utilizing the heating effect of the current are usually called "hot-wirc" in closed so that its temperature is not affected by air currents, it will rise a definite number of degrees in temperature for cach current that is passed through it and this rise is approximately proportional to the square of the current. This heating of the wire is indicated ly erly selected and protected, will take up a corresponding length with each current which may How through it, so that measuring its length is equivalent to measuring the square of the current. A simple model of an amperemeter
depending upon this action is illustrated in depending upon this action is illustrated in
Fig. 7 . The long, thin wire is clasped at one end in a stationary binding post and the other

Fig. 7.-Simple $\begin{aligned} & \text { Illustrative Model of Hot-wire } \\ & \text { Amperemeter. }\end{aligned}$
end is wrapped around and fastened to a small wheel of metal. This whecl is supported on steel pivots, one of which is connected to another binding post. The wire is kept under a constant strain by means of a spring which is fastened to the periphery of the wheel. When the wire is heatcd and thereby lengthened, the
wheel is turned by the contraction of the spring
and a pointer which moves over a graduated scale indicates the amount of expansion of the wire. When the wire cools again and contracts, the wheel is pulled back into its old position by the shortening of the wirc.
A refined instrument of this type suitable trated in Fig. 8. The extension of the measuring wire A B is indicated by a pointer moved by mechanism attached to the pulley D. The case protects the wire from air currents and the use of two stretched wires, A B and B C, through only one of which the current to be measured perature of the surrounding air. Instruments of this type are particularly
useful in measuring the high frequency curuseful in measuring the high frequency cur rents of radio telegraphy.
Instruments for measuring electrical pres-
sures, in volts, may be made of the same forms sures, in volts, may be made of the same forms and the heating effects of electric currents Such instruments are ordinarily called zoltmeters and when they are constructed to utiliz the aforenamed effects of the electric current
they are really ammeters wound with coils of

high resistance so that very little current will be wasted in the process of making the meas really measures the very small current that is caused to flow through the resistance of its winding by the voltage to be measured. The resistance of the instrument is of constant value and the voltage is therefore directly propor tional to the flow of current through the in-
strument. It is consequently possible to grad wate the scale so that the position of the pointer indicates volts.

In most ammeters and voltmeters the scales are so divided and marked that the divisions read directly in amperes and volts. These in struments are generally called "direct reading

Currents
tion cannot be measured hy magnetic instru ments like the Weston instruments having per manent magnets; but they can be measured by moved by he maging soft iron parts which ar current in the coils of the instrument or by
or of by hot wire instruments. In the first class instruments, the soft iron core is always atout red by the coil in which current flows, withthe attrard to the direction of the current and independent of the electrodynamometer is also cause the current reverscs at the same time in hoth coils. Any iron cores which are used in

 softiron
instruments designed to measure these alterlating currents must be built up from thin currents shall iron wires so that induced eddy reversals of the magnetism. The working parts of an instrument which operates by the attraction of the coil \mathbb{D} upon a thin iron strip C, are lustrated in Fig. 9, the exterior of the case hall be exposed
The heating effect of currents is also independent of the direction of the current flow,
so that hot wire instruments may be used for o that hot wire instruments may be used for measuring alternating currents and voltages. ured, it is often inco currents are to be measuild an ammeter with conductors large enough o carry the entire current. In these instances n ammeter of small capacity may be shunted y a German silver wire or rod and the shunted to measure may then be calibrated and used ment has become quite universal in the large lectric light works where very great current are to be measured and it is not uncommon in winary portable instruments. Indeed, nearly Weston self-contained ammeters, such as rranged in Fig. 3, consist of a milli-ammeter An entirely distinct method inside the case. oitage is by means of electrometers, and whe hese are converted into portable form for everyday use they are called electrostatic volt meters. They are particularly useful for meas The alternating voltages.
part of a continuous which is used in any determined by measuring by means of may b meter the current flowing through the circuit and measuring by means of a voltmeter the ditage at the terminals of the circuit. In ber of current circuit the product of the numthe power in watts. This product called gives
volt-amperes, however, differs from the watts in an alternating current circuit when the power instantaneous than unity and a summation of secured. Instruments are the product must whe selves perform this double measurement and directly struments are called wattmeters. The simplest form is an electrodynamometer in which one coil is wound with many turns of fine wire exactly as though it were to be used as a volt few turns of coarse wire as though it were to used

The action plained by an illustration. sired to measure the power used by an electric motor-the fine wire coil of the wattmeter is connected across the terminals of the motor and the coarse wire coil of the wattmeter magnetic effect of the fine wire coil is then proportional to the voltage at the motor ter minals and the magnetic effect of the coarse wire coil is proportional to the current fowing hrough the motor. The force exerted at any tional to the product at that instant of the two magnetic effects and the pointer moves over the scale so as to indicate the average force hereby indicaling the watts which are transthrough the circuit.
The connection of a wattmeter in a circuit W diagrammatically illustrated in Fig. 10 , wher the fine wire coil and $\mathrm{C} \mathrm{C}^{\prime}$ are the terminal of the coarse wire coil. This figure is intended show a dynamo furnishing current to a se of incandescent lamps L L L L L, and the watt meter is introduced in circuit for the purpos
of measuring the power delivered to the lamps The number of alterations made in cond by the alternating currents that are ordinarily used in practice is so great that the movable coil of an electrodynamometer act exactly as though it were pulled around by of the variable force which results from the magnetic action of the alternating current This is true whether the instrument is arranged to be used as an alternating-current ammeter in which instance the two coils are placed in series with each other and both are of low resistance; or the instrument is arranged to be

FIG. 10 . Illustration of the manner in which the coits of coils are connected in series with each other their resistance is re-enforced by that of supplementary non-inductive coil of hich re sistance; or the instrument is arranged for us as a wattmeter, in which instance one of the coils is of low resistance and is a current coil to be connected in scrics with the main circuit
resistance re-enforced by a supplementary noninductive resistance coil and is a voltage coil to be connected across the terminals of the The
The wattmeter already described is called to make a registry of the integrated consumption of energy by a customer during a given period, such as a month, and such an instrument s illustrated in Fig. 11, which is called the Thomson watthour meter. This is built like a ing parts. It is arranged with its revolving part or armature -1 to be connected to the circuit like the fine wire coils of a wattmeter and its field magnetizing windings W to be connected in circuit like the coarse wire coils of a wattmeter. The magnetic pull which tends at each ional to the product of the two magnetizing effects, so that the rotative effect, or torgue proportional to the watts in the circuit. If he speed of such an armature is made propor tional to the magnetic pull, it is easily seen that every revolution of the armature means a cerof time. Such instruments usually have at

FIc. 11.- Thomson Integrating Wattmeter.
ached to the spindle of the armature a set of dials D like those of a gas meter, which recort he revolutions and are so marked that the orded in what are known as "way be re A more con what are known as way hor A more convenient unit for commercial instrubeing 1,000 watt hours, and the dials of such instruments usually read in kilowatt hours.
If no external retarding force were applied the armature of such an instrument, would tend to run at an excessive speed for ny current howing through the apparatus an o make the instrument give an accurate recor of power, a rctarding force which the speed of the armature must bo applied to the spindle. This is admirably ar ranged by placing at the bottom of the spindle S a flat disk of aluminum C, on either side of which are placed the poles of permanent mag nets M. The rotation of the disc between the magnet poles generates electric currents in it the motion of the disc.

When the power in alternating current circuits is to be measured, it is necessary to make the self-induction of the fine wire coil of suc: a wattmeter practically negligible in comparison with the resistance of the coil, to prevent
the readings of the instrument being affected

Fig. 12.
by the frequency of the alterations of the current. This is brought about by introducing a coil of high resistance and of practically $n o$
self-induction in serics with the finc wire moving coil of the instrument.
Another form, called an "induction watthour meter" is usually used for recording the watthours in aternating current circuits. This instrument in its simplest form illustrated in Fig. 12, consists of coarse wire coils F F and
a fine wire coil
C in a wattmeter. The iron core of the fine wire coils is adjusted so that the magnetic flux lags in phase, 90 degrees behind the phase of the voltage, thus producing a magnetic ficld out of phase with the magnetic ficld produced by the coarse wire coil. These two magnetic fields

act on an aluminum dise armature D and cause it to rotate like the armature of an induction motor. Permanent magnets are associated with the disc so as to cause the retardation of the
rotation as in the Thomson watthour meter. Sometimes a continuous record of amperes, volts or watts is desired and in that case the

Dointer of an indicating instrument is tipped with a pen which plays over a moving dial or
strip of paper, thus leaving a record of changes in the circuit. Instruments thus equipped are called curve-drawing instruments. Fig. 13 shows part curve-drawing instruments. curve drawing wattmeter.
arious other instruments are used in elecfactor cuits, such as those indicating the power Dower of alternating current circuits, called quency of alternating those indicating the frequency of alternating currents, called freand frequency relations between the currents meter alternating current circuits, called phase sucters or synchroscopes. Descriptions of all standard wocial instruments may be found in Bibliography, on electrical engineering,
regard to electrical measuring instruments constit Jackson, D. C. and J. P., (Elementary Book tricalectricity and Magnetism); Laws, (Elecfrical Measurements' ; Swenson and Frankenchinery and Electricity Meters: Their Construction and Management, and other treatises
Professor of Electrical Dugald C. Cancering, Massanusctts Institute of Technology.
ELECTRICAL RESISTANCE. See
ELECTRICAL TERMS. The developnent of electrical industrics and applications considerable as 20 years has been so rapid and characteristics of constitute one of the salient knowledge of electrical phenomena terms and phrases was limited to a few philosophicy minded persons. During that time, howver, this knowledge has not only spread to to-day professional and artisan class enlisting United Staies alone; hut has also extended in a considerable measure to the public at large. We an hardly read through the news of a day in he columns of a nowspaper without encounter-electro-technical words or phrases. The The telephone whispers inessages at every door. holds in every large city. The electric light hares with the primeval flame the brightening of the evening fireside. These things speak terms upong of their own and force their own list of about our specch. The following is a general use
eneral use
Wh.-AST Transpormer.-A transformer which is cooled
frhen operating, by a blast of air delivered through its $\mathrm{A}_{\text {I. Trernating }}^{\text {tramework. }}$ Currevt-A Al.TERANTING CURRENT. - A current which perindically
alternates, or reverses in direction.- A to-and-fro electric
cilment chilent; in contradistinction to a diret current. See
R.ECTRIC ALTERNATING CURRENT MACIINERY.
 strument which measu
AMPWing through it.
AMTRE. INTERNATIONAL
Amplere. Intignational. - A unit of electric flow or current.
theoretically derived by electromagnetic theoretically derived, by electromagnetic principles. from
the cent , entmetcr-gramme-second system of units. Practi-
call
 A Noctrodepositing bath.
$A_{R C}^{\text {electrolyte or condructor. }}$ A positive electrode.
 a column of intensely heated vapor maintained between
two closely opposed, or slightly separated, conducting

Pencils which are usually of carbon. Much used for the
illumination of streets, factories, and grounds. See RMATURE.-In an electromagnet, the movable element of iron or steel which is attracted to, or released from,
the poles. In a dynamo, the element which is connected the poles. In a dynamo, the element which is connected
with the line, and which is subject to rapid cyclical changes
in magnetic flux during operation. in magnetic flux during operation.
AsYMCHRNONO MoTOR.- An alternating-current motor. in
which the SYNCHRONOS Motop.- An alternating-current motor in
which the rotation is not synchronous with the rotating
element of the generator supalying the driving current. element of the generator supplying the driving curtent.
See ELLETRIC ALTERNATING CURRENT MACHNERY. Branch-Fusf.-A fuse inserted in a branch wire or circuit.
BRUSHES OF: A DYNAMO-ELECTRIC MACHINE.- The conductors which convey current from one element to another,
when there is relative when there is relative motion becween them. Usually,
stationary conductors resting upon stationary conductors resting upon a rotating commutator
and carrying current either to or from the same. See GENERATORS:
BUS-BARS.
Us-BARS.- An abbreviation of "Omnibus-bars." The
main conductors in a central station, to which generators CANopy.- In electric wiring of building, a metallic plate or the ho mheal the hole made where the wires protrude.
CTHODE.- The electrode by which a current leaves an electralyte or condurtor. A negative electrode. EELLING-ROSETTE-- An insulating block fastened to a
ceiling, in which electric supply wires terminate, and
from which a pendant flexible cord, or other pair celing, in which electric supply wires terminate, and
from which a pend flexible cord, or other pait of con-
ductors, descend to a lamp or fixture. Usually circular
 CIRCUIT-BREAKER, ELECTRIC.- (1) A device for opening
and restring a circuit. either by hand at will or auto-
matically in the case of an overload. (2) A switch that matically, in the case of an overload. (2) A switch that
automatically opens at overload, usually hy elcctromagnetic mechanism.
Courker. In ridio telegraphy, a receiving device con-
sisting of an imperfect sisting of an imperfect contact, the resistance of which
is broken down on the passage of an electric wave, thereby enabling an electromagnetic mechanism to respond
COMMUTATOR.- A device for commuting or changing the CoMMUTATOR.- A device for commuting or chanking the
direction or path of a current. In dynamo, the e clement
which enables the alternating which enables the alternating currents generated within
the armature to be delivered as a unidirectional current to the external circuit.
Compounj, Motor ur Generator.- A motor or generator
having both a shunt winding and a series winding on its field magnets. antincous Current. - A current uniform both in strength
and inection. A. steady direct current. Oonrocler.- A device for controlling an electric machine or circuit. A controlling switch.
CONVERTER OR ROTARY CONVERT operates by means of a rotating commutatore to convert
apternating Curbent, Electric.-A flow or passaze of electricicity along an electric circuit. usually measured in amperes.
CUT-OuT, ELECTRIC.- (1) A device for automaticaly interrupting an electric circuit in which an excessive
current current flows, by the melting of a fuse-wire or strip
carrying the current and heated thereby. (2) Λ device for supporting or holding an electricic fuse. jected to electric stress.
DIRECT CURRENT- A current which hower Direct Curent- A current which, however greatly it
nay vary in strength, always hlows in one and the same
direction. A Andirectional current. See ELECRIC may vary in strength, always flows in one and the same
direction. A undirectional current. See EIECTRIC
DIRECT CURRENT. Duplex TEurgent. - The method of sending messages
in both directions simultaneously over one and the same telegraph wire. See TELEGGRAPHY efficiency of a Dynamo, Machine, Apparatus or out of the power taken in, usually measured in per cent.
The ratio Tess of transformation or outit. measure of the effectivedevice. Example, a motor which delivered 9 horse power, mechanically, while receiving 10 horse power,
electrically, would have ant efficiency of 90 par cent. LECTRODE. - The conducting terminal by which electricity
finds either ingress to, or egress fronn, an electrolyte, a conducting mass or a dielectric. Commonly, a metal
plate immersed in an electroytuc solution. ELPcTrolvsIs.-The chemical change accompanying the
flow of electricity throuh electolytes, to which class nearly all conducting liquids belong. See Elecrrolvsis. and whase magnetism mainly disappears on the cessation Elef the exciting current. (ahlireviated E.M.F.) - The force in an electric circuit which produces therein, or tends
to produce, an clectric discharge or current. Electric pressure. Voltage. Usually measured in volts.
ENclosed Arc Lamp.- An are lamp enclosed almost airEnclosen Arc LAMP.- An arl lamp enclosed almost air-
tight within a narrow glass globe, from which the oxygen tight within a narrow glass giobe, from which the oxygen
in the contained air soon becomes orisumed during
operation, thus leaving the carbons burning in inett gas
and greatly prolonging the duration of their serviceable
life. FEEEER.- In an electric distriluting system, a supply con-
ductor carrying current from a ductor carrying current from a power-house to main
conductors, and not itself connceted to motors, lamps or
transetan translating devices.
FIXTURE, ELECTRIC
Fixture, Electric-Light. - Originally, an electric lamp-
holder fixed to wall or ceiling. Now, any electric lamp-
holder whether fixed holder whether fixed or semi-portabie. Frequency of an alternating Current. - The numher
of complete cycles, or to tond-fro motions, effected by the current in one second of time. Galvanometer--An instrument for measuring the strength
of an electric current. Usually a sensitive instrument of an electric current. Usually a sensitive instrument
which measures the strength of a very feeble current, as
distinguished from an ammeter. distinguished from an ammeter.
GaLVANoscore. An instrument for detecting the passage
of an electric current. of an electric current.
GENERATOR, ELECTRIC
Generator, ELECTRIC.- A machine which is capable of
generating an electric current. Usually a dynamo-electric
generator Ground.- (1) The earth, considered as an electric con ductor. (2) A return circuit proved as an electric con-
(3) A fautit or leak of clectricity to the tro tround. (3) A fautit or leak of clectricity to the earth through a
defect in the insulation of a conductor. See Elecric

 in which the pressure or voltages is relatitely high.
Specifcelly, an electric distributing systeme which, accord
ing to fre insurance rulcs has within it a pressure of

INCANDESCRNT LAMP. An electric lamp consisting es-
sentially of alowing filamentary conductor maintained
at an incandescent temperature at an incandescent temperature by a traversing electric
Invucrion Moror.- An asynchronous alternating-current
motor in whicn the currents flowing in the wind motor in whice the currents flowing in the winding of
the secondary member are induced electromagnetically
by the currents flowing in the primary member. Sce by the currents flowing in the primary member. See
ELECTRIC ALTERNATINC CURRENT MACHINERY; ELBCTRIC MoIRRS; GERERATRRS.
InSULATITN, EERCTRRC.- The property of nonconduction.
Particularly the property possessed by a Particularly the property possessed by a conductor when
it is kept out of contact with, or out of likelihood of dis-
charge to, the ground or neighboring conducters. charge to, the ground or neigh oring conductors.
Interion Cowntr. A tube or raceway placed in the
interior walls floors or ceilings rat a builling, to guide, interior walls, floors or ceilings of a bayldng, to guide,
hold and protect the wires or conductors supplying the
building. JoulE. INTERNATIONAL. - A unit of work theoretically
derived from the centimeter-gramme-second system of derived from the centimeter-gramme-second serstically
units af and equal to $10,000,000$ ergs. Approximately equal
unt 0.74 foot-pound. to 0.74 fot-pound.
KinowATf Hour.-A unit of work generally used in the
sale of electric energy. One thousand watt hours,
 1,200 long-foot-tons, or 1.34 horse-power hours. The
wrork done hy one ampere under a pressure of 1,000 volts
in one hour. in one hou
LIGHTNING ARRESTER.- A device connected to an electric
circuit or system for the purpose of protecting the system
from damage by from damage by atmospherics electricity. Commonly a
device conncted on an aerial line either on a pole or near
the point of ent the point of entrance to a station, and offering a separate
conducting path to ground along which lightning die conducting path to ground along which lightning dis-
charges may mer meflected. See GENERATORS:
LIGIINING ARESTER. charges may me
LIGITNiNG ARRESTER.
OAD. - The output of, or demand upon a machine, usually
measured either in terms of current delivered or of measured either in terms of current delivered or of power
delivere. A load ma be light. heavy, normal. full,
half excessive, etc, hall , xcessive, etc., accordng to the output of the machine
at the time considered. Low Potential Systex.- In electric distribution, a system
of conductors, generators and ransiating devices in which
the pressure or voltage is rellativaly the porcsturs, generators and transiating devices in which
the prage is relatively low. Specifacally,
an electric distributing system, which, according to
insurance an electric distributing system. which, according to fire Molts and more than 10 volts.
MaGECTIC FIELD. An Any region in space permeated by
magnetism. A magnetized space. Commonly a mazMetized air-space.
MAGNETIC FLux.-. The magnetism or magnetic infuence
which
 at any point both intensity and direction. By reference
to these properties. the magnetic ilines of finfuence may bee
conceived of as stream lines or lines of magnetic flow or
fluxer and may be fuxx and may be expressed in terms of a unit named
the Maxwell. Mans.- In an electric distributing system, the street-
supply conductors, to which the house-service wires are supply conductors, to which the house-ser rice wires are
connected. The main onnductrrs intended for connecting
to lamps, motors or devices at any point along their to lamps. motors or devices at any point along their
route. In house-wiring, the principal supply wircs, as
distinguished Megorm. A million onhms, derived from "Ohm " and
the prefix " mega. signifying by convention one million, the prefix " mega " signifying by convention one million
and literally, in ancient or modern Greek, "great."

Microphone-An apparatus capable of having its re
sistance affected by very feeble sounds and therefore
of sistance afiected by very feeble sounds and, ene the
of enabling such sounds to be heard with the aid of
tclephone in the circuits. In telephony, the carbon trans telephone in the circuit. In telephony, the carbon tran
mitter conneted with the diaphragm against which the
speaker's voice is dirccted. MORSE CODE. The code of dots and dashes forming the
alphabet of the Morse system. See TELEGRAPHY

 magnet placed in the telegraph line circuit responds to
impulses of the sender's. key, and actuates an armatur in such a manner as tor sive eve and actuates an armatur
to the receiving onerator or to the receiving operator. Sce TELEGRAPHY.
Moror, ELECTRRC. A machine for transform
power into utilizable mechanical power Morming electric
invariably operate on electromagnetic
 Motor; Generators.
starting a motor from rest with a proper rate of acceleration by the simple act of closing a switch.
pair of magnetic poles in its field frame. more than one HM, INTERNATIONAL- A unit of electric resistance, theo-
retically derived, by electromagnetic principles, from the centimeter-gramme-second system of units. Practicall
defined as the resistance offered by

work.
 machine or device. An abnormal or an extra load. PHAss.- The fractional development of an alternating
electric wave with reference to a cylic condition such as elhectric wave with reference to a cylic condition such as
the zero point in the positive directionc Unually measured
in degrees of 360 to the complete cycie in degrees of 360 to the complete cycle.
POLPHASE
Svstem.- An system employing a plurality of alternating current
definitely differing in phase. See ELECTIC nating Current Machinery. electric Altel Power-FActor. - The ratio of the active power, in watts,
absorbed by a circuit or conductor carrying an alternating absorbed by a circuit or conductor carrying an alternating
current. to the apparent power corsumed, in volt amperes
RIMARY VoLTAIC current, to the anparent power consumed, in volt ampere
RIMARY Votratc CELL. A voltaic cell which derive its
eneryy from its chemical constituents and which consume eneryy from its chemical constituents and which consumes
or converts those constituents irreversihly during action
as distinguished from a second as distinguished from a secondary ecll which, after fis-
charging, may be recharged by the action of an electrical
charging current charging, may
charging current.
OUADRUPLEx TELEGRApHY - The method of sending four
messages simultaneouly over one and the same telegraph
wire, two in one direction and twe mire, two in one direction and two in the opposite direction
See See TELEGRAPIYY.
Rall.Bonds.- The conducting straps or bridges anplied
between contiguous ends of rails in an electric railway

 $\underset{\text { Reslegrance }}{\text { Thi }}$ Electric. - The property of conducting Resisiance, belectric.- The property of conducting
substances by virtue of which they obstruct or orpose
the passage of an electric current. Usually measured in the passage of an ele ctric current. Usually me
ohms. The opposite or invers of conductance.
RHEOSTAT. - An adjustable electric resistance.
Rheostat.- An adjustable electric resistance.
Rotor.- The rotating element of a machine as distinguished Rotor.- The rotacing element of a machine as distinguished
from the stationary element. SERIES Moror or GENERATOR-A motor or generator
whose field-magnet winding is connected in series with, or in succession to, its armature. See Generator. Series-Parallel Controliek.-A device on the platform
of an electrict street car, operated by a hande. thrugh
the aid of which the motorman can with his oft hand
connect the motors under the car cither in series or in connect the motors under the car cither in
parallel. so as torary the speert of the car.
SHADE.-In electric incandescent lighting the
Share. - In electric incandescent lighting, the ornamental
bell or covertusually off glass, secured over a lamp in
order to scatter or reflect the light and produce either bell or cover. usually of glass, secured over a lamp in
order to scatter or reflect the light and produce either
a better distribution of light or a more pleasing offect a better distribution of light or a more pleasing cffect
upon the eye of the obscrver.
Shunr. An electrical by-pass. A conductor which is Shunfle An electrical by-pass. A conductor which is
applied to the terrinals of an apparatus or branch in
order to divert a part of the current from that branch.

 Whereby an excessively strong current is produced
Usually a metallic bridging between two or more supply

Wires, whereby a violent overload of current results,
opaole, in extreme cases, of producing violent arcing
 SVEPPHASE SYSTEM. - An alternating-current distributing
by the emploping a single anternating current supplied
byste generator, as distinguished from a polyphase
 KEET OF INCANDESCENT LAMP.- The holder into which
an Incandescent lamp screws or attaches and which hon-
tains the ends of electric supply wires, for supplying tains the ends of electric supply wires, for supplying
STanrent to the lamp
Stion The tationary element of a machine, as dis-
tinguished from the
Storaisged from the rotating element.

trochemical energy foltaic cell which receives its elec-
the electrolytic action of a charging current. A Arom the electrolytic action of a
Chataic cell which is alternately
CuB-3red and discharged. Charked and discharged.
SUB-STATION
or auxiliar In an electrical distributing system, a local or axiulion--In an electrical distributing system, a local
control of theose for facilitating the operation or
con system. A station which is subsidiary to a priof the system. A station which is subsidiary
wirn station or power-house. modifying an electric circuit. for opening, closing or
Usually a hand-operated
device for anening dedirying an electric circuit. Usually a
Wircer for opening and closing a circuit. Wrrchbord.-An assemblage of switches, controlling or
indicating devices mounted upon a frame for the purpose
of convenient control of conven devices mounted upon a frame for the purpose
circuit
 howthines mounted on it; now typically, a metal frame
holding vertical slabs of slate or marble, with switches,
Controlling handles, and indicating or ecording instruments
mounted thereon, in an electric central station or dis-
trint tounted therene, in an electric central station or dis-
tiviuting centre. In telephony, a frame holding the
ssintathes and other devices by which connctions are

YNCHRONOUS Moror- An alternating-current motor in
Which the rotation occurs in synchronism with the rotating ${ }^{\text {el Coment of one }}$ See ELECTRIC AITERTOT supplying the driving current. See Electric Alter nating Current Machinery.
Hird Rail.- In an electric tailway systema a supply conductor running paralltel to the the track and consisting
of a stem, of a steel rail electrically continuous and supported on
insulators, for carrying current to the car-motors. See THVIRD-RAIL SYTEM.
emp-PHASE SHSTEM. - An alternating-current system
difiong three alternating curnents of equal strength,
 Which pre SYSTEM.- In electric distribution, the system
of whice toin conductors, the middle one
of which is neutral, or midway in potential between the othcr two.
Couple.- The twisting effort, rotating effort or mechanical
Corted by a motor at a shaft. Ofter measured Couple exerted by a motor at a shaft. Often measured
in pounds weight at one foat radius.
RANSFORMER.-A A device for changing the pressure or RaNSFORMER-A A device for changing the pressure or
Current of electric energy supply Usualhy, atationary
electromagnetic device consisting of a laminated iron core
 ind two insulated windings, a primary and a secondary.
ine device transfers electric power of alternating currents
from the primary to the secondary circuit, and chant from the pramarsers tiectectric power ond of alternating currents
the voltage in the ratio of the number of and changes
turns in the two voltage in
RANSTIngs.
RANMER,

 and thereby the procouces a a lower voltage in the secondary
nitcuit than in the primary.
 raises the electric pressure; i.e., which has a greater
number of turns in the secondary than in the primary
wind ing and thereby produces a higher voltage in the

Which receives electrical energy and translates it int in
 al LEY-WHEEL.- The metallic wheel which is carried
it the upper end of a street-car trolley pole, and which
is rassed upward against the trolley wire, in order to
tnainter Thintain upming contact therewith.
Tirbo-ALTERNATOR--A machine consisting of an alter-
nating-curcent generator mounted upon the shaft of a

ploying two alternating currents, of ploying two alternating currents, of equal strength,
diftering in phase by n quarter cycle, or such that onne
current has maximum strength when the other is passing

Wo Wugh zero.
Whitich SVSTR. - In electric distribution, the system
lamides two main conductors, between which Which provides two main conductors, hetween which
lamps, motors or translating devices are connected in
parallo Aror-LAMp- An electric lamp consisting of a glass tube vapor, exhausted of ariand and kept merturury and mereurye by the passage
through the vapor of an electric current admitted by
elecugh tren chrough the vapor of an elect
electrodes sealed into the walls.

OLT, InTERNATIONAL-- A Anit of electric pressure or
current-driving electric force, theoretically derived, by current-driving electric force, $\begin{aligned} & \text { electromagnetic principes, from the centimeter-geramme- } \\ & \text { second system of units. } \\ & \text { Practically, the international }\end{aligned}$ volt is a certa.
a standard type of voltaic cell at a standard temperature. OnTMETERR.- An electrical measuring instrument for de-
termining the value of the electromotive force termining the value of the electromotive force connected
to its terminals.
WATT voltage measurer. WATT. A unit of power, activity, or rate of working, equal
to i-74thth of a horse power, or to 44.4 foot-pounds per
minute. The power expended by a minute. The power expended by a current of one ampere
under a pressure of one volt. The power
an F . under a pressure of one volt. The power expended by
an E.M.F. of one volt through a resistance of one ohm.
The The power expended by one ampere through a resistance
of one ohm. Theoretically derived from the centimeter gramme-scocond electromagnetic system of une ce.
WTr Hour.- A unit of work
my
measurements, equal to wherk, much used in clectrical
activity activity of one watt, approximately 2,700 foot-pounds;
exactly 3.600 , WATMMETER volt pressure, in an hour. circuit and measuring the power delivered to the eircuit Wh watts.
Charstose
Bridge Charles Wheatstone for measuring electric resistance,
by effecting a balance between the resistance to be meaned and an adjustable known resistance. The
malance employs a bridge or bridging conductor, usually
met Containing a galvanoscope. WIRELESS TELEGRAPHY - Cenerally, any method of signaling
which does not employ wires. Specifically, the method
of cignaling which ent of signaling which eeploys. invisible electromagnetic
of eves radiad from a sending station and detected at
whe receiving statiom Sol waves radiated from a sending station and detected
the receiving station. See TELEGRAPHY, WIRELESS.
For definitions of mechanical terms see the articles in this encyclopedia on Mechanical Forge Shor Terms; Engine; Enginetring and Structural Terms; Tools; Valve and Valve Terms; Horkshop Terms; and Locomotive Principal Parts of
Professor of Electrical Enginecring, Harvard University.
ELECTRICAL UNITS. Two systems of electrical units are in use by electricians, known respectively as the Practical system and the The former is used in electrical engineering the fotter in the notation of electrical science. The Practical system is sometimes called the Q. E. S. (quadrant-eleventh-second) system. It is based on the earth quadrant, or 10° cen-
timeters as the unit of length; 10^{-11} gramme as timeters as the unit of length; 10^{-12} gramme as
the unit of mass; and the scond as the unit the unit of mass; and the sccond as the unt
of time. The foundational mechanical units from of time. The foundational mechanical units from is developed are the dyne and the erg. Th dyne is a unit of force, assumed to be that force which gives a weight of one gramme a velocity of. one centimeter per second during that second. The erg is a unit of work, being
the energy excrcised when a weight of one gramme is moved a distance of one centimeter with the force of one dyne.
Arranged alphabetically, the principal units of the Practical system with their definitions and their ratios to the units of the same class in the C. G. S. system are as follows:

Ampere (the unit of current)- the rate or volume-per-second, of current fowing one ohm, when the pressure is one volt. It is one-tenth of the C. G. S. unit of current designated as 10^{-1} - that is, 10 to the -1 power. Coulomb (the unit of quantity) - the quantity of electricity passing through a conampere. This unit is not often emploved

Quantity is generally designated in ampere hours, an ampere hour licing 3,600 coulombs. Farad (the unit of capacity) - the capacity of a condcriser which would require a charge
of one coulomb to establish a difference of of one coulomb to establish a difference of potential amounting to one volt between the two
conductors forming the condenser. The farad being expressed by figures inconveniently of a the micro-farad, the one-millionth part equal to $10-{ }^{-} \mathrm{C}$. G . S . units of capacity.
Henry (the unit of inductance) - the in-
ductance produced in a circuit when the curductance produced in a circuit when the current is changing at the rate of one ampere per second and is producing in the circuit a difference of pressure amounting to one volt. A
henry is cqual to $10^{\circ} \mathrm{C}$. G. S. units of inductance. Joule (the unit of work) - the work done by one ampere of current flowing for one second through a conductor which has a resistance of one ohm. The joule is seldom employed, the watt hour being the more common unit, equivalent to 3,600 joules. (See Watt).
The joule is equal to $10^{7} \mathrm{C}$. G . S. units of work - that is, 10^{7} ergs.

Ohm (the unit of resistance) - the resistance of a column of mercury weighing 14.4521 grammes, of such constant cross-section as to be 106.3 centimeters in length. In designating
very high resistances the unit used is the very high resistances the unit used is the
"megohm," equivalent to $1,000,000$ ohms. The ohm is $10^{\circ} \mathrm{C}$. G. S. units or resistance.
Volt (the unit of pressure) the clectromotive force (E . M. F.) required to force a
steady current of one ampere against a resteady current of one ampere against a re-
sistance of one ohm. The volt is equal to 10^{8} sistance of one ohm. The
C. G. S. units of pressure.

Watt (the unit of power) - a current of one ampere flowing under a pressure of one volt - equivalent to one joule prer second. The volt - equivalent to one joule per second. 1 he
usual commercial unit is the kilowatt, or 1,000
watts. The commercial consumption of clectric watts. The commercial consumption of electric
current is commonly designated as kilowatt current is commonly designated as kilowatt
hours. The physical unit of power called one hours. The physical unit of power called one
horse power is equivalent to 746 watts. The watt is equal to $10^{7} \mathrm{C}$. G. S. units of power that is, 10^{7} ergs-per-second.
ELECTRICITY is a form of energy ($\mathrm{l} . \mathrm{V}$.), ike mechanical energy or energy of motion, ctc. Electric energy is the form of energy most recently introduced into everyday life and is, therefore, not yct quite familiar, so that we still ask, "What is electricity?" while ages ago man"What is light?" although the manifestations of electric encrgy are no more wonderful and inexplainable than those of gravity. That is, the cause why a stone falls to the ground and water flows down hill is just as mysterious as the manifestations of electricity. In nature electric turbances as lightning ($q . v$.), but the energy of ightning is too crratic for usc. For the production of clectric energy on a larger scale recourse must be had to the stores of energy afforded by nature. In large amounts energy is
found in nature, first, as mechanical energy in found in nature, first, as mechanical energy in
the waterfalls and to a lesser extent the wind, the waterfalls and to a lesser extent the wind,
and second, as chemical energy in coal, wood, oil, natural gas, etc.
Generation.- In the transformation of the
mechanical energy of waterfalls into electric energy, the water power is first converted int
rotary motion by the turbine or water-wheel, the latter then converted into electric energy by the electric generator or dynamo. Chemical en ergy can be converted directly into electric energy only to a limited extent, as chemical energy of metals. This is done in the electric battery. (See Electric Batrery). But due to the production of electric energy loy means of the battery is commercially feasible only where small quantities are required and the cost of the nergy therefore secondary to the convenienc of gencration, as for signaling purposes, bells,
annunciators, ctc. The chemical energy of coal annunciators, etc. The chemical energy of coal
and other combustihles cannot be directly converted into electric energy, but is converted into heat energy by combustion, the heat encrgy transferred from the gases of combustion to the water in the steam boiler, converted into mechanical energy in the steam engine or stean tric energy in the electric generator. In the gas engine the heat energy of combustion is directly converted into mechanical energy. In any transformation of energy from one form to nother a certain loss occurs lyy conversion into heat. This loss is moderate in the transforma yory of water power into mechanical energe into electric energy, hut enormous in the trans formation of heat into any other form of energy. Our modern theories consider all forms of energy as diffcrent modes of motion; of the masses in mechanical energy, or of the molecules and atoms of matter or of the elec is the simplest form of energy, irregular motion of the molecules or motion without definite speed and direction. It is, therefore, intelligible hat in any conversion of cnergy, that is, of a egular motion into another regular motion, larity of motion, that is, converted into heat, the more the greater the difference between the wo forms of motion, and that when convert ing irregular into rcgular motion, that is, heat into other forms of energy, this loss is specially water power does not differ much from that water power clocs not differ much from that
derived from coal by the steam engine, the cos of coal in the latter case offsetting the interest on the greater investment required in devcloping the water power and transmitting the electric power to the place of consumption. Hence wher conomical, and where water power is mor which can cheaply he developed, or where coa is expensive, water powe- is more economical Use. Electric cnergy is hardly ever used as such, but only after transformation into other heat, chemical encrgy and light. Since electric energy is generated from other forms of energy, it follows that it is used essentially as an inter mediary form of energy. For this it is better suited than any other form of cnergy, due to the high efficiency and simplicity of generation and reconversion and especially the almost unlim-
ited flexibility which permits transmission over long distance, distribution with the simplest mcans and unlimited subdivision and case of

Mechanical Power.- The electric motor is secondary and not a primary source of power, that is, it does not convert the stores of energy steam cngine, but mechanical power has to be exerted somewhere to produce the electric Duver which is reconverted into mechanical power in the electric motor. The advantage of can be titic motor is that the mechanical power power betilized at a distance from the source of power; the factories and mills may be located railroad train or strect car reccive the power rom the distant station. The power generated at one place can be distributed efficiently to city large number of places, or all motors of the city may reccive their power from one central generating station. Instead of an extended and
inefficient system of belting, individual motors may drive the machines of the factory or mill. All the cars or trains of a railway system may eceive their power from one generating system, perhaps a water-power as Niagara. The electric motor is under more perfect control than almost any other motor, and when not used in starting and operation. Mechanical power in Small quantities can be produced almost as efof pontly as in large units and a great subdivision of power becomes therely feasible. In the field aiso mechanical power generated by electricity also belong tclegraphy and tclephony, or the
transmission of signals and speech over long distances.
Light.- For lighting, electric encrgy usually is first converted into heat and the light given by the incandescence of very refractory solid
sulstances, carhon or tungsten (wolfram), the tungsten wire or carbon filament of the incandescent lamp, or the glowing tip or crater of the arc lamp carbons. (See Electric LightNamps, Here again, especially with incandescent steadiness, control and flexibility of the light, the simplicity of turning it on or off, and its With less heat than the gas flame or kerosene lamp. While due to the use of heat as intermediary form of energy only a very few per
cent of the electric energy are converted into light, most being dissipated as heat, with the gas or kerosene flame the percentage of energy concorted into light is still much less. Recently
considerable work is being done and with great promise of converting electric energy more directly into light by electro-luminescence in liminous arcs, which promise an efficicncy of ingt production very much greater than the a possibility of carbon arc lamp, and there is cies of light production by electro flunrescence. Heat.- The conversion of clectric energy regular to irregular motion and in the heat production to irregullar motion and in the heat the cent of the heat energy expended under ciectric generator is recovered, so driving the heatic generator is recovered, so that electric generation of heat by combustion and therefore 1. For the practicable only:

1. For the nroduction of temperatures he-
ond those which can be reached by combusond those which can be reached by combus-
ion. At very high temperatures chemical affin-
ity and therefore combustion ceases and temperatures beyond this cannot be reached by electric energy into heat in the electric furnace. By this means chemical compounds have were cither entirely unknown or mere curiosities before, as the carlides, calcium carbide, carborundum, silicon metal, etc.
2. Electric energy is used for heating where the temperature has to be perfectly controlled. etc., where heat production by combustion is inetc., whe
for domestic uses to a limited extent, electric heating and cooking are coming into use.
Chemical Energy.- Electric energy is converted into chemical energy either directly in the termediary in the electric furnace as discussed above. Electrolysis (g.v.), that is, the chemical action of electric energy, is used exclusively for the production of aluminum, magnesium, calcium, etc., metal, is used for copper refining, production of sodium, chlorates, soda and
Storage.- Electric energy cannot be stored as such conveniently, but the case and efficiency of conversion of electric energy into the chemical energy of metals and metallic oxides, and inversely, permits the storage of electric energy as chemical energy in the storage hattery. (See storage battery means converting in it electric energy into chemical energy, discharging, the reconversion of the chemical energy into electric chergy.
For
Forms of Electric Energy.- Electric current and as high frequency current. In the direct current circuit, the electric current contimuously fows in the same direction, and the electric pressurc or voltage therefore also is constantly in the same direction. Direct current is required for electrolytic work, therefore also
for the charging of storage batteries. It is generally preferred for electric railroading, and often for electric lighting, especially where the demand is very concentrated, as in the centres of large cities. All electric hatteries give direct current. Electric generators or motors may he huilt for direct current as well as for altercuit, the electric current and thus the electric pressure reverses periodically, usually 120 or 50 times per second, and the number of double reversals or cycles per second is called the frequency of the alternating current. Sixty and 25 cycles per second are the standard frequencies the same system, which reverse successively, and the system then is called a three-phase system, if threc, a quarter-phase system, if two successively reversing currents are employed If only one current is used, the system is called single-phase. Alternating currents have the advantage that they can be raised in voltage hy for transmission to a distance, and lowered in voltage for use. They are therefore more flexihle in application, and for this reason all large electric generating systems now produce alter nating currents, and where direct current is re-
quired, it is produced from the alternating current supply by rotary transforming devices, so-called "renverters
High frequency currents are alternating currents reversing very rapidly, often a hundred thousand or million times per second. Often they are not constant in value, but die out and rents." They are mainly used for wireless telegraphy and telephony.
Measurements. - Since all forms of energy are convertible into each other they can be measured by the same measure. Heat being the
simplest form of energy, the measure of heat simplest form of energy, the measure of heat the caloric, or the amount of heat required to raise one litre of water from 0° to $1^{\circ} \mathrm{C}$, or the British Thermal Unit (B.T.U.), that is, the amount of heat required to raise one pound of
water by $1^{\circ} \mathrm{F}$. However, due to the water greater convenience and exactness of far greater convenience and exactness of
electrical measurements, the electrical unit of energy, the joule or watt second (one watt equals one volt times one amperc) is rapidly replacing the thermal unit or calorie, even in chemistry. Generally, the kilo-joule, or thousand joules, is used. Other forms of energy usually into joules. So, mechanical energy is measured in foot-pounds, or kilogram-metres, and the flow of mechanical energy, or mechanical power, in foot-pounds per second or horse power, 1
horse power -550 foot-pounds per second, horse power $=550$ foot-pounds per second, $=76$
kilogram-metres per second $\xlongequal{=} .178$ calorie kilogram-metres pcr second =. 178 caloric
seconds. The value of electric energy or elecseconds. The value of electric energy or elecmeasure, horse power, or electric measure, watts, 746 watts $=1$ horse power. Usually the kilowatt or 1,000 watts $=1.34$ horse power, is used.
1 kilowatt $=.238$ calorie second. 1 kilowatt 1 kilowatt $=238$ calorie second. 1 kilowatt second $=1$ kilojoule (KJ). Most forms of energy are resolved into the product of two components; a quantity and a pressure compoof the quantity of water flowing and its head or fall. So electric power is resolved into auantity component called "current" and measured in amperes, and a pressure component called "electromotive force" or "potential difference" electric power then is a product of volts and amperes, 1 watt $=1$ volt $\times 1$ ampere and one joule $=1$ watt $\times 1$ second is the electric energy. Just as a small quantity of water under a high head may give the same power as a large quantity under low head, so a small current at high as a large current under low voltage. The smaller the quantity and the higher the voltage the less the loss in transmitting the power Thercfore, for long distance transmissions high voltages are used, the higher the greater the distance, while relatively low voltages are employed of handling high voltages. The instrument measuring electric power is called the wattmeter, that measuring electric current or flow of quantity is the ammeter, that measuring electric pressure or voltage is the voltmeter.

Conductors and Insulators.- Some substances, as metals, carbon, salt solutions, etc., rubber, paper, oils, etc., are insulators. There
is, however, no perfect conductor nor perfec copper, aluminum the best conductors, silve the flow of electric power and thereby cause a loss of energy which is proportional to the square of the current flowing and appears as heat in the conductor. For transmission of electric power conductors are therefore used to direct the flow of power, copper or aluminum surrounded by insulators, as rubber, paper. It the conductor by insulating material, but the insulating material must have sufficient thick ness to withstand the electric pressurc or volt age, otherwise it is disrupted, that is, the electri power penetrates it as spark discharge. The
ability to withstand electric pressures is called the dielectric or disruptive strength and is of oremost importance in insulating electric cir cuits of high voltage. Very good insulators are not necessarily of very high diclectric strength, for instance air, which is perhaps the best insulator, has rather low disruptive
strength, that is, is easily penetrated by an clectric spark, while mica and rubher, although not as good insulators as air, have very much greater dielectric strength.

Physiological Effects.- Electric energy is perceived by the senses either indirectly by transformation into other forms of energy, as
light and sound in the spark discharge or lightning, or directly if the electric current passes ning, or directly if the electric current passes short duration, or electric discharge, causes a shock which when very powerful, as in lightning, may be fatal. A current flowing continuously through the hody causes a specific sensation which with increasing voltage and therefore muscles contract and become uncontrollable, so that in case of accidental contact with electric circuits the victim is unable to let go, and ulti-
mately at high voltages death may result. With mately at high voltages death may result. With alternating currents, the specific sensation de-
creascs with increasing frequency, so that at very high frequencies even large currents are little felt - though not without danger. (See Electricity, Cause of Deatir by). The amount of current flowing through the body depends upon the electric pressure or voltage and the resistance of the body. This resistance is
mainly the skin or surface resistance, thereforc depends upon the nature of the contact between body and electric circuit. When loosely touched with dry hands a 100 -volt circuit may hardly give any sensation, while grasped with we at very high voltages the nature unable. Only at very high voltages the nature of the contact
becomes of less importance and the electric current penctrates as arc. Electric pressures below 500 to 600 volts are considered as still safe since only in cases of exceptionally good contact with such voltages serious results may occur Much higher voltages are usually fatal, hut 20,000 volts without fatal results in cases where the duration of the contact has been very hrief. The causes of death by electricity are

1. The direct effect of large power exerted upon the hody, causing destruction by heat, etc., as in electrocution where several horse power are 2 . Med. Mech
very heavy discharges, as lightning.
2. Paralysis of the nervous system, stopDage of the heart and respiratory organs. In
these cascs resuscitation by artificial respiration, etc., when immediately resorted to, is very promising, especially if only respiration has topped, but the heart is still beating.
lant by its action on the nervous system and for by its action on the nervous system and the carrying substances through the skin into in the hands of expert physicians but like any Dowerfull agent, in the hands of a layman, is harmful and dangerous. The electric healing devices advertised broadcast, as electric belts, See, are mere swindles and without any value. Prospectherapeutics.
been made in - Only the very beginning has form of power for of electricity as secondary its natural source, waterfall or coal mine, to the place of consumption, factory, city, railway. forward to, resulting in a much more efficient use of the stores of energy afforded by nature. ion is the indentacteristic of modern civilizate surroundings, in the necessities of civilized The These nccessities are materials and energy. materials has becn organized in the last century in the system been organized in the last century ransportation agencies, stcamship and other ransmission, distribution and supply system being organized by electric power, in the system or network of transmission and dis-
tribution lines, which increasingly spread over the country and interconnect the electric power the country and interconnect the elcctric power
generating stations-steam and hydraulicWith the places of energy demand. Only electricity can fulfil this requirement of energy Supply of our civilization, duc to the high effipractically economy of electric transmission, the distribution untimited possibility of subdivision in conversion, and the efficiency and simplicity of form of cnergy, from energy into any other watts power consumption, to the huge motor of many thousand horse power. In the prothe efficiency is from electric energy at present the efficiency is low, due to the use of heat as version of form of energy. A direct conefficiency of 50 per cent or more would make electric lighting many times cheaper than an other form of illumination and so displace all of a gradual advance exists The dire fair promise of a gradual advance exists. The direct conenergy and thereby energy of coal into electric morgy and thercby the elimination of the enor of the coal and the electric energy is still entirely hopeless and no clue to its solution visible melectro-chemistry (q.v.), that is, the transforenormous electric into chemical energy, lies an powerful industries which has already produced bide production, and therefore holds and carhope of most wonderful advances in the future See Electrochemical Industries: Metalon eng; and various other articles in this volume ${ }^{\circ}{ }^{n}$ electrical subjects.

Cirarles P. Steinmetz

ELECTRICITY, Its History and Progress. There is perhaps no hetter illustration of the slow growth of man's knowledge concern-
ing physical things than the fact that the identity of lightning and electricity in some of its other modes of manifestation should have escaped detection for so many centuries of the world's history.
Lightning, of course, and certain other manifestations of electricity, were known to the thought was more remote than that these manifestations had a common origin. Pliny (61115 ^.D.) in his books writes: "The ancient Tuscans by their learning hold that there are nine
gods that send forth lightning and those of gods that send forth lightning and those of
eleven sorts." This was in general the early pagan idea of lightning. The property of amber when rubbed of attracting light bodies, such as particles of feathers, a property now been familiar to philosophers many hundred years before the Christian era, although Thales of of Greece, is mentioned as having been the first to observe this phenomenon. Pliny has several references to this peculiar property of amber Pliny's 'Natural History,' (trans. Philemon Holland, London 1634, pp. 606, 608, 609). The peculiarity of the torpedo in defending itself by means of a property, now also known can stun an enemy, was also known to Pliny and other early writers. Consult Cavallo's 'Philosophy,' p. 536 (Philadelphia 1829).
The property of the magnet or loadstone in attracting iron was likewise known to the enin the case of electricity nor of magnetism had these philosophers any conception of the real nature of the phenomena involved, attributin the peculiar properties of the sulbstances named to some occult vitality possessed by them.

It is not, however, much to be wondered at have failed to observe any relationship behave fancd to observe any relationship bethe torpedo, when as we shall see, many who may be termed modern philosophers - those of the 17th and 18th centuries - failed for ycars to discover this identity, even when in possesin miniature many of the effects of lightning and for long after the knowledge of the electrical properties of amber had been extended to wax, glass and other substances. Even the caped particular notice for some yearsm escaped particular notice for some years after
the affinity of these phenomena had been demonstrated. Possibly the earliest and nearest approach to the discovery of the identity of lightning, and electricity from any other source, is to be attributed to the Arabs, who before the 15th century had applicd the Arabic word for lightning (raad) to the torpedo. The Greek
word for amber, however, is clektron, and it is due to the fact that this substance was the first known to possess the property mentioned that the word electricity is derived.
Centuries passed after the discovery of frictional and animal electricity before any advance appears to have been made in the production of
electricity artificially or before any important developments of value were made in the art.

Toward the latter part of the 161 h century a physician of Queen Elizabeth's time, Dr. William careful electrical experimentis, in the course of which he discovered that many substances other than amber, such as sulphur, wax, glass, etc. (consult Priestley's 'History of Electricity,' London1 1757), were capable of manifesting electrical properties. Gilbert also discovered
that a heated body lost its electricity and that that a heated hody lost its electricity and that
moisture prevented the electrification of all moisture prevented the electrification of all
bodies, due to the now well-known fact that moisture impaired the insulation of such
bodies. He also noticed that clectrified sulhstances attracted all other sulistances indiscriminately, whereas a magnet only attracted
iron. The many discoveries earned for Gilbert the title of founder of the electrical science. Since Gilbert's time scarcely a year has passed in which some new discovery relating to the scicnce and art of electricity and magnetism has not been made. This is especially true during the years since 1872 .
Amongst the experimenters immediate following Gilbert one of the most notable was Dr. Wall of England (1650). During one of his experiments on approaching his fingers to an electrified rod, Dr. Wall saw a spark, accompanicd by a noise which he likened to lightning and thunder. Wall's contemporaries thought that this was the first time an artificially produced electric spark had been observed. This, however, is doubtless an crroncous view. Archbishop Eustathias, of Thessalonica, Greek sholar and writer of the 12th century, for instance records that Woliver, king of the Goths, same writer states that a certain philosopher was able while dressing to draw sparks from his clothes, a result seemingly akin to that ohtained hy Symmer in his silk stocking experiments, a carcful account of which may be
found in the 'Philosophical Transactions,' 1759.

It would indeed have been surprising if the electric spark had not been observed prior to Dr. Wall's time (although its origin may not
have been recognized) when it is considered have been recognized) when it is considered
that any one shuffling across a carpet in dry, crisp weather, or if whipped with a piece of fur
while his body is insulated, will accumulate a charge of electricity upon bis person that will discharge with a spark into any other person or piece of metal that he may touch. The present writer has even noticed electric spark passing from his knuckles to the metal fixings of a hand bag that he was carrying while walk-
ing on a stone pavement in cold, dry weather. ing on a stone pavement in cold, dry weather.
Rohert Boyle was another of the experimenters in electricity of this period (1650). One of his important discoveries was that electrified hodies in a vacuum would attract light substances, this indicating that the electrical effect did not depend upon the air as a medium.
He also added resin to the then known list of electrics. (Consult Boyle's 'Experiments on the Origin of Electricity,' and Priestley's 'History of Electricity'). Up to about the year 1682 the only known way in which electricity could be developed was virtually that known to the ancients, namely, hy rubbing rods of amber, glass,
wax, resin or similar substances. The amount of electricity producible in this way was very
small. At this time Otto von Guericke of Magdeburg (also the inventor of the air-pump) invented an electric machine consisting of sulphur globe or hall, suitally mounted on a
shaft and rotated by a handle. Using his hand as a "rubber". (see Filectrec Macinine), vol Gucricke obtained electricity in fairly large quantities, the production of which was accom panied by light and sound.
The electric machine was subsequently improved by Hawkesbee or Haukesbee, Litzendorf Litzendorf substituted a glass ball for the sulphure ball of Guericke. Boze was the first to employ the "prime conductor" in such machines, this consisting of an iron rod held in the hand of a person whose body was insulated by standing on a cake of resin. Dr. Ingenhousz, in
1746 , invented electric machines made of plate glass. Consult Dr. Carpue's 'Introduction to Electricity and Galvanism,' London 1803.
Experiments with the electric machine were largely aided by the discovery of the property of a glass plate, when coated on loth sides with
tinfoil, of accumulating a charge of electricity when connected with a source of electromotive force. This property, now and for many years availed of in the electric condenser, was, accord ing to Priestley ('History of Filcetricity,' 3d ed., Vol. I, p. 102), first observed ly Von Kleist of Leyden in 1754 . Von Kleist happened to in the neck of which there was an iron nail Touching the iron nail accidentally with his other hand he received a severc clectric shock In much the same way Prof. Pieter van Musschenbroeck assisted by Cunaens received a more severe shock from a somewhat simila
glass loottle. Sir William Watson of England greatly improved this device, hy covering the bottle, or jar, outside and in with tinfoil. This picce of electrical apparatus will be easily recognized as the well-known Leyden jar, so called by the Abbot Nollet of Paris, after the place of its discovery. The electric machine Gordon, a Scotchman, of Erfurt, who substituted a glass cylinder in place of a glass globe and by Giessing of Lcipzig who arlded a "rubher" consisting of a cushion of woolen material The "collcetor," consisting of a series of mcta points, was added to the machine by Benjamin
Wilson about 1746 , and Mr. John Canton of England (also the originator of the first pith ball electrometer) in 1762 made a notable improvement in the efficiency of electric machines liy sprinkling an amalgam of tin over the sur face of the rubber
(1729) Stephen Gray inter of the 18th century experiments for the first time demonstrated the difference between conductors and non-conductors (insulators), showing amongst other things that a metal wire and even pack thread
conducted electricity, whereas silk did not. In conducted electricity, whereas silk did not. In
one of his experiments he sent an electric curone of his experiments he sent an electric cur
rent through 700 feet of hempen thread which was suspended at intervals by loops of silk thread; probably explainahe on supposition that the hemp is more absorbent of moisture than silk. Subsequently Du Fay transmitted a current through a wet hempen string to a
distance of 1,256 feet, the string being insulated hy means of glass. In 1741 Mr. Ellicott "pro-
posed to measure the strenyth of electrification by its power to raise a weight in one scale of a trified body and pulled to it by its attractive
\qquad The Sir William Watson already mentioned conducted numerous experiments, about 1749, to ascertain the velocity of electricity in a wire, Which experiments, although perhaps not so intransmitting signals to a distance by electricity. In these experiments an insulated wire 12,276 feet in length was cmployed and the transmisoth of a signal from one end of the wire to the other appeared to the observers to be instanta-
neous. Monnier in France had previously hooks somewhat similar experiments, sending About 1737 Hawkesbee and Du Fay independently discovered that there were apparently two kinds of frictional electricity namely, that Which is developed by rubling glass and resin, respectively. The former electricity Dut Fay
 "positive" and "negative" electricity, respectively, by Franklin, Dr. Watson, Lichtenberg and others.
arm was somewhat improved, but the dread of the shocks became so great that the patient preferred to forego a possible cure rather than undergo further treatment. In another casc of
partial paralysis the electric treatment was folpartial paralysis the electric treatment was folapplication of this treatment was again followed by total paralysis, whereupon the furFor use of electricity in this case was stopped. Fricity as a remedial agent the rearly use of clecricity as a remedial agent the reader may con-
sult De la Rive's 'Electricity.) Sce also article Electrotherapeutics.
Up to the time of Franklin's historic kite experiment (see Etectricity, Atmospheric) the identity of the clectricity developed ly rubbing and by electric machines (frictional electricity), lished. Dr. Wall, 1807, Abbot Nollet, Hawkesbee, Gray and Winckler had indeed suggested the resemblance between the phenomena of "electricity" and "lightning," Gray having intimated that they only differed in degrec. It was doubtless Franklin, however, who first proposed tests to determine the sameness of the phenom-
cna. In a letter to Peter Comlinson, London, 19 Oct. 1752. Franklin, referring to his kite experiment, wrote, "At this key the phial (Leyden jar) may be chargcel; and from the electric fire thus obtained spirits may be kindled, and all the other electric experiments be formed which are usually done by the help of a rubbed of the electric matter with that of lightning be completely demonstrated.' (Franklin, 'Experiments and Observations on Electricity'). Dalibard, at Marley, near Paris, on 10 May 1742, by means of a vertical iron rod 40 feet long, obtained results corresponding to those recorded Franklin's experiment.
Franklin's important demonstration of the sameness of frictional electricity and lightning doubtless added zest to the efforts of the many experimenters in this field in the last half of the 18th century, to advance the progress of the
science. Amongst those workers science. Amongst those workers may be menRomas, Jallabert, Beccaria, Cavallo, John Canton, Robert Symmer, Nollet, Winckler, Richman, Dr. Wilson, Kinnersley, Pricstley, Acpinus, Delaval, Cavendish, Coulomb, Volta and Galvani. A description of many of the experiments and discoveries of these early
workers in the fields of electrical science and art will be found in the scientific publications of the time; notably the 'Philosophical Transactions,' Philosophical Magazine, Cambridge Mathematical Journal, Young's 'Natural Phi losophy,' Priestley's 'History of Electricity,' Franklin's 'Experiments and Observations on De la Rive's 'Treatise on Electricity.' Among the more important of the electrical experiments and researches at this period were those of Francis Aepinus, a noted German scholar (1724-1802) and Henry Cavendish of London England. To Aepinus is accorded the credit of having been the first to conceive the view
of the reciprocal relationship of electricity and magnetism. Electricitatis et Magnetismi,' published in Saint Petersburg, 1759, he gives the following ampli fication of Franklin's theory, which in some of
its features is measurably in accord with present day vicws: "The particles of the electric
fluid repel each other and attract and are fracted by the particles of all bodies with a force that decreases in proportion as the distance increases; the electric fluid exists in the pores of bodies; it moves unobstructedly through non-electric (conductors), but moves with dificulty in insulators; the manifestations
of electricity are due to the unequal distribution of electricity are due to the unequal distribution of the fuid in a body, or to the approach of Aepinus formulated a corresponding theory of magnetism excepting that in the case of magnetic phenomena the fluds only acted on the parti-
cles of iron. He also made numerous electrical experiments, He also made numerous electrical experiments, amongst others those apparently
showing that in order to manifest clectrical effects tourmalin requires to be heated to a tem-
perature between $37.5^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. In fact, perature between $37.5^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. In fact,
tourmalin remains unelectrified when its temtourmalin remains unelectrified when its tem-
perature is uniform, but manifests electrical perature is uniform, but manite temperature is rising or properties in this way are termed pyro-electrics, amongst which, besides tourmalin, are sulphate of quinine and quartz.
Cavendish independently conceived a theory of clectricity nearly akin to that of Aepinus (1784) was perhaps the first to utilize the electric spark to produce the explosion of hydrogen and oxygen in the proper proportions to produce pure water. The same philosopher also discovercd the inductive capacity of dielectrics (insulators) and as carly as 1775 measured the pecific inductive capacity for beeswax and condenser.
About 1784 C . A. Coulomb, after whom is named the electrical unit of quantity, devised
the torsion balance, by means of which he discovered what is known as Coulomb's law;The force exerted between two small electrified bodies zaries inversely as the square of the
distance; not as Aepinus in his theory of electricity had assumed, merely inversely as the distance. According to the theory advanced by Cavendish "the particles attract and are attracted inversely as some less power of the distance than the cube."
With the discovery, by the experiments of Watson and others, that electricity could be practical use of this phenomenon began, about practical use of this phenomenon began, about
1753 , to engross the minds of "inquisitive" perons, and to this end suggestions looking to the mployment of electricity in the transmission o ntelligence were made. The first of the methods devised for this purpose was probably that
due to Lesage (1774). This method consisted due to Lesage (1774). This method consisted ine another and each of which had a pith ball connected to its distant end. Each wire repre sented a letter of the alphabet. To send a mesage, a desired wire was charged momentarily with electricity from an electric machine, whereupon the pith ball connected to that wire ransmitted. Other methods of telegraphing in which frictional electricity was employed wer also tried, some of which are described in the article on the telegraph (q.v.).

Hitherto the only electricity known was that developed by friction or rubbing, which was therefore termed frictional electricity. We now The first mention of voltaic electricity, althoug not recognized as such at the time, was probably made by Sulzer in 1767, who on placing a small disc of zine under his tongue and small disc of copper over it, observed a pecul ar taste when the respective metals touchch at their edges. Sulizer assumed that when the tion, this acting upon the nerves of the tongue producing the effects noticed
In 1790 Prof. Luigi Alvisio Galvani o Bologna on one occasion, while conducting ex periments on "animal electricity", as he termed twitching of a frog's legs in the presence of a electric machine, obscrved that the muscles o frog which was suspended on an iron balusrade by a copper hook that passed through it dorsal column underwent lively convulsion without any extraneous cause; the electric ma-
chine being at this time absent. To acount for this phenomenon Galvani assumed that elec tricity of opposite kinds existed in the nerves and muscles of the frog; the muscles and nerves constituting the charged coatings of Leyden jar.
Galvani published the results of his discoveries, together with his hypothesis, which a of that time: the attention of the physicist Alexander Volta, professor of physics a Pavia, contended that the results observed by Galvani were due to the two metals, coppe and iron, acting as "electromotors," and that the muscles of the frog played the part of a nductor, completing the circuit.
the adherents of the conflicting views; between of adherents holding with Volta that the clectric current was the result of an electromotive force of contact at the two metals ; the other se adopting a modification of Galvani's view and ical affinity between the metals and the acids in the pile. Michael Faraday wrote in the preface to his 'Experimental Researches,' relative to the question whether metallic contact is or is not productive of a part of the electricity of the voltaic pile: "I see no rca son as yet to alter the opinion I have given;
. . but the point itself is of such great importance that I intend at the first opportunity renewing the inquiry, and, if I can, ren dering the proofs either on the one side or the other, undeniable to all." Even Faraday himself, however, did not settle the controversy and while the views of the advocates on both
sides of the question have undergone modifications, as subsequent investigations and discoveries demanded, up to the present day diversity of opinion on these points continues to crop out.
port of his theory and us experiments in support of his theory and ultimately developed the pile or battery (see Voluaic Pile), which was
the precursor of all subsequent chemical batteries, and possessed the distinguishing meri of being the first means by which a prolonged continuous current of electricity was obtainable.

Volta communicated a description of his pile th the Royal Socicty of London and shortly Produced Nicholson and Cavendish (1780) Produced the decomposition of water by means source of electromotive force. Davy in 1806 , employing a voltaic pile of approximately 250 celis, or couples, decomposed potash and soda, the owing that these substances were respectively the oxides of potassium and sodium, which metals previously had been monknown. These experiments were the beginning of electro-
chemistry (- .v.), the investigation of which Faraday took (q.v.), the investigation of which 1833 he amoonnced his important law of electrochemical equivalents, viz.: "The same quanny of electricity - that is, the same electric current-decomposes chemically cquizalent quantities of all the bodics which it traverses; these electrolytes of elements separated in chemical equivalents." Employing a battery of 2,000 elements of a voltaic pile Humphrey Davy in 1809 gave the first public demonstrathe of the clectric arc light (q. v.), using for the purpose charcoal cncloscd in a vacuum.
many years after the discovery of the voltaic lectricit the sameness of annual and frictional recognized and demonstrated electrity was clcarly january 1833 we find Faraday writing (Philoelectricity Transactions,' 1833) in a paper on the tion of the experiments of Walsh. Ingenhousz Cavendish, Sir H. Davy, and Dr. Davy, no doubt remains on my mind as to the identity of the lectricity of the torpedo with common (fricthanal) and voltaic electricity; and I presume hat so little will remain on the mind of others length into the philosophical proof of that identity. The doubts raised by Sir H. Davy tave been removed by his brother, Dr. Davy. the results of the latter being the reverse of Cuse of the former. . The general concollection which must, I think, be drawn from this ity of of facts (a table showing the similarricities) is, that electricity, whatever may be its ource, is identical in its nature."
It is proper to state, however, that prior to rived fars time the similarity of electricity desuspected. Thus, William Hyde Wollaston, b. 1766 ; d. 1828 (another noted and careful experimenter in electricity and the discoverer of palladilum and rhodium), wrote in 1801. (Philoophical Magazine, Vol. III, p. 211): "This ity and e excited ganism (voltaic electricity) appear to has been traced between their effects shows that ney are both essentially the same and confirm an opinion that has already been advanced by ofiers, that all the differences discoverable in the rects of the latter may be owing to its being tity.) In the produced m much larger quancertain experiments in which he uses very fine wire in a solution of sulphate of copper through Hich he passed electric currents from an electric machine. This is interesting in connection with the later day use of almost similarly ar-
ranged finc wires in electrolytic receivers in
in the first half of the 19 th century many
In tele thaple very important additions were made to the world's knowledge concerning electricity and magnetism. For example, in 1819 Hans Chrisfian Oersted of Copenhagen discovered the dewire upon a suspended magnetic necdle. This discovery gave a clue to the subsequently proved intimate relationship between electricity and magnetism which was promptly followed up by
Ampere who shortly thercafter (1821) anAmpere who shortly thercafter (1821) andynamics, relating to the force that one current exerts upon another, by its electro-magnetic effects, namely: (1) "Two parallel portions of a circuit attract one another if the currents in them are flozering in the same direction, and repel one another if the currents flow in the oppo-
site dircction. site dircction. (2) Two portions of circuits
crossing one another obliquely attract one another if both the currents flowe cither towards or from the point of crossing, and repel one another if one flowes to and the other from that point. (3) When an element of a circuit exerts a force on another elcment of a circuit, that force alweys tends to urge the latter in a direc-
tion at right angles to its ozen direction." Professor Secbeck, of Berlin in 1821 discovered that when heat is applied to the junction of two metals that had been soldered together an electric current is set up. This is termed Thermo-Electricity. (See Thermo-Electricity). Secbeck's device consists of a strip of copper
bent at each end and soldered to a plate of bismuth. A magnetic needle is placed parallel with the copper strip. When the heat of a lamp is applied to the junction of the copper and bismuth an electric current is set up which deflects the needle.
Peltier in 1834 discovered an effect opposite to the foregoing, namely, that when a current is emperature is lowered or raised at the junctio of the metals, depending on the direction of the current. This is termed the Peltier "effect." The variations of temperature are found to bc proportional to the strength of the current and as in the case of heat due to the ordinary re sistance of a conductor. This latter is the $C^{2} R$ aw, discovered experimentally in 1841 by the English physicist, Joule. In other words, this important law is that the heat generated in any
part of an electric circuit is directly proportional part of an electric circuit is directly proportiona the circuit and to the square of the strength of current flowing in the circuit.
In 1822 Sweigger devised the first galvanomcter (q.v.). This instrument was subsequently In 1825 William Sturgeon of Woolwich, Eng land, invented the horseshoe and straight bar electromagnct, receiving therefor the silver medal of the Socicty of Arts ('Trans. Society of Arts,' 1825). In 1837 Gauss and Weher (both noted workers of this period) jointly invented a reflecting galvanometer for telegraph Thomson reflecting and other exceedingly sensitive galvanometers once used in submarine sig naling and still widely employed in electrical measurements. Arago in 1824 maḍe the im-
portant discovery that when a copper dise is
rotated in its own planc, and if a magnetic rotated in its own plane, and if a magnetic nisc, the needle will rotate with the disc. If on the other hand the needle is fixed it will tend to retard the motion of the disc. This effect was termed Arago's rotations. Futile attempts were made by Babbage, Barlow, Herschel and others to explain this phenomenon. The true explanation was rescrved for Faraday, namely, disc by the cutting of the magnetic lines of force of the needle, which currents in turn react on the needle. In 1827 George Simon Ohm (q.v.) announced the now famous law that bears
his name, that is:

> Current Electromotive force

1831 Resistance.
In 1831 began the epoch-making researches
Michael Faraday (q.v.), the famous of Michacl Faraday (q.v.), the famous pupil head of the Royal Institution, London, relating to electric and clectromagnetic induction.
Faraday's studies and rescarches extended from 1831 to 1855 and a detailed description of his experiments, deductions and speculations are (Experimental Researches in Electricity.) Faraday was by profession a chemist. He was not in the remotest degree a mathematician in the ordinary sense-indeed it is a question if in all his writings there is a single mathematical ormula.
The experiment which led Faraday to the dows: He constructed what is now and was hen termed an induction coil, the primary and secondary wires of which were wound on wooden bobbin, side by side, and insulated from one another. In the circuit of the primary wire he placed a battery of approximately 100
cells. In the secondary wire he inserted a galvanometcr. On making his first test he obs served no results, the galvanometer remaining quiescent, but on increasing the length of the wircs he noticed a deflection of the galyanome ter in the secondary wire when the circuit of the primary wire was made and broken. This was electromotive force by electromagnetic induction. He also discovered that induced currents are established in a second closed circuit when the current strength is varicd in the first ${ }^{\text {wire }}$ and that the direction of the current in the sccondary circuit is opposite to that in the first
circuit. Also that a current is induced in a secondary circuit when another circuit carrying a current is moved to and from the first circuit, and that the approach or withdrawal of a magnet to or from a closed circuit induces momentary currents in the latter. In short, within the space of a few months Faraday discovered by experiment virtually all the laws and facts tion and magneto-electric induction. Upon these discoveries, with scarcely an exception, depends the operation of the telephone, the dynamo machine, and incidental to the dynamo electric machine practically all the gigantic electrical lighting (q.v.), clectric including electric tion of electric motors for power purposes
and electro-plating (q.v.), electrotyping (q.v.)
In his investigations of the peculiar manner no which iron filings arrange themselves on ardboard or glass in proximity to the poles o netic "incs of force" extending from pole to pole of the magnet and along which the filings tend to place themselves. On the discovery being made that magnetic effects accompany the passige of an clectric current in a wire, it wa also assumed that similar magnetic lines of ience and to account for induced For convenwas then assumed that whend these lines of force are "cut" ly a wire in passing across them or when the lines of force in rising and falling cut the wire, a current of electricity is dereloped, or to be more exact, an electromotive orce is developed in the wire that sets up Faraday advanced what has been termed the molecular theory of clectricity which assumes that elcetricity is the manifestation of a peculiar condition of the molecule of the body
rublecd or the ether surrounding the body: rubled or the ether surrounding the body:
Faraday also, by experiment, discovered paramagnetism and diamagnetism, namely, that all solids and liquids are either attracted or repelled by a magnet. For example, iron, nickel, cobalt, manganese, chromium, cte., are paramagnetic (attracted lyy magnetism), whilst other
substances, such as bismuth, phosphorus, antisubstances, such as bismuth, phosphorus, anti-
mony, zinc, ctc., arc repelled by magnctism or mony, zinc, cic., are repelled by magnetism of
are diamagnetic ('Phil. Trans.,' 1845). Brugans of I.cyden in 1778 and Le Baillif and Becqucrel in 1827 had previously discovered diamagnctism in the case of bismuth and antimony. Faraday also rediscovered specific inductive capacity in 1837, the results of the experiments by Cavendish not having becu published at that time. He also predicted (Phil. Mag., March 18.54)
the retardation of signals on the retardation of signals on long sulmarine
cables due to the inductive effect of the insula tion of the calle, in other words, the static capacity of the cable.
The 25 years immediately following Faraday's discoveries of electric induction were fruitful in the promulgation of laws and facts
selating to induced currents and to In 1834 Lecnz and Jacoli, independently demonstrated the now familiar fact that the currents induced in a coil are proportional to the number of turns in the coil. Lenz also announced at that time the important law that, in all cases of electromagnetic induction the induced currents to stop the motion that produces. them, a law that was perhaps dectucible from Faraday's explanation of Arago's rotations.
In 1845 Joscph Henry, the American physi-
cist, published an account of his valuable and cist, published an account of his valuable and interesting experiments with induced currents of a high order, showing that currents could be nduced from the secondary of an induction its secondary wire, and so on to the primary of a third coil, etc. (Philosophical Magazinc, 1849). Abria published the results of some researches into the laws of these induced currents, was nowing to their complexity the investigation was not productive of yery notable results.
('Ann. de Chimic III,') $\mathrm{i}, 385$). About 1850 .

Kirchoff published his laws relating to branched
or divill or divided circuits. He also showed matheelectrodynamic theory, clectricity would be propagated along a perfectly conducting wire with the velocity of light. Helmholtz investizated mathematically the effects of inductio then the strength of a current and deduce firmed som equations, which experiment conthe retarding effect of setf-ind important point hin conditions of the circuit ('Poarendor Ann.) 1851). In 1853 Sir William Thomson (ater Lord Kclvin) (q.v.) predicted as a re sult of mathematical calculations the oscillatory circure of the electric discharge of a condense of discerning as 1842 the oscillatory nature of the Leyden ja Vocharge. He wrote ('Proc. Am. Phil. Soc, ol. I1, pp. 193, 196): The phenomena requir us to adnitit the existence of a principal dis actions backe direction, and then several reflex hans backzuard and forward, cach more feeble tained. Thesc oscillations were sublinequently Lserved by Feddersen (1857) who using otating concave mirror projected an image of the electric spark upon a sensitive plate, thercby plainly ing a photograph of the spark whic disciarge. Sir William Thomson was also the iscoverer of the electric convection also the the "Thomson" effect). He designed for elecrical measurements of precision his quadrant absolute electrometers. The reflecting gal ubmeter and siphon. recorder, as applied to About cable signaling, are also due to him ore demonstrated the important fact that static charge carricd around produces the same agnetic cffects as an electric current. Th mportance of this discovery consists in tha may afford a plausible theory of magnetism directed that magnetism may be the result o static charges.
After Farad
ents could be devers discovery that electric curcut across the lines of force of a magnet, Was to be expected that attempts would be made developmet machines to avail of this fact in th $M_{\text {achinent }}$ of voltaic currents. (See Electric hators). The first machine of this kind was duc Pixii, 1832. It consisted of two bobbins of wirc, opposite which the poles of a horse hoe magnet were caused to rotate. As this pro diluced in the coils of the wire an alternating (commutator) arranged a commutating device alrent of the coils or armature into a direct current in the external circuit. This machine as followed by improved forms of magnetolectric machines due to Ritchie, Saxton, Clarke Malder 1843, Nollet 1849, Shepperd 1856, Va1 A crn, Siemens, Wilde and others.
A notable advance in the art of dynamo con-
truction was made ly Mr . S A (consult his British patcnt of A. Varley in 186 Yr. Charles William Siemens and Mr. Charles heatstone (consult 'Royal Society Proceed(gs,) 1867), who independently discovered that hen a coil of wire, or armature, of the dynamo
vol. $10-12$
"fich") is rotated between the poles (or in the ficld") of an clectromagnet, a weak current is set up in the coil due to residual magnetism in
the iron of the clectromagnet, and that if the circuit of the armature be connected with the circuit of the armature be connected with the developed in the armature increases the mag netism in the field. This further increases the magnetic lines of force in which the armature rotates, which still further increases the curren in the electromagnet, thereby producing a corre-
sponding increase in the field magnetism, and so on, until the maximum electromotive forc which the machine is capable of developing is reached. By means of this principle the dynamo machine develops its own magnctic field, thereby much increasing its efficicncy and economical opcration. Not hy any means, however, was the
dynamo electric machine perfected at the time mentioned. In 1860 an important improvement had been made by Dr. Antonio Pacinotti of Pis who devised the first electric machine with a ring armature. This machine was first uscd as an electric motor, but afterward as a generator of electricity. The discovery of the principle of the reversilility of the dynamo electric ma-
chine (variously attributed to Walenn 1860 ; Pacinotti 1864; Fontaine, Gramme 1873; Deprez 1881, and others) whereby it may be used as an electric motor or as a generator of electricit has been termed one of the greatest discoveries of the 19th century. In 1872 the drum armature was deviscd by Heffuer-Altneck. This machine the Siemens dynamo. These machines were presently followed lyy the Schuckert, Gulcher Fein, Brush, Hochhausen, Edison and the dynamo machines of numerous other inventors In the early days of dynamo machine con-
struction the machines were mainly arranged as struction the machines were mainly arranged as
direct current generators, and perhaps the most important application of such machines at that time was in elcetro-plating, for which purpos machines of low voltage and large curren slrength were employed. (Sce Exectric Drrect Current). Beginning about 1887 altcrnating
current generators came into extensive opercurrent generators came into extensive oper-
ation and the commercial development of the ationsformer, by means of which currents of low voltage and high current strength ar transformed to currents of high voltage and low current strength, and vice-versa, in time rcvolutionized the transmission of electric
power to long distances. Likewise the introducpower to long distances. Likewise the introduc-
tion of the rotary converter (in conncction with tion of the rotary converter (in connection with
the "step-down" transformer) which converts alternating currents into direct currents (and vice-versa) has effected large economies in the cperation of elcetric power systems. See Elec tric Alternating Current Machinery
Before the introduction of dynamo elcctric machines, voltaic, or primary, batteries were raphy. There are two distinct types of voltaic cells, namcly, the "open" and the "closed," or "constant," type. The open type in brief is that type which operated on closed circuit becomes after a short time, polarized; that is, gases are liberated in the cell which settle on the negative current strength After a brief interval of open circuit these gases are eliminated or alsorbed and the cell is again ready for operation Closed circuit cells are those in which the gases
in the cells are absorbed as quickly as liberated and hence the output of the cell is practically spectively, are familiar examples of the "open" and "closed" type of voltaic cell. The "open" cells are used very extensively at present, espe cially in the dry cell form, and in annun ciator and other open circuit signal systems. Batteries of the Daniell or "gravity" type were employed almost generally in the tromotive force in telegraphy before the dynamo machine became available, and still arc largely used for this service or as "local" cells. Batteries of the "gravity" and the Edison-Lalande types are still much used in "closed circuit" systems.

The possibility of obtaining the electric current in large quantitics, and economically, by petus to the devclopment of incandescent and arc lighting. Until these machines had attained a commercial basis voltaic batteries were the only available source of current for electric lighting and power. The cost of these battaining them in reliable operation were prohibitory of their use for practical lighting purposes. The date of the employment of arc and incandescent lamps may be sct at ahout 1877 . Even in 1880, however, but little headway had hecn made toward the general use of these this industry is a matter of general knowledge (See Electric Lighting). The employment of storage battcries (q.v.), which were originally termed secondary batteries or accurmulators, be-
gan about 1879 . Such batteries are now utilized gan about 1879 . Such battcries are now utilized on a large scale as anxiliaries to the dynamo tions, in clectric antomobiles and in immense numbers in automohile ignition and starting systems, also in fire alarm telegraphy and other signal systems.
In 1871 the electric telegraph had grown to large proportions and was in use in cvery civinzed country in the world, its lines forming a
network in all directions over the surface of the land. The system most generally in use was the electromagnetic telegraph due to S. F. B. Morse of New York, or modifications of his system. (Sce Telearaph). Submarine cables (see Cable) connecting the Eastern and Western hemispheres were also in successful oper-
ation at that time. When, however, at the present day one views the vast applications of electricity to clectric light, electric railways, electric power and other purposes (all it
may be repeated made possible and practicable may be repeated madc possible and practicable by the perfection of the dynamo machine), 1871 the atthor of a book published in that year, in referring to the state of the art of ap-
plied electricity at that time, could have truthully written: "The most important and emarkahle of the uses which have been made of elcetricity consists in its application to tele Eraph purposes") (Miller's 'Magnetism an ver, quite accurate and perhaps the time coul ever, quite accurate and perhaps the time could without material modification of the remarks In that year the telephone (q.v.), due to Alex ander Graham Bell (q.v.), was invented, but
it was not until several years thereafter that its commercial employment began in earnest. Since that time also the sister branches of electricity just mentioned have advanced and are advanc tion that it is difficult to place a limit upon the progress. For a more adequate account of the use of clectricity in the arts and industries see Electrical Manufacturing Industry

In 1864 James Clerk Maxwell of Edinburgh announced his electromagnetic theory of light, which was perhaps the greatest single step in
the world's knowledge of electricity. (Consult Maxwell's (Electricity and Macnetism) Vol. II, Chap. xx). As already noted hercin, Fara day, and before him, Ampere and others, had inklings that the luminiferous cther of space was also the medium for electric action. It was known hy calculation and experiment that
the velocity of clectricity was 186,000 miles per second; that is equal to the velocity of light, which in itself suggests the idea of a rclationship between elcetricity and "light." A number of the earlier philosophers or mathematicians, as Maxwell tcrms them, of the 19th century, held the view that electromagnetic phenomena were explainable by action a tended that the seat of the phenomena was in the medium. The methods of the mathematicians in arriving at their results were synthetical while Faraday's methods were analytical. Fara day in his mind's eye saw lines of force travers centres of force attracting mathematicians saw day sought the seat of actions going on in the medium; they wer satisfied that they had found it in a power of action at a distance on the electric fluids (Max well's 'Electricity and Magnetism,' preface). Both of these methods, as Maxwell point tion of light as an electromargnetic phenomeno while at the same time the fundamental conce ions of what the quantities concerned are, rad cally differed. The mathematicians assumed that insulators were harriers to electric currents; that, for instance, in a Leyden jar or ated at one plate and that by some accult ion at a distance electricity of an opposite kind was attracted to the other plate. Maxwell, look ng further than Faraday, reasoned that if light is an electromagnetic phenomenon and is trans missible through dielectrics such as glass, the phenomenon must be in the nature of electro fore contended that in the charging of a con denser, for instance, the action did not stop at the insulator, but that the "displacement" cul rents are set up in the insulating medium, which currents continue until the resisting force of the
medium equals that of the charging force In a medium equals that of the charging force. In a also a displacement of electricity. The conductor offers a certain resistance, akin to fric tion, to the displacement, and heat is developed in the conductor, proportional as alrcady stated herein to the square of the current, which current flows as long as the impelling electric force continues. This resistance may le likencd to
that met with hy a ship as in its progress it displaces the water. The resistance of the dielectric is of a different nature and has been
springsed to the compression of multitudes of an incr, which, under compression, yield with the totas hg back pressure, up to a point where sure. When pressure equals the initial pres"S energy expended in compressing the "springs" is returned to the circuit, concurrently with the return of the springs to their original condition, this producing a reaction in the opposite direction. Consecuently the current due ductor may be continuous, while the displacement currents in a dielectric are momentary and, in a circuit or medium which contains but ittle resistance compared with capacity or inof ance reaction, the currents of discharge are OScIL oscillatory or alternating nature. (See less). Marwell inent currents in dielectrics to the ether of free pace. Assuming light to be the manifestation of alterations of electric currents in the ether, nd vibrating at the rate of light vibrations, inge vibrations by induction set up correspondether, and in this way the undulations of the ponding to those of light are propagated as an ciectromagnetic effect in the ether. Maxwell's ectromagnetic theory of light obviously involved the existence of electric waves in free pace, and his followers sct themselves the task experimentally demonstrating the truth of
the theory. This honor was reserved for Prof H. Hertz, who in 1887 in a serics of experiinents proved the actual existence of such vaves. The discovery of electric waves in space naturally led to the discovery and introoi wircless closing years of the 19 th century, of whircless telegraphy ((q.v.), various systems hoard, lighthouses and shoressful use on shiproughout the world, by means of which inelligence is transmitted across the widest ceans and large parts of continents.
In 1891 notahle additions to our knowledge of the phenomena of high frequency and high Tesla (q.v.). (Consult (Proc. Am. Inst. El. lents performed hy Tesla was to take in his exhausted glass tube from which the air had been with a wire then bringing his body into contact the a wire carrying currents of high potential, giow. Another experiment was to grasp a bulb that was suspended from a single wire attached cuit, when a potential, high frequency current circuit, when a platinum button within the bulb Thenter at this time standing on an insulating platform. The frequency and potential involved in the experiments made by Tesla at this time were of the order of one or more
million cycles and volts. For further informaion relative to these experiments the reader Altay be referred to Tesla's 'Experiments with Frequency, Currents of High Potential and High The place
discovery of those eltricity in leading up to the the Crookes Tube (due to Sir William British A Aiz., Cathode rays (consult 'Proc.
discoction,' 1879), and later to the discuvery of Roentgen or X-rays (q.v.),
must not be overlooked, since without electricity as the excitant of the tube the discovery of the rays might have been postponed in-
definitely. It has
It has been noted hercin that Dr. William Gilient was termed the founder of electrical
science. This must, however, be regarded as a comparative statement. Up to the middle of the 19th century, indeed up to about 1870, electrical science was, it may be said, a sealcd book this time a number of handbooks had been published on number of handricity and magnetism, notably Aug. de La Rive's exhaustive 'Treatise on Electricity,' 1851 and (in the French) 1835 ; Beer's 'Einleitung in die Electrostatik,') Wiedemann's 'Galvanismus,' and R eiss' 'Reibungsal-
elektricităt.' elektricitat.) But these works consisted in the
main in details of experiments with electricity and magnetism, and but little with the laws and acts of those phenomena. About this time Flening Jenkin's work on 'Electricity and Magnetism' and Clerk Maxwell's 'Treatise on Electricity and Magnetism were published. path. As Jenkin states in the preface to his work the science of the schools was so dissimilar from that of the practical electrician that it was quite impossible to give students sufficient, or even approximately sufficient, textDooks. A student he said might have mastered feel as if in an unknown country and listening to an unknown tongue in the company of practical men. As another writer has said; with the coming of Jenkin's and Maxwell's books all impediments in the way of electrical students were removed, "the full meaning of Ohm's law ocomes clear; electromotive force, difference of potential, resistance, current, capacity, lines were measurable, and could be reasoned about, and calculations conld be made about them with as much certainty as calculations in dynamics" (Introduction to 'Electricity in the Service of
Man'). Since that time also the real science Man'). Since that time also the real science
of electricity has rapidly advanced. Various units of electricity and magnetism have been adopted and named by representatives of the electrical enginecring institutes of the world,
which units and names have been confirmed and which units and names have been confirmed and legalized by the governments of the United from the Italian Volta, has been adopted as the practical unit of electromotive force, the Ohm, from the enunciator of Ohm's law, as the practical unit of resistance; the Amperc, after the eminent French scientist of that name, as the practical unit of cutrrent strength, the Henry Henry and in recognition of his early and important experimental work in mutual induction. See Electrical Units; Electrical Terms.
The theories regarding electricity are also undergoing change. Indeed it may with truth he said that the trend of all scientific investigation now leads to the conclusion that matter in
its final analysis is electrical in its nature - in fact is electricity; the theory upon which this view is liased being termed the electronic theory, or the electric theory of matter. See Elictron.
This theory (or better, hypothesis) in a word assumes that the atom of matter, so far
from being indivisible, as assumed under the
older theories, is made up of smaller bodies older theories, is made up of smaller bodies
termed electrons, that these electrons electrical in their nature, and consequently all matter ultimately is electrical, the atoms of the different elements of matter consisting of a certain number of electrons, thus, 700 in the hydrogen atom and 11,200 ih the oxygen atom. This theory of matter though of
comparatively recent origin in several of its important fcatures is not altogether one of a day, nor is it due to the researches of one man or to the conception of one mind. Thus, as regards the vicw that the atom is not an indivisible particle of matter, but is made up of numerous clectrons, many scientists have for tions of a single hypothetical substance, protyle, "the undifferentiated material of the universe." Nor is the theory entirely new in its assumption that all matter is electrical. Faraday, Weber, Helmholtz, Clifford and others had glimpses of this view; and the experimental Work of Zeeman, Goldstein, Crookes, J. J. this view. Over 35 years ago Weber predicted that electrical phenomena were due to the existence of electrical atoms, the influence of which on one another depended on their position and rclative accelcrations and velocitics. Helmholtz and others also contended that the existence of
electrical atoms followed from Faraday's laws of electrolysis, and Johnstone Stoney, to whom is due the term "clectron," showed, that each chemical ion of the decomposed electrolyte carries a definite and constant quantity of electricity, and inasmuch as these charged ions are separated on the electrodes as ncutral substances there must be an instant, however hricf,
when the charges must be capable of existing separately as clectrical atoms; while in 1887, Clifford (q.v.) wrote: "There is great reason to belicve that every material atom carries upon it a small electric current, if it does not wholly consist of this current."
Whether the electron theory will survive will in turn be displaced by some mor ermine. In the meantime, he that as it may
ore he practical application of electricity will on apace. It is an every day saying of laymen hat electricity is as yet in its infancy. This remark causes technical men to smile, for "electricity" is already a most prodigious infant. But in the sense that we may only be on the
hreshold of the possible utilizations of this most wonderful of nature's. agents, the remark is perhaps true. Predictions that were with diffidence made in the closing decade of last century to the effect that within 100 years of that time people would probably speak to one another without artificial means of communication; that wires would be laid along every street and tapped into every house as gas
pipes were then, for lighting and power purposes, have heen for a decade facts accom poses, have heen for a decade facts accombring forth with regard to the applications of electricity none can tell. Twenty years ago it would have been difficult to find one steam railroad engineer willing to admit that application possibility, To-day much has been done in this
direction in the improvement of railroad term steam railroad engineer who wiflicte to find one steam railroad engineer who will deny that in
20 years hence all the important steam railroads of America may not be operated electrically. In other directions the progress of events as to the utilization of electric power may be ex pected to be equally rapid. In every part of the world the power of falling water, nature's per petual motion machine, which has been going converted into electricity and transmiticel by wire hundreds of miles to points where it is usefully and economically cmployed. (Sec Electric Transmission of Energy). But the extensive utilization of falling water will not be limited to natural water falls. In hundreds of places where a fall of 10 to 50 miles, and where in fect extend hundreds of thousands of horse power, by suitable hydraulic methods, are available, this power will be usefully employed, therehy in large measure conserving the limited quantity of he world's coal. It has for instance been pro posed to dam Niagara River at the foot of the equal to that at the present falls would powil able. The Jchlun River in Kashmir, India, too has a fall of 2,480 fect in 80 miles with a minimum flow of 30,000 gallons per second, and beginning has been made to develop the 1,000 000 electric horse power here represented, considerable portion of which it is proposed to
utilize in the production of nitrate utilize in the production of nitrate of lime for powerful electric currents the limestone that abounds in this region with the nitrogen of the air, a combination which Danish enginecrs have shown to be commercially possible, and which ncxhaustible product may in time be cconomially available to replenish the failing powers. Within 10 or 20 years also and other countries electrical engineer, the direct production of lectricity from coal without the intervention o the steam engine with its wasteful methods may be realized. Other means, now unknown, of developing electricity may be wrested from natures storehouse. Indeed in view of the past its marvelous progress in the last two decades theoretically and practically, it requires no great excrcise of the imazination to conceive that the time may not be far distant when the universal artificial source of the world's heat what is now only wurmise electricity, and tha what is now only surmise as to the sameness of
electricity and matter will be demonstrated beyond reasonable doubt. Not only will wire less telegraphy be more perfected than at present, but wirelcss telephony, and "seeing by electricity" to a distance, may all be practically accomplished. Indeed, it is not even beyond the directly from brain to brain with the ether as the medium - the suggestion of which is now regarded as the vagary of a disordered imagination -- may then also he realized. In short our successors of 25 or 30 years hence may wonder at our ohtuseness in nol perceiving the obviousness of things which to them may then be self evident, virtually as we now marvel at the
failing to recognize the identity of frictional, animal, and voltaic electricity, or the more simphe fact that the wind, by them regarded as a henomenon, is merely air in motion.

William Maver, Jr
Author of 'American Tclegraphy and Encyclopedia of the Telegraph'; Fellow, American
ELECTRICITY, Atmospheric. Experielectricity in the atmosphere, which is sometimes negative and sometimes positive, but most generally positive, and the intensity of this free than etrity is greater in the middle of the day er that morning or night and is greater in wintial increases with altitude at the rate, according to some writers, of about 30 volts per foot To detect the prescince of free electricity in the air a pointed metal rod projecting into the air everal feet and connected at its lower end to gold leaf electroscope may be used. When leaves diverge. Kites and balloons have also een used to detect and, so to speak, draw down the free electricity of the air. The origin of tmospheric electricity is still unknown. Some inysicists have ascribed it to the friction of the xidation the ground, others to the gradual xidation of plant and animal life, others again cevaporation, to induction from the sun, and
to differences of temperature. Most authorities are agreed, however, that whatever may ee the origin of free electricity in the atmosdisre the electricity of enormous voltages that isrupts the air and produces the phenomena of the watery (q.v.) is due to the condensation minute vapor drop as it moves through the air ollecting upon its surface a certain amount of realesce elicity. Then as these drops of vapor ooalesce into larger drops with a corresponding tecrease in the total surface exposed the elecng power of rises until it overcomes the resistclearly uner of the airstood when it is considered that With a given charge of electricity its potential rises as the electrical capacity of the object
holding the charge is decreascd, which is the case when the minute vapor drops coalesce into case when the minute vapur drops coalesce into
larger drops. The similarity of lightning to hachine eletricity developed by an electrical memorable kite experiments. Saint Elmo's fire (q.v.) is another phase of
atmospheric electricity to be considered in this onnection. It is otherwise known as the fire las and Ef Helena Saint Clara, of Saint Nichoposant or corposant (that is, corpus sancium). hunder storm, at the tops of trecs, spires, ctc., of on the heads of animals, as a brush or star light.
s ELECTRICITY, Cause of Death by. As tant well. known, one of the most importhe safcguards of the human hody against the passage of electrical currents through it is
its high degree of resistance. This degrec of resistance, however, is subject to a considerable istance is from 5 to 20 times as great as when
the skin is wet. From what is known of the amount of electrical current necessary to cause death in man, it is probable that 1,600 volts o is sufficient to bring about this end, and that an alternating current of half this voltage would probably be fatal. In fact, the general deduction has been drawn from the experiments conducted in electrocution work at the Sing Sing prison, that no human body can withstand has produced death, while for the continuous current it may be necessary that over 3,000 volts may be required to bring about fatal results Some of the minor injuries due to lightning and electricity are severe burns, paralysis of some of the muscles, deafness, loss of smell and taste, hysterical phenomena, traumatic neuroses. Oc-
casionally blindness has resulted, also insanities of the maniacal type have been known to occur following lightning stroke. As to the cause of death by lightning and electricity, modern research has shown that there are marked change in the blood vessels of a hæmorrhagic type, and minute alterations in the nerve cells, but these
seem to be secondary to the physiological action that the electrical current has upon the fibres of the heart muscle. The electrical shock brings about a condition of delirium or fibrillary contraction of the heart muscle, causing a
stoppage of that organ. This theory of the stoppage of that organ. This theory of the cause of death at present has the largest num er of adherents.
As to what can be done for the treatmen somewhat in doubt. For all practical purposes, death, when it takes place, is instantaneous. The evidence derived from non-fatal cases is of great interest. In these, personal experience has shown that a number of individuals who in the brief moments of consciousness the experience of a strange sensation. Recoveric from the shock of electricity or lightning which have been severe enough to bring about unconsciousness are very common. As to the border lines which separate the recoverable from the Promptness in the treatment is imperative. External heat to the body, artificial respiration and cardiac stimulants should be used simulta neously. It is of importance to remember that the body of a patient in contact with live wires must not be touched the rescuer with naked hands, but should be dragged away by his carth by slipping a board under him, thus to break the connection with the live wires. Live wires may also be raised hy a stick and thus take the body out of the circuit. Artificial respiration (q.v.) by the Sylvester method o by means of the Gibbon's pump should be per-
formed and the body should be surrounded by hot bottles or bricks, and rubbed, and suitable cardiac stimulants should be utilized. Injections of large quantities of hot salt solution into the rectum may be of service and occasionally it may be necessary to infuse normal salt solution directly into the veins. Efforts at
artificial respiration should not be discontinued under from three to six hours. Consult Jelliffe Peterson and Haynes 'Textbook of Legal Medicine and Toxicology,'

ELECTRICITY, Contact Theory of, a force of a voltaic cell, and perhaps the electricity produced by friction, is due to the difference of potential assumed by two dissimilar substances when placed in contact.
ELECTRICITY, Diffusion of. Electricity diffuses itself on the surface of a conductor. This may be proved very easily, by a simple apparatus devised by Faraday. An insulated
spherical conductor has two hemispherical cups spherical conductor has two hemispherical cups carefully fitted to it, each attached to an insu-
lating handle. The conductor and its covering are charged with electricity, the cups are then removed and the conductor is brought near an electroscope. No divergence of the leaves occurs, indicating that none of the electricity has passed into the conductor. If the conductor have a spherical shape, the electricity distributes the density is the same on every part of the surface. We may conceive the electric fluid to surround the conductor as an ocean of uniform depth. If the conductor be a brass disc, the electricity is found in greater quantity at the edges or rim. If it be a brass cylinder with rounded ends, the density is greatest at the
cnds. If the conductor have the shape of cone, the density is greatest at the apex, and the sharper the apex the greater the density. Hence the remarkable effect of a pointed body in dissipating an electric charge.
ELECTRICITY, Dissipation of. The gradual loss of electricity from a charged body surrounded by non-conductors which takes place by means of them is called dissipation of
the electric charge. A charged conductor, for the electric charge. A charged conductor, for instance, supported on a glass pillar, slowly crecping of the electricity along the surface of the glass, which, even if it be free from dust and
dirt, is seldom absolutely free from an invisible dirt, is seldom absolutely free from an invisible
film of moisture; and partly to the air that surfilm of moisture; and partly to the air that sur-
rounds the insulated conductor, the electrified rounds the insulated conductor, the electrified
body charging the particles of air with similar electricity and then repelling them, by which means a gradual loss of charge occurs. Experiments extending over a period of several years show that this dissipation of electricity
does not take place in a vacuum. Coulomb made a carcful investigation into the laws of dissipation, by which he was able to allow for it in cases where he could not arrange his exlomb was led by his experiments to abandon the use of glass as a support for his conductors whenever it was possible, employing instead thin stems of shellac, and sometimes suspending small electrificd bodies by well-dried silk fibres. He found that the amount of loss in a given ase by means of the particles of air diminishes weaker and weaker, the losses in successive equal intervals of time being in geometrical progression.
ELECTRICITY, Experimental Researches in, by Michael Faraday (1839-55). A monumental work in the literature of science; not merely recording the results of experiment in what Tyndall called "a career of discovery un-
paralleled in the history of pure experimental
science, but enriching the record with thoughts, and clothing it in many passages in a style and executing experiments for passing beyond the limits of existing knowledge, in a field the most difficult ever attempted by research, Fara-
day showed a genius and achieved a success, day showed a genius and achieved a success,
marking him as a thinker not less than an obmarking him as a thinker not less than an ob-
server of the first order. In strength and server of the first order. In strength and
sureness of imagination, penetrating the secrets of force in nature, and putting the finger of exact demonstration upon them, he was a exact demonstration upon them, he was a
Sharespeare of research, the story of whose
work has a permanent interest. He made elecwork has a permanent interest. He made elec-
tricity, in one of its manifestations, explain tricity, in one of its manifestations, explain
magnetism. He showed to demonstration that magnetism. He showed to demonstration that chemical action is purely electrical, and that
electricity the atoms of matter owe those properties which constitute them elements in nature.
In language of lofty prophetic conception he In language of lofty prophetic conception he
more than suggested that the physical secret more than suggested that the physical secret
of living things, the animal and the plant, is electrical. He particularly dwelt on the amount of electricity forming the charge carried by the
oxygen of the air, which is the active agent in oxygen of the air, which is the active agent in
combustion and the supporter of life in both animals and plants, and only stopped short of definitely pronouncing vitality electrical. He urged very strongly as a belief, to which no test of experiment could be applied, that gravitation is by electrical agency, and that in fact
the last word of discovery and demonstration in physics will show that electricity is the universal agency in nature. And among his farreaching applications of thought guided by new knowledge was his rejection of the idea of "action at a distance," in the manner of "attraction." If a body is moved, it is not by a mys-
terious pull, but by a push. The terious pull, but by a push. The moving force
carries it. These ideas outran the power of science to immediately understand and accept But Maxwell, Hertz and Helmholtz have led the way after Faraday, to the extent that his electrical explanation of light is now fully accepted. Fifteen ycars after his death, the greatest of his successors in physics, Helmholtz of Berlin, said in a Faraday lecture in London,
that the later advances in electrical science had more than confirmed Faraday's conclusions, and that English science had made a mistake in not accepting them as its point of departure for new research. See Light.

ELECTRICITY, Frictional. It was an ob600 servation made by the Greek philosopher Thales, 600 years before the Christian era, that, when amber was rubbed, it actuired the property of
attracting light bodies. The cause of this attractive power was assigned to a principle to derived from the Greet word for was givena piece of wax is rubbed on the coatsleeve, an attractive power is awakened in it; it is capable of attracting small pieces of light paper or particles of sawdust. Taking a warm glass tube closed at one end, and rubbing it with silk, the same thing is manifested. It is observed also
that after contact with the wax or tube the light that after contact with the wax or tube, the ligh
bodies fall away, being seemingly repelled a stick of sealing-wax be rubbed with flannel and then balanced on a paper loop suspended by a silk thread and the knuckle be presented to it,
the wax will in like manner follow the hand.

We have, therefore, the fact that an electrified body. Antrather is attracted by an unelectrified acter may be mentioncd. Take a piece of warm brown paper or sheet of foolscap, place it upon warm board and rub it well over with a piece of india-rubber, - it clings to the board; or reWave it from the board and apply it to the remains in its position till its electricity is disipated. Observation of these phenomena led (o the development of the electric machine (q.v.).

ELECTRICITY FROM HEAT. The deof he of electricity directly from the application of heat is interesting, though it has not proven contact usually show a difference of potantial This difference is most marked in potential of bismuth and antimony. When bars of these etals are soldered together at one end and the a Hame ends connected by a copper wire, and lighte is applied to the point of junction the closed circuit thus formed, The cooling of he point of junction also scts up a current A pparatus made on this principle is called hermo-electric couple, and a scrics of such ouples, arranged to work together, is called electric cile; a still larger aggregation of thermo has been styled arranged in rings superimposed With any of these contrivances the current ob ained is so minute as to serve no purpose xcept experiment. The thermopile is value or experimental purposes because of the grea Iron is nobtainable with a very slight current because at certain temperatures its potentia oincides with nearly all other metals, so that here would be no current when that temperaure was reached.
Pyroelectricity is not to be confused with hame-clectricity because of the similarity o polarity in minerals on being heated or cooled he quality of pyroelectricity is best shown in ournaline, a crystal of which on being heate rom about 10° to $150^{\circ} \mathrm{C}$. displays positive elec tincation at one end and negative at the other positive cooling the polarity is reversed and the crystals and negative ends change places. Twin other crystals in a lesser degree.
ELECTRICITY IN MEDICINE. See lectrotherapeutics.
ELECTRICITY IN MINING. Se ines and Mining.
ELECTRICS and NON-ELECTRICS in electricity was to divide bodics into cerimenter which they could excite by friction, like amber and non-electrics, such as the metals, which the the dot so excite. These names were given to But Du classes hy Gilbert of Colchester (1600) identical with non-conductors, and non-electrics with conductors; and that the reason why nonectrics did not exhibit excitement by friction fos that the electricity was conducted awa tinction them as fast as it was produced. The dis inction was thus broken down.

ELECTRO-BALLISTIC MACHINES Sce Gunnery.

ELECTRO-BIOLOGY, the science which treats of the electric currents developed in living organisms; alsu the department of knowledge
which treats of the influence or control over the feelings, thoughts and actions of a mesmerized person. Very simple powers, of observation show that the motions of a man's body are under
the direction of his will. He puts forth his the direction of his will. He puts forth his hand because he wills to do so; he walk through volition, even though his mind be occuhis will directs. It follows that there is some method by which the will communicates with the physical mechanism of that wonderful machine, the human body. Through anatomy w learn that the muscles do the work, and that the nerves guide the muscles, and that the nerves all proceed from or centre in the brain
Through chiropractic we learn to plot the paths of the nerves through the body, and discover when their office is interfered with. Through phrenology we learn that certain classes o nerves connect with certain portions of the brain, and thus certain brain areas are identified with
ties.

But the thing we cannot demonstrate - because we cannot see it-is just how the will connects with a portion of the brain and sends out its order, which we know travels through the nerves to the muscles. Therefore we have to theorize as to how this is done, and the bes theory appears to be the electric or magnetic
theory, that that which Mesmer called "anima magnetism" is the medium of exchange. Thi is not meant as an endorsement of all that Mes mer said and did-far from it - but simply that the force, process or thing used and littl understood by Mesmer is the same force process or thing that translates a man's will a study of hypnotism and mediumistic control It will be remembered that mesmerism and hypnotism have been identified as based on the same natural laws, and that all authorities on the subject are in agreement that in hypnotism one person's will is replaced by another person's. The subject (or victim) of a hypnotist surren which he is brought under the influence of hypnosis. This is why the subject obeys the commands of the hypnotist, even when told to do ridiculous and absurd things. The hypnotis has got control of the subject's "magnetism" for the time being, and he is helpless, a mere puppet or slave of his hypnotist's will. This is of the subject the reader is referred to the arti cle on Hypnotism. Mesmer apparently was right in his assumption that by mesmeric passes he gained control of his patient's magnetism His theory was that there existed "a fluid universally diffused, continuous, and naturally municating all motor disturbances." (Binet and Fere, 'Animal Magnetism,' p. 5.) This is exactly the sort of fluid that meets the requirements of transmitting one's will to one's brain and nerves; but to-day we do not use the wor "fluid" rather "ether") to express the medium
through which electricity, magnctism, X-rays and similar manifestations are helieved to travel.
Mesmer considered that the human body was charged with this magnctism much as the earth is charged with electricity, and the theory stands analysis. He called it "animal magnetism," which is here used as the most familiar term, though it might better be termed "physical maghumans is shown by the fact that animals can be hypnotized. Away back in 1646 Father Athanasius Kirchner described his hypnotizing of poultry, and later this became a fashionable pastime in France. In 1872 Czermak repeated his experiments, and also hypnotized birds, rabbits, salamanders and crabs.
with animal electricity, or whether - as is is more probable - it is a separate form of son is higher etheric vibration than electricity, is interesting, but not all-important, and appears never to have been demonstrated. The vital fact of interest in electro-biology is that the human organism charge from the air breathed, and which gives off energy through the muscles under the direction of the will. Electrical engineers commonly make this comparison, being struck with the tric dynamo. organism gets its charge of magnetism human the air breathed suggests that human magnctism is either universal in space or at least existent in both the air and water in which men and fishes live.
Another proof of the reality of this thing we call "animal magnetism" is furnished by
spiritualistic or mediumistic phenomena. The "animal magnetism" is belicved to be the cause of the "aura," of which every student has read, but which few have seen. Spiritualistic mediums often speak of witnessing an individual's aura,
but this cvidence will satisfy only those who but this cvidence will satisfy only those who
believe in mediumslip. To actually see the aura believe idencdiumship. To actually see the aura
or evidence of human magnetism this experiment is suggested: Arrange a perfectly black background and place a large, strong man about five fect in front of it, at dusk or twilight. Take a position 20 to 40 fect away, and gaze steadily on the scarcely visible form of the man. When of good sight will see a faint radiance or aura emanating from and outlining the man on the black hackground. It is claimed that the more moral the man the brighter the aura, and that his is why the old masters painted auras about the heads of pictures of saints and especially of of this magnetism comes from the spiritualistic mediums. They claim that the work of mediumship is extremely exhausting, and deprives them of their magnetism, and that this is why they cannot give genuinc exhibitions ad libitum as isitors may demand. And many who have nvestigated mediumship are convinced that thi The
850 to derm electro-biology was coined about tricity and life. We do not know what electricity is, and we do not know what life is we have to judge of hoth by their manifestatons. Wc know little of the nature and nothing
of the origin of either, although some scientific men and some theologians are apt to be dogmatic in asserting that this or that must be or
cannot be possible. But we do know that through some medium the will controls man's sensory organism and physical functions, and wo choose to call this thing "animal magnctism," as Mesmer called it, and to consider it of the nature of electricity. Reasoning analogously, that as tion which may be picked up by an instrument thon which may be picked up by an instrume tions, caught by a coherer or detector, so we conclude that the will also originates vibrations, which many call thought-vibrations, and send them through the etheric magnetism that imnature. But ordinarily these vibrations are picked up and responded to only by the organism of the man who sends them out, presumably because his magnetic vibrations harmonize with his physical body. It is also logical to reason as we suppose electricity exists everywhere, and that the phenomena of telepathy or thoughttransference, and mind-reading, are explainable through harmonic vibrations of the ether which this magnetism permeates and pervades. Clair voyage and clairaudience likely are closely elated, so that in solving the problem of se solved.
It is stated in 'The Great Psychological Crime) (p. 178) that "animal magnetism is an mportant factor in the development of me diumship," and that "the room in which the sittings are held must become thoroughly magcontrolling intelligences." megnetism of the to pursue the subject further should consult this book.

Cifarles H. Cochrane.
ELECTRO-BRONZE. Sec ElectroplatELECTROCHEMICAL E Q U IVA ENTS. The general principles of ectro (q.v.) have shown us a definite quantitative re lation between the amount of electricity passing in a given electrolysis, and the amount of de laws, the amount of According to Faraday will be deposited by a given amount of current is directly pronortional to the amount of cur rent passing, and to the chemically equivalent weight of the element in question. Quanti tatively, it requires 96,500 coulombs of clectricity (ampere-seconds) to deposit a chemically cquiv alent weight of any substance; or, to put it in a to make a unit change of valeuce of coulomb atom of any substance. From this numerica relation one can then calculate the weight o any elcment that will be deposited by a unit amount of current in a unit time. This is called the Electrochemical Equivalent of the element grams per coulomb or per ampere-hour for grams per coulomb or per ampcre-hour; for
commercial use larger units are convenient, such as kilograms or pounds per ampere-day, or pe 1,000 ampcre-hours.

Following is a tahle of the electrochemical quivalents of the more common clements,

Element	Symbol	$\begin{gathered} \text { Atomic } \\ \text { weight } \end{gathered}$	$\stackrel{4}{4}$	$\stackrel{5}{\text { Grams per }}$
Alluminium	Al	27.1	,	0.33702
Arsenic			5	0. 89689
		4.9	5	${ }_{0}^{0.55932}$
Barium	${ }^{\mathrm{Ba}}$	137.37	2	${ }^{2} .5625$
Bromine				1.5520
Cadmium.	${ }_{\text {Cr }}^{\text {Br }}$	79.92 112.40	1	2. 2.9817 2.0976
crium.	Ca	40.07	2	0. 74747
Curomium	${ }_{C}^{\text {Cl }}$	35.0	1	
Cobalt.	Co	58.97	3	(1.64667
Copper			3	0.73335
	Cu	63.57		2.3717
Fluorine		19.0	1	0.70885
	Au	197.2	1	7. 3572
Hydrogen.			${ }^{3}$	2. 0.4524 .4
		126.92	1	4.7351
	Fe	55.84	2	1.0416
Lead.	Pb	207.20	2	3.8651
Lithium.			4	1.9326
Magnesium	Mg	(6. 34	2	${ }_{0} .45367$
Mercurese.	Mn	54.93	2	1.0247
Mercury	Hg	200.6	2	
Nickel.		${ }_{58}^{96.08}$		1. 1939
Nitrogen.	N	14.01	2 3 3	0.72975
$0_{x y}{ }^{\text {r }}$				0.10454
Oxygen	0	16.00	2	0. 29847
Phosphorus	P	31.04	$\frac{4}{3}$	- $\begin{aligned} & \text { 0. } 149293 \\ & 0.38601\end{aligned}$
			5	0.23161
motassium	Pt	195.2		1.8206
Selenium.		39.17	4	${ }_{0}^{1.73870}$
sily	Si	28.3	4	0.26395
\%od	Ag	107.88	1	4.02480
Strontiu	Na	23.00	1	0.85809
Sephur	St	87.63	${ }_{4}^{2}$	1.6347
Tellurium.	$\mathrm{Te}^{\text {e }}$	127.5	${ }_{2}^{4}$	2. 3784
				1. 1892
Tin				0.79280
	Sn	118.7	2	2. 2142
Titanium			4	0.44863
ngst	W	184.0	6	1.1441
Vanaum.	U	238.2	6	1.4811
2 inc	Z	51.0 65.37		1.219

These valucs are taken from 'ElectrochemiYork 1917)
issistant Secretary, Anerican Electrochennic Socicty.
ELECTROCHEMICAL INDUSTRIES. iflectrochemistry may be defined as that branch ciemical reactions by the means of or with he assistance of electricity. The word electroelectrometallure used includes the processes of ment of metals by means of electricity, there eing no generic term covering both subjects. The production or furtherance of chemical action by means of clectrical cnergy may be secured in threc ways: (1) By electrolysiscomponnd in solution or in a fused condition; (2) pound in solution or in a fuscd condition; of chemelectrothermal changes by clectrically groduction heat; (3) by the discharge of electricity through
sases.

The largest employment of electrolysis is in the production and refinement of metals, par used extensively in the preparation of a large number of chemical compounds of widely varying character.
In most cases a substance obtained by electrolysis may be prepared also by a strictly chemcomes simply one of cost. An example in point is the manufacture of metallic sodium originally discovered by the electrolysis o caustic soda, it was for many years made commercially by the reduction of sodium carbonat with carbon, or of caustic soda by a mixture of iron and carbon; more recently the clectro because it is cheaper. In other cases certain products of electrochemical action have not yet been made by any other process.
A great saving of heat is found in most electrothermal processes, due to the fact that the electrically generated heat is applied inside
the container, where it is effectively employed no heat being wasted in heating the contents through the walls of the container, as in com bustion processes. But even when produced by the cheapest water power, electric heat costs several times more than heat produced by the combustion of coal, so that where large quanperatures, the combustion processes are usually cheaper.
We shall here consider the chicf electro-
chemical industries that have thus far attained commercial importance.
Copper.- The process of refining copper electrolytically consists in the transfer of copselective action of the electric current, and in leaving the impurities behind dissolved in the electrolyte, or in the form of slime or sediment. The matcrial at present subjected to proftable electrolyte refining is crude copper
containing from 96 to 98 per cent pure copper, and varying amounts of silver, gold, platinum, palladium, nickel, iron, arsenic, antimony, sulphur, etc. This crude copper is obtained from various copper ores by smelting and is cast in copper molds into anode plates, which are ahout
three feet square and one to two inches thick three feet square and one to two inches thick,
weighing 250 to 500 pounds. The cathode plates, are of electrolytically refined copper practically the same in length and width as the anodes, but only $1 / 32$ to $1 / 16$ inch thick. The electrolyte, or hath, in which the plates are suspended, is a solution of copper sulphate just
short of saturation, with cnough sulphuric acid to prevent the separation of hydrated cupric oxide, but not enongh to cause hydrogen instead of copper to be scparated at the cathode; the proportions are ahont 3-4 per cent of copper as sulplate and 10-13 per cent of free sulphuric acid. When silver is present in the anode a
little salt or hydrochloric acid is added to the electrolyte The bath is kept at a temperature electrolytc. $60^{\circ} \mathrm{C}$. ($100-140^{\circ} \mathrm{F}$.). The containing tanks are of wood, usually lined with shee lead or carefully coated with a pitch compound, and of surch dimensions that a distance of from 1.5 to 2 inches exists between the faces of the plates. In some cases the plates are ar
ranged in series and in others in parallel or multiple. In the series system the anodes,
which are much smaller than in the multiple
system, are suspended in the electrolyte from one-half to three-fourths of an inch apart, and only the end oncs in the series are connected with the poles of the generator. With this arrangement the copper dissolved from the inner face of the first anode is deposited on the nearer face of the second plate; the farther face of the second plate is dissolved and denosand so on throughout the scries. When the anodes are nearly exhausted the pure copper deposits are removed from the tank and the undissolved remnants of anode stripped from the back of the cathodes
The series arrangement has the advantage of requiring electrical connections to be made at the first and last plates only, whercas the plate; but in the scries system the leakage of current due to the short-circuiting action of the sediment and sides of the tank is from 10 to 20 per cent, so that the parallel system is more generally used. The connections between systems are made by copper rods, which ar run at two different levels along the edges of the tanks, one bar for each set of plates. In some instances these rods are of the inverted V shapc, so that the edges will cut through any corrosion which may happen to form at the points of contact. The vats are arranged, with from all sides and free circulation of the electrolyte is possible. This circulation is sometimes obtained by blowing a stream of air through the electrolyte, but more frequently by arranging the vats in steps, and piping so that the electrolyte may pass from the top of one
vat to the bottom of the next, by the action of gravity. This maintains a uniform density of electrolyte, which is necessary for the proper formation of the deposit. The electromotive force reçuired is from 0.2 to 0.4 volt per tank, with a current density of 15 to 20 amperes per individual vats are connected in series so that the total voltage may be approximately the same as that which the gencrator furnishes, being usually 110 volts. One ampere of current deposits on the cathode only about one ounce of refined copper in 24 hours, and the current density must be kept below 40 amperes per quant short-circuiting. In practice from 400 to 500 ampere-hours are required per pound of copper deposited, the theoretical amount according to Faraday's law heing only 386.2 am-pere-hours. The loss varies from 4 to 20 per cent according to the system employed.
The main product of refining is commercial sumers, but more frequently cast into wirc-bars, ingots, cakes or slabs of standard dimensions and weight. They usually assay from 99.86 to 99.94 per cent pure copper. The yield in commercial cathodes is from 97 to 99 per cent of the anodes treated, excluding the anode scrap which varies in weight from 7 to 1.5 per cent this scrap is not a loss as it is collected and recast into anode plates. Besides electrolytic copper most plants secure gold, silver, platinum
and palladium from the slimes, and sometimes selenium, tellurium and other rarer metals. solutions. There are in the United States 10 electrolytic copper refineries with a total capacity of
$2,780,000,000$ pounds per ycar: onc refinery in Canada with a capacity ycar; one refinery per year. The actual production has reached about $2,300,000,000$ pounds, representing approx-
mately 74 per cent of the entire world's production of copper for the year Or deducting from the total production the amount that does not require refining, about $275,000,000$ pounds from Michigan, the United States production amounts to over 81 per cent of the total production of refined copper. The other 19 per paratively small capacity in England, Wales and Continental Europe.

Aluminum.- Practically the whole output of this metal for the entire world is now produced elcetrolytically. The only process used on a large scale is that invented independently and by Paul L. T Heroult in France This process consists in electrolyzing alumina dissolved in a fused bath of cryolite. The alumina is obtained from the mineral bauxite which occurs abundantly in Arkansas, Georgia, Alabama and Tennessee. The natural material, iron and titanium, must be containing silica, drive off the water and eliminate the impurities. This is accomplished by a chemical process. In practice it requires about two pounds of alumina for each pound of aluminum produced. The flux or bath in which the alumina is dissolved consists of cryolite, a natural double fluoride in Greenland. This is melted in a large carbonlined, sheet-iron tank which constitutes the negative electrode, a group of suspended carbon rods forming the positive electrode. A current of several thousand amperes at six to seven volts is used. Only a portion of this voltage is req amounting to about four to five volts represents the heat required to keep the bath melted. The passage of the current causes the aluminum to deposit on the bottom of the tank as a fused metal, whence it is drawn off period cally. The oxygen set frce combines with the as carlonic oxidc. The reaction is A passes of as carloonic oxidc. The reaction is $\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C}$
$2 \mathrm{AI}+3 \mathrm{CO}$. About one pound of carbon is consumed for one pound of aluminum produced. An excess of alumina is kept floating on the bath so that it is saturated at all times. According to Faranay's law the weight of alumi num deposited by 1,000 amperes is 0.743 pound per hour. The actual yield of metal by the retical amount. The metal when drawn from the tanks is cast into rough ingots which are afterward remelted and converted into commercial shapes, such as sheets, rods, wires, etc Bcfore the European War the share of the United States in the total production was under
50 per cent. United States production in 1920 50 per cent. United States production in 1920 put was valued at about one-fourth of this amount.

ELECTRO-CHEMICAL INDUSTRY

1 Electrolytic process of copper-refining, showing tanks filled with a solution of copper sulphate and containing sheets Casting side of a furnace showing copper a a nodes placed radially on a Clark casting machine

Abstract

Zinc. - The very high temperature $\left(1300^{\circ} \mathrm{C}\right.$. of $2370^{\circ} \mathrm{F}$.) necessary to reduce zinc from its 0 its boiling, and its generation as a vapor, due present difficultics which offer an pen field for success to an electrolytic method if reduction. Scveral processes are in use. Tiey all provide for the preliminary roasting zinc sulphide which is essentially lead sulphide, so as to convert gangue - at a low red heat, sulphates. The roasted ore is then treated with dilute sulphuric acid, the zinc being dissolved as sllphate, leaving the lead sulphate as an innetho residue to be smelted by the usual dry With the Most of the silvcr present remains tion with the zinc. It is in fact the recovered silver that sometimes makes the process profitable. It is necessary to free the zinc solution rom iron, copper and other foreign metals - a ficiently of considerable difficulty. When suflyzed purified, the zinc sulphate is clectro athodes thin sheets of zinc The operation is n reality a reduction of the sulphate, in no ense a refining process. As the reduction proceeds the clectrolyte becomes more and more acid, and when hydrogen in quantity is evolved at the cathodes, the electrolyte is run off, and Lead. - The leach roasted ore. never been The electrolytic refining of lead has copper, due to the fact that the operation of more expensive in comparison with the low nace-ref the metal, and that the ordinary furpure In lead of commerce is 99.98 per cent valuable in impurities that are not readily recovered by furnace methods, and the process of elctrolytic refining is resorted to. The prinimpure lead being used as anode in a solution of lead furead being used as anode in a solution of a rolled sheet as electrolyte. The cathode is ordinarily carries 60 to 70 grams of lead per tre, as fluosilicate, and 80 grams of free hydroHuosilicic acid. Lead normally tends to give 0.1 nine crystalline deposit, but by the addition of is per cent of gelatin to the electrolyte, this The temperature has no effect on the deposit. but temperature has no effect on the deposit, de bath at about $30^{\circ} \mathrm{C}$. $\left(86^{\circ} \mathrm{F}\right.$.). The current ensity used is 12-16 amperes per square foot, are the voltage per tank is $0.30-0.38$. Tanks are arranged in series with the electrodes in fined lank in multiple. The purity of the reSilver - The per cent. When the silver is in excess, or the refining of clectrous silver, is also carried on by an electrochemical process. In this process the above and are arranged horizontally, the anodes porous and scparated from the cathode by a of silver formed into an endless belt which Thels horizontally below the series of anodes. The upper surface of the belt is smeared with crystalte to prevent a close adherence of the brushed of deposited silver. These crystals are Veyor-belt and the end of the tank unon a conelectrolyte. Another modification has a horizon- tal graphite plate for cathode, from which the silver crystals are removed by hand with a scraper. The electrolyte carries 1 to 3 per cent of silver, 4 to 6 per cent of copper, and cent of silver, 1 per cent of free nitric acid. A certain amount of the acid is consumed in dissolving the copper present in the silver-about one and one-half pounds to each 1,000 ounce of silver treated.

Gold.- The electrolytic process has been used in the recovery of gold from its solution in The cyanide liquor is electrolyzed between iron anodes and shcet lead cathodes, using low cur rent density. Chemical precipitation of the gold, using zinc or aluminum is usually pre- ferred, however. In addition to this recovery ferred, however. In addition to this recover considerable extent. The crude gold is used as the anode, in a solution of gold chloride with hydrochloric acid as the electrolyte. The cathode is a thin sheet of pure gold. A cur rent density of 90 amperes per square foot at a low voltage (say 1 volt) is employed. The impurities in the anode as a sludge, or dissolved in the electrolyte. Antimony.-Antimony has been produced by an electrochemical process, but never on any extended scale. One process consists in leach extracting the dissolved antimony from the solution by electrolysis, using iron cathodes, from which the deposited metal is broken by ham mering when it reaches a thickness of abou one-tenth of an inch. The electrolyzing cell is separated into two compartments by a porous tion of sodium chloride. The chlorine from the anode compartment is used in the manufacture of bleaching powder, and the exhausted sodium sulphide from the cathode compartment is used to leach more ore. One method of working up the slimes from the electrolytic lead-refining process gives a wodium sulphide in solution carryner. Attempts have also been made to refine antimony in both sulphide and fluoride solutions.

Nickel.-While the electrolytic processe have not proved available for the commercia winning of metallic nickel from its ores, its winning of metalic nickel from its ores, its though the details of the process employed are guarded as a trade secret. As is well known electroplating with nickel is simple and easy When, however, a thicker deposition is at tempted, the metal scales off of the cathode in thin flakes which cannot be collected and melted into ingots at a commercial profit. The tendency of any iron and cobalt present in the crude nickel to be deposited on the cathode along with the nickel is a serious drawbackand incidentally compels attention to the fact that electrolytically deposited metal is not neces sarily pure. It has been proved by experiment that nickel may be thus deposited in thick plates if the operation is conducted with a hot electro lyte - in the neighborhood of $65^{\circ} \mathrm{C} .\left(150^{\circ} \mathrm{F}\right.$. - and with a comparatively high current density. Difficulty is experienced under these concathode, causing pitting of hydrogen from the indirect method of refining nickel by electro-

lysis consists in the deposition of its principa impurity (say copper), the release of other im-
puritics (say silver and platinum) in the anode puritics (say silver and platinum) in the anode
sludge, leaving the pure nickel in solution in the electrolyte, from which it is then deposited.
Calcium. - The production of metallic calcium by electrolysis may be accomplished economically by using fused calcium chloride as the clectrolyte. The principal process used Kugelgen. The cell consists of a circular iron box through the bottom of which projects a conical iron cathode, insulated from the box The anode is a carbon lining, also insulated from the box. Above the cathode at the level of the bath is a water-cooled collecting ring within which the metal collects, it being lighter is full of metal the top layer is solidified, and the solid metal is gradually lifted up through the ring by a hook, the freshly collected metal building on underncath as it solidifies, thu
a stick or rod of metal.
Magnesium.-- Being, like aluminum, reducmagnesium is prepared almost solely by electro lysis. The raw material used is "carnallite," the double chloride of magnesium and potassium. The operation is carried on in a cylindrical steel box, which is made the cathode by suitable electrical connections. The anode is
of carbon, and it is enclosed in a of carbon, and it is enclosed in a porcelain
cylinder open at the bottom and with sloted sides, and having a tube at the top for the escape of the chlorine gas set free at the anode. The charge of carnallite is kept in a fused condition by heat applicd externally to the steel box. All oxygen is excluded from the apparatus by the introduction of some other gas electrolyte. This is necessary in order to the vent the oxidizing of the metallic magnesium, which rises and floats on the surface of the electrolyte. A tendency of the globules of magnesium to gather a film of oxide sufficient to prevent coalescence is overcome by the addimolten mass. While the metal thus obtained is not strictly pure, it is sufficiently so to be available for all commercial purposes.
Sodium.- Formerly secured by chemical methods at very high temperatures, the world's supply of sodium is now produced wholly by electrolysis. The operation according to the
Castner process is conducted in a cylindrical steel crucible so placed in a flue that the body of it can be heated while the inverted neck, through which the cathode enters from below, remains cool. The electrolyte used is caustic soda. The anode is iron, cylindrical in form, with vertical slits which allow the free flow of the cathode, a cylinder of wire gauze hanging between from the collecting chamber above As the operation proceeds, molten metallic sodium is released at the cathode and rises to float on the surface of the caustic soda, being guided by the wire gauze, which it cannot pass owing to its high surface tension. In the col-
lecting chamber the metal is protected by the hydrogen also set free at the cathode, by the drawn off at intervals through a trap.

The Seward and von Kingelgen process uses an clectrolyte of fused soriminn chloride, the
melting point of which has been reduced by the melting point of which has been reduced by the
addition of other salts less readily decomposed by the current.
Potassium.- There is little commercial demand for metallic potassium. Its production, however, is entirely practicable by the Castucs process described for sodium, using caustic Electroplating and
Electroplating and Electrotyping.- Electroplating is the art of covcring a metallic sur-
face with an adherent, electrodeposited coating of the same or some other metal, the form of the original surface being retained. The metal coating may be added purely for decorative purposes, or because of its superior resistance to wear or corrosion. Electrotyping is the art
of reproducing the form of an object by clectrodeposition of a metal, usually copper, in a cast or molded impression of the original object. For further details of these processes, the reader is referred to the articles under these separate headings.
Caustic Soda.
Caustic Soda.- The production of caustic lysis of a solution of common by the elcetro$\stackrel{\text { readily }}{=} \mathrm{NaOH}+\mathrm{Cl}+\mathrm{H})$ erimentally $\left(\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}\right.$ $=\mathrm{NaOH}+\mathrm{Cl}+\mathrm{H}$), but its successful accomplishment on a commercial basis is difficult beplace, forming a mixed product of whistic, salt, and hypochlorite of soda. These difficulties are avoided by scparating the caustic soda that is formed, either by a porous diaphragm, by drawing it off as soon as formed, or ly absorbing The most prominent mercury or melted lead. ytic production of caustic for the electrofrom common salt is the Castner-Kcllner process. The Castner process employed in this country at Niagara Falls is as follows: The electrolytic tank consists of a slate box, 4 feet being set in rubber cement 4 feep, the joint tions reaching within $1 / 16$ inch of the hottom (under which are grooves) divide the cell into three compartments, each 15 inches by 4 feet, sealed from each other by a layer of mercury covering the bottom of the tank to a consider which the the the is outsed chambers through graphite anodes. These compartments are provided with gas-tight covers and exhaust pipes of rubber and lead, to lead the chlorine away The central compartment has an iron cathode of 20 upright strips, and is filled with pure spater above the mercury. Whenever the its absorption of caustic soda, it is drawn of and fresh water supplied. The liberated hydro gen is led from this chamber by means of pipes and uscd as a fuel for the concentration of the caustic. The tank is pivoted at one end on a tric, which raises and lowers that end of the tank about half an inch every minute and causes circulation of the mercury between the outer and middle compartments. The current passe into the outer chambers, splits up the sodium chloride (common salt, NaCl) into sodium and chlorine (Na and Cl), the latter is liberate at
exheust pipe to the absorption chambers where
combines with slacked lime to form bleaching cury for. The sodium combines with the mercury forming sodium amalgam, which by the berking of the tank passes to the center chamwith the whe it scrves as the anode, and combines and hydrogen (H), which appears at the iron cathode. Each of these tanks uses 630 amperes 4.3 volts. The thcorctical voltage requircd s but 2.3 , the remainder being utilized in overcoming the ohmic resistance of the electrolyte process in per horse power per day is 12 pounds of caustic and 30 pounds of day is 12 pounds or cach cell. The product contains from 97 o 99 per cent caustic, 1 to 2 per cent sodium carbonate, 0.3 to 0.8 per cent of sodium chloride, ate. A traces of sodium sulphate and sodium silieloped for the clectrolysis of salt solutions fo he production of alkali and chlorine, all based ore or less on the same general principles a hose utilized in the Castner process.
The Acker process, which was formerly use hed, obara Falls, but which has been discontinmolten lead in place of mercury as a catiode used salt insend in of mercury as a cathode perated at a temperature of $850^{\circ} \mathrm{C}$. $\left(1560^{\circ} \mathrm{F}\right.$.) fet containing tank was a cast-iron vessel idet long, 2 feet wide and 1 foot decp, th sides above the molten lead being covered with the grasia so that the current must pass from he cathode. At one end of the tank was mafi compartment separated from the remainder of the vessel by a partition dipping tuto the lead to such a depth that nothing but ment to the lead can pass irom one compart the lead was suljected to Which decomposed the lead-sodium alloy with cormation of NaOH and hydrogen and a he same time kept the alloy in circulation. A state, was canstic, which was in a fuse hus avoiding the necessary in the Castner-Kellner proces ne current employed per vessel in the Acke volecs, of which enerryperes at from 54 to 7 chemical which cnergy 54 per cent is used in ${ }_{550}$ the temperaturc. The output of each was 50 pounds terature. The output of each was orine in 24 hours.
Chlorine.-All processes making canstic soda orn salt at the same time produce chlorine ga the anode. In some cases this is absorbed in ime for the manufacture of bleaching powder The liquid chlorine is compressed and liquefied. for chemical purposes and for water purificaon. One of the most striking uses to which been put is as one of the poison gases use tons of front in trench warfare. Hundreds of Hs of gas have heen used in a single attack ulistry thathorites.-Another elcetrochemical in Country that is widely distributed throughout the leaching purposes. For some time the use of pochlorite as a bleach was confined to larg stallations where an enormous quantity o in the manufacture of paper pulp. Now hypo-
chlorite plants are installed in small units, producing only a few gallons of bleach a day for use in laundrics. The types of cell used in hypochlorite manufacture vary widely, but are electrodes of some tind usually either graphite or platinum. Many of the different types of cells have a number of electrodes in scries, acting as bipolar electrodes. The electrolyte used is 15 to 16 per cent solution of common salt, NaCl The efficiency of the operation in practice but the simplicity and ease of working of the process commend it in spite of its low energy efficiency. The minimum requirement is 1.27 kilowatt hours for the production of 1 kilogram of active chlorine, while actual practice require Potasium Chiora

Potassium Chlorate is produced electrochd abroad The Gibbs priantitics, both her Falls, consists in the electrolysised at Niagara chloride solution, using ectrolysis of potassium and a platinum anode. The current density i high, being 500 amperes per square foot o which 1.4 is required to convert chloride to chlorate, and the remainder produces the hea that maintains the electrolyte at from 50° to 70 C. $\left(125^{\circ}\right.$ to $\left.160^{\circ} \mathrm{F}\right)$, which is necessary for th proper reaction. The whole commercial supply is thus produced. Perchlorates are made by clec same type of cell.
Hydrogen and Oxygen.- One of the most widely distributed of the electrochemical industries, but one that is usually instalied in fairly small units, is the electrolysis of water for the production of hydrogen or oxygen, or both When only one of the gases is required it is
often more economical to produce it by some other method, but if both gases are necded, it is better to use an clectrochemical method, and often the conditions are such that the single gas can be produced advantageously by the electro chemical method.

Apparatus for the commercial elcetrolysis of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, or one of the alkalies $(\mathrm{NaOH}$ or KOH$)$. With the alkalies the cells are usually constructed of iron, and with the acid, they must be lined with lead, whatever the body of the cell may be. With the alkaline solth-
tions, a concentration of 10 to 25 per cent is used, and with acid, 20 to 30 per cent. The used, and with acid, veeded to force a current through such a cell is composed of threc factors - the voltage of decomposition of the water, the voltage nec essary to overcome the resistance of the cell, and the voltage necessary to overcome the re-
sistance of the gas laycrs on the electrodes sometimes known as "overvoltage." The sulphuric acid solution has a much better conductivity than the alkaline solutions, but the resistance of the gas films is greater on lead than on iron, so that on the whole, cells using alkaline solutions have a lower working voltage than those using acid. The current efficiency cent.
The total voltage required for the cells is 2.3 to 3.6 volts. The encrgy requirement for one cubic meter of mixed gases is 3.7 to 5.9 kilowatt
and the acid cells the higher. In the acid cells, lead anodes are used, which peroxidize, and the presence of PbO_{2} causes the oxygen to contain tion allow the anodes, usually of iron or nickel, to be slowly attacked, requiring occasional re placement. The purity of the gases is usually
to 99 per cent.
Electric Smelting.- One of the earliest commercial processes in electrochemistry was A mixture of about two parts of alumina, one or two parts of granulated copper and one or two parts of carbon was introduced in a brickwork chamber. Bundles of carbon rods inserted at the ends formed the electrodes between which a current of 3,000 amperes at 50 volts was mainwas reduced $\left(\mathrm{Al}_{2} \mathrm{O}_{8}+3 \mathrm{C}=2 \mathrm{Al}+3 \mathrm{CO}\right)$ and the resulting aluminum combined with the copper to form aluminum bronze. This was the forerunner of the various types of electrothermal operation described in the following paragraphs.
iron ore with carben be produced by reducing example, a mixture of magnetite and carbon can be heated by passing a current through it, as in the Cowles aluminum bronze process, by passing the current through a carbon core in contact with the material as in the carborundum process; or by the action of an arc as in the carbide $3 \mathrm{Fe}+4 \mathrm{CO}$. Pure iron, cast iron or steel may be produced, depending upon the proportion of carbon. The chief advantages are the directness of the process and the fact that no impuritics (sulphur, silicon, etc.) are introduced in the
fuel, besides a considerable saving of fuel over the ordinary steel furnace. On the other hand it is a question of location, whether the electric furnace can compete in economy with the blast furnace, the Bessemer converter, and the openhearth furnace. Pig iron has been made in the Norway, where water power is cheap and fucls expensive. The grade of iron thus produced is equal to the best Swedish charcoal iron, and commands a higher price than ordinary pig iron. The chief utilization of the electric furnace in the direct production of pig iron or steel but in the direct production of pig iron or steel, but
in the conversion of low-grade metal from the Bessemer or open-hearth into a high-grade metal, or in the remelting and refining of scrap steel for high-grade castings. Ordinary metal from the Bessemer converter or the open-hearth furnace can, in the electric steel furnace, be conat a lower cost than crucible stecl, and in large quantities, up to 25 tons to the charge.
Ferro-alloys.- One of the most important developments in the steel industry in recent years has been the production of the various alloy steels, - steels in which some special propmetal to the simple alloy of iron and carbon. The simplest way to produce these steels is by the addition to ordinary steel of the proper mount of an iron alloy carrying a high perentage of the metal desired. This ferro-alloy is usually, though not always, made electrotherfurnace of an oxide of the metal, in contact with
metallic iron to take up the reduced metal Sometimes a reduction is made of a mixture of iron oxide and the oxide of the metal in question, but this necessitates the supplying of well as of the alloying metal; and the iron can usually be reduced more cheaply by other methods. Under these conditions the reduction of the oxide is much more readily accomplished than if there were no iron present, since the iron considerably reduces the melting point of the resulting mixture. The type of furnace duced, but in general are quite similar to thos used for the production of calcium carbide.
The alloys that are made in this way are ferromanganese, ferrosilicon, ferrochromium ferronickel, ferrotungsten, ferro
ferrovanadium, and ferro-uranium
Silicon Carbide.- Known under the trade names "carborundum," "crystolon," and "exolon" silicon carbide is produced in large quantiIties by the process invented by E. G. Acheson It is formed by intensely heating in an electric furnace a mixture of 35 per cent of ground cent of sawdust and 2 per cent of salt, the yield being seven or cight tons of crystalline carborundum and a considerable amount of the amorphous material. The furnaces used at 28 feet long and 11 feet wide cole brick hearths at each end, these being about three frick wals and six or eight feet high. The side walls are built without cement or mortar to allow the escape of gases and because they have to b pulled down at the end of each run to dis charge the furnace. In the middle of each o he end walls there are iron frames holdin a number of small electrodes, through which the current is led to a core about two feet in diameter composed of broken coke and extending the entire length of the furnace. Th core is raised to a very high temperature by passing through it an alternating current, using permeates the mass and converts it at a tem perature of about $2,200^{\circ} \mathrm{C}$. $\left(4,100^{\circ} \mathrm{F}\right.$.) fo some distance around the core into silicon car inde. The unchanged material on the outsid is worked over in the next charge. The coke of the core is converted into graphite. The
shell of carbide is broken up after the furnac has cooled and is used in the manufacture o rrinding wheels and other forms of abrasive It is also used to a limited extent as a refac tory material, since it is stable at high temper atures and is a good conductor of heat.
Siloxicon.- This substance is
Siloxicon.- This substance is an oxygensilica and carborundum. It is formed in the lectric furnace by reducing silica with carbo but not carrying the reduction so far as wit carborundum. Siloxicon is an exceedingly re factory material, neutral toward hoth acid and metals. It is used as a furnace lining mothe made into bricks or as a protective wash with odium silicate.
90 Silicon.- The production of metallic silicon (90 to 95 per cent pure) has been accomplishe ly the extension of the principles used in the

It is made in an arc furnace consuming 1,200 dipping down into the charge, consisting of coke and sand. The principal impurities are iron and sand. The principal impurities are Titanium Carbide. This carbon.
de by a process exactly as for carborund be lut substituting the mineral rutile (titanium oxide) for the sand of the charge. Made into twice Cate light given by carbon electrodes.
electric furnace industries to be cestablished large the manufacture of calcium carbide. It is made it the electric furnace by the interaction of come, CaO , and carbon, usually in the form of and or anthracite coal. Charcoal can be used, and in fact, on account of its purity, is the most pensive. The raw materials should be as pure as possible, in order to prevent the collection of impurities in the product. Phosphorus and Mritic are particularly to be avoided as imturities, and sulphur is also undesirable. The che and fuel, coarscly crushed, are mixed and to the into the furnace, where they are heated action of the arc

The furnaces for the manufacture of carbide the heat of the arc type and only a small portion of ne heating is done by resistance. They may a liquid the carbide either in solid blocks or as merly the to be tapped out as collected. Fornow many are going over to the tapping iurnaces.
In The earliest form of furnace consisted of as electrode suspended in a car, which served the the other electrode and as a container for and of low This form of furnace was small 40 to 70 volts, with a power consumption of 6 to 7 kilowatt hours per kilogram of 85 per cent carbide, an efficiency of only 40 per cent. The losses of raw materials were also high.
The modification of the block furnace for being drawn away from underneath the working zone of the furnace, made possible a decrease in power consumption to 4.5 kilowatt hours per kilogram of carbide. The size of ihe furnace was also increased up to 375 Tawatts.
Tapping furnaces are much larger, up to
1,200 to 1,400 kilowatts and have a sumption of 4.2 to 4.5 kilowatt hours per kilogram of carbide. One ton of product requires 900 kilogtams of lime and 600 kilograms of anthracite coal.
Three-phase carbide furnaces have heen
built up to 3,000 kilowatts per phase, or 9,000 built up to 3,000 kilowatts per phase, or 9,000 limwatts per furnace. This proved to be the the handling of larger currents at the electrodes gave excessive heat and volatilized the charge. Aunit of double this size was constructed by
including two three-phase electrode systems in me furnace jacket. This gives an 18,000 kiloWe furnace jacket. This gives an 18,00 kiloCarrying up to 45,000 ampercs. A furnace of this size will produce carbide with a power Consumption of 4 to 4.2 kilowatt hours per
kilogram. Using charcoal as a source of car-
hon, the power consumption can be cut as low
as 3.8 kilowatt hours per kilogram, equivalent to about 69 per cent efficicncy, but the extra cost of the charcoal over that of the coal will Cyanamide.-A large portion of the calcium arbide now made is for use as a raw material for the manufacture of calcium cyanamide. The carbide after being finely ground is heated to temperature of about $1,000^{\circ} \mathrm{C}$. ($1,830^{\circ} \mathrm{F}$.) in a special type of electric furnace, in the pres-
cnce of pure nitrogen. The nitrogen combines ence of pure nitrogen. The nitrogen combines
with the carbide forming CaCN . This formula calls for 35 per cent of nitrogen in the product, but since the carbide is never entirely pure and since it is not entirely converted, the resulting product carries about 20 per cent of nitrogen. The process was orginally developed for the production of a fertilizer material to replace the
more expensive sodium nitrate or ammonium sulphate, but processes have since been developed for the conversion of the nitrogen of the cyanamide into ammonia and for the oxidation of the ammonia into nitric acid, thus providing a means for the chemical utilization of the secured of the air. This same result has been atmospheric nitrogen, which will be considered later.
Graphite.-Artificial graphite was first considered as a commercial possibility when it was noticed that in the carborundum furnaces masses of graphite frequently resulted from the of the furnace, the carborundum being decomposed and the silicon volatilized, leaving the arbon as graphite. The process was then carried on with the intentional ovcrheating of the entire charge, with the result that it was converted into graphite. It was eventually found of graphite and the volatilization of the metal and that it was not necessary to make up a carborundum charge to secure graphite, but that any carbonaceous material could be graphitized that carried a uniform mixture of metallic oxides, for example, coke or anthracite coal. carbon materials, particularly electrodes, it being only necessary to incorporate uniformly throughout the body, while in the process of manufacture, a small percentage of some metalic oxide, preferably $\mathrm{FC}_{2} \mathrm{O}_{3}$, this being largely tion. The amount of amorehous graphite produced in this way now amounts to about ten million pounds annually, and the electrode material graphitized to at least half that

mount.

Alumina.- Electrically fused alumina under the trade-names of "alundum" and "aloxite" is used mainly for abrasive purposes and to a for laboratory apparatus. The process consists in fusing down pure calcined bauxite in an electric furnace. The furnace is of the crucible type with two electrodes dipping into it. When the furnace is filled it is shut down, the sides stripped of and the hock of alumina, weighing to lump form for shipment. The furnace works at 110 volts and 2,500 amperes, consuming 275 kilowatts. The energy consumption is about 2.1
kilowatt hours per kilogram of almmina. This is ahout half the power requirement for carpensive, so that the product is a trifle more expensive than carborundum.
Fused Quartz.- Fused silica ware is now made by several manufacturers, and almost any shape can be secured that is made in glass, providing the size is not too great. The price of the material is still quite high. Pure silica is
fused in a small electric furnace and the main difficulty encountered is the heating of the silica to a sufficient temperature for it to flow easily ($2,000^{\circ} \mathrm{C}$. or $3,600^{\circ} \mathrm{F}$.) without excessive volatilization and without the silicon combining with the carbon electrodes to form siloxicon or silicon carbide.

Phosphorus.- The disadvantages of the old phorus were consideralle, the reduction of phosphoric acid or a phosphate giving a very low yield. The operation is now carried on electrothermally, reducing a mixture of bone ash, calcined phosphate rock or calcincd wavellite
(A1POs) with carbon and sand. The phosphorus distils off and is collected under water and the calcium or aluminum silicate slag is drawn off intermittently. The yield of phosphorus is 80 to 90 per cent and the furnace requires 11.6 kilowatt hours per kilogram of phosphorus.

Carbon Bisulphide.- The chemical manufacture of this substance was attended with con-
siderable dificulty, but the electrothermal production works very casily, and one plant sup plics the entire demand of this continent. A current of electricity passing through a granular carbon resistor volatilizes sulphur to vapor,
which passes up through a column of hot charwhich passes up through a column of hot char-
coal above the resistor, forming CS_{2}, which is drawn off from the 1op of the furnace and condensed. The encrgy consumption is about 1.15 kilowatt hours per kilogram of CS_{2}, an efficiency of about 35 per cent.

Nitrogen Fixation.- The direct oxidation of the nitrogen of the atmosphere for the prosult long sought by numerous investigators, but it is only within recent years that it has become a commercial possibility. This has now been accomplished in three types of processes. Onc of these, the direct combination of nitrogen with hydrogen to form ammonia, is more chemcern us here. The second type of process is a more or less indirect conversion of the nitrogen, largely electrothermal in character and is treated in the preceding paragraphs on Cal curm carbide and Cyanamide. The third type of process is the direct combination nitrous oxide under the influence of a high tension electric discharge. This process is generally known as the arc process, while the pre-
ceding process is known as the cyanamide ceding
The arc process, while a very interesting devclopment from an electrochemical stand cope with the cyanamide process either in cost of operation or in efficiency. One of the simplest forms of apparatus and at the same
time one of the most satisfactory is that of

Birkeland and Eyde. If an are is struck be tween two high-tension electrodes, it imme diately tends to break down to a low-voltage
arc, at a high current, but if the arc is placed are, at a high current, but if the are is place
between two powerful electromagnets the elec betwech two powerful electromagnets the elec
romagnetic force will bend the arc out fror: the line of the electrodes, in a semi-circulat form. As the arc spreads, and becomes longer, the current drops and the voltage at the electrodes increases and soon reaches a point where a second are strikes across between the
electrodes in the same manner to be immediately followed by others until the first ar formed reaches such a length that the voltage is no longer able to sustain it. Since an alter nating current is used, the succeeding arc form on opposite sides of the electrodes and with proper regulation, with proper regulation, maintain a circular shee of fame, composed of a series of arcs progres by becoming too long to be maintained by the voltage available or by the reversal of the electro motive force at the end of every half period of the alternating current.

This disc of flame, which is about 1.6 metres current of air is forced out radially on eacl side of the arc. Furnaces are in operation, taking 3,200 to 4,000 kilowatts at aloout 5,000 volts, of which 3,300 to 3,900 volts are acros the arc, the remainder being the drop in the series inductances. The frequency is 50 cycles, the power factor is 60 to 68 per cent and fur
current 940 amperes. The gas from the fur naces carries 1 to 1.2 per cent NO, and the yicld of HNO_{3} is about 67 grams per kilowatt hour The Paulding process is similar in principle to the Birkeland-Eyde, but differs in applica-
tion. Here the succession of ares is produced tion. Here the succession of arcs is produced not by magnetic deflection but by blowing the
blast of air that is to be treated between the two electrodes, thus accomplishing the same end as the magnet of Birkeland and Eyde, excep that the sheet of flame extends on one side of the electrodes only. The gas from the Paulding furnace is sonnewhat richer than that from the
Birkeland-Eyde furnace, but the vields are some what lower. Each furnace contains two 200 kilowatt ares in series, at 4,000 volts, taking 140 amperes at a power factor of 70 per cent.
In comparison with these processes, the Schonherr process is of interest, this being based on a different principle. Both the Birkethe difficulty of maintaining a high-tension arc, particularly when sulhected to a current of air: and so means are provided for securing a rapid succession of arcs as fast as they are extill guished. As a matter of fact, the ares arc made to overlap, so several exist in parallel ${ }^{\text {ad }}$ the same tume. Schonherr, however, attacke
the problem of maintaining a stable high-tel ${ }^{1-}$ sion, high-current are, working on the principle that if the air current were so introduced that it did not deform the are, the discharge could he maintained in a stable condition. Paulding used the air current, at right angles to the arc, to draw the arc out to a great
length. Schonnherr secured the same result without destroying the arc by introducing air tangentially from all sides simultaneously that it traveled with a helical motion in the
direction of the arc. This neither deformed
the are nor overcooled it, allowing it to burn merly. Working on this principle, the com700 to furnaces designed hy Hessberger take
to 750 kilowatts, 3,500 volts and 290 amperes with a power factor of 66 per cent. 22 feet) in learis is from 5 to 7 metres (16 per cent NO and the yield is 68 grams HNO kilowatt hour.
Which may is a polymerized form of oxygen charge may be produced by a silent electric di coil or very aigh voltage transformer throug
oxygen or air. It has powerful oxidizing and bactericidal
properties and is cxtensively used in water and air purification.
Other Compounds.- Many other compolunds, too numerous to describe, are made by other. For details of the principles involved in he operations of such processes, see Electrociemistry, Eiectrolysis, Electric Furnaces and Metallurgy. For details on individua Uuestion, see under the name of the substance i
Bibliography.- Allmand, A. J., 'Applied Wiectrochemistry) (London 1912); Borchers, Lo, 'Electrometallurgy' (Ncw York 1905) ; Compounds' (New York 1907); McMillan, W , and Cooper, W. R., 'Electro-Metallurgy Electron 1910); Thompson, M. de K., 'Applied A. and Philip, A., (Electric Plating ; Watt Mectric Refining of Metals' (London 1910) Yotallurgical and Chemical Engineering (New Amer, semi-monthly); Transactions of the methlean Electrochemical Society (South Assistant Secretary American G. A. Rousir,
sistant Secretary American Electrochemical
ELECTROCHEMICAL SERIES, the rrangement of the chemical elements in th order of their ability to replace one another in solution.
ELECTROCHEMICAL SOCIETY Society . The American Electrochemica Philadelphia, organized 3 April 1902, at cicty, as stated in its constitution, being the advancement of the theory and practice of electrochemistry. The charter member. ship Society numbered 337, while the member l.fno. at the close of the year 1917 was about held two meetings each ycar, in the Spring and Autumn, for the presentation and discussion of Theers on clectrochemical subjects. These New Yg have been distributed as follows:City York city, 9 ; Niagara Falls, 4: Atlantic 2ity, 2; Boston, 2; Philadelphia, 2; Pittsburgh N. Yashington, 2; and one each in Albany, Mich.; Dethlehem, Pa.; Chicago, Ill.; Detroit Sinis, Mo. ; San Francisco Cal.; Toronto, Can Dree the menmership of the Society includes of thally all of the prominent electrochemists eign e united States, as well as many in for an active part ine Society has naturally played years since its organization. vol. 10-13

ELECTROCHEMICAL TELEGRAPH a telegraph which records signals upon a pape sheet or strip moistened with a chemical solution, which is decomposed by the electric cur
rent. See Telegrapiy - Chemical Automatic Telegraphs Telegrapis -

ELECTROCHEMISTRY. That branch of chemistry which treats of the utilization of elecreaction is to facilitate or cansistry This en may be accomplished in one of three ways: by electrolysis, by electrothermal action, or by the discharge of electricity through gases. Con-
versely, electrochemistry also includes those reversely, electrochemistry also includes those re-
actions by which electricity is gencrated by actions by which electricity is gencrated by
means of chemical action. It was the Italian physicist Alessandro Volta (q.v.), a professo in the University of Pavia, who first discovered that when two metals and a liquid are combined in a circuit an electric current is produced. It was also Volta, who, for the first time, distin-
guished between the two classes of electrical conductors, recognizing the difference between metallic conductors and electrolytic conductors, which is the foundation of all electrolytic work Soon after this he established what has been called the contact electromotive scries, which is a table of metallic conductors arranged in such order that if any two of them be connected
with each other and also with an clectrolytic conductor, an electric current will flow through the liquid from the metal higher in the series to the one lower in the scrics, and the curren increases in magnitude the farther apart the two metals are in the series. Following this, it was metals in this series was the same as the previously known order in which metals replaced each other in solutions of their salts. This discovery was the first bond of linkage between the newer science of electricity and the older one of chemistry, and marks the birth of our modern electrochemistry.
tromotive serics soon led to the development of the voltaic pile (q.v.), the first device for th generation of electric current, and one depend ent entirely on electrochemical principles. In his work on the pile, Volta could hardly have failed to notice the formation of gas bubbles
on the metals immersed in his solutions, and the on the metals immersed in his solutions, and the phenomena indicates that he did not appreciat the significance of the reactions that were tak ing place. It remained for Nicholson and Carlisle in 1800 to record the formation of hydrogen and oxygen on passing the clectric
current through water. In the study of the various decompositions it was soon noted that there was a formation of alkali at the negative pole in the electrolysis and of acid at the positive pole. Following up these observations led to the discovery by Davy in 1807 of the alkal metals, sodium and potassium, which he separated by electrolysis of the fused hydrates,
thus laying the foundation for the development 100 years later of the Castner process of manu facture of metallic sodium on a commercial scale. (Sce Electrochemical Industries). It was Berzelilis, the great Swedish chemist, who devised the first theory for the explanation of the nature of chemical compounds, hased upon electrochemical ohservations. The Berzelius theory
dominated this new science and the parent
science of chemistry as well for many decades, but in turn was supplanted by other theories During its lifetime, however, it served as the basis for an enormous amount of valuable dislius theory, chemical atoms behave similarly to a magnet, having a positive and negative pole,
but in the case of some elements the positive pole is much the stronger of the two and in others the negative pole is the stronger. Con sequently the atom behaves in accordance with the positive or negative character of the pre the positive or negative character of the pre-
dominating pole of the atoms, and its relative strength, determine the chemical character of the element. Atoms of an electropositive character can then combine with those of electronegative character, in proportions determined each other more or less, but not necessarily completely. If complete neutralization does not result from the first combination the result is a compound which is more or less electropositive or electroncgative, depending on which charge predominates, and compounds of this
kind of opposite polarity can still further combine for more complete neutralization. Combinations of certain elements thus gave compounds of an acid character while others gave compounds of a basic character, and these combine to form salts, which, if not completely neutralized, can still further combine to form After the
After the establishment of the Berzelius theory, no great progress was made along elec-
trochemical lines until about 1835 , when Faraday announced his discovery of what are now known as Faraday's laws, which will be discussed later. Faraday rcecived his taste for scientific work and the training that led up to it while serving as a helper in the laboratory
of Sir Humphrey Davy, and Davy is said to have once replied, in answer to a question, that his most important scientific discovery was Michael Faraday. Besides the laws governing the quantitative relations of electrochemical reactions, we also owe to Faraday our system
of electrochemical nomenclature. To explain the reactions taking place he assumed the passage of the electricity to be associated with the movement in the solution of particles of mat ter which he called ions; the poles themselyes were in general termed electrodes, the positive pole bcing the anode and the negative pole the cathode; the ions that moved to the positive negative pole were cathions; the solution undergoing decomposition was the electrolyte that surrounding the anode being the anolyte and that surrounding the cathode the catholyte the process of decomposition was called electro lysis.

When the decomposition of water was first noticed, an explanation was sought for the sitrode and appearance of hydrogen at one elec Grotthus of oxygen at the other. In mechanism current through the solution and opened the discussion of a problem for which we still have the Grotthus theory the current charges one electrode positively and the other negatively
and these charged surfaces in turn act on the molecules of water in such a way that the hydrogen of the water becomes positively charged
and the oxygen negatively charged. The attraction of the negative pole for the positively charged hydrogen and of the positive pole for the negatively charged oxygen then causes the molecules to arrange themselves as shown in A
of Fig. 1. If the charge on the two electrodes

Fig.

is then sufficient, the atoms a and a^{\prime} have their charges neutralized at the electrode and become free gas; the, atoms b and b then recombine with c and c and so on throughout the linc,
forming new molecules of water, as in B, which forming new molecules of water, as in B, whic then, under the continued influence of the che the whole process is repeated. This thcory held its own for about 50 years, but as the science developed, imperfections were discovered that made it no longer tenable, and it was cventual: replaced by the Clausius theory. sumed that the positive and negative pere not
of the molecule in the clectrolyte wer firmly combined with each other, but were in ${ }^{\text {a }}$ vigorous enough would cause the positive part of onc molecule to come within the sphere of influence of the negative part of another molecule, with which it would unite, the negative and positive particles thus soon come within the sphere of other oppositcly charged particles with which to unite, so that there would be going on through the solution all the time a continuous interchange between the particles. But when an electric current is sent through the solution, a force ${ }^{15}$ generated in the direction of the flow of the current and the vibration and exchange is no
longer irregular, and in all dirctions but is intensificd in the direction of the current flow thus causing a movement of positive particles toward the negative pole, and vice versa.

The Grothus idea of fixed ions was thus replaced by the vibrating ions of Clausius, and this in turn, some 30 years later, was replace by the Arrhenius theory of free ions. This electrochemical research and has, directly and indirectly, been an aid to more discoveries than any other conception in the field of electro chemistry. The Arrhenius theory, or as it frequently called, the electrolytic dissociation theory (see Solutions) was based on the sumption that when an acid, base or salt
dissolved, vielding a solution that was a co ductor of electricity, the molecules of the dis solved substance were by the act of solution de
finite conced into part-molecules, or ions. At any thin a concentration the solution will still conand only at infinite dilution is the substance completely dissociated into ions. These dissoclated ions are positively and negatively charged, and it is the ions that act as carriers of the deprent, the conductivity of the solution being dependent on the degree of dissaciation of the The discrepanci
ut in discrepancies that constantly cropped thenius theory led up to what is known as the Hydrate theory, which assumes that part of the the present in the solution is combined with e dissolved substance, thus leaving as frce ent, which from a portion of the total amount pres Would bring about the same results as the as sumption according to the Arrhenius theory of th increase of the ultimate particles in the soluion by dissociation. And this idea, in turn, comes the Solvate theory when its principle queous and from aqueous to all solutions, bot suppicmenting the Arrhenius theory, extend the latter from its former constricted field of ate solutions to a theory of solutions in gen al. There are still, however, many point egard further development, particularly with on to the exact relation between dissocia If the law.
holds, there must necessarily be of energy relation between electrical energy and chemi nergergy on the one hand and hea discussion of other. This brings us first to the most fundamental ay's lazus (q-v.), two of the ence. Faraday's first law specifies that the nount of chemical action produced by an elec current in a circuit is directly proportional the quantity of electricity which passe that the circuit. The second law specifie Which the quantities of different substance tricity passing are directly proportional to the hemically equivalent weights of the substances neerned. These effects are entirely independent of the concentration or temperature of the rodes, the size or distance apart of the elec hold with great exactness not only for ardinary queous solutions, but also for non-aqueous solutions and for fused salts. The quantity o ectricity that is necessary to deposit the is 06500 entivalent weight of any substanc unit quantity is (ampere seconds) and this discoverer of stating this is to say that one Faraday of electricity, 96,500 coulombs, is required to make a unit change in valence of any element or rad$56 / 3$ One Faraday then will deposit as metal iron grams of iron from a solution of ferric reduce 56 change of three valences) or it will a change of one valence. This holds equally Weil whether it is a decrease of valence accomWanying a chemical reduction, or whether it is tion The of valcnce accompanying an oxida posit The fact that 96.500 coulombs will de makes it possible to calculate of an element
tion the amount of any element that would be deposited by any given amount of current. Ac $\underline{1.008}=0.000010446$ grams of hydrogen $\overline{96,500}=0.000010446$ grams of hydrogen or $\begin{array}{r}63.57 \\ \hline 2 \times 9650\end{array}$ $2 \times 96,500=0.0003294$ grams of copper. These values are known as the electrochemical equivalents (q.v.) and can readily be calculated for ustally used . The ampere-second values are cal work in the plantic work, but for practi ampere hour the plant, larger units for the Faraday's laws refer only to quantities of clec tricity involved in bringing about certain changes, but say nothing about the quantities of clectrical energy necessary for the change. To arrive at values for the energy involved, w must consider not only the quantity factor of the current used, but also the intensity factor pere changes, while the energy involved is concerned with amperes X volts, or watts.

All chemical reactions can be compared from an energy standpoint on the basis of the thermochemical changes accompanying the re action.

1 calorie $=4.186$ watt seconds 1 watt second $=1$ coulomb $\times 1$ volt
or 1 volt-coulomb $=0.2389$ calorie
Then 1 volt-Faraday $=0.2389 \times 96,500=$ 23,054 calorics. Any given reaction involving as the heat balance of the reaction will contain 23,054. For example, the heat of formation of water is 69,000 calories, and to decompose i an equivalent amount of energy must be supplied. A molecule of water, $\mathrm{H}_{2} \mathrm{O}$, includes two chemical equivalents, so per chemical equivalent
there must be supplied 34,500 calories. The voltage required for the decomposition will then be $-34,500$ position of one molecular weight (18 grams) $2 \times 96,540-193,080$ ampere seconds of electricity at a voltage of 1.49 volts, or $193,080 \times 1.49$ 3600×1000
$=0.08$ kilowatt hours of electrical energy
This same principle can be applied to the calculation of the electromotive force of pri mary or secondary batteries (q.v.) when applied to the thermochemical balance of the The chemical reaction in the Dane in the cell

$$
\mathrm{Zu}+\mathrm{CuSO}_{4}=\mathrm{ZnSO}_{4}+\mathrm{Cu}^{2}
$$

The heat of formation in dilute solution of cal. leaving an excess of $248,000-197,500=$ 50,500 cal. for two Faradays, or $25,250 \mathrm{cal}$. for one Faraday. $\frac{23,250}{23,054}=1.094$ volts supplied by the cell. The reaction on charging a lead storage battery is
$2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{PbO}_{2}+\mathrm{Ph}+2 \mathrm{H}_{2} \mathrm{SO}_{4}$
215,700 2(69,000) 63,400 2(210,200) This reaction shows a deficit of $569,400-473,-$
$800=95,600$ cal. for $1 \mathrm{PbO}_{2}$ (two Faradays) or

47,800 cal. for one Faraday. It will then require $\frac{47,800}{23,054}=2.073$ volts to charge the cell, and since the reaction is reversible, when once charged, it will be capable of generating the same voltage.
Of the phenomena accompanying electrolysis with unattackable clectrodes, two of the most interesting are polarization and over-vol-
tage. With electrolyses that are more or less reversible, it may be noted that after the passage of the current has caused some decomposition, there is a tendency for recombination of the materials present at the electrodes. If the current is stopped, it will be noted that for a short time there will be generated a small current in the opposite direction from that of the
current originally imposed. This is known as the polarization current and the voltage generating it is known as the polarization voltage. This polarization voltage, being in the reverse direction from the voltage causing the original electrolysis, will reduce the electromotive force
on the cell, and the current passing. In an on the cell, and the current passing. In an
clectrolysis involving the separation of a free gas on an unattacked electrode, it is well known that the voltage reguired for decomposition is greater than that calculated from the heat of formation. This excess of voltage required over the theoretical is called over-voltage, or
more recently, gas voltage. These voltages more recently, gas voltage. These voltages
vary widely for various metals and an explanation of the differences has long been sought. Recent investigations seem to indicate that the differences are mechanical rather than chem ical. Calorimetric measurements show that the amount of electrical energy disappearing as chemical work is the equivalent of the nor-
mal decomposition voltage for the reaction taking place, and that the over-voltage appears in the solution as heat. This would indicate tha the nature of the over-voltage was mechanical and the probable explanation is that it represents the amount of energy necessary to over-
come the resistance of the film of gas on the electrode. The gas as first formed on the electrode is a thin film over the entire surface, and then as the amount of gas increases surface tension begins to act to form the film into bubbles of gas which detach themselves from the electrode and escape from the solution. The amount of energy necessary to force the current through this gas film over the surface
of the clectrode will of course increase with the thickness of the film, and in turn the thickness of the film will be dependent on the ease with which the gas mechanically separates itself from the surface of the electrode. This will naturally vary with the material of the
electrode and with the condition of its surface electrode and with the condition of its stirface
When the products of an electrolysis are stable and can be removed from the cell in the form in which they were deposited, there is no reac tion taking place except the electrolytic dccom position itself and this is said to be a primary reaction. In many cases, however, the products of electrolysis undergo further reaction and they were originally deposited. In this case the reaction is said to be secondary. These sec ondary reactions may be divided into two classes, depending on whether the product
of decomposition react on the material of
the electrodes, or whether they react the electrolyte. If desired, each of thes classes can be stinl further subdivided into two classes, the first as to whether the action is the cathode or on the anode, and the slecon
as to whether the action is on the catholyte or anolyte. For example, if a solution of sodium sulphate were electrolyzed the primary reactio would result in the deposition of metalle sodium on the cathode and of the SO , radica on the anode. The sodium would then rea
with the water in the electrolyte with the for mation of NaOH and hydrogen, while the SU would react with the water, forming $\mathrm{H}_{2} \mathrm{SO}_{4}$ an oxygen. On the other hand, if a solution o NaCl were electrolyzed with a mercury cathode and a silver anode the sodium set free at the an amalgam, and the chlorine set free at the anode would combine with it with the formation of AgCl . Since the electrolysis of the water of an aqueous solution results in the formation of hydrogen at the cathode and o oxygen at the anode, we can have in the solw reducing or an oxidizing action by using conditions which favor the absorption in the sult tion of whichever is desired. A large electrod and a low current density favor the absorption of the gas in the nascent condition as fast a formed, while a small electrode and a high cu rent density tend to cause the throwing of formed and with only a limited opportunity for absorption. Low current density at the cathod and high at the anode will then give a stron reducing action, while high density at the cathode and low at the anode will give stron oxidizing action. For further discussion of rent of clectricity through a solution, see the article on Eiectrolysis.
In electrothermal applications it is the heating action of the current that is sounght rather than its chemical action at the electrode utilization of the heating action of the current for carrying on a high-temperature reaction is known as an electric furnace. In case the combined action of the high temperafure and the chemical action of the current a lytic furnace. In the former, as a matter convenience and economy in handling the cur rent, alternating current is ustually used; in the latter, since electrolysis is sought, direct currend is a necessity. Sce Electric Furnaces and Elfctrochemical Innustries.
Many of our present day commercial opera tions require temperatures higher than are and
tainable from the combustion of a fuel, and for operations of this kind electric heating is necessity. In many other cases it has bee found more economical to substitute clectri heating for combustion heating. The particlu lar economy in electric heating is due to the
fact that the heat is generated within the charg being heated and does not have to be forced hrough the refractory wall of the containe which, on account of its low conductivity, im poses a heavy loss in efficiency. It is also pot ${ }^{15}$ ible to secure certain electrochemical effec by the passage of a
of this kind are the conversion of oxygen, O_{2} wheric nitrogen to O_{8} and the oxidation of atmosChemical nitrogen to nitric acid. (See ElectroWere first noted in the early years of electrical evelopment, the former by Van Marum 785 , and the latter by Priestly in 1779, but in study cases nothing was done in the way o tudy or development of the reactions unt years. years later, mainly within the last 30
Eibliography.-Allmand, A. J., 'Applied Electrochemistry) (New York 1912) ; Jones, York', 'Outlines of Physical Chemistry' (New York 1915) and 'The Theory of Solutions'
(New York 1917) ; Le Blanc, M., (Texthook of (New York 1917) ; Le Blanc, M., 'Texthook of
Electrochemistry)
(New York 1916) ; Thompsoctrochemistry' (New York 1916); deK, 'Applied Electrochemistry' (New York 1914); 'Transactions of the American annually).
Assistant Secretary, Anverican Electrochemic Society.
ELECTROCHRONOGRAPH. Sec Chro EI
ELECTROCIDES, the amber islands of Greek mythology, at the mouth of the river siands on the northern coast of Europe.
ELECTROCULTURE OF PLANTS culture and enent of electric light in agriculture and horticulture. It was determined Cornc Agricultural Experiment Stations Ornell University and of West Virginia incandescent lights, respectively, arc and that ain crops are forwarded by the light. The ost remarkable instance is that of lettuce ays was brought to maturity in from 5 to 10 ays earlier than other plants grown in the ditions. Thouse and under otherwise identical con
discovery has led to the com ercial application of the arc light, if not of the incandescent also, to the forcing of lettuce inder glass in several of the larger New Eng of forcing houses, with the resuit that a gain or about thrce weeks time is calculated upo devote his benches to enabling the gardener to ormerly or to follow his lettuce crops with ucumbers, the favorite successor, much earlie han would otherwise be possible. Several pease crops, stuch as Easter lilies and sweet resulut have been experimented upon, with th ays in advance of others grown without the imulus. In such cases the plants are alvay rown without the light until within about 3onth of maturity, when the light is applied for untes half the might. It has been found that ane the light pass through a glass globe or oliage or flower. It is concluded that this is ue to the action of the ultra-violet rays of the pectrum rays, which do not pass through the tass. Consult various bulletins of the Massa nusetts, Cornell University and West Virginia Gperiment stations. See Electric Vegetabl

ELECTROCUTION, capital punishmen by the agency of clectricity. See Electricity Cause of Death by.

ELECTRODE (Greek, hodos, "a way"), a term introduced by Faraday to denote the con ductors by which elcetricity cither enters or leaves an electrolytic bath or solution. He
termed the electrode by which the current en ters the bath, the anode (positive terminal), and the electrode by which the current leaves, the cathode, sometimes spelled kathode (negative terminal). The terms anode and cathode have been introduced generally in metallurgical prac tice, and also in connection with Crooke's tube
and X-ray work, and the term electrode ha become common in the more extended sense o signifying either of the terminals of an electric source, instrument or electrolytic bath or cell.
eLectrodeposition. See Electro-
emistry ; Electroplating.
ELECTRODYNAMIC INDUCTION. See Induction.

ELECTRODYNAMICS, that branch of electrical science which treats of the attraction and repulsions exhibited between wires or othe conductors along which currents are passing other when currents are passing the same way along them both and will repel each other when the currents are opposite. If the wires are in clined to each other at any angle there is no only an attraction or repulsion but a still mor marked they to rotation which is not satis the currents flow in the same direction along them both. When there are only two straigh wires these forces are feeble and require deli cate apparatus for their exhibition, but by em ploying coils of wire the forces are multiphe and an instrument constructed on this principl cmployed for the measurement of currents. The basic principles of electrodynamics were discovered by Ampere in 1821 by many ingeniou experiments, the results of which he expounded in a series of statements known to this day as Ampere's Laws

ELECTRODYNAMOMETER.
Dynamometers; See struments.
electrokinetics. Sce Electric Di rect Current; Electric Alternating Current

ELECTROLYSIS. With respect to their ability to conduct electricity, all substances are and and fast boundary line between the two, but a more or less gradual merging from one into the other. The conductors are again divided into two classes, those which conduct the cur those in which any apparent decomposiably accompanied by decomposition. In this latter class, the conduction of the current with concomitant decomposition is called electrolysis, and the iquid subjected to decomposition is originally proposed by Faraday True clectrol ysis is almost entirely confined to liquids. Evidences of electrolys'n have been found, however, in a few casesen solids and similar phenomena have been derieryed in connection with high-tension discharges through gases. A large
ture, fall in the class of non-conductors Water, and a number of other liquids of inor ganic origin are also non-conductors when care ully purified. Liquids that conduct without de composition are limited to liquid metals. Iiquids electrolytes, may be a pure liquid, a fused salt, or a solution, either aqueous or non-aqueous In the case of solutions the conductivity is not necessarily dependent on the conductivity of th constituents of the solution, but may be a proprty of the solution itself. A solution of on of good conductivity. Also, in the case of a solution, the decom
osition caused by the electrolysis may affect he solvent or the solute or both, and may var with the conditions of electrolysis. If the con he anode and cathode, the reaction is said to be a primary one; but if for any reason, these constituents react on cither the electrodes or he solution, the reaction is said to be secondary See Electrochemistry). Primary reactions acting, and are not subject to modification by physical conditions (see Faraday's Laws), but econdary reactions may be modified by tem perature, concentration, current density and other physical conditions and in this type o reaction with its various modifications lie many lectrochemistry (See Eite fild of industria dUSTRIES). The problem of the mechanism o electrolysis is one that has attracted more at ention than any other in the ficld of electrochemistry. A brief discussion of the early his be found in the article on Er.ectrochemistry This question is also closcly related to and to a certain extent dependent on, the problem o the nature of solutions, and a further discussion of the principles involved will be found in the article on Solutions.
Assistant Secretary, American Elctirochemica Society.
ELECTROIYSIS OF GAS
WATER MAINS OF GAS AND railway traction in which an overhead trolley wire is employed, with direct current, in which the tracks are utilized as a return circuit for the current to the power-house, it has been found that damage has almost invariably ensued to the gas and water mains adjacent to marily to the electric current leaving the tracks and following the gas or water mains for some distance. At the points where the current leaves these pipes to return to the tracks or to the power-hotuse, if the soil is damp and contains soluble chlorides of magnesium, sodium or potassium, the current sets free acids or
chlorine which attack the iron of the pipes; the rapidity and extent of the damage done thereby being dependent upon the strength of the current, the duration of its, application and the constituents of the soil. The electrolytic ang of water pipes and leo pipes, and burstnot uncommon from this sege. (Sce illustration). Experiments have shJwn that with as low a potential as 0.5 volt and a current of 0.03
ampere, noticeable electrolysis of an iron pipe Pipes on found to be about six volts have burst in a few years. To prevent electrolysis due to this caths greater precautions are now taken, and with
considerable success, to preserve the continuity

of the rails by bonding, welding them in situ by electricity by providing separate metallic regas mains places where the current would copper wire re turn to the tracks via the earth

ELECTROLYTE. Any liquid which conducts the electric current with concomitant de composition is called an electrolyte. It may be either a purc liquid, a fused salt or a solution, aqueous or non-aqueous. In the case of a so lute, the solvent or both. The name is so incorrectly applied to designate a salt which when dissolved in water will form a conducting solution.

ELECTROMAGNETIC INDUCTION See Induction.

ELECTROMAGNETISM. The art or

 process of magnetizing by means of an electric current, as distinguished from so-called naturamagnetism as in the lodestone, or transient magnetism, as established in a wrought-iron bar. A magnet not only attracts steel and iron in a less degree, but cobalt, nickel, manganese cerium and chromium. Hans Christian Oersted (q.v.) is credited with being the first to phenomena. In 1820 he observed that wires connecting the poles of a voltaic pile affected the magnetic ncedle. In 1821 he wrote a long paper on electro-magnetism. Arago, Ampere Davy and Faraday all studied and contributed to knowledge of the phenomena. In 1825 Wilto experiment. His two first electro-magnets were made in the shape of a horseshoe and a straight bar. The former was made of a bent rod of iron one foot in length and half an inch thick, around which a bare copper wire was wound 18 times, the iron having been previously
covered with varnish to insulate the wire from the iron. The current was supplied by one large primary cell. This magnet was able to sustain a weight of nine pounds, though weighing itself only seven ounces. Subsequently Sturgeon constructed a horseshore electromagnet 18 inches in length, $23 / 4$ inches thick twelfth of an inch in diameter, which upheld 1,386 pounds. In 1831 Joseph Henry made clectromagncts for both Yale and Princeton universities that lifted 3,000 pounds. Large electromagnets are now used in foundrics and machinc shops of a capacity of 12 or more The phenomena of electro-magnetism may
be briefly described as follows: It is known that

When iron filings are strewn over a cardboard or glass, if a bar or horseshoe magnet be placed range the cardboard the filings will tend to aroard is tapped. This is due to magnetic lines force which are assumed to flow from the herth to the south pole of the magnet, and he iron filings, becoming temporarily magnetset by these magnetic lines of force, tend to when themselves parallel thereto. Similarly, tro) magnetic lines of force surround the wire in circles or hoops which increase in density with the strength of the current. It is known netic iron is a much better conductor of magin the lines of force (or magnetism) than air, the quatity or "permeability", depending on Hence when the wire is made in the form of a coil into which is inserted a soft iron bar, the magnetic lines of force, so to speak, use the net having north and south poles. A simple form of electron and south poles. A simple is of soft iron, around which a copper wire is coiled in spirals, beginning at one extremity is extending to the other. If the iron core gins placed in this position \cap, and winding begins at the lower left side, turning the wire
around clockwise, the south pole of the magnetic will be at the starting point on the left. The space the starting point on the lef. Wherever its magnetic lines of force extend, or of the space around a wire conveying a current electricity, is termed a magnetic "field." The ubstances through which the lines of force tute the mading the iron of the magnet, constier of lines of force per square centinneter in the material, is at present used as a measure of nagnetic density. The total number of lines magnetic in a magnetic circuit is termed the magnetic flux, and is obtained by multiplying
the total cross-sectional area of the field in square cross-sectional arca of the field in centimeters of the circuit density of a square force (that is, the force that, as it were drives the lines of force through the circuit) is equal the product of the strength of current in tionseres in the coil by the number of. convolupere turns. The magnetic flux may be increased y increasing the magneto motive force or by ecreasing the resistance (termed the relucance) of the magnetic circuit. Hence the reation of the foregoing terms to one another is resistance and current, in an electrical circuit, and may be expressed by the equation:

Magnetic flux $=$ Magnetomotive force
Reluctance.
It is to be noted, however, that the reluctance a magnetic circuit containing iron is not a constant, but increases in other words, its perertainty to magnetization decreases, after a ermed saturation magnetization, Electro-magnets electectro-magnets are extensively used in atus, in dynamo machines, electric motors (q.v), and for many other purposes. See Electric Machinery.

ELECTROMETALLURGY. That branch of electrical science that deals with the reduc tion or reffining of metals by electrical proc sition of chemical compounds by electricity. electro-deposition, or the depositing of metal in solution by an electric current (see ElectroCHEMISTRY) ; and the fusing of metals in the electric furnace (q.v.). The electric current is capable of performing the entire work of rethis is usually too expensive, and it is used only where there is a commercial gain. The first important application of electricity in the separation of a metal was to aluminum, which industry is based wholly on electrical procelectricity has become more and more important, owing to the purity of the product which is valued commercially. There is increasing use of electrometallurgy in the production of gold, silver, zinc and the ferro-alloys. It may be used also for separating and refining platinum, all the metals. A perusal of the article on Electric Furnace will afford the student a clear idea of the methods of electrometallurgy. Various electrolytic processes are also outlined under Copper; Gold; Zinc, etc. Sec also Elecrolysis; Metallurgy.
ELECTROMETER, an instrument for determining difference of electrostatic potential (or electric charge) between two charged conductors. The electroscope (q.v.) and Coul-
lomb's torsion balance are primitive forms. The attracted-disc electrometer was designed by Volta and developed by Snow-Harris. It consists of a battery or Leyden jar to the wires of which is attached a horizontal disc. A balance is placed close hy, having on one end of
the beam a disc which is positioned a short distance above the dise connected with the jar and on the other end of the beam a pan for containing small weights. In this manner the degrec of force that will pull the two discs together is weighed in ounces or pounds. To to place a guard ring around the necessary to place a guard. ring around the upper disc,
and this later form was named the absolute ectrometer. Through this mechanism it was demonstrated that the attraction between the discs at different distances varied as the square of the difference of potential. Lord Kclvin constructed an electrometcr located in the in-
terior of a Leyden jar, and employing the torsion of a wire to measure the difference of poential. This invention was outclassed later by his quadrant electrometer. This was de signed to measure the electrostatic charge by the attraction of quadrants of metal of known attractive force on a very light aluminum needle.
He hung a paddle-shaped aluminum foil needle enclosed in a box, between the four insulated metal quadrants. Opposite quadrants were conected by platinum wires. The difference of poential when connected with one pair of guadrants or the other pair was made use of to deprovided the needle threw a spot of light scale. It was found necessary to provide the instrument with a "replenisher" to preserve the charge of the Leyden jar. The quadrant electrometer was so much more delicate in its meas-
urements that it superseded the cruder instruments, and being later improved by Dolezalek Electric Meisuring Instruments.

ELECTROMOTIVE FORCE

pressurc or voltage, equivalent to difference of potential; the force that causes electricity to fow along a conductor: commonly abbreviated E.M.F. The force which gives rise to an electric current is called electromotive torce and
is comparable with the force exerted by water under pressure or "head," tesulting from water seeking its level. In a somewhat similar way, electricity sceks a balance. When a conductor is earthed, that is connected with the earth, the electric potential becomes the same as the arth's, balance is restored and there is no fow of current and no electrical manife

ELECTROMOTOGRAPH,

to a peculiar telephone receiver invented b Edison and constructed virtually as follows A short metal strip, fastened at one end to the centre of a mica diaphragm, rests on a rotating cylinder, the surface of which is composed o moist gypsum impregnated with mercuric aceplaced in serics in a telephone circuit. When variations in current pass through the gypsum surface it is found that the friction between he strip and the cylinder varies directly with trip is drawn along in the current is weak the strip is drawn along in the direction of the cyl-
inder's rotation against the natural tension of the mica diaphragm. When the current increases, the strip slips back in response to the pull of the diaphragm and in this way the diaphragm is set into vibrations corresponding to explanation of this phenomena is that the current electrolytically sets free a thin layer gas between the cylinder and strip, reducing the natural friction.

ELECTRON THEORY or CORPUS

 CULAR THEORY. The physical theory that consisting in part (at least) of corpuscles of still higher order of minuteness. The theory has heretofore concerned itself mainly with the study of one special form of corpuscle which is exccedingly prominent in sub-atomic phenomena, and which appears to constitute a in the architecture of ment structural clemen kinds, inasmuch as it has identically the same properties in every respect, whatever the kind o matter from which it is obtained. These fundamental corpuscles usually occur in combination with stactural elements of oiner kinds to form the atoms, but they are also capable of existing suitable experimental means. Each corpuscle carries a certain definite and constant charge of negative electricity, which is the same for al of them; and many authorities helieve that the corpuscles are, in fact, mere isolated, disemnot, experimental evidence charge associated with a corpuscle has one definite value, and that it is incapable of variation. An atom is supposed to consist of a certain number of these negative corpuscles, associated in some definite way with a positively-electrified nucleus, - there being, normally, just enough of the negative corpuscles present to neutralize the effects of the positive electrifica
tion of the nucleus. tion of the nucleus. According to this vicw,
bodies acquire positive charges by losing some of their negative corpuscles, and acquire negative charges by picking up additional negativ corpuscles. If this hypothesis be corrcct, it is evident that communicating an electric charge to a body is not a continuous process. It is, on
the other hand, essentially discontinuous, and consists in adding to the body (or subtracting from it) a number of definite (thongh exceedingly small) units of electricity,- being roughly analogous to filling (or emptying) a barrel by means of a bucket, instead of by the use of a
hose. Moreover, the belief process is essentially discontinuous is no longer based upon theory alone, for Millikan has ob tained direct experimental evidence of such discontinuity, in connection with charges comIt hated to oil drops by friction.
It happens that the investigation of the posi the investigation of the negative corpuscles that are normally associated with this nucleus, or perhaps it would be more accurate to say that the experimental methods thus far deviscd are mainly applicable to the study of the
negative corpuscle. Under negative corpuscle. Under certain circum
stances atoms can lose positive charges as wel as losing or gaining negative ones; but the loss of a positive charge appears to involve a funda mental change of some kind in the nature of the atom. (See Molecular Theory.) That there is probably an exceedingly important dif
ference betwcen positive and negative electricity is plainly indicated by the fact that no positive charge has yet been demonstrably observed in connection with a mass smaller than that of the hydrogen atom, while negative charges (as will presently appear) are known to occur in masses far more minute than
corpue definite charge carried by the negative corpuscle appears to be identical in magnitude with the charge carried by the hydrogen ion (or any other monovalent ion), in electrolysis For this charge Dr. G. Johnstone Stoney, as (Lord Kelvin preferred "electrion," "electron" gestion has not been followed); and this name has been applicd quite generally, in recent years to the negative corpuscles themselves, instead of being restricted to the electric charges that they bear. Present practice among authoritative writers, however, is toward the restoration of name of a definite quantity (or unit) of electricity, and toward the adoption of J. J. Thomson's original name, "corpuscle" or "negative
corpuscle," for the actual particle that hears corpuscle," for the actual particle that bears (or consists of) a charge of one electron of negative electricity. In the prescnt article we
shall follow the tendency here noted, and shall call the particle itself a "corpuscle" or "negative corpuscle," and the charge that it bears at "electron" or "negative electron."
The corpuscular theory of matter has been
developed in many directions, and its bearing developed in many directions, and its bearing extensively investigated by both mathematical and experimental methods. To indicate all its bearings and relations would require a volume,
and the present article will therefore be decored to an explanation of the origin of the Corpuscular theory, and to an account of the studying the mass, charge, speed and size of ing negative corpuscle. Further data concernto specific physical phenomena may be had rom the references given below.
The corpuscular theory of matter, in its the study sense, originated in connection with tarefied of the discharge of electricity through investigation of this subject it was customary to regard positive and negative electricity as being of the same general nature, but differing from spiral diff somewhat as a right-handed helix or piral differs from a left-handed one, or (more negative one. The study of vacuum-tube phe nomena indicated, however, that there is a far more profound difference than this between the two kinds of electricity. It was shown by the esearches of Plücker, Hittorf, Crookes and atube that when elcctricity is passed through tremely rareficd condition, the discharge from he negative electrode (or "cathode") is wholly ifferent from the discharge that takes place at ie positive electrode (or "anode"). The negave discharge (when the vacuum in the tube is that cnough) takes place along straight lines lace of everywhere at right angles to the surnd the phenomena observed at the positive electrode are altogether different and far less riking
The negative discharge that proceeds from angles to its sur negative elcetrode) at righ called the "cathode ray." and special attention as naturally paid to this ray, in an effort to scover its nature. The most strikingly obviescence ahout it is, that it excites a vivid fluor trikes it the glass wall of the tube, where i.ject, placed in the 1869 , showed that a solid epts it and casts a shadow, its outline being ainly visible because there is no fluorescence on the part of the tube that is shielded by the
obstacle. Crookes, following Hithorf, thok up the stude. Crookes, following Hittorf, took up ing and masterly way phenomena in a fascinatsilts that were not only beautiful and striking ut also exceedingly suggestive and stimulating further inquiry. By placing a very light pad-le-wheel in the tube, so that its paddles were Within the cathode strcam (or ray) on one side suechanical rotatory effects side, he obtained negative electrode a concave form, and therehy ringive the cathode ray to a focus at a point within the tube, he showed that marked heating effects could be produced by it. These phebserved together with many others that were ists of, suggested that the cathode ray conively electrified by material particles, negaand then repelled from the cathode on accoun of the charge they have acquired. This had in and been strongly urged by Varley (in 1871) fairly very likely by others also, as it was a only explanation possible. In Germany the
cathode ray was quite generally believed to be cathode ray was quite generally believed to be
due to some form of wave-like disturbance in the ether, and this view was held by Goldstein, who first introduced, in 1876, the name "Ka-
thodenstrahlen," or "cathode rays"). Onc difficulty was, to identify the nature of the Tharged particles that were thus repelled not ordinary molecules or atoms. It was known for example, that when an electrically-charged liquid is evaporated, the vapor does not carry away the electrical charge with it, and this appearect to indicate that the individual atoms or molecules of a gas cannot be separately electri-
fied. Morcover, if the cathode ray consists merely of electrified molecules, it was hard to understand why the effects that were observed n connection with the cathode were not also manifested in connection with the anode, or positive electrode. Crookes, as a result of his
researches, concluded that the projectile theory (or charged-particle theory) of the cathode ray is correct, but as he fully realized the dif ficulties in the way of that theory, he announced his belief that in vacuum-tube phenomena we are dealing with matter in a previously unknown
state, which he called the "radiant state" It is fair to say that his views appeared to physicists in general as rather too mystical, though the eminence and ability of their author ensurcd them a respectful reception.
Following the
Following the experiments of Crookes there was a lull in the activity with which the phe nomena of vacuum tubes were studred, but in
tense interest in the subject was again aroused by two exceedingly striking discoveries. Len ard, in 1894, showed that the cathode ray can be made to emerge from the tube and pass into the outside air of the laboratory, if a "win glass) is provided at the point at which o cathode ray strikes the tube. Two years late (namely in 1896) Röntgen discovered that previously unknown form of radiation is emit ted from the point at which the cathode ray strikes against the tube, or against any other
solid obstacle. The prospective usefulness solid obstacle. The prospective usefulness of
the Röntgen rays (or "X-rays") to the surgeon gave them an intense practical interest, in ad dition to the interest that they had for purely physical reasons; and from this time onward the study of the electric discharge was prosecuted with renewed vigor and earnestness, and
by a large number of physicists - further stimulation being presently added by the dis covery of radioactivity (1896) and of polonium and radium (1898). Exceedingly prominent among the physicists who took up the study of the cathode discharge at aboutt this time was Sir J. J. Thomson. Beginning his rescarches ing the passage of electricity through gases, and guided by a wonderful scientific imagination. supplemented by a profound knowledge of mathematics and marked experimental skill, he established the soundness of Crookes' views, "generalized them amazingly, developed a new theory on a firm foundation.

It is not possible, in the present article, to give more than a superficial idea of the way in which the reality and general properties of the negative corpuscle have been established. The
fact that it has been tested from many angles, fact that it has been tested from many angles, from the most diverse viewpoints have, in the main, harmonized with one another astonish-
ingly. Doubts that may be felt with regard to ingly. Doubts that may be felt with regard to
the legitimacy of the assumptions made in any the legitimacy of the assumptions made in any one line of investigation tend to lose their force
when confronted by cumulative evidence from widely different sources. It is true that inconsistencies and other difficulties have developed here and there in connection with the corpuscular theory, but that could only be expected. because the entire subject is still new, and progress in the application of the theory has siderable extent by the persistence of certain of our older conceptions and postulates that are no longer defensible, but to which we still cling because we have not yet learned wherein our error lies. In the main, the data that have been the corpuscular sularly consistent. horeover, traordinarily rich in its suggestiveness, and has led to many lines of investigation that have heen fruitful and productive of good results. This alone would justify us in following it still further, to see where it will ultimately lead. Prominent among the quantities that we should like to determine in connection with the time being assume the cathode ray to consist, are the following: (1) The mass (m) of a corpuscle, (2) the clectric charge (e) that it bears, and (3) the speed (ui) with which the corpuscle is moving under given conditions.
Let us see how these magnitudes were first Let us see
It has long been known, from the general heory of electricity, that a charged particle, when moving in a magnetic field and at right angles to the lines of magnctic force, is deflected so that it tends to describe a circular are (instead of a straight line), in a plane pernenIt is, in fact, a simple matter to show that when the charged particle is moving freely in space, its charge per unit of mass (denoted in symbols by the ratio $\frac{c}{m}$) bears to its velocity the same ratio that the reciprocal of the radius of the circle in which it moves bears to the intensity of the magnetic field that causes the path to be circular. Now it is easy enongh to subject the and the deflection of the cathode ray thus produced is quite marked even when the field is not very strong. The radius of the circular are that is described by the ray in a field of known
strength is also measurable without any special difficulty, and hence we can determine, with a fair degree of precision, the ratio of $\frac{e}{m}$ to u. This, however, is only one step in the solution of the problem, for we do not yet know either $\frac{c}{m}$ or u, separately. Some experimenters, assuming that the ratio $\frac{c}{m}$ of the charge on the particle to the mass of the particle is the same in the cathode ray as it is in the case of
the ions that are involved in electrolysis, sub-
stituted this value and then procecded to deter mine, by means of the experiment just cited the value of u, , that is, the speed of the particles in the cathode ray. By this means value of u was obtaincd that was not greatly
different from the speeds "appropriate to atoms of matter." This result was illusory to atome because the fundamental assumption that $\frac{e}{11}$ is the same in the cathode beam as it is in electrolysis was wholly gratuitous, and
Wiechert sutcceeded in measuring the speed of the cathode-ray particles directly, by mean of an exceedingly ingenious apparatus, which although it is apparently incapable of giving esults of any high order of precision, is tude of the speed, and hence to check the validity of assuming that it is similar to the ordinary molecular speed, or that the ratio $\frac{b}{m}$ in the cathode-ray particles is the same as it is in the ions that are concerned in electrolysis. cathode ray by a magnetic ficld, but he used two magnetizing coils, energized by a rapidly alternating current having a period commensurat with the time required by the cathode-ray par ticles to traverse a considerable length of the tube. The cathode was placed at one end o the tube and at the other end was a fluorescen screen, which, by its luminosity, showed wher
the ray came in contact with it. Between the cathode and the fluorescent screen two dia phragms were placed, so that the ray wa wholly intercepted except for a small part that could pass through a central perforation in eac diaphragm. The first magnetizing coil wa placed between the cathode and the first dia that it produced varied, the cathode ray vibrated to and fro across the surface of the first diaphragm. The apparatus was so adjusted that the ray passed through the opening in this diaphragm only when the magnetic field pro duced by the coil was at its maximum in on particular phase-the oscillating beam being swing. At this moment the ray would pass through the opening in the first diaphragm, proceed down the tube to the second diaphragm, pass through the central opening in this, and then register itself by producing a round, cent screen beyond-the alterations in the magnetic field being so rapid that the spot appeared steady, although the illumination was cally intermittent, because the cathode ray, since it could pass the first diaphragm only when at the extreme upward part of its periodic sway, traveled down the tube in a series ing coil was placed at or just beyond the second diaphragm, and in the absence of a certain special adjustment or relation (to which we shall presently refer) the alternating magnetic field produced by this second coil, acting upon the cathode ray as it passed the second diaphragm, would again deflect it, and cause it to
impinge upon the fluorescent screen above or
below the spot at which it would strike if the deand however, that if the magnetic. field of the second however, that if the magnetic field of the the cathode-ray always in the zero phase when Would be no second deflection produced, and he luminous spot on the screen would occupy the same position that it would have if the second coil were absent. With the apparatus dis posed as described, it was known that the magnetic field of the first coil was at its maxithrough the first diaphragm, and (if the secand coil did not displace the luminous spot on field of the scond coil was at its zero phase
fien on When the cathode-ray pulsation reached the When the cathode-ray pulsation reached the
scond diaphragm. In performing the actual experiment diaphragm. In performing the actual inade identically alike and were placed in the circuit in parallel and with symmetricallyarranged leads, so that the phase of the current The given instant would be the same in each. inodified Tesla high-frequency coil, provided Wodificd Tesla high-frequency coil, provided and a pair of condensers of known capacity; $f_{\text {requency }}$ of the magnetic oscillations in the two ficlds could be calculated. The experiment hen consisted in determining the shortest disance by which the two magnetizing coils could e separated, consistently with the second one tance) bo effect. (We say of wave-motion that a similar zero effect would be observed whenever the time of transit of the athode ray from one field to the other happened to be one-fourth, threc-fourths, fivehe time or any odd number of fourths, or ne time of a complete period of the current in least distance was found to be 39 centimeters, and the number of complete oscillations of the nagnetic field, from cither coil, was found to e $32,000,000$ per second. Hence the time required for the cathode beam to travel 39 centimeters, in this case, was the $128,000,000$ th part 000,000 send. Therefore its speed was 4,992 , it in the usual way, and to as high a degrece o precision as the data will warrant, $5.0 \times 10^{\circ}$ centimeters per second. (The symbol 10° stands
for the ninth power of 10 . In the same way or the ninth power of 10 . In the same way of 10 stands for the reciprocal of the ninth power use in physics for expressing large numbers, as it avoids the use of long tows of ciphers, which are not only confusing to the eye but are also ikely to lead to error from misreading, or from ine accidental addition or omission of ciphers copying or printing). It is evident from the ay cong result that the speed of the cathode fay corpuscles is of an entirely different order
of magnitude from the usual speed of translation of gas molecules. The average molecular peed in hydrogen gas, for example, at atmosheric pressure and at the temperature of melting ice, is only about 17×10^{4} centimeters per iight, in an the other hand, the velocity of per second, so that the velocity of the cathoters ray particles, in this experiment of the cathodesixth of that of light, or about 30,000 times as
great as the speed of translation of hydroge molecules. It should be understood that no great degree of accuracy is claimed for the particular numerical result just quoted, and
it should also be understood that the specd the cathode-ray particles varies considerably with the degree of exhaustion in the tube, an with the intensity of the electric field in the vicinity of the cathode. It is evident, however (1) that we are here dealing with speeds entirely transcending anything previously known matter, and (2) that Crookes was in all probability right when he expressed the view that cathode-ray phenomena bring us in touch with matter (if indeed these particles are "matter" In the ordinary sense) in a very different stat rom any with which we have had previou exper migh
perimenters turned their attention to number o vestigation of the nature and propertics o these cathode-ray particles or negative cor puscles, and many exceedingly difficult, beauti ful and ingenious lines of research were carried out in this direction. One of the most interest the speed of translation of the corpuscles in the cathode ray, by a method wholly different from that of Wiechert. By the aid of a magnet he deflected the cathode stream so that for a definite time it entered an insulated hollow vessel that was connected with an electrometcr, cal charge of the entering corpuscles. Inside the vessel the beam impinged upon a delicate thermoelectric couple of known thermal capac ity, by means of which the total kinctic encrgy of the torrent of corpuscles could be determined (in the form of heat). The curvature of the influence of the magnetic ficld, was observed at the same time. If N is the number of corpus cles entering the closed vessel in a given time and e is the negative clectrical charge on each one of them, then $N e$ is the total aggregate This was ane the N corpuscles taken togethe us represent it by Q and write $Q=N e$ Again, if u is the velocity of the particles (as sumed to be the same for all) and m is the mass of any one of them, the kinetic energy of each corpuscle will be $\frac{1}{2} m u \iota^{2}$, and the total aggregate kinctic energy of the N corpuscles tha quantity, which we will denote by W (so tha quantity, which we will denote by W (so tha couple. Finally, if H is the intensity of the magnetic field (in electromagnetic units) and is the radius of curvature of the cathode beam where it traverses this field, we have, from general electrical principles, the relation $m u=$
$H e r . ~ W e ~ f i n d ~ t h a t ~ i t ~ i s ~ p o s s i b l e ~ f r o m ~ t h e s e ~$ threc equations, to eliminate N and to find the values of u and $\frac{c}{m 2}$, respectively. In fact, we have $u=\frac{2 W}{Q H r}$ and $\frac{e}{m}=\frac{2 W}{Q H r^{-} r^{2}}$. When the experiment was performed and the observed values of the measured quantities were substituted on of the speed, u, proved to be about 10,000 mile
(or 1.6×10^{9} centimeters) per second. The value simultaneously found for $\frac{e}{m}$ (or the electrical charge of a corpuscle, per unit of its mass) was about 10^{7}, the mass being supposed to be measured in grammes, and the electric units. According to this result, the charge of the negative corpuscle, per unit of mass, is about the thousandth part of the charge observed on the hydrogen atom, per unit of mass in ordinary electrolysis,
It was, of course, highly important to conways as possilile. Another method that suggested itself for determining the speed of cathode-ray corpuscles depends upon the fact that a static electric field tends to deflect a moving electrified particle and cause it to describe a curved are-circular or parabolic, acBy subjecting the cathode ray, simultancously, o a static electric field of intensity E and to a magnetic field of intensity H, it is possible, if the directions of the lines of force are properly
chosen, and the respective intensities H and E chosen, and the respective intensities H and E are properly related, to cause the two ficlds to of the cathode ray is concerned. An application of the principles of theoretical electricity shows hat if the deflection of the ray is to be zero, the two fields acting on its particles must fulfil he relation

$$
E=H u,
$$

from which we obtain the very simple result,

$$
u=\frac{E}{H}
$$

In other words, if we find, by experiment, a combincd magnetic and electrostatic field in which the cathode ray remains sensibly straight,
he velocity of the particles of the ray may be found at once by merely dividing the strength of the observed magnetic field by the strength of the observed electric field. The actual application of this method involves special difficulties, hut J. J. Thomson overcame them all, and obtained numerical results indicating that centimeters per second; and this, combined with the result obtained by applying the equation $m u=H e r$, which holds when the magnetic field acts alone (r being then the radius of curvature of the cathode ray), led to the further conclusion that the value of $\frac{e}{m}$ lies between 0.7×10^{7} and 0.9×10^{7}, if m is measured in grammes and e in absolute electromagnetic units.
should not be inferred that all our information with regard to the negative corpuscle
is obtained from the study of the cathode ray, is obtained from the study of the cathode ray,
because this is far from being the casc. According to the views at present held, the negative corpuscle plays a leading part in many physical phenomena, and the study of various other departments of physics has led to con-
firmatory conclusions with regard to the propfirmatory conclusions with rcgard to the prop-
erties of these corpuscles. The Zeeman effect, for example, affords a means of determining the ratio $\frac{c}{m}$, and gives results that are in
harmony with determinations obtained from the athode ray. The Zeeman effect, in its simples form, consists in the doubling of the spectral nes of substances, when the radiating solre ceeds, is sulbjected to the action of a powerful magnetic field, in which the lines of force ar parallel to the direction of radiation. There much to be done in the way of clearing up ou deas of the mechanism by which radiation effected (see Radiation and Molecular The RY), but for the moment let us assume thaluced in the ether by negative corpuscles exc cuting orbital motions within the atoms of the radiating substance. The planes in which the corpuscles perform these orbital motions will gencral, be distributed equally in all possibie positions, and the projections of their orbits will be described, by the corresponding projec ions of the corpuscles themsclves, cqually in clockwise and a counter-clockwise direction Now if the radiating source be subjected to trong magnctic ficld, the lines of force which are parallel to the direction of the ray tive corpuscles will be differently affected, according as their projections are revolvin clockwise or counter-clockwise, in their orbit as projected upon a plane perpendicular to the lines of force. Those that are revolving in on direction will be accelcrated and those that are revolving in the opposite direction will etarded, in accordacity and magnetism But difference in the periods of revolution of the orpuscles will mean a difference in the wave ength of the emitted light, and hence if the magnetic ficld is sufficiently intense, it will canse visible separation of the spectral lines in coublets. Lorentz, basing his calculation upo T is the original period of the undisturbed vibration causing any given spectral line, and is the difference in period corresponding to the wo components into which the line is resolve by means of the magnetic field we hav

$$
t=\frac{c}{m} \cdot \frac{H T^{2}}{4^{\pi}}
$$ where e, m and H have the same significance

as above, and $\pi=3.1419$. . With the exception of e and m, all these quantities ar cither known or obtainable by direct observ pendent means of determining the ratio of o m. Upon performing the experiment Zeeman
found values of $\frac{c}{m}$ ranging from 1.4×10^{7} to 1.8×10^{7}, which agrees fairly well with the results previously obtained from the study of he cathode ray.

Other methods, based upon the action of henomet light, and upon radioactivity and used for general agrecment among the results obtaine by different methods and different experiment velocity with which the corpuscles move dc pends upon the circumstances under which they
are liberated or set in motion, the electric charge of a corpuscle per unit of its mass, $\frac{c}{m}$, is always the same, no matter what the condi is of the corpuscle is, or from what source is obtaince. It is evidence of this kind that corpuscle is a constiluent of matter of every kind. The best value of $\frac{c}{m}$ that has been obtained up to the present time is certainly Bucherer's. He found

$$
\frac{c}{m}=1.767 \times 10^{7}
$$

m is measured in grammes and e in absolute ectromagnetic units. This is believed to be orrect to within about one-half of 1 per cent applies only to slowly-moving corpuscies, pparent mass of a corpuscle increases with he speed of the corpuscle, while the charg resumably remains unchanged. (Bucherer's value of $\frac{e}{m}$ is 5.299×10^{17}, if the electric charge s expressed in absolute electrostatic units.)
The fact that the ratio $\frac{e}{m}$ is nearly 2,000 times as great as the charge per unit mass oserved in connection with the hydroge hat in electrolysis she must be truc: 1) the charge on the negative corpuscle is ar greater than the charge accompanying an n in electrolysis, or (2) the mass of a ncga ve corpuscle is far less than the mass of any Ourse these may both be true, but certainly one of them is true, and as soon as this fact was recognized, it was also recognized that th discovery of the negative corpuscle was an vent of fundamental importance in the histor physics.
In order to find out which alternative mus e adopted, J. J. Thomson undertook to deermine the electric charge on a single corpussince the ratio of the two was known. More accurate values of these quantitics have since it should be remembered, was a pioneer in a hew field, and the work that he did in solving his problem has justifiably been called by Sir Oliver Lodge "one of the most brilliant hings recently done in experimental physics." We can only outline his method in a rough Way. It depends (1) on the fact, discovered aqueous vapor in air does not occur, even when he air is supersaturated, unless there are nuclei of some sort for the mist-particles to form about; (2) on the fact, demonstrated by Lord Kelvin in 1870, that the surface tension of Small droplets of water, suspended in the air, ends to cause evaporation even though the densation on a water-surface that is flat, or that has a large radius of curvature; (3) on in 1888, that the electrification of such a drop-
let tends to neutralize the effect of the surface tension, so that condensation can take place on a watcr droplet, or on any other curved suror surface is electrificd, even though no such condensation could take place in the absence of the electrification; (4) on the investigation, by Sir Gcorge Stokes in 1849, of the limiting spee at which small spherical bodics will fall, by their own weight, through a fluid of known viscosity; and (5) on the method devised
Mr. C. T. R. Wilson, in 1887, for precipitating by adiabatic expansion, a definitely-known quantity of aqueous vapor in the form of mist, from saturated air.

Thomson's experiment consisted (1) in partially ionizing, in a closed vessel and by means of X-rays or ultra-violet light, air containing a suitable quantity of water vapor;
(2) in causing the deposition of droplets of mist, by Wilson's method of quick adiabatic expansion, about the ions thus set free; (3) in observing the rate at which the mist thu formed subsides - a process which really con sists in the falling of the individual droplet through the air; (4) in calculating, hy mean
of Stokes' formula, the diameter (and subsequently the weight) of the spherical droplet constituting the mist - this being made possible by the fact that he knew the viscosity of th air and had observed the rate of fall of the droplets: (5) in calculating the total mass (or weight) of water precipitated, in accordare of expansion of the air; and (6) in dividing the total weight of preciditated water by the weight of a single droplet, and thereby determining the number of droplets. The number of droplets produced being assumed to be the same as th tion was theoretically possible, the experiment manifestly gave the total number, N of th ions present in each cubic centimeter of the air, under the conditions prevailing in the ex perimental apparatus. was found to be 30,000
The total aggregate charge of the ions was determined by means of a pair of paralle was produced - one of them being insulate and connected with an electrometer. If th space between the plates containcd positive ions for example, then by suddenly communicating plate these ions could be quickly repelled against the insulated plate, to which they would give p their charges; and the aggregate charg that they were carrying could then be measured y the electrometer. By means of this princ ple the total charge on the ions in a cubic centitermined; and by dividing this total charge by N, the number of ions in a cubic centimete of the air, the charge on one individual ion became known.
The charge on each ion was assumed to be due to the excess or defcet of one electron, and hence the experiment gave an estimate of The value of e at first obtained by Thomson in this way ranged from 5.5×10^{-10} to 6.5×10^{-10} as the concluded value. In 1903 he
published a later determination of e, obtained by following the same general plan as before but with certain improvements in technique, and gave the value $e=3.4 \times 10^{-10}$
Beautiful and ingenious as this determinawas, the method was open to certain corpuscle nasmuch as it involved certain assumptions which had not been shown to be valid, and which, in fact, were only approximately true They were near enough to the truth for the method to yield a rough estimate of the value of with an accurate and dependable de dermination. t was not known, for example that Stoke ormula for the rate of fall of spheres in viscous fluid would apply with sufficient ac curacy in the case of droplets of the exceed ngly small size here umder consideration. Nor was it known that every ion actually did surwere no droplets containing more than on on. Nor did the nucthod make allowance for he effect of differences in the sizes of the roplets, nor for possible evaporation from their surfaces after they were formed. It not possible, in the present place, to discuss hat they have all received the most careful onsideration in later researches, and Pro R. A. Millikan, of the University of Chi ago, has recently been able to publish a cfinitive and probably very accurate valu of e, ohtained by a method which apparently oundness or of experimental excellence oes not detract in any way from the admira on that we must feel for Thomson's origina work, to say that Milikan's rescarch was stil more ingenious and heautiful. He succecde in trapping single corpuscles, and in measuring ccount of his work that he gives in his book, 'The Electron,' is extremely fascinating.
Millikan's fundamental idea was excecdingly smple, but in its practical application it calle for an immense amount of ingenuity, experi mental skill and patient lahor. A tiny spherica droplet of oil was electrified and caused to take up a position, suspended in the air, between electrified or grounded, at will. The drop was strongly illuminated from two opposite sides, and was observed ly means of a telescope directed at right angles to the light-rays. I appeared, in the field of the telescope, "like a drop was first allowed to fall freely thronet a known distance (approximately equal to half a centimeter or one-fifth of an inch), the limits of which were marked by a pair o cross-hairs in the telescope. The time of fall through this distance, in one sct of experiments the lower metallic plate, both plates were electrified by connecting them to the terminals of battery having a total electromotive force of from 5,000 to 10,000 volts, the charge of the lower plate having the same sign as the elecment was rightly conducted, the drop (already carrying an clectric charge) would begin to rise, under the influence of the electric field to
which it was exposed, and the time required for it to make its upward journcy from the lower cross-hair of the telescope to the uppet one was noted. Before it reached the upper
plate the clectric field wonld be destroyed by plate the electric field would be destroyed by
grounding the metal plates. The drop would then fall again, and the time of its descent from the upper cross-hair to the lower one was from the upper cross-hair to the lower one wa proceeded - keeping the droplet always in the air, and continually recording the times of it ascent and descent. (A single drop could thu be kept under constant obscrvation for hours.) measured time of its fall by means of a modified form of Stokes' formula for the descen of small spheres in viscous media - the original formula having been studied with great car (especially by Dr. H. D. Arnold) with refer ence to its accuracy in connection with droplets of the size used in these experiments. Th was readily ascertained, because the density o the oil of which it was composed was known. Then from a knowledge of the weight of the drop, and of the time of its downward passage undcr the influence of gravity and of it known electric ficld, it was easy to cal culate the electric charge on the drop An ingenious means was provided for chang ing the electrification of the drop at will and in either dircction, by ionizing the ai hetween the plates by means of an X-ray discharge, and then throwing ions against th drop by electric repulsion. The original posi
tive electrification of the drop was reduce every time a negative ion was taken in, and increased every time a positive ion was re ceived. After a positive ion had been taken in, the upward journey would be performed more quickly than before, and the inclusion ing slowing of the upward motion. It was found to be quite possible to determine, from the circumstances of the motion, the number (as well as the sign) of the ions thus entering the drop; and by calculating the electric charges for all the different upward journeys that wer
observed, it became cvident that these variou charges either showed no change, or differed from one another either by a certain constan quantity, or by a low multiple of that quantity It was even found that the original charge of the droplet was also an apparently exac multiple of this same quantity. The doctrine
that electrification is a discontinuous process, and that it consists in adding to a body (or subtracting from it) a certain number of small-sized yct finite and equal charges, o "clectrons," thereby received an exceedingly striking and definite confirmation; and the data available made it quite easy to calculate the
magnitude of this elementary unit charge. After several years of study and observation, culminating in two ycars of work with a special apparatus constructed with exceeding care, the final conclusion was, that the charge on the clectron is invariably $e=4.774 \times 10^{-10}$ abso lute clectrostatic units; and Millikan believes certainty in this result is not greater than the thousandth part of its own magnitude. (The

Crresponding value of the charge, in absol romagnetic units is $\left.e=1.592 \times 10^{-21}\right)$. the upper oltained his oil drop by perforating of apper of the two metallic plates by means spray of the oil into the space above the plate, by blowing a puff of air through an atomizer. In the course of time one of the droplets of the spray would fall through the pinhole into ment region between the plates, and the experithe oil wald be started. The friction to which the droplets of spray positively, and as has been stated above, the charge communicated to the droplet in this way was always found to be an exact multiple of the value given above. This fact is highly interesting, because that we have, for the first time, direct evidence by friction elric charge communcated to a body definite, finite number of electrons. In one experiment, for example the positive charge communicated to the droplet by the initial friction a loss atomizer was found to correspond to Millik deficiency) of nine tregatioc ectrons. Millikan varied his drop-experiments in cluding mercury) for the drops, and experimenting with drops of widely different sizes, and with various gases between his clectrified plates; and he concludes that the apparent tion of the electron is not in general a functhe of the gas in which the particle falls, of on which it is calught" In other words, he strikingly confirmed the theory that the negative corpuscle has an actual, physical existence, apart from the existence of the kinds of matter eretofore contemplated by the chemist.
The determination of the mass m of a free, matter after $\frac{c}{m}$ and c have been scparatcly determined; for we have the simple relation $e \div\left(\frac{e}{m}\right)=m$. With Millikan's value of e and Buchercr's value of $\frac{c}{m}$ (both expressed in terms of absolute electrostatic units $)$ we have
$m=\left(4.77 .4 \times 10^{-10}\right) \quad\left(5.299 \times 10^{17}\right)=-0.901$ $\times 10^{-27}$ grammes
(It may be shown, from this, that it would to have a 1,845 slowly-moving negative corpuscles one hydrogen atom.)
ne do not yet know the shape of the negative corpuscle, nor do we positively know that the word "shape" has any definite meaning when applied to it. Larmor, for purpose of discussion, assumed the corpuscle to be a of electricity, which creates a certain type o strain in the surrounding ether; but the pre vailing conception (in which Larmor woul Cubtless concur) is that the actual, physical orpuscle has some kind of spatial extension, Nough it may not have definite houndaries Nicholson, in a paper read before the Physical
Socicty of London in October 1917, suggested that the corpuscle is a region of strain in th ether, the strain being intense in the immediate
vicinity of a certain central point, and diminish ing with extreme rapidity as we pass away forpuscle would have no definite boundaries and therefore (in a strict sense) no definite shape, though on account of the intense localizaion of the region in which the strain is really ignificant, we might treat the corpuscie for most purposes almost as though it were "radius" to such a corpuscle we should have to define the radius arbitrarily, either as exending to a region where the strain is some definite fraction of the maximum central strain, or in some other way
In the abscnce of data concerning the shape of the negative corpuscle, it is natural to try,
first, the simplest assumption we can make with regard to it and to sce how well this fits such facts as we have. The simplest shape, from a mathematical standpoint, is a sphere; and we find that the three best-known theorics as to the shape of the negative corpuscle assume it o be spherical, at an events the corpuscle to be igid and spherical at all times, whether it is moving rapidly or at rest
(2) Lorentz considers it to be spherical when at rest, but assumes that when it moves it becomes transformed into an ellipsoid of revoluwith its polar tadius (which is parallel to the direction of the motion) shortened to $r \sqrt{1-x^{2}}$ where r is the original radius and x is the ratio that the speed of the corpuscle bears to the speed of light.
(3) Bucherer and Langevin also consider the corpuscle to be spherical when at rest and assume that when it is in motion it takes the
form of an ellipsoid of revolution with its polar radius shortened and directed parallel to the motion; but they assume that the polar radius becomes $r\left(1-x^{2}\right)^{\frac{1}{3}}$ and that the equatorial radii are increased in consequicnce of the motion, so that each hecomes equal to $r\left(1-x^{2}\right)$ where r and x have the same significance as before. (It is to be obscrved that these relations of Bucherer and Langevin leave the volspeed may be).
Each of these conceptions has something in
its favor, and each has somcthing against it, but they should all be regarded merely as convenient mathematical fictions for the present fictions that are worth considering because they thair consequences are investigated. The experiments of Kaufmann (to which reference will presently be made) appear to be incompat ible with Lorentz's conception of the corpuscle while the theory of relativity suggests tha those of Abraham vin are untenable
static charges theory of electricity, as applied brings us face to face with an exceedingly in teresting topic in connection with the negativ corpuscle,- namely, that its apparent mass is and that in is quite within the hounds of possiand that it is quite within the hounds of possiThomson pointed out, as long ago as 1881, that a moving body (for example, a sphere) pos-
sesses a somewhat greater apparent inertia, or mass, when it is electrically charged than it does Electricity and Magnetism,' due to the fact that the charged body has Fara day "tubes of force" radiating from it, and these tubes are supposed to carry a certain amount of ether along with them and to encounter a sort of hydrodynamic resistance from the surrounding ether. This resistance is not analosarily entail any dissipation of energy, but has the general effect (when considered mathematcally) of increasing the apparent mass of the harged body. Thomson showed, for example, that a sphere having a radius of r centimeters, electromagnetic units, has an of e absolute equal to $\left(m+\frac{2}{3} \cdot \frac{e^{t}}{r}\right)$ grammes, if it is stationary or moving with a speed that is small in s mass, in grammes, when the electric charg is absent.
When a charged sphere is caused to move with greater and greater speed, the Faraday tubes of force shift their positions in relation to it, and Heaviside showed (in 1839) that as
the speed increases, each tube, whatever its original direction, will be displaced more and more toward a plane passing through the centre of the sphere perpendicularly to the line of motion. In other words, if we call the diameter that coincides with the direction of motion o hat radiate from the snliere will crowd force and closer toward the cquatorial plane, the aster the sphere moves. Moreover, the shifting of each tube (according to Heaviside's analysis) will take place in such a way that the original distance of every point in the tube
from the equatorial plane will be reduced by the motion in the proportion of $\sqrt{V^{2}} v^{2}$ to the motion in the proportion of $V V^{2}-v^{2}$ to V
where v is the speed of the sphere, and V is he speed of light. (It is to be olserved, in particular, that the tubes approach the cquatorial plane in the same way, whether they lie in front of it or behind it, as the sphere moves through space)
Now the eff
tube is very different whe ether upon a Faraday endzeise than when the tube is moving sidezuse (or perpendicularly to its own length) and in consegucnce of this fact, the part of the apparent mass that is die to the electrification increases when the speed of the sphere becomes
great enough for the equatorial crowding of the tubes of force to become significant. It is not possible to deal with this phase of the subject more than superficially in the present article, but it should be specially noted that mathe matical analysis has shown (1) that owing to stretch out into the ether from an electrified body, that body, whether its charge be positive or negative and whether it be stationary or in motion, has an apparent mass greater than the mass it has when the charge is absent; (2) that owing to the crowding of the Faraday tuhes
toward the equatorial region when the speed of the body increases, the apparent mass of the body increases as the speed increases; (3) that at any ordinary speed this increase in apparent
mass is insignificant and does not have to be reckoned with; but (4) that it becomes sig nificant as soon as the body attains a spece (5) the apparent mass increases of light, and rapidity as the speed approaches with extrent speed of light, and (6) it would become infinite if that speed were fully attained.
Now until the last few ycars this rather striking conclusion was of academic interes only and it had no practical bearing becaus we could not produce any such prodigious in order to give rise to any sensible increas in their apparent mass. When, however, it wa discovered that the negative corpuscles in high vacuum tubes are moving with speeds compara ble with (though always materially less than) ahove began to have an important practical bearing and physicists asked themselves whether any increase in the apparent mass of these cor puscles could be detected, that could be assigned to the causes indicated- that is, whether any experimental evidence could be adduced, to
show that the apparent mass of ing clectrified particle increases with the speed with which the particle is traveling. The ques tion became far more interesting and import ant when it was shown that the so-called "beta rays" emitted by radium are identical with the negatively electrified corpuscles observed i
vaculum tubes, because the specd of particles has been found to be as high as from 95 to 97 per cent. of that of light in some cases and hence they should show a marked increas of apparent mass, if the previous theoretica conclusions about the effect of speed upon mass Partly wi
and partly with the broader idea of this point general insight into the nature of mass and in cortia and into the constitution of the negative corpuscle, W. Kaufmann, of Göttingen, under fook to determine the ratio of charge to mass speeds. An interesting semi-popular account of his best-known experiments will be found in Sir Oliver Lodge's 'Electrons.) (For the origi nal papers, see Comptes rendus, 13 Oct. 1902 Annalen der Physik, Vol XIX 1006) D. The Annalen dcr Physik, Vol. XIX, 1906). The cation of the one outlined above for determining the speed of cathode-ray corpuscles by subjecting the particles simultaneously to magnetic and electrostatic fields of force, except that Kaufmann made use of a stream of beta apparatus so that the magnetic field tended to deflect each corpuscle toward (say) the north, while the electric field, instead of being disposed so as to neutralize this effect, was arranged so that it tended to deflect the corpuscle
(say) toward the east. The stream of beta (say) toward the east. The stream of beta in such a way that a small, round, single spot was registered upon it when neither field was active. When the magnetic field alone was excited, the spot would have been merely displaced toward the north if the beta particles
all had the same specd; but inasmuch as they all had the same specd; but inasmuch as they into a straight line, extending in a north-and-
whe direction. Similarly, the electric field, When acting alone, caused it to be drawn out West directiont. In extending in an east-andhoth fields acting at once, the line that was obshape was a curve; and from a study of the to be and position of this curve it was found locity, u, of the determine, separticles impinging, upone vegiven part of it, and the ratio $\frac{c}{m}$ for these sume particles. If it is assumed (in accordance with all the other evidence that we have) that e remains invariable, the data thus obtained negative relation between the mass, m, of a the particle is moving.
particle is moving.
The relation between speed and mass, as reFealed by these experiments, was very marked. (Whicli was about at the highest speed observed the apparent mass of per cent. of that of lightit) the apparent mass of a corpuscle was found to the same three times as great as the mass of Kaufmann's experiments provi
ceans of testing, to a certain extent, theorics of the constitution of the negative corpuscle, general nature for every theory concerning the ceneral nature of the corpuscle there will be a speed. This was of variation of mass with was, in fact, largely what led to the making of fee experiments to which we have just rewith, in A curious fact that has to be reckoned Servational data, is, that every negative-corpuscle theory yet proposed indicates that the mass of a body moving at high speed is a qucctor quantity ured in, that the mass of the body, as measured in the direction of the motion (i.c., the the mass of the same body as is different from angles to the direction of the motion (i.e., different from the so-called transversal mass) It is the transversal mass, as Abraham pointed ut in 1902, with which we have to deal in disIf R is the riments such as Kaufmann's.
neeative is the ratio that the speed of a given when the electrical bart to the specd of light of the corpuscle is part of the transversal mass part of the mass of this same corpuscle when t is at rest, then for $m \div m_{0}$ we have the folowing values for the respective theories of negative-corpuscle structure mentioned above: $\frac{3}{4} \cdot \frac{1}{R^{2}}\left\{\frac{1+R^{2}}{2 R} \cdot \log \left(\frac{1+R}{1-R}\right)-1\right\}$ for the Abraham theory; $\frac{1}{\left(1-R^{2}\right)^{1 / 3}}$ for the Lorentz theory; and

$\left.1-R^{2}\right)^{1 / 3}$ for the Bucherer-Langevin theory.

Stitution the several hypotheses as to the conly comparing these formulas with Kanf Kand Experimental these formulas with Kaufmann's rentz corpuscle, which is the (1) that the Lohree corpuscle, which is the only one of the vity, does not fit the data at all well; and (2) Well the experimental cvidence agrees quite Well with either the Abraham or the BuchererFrom corpuscle.
rom experiments of this nature we may
vol. $10-14$
obtain a certain amount of information with "regard to the proportion of "clectrical mass" to "real mass" in a corpuscle; for the experimental data reveal the law in accordance with which the total mass varies with speed, while corpuscle yields a formula showing meraly how the electrical part of the mass varies. If there is a "real mąss" to the corpuscle, we may thereore reasonably hope, by comparing experiment with good theory, definitely to solve this question of the quantitative relation between the original experiments were made, believed that they indicated that only a fraction of the total mass is electric ; but he had not then taken account of the difference (noted above) between ongitudinal and transversal mass. Later, when ue allowance was made for this difference, he all of the mass is electric: and there is a growing tendency among plyysicists not only to accept this view with regard to negative corpuscles, but also to generalize it broadly, and o assume (at least tentatively) that mass, herever of bodies, of electrified corpuscles moving with great speeds. This conception is as fascinating as it is revolutionary. Many of its advocates, however, overlook the fact that even if this should prove to be the case, we have "cxplained" mass only by shifting it to the ether,
which, at the same time, we should apparently have to conceive as a medium far denser than anything we know of, in the visible and tangible world of direct experience.
Before attempting to estimate the size of Before attempting to estimate the size of a
negative corpuscle, it is necessary clearly to understand that we have no way, as yet, to determine the dimensions of corpuscles, if we assume that the mass that they possess is only partially electrical and that the rest of it is mass in the usual or non-electrical sense. If, however, we assume that the mass is wholly of ate of the size of the casily obtain an estimate of the size of the corpuscle. The value upon the views that we hold with regard to the shape of the corpuscle; but if, for present purposes, we consider it to be spherical, the estimate of size obtaincd will probably be of the right general order of magnitude, even if the
spherical shape ultimately proves to be untenable, so far as concerns the relation of the ncgative corpuscle to phenomena in general. To obtain the desired estimate of size (i conformity with the assumptions here outlined) we may make use of the expression given by the electrical mass of a slowly-moving electri fied sphere. Thus if m is the mass of (stationary or slowly-moving) corpuscle in grammes, r its radius in centimeters and e its charge in absolute elcctromagnctic units, we have

$$
m=\frac{2}{3} \cdot \frac{e^{2}}{r}, \text { or } r=\frac{2}{3} \cdot \frac{e^{2}}{m}
$$

Hence, with the values given above for e and m, we have
$-\frac{2}{3} \cdot \frac{\left(1.592 \times 10-{ }^{20}\right)^{2}}{0.901 \times 10-27}=1.875 \times 100^{13}$ centimeters
In other words if $10,000,000,000,000$ negative
corpuscles were placed in a line and just touching one another, they would make a row about
an inch and a half long. (An equal number of oranges, each three inches in diameter and placed in a row in like minner, would reach from the sun to the orbit of Jupiter). Atoms
differ in size, but in a rough and general way it may be said that it would require something may be said neytit would require something straight line and in contact with one another, to reach across the diameter of an atom.
The corpuscular theory has developed marvelously in the last 15 years, and it has been applied, in one form or another, to the nomena, such as radiation, X-rays, radioactivity, and electrical and thermal conduction. It has also been pressed into service to explain
chemical affinity and valency and to elucidate the structure of atoms and molecules. It has modification of it will no doubt remain with us, as a permanent addition to outr physical theories. It should be recognized, however, that when, in discussing particles so exccedingly small, we apply the general physical and me-
chanical laws and principles that we have dechanical laws and principles that we have deof experience, we are very likcly committing a serious error - an crror which, though it will no doubt be corrected in the course of time, may be blinding us, meanwhile, to some very
large facts. Many of the "laws" that apply arge facts. Many of the "laws" that apply to larger masses of matter are probably statistical laws, due to the avcraging of many milally follow these laws. That the properties of the negative corpuscle are far different from those that we have herctofore assigned to "gross" matter is already sufficiently shown by what we have learned about the mass of such
corpuscles. In a general way, however, it may be said that we have made progress enough in the study of the negative corpuscle to have it become a real thing to us - or at least a symbol of a real thing; and J. J. Thomson has well said that althongh the negative corpuscle is a
recent discovery, we already know more about recent discovery, we already know more about
it than we do about the atom. Sec also Electricity; Molecular Theory; Radiation; Radoactivity.
Bibliography.-A creditable and interesting popular account of the negative corpuscle and its various relations is given in E. E. Fournier dal data thecrein given have now been latgely superseded by better values, as indicated in the present article. A more recent and more aucular theory to physical phenomena in general s given by I. P. Minton in a series of papcrs 1915 (Vol. XVIII. Consult also Thomson for 'The Corpuscular Theory of Matter,') 'The Conduction of Electricity through Gases) and
'Electricity and Matter'; Campbell, (Modern 'Electricity and Matter'; Campbell, 'Modern Electrical Theory'; Lodge, 'Electrons' ; Larmor, 'Aether and Matter'; Millikan, 'The Electron': Comstock and Truland, 'The (Mathematische Einführung in dic Elektronentheorie'. Abraham, 'Theorie der Elektrizität' (Vol. II').

Allan D. Risteen, Ph.D.

ELECTROOPTICS, a branch of elec trical science treating of th
tricity to light. Sce Light.
ELECTROPHORUS. See Electric Ma CHINE.

ELECTROPHOTO MICROGRAPHY, the art of photographing, by means of the electric light, cerlain objects magnified by the microscope.

ELECTROPHOTOGRAPHY. See Pho-
ELECTROPLATING, the art of plating or covering solid objects with a coating o metal by electro-deposition. This is the most for ornament, or copper or nickel plate, as for rendering an article more durable. Given
solution of the salts of a metal, say, for insolution of the salts of a metal, say, for
stance, sulphate of copper (the constituents of stance, sulphate of copper (the constuen
which are sulphuric acid and copper oxide), in
which are immersed a copper plate connected with the immersed a copper plate connectro motive force and a metal plate connected with he negative pole; when an electric current is passed through the solution an action takes place which may be described as follows: First
the salt is decomposed into sulphuric acid and oxide of copper. At the same time a portio oxide of copper. At the same time a portion
of the water of the solution is also decomposed setting frec hydrogen and oxygen. The oxygen of the oxide of copper is drawn to the negative pole, where it unites with a portion of the hydrogen just frced, forming water, and the metallic copper thus set free is deposited un
formly on the negative metal plate. Simul laneously with this action sulphuric acid and oxygen arrive at the positive plate, where the oxygen unites with a particle of the coppe plate, forming oxide of copper, with which the sulphuric combines, forming sulphate of cop
per; which process is continued as long a there is any motal left in the positive plate. For each atom of copper thus dissolved at the positive plate another is set free at the negative plate. Actions analogous to these underlie a electroplating and electrolyping operations. it is desired to deposit nickel, silver, gold or
other metal on the object, salts of those metals instead of copper will be used in the solution or bath, as it is termed.
Silver is the easiest metal to use in plating. onc ampere of current depositing 4.02 gratn of metal per hour ; with the same current copper
deposits 1.17 and nickel 1.09 grams per hour deposits 1.17 and nickel 1.09 grams per hour
If 10 baths are worked in series of cight hours day, depositing each 10 pounds of copper, they will require 4,830 amperes of current all the time; and with copper anodes the pressure wil be about 16 volts for the 10 baths.
The art of electroplating is extensively practised. The current for the decompositio of the electrolyte, in solution, is usually sup-
plied by continuous-current dynamo machines which are specially designed to give large cut rents at low electromotive force, rarely exceed ing thrce to five volts. Sufficient electromotive force must be provided to decompose the solution, but the amount of chemical decomposition
depends altogether on, and is proportional to depends altogether on, and is proportional to
the rate or amperage of the current. If too high electromotive force is employed the plating is uneven and granular. Storage or primary batteries may also be used for this purpose
and are so used for planting on a small scale. Much care and special knowledge is required to obtain the best results in electroplating. The process is begun by thoroughly cleaning, as by to remove scouring the article to be plated from its surface In ox the case for instance of gold, silver or nickel plating the bath or solu of employed by some electroplaters consists of 100 parts water, 10 of cyanide of potassium and 1 of the cyanide of gold, silver or nickel, metals are may bc. Plates of either of these pole, while suspended in the bath as the positive in the bath as the negative pole. When the plating has proceeded to the desired depth or hicheness the articles are taken out and burne desired. Such parts of the article as it may not or waxed to plate are covered with grease, oil plated they are first metallic articles are to be over whey are first given a coating of wax, ago, upon which the plating then takes place. SYSTECTROPNEUMATIC BLOCK biem. See Block Signal System.
ELECTROPOION, a mixture of sulphuric the liquid for batteries in which zinc and carbon are tive poles. Sce Electric Battery.

ELECTROPYROMETER. See PyromTER.
ELECTROSCOPE, an instrument for detecting or determining the presence of elecit is positive or negative. It has many forms, it which the simplest consists of pith balls canging from silk threads in a dry, closed glass
Cise. On contacting with an electrified body the on contacting with an electrified body oid piths are excited and swing apart. In the Vial stoppered with a cork, through the centre he vial. There is a brass knob at the top his rod and its lower end is bent or hooked to support a narrow strip of gold foil, which folded in equal lengths over the hook. When rubbed glass rod is brought near the brass ive electricity is repelled to the gold leaves, hich diverge by reason of the repulsion of the imilar clectricity on the leaves. To show the harged electricity with which the leaves are charged, or with which another body may be while yet the glass rod is near it. This allows he positive electricity to escape. When next he finger and then the rod are removed the leaf how, while the leaves leaves again diverge. If Ciectricity a negatively charged rod be brouglt hearicity, a negativcly charged rod be brought arther. If a positively charged rod is used negative electricity in the leaves is atracted and the leaves tend to collapse.
Electroscopes of this general type are now to the on account of their great susceptibility Ineasure the radioactivity of weakly radiating unstances like uranium and thorium, advantage eing taken of the ionizing properties of such substances by which the particles of gases become carriers of clectric charges proportional
to the radioactivity of the substances. For this purpose the gold leaf system is placed in metallic comection with the upper plate of a
small air condenser, on the lower plate of which is sprcad a layer of the radioactive material. A source of clectromotive force is material with the lower plate and the movement of the gold leaf is noted. As the rate and extent o this movement vary with the radioactivity of the substance, comparisons can be readily made of different substances or with a standard. See
Electrostatics; Electrometer
ELECTROSMELTING. See Electro-
ELECTROSTATICS, that branch of clec rical science dealing with electricity at rest, o static; opposed to electrodynamics, which deal with electricity as a force, in action. In the nomena produced by friction came to be called static electricity, and it has been convenient to retain the nomenclature, although it is recog nized that all divisional names of electricity are arbitrary, for in all of them we deal with the same unknown thing whose phenomena we ob-
serve largely through its high vibrations. The terms free electricity and almospheric electricity (q.v.) were formerly much used to describe the electricity which we recognize as resident in the air and clonds above us; but to-day the term
static electricity is the one most commonly static clcctricity is the one most commonly employed to describe that drawn from the at cumulates in a pile of printing paper which has been subjected to some frictional contact that causes the shects to adhcre to each other; or to electrification in a driving belt caused by some accidental rubbing in the course of it
The first discoveries regarding electricity were regarding its static qualities. In the handling of amber, which is a fossilized vegetable resin, it was found to display peculiar phenomena when rubbed, attracting light par ticles of matter. This phenomena came to be called electric, after Greck elektron, the nam similar yet opposite phenomena on being rubbed, and there arose the terms "vitreous" and "resinous" electricity, for the sort produced by rub bing glass or amber respectively, and which and negative electricity. It was also positived that there is always a balance maintained between positive and negative electricity, and that the development of a given amount of on means an equivalent amount of the other. Fo a fuller description of the development of knowledge regarding frictional electricity which we now cal static

An understanding of induction is essential to an appreciation of static electricity. Static in duction is the production of an electrical charge upon one body by another body that is statically
charged. It might be termed electrical influence

$$
\bigcirc_{a}^{+} \frac{-+}{b}
$$

If the circle a becomes charged by friction, so that it is positively and electrostatically
charged, as indicated by the sign + , then on being brought near to another body b, the near end of b will become negatively charged, as indicated by the minus sign - , and the far end
positively + . By touching b with the finger positively + . By touching b with the finger the electricity may be drawn off, or "earthed" or "grounded," passing through the body of
the toucher to the earth if he is not insulated. The electrophorus is the simplest device for illustrating this principle and is described under Electric Maciine. But it should be understood that the current producible by a static electric machine does not differ from that of and usually much less in quantity, being a primitive form of apparatus. From these early experiments it was demonstrated that every body positively charged repelled another body of positive charge; and any negatively charged body repelled another negatively charged body,
while attracting a positively charged body. It while attracting a positively charged body. It attraction and repulsion varied greatly when the bodies were exposed in some other medium than the ordinary atmospheric air. The word dielectric was coined to express the material modium in which a body statically charged was located, and the term has been extended by glass or mica. A static machine was sometimes termed a dielectric machinc, and the transmitting of electric forces by induction instead of conduction was dielectric; while the power of a dielectric to resist stress caused by induction across it, as measured by difference of potential
necessary to break through in a violent disruptive discharge, was denominated dielectric strength.
Referring again to the positively charged circle a, let it represent a sphere. The electric charges it has been determined by various experiments are on the outside surface of the
sphere and not inside. This is apparent in the case of a cylinder open at the ends through which something may be passed; and also in the transferring of a charge on a globe by enclosing it with larger hemispheres. If an electroscope be covered by a wire cage and or in actual contact without any disturbance of the sensitive mechanism of the instrument. The surface being the thing affected, it becomes apparent that if one wishes to increase the capacity of a conductor, as a trolley-wire, the simple way is to increase its surface, as by increased by filling the space through which the lines of force tend to pass with some dielectric other than air, as with petroleum, mica or glass, Large quantities of mica are so used in elecrical machinery
To measure the force of electricity obtained in primitive electric experiments a delicate inthe torsion balance, using a needle suspended at the centrc of its gravity by a very fine wire or silk thread, etc. A minute electrical force of repulsion allowed to operate against one end of the needle so as to twist the thread was therefore measurable as a mechanical force. and various other instruments. Experimenting with a torsion balance, Coulomb demonstrated that the transfer of statical electricity by in-
duction involved an expenditure of force, the orce varying inversely as the square of the See Electric Me centre of the bodies affectud ion Machine Machine - Static Electric Indw various static and Electrothlrapeutics, whe illustrated.
ELECTROTAXIS. See Electroculture of Plants.

ELECTROTHERAPEUTICS, or the science with the work of Duchennc of Bouogne. Working chicfly with a faradic curren he determined the motor points of the various muscles or the places upon the skin where th application of the current produces contrac tion of the individual muscles. And for a lot1 time the testing and treatment of paralyse rotherapeutist. The burning and sometimes fa tal effect of lightning had always been know and our countryman Benjamin Franklin ha charged a Leyden jar with electricity collecte from the clouds during a thunder storm. Frank Franklinic electricity was a clecticity is denomina Franklinic electricity, was among the first to ex
periment with the shocks and muscular contrac tions produced by static clectricity

One of the types of electricity employed in electrotherapeutics and electrodiagnosis Galvanic or Voltaic clectricity or the constan direct current. This is obtained from a voltaic hattery or from a storage battery, or from controlled) or from the alternating current electric light circuit employed to actuate a moto gencrator of direct current.
For various purposes the strength of the cur rent may be regulated in the case of a battery by selecting the proper number of cells, and by rheostats or variable resistances placed in he path of the current or by volt controllers. The latter regulate the voltage at the terminals applied to the body by offering the current a side path of variable resistance through whic a greater or less part of the current may pass
A milliamperemeter to show the strength current traversing the patient is essential. For many purposes the current should have such or such a strength; and for all kinds of electro diagnosis we must be able to determine the trength of current required to produce certa flexible insulated wires pass from the control table to electrodes in contact with the patient The simplest example is a flat metal disk cor ercd with fabric wet with a dilute solution of bicarbonate of sodium, preferable to salt whic iscolors the metal, and provided with an in sulated in an insulated handle: a carbon plate covered with a wet pad in a non-conducting tray partly filled with bicarbonate of sodium solution; a metal plate in an insulated bath tub of water; a metal sheet thickly cover with damp clay; or a bare metal cylinder whic may be grasped in the hand. The galvanic or
voltaic current is a bipolar application, passing through the patient's body between two separate electrodes, one the anode from the positive and the other the cathode from the negative pol of the battery or other generator. A switch
is essential for turning the current on or off. A pole changer alters the polarity of the clectrol table changing the connections at the condetector is a neccessary apparatus and a pole enient one contains a colorless liquid which changes to red at the negative terminal.
Effects of the Galvanic Current.-On does not effect is muscular contraction. This of the current, but at the moment of any great Variation in the strength of the current, as when If strong current is suddenly turned on or off zero current were gradually increased from tracio the same maximum, no muscular conelectrode would result. In electrodiagnosis on

of the motor ncuron itself. It occurs in poliomyclitis, labioglossopharyngeal paralysis, and paralysis accompanied by lesions of the motor
roots or of the motor nerves. In its complete form there is (1) abolition of galvanic and faradic excitability of the nerve; (2) aloolition of the faradic excitability of the muscle; (3) hyper or hypoexcitability of the muscle with or $\mathrm{Ca} \mathrm{C} \mathrm{C} \mathrm{inversion} \mathrm{of} \mathrm{the} \mathrm{normal} \mathrm{formula}$, contracture exceed's the anode, positive, closure contracture) but the muscular contraction is slow instead of the normal sharp jerk. The presence of the reaction of degeneration shows what nerves are affected and to what extent progress toward recovery of voluntary muscuprogress lar power.

The anditory reactions to the appliand important micans of the diagnosis of lesions in the labyrinth of the ear For example, one of the normal re-
actions is oltained when an electrode is placed in front of the tragus of each ear and a galvanic current is applied The patient feels dizzy and the outside world secms to be moving toward the cathode and the head is inclined toward the anode. He may see sparks bcfore and if the current is quite strong there is nystagmus or oscillation of the eyeballs.
A scnsation of taste accompanies any application inside the mouth and often applications to other parts of the face. well known but suitable galvanic currents are so weak that the sensation of warmth or even the reddening of the skim in contact with the electrode is usually due to elcctrolysis and not to the frictional resistance to the passage
of the current. Very heavy galvanic currents of over 100 milliamperes, applied inside the uterus in the Apostoli
treatment for fibroid tumors, did protreatment for fibroid tumors, did pro duce a great deal of heat but treatment by radiotherapy (X-ray and radium) is
now more usual. W more ustual

Fig.
which are connected with both poles of the battery so that no current passes through the patient, are arranged so owing to the past becomes of a hed hot under examination The other active, electrode current through a thin metal strip in the same is applied to the skin either over the nerve a he place where the nerve is nearest the surace, or over the muscle at the place where the Dlace nerve citers the muscle. These two and muscealled the motor points for the nerve application of electricity is most effective in pioducing muscular contraction. Figure 1 from a standard text-book is a chart of the motor oints in the arm and is used as a guide in elec rodiagnosis or treatment. The threshold of excitability is the weakest strength of current Which when suddenly turned on or off will cause cration contraction. The reaction of degenand indicates a degencration in the substance
current through a thin metal strip int the same
way that the filament in an electric light hulb is heated by the passage of the current. Only the portion which is to be applied to the diseased surface bccomes appreciably hot because the conducting wires are larger and capahle of transmitting the current womocess resistance in the treatment of growths in the nose and larynx.
Electrolysis is an effect of the passage of constant current through an electrolyte such as the human body. A chemical compound such as water is separated into its elements such as hydrogen and oxygen, and in the case of the drate and a liberation of oxygen take place a
the negative electrode and an accumulation of hydrochloric acid and a liberation of oxygen at the point of contact with the positive clectrode. If the negative clectrode is a fine needle four milliamperes causes a liquefaction of the tissues and loosening of the hair, the root of which may be permanently killed. A needle connected with the positive pole of the battery would stick fast and could not be withdrawn until a negative current had been turned on for a short time to loosen it by liquefying the
tissue around it. The anodal needle has coagulating effect. Electrolysis is employed also for the destruction of warts, birth-marks and keloids, in the treatment of strictures of the urethra and oesophagus and such lesions as nthrax.
most of these cases the "indifferent" electrode is a sponge electrode held in the destruction of tissuc, needles connected with each pole of the gencrator are used and the needles are near enough together for all the intervening tissue to be destroyed. Rhymoved in this way
Iontophoresis,
Anaphoresis. - A including Cataphoresis and separate the electrode itse current tends to with which it is moistened or the solution carry these into the tissues, iontophoresis. Metals and alkalis are carried toward the tegative electrode or cathode and the introduccalled cataphoresis. For example the positive electrode may be moistened with a solution of a cocaine salt and the cocaine will penctrate the
tissues; they leave the anode and pass toward the cathode but their anesthetic effect is upon he tissues into which they first penetrate.
Some of those who have experimented most liable way of administering many drugs, than giving them either by the stomach or hypodermically. Two rabbits were experimented upon by Leduc, as in Fig. 2. Rabbit A died with symptoms of strychnine and rabbit B of

Fig. 2.
cyanide poisoning. Two other rabbits were subjected to the same experiment except that the direction of the current was reversed so that the strychnine ions did not tend to enter ralbbit A, nor the cyanions the rabbit B, and neither as poisoned.
Another example of cataphoresis is electric teeth. The positive active electrode may be a zinc needle moistened with a solution of a zinc salt. The method is employed to remove infection from the root canal and the area of the jaw around the apex of the root.
Very extensive destruction of cancerous
issue is accomplished by the introduction of metallic ions from large the inc needluction of
mated with mercury and connected with the positive pole while the patient lies upon the arge indifierent negative clectrode.
Anaphoresis or the introduction of acid radicals which the current carries toward the
anode, is illustrated by the introduction of salicylic ions from a cathode wet with a solution of sodium salicylate, in rheumatism and neuralgia.
The old theory about the use of electricity in paralysis was that the involuntary contractions produced by the abrupt makes and break shall see later by the faradic current tended to maintain the nutrition of the paralysed muscles until regeneration of the nerve took place. Certainly the patient and friends could sce that something was happening during the application. It is doubtful whether the con paralysis it is thought that the contracture or permanent shortening of some muscles, difficult or impossible to overcome by manipulation, may be aggravated by electrical treatment of a nature to produce marked muscular movements a tendency to maintain the nutrition of the muscles and to aid in the regeneration of the nerves. And by means of the apparatus Fig. 3, a galvanic current sufficiently strong to produce the maximum beneffit may be applicd without the disadvantage of electrolysis and specially without any noticeable muscular contractions.

This current is a slow sinusoidal current or a rythmically varied galvanic current increasing from zero to a certain maximum, 18 or 20 milliampercs in one direction; then gradually de gradually increasing to 18 or 20 milliamperes; then gradually decreasing to zero where the polarity again changes. About 25 such cycle occur cach minute under the influence of a variable rheostat and pole changer actuated by ann clectric motor. This type of current is use and also as a general tonic in many debilitated conditions and also in cases with vertigo from affections of the cerebral or cerebellar circulation.

Another effect of the galvanic current is to
imulate the secretion of glands. Another is stimulate the secretion of glands. Another is of a sensory nerve. By its sclerolytic effect it aids in the treatment of pleuritic adhesions and of anchylosis or joints stiffened hy some previ ous inflammatory condition. Galvanic electricity has a sedative or calming effect valualle often best produced by hydroelectric baths. Its analgesic effect makes it valuable in the treatment of neuritis and neuralgia.
Faradic electricity is made up of alternating currents induced in a coil with many turns o insulated wire surrounding a coil with few
turns of wire through which rapidly made and broken hy a vibrating inter rupter. The faradic current is of very small electrical quantity as measured by its heating effect. A couple of dry cells may supply the current for a portable faradic coil hut for an office equipment the electric light circuit suitably controlled is best because it does not re-
quire renewal and affords also power for the gavanic, galvanofaradic and sinusoidal cur-
rents. It produces marked muscular contraction of produces marked muscular contrac entire a tetanic type contings during the at the beginning and end as with a galvanic current. Two
the faradic elctrodes are necessary for applying indifferent place. And in contrast with the galvanic current there is usually no difference effect of the two clectrodes, practically

Sinusoidal Apparatus, gradually and rythmically changing the polarity and strength of a galvanic current. muscle or nerve is an important part o clectrodiagnosis, but, as explained above, the reatment of paralysis through involuntary lation is not always best. Faradic currents rom a secondary coil with a comparatively mall number of turns and a slowly vibrating muscupter, are more effective in producing muscular contractions, and a great many turns of wire in the coil and very rapid interruption neuralgic nerves.
There are several other effects of faradic debility from any cause. As an excito-motor
the Bergonie method is used for the treatment of obesity by producing marked muscular contractions without any effort on the part of the patient. Straps or weights prevert excensory stimulant it is used in sensory paralysis. It stimulates the secretion of glands. It is revulsive or counterirritant in the later stages of inflammatory processes. Lumbago may be treated by applying faradic electricity with a
dry wire brush electrode. It is excito-nutritive and tonic as a hydroelectric bath, in such discases as gout, diabetes, obesity, neurasthenia, convalescence from a long illness, and muscular atrophies. And the same baths are useful in combating various toxæmias. It may be used as a sedative.

The same conducting cords and electrodes may transmit to the patient a combination of De Watteville or galvano-faradic current.
Galvano-faradic or De Watteville currents are applied by connecting a faradic and a galvanic apparatus in series with a conducting cord leading from one pole of cach to the different is in the trealment of spasmodic constipation. Large electrodes are over the abdomen and back; the faradic coil has many turns and the interruptions are rapid, producing very slight muscular contractions; and the galvanic current is quite a strong one, perhaps 30 milliamperes. Sinusoidal currents are so called because the sents time and up or down motion represents strength and direction of the current makes a sine wave. In effect it is an alternating current varying gradually as described in one of the gradual alternations may be of any desired number uo to 1,800 per minute. The alternating electric light current is a sinusoidal current of 1,800 cycles per minute and controlled by a suitable rheostat it can be used for treatment. The apparatus previously referred to and shown in Fig. 2 is used for changing the direct to a sinusoidal current of from 12 to 120 alterna-
tions per minute. It is useful as a local and general tonic application in a wide range of chronic general and local disease characterized by debility, congestion, motor atony and pain. It is applied from the s
as the galvanic current.
the galvanic current.
Static Electricity.--Lightning is an example of a discharge of static electricity and so is the spark which we produce by shuffling our feet on the woolen carpet as we cross the room in winter and then touch another person or a metallic object. A charge of static electricity upon a hard rubher comb rubbed over our hair
or over wool or fur causes the comb to attract or over wool light objects to it. By suitable means any object may be given either a positive or a negative static charge. Similar charges repe each other and unlike charges attract, and if the charged bodies are light and freely move able, they will come together in the latter case and the two charges be more or less completely
neutralized with an accompanying discharge which would be a loud spark between two large metal balls, or a silent and almost invisible brush discharge between two sharp metal points Static electricity is of small quantity but of
such high voltage that it tends to escape from a charged body; in fact no body can be charged densers are sheets of metal insulated. Con contact with each other by sheets of glass or some other insulating material. One metal shee is charged from one pole of a static machine and the other is charged from the other pole Owing to the great attraction which charges of ther, tho opposite polarities have for each receive a much greater charge than it could contain separately. And if both are disconnected from the source of electricity the two opposite charges are actually self retaining, so that either can be touched by a conductor without losing its charge; but if a person touches both of the metal coatings at one time he reor more square inches of condensing surface are charged with a very small quantity of high tension electricity from a static machine and their discharge is used in electrotherapy under the name of the static induced current. A single electrode passes to the patient from the outer connected with one pole of the static machine. The outer coating of the Leyden jar at the other pole is grounded (has a metallic connection with the earth). The patient need not be insulated. The distance between the discharging the degree of effect voltage and consequently separation of the discharging rods makes the static induced current suitable only for the application of sparks which are powerfully stimuant to buth striated and smooth muscles and o all other tissues
Condensers having a great many square inches of condensing surface interleaved like a galvanic battery. They receive a very large charge at a low voltage; and when they are discharged through the human body they procapacity of the condenser and the voltage to ension condenser disch be regurm a very exact means of electrodiagnosis. They may be used for treatment chiefly of paralysis, and for some of the same purposes as the static induced current. The modern static machine, also called an duced by friction upon a revolving glass plateduced by friction upon a revolving glass plate.
This is communicated to other glass or mica or fibre plates arranged in such a manner that as they revolve the mutual attractions of positive and negative static charges separated by insulating disks, result in the accumulation of very strong charges at the two poles of the machine. plied by connecting one pole of the machine with an insulated platform upon which the patient is seated. A static breeze is a silent, almost invisible discharge from a metal crown with sharp points connected with one pole of the machine, suspended within 6 or 12 inches
of the patient. The effect is increased if at the same time the patient is insulated and receiving a static bath from the other pole of the machine. Static sparks are applied by bringing near any part of the patient, cither clothed or not, a metal ball having an insulating handle
and connected by a flexible conductor with on pole of the machine. Here, again, the effect 15 intensified if the patient is insulated and receiv
ing a static bath from the other pole. ing a static bath from the other pole.
another paragraph. The Morton wave current is a bipolar application from the two poles of the machine by
two wet electrodes which make a very perfect two wet electrodes which make a very perfect
contact with the patient to avoid any spark effect. The patient had better be upon an insulated platiorm. The discharging rods of the The greater their distance, the more powerful and even intolerable the effect becomes.

Every possible connection with and witholt
den Leyden jars has been used in treatment. They all have distinctive names but the arrangemen

Effects of Static
Effects of Static Electricity.-A single spark produces a muscular contraction and agreeable. It is applied by striking at but no touching the patient with the insulated meta ball and quickly withdrawing it; somewhat the motion of cracking a whip. A dozen separat received by the most sensitive patient. But it is a very different matter when the ball clec trode is held near the skin and a steady stream of sparks is applied at one place. That is intolerable. Static sparks are used as a general tonic in debilitated states and as a counter products. They are not suitable for electro diagnosis or for the treatment of paralysi The static bath is a general tonic in debilitate states including convalescence from illness or operation and exhaustion from the care and one. It is excellent in neurasthenia and in insomnia. It is frequently combined with the static head breeze, and, except for insomnia, with the application of sparks along the spine The static induced current has effects simila those of the wave current but less useful
Morton's wave current produces a succession f muscular contractions which succession slight. It is of value in relieving hyperemia and wolling and pain, and is used in the treatmen of a great many chronic conditions in whic these are prominent symptoms
High Frequency Currents. - When a consurfaces, the result is not an immediate chang to an uncharged condition in each metal suracc. Taking the surface that was positivel charged we find that its charge drops not onl o zero but to a certain distance on the nega ive side then back to zero and a certain lesse distance in a positive direction and so through a second it comes to rest at zero. The oscilla hons are analogous to the vibrations of a piano wire after being pulled out of a straight line and released. The static induced current is the simplest example of a high frequency curren
but the discovery of the D'Arsonval curren and of the resonator current has lately added a method of wonderful value
The D'Arsonval current may be obtained former, capable of producing sparks four to
conht or more inches long. The two poles are den jars whose outer coatings of two Leywith the extremities of a solenoid or connected stiral of perhaps 20 turns of coarse wire about $1 / 2$ inch apart. Conducting cords lead to the palent from each of the extremitics of the apmarad or from any two turns of it. The Datient is but not its connection with the
The inner similar to that shown in Fig. 4.
are oppositely charged and are connected with the terminals of a spark gap of adjustable shorth or preferably, an adjustable number of short spark gaps in serics. With each impulse from the induction coil, the Levden jars are their inner such an extent that a discharge of gap. This releases occurs through the spark outer coatings of the opposite charges in the their high frequency discharge passes partly paralle the solenoid and partly through the parallel path formed by the patient's body. Charge would suppose that with each disaingost all pass through the solenoid which is a relatively short length of thin wire whose esistance measured in ohms is trifling comhared with that of the human body. There is rawever, a counter-electromotive force gene-
rated in a coil of wirc at the making of the rated in a coil of wirc at the making of the
current which adds a great inductive resistance to the passage of the current and increases enormolisly the percentage of the current which Will pass through any other path open to it. measured by passing through the patient may be measured by a hot wire milliamperemeter and
may be all the way from 50 to 1,000 or more may be all the way from 50 to 1,000 or more
milliamperes. It is also a current of much higher voltage than the a current of much that it docs not cause muscular contraction fact shock of any kind is due to its very rapid The ciliations, a million or more per second. The motor nerves respond actively to alternainert in the 20,00 or 3,000 per second but are 5,000 in the presence of much higher than haracter of the current prevents the electrolysis which would render a constant curent of 1,000 milliamperes intolerable. One sonval effect of the passage of the D'Ardinction current through the tissues is the prodiction of heat in the tissues themselves by production of heat by a current passing through a galvano-cautery wire or through the filament of an electric light bulh. Whether all the other effects are due to this generation of heat
or whether some are due to direct stimulation of whether some are due to direct stimulation themselvses cells, is uncertain but the effects
are of the greatest value in therapeutics. D'Arsonval high frequency currents of moderate milliampercage may be apelectrodes: two wet electrodes or hy bare meta Diass vacuum bulb or by autocondensation. ration) (or less properly called thermopeneCurion) is simply a D'Arsonval high frequency corisent of very great milliampercage tending the tissues. Two metal electrodes may be apred to a piece of raw meat and after the curfont has passed through for some time, the
meat will be found to be cooked all the way through. The electrodes themselves do no
become too warm to be touched by the fingerare not warm at all until contact is made with the meat. This is the underlving principle of he Deforest Cold Cautery which is suited to all the purposes of a hot metal cautery.

Diathermy may be applied by two wet elec trodes, for itristance at opposite sides of a joint for producing a local effect. Or it may be used of Autocondensation. One conducting wir passes to a very large metal surface close to the patient's body but scparatcd from it by a nonconductor The patient may hold one or more metal terminals from the other pole of he D'Arsonval apparatus or may be in close proximity to a second insulated surface charged from the other pole. During the application currents of hish frequency, medium tensio nd high milliampercage (about 1,000) surg produces very little sensation excent a slight warmth and no shock or muscular contraction. The metal terminal must, however, be grasped before the current is turned on and not re eased during the flow of the current. Othe ceedingly hot sparks.
High Frequency
he Oudin resonator Resonator Discharges. apparatus for this purpose. The outer coat of ne of the two Leyden jars is connected with the end of a wire spiral and the outer coat of the other with some part of the spiral hetween
its two ends. With each discharge of the Leyden jars, a current passes through the turns of the spiral between the two connections and his induces a current passing toward the free end of the spiral and increasing in voltage until from its terminal a long spark or a viole colored effluve may be drawn; or a glas. vacuum electrode may be used to apoly this
high tension high frequency current. The application is a unipolar one. When the vacuum ectrode is held near the surface of the hody shower of sparks passes to the skin and this may be more or less disagreeable. This spark frect is largely avoided by kecping the electrode tiny sparks may be seen passing from parts he bulb not in close contact with the skin These are not disagrceable. A sensation of
warmth is produced and the entire glass vacuum tube becomes heated in proportion to the glass stem where the current enters from the insulated handle and the surface in contact with the patient are hotter than other parts of the electrode. The bulb is filled with a violet and ultraviolet light. The latter is invisible but its presence is easily demonstrated by
fluoresence induced in Willemite. It doubtless fluoresence induced in Willemite. It doubtless
is partly concerned in the effect produced upon is partly co
the tissues.

Fig. 5.-High frequency Resonator.
High frequency currents have little or no tendency to produce muscular contraction and are not used for electrodiagnosis. The spark
effect is useful as a gencral tonic, to stimulate effect is useful as a gencral tonic, to stimulate
sensory nerves, to cause constriction of blood vesscls locally and vasodilitation generally. Sparks applicd from a metal point held close to the surface have a counterirritant or a destructive effect depending upon the strength of the current and the length of time sparks are applied to one spot without intermission.
D'Arsonval currents, locally, raise the temperature and increase the circulation, increase the activity of glands and are a sellative. Altocondensation increases the production of heat in the body, increascs the urinary solids and acts as a sedative. And especially it reduces the blood prcssure when that is unnaturally high. The vacuum electrode actuated by the Oudin resonator has the effect of heating the tissues
and promoting cellular activity of every kind as well as increasing local circulation. It is a counterirritant when the current is strong or is so regulated as to nroduce considerable spark effect even with the electrode in contact with the surface. In this case its general effect is
stimulating; hut with the current adjusted to produce very lit1le spark effect and a great deal of warmth from the vacuum electrode in contact with the skin it has a serlative effect, and ends to reduce umatural high blood pressure. Some of the conditions treated by high frequency applications are growths varying eases including acne; high blood pressure and
arteriosclerosis or hardening of the arteries; rheumatism; gout; neuritis and neuralgia angina pectoris; hemorrhoids.
(Cyclopediaphy.-Consult Gould and Pyle, Cyclopedia of Medicine) (Philadelphia
Guilleminot,
(Electricity in Medicine)
(New York 1906) ; Jones, 'Medical Electricity' (6th ed., Philadelphia 1913); Martin, 'Practical Electro-therapeutics) (Saint Louis 1912); Neiswanger, 'Electro-therapcutical Practice' (181h Med., Chicago 1912) ; Rockwell, (Electricity in Medicine' (New York 1904); Tousey, S'; (Philadelphia 1910, 1915).

Sinclair Tousey, M.D.
ELECTRONIC STATE, a term invented by Farallay (q.v.) to designate the total magnetic flux duc to a conductor conveying current, which inked with any secondary cir-
cuit in the ficld or even with itself. By careful experiment he proved that electromotive forces set up in conductors by the induction of othe currents in the field were caused by the cutting
nes of the secondary circiut. Sce Electricis
ELECTROTHERMAL PROCESS, the tcrm applicd to electrometallurgic operations in which electricity is employed solely as a heating agent, to distinguish them from elcetrolytic as the manufacture of calcium carbide, the mixturc of substances is raised by the electric current to the temperature at which the chemical reaction desired will take place. In other electrothermal processes the heat is applied to produce molecular or physical changes, as in
the manufacture of graphice from gas-carbon or coke. The continuons current only can be nsed in electrolytic work, whercas an alternating current is also available in electrothermal
ork. Sce Electrometallurgy.
ELECTROTROPISM. The sensitivencss of plants to cultivation by

ELECTROTINT, a method of tracing drawings, etc., for printing, by the action oi drawn in some varnish not affected by acid and placed in an electro-bath, the lines being thus rought out in relief.
ELECTROTYPE, a metallic copy, made engraving, etc., and manufactured into a proper shape for printing. Wax is heated in a kettle poured out on a molding-case and placed in a press to rcceive a reverse impression of the mold is covered with The face of the wa conducting surface to which the metal will adhere. The negative pole of a battery is attached to the mold and the positive to a piece o copper (or occasionally nickel or iron) and both are placed in a bath of sulphate of copper in of the mold in a thin film, which on the face thickness as the process continues. The shel having attained the thickness of a stout sheet of paper the mold is removed from the bath the shell detached and strengthened by a backing of electrotype metal, this being a composition of lead, tin and perhaps a little antimony. The
on metal surface and a sheet of tin foil melted to the back, after which the backing meta ing, the on in a molten condition. After cool shaver, trimmer electrotype plate goes to a planer, form for printing. Later it is remounted on a ase of wood or metal to bring it to the same whit as type, that it may be printed in a form type; or sometimes the plate is curved in details of machinc for rotary printing. For Rochemistry. When the employed, sce Elec aced with nickel it is sometimes called nickelme, or if with iron, steeltype. The electrotype te has almost wholly superseded the stereoyne for book and miscellaneous printing, ewspaner stercotype is retained for rotary
EI
Greek and nature of which writers, with regard to the ion. The term was used with different mean ans; it originally meant gold, and was then pities specially to native gold, containing quanerm of silver, copper and other metals. The ferred to the artificial alloy of gold and silver fterward made, and was also applied to ambe account of its color and inferior lustre. The and H alloy occurring in Placer County, Cal. and Humboldt and Nye counties, Nev., con ing about 40 per cent of silver. It is the prin County, Nev in the ore at National, Humbold

ELEGY, properly, a poem of mourning the term to denote a poem written in elegiac crse, whatever its character. This elegiac vers as the distich, consisting of the hexameter tus, Tibug with pentameter. Catullus, Proper elegiac style and Ovid were masters of the is usually applied to any serious picce in which in Cof melancholy pervades the sentiments, a Gray's 'Elegy Written in a Country Church ard or In music, the term is used to denote Poetry suppressed theme. See Poetry; Lyric
ELEGY WRITTEN IN A COUNTRY often said to be the a poem by Thomas Gray, in the language. It is thought to have been cun at Stoke-Poges in 1742 , resumed a Junc ridge in 1749 and finished at Stoke in cope of the next year. Gray at once sent a showed it about. Early in February 1751 the Det received a letter from the editor of a Grazine announcing the intention to print it. its publicaupon through Walpole arranged for success pation by Dodsley on 16 Feb. 1751. Its published in instantancous. Eleven editions were made into Latin and into numerous moder gevages, and parodies and imitations flooded ine world. Subscquent reprintings, especially in anthologies, have secured for it an enormous disparion, and, although it has not escaped the hackneyed, it has totained an unparalled hold upon purd, it has retained an unparalled hold Who should attempt to deny classic rank to Gray and his best-known poem,

Three copies exist in Gray's handwriting, and a study of the readings and the suppressed stanzas, as well as of the poct's borrowings from
himself and others, is a valuable exercise for himself and others, is a valuable extent of poetic style. Owing to the almost flawless felicity of the diction and to the admirable fitness of the pentameter quatrain to the purposes for which it was employed, there are but few of the 32 stanzas that do not yield some memorable phrase or line, many of which have bccome stock quotations, such as "Far from the madding crowd's ignoble strife."

As has been intimated, the 'Elegy,' through its own popularity due to its own excellence, has contributed to its own decline in favor among those exigent persons whaise what the masses like. A moment's thought, however, should convince even the most fastidious that the masses are right. The 'Elegy' is not profound, or subtle, or exceptionally imaginative, or full of ravishing surprises in phrase and cadence. Had it been it would have failed of its purpose the thoughts and feelings common to humanity in the presence of death and its monuments. The 'Elegy' is popular because the honest critic will confess that he could not improve if he would and because the average reade has never thought it needed improvement. It choly as the world can show, and if all it predecessors and successors in the so-called churchyard poetry were lost and it alone preserved it would suffice to voice practically all the pertinent reflections and emotions connccted with "the great leveller." Consult editions of Phelps, etc. Wulum P TRENT

ELEMENT, in chemistry, a primary substance that cannot be decomposed as may different substances now admitted by chemists to be elements, together with those which are tentatively assumed to be so, unti further evidence 1918) accumulated, numbe (1918) 82 . They are aluminum, antimony, boron, bromine, cadmium, cæsium, calcium, car bon, cerium, chlorine, chromium, cobalt, copper dysprosium, erbium, europium, fuorine, gado linium, gallium, germanium, gold, helium, hol mium, hydrogen, indium, iodine, iridium, iron, magnesium, manganese, mercury, molybdenum neodymium, neon, nickel, niobium, niton, nitro gen, osmium, oxygen, palladium, phosphorus, platinum, potassium, prascodymium, radium rhodium, rubidium, ruthenium, samarium, scandium, selcnium, silicon, silver, sodium, stron-
tium, sulphur, tantalum, tellurim, terbium thallium, thorium, thulium, tin, titanium, tung sten, uranium, vanadium, xenon, ytterbium yttrium, zinc and zirconium. Whether any o these apparently elementary substances will he proved to be in reality compounds cannot definitely foretold. The most that can he said
is that un to the present time no force has been brought to hear on them sufficient to disenpt the atomic attraction which holds each in its individual form, Much speculation has been
indulged in concerning the fundamental structural differences that subsist between the atoms of the difterent clements, but no universally account for the fact that the thousands of compounds that have been studied are all composed of so small a number of essentially different constituents. The alchemists believed that every apparent "element" can be modified, or "transmuted," "nto every other one, and much labor baser metals into the "nobler" or more valuable ones. We now know that the problem of transmutation, if it is capable of solution at all is at any rate far more serious than it was believed to be in the early history of chemistry But there are numcrous indications which sugare now accepted as elements, and it may yet prove to be possible to transform lead into gold, or tin into platinum. For some years past Sir William Crookes has been a consistent advocate of the theory which teaches that all matter is fundamentally the same, and he resolved, by fractionation, into substances which exhibit spectra that differ from one another in a marked manner, any two consecutive members of the series showing close similarity in their spectra, while the extreme members of the series
are totally dissimilar. (Consult his lecture beare totally dissimilar. (Consult his lecture be-
fore the Berlin Congress of Applied Chemistry, entitled 'Modern Views on Matter,' in Science for 26 June 1903). The theory of matter which is in favor at the present writing teaches that all atoms are composed of electrons (q.v.), which are all alike, but which are grouped together in various ways, and in various numbers,
to form the atoms of the elements. If this vicw stands the test of further research the possibility of transmuting the elements into one another may not be altogether fanciful. The element radium (q.v.), which appears to possess the singular power of continuously emitting
strcams of free electrons, occurs in nature in strcams of free electrons, occurs in nature in
certain varieties of the mineral uraninite. It is notable that the inert gas helium ((q.v.) also occurs in this same mineral, though it appears to be present in the free state and never in actual chemical combination. It has been suggested that we are here face to face with a real
case of transmutation of elements, the electrons that are emitted by the radium being slowly built up, within the uraninite, into new systems, which are nothing less than atoms of helium. See Moifcular Theory; Perrodic Law; Radiation ; Radium.
ELEMENTAL SPIRITS, beings who, according to the popular belief of the Middle
Ages, presided over the four elements, living Ages, presided over the four elements, living
in and ruling them. The elemental spirits of in and ruling them. The elemental spirits of
fire were called salamanders; those of water, undines; those of the air, sylphs; and those of the carth, gnomes. Paracelsus wrote a treatise n1pon them, and
Rape of the Lock

ELEMENTS, Conscious. As is the case with any other process of analysis, the analysis of experience must disclose certain component ences are built, and thesc are called conscious elements. It is by no means obvious that the psychical fragments which form the elements
in the psychology of the present day are not subject to further fragmentation, nor, for the matter of that, that there are any conscious elements whatever insusceptible to further frag-
mentation. Furthermore, the subdivision of an experience into its elements does not exhaust its analysis any more than the analysis of a mosaic is exhausted by an enumeration of the constituent bits of stone. Just as the arrangement of the constituent bits of stone is the really constituent bits of experience is the vital part of a mental state. The tentative character of conscious elements and the inadequacy of a psychology which confines itself to cataloguing them are all but entirely overlooked by perhaps the majority of experimental psychologists.
The general consensus of The general consensus of opinion among psychologists is that the structural elements -
the items - out of which experience at any one moment is built are sensations and affections (qq.v.), and these alone. In deternining what constitutes a single sensation, our knowledge of the physiological processes of the sense-organs dicted by introspection, as in the case of the sensation of a color, which does not show upon introspection the division into separate ligit and color processes which is indicated by its physiology.
nature of the simple psychological functions or nature of the simple psychological functions, or
temporal sequences of psychological units. Stout assumcs that the simple processes are cognition i.e., sentience, simple apprehension, and belief and will-i.e., hedonic tone and desire or aversion. Brentano separates ideation or awareness frotn helief. Wundt regards all experiof impulie, which involves both sensory and affective factors. Consult Brentano, 'Psychologie') (Leipzig 1874); Stout, 'Analytic Psychology' (London 1896); Titchener, (An Outline
of Psychology' (New York 1907) ; Wundt, of Psychology' (New York 1907) ; Wundt,
'Grundriss der Psychologie) (Leipzig 897); id., 'Physiologische Psychologie' (ib. 1902-03).

ELEMI, as commercially used at the presrium luzonicum of the Philippine Islands, also known as "Manila elemi." As found in the market it has the appearance of old honey, due to admixture with extraneous material, but when It is a mixture of and has a pleasing fragrancc. It is a mixture of resin with a volatile oil, the phous and compound, part (61 per cent) amor phous and part (25 per cent) crystalline; the
latter known by the specific name, amyrin. The amorphous resin dissolves in cold alcohol ; the crystalline only in hot alcohol. The hard clem1, most abundant in the West Indies, is obtained rom species of Bursera, and is cither yellowish or greenish, sometimes opaque and sonctiler-
translucent, has a fatty lustre, is easily pulver ized and very fusible. It is heavier than water, in which it is insoluble, although it is readily dissolved in cither turpentine or alcohol. The Oriental elemi of ancient times was the Africa elemi, an extract of Boswellia Frereana or Sal liriopis balsamifcra. The Mauritius varicty part of the elemi of commerce is produced from trees of different genera of the same famil growing in tropical America. Brazilian clemi

Or anime, is the product of Hymencea Courtherce, is the product of Amyris phomieri. It Was formerly the base of a highly valued lacquer. Elemi is a regular constituent of spirit varnishes, and the Manila kind is used in plasters and ointments, and in the preparation of countain high grade printing inks. In Eastern irinciple is is also used as incense. Its active
ELEPHANT, the largest of living land the failu species of which constitute boscidea Elephantida, of the sub-order ProEvelephas The better-known species (Elephas or India; while the other species (Elephas or Lofodon africanus) is found in the forests of ${ }^{\text {Afica. }}$
he elephant is a huge, ungainly creature four short, columnar heavs the hinder mounted on ing like knees when he lies down, as he doubles them behind, and not under him; his tail is hair and tapered, ending in a bunch of coarse quite otherwise the wrinkled bluish-gray hide is lous ears, small eyes and arge, with big pendulous ears, small eyes, and a nose, prolonged
into a proboscis or "trunk," which reaches to the ground when he stands erect. The average male elephant is 8 or 10 feet high, and weighs Aive tons or more. There is a pigmy race of the African elephant, however, found in the Kongo, The in not over seven feet in height. longed into tusks, which are, however, less tseful to him, as weapons, than is his trunk. This organ enables the animal to Dick up things from the ground, and to
reach fruits or leaves many feet above his head, reach fruits or leaves many feet above his head,
and it also conveys water to the mouth. Inded, ${ }^{80}$ great is the tactile sense of this singularly hand. It is also its owner's chief weapon of offense and defense; for with it he can catch and Crush a man with ease, or hurl aside the tiger. for the trunks are rudimentary, to give room trunk demand a The powerful muscles of the ment, and accordingly the skull is very large, and yet is prevented from being excessively twey by the presence of large air spaces between the inner and outer tables. The end of the trunk forms a prehensile organ with two The tusks are not present in all elephants, and vary much in size. They lack all coating of enamel. The digestive system is typical of that of the herbivorous animals in general, except for the long, narrow form of the stomach, and for peculiar muscle attached to the gullet, which
renders regurgitation of water possible. The female regurgitation of water possible. The Cestation lasts two years, and the young are fuckled for two ycars more. The age which size; for captive specimens have been known to in a hundred years, and scientists believe that, ${ }^{\mathrm{m}}$ a wild state, it may live many years longer. Ine Indian elephant (Elephas asiaticus) differs longer head with concave forehead and smaller cyes; in this species, also, the hind feet are often five-hoofed, whereas in the African
they are never more than four-hoofed, though five digits are always present in both limbs. Though the two species present some differences
as to dentition, the special peculiarity in the structure of the molars is common to both. These teeth are of great size, and are formed of vertical plates of dental bone, separately covered with enamel, and welded together by a number of teeth, cemented together. In both species, also, there are no canine teeth, and no incisors in the lower jaw; while the incisors of the upper jaw are devcloped into tusks, often
weighing 150 to 200 pounds each. These tusks furnish the ivory (q.v.) which is so much escemed for ornamental purposes. The Indian clephant for thousands of years has been the
servant of man. From the earliest ages he has borne the Oriental warrior into battle, has hauled his stores and ammunition, and has even been taught to wield weapons. In peace he has pilcd logs and huge blocks of stone as unfemittingly in the processions of the native princes. In these last and always spectacular functions, he elephant's anklets, saddlecloth and trappings are often encrusted with gold and jewels; and the prince who sits in the canopied howdah on his back is not more gorgeously attired than
his elephant. In this connection, also, the albinos of the elephant are prized far more highly than the ordinary sort; in Siam, indeed, the white elephant is royal and vencrated. The catching of these elephants singly, or in herds, is by no means an easy task. in former years they were caught in pitalls, but this practice has been abandone, Mocause the creatures were Sometimes male elephants are decoyed by tame females trained for that purpose, until they are in close proximity to the hunters. These entangle their unconscious victim's legs in stout ropes, and when, eventually he finds himself ever, herds are hunted, they are driven by an ever narrowing circle of hunters toward the mouth of a strongly built stockade, or "keddah." When, after many days, surrounded and enclosed by their pursuers, they rush into the stockade, the great gate is shut upon them. which differ as the stockades do, according to locality. Once caught, the elephant is easily trained, a few months being, usually, sufficient to teach him all he needs to know. Methods of training vary in detail; but, after the first ness effective. The driver or mahout sits upon the elephant's neck and manages him by words and by the use of a small iron-pointed stick. Once tamed, elephants, except in cases where they become "bad," and have to be shot like mad dogs, of ten are so gentle that children may
be trusted to play with them. Besides the differences between the two species, already noted the African elephant is not as amenable to domestication and confinement as the Asiatic, and is the chief source of the world's supply of ivory. Indeed, the African elcphant generally succumbs to disease and while the only change no is that the species generally does not breed in captivity. The African elephant is peculiar in that the great tusks, twice
as large as those of the Asiatic species, are present in both male and female, while in the Because of the demand for these, the African natives have made war upon the female as well as the male, and this leads naturally to a diminution of the species, as the number of tusks shipped has increased rather than denever used as a beast of burden, though in ancient Egypt he may have been so utilized. Elephants generally live in large herds, each herd led, and apparently governed, by a leader, usually the largest of the party. So marked a family resemblance exists between members of the same herd that, in India - where they are ent herds are easily distinguishable. The Afrian elephants live in mountainous regions, the Asiatic ones in deep forests, whence they can ssue to play in and drink of the waters in which they find so much enjoyment. Here, too, to squitt water over the creatures' backs, or to spout it, playfully, at their neighbors. Elephants also caress each other by means of their trunks. The anecdotes illustrating the docility, affection, sagacity, irritability, capriciousness and revengeful spirit of the elephant are innumerable, and natural history. The natural enemies of the elephant, besides man, are the tiger and the rhinoceros, and the nasal horn of the latter often proves a more formidable weapon than the trunk and tusks of the elephant, and the sigh of even a dead tiger is said to be enough to cxcite most elephants into a transport of fury (London 1873) ; Hornaday, W. T. 'Two Years in the Jungle) (New York 1885); Kipling, J. L 'Beast and Man in India' (London 1891) Lydekker, 'The Game Animals of Africa' (ib. Equatorial Africa) (ib. 1898) , Sanderso (Wast Beasts of India) (ib. 1893): Sclous F. C 'A Hunter's Wanderings in Africa' (ib. 1890). ELEPHANT MOUND. See Mound Builders and Mounds

ELEPHANT, Order of the, an ancient Danish order of chivalry It is said to hav

 been instituted about the end of the 12 th century by Canute V to perpetuate the memory of a Danish crusader who had killed an clephant In in 1462 , and placed on renewed by Christian 1693 by Christian V. It is the highest of the Danish orders. The number of members, not counting those of the royal family, is restricted to 30 . Foreign sovereigns are excmpted from these restrictions. The fëte of the order is he on 1 January, when the knights meet in the chapel of the order in the castle of Fredover which are suspended their arms and devices. The insignia of the order are an enameled white clephant, with a negro mahout, bearing on a blue housing, bordered with gold and crossed with white, a sculptured tower. On to a chain composed of elephants and castles of gold, with a letter D in gold to represent Dama (Denmark). The device of the order is Magni animi pretiumELEPHANT-APPLE, a large and hand some East-Indian tree (lieronia elephantum) large gray-colored fruit with a very produces ELEPHANT BEETLE, one of the great cetontan bectles of the genus Megasoma of elephas. It reaches a length of three to four inches, and is black, delicately pitted. A related species (M. thersites) occurs in California.
ELEPHANT BUTTE DAM, the largest of the government's irrigation projects, located Rio Grande County, N. M., in the valley of the Rio Grande, 120 miles above the point where formed by this dam is about 45 miles long and averages $13 / 4$ miles in width, submerging 40,000 acres and storing $2,642,292$ acre-fect, or $862,200,000,000$ gallons. The water is intended to irrigate 183,000 acres of very fertile land in the States of New Mexico and Texas and 25,000
acres in Mexico. The water stored is sufficient to irrigate all the crops which can be grown on this acreage for two years in case there should be no rainfall. The dam is of cyclopean concrete. It was begun in 1910 and completed in 305 feet above best is 1,310 fect long and is 100 fect above bed-rock at its lowest point, lase the dam is 215 fect thick and it tapers to 18 feet at the crest, which carries a permanent roadway. The masonry content of the structure is 608,000 cubic yards, making it the third largest dam in the world (see DAMS). In addi-
tion to the irrigation feature it is that from 25,000 to 30,000 electric is estimated can be delivered at El Paso, besides the many smaller powers which will be developed when the high level canals are in operation.

ELEPHANT FISH (Callorhynchus antarcficues), a fish of the sub-class Chimueroidea or Holocephali (q.v.), found in southern seas, whe appendage of the to the prominent projecting until an advanced stage of The young remain the remarkable seaweed-like horny egr-cases. The fish attains a considerable size and is sometimes eaten in New Zealand.
ELEPHANT RIVER, a river of Cape Colony, rumning; into the Atlantic after a course
of 140 miles.

ELEPHANT SEAL, the largest of the 20 feet (Macrorthimus leoninus), usually over around the thickest circumference of 12. feet female is much smaller than the male In color this seal is grayish; its body is covered with short hair, growing in patches, which gives a potted look to the animal. The head is proportionately large, with prominent eyes and canine teeth are so whiskers are long; and the The nose of the males is prolonged into 3 proboscis about a foot long, which secmingly useless, hangs loosely over the face. When this is dilated it gives a new character to the creatures voice. This species has been almost exthough less than a century demand for its oil, in the southern hemisphere. The skin is not valued for its fur and the flesh is not edible.

ELEPHANT BEETLE

The herds migrate southward in summer and Torthward in winter to avoid the extremes o yustirostris, is also nearly extinct, being confined o the island of Guadaloupe, off Lower Califor ia. Consult Moseley, (Notes by a Naturalist (The Challenger) (London 1879) ; Townsend Vol. I Northern Elephant Scal' (Zoologica, 1, No. 8, New York 1912)
ELEPHANT-SHREW, the typical species Macroscelides, of the family Macroscelidide als. The body, in general appearance and size, resembles that of the common rat. The popular name alludes to its peculiar, elongate ose, which looks like an elephant's trunk. Th nort legs, which are long and out of all pro portion to the length of the fore legs, fit the name of jumping-shrew. This insect-cater is onfined to Africa. It moves by jumps, live on the sandy plains, makes burrows in the sand ind finds its prey among the grass and bushes. ELLEPHANTA, ěl-é-făn'ta, or ELE IANT ISLE, called by the natives Gharipur a small island in the Bay of Bombay, seven ong hills and an intervening valley. It is cele rated for a cave temple 130 fect long, 123 road and 18 high, supported by pillars cut out in the rock. Many of these were cut down by rows Portuguese. There are 36 columns in six three-formed the centre is a gigantic trimurti or middle, with Vishnu the preserver on one side and Siva the destroyer on the other. There are ther pieces of sculpture and also several other ock-caves. The date of these constructions is not known. A large stone elephant, which once slood near the landing place, gave nam
ELEPHANTIASIS, properly speaking, peculiar and rare disease, sporadic or endemi nickening of the skin and the underlying tissues, usually limited to a definite area, and subsequent The impairment of the lymphatic circulation. great disease is of great antiquity and exhibits a has received of forms, by reason of wher medical as well as popular. The term is now applied y the best dermatologists to one disease, and not to several as herctofore. Elephantiasis exints in an endemic form in Africa, India, the Adian Archipelago, the West Indies and South the United States bring this disease in their train. The endemic form of the disease commences rapidly. There is pain, heat, swelling and temperature. The lymphatics and bloodarssels soon become involved and the part areeted seems to be attacked by erysipelas. In recurrence of the attack leaves the arm, or leg, or scalp, or face, or genitals somewhat thicker, and repeated attacks may result in enormous deformities of the affected parts. In the most characteristic cases of the tropical countries the disease seems to be due to a blood parasite, the Tharia sanguinis hominis. This worm gets into
the blood, at times through the agencies of mosquito bites, and blocks up the lymphatic channels. In other cases the disease is regarded
as a form of chronic erysipelas. In a few in stances it is congenital. The trcatment will depend largely on the type of the disease. Rest Filaria and prompt medical attendance are the essentials. See Filariasis; Parasitism.

ELEPHANTINE, ěl-e-fān-tỉ'nể (Arabic, Djeziret-ez-Zaher, "isle of flowers"), a small island in the Nile, opposite Assouan (Syene), remarkable for its ruins. The island is almost covered with ruins piled up on each otherbeginning of the present century there were the remains of two temples in Elephantinc, one very interesting one built by Amunoph III They were destroyed in 1822 by the governo of Assouan in order to obtain stone for building a palace. The greater part of the Nilometer, end of the island, was restored in the 19th cen tury. The quay built of blocks taken mostly from older monuments is from Roman times Many fragments of pottery with inscriptions and, some of these being receipts for taxes
ELEPHANTINE PAPYRI. Elephantine is a small island in the Upper Nile and the most southern of the old Egyptian fortresses southern end of the island Aramaic papyri in considerable quantities have been found. Thes reveal the fact that soon after the destruction of Jerusalem by Nebuchadnezzar a colony of the Jews found their way to the southern
frontier of Egypt. In them is mentioned th frontier of Egypt. In them is mentioned the They cover the period extending from 471 b. to 411 b.C. and bring much light to bear on Jewish customs and worship of the times o this important document. One contains a peti tion for the restoration of by Egyptian soldiers

Lephants, Fossil. The present genus

 or genera) of elcphant had many now extinc the best known is the hairy mammoth (q.v.) of Siberia and northern North America. Th mammoth was smaller than the largest existing elephants, but a similar species, Elephasranging over the entire United States, equalled the extant species in size. E. imperator from the Southwest stood even larger, being 13 feet high at the shoulder. Another Pleistocene elephant was Mastodon Americanus. This differed from the true elephants in its lower skull and breastlike molar teeth, of which several were in
simultaneous use in each side of each jaw. The teeth were covered with enamel, but had no cement on the crowns. Straight traces of tusks remained in the lower jaw of the males. The Pliocene beds contain, besides several species of Mastodon, the genus Stegodon, with the mola of Elephas and of Mastodon. In the Miocene the interesting genus Gomphoterium or Tetrabeladon is found. The skull resembles that of Mastodon, but is much lower and flatter. The mandibular symphysis is prolonged and bear the well-developed tusks. Upper and lower enamel. The molars have four cross-ridges in the later forms, three in the earlier ones. The height at the shoulder is less than six feet

The body and limbs have their present structure The next earlier form in the line of ascent was upper Eocene of Egypt. The dentition was $i \frac{1}{1}, c \frac{0}{0}, p \frac{3}{2}, m \frac{3}{3}$. Both lower and upper tusks were very short and banded with enamel. All the grinders were in use together. Ther of a pig instead of a well-developed trunk. The lower jaw was longer than the upper. The occipital bones extended nearly to the top of the parietals. There was a third trochanter on the femur. The size varied between that of a considerable gap between Palcomastodon and any known ancestral form, but it appears that
Maritherium of the middle Eocene of Egypt Maritherium of the middle Eocene of Egypt is not very far removed from its line of
descent. Moritherium has the dental formula $i \frac{3}{2}, c \frac{1}{0}, p \frac{3}{3}, m \frac{3}{3}$. Both first and third upper incisors and the canines are very poorly developed; the second upper and lower incisor form short tusks. The molars are quadrituber
cular. The skull is quite unlike that of Palromastodon and is long and narrow, with enormous cheek bones. The cranial capacity is relatively large. There appears to have been only a very slight trace of a trunk. The body was essentially like that of the elephants, though less specialized. An aberrant offshoot of the proboscidean stock is characterized by the pos-
session of tusks in the lower jaw only. This offshoot, containing the genus Dinotherium, is quite like typical elephants in its body and limbs. The tusks point downward and are curved to the rear. The molars resemble those of the
tapirs. The skull is low and flat and probably tapirs. The skull is low and flat and probably
bore a trunk. (See Mammoth; Mastodon). Consult Andrews, C. W., 'Catalogue of Ter tiary Vertebrata of the Fayum, Egypt'; Scott,
W. B., 'A History of Land Mammals in the Western Hemisphere) (New York 1913).
ELEPHANT'S-EAR, a name frequently given to plants of the genus Begonia (q.v.). It is applied more frequently to a plant bearing
the name Caladium esculentum. ELEPHANT'S-FOOT, or HOTTEN TOT'S-BREAD (Testudinaria elephantipes) a plant of the yam family (Dioscoreacece), of curiously truncate, or somewhat resembling an elephant's foot, and covered with a soft, corky rough and cracked bark, recalling the shell of a tortoise, whence its generic name. From this springs annually a climbing stem, which bears the leaves and flowers, the latter being smal and yellow. The starchy rootstock is used as food by the Hottentots. The plant is not inknown as elephant's-foot belong to the genus Elephantopus of the Asteracea. The genus comprises 16 species, natives of tropical or warm regions. Four are found in the United States, mostly to the south of Delaware. The (b. carolinianes) the Carolina elephant's-foot (F. carolinianus). This is an erect, hairy herb,
with thin oval leaves and bracted heads of blue or purple flowers in branching corymbs. It grows as far north as southern New Jersey and
west to Kansas, and is abundant in all the region to the south. Another species is known in the Southern States as tobacco-weed and devil grandmother.
ELEUSINE, èl-û-sỉnể, a genus of grasses comprising six species, all natives of the oli
World. The genus is represented in America by E. indica, the crab-grass or yard-grass, which is found in waste places all over North America except in the extreme north, natura
ized from Asia. In its native places it is an imized from Asia. In its native places it is an
portant article of commerce. E. corocana, called in the west of India natchnee, nagia, ragie and mand, forms a principal article of Ghats in India. It is cultivated also in Japari E. stricta is also used for food.

ELEUSINIAN MYSTERIES, festivals held annually at Eleusis, a town of Attica, in honor of the goddess Demeter, or Ceres, the patroness of agriculture and procreative power
of nature. According to the Homeric hymn of nature. According to the Homeric hymn to Demeter, the festival was established by the goddess to commemorate the hospitality wayfarer. The usual opinion is that they begun by Eumolpus, the first heirophant, B.C. Great secrecy was observed in the celebration of the festivals, consisting of the greater and lesser mysteries. The greater mystember and the first of October, lasting nine days. The lesser mysteries took place at Agre on the Ilissus during springtime. It was a capital offense to reveal any of the rites. They existed about 18 centuries and ceased during the invasion of Alaric, in 396 . Consult Pater, Wina'. 'Greek Studies, Demeter and Proser teries.') See Mysteries.
ELEUSIS, è-lư'sis, a ruined village of At tica, but in ancient times a city of Greece, chief seat of worship of Ceres (Greek Demeter), whose temple herc was the largest sacred edifice in Greece. The Greek government began here an elaborate system of excavaremarkable ruins have been discovered Even the site of the ancient temples is a matter of debate, so completely have they vanished. There are not wanting, however, ancient remains, which include two propylæa, a sacred well, ath ancient council hall and small temples. The great hall of initiation was a modest structure greatly enlarged, first by cutting into the rock at the back, and later by constructing another hall alongside the first. A great portico was added by Philon in the 4th century B.C., making a common front to both, and during the Roman occupation the interior was made into on
great hall 178 feet by 170 , with seven rows of columns. A little Albanian village, poor and mean looking, called Lcusina, stands on the site of what was once powerful Eleusis. Consul Diehl, 'Excursions in Greece'; Philios, Eleusis, ses mysteres, ses ruines, et son muse 1913). For a plan of the Pausanias' (2d ed Bacdeker's 'Handbook to Greece) (4th English ed., Leipzig 1909).

ELEUTHERA, ě-lừthě-rạ, British Wes Inslatids, one of the largest of the Bahama Islands, lying cast of Nassau, near New Provigroupe, the second most populous island of th group, It is, like most of the islands of the 70 miles, area 164 square miles. It exceeds the neighboring isles in fertility, and produces mor ranges, onions and pincapples than any. It and town is Governor's Harbor with a for
good harbor. Pop. 6,533
 Commem, among the ancient Greeks a festiva of Xerxes. of Platea (479 BC) and celcbrated annually hat place in the month Maimacterion, nearly of daponding to our September. At the dawn at the a procession marched through the town, hal for head of which trumpeters blew the sig toward the altar crowned a chariot was driven fous garlands and leading behind it a black Plil. In front of the altar the archon o Cury, immolated the bull to Jupiter and Mer Ply, culogized the heroes who had fallen at Every fifth sprinkled the ground with wine by contests, chaplets solemnitics were attende victors. See Greek Festivals.

ays, Elevated.

 Catholic Church, the act of lifting the Roman celebrating priest and presenting to the sight o diately ful the Host and the Chalice immetion by after the consecration; this is the eleva and in cminence. There is both in the Latin vation shortly befure the communion. Prior to the promulgation and condemnation of the eaching of Berengarius in th: 11th century the had boginning of in the Latin liturgy; but from the tominning of the 12 th century, when this cusame universal and obligatory. It was th Church's way of confcssing her faith in the truth In Iransubstantiation, attacked by Berengarius. and i Latin Church in the 12 th century began ustom the next century became universal the of the elevation a is the present usage But he ringing of the great bells in the church teeples and towers at the elevation which wa commgencral in the 13th century is now notI
ELEVATION, in astronomy and geography an obenerally the height above the horizon of Vertical on the sphere, measured by the are o the elevation of the equator is the arc of meridian intercepted between the equator and pole horizon of the place. The elevation of the and is the complement of that of the equato The always equal to the latitude of the place. imilarly ition of a star or any other point is maximum whent above the horizon, and is rehitecture the term is applied to a geometrical ine neation of the front or any face of a buildto in which all the parts are drawn accordin the scale and not shown as they would
appear in perspective. It is one of the ihre designs necessary in outlining any work of architecture,

ELEVATORS. The modern elevator is a direct evolution from the machine which
Elisha G. Otis exhibited in 1853 at the World's Fair in the Crystal Palace, New York. Hoists of various kinds had been built before tha time, but this was the first elevator car in the contingency of the breaking of the hoisting cables. During the next five years number of machines were built similar to tha exhibited, all being driven from line shafting In 1859 the same inventor introduced an indenected to the hoisting machinery, and from that date the era of the elevator as a separate institution of the age began. In 1871 the hydranlic clevator was introduced, soon to attain pre dominance in the clevator art and displacing the steam-engine. The year 1888 witnessed the firs application of the electric motor to elevator ma-
chines, destined in turn to eclipse the hydraulic elevator. The first type of electric elevator machine, still in use to-day for low and moderately high buildings, consisted of an electric moto actuating a hoisting drum through the inter mediary of worm gearing. Although this ma chine has been developed to operate satisfactor ily at comparisfy the requirements imposed on the ele vator art with the advent of the skyscraper Thus in 1903 a new type of electric elevato machine was developed, known as the $1: 1$ gear less traction machinc, which has since completely ousted the hydraulic machine from the field of high-rise, high-speed elevators. Anothe development in the electric elevator art is the
so-called microdrive machine, first introduced in 1915. This machine is capable of accurately and automatically stopping an elevator platform level with the landing under any condition o loading. It is extensively used in all case where heavy loads have to be wheeled on or of the elevator platform on trucks.

It is quite cvident that the high state of de velopment of the electric elevator to-day could ments in the design of electric motors and controlling devices. At the time of the introduc tion of the electric elevator in 1888 the design of the direct-current motor was already well
advanced, while alternating-current motors were yct in their infancy. In the next decade the energy of designers was mostly bent upon the further development of the application of direct current, resulting in 1897 in the introduction of the direct-current magnet controller. With this invention the direct-current electric
elevator at once entered the field of high-speed elevator service and became a dangerous competitor of the hydraulic elevator.
The electric power systems at that time were mostly direct current, but began gradually to make place for the more economic two- or threephase alternating-current systems. Along theretroduced and began to be applied to elevators. The first attempts were not very promising. It would seem for a time that the polyphase alter nating-current elcvator never would be suitable
for high speed, owing to the fact that the motor operated only at a fixed single speed and to the inability to design suitable alternating-current magucts. To-day all of these difficulties have been overcome; polyphase induction motors are now casily built for two or more speeds as well power to operate controller and brake. In fact, the number of alternating-current installations to-day equals the number of direct-current installations and is doubtlessly destined to exceed the latter in the near future. Safcty appli ances were developed hand in hand with the development of the various tyres of machines Grips 10 arrest and stop a falling cage wer the hoisting rope only. These soon proved to be inadequate, since they remained inactive in runaway accidents from various causes not due to the parting of the ropes. This defect wa removed with the introduction of centrifuga governors, which actuate the safety grips when he car specd exceeds a predetermincd max
mum. In 1890 stecl began to be used for guid rails, which previously to that date consisted exclusively of wood. This brought about a new type of safeties. Other demands came with the increase in elevator speeds, necessitating the design of safety grips capable of arresting a falling car without shock or imjury to the passengers. Other safety appliances gradualy the standard equipment are: automatic stop a the terminals of the travel; slack cable device to prevent further motion of the machine in case the car is obstructed in its descent; doo locks to prevent the starting of the cage as long as the door is open, he car is at rest a the landing.
According to the foregoing there are, there fore, four general classes of elevators - belt tcam, hydranlic and clectric
Belt-driven Elevators.-This class of elevator, Fig. 1, is usually installed for slow-speed low in cost. The specd seldom exceeds 75 feet ner minute. The machine is usually bolted to the ceiling of one of the floors. The middle one of the three flat-faced pulleys shown in the illustration is tight on the shaft and is adapted to actuate the hoisting and-worm gear The two outer pulleys are loose on the shaft and are belted, one by straight belt and the other by crossed belt to a line shaft pulley. To operate the clevator in the one or other direction the straight or crossed belt is shifted onto the tight middle pulley. The machines are provided with brake, slack cabe device and auto matic stop at terminal landings
Steam Elevators.- Steam machines for erence that thev are no longer in use. This has been due to the very large consumption o power with no compensation for the disad antage in the matter of ease of control.
Hydraulic Elevators.- The hydraulic ele vator installed in large numbers un to ahout the type (Fig. 2). In this type a cylinder of a diampter of 8 to 24 inches is placed in a vertical position in the elevator shaft or in any other
convenient location. Within this cylinder works a piston. The pull exerted thereon by the water pressure is transmitted through the piston rods to a number of sheaves, which in turn operate on the hoisting ropes. The sheaves introduce a gear ratio varyng from 2.1 the clevator is controlled by a lever placed in the car, which actuates the operating valve. For the ascent, the valve admits water to act on the piston, at the same time discharging the water underneath. The descent of the car occurs by

Fic. 2.-Standard Hydiraulic Elevator Vertical reason of its umbalancerd weight, the wate above the piston being allowed to flow throug a circulating pipe to the space undernea About the year 1900 the plunger type of $11 y^{-}$ drathic elevator (Fig. 3), (betore that intro applied only to low rises) began to be in duced for high speed passenger service.
this type a cylinder of a length equal to the this type a cylinder of a length equal to the this
travel is set vertically in the ground. In cylinder works a piston or plunger of the same lencth, carrying the car on its top. The weight of car and plunger is partially counter

1 Dauble Belt Ceiling-type Machine

4 Hydraulic Pilot Valve

3 Automatic Cut-off Valve for limited car travel, at top

6 Direct Current Single Screw Electric Elevator Machine

7 Direct Current 1:1 $\begin{gathered}\text { Gearless Traction Elevator Machine } \\ \text { Overhead Type }\end{gathered}$

8 Electric Micro Drive Drum Machine

Fig. 7 and will also be evident from Fig. 8 .
The machine is usually and preferably located The machine is usually and preferably located overhead. The ropes pass from the car to the ary sheave and again over the traction sheave to the counterweight. The tension due to the weights of car and counterweight and the approximately two half wraps of contact between the ropes and traction sheave furnish the necessary adhesion to transmit motion from
the traction sheave to the elcvator without slip. the traction sheave to the elcvator without slip.
This adhesion is instantly destroyed if either car or counterweight is obstructed in its descent, in which case motion of the elevator must cease even though the machine keeps on revolving. This property is a most valuable sheave By aration oil buifer at the lower landing and by similarly obstructing the further descent of the counterwcight when the car is at the upper landing, the car travel is absolutely fixed between two limits. Another advantage of the traction machine lies in the fact that the width
of the traction sheave is independent of the height of the building For a given capacity therefore, a standard machine can be provided, irrespective of the elevator travel. In the $1: 1$ traction machine (Fig. 7) the traction sheave is mounted directly on the motor shaft As the illustration shows, the construction of an armature with cxtended shaft, carrying a brake pulley and a traction shcave, all supported on two bearings. At full specd the motor runs at about only 60 revolutions per minute. Reductions in speed are obtained by means of ficld control and by manipulation of ture. Contrary to popular belief motors for such low speeds can be made with as high efficiency as high speed motors, although, of course, the motor frame assumes considerable dimensions. Owing further to the absence of gears, the $1: 1$ traction machine has the highest Wherever it has replaced existing hydraulic elevators, the saving in power consumption has paid for the new installation within a few years The microdrive machine shown in Fig. 8 derives its name from the fine adjustments in the stopping, which can be made with this machine eter.
To obtain accurate stops level with the landing it is necessary to slow down the cage to an extremely slow speed. In the microdrive machine this is obtained by having a main machine (which may be of any desired type) for ordichine for the stop. The main and auxiliary machines may be coupled together by a mag netically operated clutch carried on an extension of the main motor shaft. At the start, the coupling is released leaving the main machine free to hoist the load. Shortly before the stop the current supply to the main motor ary motor is started up and the coupling ap-
plied. The effect of this operation is that the load is now transferred to the auxiliary ma chine, which drives the drum through its own fore proceeds to the landing. The cage there
speed controlicd by an automatic leveling de vice. The function of this device is not only to stop the cage flush at the landing, but to maintain the alignment between cage and if for example a heavy loaded truck is rolled onto the car, the strctch of the hoisting ropes will cause the platform to sink below the landing as soon as the front wheels of the truck rest on the car floor. This will cause the auxiliary motor immediately to restore the alignment bepass onto the platform. The controlling device most in use with electric elevators consists of a lever in the car operating a number of contacts. These in turn energize magnets assembled on a controller panel near the machine. The operator controls only the direction in speed. Operations such as releasing the brake and stepping out the starting resistance occur automatically. In push button controlled elevators, each landing is provided with a button to call the elevator to that landing. The cage is provided with a series of buttons to dispatch desiring to use the elevator presses the button placed near the elevator shaft, and the car, if not in use, immediately travels to that floor and stops automatically. When the car has come to rest, the door can be opened. The passenger enters, closes the door and presses he button corresponding to the floor to which wishes to iravel and seen car at once proceed
thereto. It will be sen that the push butor elevator is entirely automatic in its operation, having the advantage of not requiring an at tendant.
Although this type of control was developed many years ago, it has in the past found application only to slow speed residence a machine capable of making accurate stops level with the landing. With the advent of the microdrive machine, however, this type of control is receiving increased attention and It is safe to predict that it is destined to come into general use
Safety Appliances. - While the factor of
safety in the standard make of elevators is suct safety in the standard make of elevators is suci1 where proper attention is paid to the machinery, still all elevators (except plunger elevators) are equipped with safcty grips. Of the very large varicty of safeties, only those types which have found extensive application will here be
described. With wood guides the type of safety generally used consists of an arrangement of planer tecth forced into the guides and producing resistance by planing or grooving the wood as the car descends. Figs. 9 and 10 show one form of this type of safcty. With stecl guide rails the types in use are the roll, wedge clamp and the flexible guide clamp safeties. emplovs a corrugated steel roller, adapted to be forced into the apex of an angle, formed by the guide rail and the inclined surface of the safety block. The angle usually is small so ${ }^{\text {a }}$ to make the roller self-locking. This in turi causes an abrupt stop, so that the safcty can clamp safety, the rails are gripped between thc
jaws of two clamps. As shown in Fig. 13 the vided is actuated by a drum having a hub prowhich with right and left hand screw threads drum in the proper direction moves the screws otitwardly, forcing the wedges at the ends of lee screws between the rollers of the clamp The dend causing the jaws to grip the rails. rope, one is provided with a few wraps of and the end of which is fastencd to the drum Let other to the governor rope. with a wedge clamp safety as here described and analyze what will happen. Let us further fect per that the normal speed of the car is 600 as not to minute. The governor (Fig. 14)-so tions from natural causes - will be sct to trip al 800 feet per minute ; that is to say, as soon as the speed of the car reaches 800 feet per minute, the governor jaws will grip the govourickl rope, causing the latter to come to rest satety . As a consequence, the rope on the governor rope having one end fastened to the on falling. This will cause the safety drum to Fotate, actuating the safety mechanism. Before, however, the jaws grip the rail, all of the clearances must have been taken up. During this
celeration of the governor rope. It will therefore be seen that there is, at high speed, a exerted by the clamps, resulting in undesirably heavy retardations. Another disadvantage is due to the fact that the safcty must be made self-locking so that it will not release its grip If the rails, should the governor rope beak. If, therefore, during the slide of the jaws on
the rails, variations in the thickness of the rails occur, the jaws can yield only by virtue of their clasticity. That this will cause enormous variations in the retarding force in the one or the other clamp is plain and it is thercfore no surprise that the platform frequently comes to a stop altogether cut of level. These disflexible guide clamp safety, first introduced in 1916 and now rapidly superseding the type described above. Each of its clamps has two jaws, one solid and the other provided with a wedge having its face slightly inclined toward the guide rail. Both jaws are pivoted and are
adapted to compress a spring held between the clamp levers. The spring is normally free from compression. A roller is adapted to le brought in contact with the inclined face of the wedge on one side and the guide rail on the other.

Fig. 13.-Wedge clamp safety.
${ }^{\text {lime }}$ lene car falls another 4 or 5 fect, enuival.000 to an increase in specd of approximately application of minute. At the time that the therefore has assumed vary considerable overpeed, amounting in the present example to l,800 feet per mintte. This is decidedly a disadvantage. The jaws now grip the rail and, as a consequence, the rotation of the safety drum is the The governor rope, previously at rest, speed of 1,800 feet per minute and begins to slip through the governor jaws. The force then exerted on the periphery of the safcty drum, Which is a dircet measure for the retarding tione exerted hy the clamp, is the sum of fricgoverused by the grip of the governor on the Sovernor rope and of the force necessary to it will y accelerate the same to car speed. Now safety should be designed to stop the car at any speed above 800 fect per minute. At a effed of 800 feet per minute, however, the effect of the sudden acceleration of the govdoric rope is small and most of the work is governor the friction cansed by the grip of the the car actually falls, action of the safety hesins at a speed of 1,800 feet per minute with a very considerable effect of the sudden ac-
this contact is established, the roller contintes 1o climb upwards until its motion is arrested.
In doing so, it first forces the solid jaw to engage will the rail, after which it will canse the wedge - and therewith the jaw containing the wedge - to recede from the rail. The latter jaw thercby swings around its pivot and compresses the spring. The rail, therefore, will be gripped between the solid jaw on one side
and the roller on the other side with a force corresponding to the spring compression. Since the travel of the roller is limited, the maximum amount of spring compression is also fixed and, with that, the retarding force which the clamps excrcise can be arranged to be just sufficient for a smooth stop from any speed. It will be seen that the operation of the safety begins
immediately from the moment that the roller makes contact with the wedge and rail. The time lag between the operation of the actuating mechanism and the gripping of the rails, cxisting with the wedge clamp safety, is here prac tically eliminated; indeed, the flexible guide clamp safety responds immediately to any demand for its operation.
Another advantage of this type of safety lies in the fact that it is practically not affected This is, of course, due to the very flexible arrangement of the jaws. A slight increase in
the thickness of the rail will merely result in a somewhat higher spring compression without clamps. The operation of a safcty by means of a speed governor always has the disadvantage that no action occurs, except at a certain overspeed. If, for example, the hoist ropes break while the car is at rest, it is rather contrary to common sense to permit the car to fall and gather speed before the safety is applicd. For this reason, the flexible guide different manners, viz., first, in the ordinary way by means of a speed governor; secondly, immediately upon the breaking of the ropes and thirdly, at the will of the operator. Air Cushions.- An air cushion is the en-
closure of the bottom part of the shat height of from onc-sixth to one-third to a car travel with just sufficient clearance for the

Fig. 16.- Oil buffer with spring return
normal operation of the elevator. At high seed, thercfore, the action is that of a piston within a cylinder. It is intended as an addivices fail. The speed of a falling car within he air cushion is controlled in various manners, all tending to decrease the area through which air is permitted to escape, as the car nears the bottom of the shaft.
One of the advantages claimed for the air cushion is that it has no moving parts, so that
no disarrangement can occur to prevent its no disarrangement can occur to prevent its
operation. This claim, however, is not justified since, of course, there must be a number of doors within the air cushion zone for the ingress and egress of passengers. One of these eft open or blown open by the air pressure may be sulficient to put the entire air cushion The main defect
he top of the shaft is permitted to fall free for a distance of from five-sixths to two-thirds
of the height of the shaft before entering the cushion. As a consequence, the speed of the car at the entrance of the cushion is enormous limb - have to be allowed to bring the car to rest within a comparatively small distance. By actual tests, velocities at the entrance of the air cushion as high as 10,000 fect per minute have been measured. Retardations observed jecting a person mich as 10 times gravity, subes ecting a person standing in the car to 11 time
his weight. Air pressures have been measured as high as 16 pounds per square inch from which it will be evident that a heavy construction of the cushion and doors is required. on Buffers.- With particular reference to high speed electric elevators, it is highly improbable, but yet conceivable, that all of the ping device at the terminal landings, fail. Under such conditions, the car will proceed at normal speed and since - in the absence of overspeed - the safety remains inactive, there is no agent to prevent the cage from striking are made impossible by the installation of oil buffers. One or more of them are placed in the pit and are struck by the cage as it over runs the bottom landing. Another buffer is usually attached to the counterweight and comes into operation when the cage overruns the top landing. The construction of an on buffer is shown in Fig. 16 . It consists of an piston operating in the cylinder. Casing and cylinder are filled with oil. When the ca strikes the buffer and the piston descends, oil is forced out of the cylinder through holes, 50 arranged in number and position that the resistance offered by the fluid is just sufficient to
bring the car to an casy stop within the stroke of the buffer. The piston is returned to the upper position by a spring. Consult Baxter, William, 'Hydraulic Elevators'; Hymans, F.' 'Elevators in the Oliver Building' (in Electric Ernst, Adolf, ' (Die Hebezcuge) ; Lindquist, D., 'Modern Electric Elevators and'Elevator Problems' (in Transactions of the American Society 'The Micro-drive Machine' (1917)
Engineering Department, Otis Elevator Conpany.
ELEEVENTH CENTURY, The. The 10th century is commonly said to have been an especially backward period in human achieve ment, due to the belicf then prevalent that the world was coming to an end in the year 1000 This superstition is supposed to have placed an
inhibition upon human effort which kept men inhibition upon human effort which kept mer
from serious work. An interesting commentary on this generally accepted impression is to bc found in the fact that the two men in the world's most prominent positions of the time, that is as emperor and Pope, who lived over from the 10th to the 11th century, are distin guished in history for their intellectual abilities while their lives are striking examples of the flecp mental interests of the time. The Pope
was Sylvester II (999-1003) who before he became Pope was known as the famous Gerbert, the most distinguished scholar of the

Period. Gerbert wrote a scrics of works on philosophical, mathematical and physical subects which have been preserved and which erve to illustrate the breadth of intellectua terest of the men of his time. He was no practical aditic sor he is said to have intro uced the use of Arabic figures into western Lurope and to have invented the pendulum clock. A great improvement in the organ is liso attributed to him and he is said to hav As P influenced the development of music. istence, he is known for his determined iniemished the elevation only of men of unis consistent reformation of abuses. He mainmed Church discipline firmly, especially in hatters of the moral law, even where it consaintly kings and was undoubtedly a man o egend character. In spite of this, popula of a magician in league with the devil and afte me generations his name became a byword The incident is illuminating because it demon strates how little the Church was able to pre of the real significance of scientific knowledge and original discovery.
original discovery.
illennium emas of the transition to the second y his grandmother Adelheid, assisted by a civ and ecclesiastical council who assumed the Sovernment and made every effort to give the oy, who was destined to be the ruler of th Narger part of Europe, a fitting education cducation, nor how well founded were the ideas with regard to it at this time, than the details Otto's training as they have come to us he council thought first about his body, and physical training was entrusted to Count begun of Saxony. His mental education wa heim, known borwand, late bish and artist, an amous for his interest in schools of the art and crafts. To him the Bernward Cross an ther beautiful objects of high artistry are due amer Otto s education was entrusted to the greates Gerbert, descrvedly considered the vision was made for the teaching of Greek to the young prince, and John of Calabria, where reek was still a spoken language, was chosen for this purpose. These measures were so successful that Otto III as a young man received
the title of "wonder of the world." When he he title of "wonder of the world." When he perial the age of 15 he assumed the the occasion to remind him "how much had been given to him and therefore how much must he expected of him; by Divine Providence he was by birth a Greek (his mother was Theophano, the datighter of the Byzantine Emeror, Romanus il), by dominion a Roman, and Roman wisdom; as a monarch he was beyed in Germany, France and Italy as well as by the Slavs, and that he wore the greatest crown in the world."
Young Otto as he approached the age of 20 the high aspirations and dreams of restoring the ancient glories of Rome so as to make it
the capital of his empire and to surround it
with the magnificent circumstance of the Byzantine court. Personally, however, he exhibited a humility in striking contrast to his position as a monarch and his talent as a of Jesus Christ and his Apostles," and on his visit to Rome insisted on spending a fortnigh in the catacombs of the great church of Saint Clement in fasting and prayer. He spent some time in the cave of Saint Benedict at Subiaco in order to testify his admiration for the man who had begun the organization of modern
civilization in the trying times of the transmigration of the nations, but also in order to ask for help in his own work as he looked forward to it of turning the attention of the world to higher things.

Unfortunately neither of these men was destined to live long to influence the new millen nium. The young Emperor Otto died 23 Jan on 12 May 1003. "Short as was his life and few his acts, Otto Ill is in one respect more memor able than any who went before or came afte him. None save he desired to make the sevenhilled city again the seat of their rightful place of subject provinces. No one else forgot the present to live in the light of the ancient order; no other soul was so possessed by that fervid mysticism and that rev erence for the glory of the past whereon rested the idea of the medixeval empire." (Bryce, Th Holy Romen seco Oto III num
died unmarried the last of the Ottos, and as brought confusion and warfare to the world of the time and opened a century that was to be full of war. Henry II the Saint who succeeded was the last of the Saxon emperors. His reign is a bright spot in the century and after him
the crown passed to the Franks in the person the crown passed to the Franks in the person
of Conrad II who reigned for some 15 years and then was buried in the cathedral of Spires which he had founded. After him came Henry III and then Henry IV who succeeded to the empire at the carly age of six years and known in history for ith Pope Gregory VII
hich opened thus auspiciously for the in tellectual life in its greatest representative should have witnessed the development o what is practically the first university of modern times, that of Salcrno. It was founded around of medical school largely under the infurence Monte Cassino was not far away. The reatest teacher of this century was Constantin Africanus who afterward became a Benedictine, withdrawing to Monte Cassino. According an old document published by De Renzi in his 'Collectio Salernitana' it is definitely recorded
that the school was founded by four doctors, that the school was founded by four doctors, of whom lectured in his native language. This is probably only a tradition invented to account for the wide interest in the school. The Greek influence as is not surprising here in southern taly, which used to be called Magna Grecia, by Gurlt in his 'History of Surgery) the writ-
ings of the Salermitan physicians contain Grccisms and not Arabisms. The influence of the Arabs was comparatively slight and was
due entirely to the fact that certain of the Greek authors were available only in Arab translations and this gave Arab physicians a certain prestige. The medical school at students and patients from even distant parts of Europe and Duke Guiscard sent his son Bohemund to Salerno for the cure of a wound which had refused to heal under the ordinary surgical treatment of the time. Robert, the son
of William the Conqueror of England is said to have passed some time in Salerno for a similar reason. From very early in its history Salerno not only permitted, but seems to have encouraged, women medical students, and the department of women's diseases was placed entirely in their charge. As a consequence of cation at Salerno the king of Sicily issued rather stringent laws with regard to the reguation of the practice of medicine "for the protection of the subjects of our kingdom from the dangers , arising from the ignorance of
practitioners." of medicine in recent years has shown that the Salernitan School made magnificent achievements in surgery and that its favorite remedial measures were fresh air, good food, water internally and externally and rest. The 'Regimen Sanitatis Salernitanum,' the little book of abstracts from the medical advice of the before the close of the 11th century, was for centuries the most popular medical book in
Europe. It has been printed in more than 300 Europe. It has been printed in more than 300 ditions since the invention of printing and has een reprinted our time.
ere due to the political events of the century of the Northmen. King Aethelred II. "The Unready," had tried at the end of the 10 th century to buy off the Danes from further invasions of his territory in England, but the 10,ite for conquest. A second and third ransom were no more effective, and then an organized nassacre of the invaders (1002), in which he Saxons tried to repay all the cruelty of their oppressors, only prompted organized rctime, and finally (1013) England time after king of England. Edmund Ironside, son of Aethelred, fought with a heroism that has made his name forever memorable, but in vain Canute after Edmund's death (1016) estabhish also Danish rule, and as he was the monwell as of most of Scotland, had an imperial domain. He proved an excellent ruler once h had securely established his power, and the familiar incidents related of him, as when he showed his flattering courtiers how little his power really was on the seashore, is typical o the man. He made a visit to Rome, organized
the government of his states and well deserves a place among the great rulers of history. His death was the signal for internal dissensions in his empire and it was not until rebellions had een put down that Hardicanute succeeded him

The Irish suffered also from the invasions
of the Danes, but the Northmen were definitel Clontarf by Brian Boru at the great battle o had secured his from Dublin, 1014. Bria defeats of the Danes and gave the example of military success as a claim for the position of next two centuries. Brian himself and his son and grandson were killed at the battle of Clontarf, and after this Ireland was plunged into internal dissensions.
England was destined to have a quarter of Edward the Confessor goodwill in'the reign o, sudden death in 1042 was called Hy dicanute to the throne, at the age of about 40 . There were no wars except to repel an inroad of the against Macbeth the usurper Edward de roted himself to the welfare of his people. Hi royal patrimony sufficed for even his generou onations to the poor and for religion withou often demanded by the English of subsequent enerations in times of oppression. In thei affection and reverence for him the people came to be touched by his hands in certai tradition for English royalty For the west of Europe
ent of the century was the Conquest of Eng and by the Normans, 1066. The duchy of Nor mandy, the district at the north of France which had been given over to the sea rover from the Scandinavian countries in the hop vasion, had been growing in power and pros perity for several generations. William the Conqueror became one of the most importan sovereigns by his acquisition of England. He led some 60,000 soldiers of fortune on the ex pedition. Emerson in 'English Traits" sums it were greedy and ferocious dracoons, of Lord greedy and ferocious pirates." The English people had given the crown to Earl Harold "the Last of the Barons," but on the strength of a promise made by King. Edward the Confessor, who was through his mother a kins-
man of the Duke of Normandy, William claimed the throne. The English King Harold found himself compelled to defend himsel against Harold Hardrada, king of the North men, so that he had two enemies to contend with. He defeated Harold of Norway, but was of Hastings or Senlac. The English still posed the Normans after the victory but William succecded in spreading his dominion over the country and the opposition, often fomented for the purpose, only served to give excuses to get the large estates and the highest offices in on whom he could dands of Normans and those policy. The Norman dynasty and its descendants have since ruled England. Britain which Eup to this time had been outside the circle of European affairs was now drawn into Continental politics. With a ruler who had domans on the Continent nothing else could well
have happened. Royal claims on various parts of France embroiled England in war for conturies. Conflicts between sovereigns and various petty rulers continued to be constant
during the century. More and more the nobility refused to acknowledge obligations to their war, and lords in the matter of abstaining from war, and private wars of various kinds became Bioust the rule. As a consequence, the relimercial and agricultural life of the people suffered severely Feudalism at the beginning of the 11th century had broken down as an estioment for maintaining peace. It is inter esting then to see what was accomplished, and affairs. It is almost the last place at the bekinning of the second millennium at the behistory to find a great movement for peace but here it is.
people order to save bloodshed and protect ingle generally, the Church succeeded in bringof God." the introduction of the "The Truce 11 th century forbade hostilities from Saturd Hight until Monday morning. This prohibiin was subsequently extended to other days sion week, and Friday in honor of the Pas were dend Saturday the day of the Resurrectio contests. Ahout the for military or judicial eclesiastical reculations made it unlawful to fht during Lent and then during Advent Te Truce was first successfully proclaimed in the great advantage of the people of the time. The great advantage of the people of the time allowed to fo quietly to and fro on their busiess without being disturbed by soldiers on he designated days and special regulations the issued protecting the peasant and his cat ie and his agricultural implements. Before which protected proclaimed the Peace of God and times from warlike invasion persons, places tion was extended to the poor, pilgrims, rusaders, and eventually even merchants on a of Cey. The further development in the Truce hally gave the impetus to peace which wa hrouph taken up by the public authorities, and municipal federations until war was re ricted to international conflict
Oistory of the most noteworthy features of the archy of the 11 th century is its interest in ing "ecture. This began at the very begin said Rodulf Glaber years after the year 1000 ," vated almost throughout the whole world especially in Italy and the Gauls, although the fioter part were still in good enough condion not to need repairing." The movemen Dublic not only the churches, but also th This buildings of various kinds.
to important developments and naturally led of that form of architecture called Romanesque, Wrech was to prove only a step but a very tecture toward the magnificent Gothic archiexamples the later Middle Ages. The supreme speyer, finished in 1030 as a mausoleum for the so-called Salian emperors. the cathedral at reves or Tricr, planned and conceived toof the end of the century; the new cathedral Willigis, which followed the one erected by from disintegration during the minority of the

Emperor Otto III), but which was unfortuEmperor Otto III), but which was unfortu-
nately burned down on the day of its consecration, but was immediately rebuilt and completcd Romanesque cathedral of Saint Martin a Mainz is one of the most interesting monu ments in the history of architecture and ha the fruitful The limitation of the width of the Gothic nave makes Gothic churches les suitable for preaching to large crowds, and so even Boston and New York chose to hav great churches modeled on Romanesque lines social development, especially in the establish ment of hospitals, which at that time were no only for the ailing poor, but also for the crippled and needy of many kinds as well a lodging for strangers. Archbishop Lanfrane erected a series of hospitals and "the good
Oueen Maud") the wife of Henry the daughter of Saint Margaret of Scotland acquired a special repute in connection with her care for the ailing poor. King Henry after the death of his son by drowning in the tamous incident of "the White Ship," caugh something of his lady's spirit, and Matilda, lepers particularly were cared for, and the be ginning of the cradication of this disease, said to be as common then as tuberculosis is with us, was made through segregation, the hardsider or mitigated to no inconand the nobility in the afflicted and the spirit in which their ailment was taken.

The 11th century saw the beginning of the organization on a broad scale of the Christian nations against Mohammedanism. The firs active reaction against them in the countries some centuries came in Spain where the Moor in possession since carly in the 8 th century felt themselves at home. Just about the be ginning of the 11 th century the three Christian kingdoms - Castile, Aragon and Navarre began to play a role of importance in the ment, and before the end of the century had reconquered Toledo. The rivalry between the Christian countries hampered their progres for a time, but they grew stronger by the in termarriage of their royal houses and were able to advance their frontiers at the expense
of the Moors. Aragon took possession Barcelona and the valley of the Ebro. Nearly 500 years of struggle remained however before the Moors were finally expelled. The ad vantage to Spanish character of the ceaseless contest was seen in the role played by the and the manificent develonment of Spanish power at home and abroad which followed the final expulsion of the Moors in 1492.

The great hero of the century was Ruy or Rodrigo Diaz de Bivar, known as The Cid (Arabic, master) or El Campeador (Spanish the champion or challenger). His life fills the his exploits animated the Spaniards arainst the Moors for all the centuries afterward until their complete expulsion. The romantic chronicle of 'The Cid' the substance of which was
compiled by Alfonso the Learned only half
a century after the hero's death contains much dary incidents can be rather rcadily eliminated. Southey's translation made the work familiar in English. The Cid of the romances is another creature entircly, quite as much the nucleus for myths as Charlemagne's Paladins or King Arthur and the Knights of the Round
Table. Undoubtedly Rodrigo's real victories apart from all romance form the core of Spanish history at the time.
The other phase of Christian opposition to Mohammedanism is also the greatest event of the 11th century, the first Crusade. Jerusalem had fallen into the hands of the Arab Moham-
medans shortly after the death of Mohammed in the 7th century. This Semitic race shared in the Christian reverence for the Holy Places and permitted the Christian pilgrims who came in arge numbers during the Middle Ages to pursue their devotions without molestation. In the 11th century, however, the Seljukian Turks, re-
conquered long before by the caliphs, now invaded the caliphate as the Germans the Roman Empire, replaced the Arabs as the rulers of Jerusalem and at once initiated a very different policy toward the Christians. Great hardships were inflicted upon the pilgrims, and the stories of the cruel tics imposed aroused the feelings
of Europe. The Seljuks, continuing their victorious career, defeated the Eastern Empire in 1071 and thus became rulers of Asia Minor. They took possession of Nicxa, just across the straits from Constantinople, and Europe itself was menaced. Pope Urban II, whose training as a churchman had come under Pope Gregory VII, after six years of wandering from the ceeded in gaining entrance to Rome and set himself to the task of unifying Christendom. In spite of rather serious hreaks with the Emperor Henry and King Philip of France who self to the great problems of arousing Christianity against the Turks.
The first incentive to the Crusades has of ten been attributed to Peter the Hermit, but it really came from Pope Gregory VII and was popularized by the address of Pope Urban at the Council of Clermont (in Auvergne). After in having taken to wife Bertrada, the wife of Fulk of Anjou, the urgent question of the East was taken up. The Council had attracted immense crowds of all classes, but particularly of the nobility and knights. The Pope's address asking for an army to be sent to redeem the Holy Places aroused great enthusiasm, and all present exclaimed with one voice "It is the
will of God." The Pope declared that this should be their rallying cry, and all were to wear a cross as a sign of their acceptance of whatever hardships might be involved. It is from this cross that the word crusade is de-
rived. Each participant was "crossed." Pope rived. Each participant was "crossed." Pope
Urban suggested that particularly those who Urban suggested that particularly those who
were in the midst of contentions with brethren and relatives might thus find a holy vocation. Most of those who took up the cross did so out of the highest motives of pure devotion. It would be idle to think that in so great a
mass of men there should have been no hypocrites, but they must have been surprisingly few.
n his great-heartedness the Pope proposed that howe who had been robbers and brigands migh that here was a chance for the redemption of such men from evil ways, though doubtless also with the conviction that no matter what thet motives they could work less harm in the army than at home, and that at any rate
Many privileges were granted to the Crusaders by the Church, and these have sometimes seemed to modern historians violations of jus tice. The payment of debts for instance could be put off, and the Crusaders were even freed
from the payment of interest upon their debts and permitted to mortgage their property for the purposes of the Crusade without the con sent of their feudal lords, though this was re quired by the laws of the time. We in our time who have seen another great World Wa with its moratoria, its prorogation of ren and its taking over of the resources of countries, are not likely to misunderstand simila events of the Crusade. Crusaders' wives an children and property were taken under th direct protection of the Church and those who isturbed them found that they had to do will the country gave themselves unstintedly to the cause quite as they have in our time and have always done for idealistic purposes. Within year after the great wave of enthusiasm whic had begun at Clermont had spread through Europe there was, according to the Pope himsel
some 300,000 soldiers collected under ship of the great nobles of the time. If it ${ }^{15}$ recalled that at this period the European coun ries whose census of population we have, had much less than one-tenth as many inhabitant as in our time, the immensity of the effort thil put forth will be properly appreciated. Th his brother Baldwin, from Brabant, with Coun Raymond of Toulouse who led a great arm rom Provence. The French troops were no ed by Philip, who was in disgrace, but wer joined with those of the Normans from south son of Robert Guiscard, and his cousin Tancre who was the son of Otto the Good and o Emma, the sister of Robert Guiscard. Tancred came to be the rival in the later legends of the Crusades even of Godfrey of Bouillon and to be the centre of romances for centuries in modern European life.
After many hardships the army of the Cru-
saders succeeded in finding its way saders succeeded in finding its way to Constan pected to turn the great Christian expedition nto a military campaign for the bencfit of the empire. The Crusaders encamped in the suld urbs of the capital not only were not welcomed, but were actually decharcd encmies becalse the peror Contemporary documents which show the complaints of traitorous cruelty on both sides used to be held up as flagrant testimony to the essential barbarity of the people of the time but recent experiences have demonstrated tha the trait thus disclosed is human and not merely mediæval. The emperor's daughter Anna
writing a history of the times, has made
the Cument almost as bitter in denunciation of the Crusaders as any that appeared on either
side in our own great war. The Crusaders did not hesitar own great war. The Crusaders did liars and worse, but above all traitors, cowards, cruelty toward small parties of Crusaders unable to defend themselves. The Byzantines replied with accusations of attacks upon women and children and thieving depredations of various kinds.
an army of not until the spring of 1090 that Bouniton of 20,000 Crusaders under Godfrey of was stormed and Jerusalem. The Holy City 15 July 1099 . Elected king of Jerusalem Godfrey refused that title in deference to the higher King whose spirit the simple designation of Protector of the Holy Simple designation of Protector of the the Holy Land by defeating the sultan of Eyypt in the plain of Ascalon, 12 Aug. 1099. Godfrey had been wounded during the siege 1100 . He erusalem and died just a year later, 11 July win. He was succeeded by his brother Baldated Altogether four principalitics were cretories, the capitals of which were Edessa, Antioch, Tripoli and Jerusalem. Baldwin succeeded other ing possession of Acre, Sidon and some Miner important towns along the coast of Asia caused The news of the fall of Jerusalem brought great rejoicing throughout Europe and of the city's ruler. Unfortunately many of these were lost at sea and many were cut off in various ways by the Turks so that the consolidation of the recent conquests became engaged in fighting among themselves and could not combine ingting among themselves and could the Combine against the Franks as they called of the 11th century the Crusaders occupied a 500 ! strip of land not 50 miles wide and some long ules long from which the Turks were for This unable to displace them.
ment, the Crusades, which was destined to influence Europe so which was destined to inCenturies. There was scarcely a generation
untii until the end of the 13 th century that did not Wilness the going out from some part of taken up the large bodies of men who had nobly
the of securing the possession of they failed Places to the Christians. In the end fell once more under the domination of the Itrks, but in the meantime an immense amount in baod was accomplished. The loss of men in battle and by disease so far from draining added to them. Men develoned new energies. A great surgeon said during the Great War that Sor every man killed two men were being made. Thething like this happened in the Crusades. and Wroused men's energies, brought the East lessened the contact, broadened men's interests, national the power of the nohles, strengthened for the race which was manifest in the achieveThents of the 13th century.
Puted character of the 11 th century most disWhose nout in history is Pope Gregory VII, "a bright flame" by those who felt that he ac-
complished wonderiul work for Christendom and "a brand of Hell" by those who declared that he was an influence for cvil. There is no doubt at all that he exerted a deep influence
over his own and succeeding generations. He was a self-made man of lowly birth, one of those who in President Wilson's words make it clear "why government did not suffer dry rot in the Middle Ages under the aristocratic systems which then prevailed. there was no peasant so humble, that he might not
become a priest and no priest so obscure that he might not become Pope of Christendom and every Chancellory in Europe was ruled by those learned, trained and accomplished men." As Pope he took up at once the reform of Church matters and the definite regulation of the relations of the Church to the State. By
abuse bishops had come to be almost more state officials than Church dignitaries. Gregory labored to have them independent in their ecclesiastical functions except of the head of the Church, but it was difficult to correct long standing abuses. The most scrious contest in this matter is between Pope Gregory and the
Emperor Henry IV of Germany. Hildebrand dissolved the oath of allegiance of Henry's subjects and the nobility, glad of the opportunity to put down a tyrant, fell away from him and made Henry realize that unless he regularized his relations with the Church he could not hope to continue as a rulcr. After many attempts
to avoid the humiliation Henry made the famous journey to Canossa to be reconciled with the Pope, when he was required to do penance so severe that Hildebrand's conduct in this matter has often been censored. But Hildebrand maintained the rights of the Church as he saw them and continued to purify the Church itsclf
of abuses of various kinds and to uphold the of abuses of variots kinds and to uphold the the people. Reformers are not likely to be popular and Gregory was in constant trouble. His own last words sum up his life better than any others. He had been compelled to leave Rome and was dying in Salerno when he said fore I die in exile."
Hildebrand both before and after his clection as Pope did more than anyone else to lay that foundation of the ascendency of the Papacy in urope which culminated a century later in the pontificate of Pope Innocent III. During guardians of the moral conscience of Europe, the best historians admit that there was a magnificent development of culture in the best sense of that word. Few if any epochs in the higher than those of the 12 th and 13 th centuries. The loftiest aspirations of mankind were finely fostercd. Beautiful architecture, painting that has never lost its interest, magnificent hospitals and great literature, charming arts and cratts all developed at this time and have come to be the loving study and reverent to be judged by its fruits, Hildebrand's influence in making the popes a moral centre as fell as ecclesiastical power in Europe must be considered one of the great factors for a great era of human development.
A great scholar of the 11 th century whose
and whose influence continues to be felt is Anselm, archbishop of Canterbury. His little book, 'Cur Deus Homo,' is still frequently read by those who are decply interested in the philosophic side of Christianity and his 'Monologium' and 'Proslogium' are well known by philosophic students. He was one of the mos thinking known as scholasticism, which has had a very interesting and significant revival mainly through Cardinal Mercier in our own generaCanterbury and had been the abbot of Bec in Canterbury and had been the abbot of Bec in
Normandy, he was neither Norman nor Saxon but Italian, born in 1033 near Aosta. Hi father was a simple citizen of the little town and Anselm owed his rise entirely to his own young man just when it abbey of Bec as by the learning of Lanfranc and three years later became prior and filled that office and tha of ablot for some 30 years when he was made archbishop. He succeeded Lanfranc as arch bishop of Canterbury under most difficult ciras he had refused the election of abbot and consenting to be honored only when it was made clear to him that he could probably do great good in the new office. Lanfranc had had serious difficulties with the king over the matter of investiture and Church revenues and ing a mode of compromise and laying fown the principles on which the relations between the Church and State could be safeguarded without violation of the rights of either. Historians have rccognized the genius and character of the man, and Freeman did not hesitate place among the noblest worthies of our Island." Curiously enough Anselm's contribur tion to the borderland between philosophy and theology, the ontological argument for the existence of God put forth in his 'Proslogium,' was revived in modern times by Descartes, beKant and Hegel at the end of the 18 th century, to be revived by Rosmini in Italy and adopted by Brownson in America in the 19th century. An argument that sways such minds all down the centuries must surely have in it something that has a dcep appeal to some esfrom training and environmen

The rise of the Seljukian Turks gave a period of peace in Persia under the viziers of Toghrul Beg and his son and grandson, Alp Arslan and Malik Shah, during which a series of contributions of enduring interest to the inbeginning of of humanity were made. At the sur of Tus in Persia (d. 1020), known as
Firdusi or Firdausi "the Paradisiac,") finished the Shahnahmeh, the great Persian epic of about 60,000 distichs, which sings the decds of Persian heroes and rulers for 500 years. A little at Hamaden, Persia, 1037), "at once the Hippocratcs and the Aristotie of the Arabians" (Whewell) wrote the hooks that for five centurics influenced medicine in Asia and Eurone more than any others. They are only compilations in longer known Galen, but when Greek was
ancient knowledge for a great many writers. Avicenna's work is typical of much of what the Arabs did. There is little of originality he was merely a channel for the older medica writers and for Aristotle. The second hal was for a time theology in the school at Bacdad In his carlier years some of his writings were sceptical and these have a special appeal to the moderns, but later he became the greatest of Moham medan apologists and continued to be studied for long afterward. Omar Khayyam, the Persian poet-astronomer,. whose 'Rubaiyat' at-
tracted so much attention at the end of the 19th century was the fourth of these Mohammedan writers destined to an enduring influence. He corrected the calendar successfully and wrote books on algebra and astronomy, but these have had no influence beyond a generation or two in its own lime, while his quatrains on
life and death and love and God and the problems men face forever, struck off at idlle moments, caught the vein of thought of the distant Western peoples eight centuries later. He had been the schoolmate of the vizier of Alp Arslan, and the third of a little trio who at whatever fate might bring them was the shorious Hasan, "the Old Man of the Mountains," from whose name because of his infamous decds very probably the word "assassin" in our modern languages is derived. Manifestly Omar's experience of life and its vicissitudes in person and through his friends was ample of cnable him, if he had the mind to, to write cdge.
There are two great women of the century whose names are still well known and lives o whom have been written in our generation One of these was Matilda of Canossa, Countess face of Tuscany. She knew Latin well, was fond of scrious books, took a deep interest in the philosophical and religious discussions so common at the time and came to exert an immense influence, not only in Italy but throughout Europe. She was a great personal friend as Gregory VII in the conflicts which his reforms involved. It was in letters to the Countess and her mother that Pope Gregory discussed the question so dcar to his heart of the organization of the Crusade for the winning back of the Holy Land. It was at her castle of Canossa tha Hepe Gregory received the repentant Emper estate in central Italy to the Church, feeling the necessity of strengthening the Pope's political situation and this hequest was confirmed by the Emperor Frederick II.
The other great woman of the century was Margaret of Scotland, whose life runs almos timately related to many of the well-known characters of the time. She was the grand laughter of Edmund Ironside, and when exiled under Canute spent some ycars with King (Sain1) Stephen of Hungary. She returne o be close to Edward the Confessor for time, but, with her mother, set out for France

When the Normans won the battle of Hastings. where Mip was driven by storm to Scotland was king. Margaret became his wife and did so much to soften the barbarous manners of the Scotch that ever since she has been in beneof justice A favorite occupation was the securing pointed oust garet's stone, on which she sat to hear their causes. Her favorite son David is the Saint David. Her favorite son David is the Scottish history, and the building of great churches and monasteries was initiated ey Margaret. She was untiring in zeal for making and is for the encouragement of bookof the great founders of their civilization.
Author of 'The Thirteenth, the Greatest of Centuries,?
PRincipal events of the elfuenth century.
The Eastern Empire loses territory to the Bulgarian ${ }^{1002}$. Emperor Otto III of the Western Empire dies.

The Irish under Brian Boru defeat the Danes at Clon101. Canute, king of Scandinavia, becomes king of Eng 1042
100n
1006
10

The Normans invade Sicilys over Eng Nill
The Norman Conquest of England. William the Con-
teror reigns; institutes feudalism; forest laws; the
 1076, The and threaten Constantinople.

 1094. Ure Moors and hcomes lord of Valencia, Spain.
then ater six years of wandering re-enters Rome
 1nos. Peter the Hermit stirs Europe to save Jerusalem from
100. the Turks. Celibacy enjoined.
1009. The First Crusade.

ELF-ARROWS, ELF-BOLTS, ELFHOT, are the names given to implements of forme, especially flint, of various sizes and countries which are found abundantly in many darts and other rude ancient weapons from the Palrolithic period. They belong to the same dass of ancient implements that are generally nown as Celts (stone hatchets). Thes rude and ancient implements are objects of given extraordinary superstitions. The name paratively modern origin, and imply that those who gave them were completely ignorant o he real origin and use of those wcapons. These ames are found independently among the peasantry in Scolland, England and Ircland much superstitions associated with them are popular more widcly spread. According to the origin, and various virtues are attributed to them. They are worn as charms, and used as a protection against lightning; but they arc A efly suspected of mischievous consequences fiend cavern has been pointed out where the archof attendies on the manufacture with the help of attendant imps, who rough-hew them while
he finishes the work. Similar superstitions prevail in Italy, Africa and Turkey. Consult Evans,

ELGAR, Sir Edward William, English composer: b. Broadheath, Worcestershire, 2 une 183. Among his compositions are The Black Knight' (1892); 'Choral Suite: from the Broduced at the Worcester Festival (1896); 'Te Deum,' sung at the Hereford Festival (1897) : 'Caractacus,' produced at the Lecds Festival (1898) ; 'Sca Pictures,' for the Norwich Festival (1899) ; 'Drcam of Gerontius,' for the Birmingham Festival (1900), which is considered his masterpicce. Musik Fest in 1902. Other of his compositions are 'Coronation Ode' (1902) ; 'The Apostles' (1903); 'The Kingdom' (1906) ; 'Coronation March' (1911); a Music Makers) (1912): (Falstaff,), Music Makers' (1912); '(Falstaff,') a sym-
phonic study (1913), and 'Carillon' (1915). Besides these he has written symphonics, several concert overtures and a violin concerto.

ELGIN, James Bruce, 8tir EARL of, and 12tif Earl of Kincardine, English statesman: India, 20 Nov. 1863 . He was educated at Eton and Oxford; in 1841 entered Parliament as member for Southampton, and in the same ycar succeeded to the carldom. In 1842 he was ap-
pointed governor of Jamaica. His rule in Jamaica was so successful that in 1846 he was appointed governor-general of Canada, and there he succecded by a conciliatory policy in allaying the discontent which had broken out and for some time continued. It was through his efforts that reciprocity between the United cstablished (1854-66). In 1849 he was raised to the British peerage as Baron Elgin; was sent in 1857 as special ambassador to China, where in the following year he succeeded in concluding the Treaty of Tientsin. He also concluded a treaty with Japan. turned to England he was given the office of Postmaster-General and elected lord rector of Glasgow University. In 1860, the Chinese emperor having manifested unfriendiness, Lord Elgin was sent to enforce the treaty which he did by scizing Peking. The treaty Whinese rclations with Europe until 1890 . In Chinesc rclations with Europe until 1890 .
1861 he was appointed governor-general o India. He maintained internal peace and ex erted himself unceasingly for the developmen of the country. Wis Letters and Journals were edited by Walrond (London 1872)
elgin, Thomas Bruce. See Elgin Marbles.

ELGIN, Victor Alexander Bruce, 9TH Earl of, British statesman: b. Montreal,
1849; d. Scotland, January 1918 . His 1849 d. Scotland, January 1918 . He He
grandfather, the 7 th earl, best known by grandfather, the his connection with the Elgin Marbles (q.v.) was British Ambassador at Constantinople from 1799 to 1802 . Lord Elgin was educated at Eton and Oxford and entered Parliament is a Liberal under the banner of Glad India, In 18 which his father had held -and
died in - 30 years before. The five years
of Elgin's administration, 1894 to 1899 were marked by numerous and serious probler financial, economic, plague, famine and war The difficulties were met by the viceroy and his advisers with courage, resource and success, and much was done to improve public works in genLord Elgin was chairman of the particular mission appointed in 1902 to inquire into the military preparations for, and conduct of, the South African War. In the Campbell-Banner man Cabinet (December 1905) he became primarily responsible for which capacity he was tion for the Union South Africa in 1908, but his services were employed on important government commissions where judg-
ment and impartiality were nceded. As chairment and impartiality were needed. As chairman of the Carnegie Trust he took a strong Elgin, who the application of the fund. Lady daughters.
ELGIN, III., city of Kane County, 36 miles Two railroads supply adequate shipping faver ties, the Chicago, Milwaukee and Saint Paul and the Chicago and Northwestern. It is also the terminus of the Aurora, Elgin and Chicago Railway, which is a third-rail electric line between these cities. Two products make Elgin terests have probably had more to do with the development of the community than any other factor. Early in its history, The Borden Condensed Milk Company located a large plant here and since that time has established many more in the immediate vicinity. The current market price of high grade butter throughout the entire country. The other industry to which Elgin largely owes its growth and prosperity is
the making of fine watch-movements. The he making of fine watch-movements. The watch factory was started in the spring of 1864 There are many other industries in Elgin, all of which are prosperous concerns. Two watchcase factories and as many shirt factories distribute their products throughout the country. Besides these, there are shoe, pipe-organ, silverpate, automobile, cofim-ixtures, canning, malted milk, rug factories, foundries, flouring mills, here and there are several machine shops and foundries. The United States census of manufactures for 1914 showed within the city limits 91 industrial establishments of factory grade, employing 5,974 persons; 5,529 being wage The capital invested aggregated $\$ 17,371,000$ and the year's output was valued at $\$ 10,402,000$. of this, $\$ 6,221,000$ was the value added by manufacture. Elgin is sometimes called the "City of Churches." Nearly all denominations are epresented and the various houses of worship are large and handsome. The city is noted for oped and very efficient The buildings are oped and very efficient. The buildings are has been constructed recently. The Elgin Acadenyy of the Northwestern University is a well-known preparatory school for the latter institution, which is located at Evanston, Ill

Saint Mary's Academy is also well know throughout the State and bears a high repur Nation as a place of learning. The Illinois Elgin. The Elgin Woman's Club has built and operates a large hospital, which is famed throughout the country and State for its high standing and great efficiency. Its cost was aboul $\$ 1,000,000$. The banks are six in number, four bined capital of over $\$ 650,000$ and are a coner ous and strong financial institutions. Founded in the spring of 1835, Elgin has grown rapidly in size and importance until it now is the mos County. Elgin was incorporgest city in Kane Dr. Joseph Tefft was chosen the in 1854 and The waterworks and sewer system and an elec-tric-lighting plant are the property of the municipality. The city has commission form of government. Property is in demand, owing to the number of Chicago people who, on account more room and pleasanter homes with the confines of the beautiful city on the Fox River. Pop. 27,485

ELGIN MARBLES, the name given to a peerless collection of antique sculptures brought
from Athens to England by Thomas Bruce, from Athens to England by Thomas Bruce, 19th Earl of Elgin, in the early part of the nople ($1799-1802$) he conceived at Constant sccuring some portion of the ruins of ancient Athens and to that end secured permission of the Porte to take "any stones that might appear Briteresting to him." At his own expense (the British government having refused aid) he set a corps of artists to work who toiled for ycars detaching various specimens from the statues on the tympana of the pediments, the metopes and the frieze around the cella. Amon he best preserved examples which this splendid effort brought forth were the tympanum repre senting the birth of Minerva, the 15 metopes Centaurs and Lapithæ and the slabs from the cella friezc depicting in low relief the great Panathenaic procession. In addition to thes Ord Elgin procured the colossal statuc o Bacchus from the choragic monument of Thrasyllus, one of the caryatides from the temple of Pandrosus, a portion of the frieze from of the Parthenon and Erechtheum; also numerous inscriptions, urns, etc., found in the neighborhood. When these treasures of an tiquity arrived on the English shores they were received with a mixture of admiration and in
dignation - the latter because dignation - the latter because of supposed van dalism. It is said that Lord Byron was so he visited the Parthenon he inscribed conspicuously: Quod non fecerunt Gothi, hoc fecerum Scoti. However, as it afterward proved, had not Lord Elgin obtained these sculptures they would have been destroyed in the subsequent war of Greck independence and especially in
the last siege of Athens in 1826-27. After much the last siege of Athens in 1826-27. After much
hesitation and bickering as to the price in spite, too, of their value vouched for by experts, the British Parliament purchased the marbles from Lord Elgin for $£ 35,000$, easily a
third less than he had expended upon them. They are now to be scen in the British Museum as priceless examples of the highest in Greek art which matured under the genius of Phidias. passed casts have been taken of these unsur possesses a the British Muscum' (Vols. VI-IX, London 1830-39, 1842).
ELHORST, Hendrik Jan, Dutch biblical scholar: b. Wisch, Guelderland, 1861. He rcsterdam education at the University of Amand hin entered the Mennonite ministry Friesland, Arnhem, The Hague and Haarlem, In 1906 he was appointed to the chair of Hebrew language, antiquities and literature in the University of Amsterdam. He has published critical commentaries on Micah (1891), Amos (1899) and 'Israel in Thet lichte der jongste ondcrzoekingen) (1906)
ELL, ếli, Hcbrcw judge and high-priest of Israel. After a turbulent rule of 40 years, he
died 1116 в. C Failing to punish the misdoings of his sons, Phineas and Hophni, the downfall of his house followed.
Eli Perkins. See Landon, Melville de L.
elia, élii-a. See Lamb, Cifarles.
ELIE DE BEAUMONT, ã'lê de bō-môñ, Jean Baptiste Armand Louis Léonce, French geologist: b Canon, France, 25 Sept. 1798 ; the Polytechnic School; became professor at geology in the College of France (1833) ; chicf engincer of mines (1833); member of the Institute (1835) and perpetual secretary of the Academy of Sciences (1853). He published 'Carte géologiquc de France' (1843); 'Noand with Duffenoy, (Voyage metallurgique ci Angleterre) (1827), the record of a scientific journey he had made in England and Scotland in 1823. His principal services to science were in the establishing of the geological survey of monce and the stimulating of interest in

ELIGIUS, ě-lij'uns, or ELOI, à-lwä, Saint,
shop of Noyon: b. Cadillac, ncar Limoges, 588 ; d. Noyon, 1 Dec. about 660 . Having in boyhood shown a decided aptitude for fine ar he was placed by his parents under the direction of the master of the mint at Limoges and there acquired skill in the goldsmith's craft. Apand to his son and successor Dagobert he executed at their order the bas-reliefs on the tomb of Saint Germanus, bishop of Paris, and other works in the precious metals which were regarded as the masterpieces of decorative art in wat time. He was a favorite at court, which he was obliged to frequent because of his connection with the king; but he took more pleasure in relieving the needy than in the society
of the worldly. He daily fed a large number of poor people, he buried the bodies of malefactors, and he ransomed captives, especially the Saxon slaves who were often sold in the markets. Both Clotaire and his son Dagober could
the poor and to the founding of charitable in stitutions. At about the age of 50 he decided self to the conversion of the pagans. Two years to the he was ordained priest and in 546 was made bishop of Noyon. As bishop he gave special attention to the conversion of the Flemings and Frisians, and the greater part of Flanders was converted through his efforts. Consult Lebeuf, 'Histoire ${ }^{\text {Paris' }}$, Fleury, 'Vita S. Eligii.)

ELIHU, a friend of the patriarch Job, introduced as speaking after the three intimat riends. His portion in chapters xxxi1-xxxviition to the book. Lightfoot and others conjecture that Elihu was the author of the book f Job.

ELIJAH, whose name ("Jehovah is God") indicates his mission and his work, was one of the greatest prophity began in the days of Ahab of Isracl, and cnded in the days of his son, Ahaziah, or, as is on the whole more probable, in the days of his pearance is strange; the end of his life on earth still more strange. Throughout his career he comes and goes in an unusual and remarkable way. His special work was to save his nation from falling into heathenism, and thus making in the Christian civilization of our own days. Ahab, the king of northern Isracl, had married Jezebel, the daughter of Ethbaal, king of Tyre, and formerly a priest of the Tyrian religion. Among the Scmitic peoples an alliance of nations meant a mutual honoring of gods. Thus
the marriage of Ahab and Jezebcl introduced the marriage of Ahab and Jezebcl introduced Tyrian Baal. Gradually, through the determined efforts of Jezcbel, who was a fanatic for her faith, the worship of Baal displaced that of Jehovah, and seemed likely altogether to destroy it. Later, Ay me marriage of Athaliuh, king of Judah, the same course of things began in the kingdom of Judah (2 Kings viii, 18) . To bring back the nation to the worshin of Jchovah, and to the recognition of him as God, was the work of Elijah. This work began with to sudden appearance of the prophct to Ahab, famine, which the nature god Baal would be powerless to prevent (1 Kings xvii, 1). The life of the prophct up to this time had probably heen spent in the lonely and wild region on the castern side of the Jordan, although it is uncertain where hire birthplace was. During the which followed Elijah's first appcarance to Ahab, the prophet found a home and the means of life, first by the brook Cherith, and afterward in the home of a widow in Zarephath, a city of Phoenicia. At the end of this time he
had his great contest with the prophets of Baal had his great contest with the prophets of Baal
on the Mount Carmel, where, in answer to his prayer, Jehovah revcaled himself by fire, and was acknowledged hy the people to be Gord. The same day the falling rain ended the drough and the faminc (1 Kings xviii). The triumph of the prophet was followed by a flight to angercd Jezcbel. On this mountain he received
from God a revelation in regard to the real part his work had in the history of his nation, and was commanded by God to call Elisha to be his successor in the work for the nation. In obedience to this command, he went from Horeb given to Elishat the call to be his successor, he disappeared for a time from the view of men (1 Kings xix). About six years later, the prophet again appeared to Ahab in the vincyard of Naboth, in Jezreel, to denounce him for his wicked disregard of the rights of his Kings xxi, $17-24$). The law of Jehovah (kings xxi, $17-2+$). The final work of th in the book of Chronicles (2 Chron. xxi, 12-15) This was the sending of a letter to Jehoram the king of Judah, to tell him that, because he had endcavored to introduce the Baal worship cause he had cruelly murdered his brothers to make his own throne more secure, Jehova would send great evils upon his people, hi family and himself. How long the prophe lived we do not know (2 Kings li, 1-12). Consult Milligan, (Elijah: His Life and Times' of Kings) (Chaps. xxxiii-xaraiii, 'First Book positor's Pible' 1893) ; and 'Second Book of Kings' (in the same, 'Chaps. i and ii, 1902) Strachan, (Elijalı) (in Hastings' (Dictionary of the Bible,' 1899).

Thcological Siminary of Colgate University
ELIJAH, The, an oratorio by Mendelssohn first performed at Birmingham, England, 26
Aug. 1846 . It is one of his best-known works and is more popular in England and America than any cther oratorio, with the exception of
ELIMINATION. In mathematics we often mect with instances where, given several statements concerning several distinct quantities, we
wish to discover precisely what is affirmed of a smaller group of these quantities. For example, in the solution of simultancous equations, such as

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1}=0 \\
a_{2 x} x+b_{2} y+c_{2}=0,
\end{array}\right.
$$

to obtain the value of x, we must derive from hese two equations a single one not involving y This process is called the elimination of y. In the case of linear simultaneous equations such as the atove, the elimination may be performed
by multiplying the first equation by b_{2} and the second by b_{1} and, subtracting or by solving the first equation for y and substituting this value in the second, or by solving both equations for y and equating the values thus obtained. All
these methods give the result

$$
\frac{\left|\begin{array}{ll}
a_{1} c_{1} \\
\mid & a_{2} c_{2}
\end{array}\right|}{\left|\begin{array}{l}
a_{1} b_{1} \\
a_{2} b_{2}
\end{array}\right|}
$$

(see Determinants), and throughout all forms f elimination determinants are very convenient Elimination between equations not linear is apt to be very complicated and difficult. Howver, in the case of the elimination of a single nknown from two consistent algebraic equa-
tions, Sylvester's dialytic method forms an easy solution to the problem. This consists mth and n fh from two equations in x of the tions formed by multiplying the first cquation by the powers of x from the 0 th to the $(n-1)$ st and the m equations formed by multiplying th second equation by the powers of x from the these the powers of x, considered as independ ent variables. We thus get $n+n$ equations in $m+n-1$ variables, and the condition (see Determinants) that these be consistent is that the determinant of the coefficients should vanish

$$
\left\{\begin{array}{l}
a_{1} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0 \\
b_{2} x^{2}+b_{1} x+b_{0}=0
\end{array}\right.
$$

we obtain from these the equivalent family equations

$$
\begin{align*}
& \begin{aligned}
a_{2} x^{4}+a_{2} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} & =0 \\
\alpha_{4} x^{3}+a_{2} x^{4}+a_{2} x^{3}+a_{1} x^{2}+a_{0} x & =0
\end{aligned} \\
& \begin{aligned}
b_{0} x^{2}+b_{1} x+b_{0} & =0 \\
b_{0} x^{3}+b_{0} x^{2}+b_{0} & =0 \\
b_{2} x^{4}+b_{1} x^{4}+b_{0} x^{2} & =0
\end{aligned} \\
& \begin{array}{l}
b_{2 x^{4}}+b_{1} x^{3} \\
+b_{1 x^{4}}+b_{x} x^{3}
\end{array}
\end{align*}
$$

which give the relation between the coefficients
$\left|\begin{array}{llllll}0 & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & b_{2} & b_{1} & b_{0} \\ 0 & 0 & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{2} & b_{1} & b_{0} & 0 & 0 \\ b_{2} & b_{1} & b_{0} & 0 & 0 & 0\end{array}\right|=0$.

In certain cases an analogous method may be applied to systems of three or more cquations. A method of similar application to that of Sylvester had been discovered previously by Euler. (Scc Algebra, Elementary; Determiof Equations) (Dublin 1901). Dickson 'Introduction to the Theory of Algcbraic Equations' (New York 1903): Muir, 'Theory of Determinants) (London 1890); Young, (Monographs on Modern Mathematics' (New York 1911)

ELIOT, Charles William, American col10 Marchident and educator: b. Boston, Mass., vard March 1834. He was graduated from Harvard in 1853, was tutor in mathematics there and chemistry in the Lawrence Scientific School, Harvard, 1858-63. After spending two years in Europe studying chemistry and investigating educational methods he was professor of analytical chemistry in the Massachusetts Instiyear he became president of Harvard Ust-named which position he resigned in 1909 . He is one of the forcmost writers and speakers of the day upon educational and social problems and has exerted a strong influence upon the trend of American thought. During his incumbency known as the elective system - a system since adopted by most American colleges, wherchy students no longer must pursue a rigidly prescribed curriculum, but may chose (within certain groups) any of the subjects taught. Under President Eliot, too, Harvard's college course conld be covered in three years instead both the college and a professional course in six, instead of seven, years. Numerous other educational reforms were advocated by Dr.

CHARLES WILLIAM ELIOT

GEORGE ELIOT

Eliot in his long carcer at Harvard, which educators and have won the greatest American university over which he presided. He has
puhliche Duhlished 'Manual of Qualitative Chemical
Analysis? Inargsis' (with F. H. Storer) ; 'Manual of 'Five Ac Chemistry) (with F.' H. Storer); and American Contributions to Civilization 'More Moncy for the Public Schools' (1903) ; 'Tohn
(1905) Gilley) for the Public Schools' (1904); 'The Happy Life); EI; 'The Road Towards Peace' (1915). Ann or Marian George (the pseudonym of Mary tinguishor Marian Evans Cross), the most disbury farm of English women novelists: b. ArNov iarm, near Nuneaton, Warwickshire, 22 Robert Evans, who was of Welsh extraction, was agent on the estates of Francis Newdegate. daughe future novelist was the second When Mard third child of his second marriage. removed to Griff a few months old, the family covered house", and there the first 21 , ivy of her house," and there the first 21 ycars morty a people that she was destined to imand from Her first school was at Attleborough, at Nunem there she went to a boarding school Miss Leaton, one of the governesses at which, ceeded in awakening religious impressions that were decpened in the years she spent between in Coses of 13 and 16, at Miss Franklin's school whom entry. The death of her mother, to in 1836 was tencerly devoted, which occurred rage of her sister and soon after by the mar home then devolved upon care of her father Italizouschold were accompanied by lessons in already and German, Greck and Latin; she wa fine nom omivorous reader and one with ond of of selection; she was passionately piano on which ind an excellent player on the ined some distinction as an executant but for fictagonies of shyness" with which she was af ife . Her father's retirement from active 10 sureced tollowed by her brother's appointmen moved in 1841 , and Marian and her father reUID to this time Marian was Coventry. with evangelical religion was decply imbued by thed upon a mind of singular receptivity Then example and instruction of her teachers. aith. Bray, Among the new friends was Charles ell, the author of a a sister of Charles Hen isherning the Origin of Christianity, readi in 1838, and rationalistic in tone. The Omplete of this and similar works effected a -vans: revolution in the inner life of Marian ood, and abandoned the creed of her girlo go to church. emporary breach with her father who was a to berman of the old school and little disposed short rebelion in his own household. After Torts of frice from home and through the Marian of friends a reconciliation was effected chureh, and although she never attendance witnen the course she had taken, her works by
to the insight and tenderness, born of
Vol. 10-16
understanding, with which she approached
evangelical beliefs. vangelical beliefs.
attendance on her father during his decurted illnesses, and by the translation of Strauss's 'Life of Jesus,' a work which entailed two years of exacting labor and was published anonymously in 1846, and for which she received left her "Strauss-sick-it makes her ill dis secting the beautiful story of the Crucifixion." After the death of her father (1849) she went to the Continent and passed about eight months in Geneva. On her return she took up work on the Westminster Review, acting as subeditor, and in 1853 went to reside at the office year she published a translation of Feuerbach's 'Essence of Christianity,' the only work published under her own name, and the leading idea in which is that man has made God in his own image - the spiritualized form of his hopes and desires. At this period she made the acriet Martineau Herbert Spencer and Georg Henry Lewes (q.v.)

With Lewes, whom she describes as "a man of heart and conscience, wearing a mask o flippancy," she entered into a connection which she regarded as a marriage without the sanc he was separated under circumstances that pre cluded the possibility of divorce. This alliance cluded the possibility of divorce. This alliance her life, and to it they attribute the somewhat obtrusive self-consciousness that is apparent in some parts of her writings, and note that the novelist's own conduct does not square with they lived happily together, and that their union exercised a profound mutual influence on their literary life and fortuncs. Lewes undertook al business matters for her, acted as critic and mentor; and tacuay shielded her from the deed but for the constant encouragement and stimulus given by Lewes, the chances are that Marian Evans would never have discovered herself as a creative artist, for although possessing singular robustness and health of intellect she was of low physical vitality, subject to acute fits of depression, and only by strong
effort was able to undertake creative work. Lewes and Marian Evans left England in July 1854 and wintered in Germany. On their return she labored at a translation of Spinoza's 'Ethics) and wrote reviews for the I.eader An article contributed to the Westminster Cumming," in which the famous preacher of Crown Court was subjected to a criticism that was at once informed, witty, pointed and scath ing, revealed to Lewes that he had mated with genius, and under his encouragement, 'The Sad Fortunes of the Reverend Amos Barton' was
begun in September 1856, and appeared in Blackwood's Magazine in January 1857. This was followed by 'Mr. Gilfil's Love Story,' and 'Janet's Repentance,' the three stories being published ini book form in 1858, under the nen name of George Eliot. Discerning critics new force had arisen in Fngland fiction, and the latter divined that the creator was a woman

It may be questioned if the author ever bettered hese faithful sketches of old-fashioned life renial and kindly humor, warmth of sympathy power of desciption and moving but unforced pathos. 'Scenes of Clerical Life') could not be alled a popular success, but with her next nove Adam Bede' (i859) written partly in Engand, parly at taken by storm, and it has remained the most popular of George Eliot's works. The genesis of the story came to the author through an aunt, a Methodist preacher, who had occasion to pass a night with a girl condemned for child murder, the aunt and gir Hetty Sorrel of the novel. George Eliot was put to considerable annoyance by the claim made to its authorship, especially by one Liggins in her native county, and only the inter ention of Blackwood the publisher set the mat er at rest. It then became known that Maria Eliot were identical. 'The Mill on the Floss' (1860) is to some extent autobiographical, the charming portraits of Maggie and Tom Tulliver being drawn from her own and her b,rother Isaac's childhood. 'Silas Marner,' which many egard as her most perfect story, followed in 1861. In 1860 George Eliot had spent the summer in Italy collecting material for her great serially in Cornhill, for which she reccived the then unheard-of sum of $£ 7,000$, and which appeared in hook form in 1863. In order to write this she went through a course of reading that would have qualified her to write a history. more than any of her works," and she herself says she "began it a young woman, and finished it an old woman.". Although it must be pronounced a masterpiece, reflecting her powers at their very highest, it cannot be regarded-in spite of the fine character drawing in it, espe-
cially of Tito Milema and Tessa - as a faithful and lifelike reproduction of the Florence of the Renaissance. The appearance of (Felix Holt the Radical' in 1866 seemed to betoken diminishing powers. She then essayed poctry, 'The Spanish Gypsy' appearing in 1868, and
(Agatha) in 1869 ; and these revealed that her art did not lie in that direction. The only poem of hers that is certain to live is the noble piece beginning ' O may I join the choir invisible.'
(Middlemarch) (1871-72), a novel which may be regarded as inspired by her life at Coventry, as her early works drew their stimulus from
childhood and girlhood, is notable for some fine characterizations of middle and upper class ife in an English provincial town, and is replete with pregnant thought. 'The Legend of Juhal and Other Poems' appeared in 1874. Deronda,' her last great work, was published noted critic is the best of her novels and marks the culminating point in her carecr. On 28 Nov. 1878, Lewes died. This bereavement was a crushing blow to George Eliot; for weeks she saw no one and wrote no letters; and she busied herself preparing his unpublished work for the press, and founded a scholarship in his
memory for scientific investigation. "Theophrastus Such,' written sometime earlier, appeared in 1879. She never really got over the
shock of Lewes's death. In the months of sor row and depression following on that even
she had been lifted somewhat by the fore thought fulness and helpful sympathy of J. W. Cross, an American - an old friend of her own and of Lewes - to whom she was married
6 May 1880 . But their married life was cul 6. May 1880. But their married life was
short, for, after contracting a chill at a concert, she died on 22 December of the same ycat The first collected edition of her novels ap peared 1878-80, and a 25 -volume edition w^{25} issued at Boston in 1908 . See ADAM BED: Middlemarch; Mill on
Bibliography.- Consult her 'Life and Let ers,' by J. W. Cross (3 vols., London 1885) biographies by Blind (London 1883); Brown ing, O., (London 1892); and Stephen, L. (Nev
York 1902): Deakin, (Early Life of Georb York 1902); Dcakin, 'Early Life of Georg Eliot' (Manchester 1913) ; Dowden, E., 'Stucic'
in Literature) (London 1878) ; Hutton, 'Mod ern Guides of English Thought) (London ern Guides of English Thought' Mottram, 'The True Story of George Eliot Relation to Adam Bede') (New York 19015) Myers, 'Essays Modern' (1883); Parkins ${ }^{1 / 2}$ 'Scenes from the George Eliot Country' (Leeds 1888).

ELIOT, SiR John, English orator ant 1592; d. London, 27 Nov. 1632. He studie at Exeter, but did not take a degree. He the took up law, and traveled in Europe, where he became an intimate friend of Groorge Villie later Duke of Buckingham. In 1614 he sent to the "Addled" Parliament for Saint mans. In 1618 he was knighted and in the for quis of Buckingham, was made vice-admir of Devon. In this capacity he was energei in suppressing piracy. His arrest of a notorio pirate named Nutt brought him into collision with Nutt's protector, Sir George Calvert, , ${ }^{\text {Ced }}$ on trumped-up charges for three months. Th return of the Duke of Buckingham accom plished his release. He was returned to Paria ment in 1624 , where his remarkable indepen ence and fluent oratory at once brought h war with Spain and began his life-long oppo tion to encroachments on the rights of the House of Commons, which he considered backbone of the national government. Hc wa re-elected in 1625 , during which session opposed the leniency toward Catholicism ights. In 1626, the accumulated mismanab ments and instances of the selfish policies Buckingham completely undermined Eliot's in him and an impeachment followed. ogether with Eliot's opposition of forced loan ed to his imprisonment. At the protest of to Parliament in 1628 . He joined Coke promoting the Petition of Right which signed by Charles on 7 June. In 1629 the murder of Buckingham, Eliot devoted his self to the earnest support of Protestanit His attempts to resist the king's tonnage wid contempt and with the adjournment of 1 ment. When this last measure was to be cat out a second time, Eliot insisted that

Speaker be held in his chair while a speech was constitutionang the king's encroachments on he declared rights. When summoned to trial Parliament alone for his actions and him not reply to charges brought against fined by any other body. He was conHolles in the Tower, and finally tried with lawful order Valentine for conspiracy against Sulbmission to the refused to yirld an inch in Priconed in 1629 , where he sickened and died. constig his imprisonment he wrote a work on constitutional monarchy entitled the 'Monarchy Parliam, and also an account of the first 'Negotium Posteriorum' (under the title Socrates,' a vindication of his own public conduct, and 'De Jure Majestatis,' a treatise on Bovernment. Eliot was not republican in his a con, but believed rather that the ideal state was of the kinonal monarchy in which the powers preted by Pa would be strengthened and interthe enthusiasm rather than the logical depth of his speeches. The king's treatment of Eliot that one of the causes of the unpopularity of did monarch which led to his downfall. Pym of Eluch to systematize the political theories Eliot' Eliot. Consult Forster, (Life of Sir John of England)
ELIOT, John, American colonial missionary, "the Indian Apostle": b. probalby at Widin May 1690. He was graduated at Cambridge of 1622 , and, after taking orders in the Church of England, quitted his native country for conland, in sake and landed at Boston, New Engof the Indian. In 1046, after two ycars study mon in the lative diage, he delivered a long serother mectings soon followed. He shortly after to to establish his converts in regular setin thes, his work meeting with approval both poration and at home; in England a cortion and was founded in 1649 "for the promodians of Nepagating the Gospel among the Inexpenses of the preachers and the cost of printa translations. At one time there were over the dozen townships of "praying Indians" within outside bounds of Massachusctts, and many more in 1674 these limits, with numbers estimated survived until the death of the last native Dastor in 1716, the decay of the "praying towns" (1sy rapid after the war with King Philip (rimelt, in which the converts suffered equal of the E at the hands of their countrymen and memory in the There are monuments to Eliot's Natick, and at Ncwton, near the scene of his first Indian sermon. A man of earnest picty and devotion, warm-hearted and of a singularly honotive manner, he has left a memory that is England. Wiong the first in the history of New Mather, Eliot prepared an English metrical verSion of the Prepared an English metrical ver$N_{\text {(w }}$ Embridge 1640), as the first book printed in other England. He was also the author, among
(London 1659), suppressed by the court and Churches) (1665), the first book privately Churches' (1665), the first book privately the Indian tongue of Baxter's 'Call' ; Bayly's 'Practice of Piety) (abridged) ; and Shepard's Sincere Convert.' But the great work of his life was the translation of the Bible into the ongue of the Indians of Massachusetts peared in 1661, and the whole work with a verion of the Psalms in metre and a page of "catechism" in 1663 . The longest single word in it is "Wutappesittukqussunnoohwehtunkquoh," signifying "knecling down to him," in Mark i,
40 . which illustrates the jest of Cotton Mather, 40; which illustrates the jest of Cotton Mather, who said he thought the words of the lan-
guage must have been growing ever since the dispersion at Babel. Only 14 complete copies of the first and second editions are known to be in existence. A scientific study of Eliot's Indian Bible was made by J. H. Trumbull (q.v.), and
his manuscript published 1903 as (Bulletin his manuscript published 1903 as (Bulletin Washington. Its title is the 'Natick Dicionary' and it is divided into two parts, the first giving the Natick words with English definitions and the sccond giving the English words with Natick definitions. While it is devoted to the Natick language it is practically a dictionary of all the
Algonquin languages of Massachusetts, for the tribes of that part of the country spoke practically the same language, though each had its dialectic variations. Eliot's 'Indian Grammar Begun' was printed in 1606; his Indian Primer) in 1669. The finest collection of unique and scarce copies of Eliot's works is in the been reprinted. The best 'Life of Eliot' is that by Francis (Vol. V); Sparks' (American Biography) 1st series (1836); the earliest that by Cotton Mather (1691). Consult also articles in the 'Cyclopædia of American Biography' Biography' (Vol. XVII, 1889).

ELIOT, Sir John, English colonial clergyElint the «Apostle to the Indians," and was long a pastor at Killingworth, Conn. He was an able preacher, a botanist and a scientific and practical agriculturist; was the first to introduce the
white mulberry trec into Connecticut, and discovered a process of extracting iron from ferruginous sands. He was also regarded as the first physician of his day in the colony; and such was his success in the treatment of insanity and chronic complaints, that he was sometimes sent for to Ncwport and Boston, and was sician in New England.

ELIOT Samuel
ELIOT, Samuel, American educator and historian: h . Boston, Mass., 22 Dec. 1821 ; d.
Beverly, Mass., 14 Sept. 1898 . He filled the chair of history and political science in Trinity College, Hartford, Conn. ($1856-64$); was its president (1860-64); and lecturer on history at
Harvard (1870-73), and head master of the Harvard (1870-73), and head master of the
Girls' High School in Boston (1873-76). From 1876-80 he served as superintendent of the Boston public schools. Among his publications are 'The History of Liberty' (1853); 'The

Liberty of Rome) (1849); (Life and Times of Savonarola' (1856) ; 'Manual of United States vised ed., 1873) : and 'Stories from the (re bian Nights' (1879) ; 'Selections from American Authors' (1879).

ELIOT, Samuel Atkins, Amcrican Unitarian minister: b. Cambridge, Mass., 24 Aug. 1862, son of Charles W. Eliot (q.v.). He was graduated at Harvard College 1884; was pastor of Unity Church, Denver, 1889-93, and of the
church of the Saviour, Brooklyn, 1893-98. He was secretary of the American Unitarian Association 1898-1900, becoming its president at the latter date. He is a member of the United States Board of Indian Commissioners; the president of the trustecs of the Hackley School, an editor of the Hibbert Journal; vice-
president of the Massachusetts Federation of Churches, etc. He holds the honorary degree of D.D. from Bowdoin and LL.D. from Westeri Reserve University.

ELIS, ellis, (1) a country in the west of Peloponnesus, where Olympia was situated. It was bounded on the cast by Arcadia, on the south by Messenia and ran along the coast,
watered by the river Alpheus. There were three watered by the river Alpheus. There were three
districts in their country - Colle, or Hollow Elis, Pisatis and Triphylia; the two latter being subject districts. It was the seat of the greatest national festivals. The Athenians were the first to raid the coast during the Peloponnesian War and frequent conquests followed. After the
suppression of the games Elis by the suppression of the games at Elis by the Em-
peror Theodosius in 394 A.D., the Eleans lost their prestige entirely. Elis and Archaia now form a romarchy of Grecce with the capita at Pyrgos. (2) Elis, once the capital of Elis is now called Kaloskopi. (Sce Olymyia)

ELISHA a memb
Ehar, a citizen of Abel-meholah, tribe of Issachar, a citizen of Abel-meholah, was a dis
ciple of Elijah, and his successor in the prophetic office. His prophetic ministry, which was exercised, as was that of Elijah, in northern Israel, began in the rcign of Ahab, and continued through the rcigns of Jchoram, Jehu, Jehoahaz, and during a part of the reign of half a century. He was a man of very different character and mode of life from Elijah, although master and disciple seem to have been most warmly attached to each other. Elijah was a son of the desert; Elisha came from a apart from men; Elisha for the most part apart from men; Elisha, for the most part, sons of the prophets, or in his own home at
Dothan or Samaria. Elijah had nothing to do Dothan or Samaria. Elijah had nothing to do with kings except to rehuke them; Elisha was their friend and counsellor. Yet it is easy to make too much account of their difference affected essentially the prophetic aim and religious attitude, so that these were quite different in the case of each prophet. But to claim that the work and spirit of Elisha were in marked contrast to those of Elijah would be to Elaim too much. The declaration of Jehovah to from the sword of Jehu, shall Elisha slay" (1 Kings xix, 17), shows that it was Elijah's work of vengeance and destruction whick

Elisha was to continue. It was Elisha, moreof the who devised the plan for the destruction of the house of Ahab (2 Kings ix, $1-3$). for
was Elisha, also, who reproved King Joash for his lack of zeal for the utter overthrow of Syria (2 Kings xiii, 19). It is to be remembered in this connection that the accounts which wc have concerning the carcer of Elisha, whatever the cause may be, relate rather to his deeds as man, than to his work as a prophet.

For some six or seven years after his call
the office of prophet by Elijah at Abel-meholah (1 Kings xix, 19-21), he was a helper and disciple of Elijah. But we do not know just where he was in all this time, or the exact nature of his work. At the close of this time, after the ascension of Elijah, he began his own independent work as a prophet (2 Kings ii,
22). The character of the narrative in the Sccond Book of Kings makes it impossible to arrange the events of his life in chronological order. It is better, therefore, to group them under two headings: (a) his deeds in private ife; ${ }^{(b)}$ his decds in public life.
Under the first class, we may
healing of the watcrs of Jericho put (1) the 19-22); (2) the punishment of the lads of Bethel (2 Kings ii, 23-25) ; (3) the saving of a widow's son from slavery (2 Kings iv, 1-7), (4) the restoring of the Shunammite's son to
life (2 Kings iv, $32-36$) ; (5) the rendering of some poisonous pottage harmless (2 Kings iv, $38-41$) ; (6) the miraculous feeding of a hundred men (2 Kings iv, 42-44) ; (7) the healing of Naaman the leper (2 Kings v) ; (8) the causing of the iron head of an axe to swim (2 Kings vi,
Under the
helpful work in the campaign against Moab (2) Kings iii, 11-24) : (2) his bringing of the Syrial Kings into Samaria, where they were made prisoners (2 Kings vi, 8-23); (3) his activity in the siege of Samaria (2 Kings vi, 24, vii, 2); (4) his visit to Damascus to announce to Hazael 7-13) ; (5) the sending of a messenger to anoint Jchu to be king of Israel (2 Kings ix, $1-3$); (0) the assuring of King Joash that Israel should be victorious over Syria (2 Kings xiii, 14 19). But the power of Elisha for good did not end with his life. Of him alone of all the
prophets it is recorded that he wrought a prophets it is recorded that he wrought was hastily cast into the sepulchre of the prophet, on touching the prophet's bones, came to litc, and stood upon his feet (2 Kings xiii, 20-21). Consult Grove, 'Elisha' (in Smith's 'Dictionary Hastings' 'Dictionary of the Bible,' 1899); xvii in the 'Expositor's Bible,' 1902).

Sylvester Burnian, Professor of Old Testament Interpretation,
Theological Seminary of Colgate University.

ELIXIRS, in pharmacy, are aromatic, sweetish, spirituous preparations, containing small quantities of active medicinal drugs. Temed are now mostly used as vehicles for othe that of the alcohol which they contain. Elixif aromaticum and Elixir glycyrrhize (licorice) are the only two elixirs recognized by the 191 revision of the United States Pharmacopoca.

ELIZABETH, the wife of the priest a relative and mother of John the Baptist, and angel foretold to her husband the birth of a son in her old age; and it was also foretold by the angel Gabriel to the Virgin Mary, as an assurance of the birth of the Messiah.
ELIZABETH, queen of England: b. Greenwich, 7 Sept. 1533 ; d. Richmond, Surrey, 24 March 1603 . She was the daughter of Henry VIII and of Anne Boleyn. After her mother had been beheaded (1536) both she and her sis was Mary were declared bastards, but finally sh Mary in the arter Prince Edward and the Lad he first the order of succession. Thus, whil hoth still held to be illegal, the children of both vere Icgitimized. Elizaheth received a classical rank in, as was customary with women of Ascham, is time, and under her tutor, Roge able proficiency in Latin and Greek. During her father's life, as well as in the reign of her rother, various negotiations were entered into or her marriage. The duke of Angouleme ind Philip of Spain, who afterward married her her; but the among the matches proposed for may be supposed to have been personally intersted was the suit of Lord Seymour of Dudley, he Protector Somerset's brother. It is certain wit even during the life of Catharine Parr, the ridow of Henry VIII, whom he married, his well encs to the Lady Elizabeth were only too fter the death of his wife he was a suitor for he hand of the princess; but his ambitious esigns in this and other matters were not counhis life by the council, and ultimately cost him

$$
O_{n}
$$

On the death of King. Edward, Elizabeth Oinsly supported the title of Qucen Which her pretensions of Lady Jane Grey, arred. She rode to meet her sister, accom anied by 1,000 horse, and this bold proceeding was of no small service in confirming the doubt le in their allegiance; but Elizabeth gained litinderstood Ater Wyatt's conspiracy her life was in great anger, and was probably saved only by the in rcession of Philip. She was committed to th ower, from whence she was removed to Wood lock, where she was confined with great strict ions. She afterward, through Philip's interces the whole onted greater liberty; but throughout and surveillance. The danger she now incurred eveloped traits in her character which ever ter continued conspicuous, her prudent selfcyerol and nower of dissimulation. She made ut of demonstration not only of conformity igion zcalous adherence to the established re rom the por conduct in this must not be judged Which Elizabeth never professed; but there ere some at least among the Roman Catholic remonies and customs to which she could not supposed to give a sincere adherence. Neverand ably her simulated zeal must have been well left to the report of her conduct was no
watched by spies and informers. Philip wa most anxious to have her married out of the kingdom; and if the Duke of Savoy, whom he proposed, was unacceptable frism, there was Eric, son of the king of Sweden, who long after continued to press his suit; but Elizabeth refused both. She felt in herself a capacity for rule, and her sister ill health opened up for her an early prospect of the throne, which she was unwilling to peril.
Mary's reign was not without advantage to Mary's reign was not without advantage to
Elizabeth. It tried her councillors as well as herself, and gave her the opportunity of select ing them to advantage. Her adviser throughout the whole of it was William Cecil, afterward Lord Burleigh, who had already becn a ministe under Edward VI, and continued for the rest
of his life to be one of the chief councillors and of his life to be one of the chief councillors and in many respects a congenial spirit.

On 17 Nov. 1558 Mary's disastrous reign came to a close, and Elizabeth was immediately recognized queen by Parliament. On entering London she was met by the bishops, whom she permitted 10 kiss her hand, with the exception
of Bonner, "whom she omitted for sundry severities in the time of his authority." It was now that the caution and secrecy characteristic equally of Elizabeth and Cecil, and which en abled them to do such great things, appeared in spontaneous exercise. The Roman Catholic reLords, and any attempt to overthrow it suddenly might have been attended with the greates danger. Elizabeth made no immediate change in her habits. For a full month the ceremonies o the Roman Catholic Church were retained in al their state. A solemn funeral service was held for Qucen Mary in Westminster Abbcy, at her intimated her accession to the Popc. She re tained the greater part of her sister's council choosing only seven new councillors, who were Protestants, it is true, but not then known a such. Like Cecil and herself, they had all conformed, and possessed the necessary qualificadissimulation. Such were her difficultics, not withstanding her great prudence, that at he coronation only one of all the bishops, Ogle thorpe of Carlisle, could be found to set the crown on her head. The obstacle lay in the
terms of the oath of allcgiance, which affirmed terms of the oath of allcgiance, which alfirme that the sovereign was the supreme head of the
Church, and to which no loyal Catholic could subscribe. She had also before this anthorized the reading of the liturgy in English. The firs great object of her reign was the settlement of religion. A Parliament was immediatcly called to which this work was assigned. It met on 25
January, and was dissolved 8 May, but its object was already accomplished. The nation was prepared for a return to the reformed faith or rather to the via media which is embodied in the Anglican Church - and Parliament was at the bidding of the court. The reformation of re had already been accomplished in the reign o Edward VI; the re-establishment of the ecclesiastical system of the national Church on the basis on which it has remained to the presen day was the work of Cecil and Elizabeth, and it was nearly completed in this Parliament. Eliza
porters of the new faith. She was tolerant, for instance, in regard to images and was fond of
ceremonial and is said to have entertained scruples as to the extent of the royal supremacy in spiritual matters; but if she did, they must have been purely speculative. They certainly vanished on the first taste of power
If the formal establishment of the reformed religion was easily completed, the security and defense of the settlement was the main object
of the policy and the chief source of all the of the policy and the chief source of all the
struggles and contentions of her reign. What made the position so difficult was the intolerance by which at this period and for long after all religious sects were characterized. No sooncr were the Purtans freed from the restrictive measures of Mary's reign than they began to
claim predominance for their own dogmas. But it was far from the intention of the Queen and the supporters of the Established Church, notwithstanding the common persecutions they had endured, to grant them even liberty of worship. Elizahcth's own determination, as expressed hy aside cither to the right hand or the left from the drawn line of prescribed duty, and in insisting upon uniformity of worship she was not singular, but was acting in the spirit of her age. This principle was not less firmly held in her rcign than in her sister's; and Roman Catholics strained only by their dread and hatred of each other, werc made the irreconcilable enemies of the existing order. Moreover, from the necessities of the struggle the severities of Elizabeth's reign went on increasing as time advanced. At first no one suffered death for his opinions; but
eventually many were exccuted for this cause The struggle against Roman Catholics was the most severe, chiefly because they were supported by forcign powers; so that while their religion was wholly prohibited, even exile was forbidden them in ordcr to prevent their intrigues abroad. Simple non-conformity, from whatever cause,
was pursued with the severest penalties. The fine imposed for non-attendance at church was $£ 20$ pcr month, while so straight were the lines of conformity drawn, that many more clergymen were driven out of the Church by differences about the position of altars, the wearing of caps and such like matters, than were forced
to resign by the change from Rome to Reformation. These stringent measures were, however, the rigid consequences of the false position assumed.
Elizabeth's first Parliament approached her on a subject which, next to religion, was the chief trouble of her reign, the succession to
the crown; they requested her to marry. She the crown; they requested her to marry. She to live and die a virgin. It is certain, from her conduct both before and after, that this declaration was only a convenient affectation of prudery, which at once served to flatter her vanity
and to veil her real indecision. She saw too clearly for her own interest the restraints to cleary for her own interest the restraints to her and therefore she shunned them all, thus eaving open the question of the succession.
On Elizabeth's accession the country was at war with France. Peace was easily concluded
1559 ; but the assumption by Francis and Mary 1559 ; but the assumption by Francis and Mary an immediate interference on the part of Eliza-
beth in the affairs of Scotland. She entered into a league with the Lords of the Congregation, of her reign this party hecame distinctively her reign this party hecame distinctively an Eng thering her policy. She also gave carly but halfhearted and dubious support to the Hugueno party in France, and to the Protestants in the Netherlands. Though she disliked war as an occasion of expense and had no toleration for she was looked on as the head of the Protestant party. She roused the implacable resentment of Philip, who strove in turn to excite the Roman Catholics against her, both in her own dominions and in Scotland. After the detention of Mary queen of Scots in England, he fomented the various rebelions in her favor, formed in Engself her avenger. Mary, as is well known, was imprisoned 19 years in England, whither she led to the protection of Elizabeth. Her im prisonment was followed by a serics of con spiracies, beginning with that under the earls of
Northumberland and Westmoreland and ending with the plot of Babington, which finally deter mined Elizabeth to proceed to extremities with her captive. The execution of Queen Mary was, nevertheless, the chicf political blunder of Elizabeth's reign. If the death of Mary did not raise ip new enemies to Elizabeth on the Continct he already had. Elizabeth had for some time been engaged in a negotlation for marriage with he Dukc of Alençon (afterward of Anjou) and in 1580 the Duke arrived in London to pur sue his suit, which had lasted nearly 12 years, in person. He was well received, but still the ing winter the Duke paid another visit and the marriage was all but concluded, but she finally informed him she could never marry.
The state of France, as indicated by the change of government consequent on the acces
sion of Henry IV, who was assisted by Elizabion of Henry IV, who was assisted by Eliza arisen from the indignation which the execu tion of Queen Mary had caused in that coun try. Nowherc, however, was that cvent mor mcekly borne than by King James. The Scot tish Solomon had thought his mother's dange a favorable opportunity for sententious obser
vations about the strangeness of her case, and now his philosophy was nonplussed. His awe of Elizabeth and his dread of interfering with his own right of succession to England made im powerless, and he accepted an addition to his pension in full of his gricvances. Philip
was not to be so appeased. He had other was not to be so appeased. He had othe lent edge. The fleets of Elizabeth had galled him in the West Indies, her arms and subsidies had helped to deprive him of the Netherlands the Armada was already in preparation. There fore he called the Queen of England a murderess, and refused to be satisfied even with her Dutch allies. The Armada sailed on 2 May 1588. Its fate is too well known to need reca pitulation. The war with Spain dragged on till the close of Elizabeth's reign.
During her long rule Elizab

During her long rule Elizabeth showed her judgment in nothing so much as in the coun-
her govemment at home and abroad was susaingham by such men as Burleigh, Bacon, Walsher with Throgmorton and Davison, who served Cven with a zeal which did not always spare daven their own reputations, she had persona
favor of less merit who were often more Drilliantly rewarded. It is sufficient to name Uudley, whom she created Earl of Leicester; and Essex, who was still more a personal favonite, though much less a courtier. The latter per, sill-suiterit as a soldier; but his violent tem per, ill-suited to the Queen's haughty disposition, iól and Elizabeth never forgave herself his death. Her own health soon after gave way and she died, naming James of Scotland as

Besides its political glories, won in despite outlook Queen's somewhat insular and narrow age of English literature. If all else could be orgotten, it would be remembered as the age or Spenser and of Shakespeare, not to mention host of minor names. The naval achieveconcu of Drake and the discoveries of Raleig conspired to thow halo round the name o Elizabeth, when regarded as a sovereign, and een as she would be in her own day, especially foreign beholders, through the drapery o late. If a minute criticism has exposed som the weaknesses of the individual woma that the process is only half fair. As a sover eign she is entitled to her surroundings, and as an absolute ruler, as to a great extent sh undoubtedly was, she must have her share of raise for the good that was done in her name and to adhere to them. Elizabetl knew how to do both. and yet she was no puppet in the ands of her advisers. Though haughty and mperious to the Commons, she knew both when and how to yield. She studied with rare sagacity the temper of the people; and high a ere her notions of prerogative, she may fairl of England.
Bibliography.- Cambden, 'History of Queen Elizabeth' (1622); D'Ewes, 'Journals Ef all the Parliaments of the Reign of Qucen
Elizabeth) (1682); Bruce (ed.), (Letters of Elizabeth and James VI' (1849); Wright, Qtrickland (Lives and the Queens of England) Wiesener, (La jcunesse d'Elisabeth d'Angle terre' (1878); Froude, 'History of England
(Vols VII-XIT 1870): Hume, Martin, 'Calen (Vols. VII-XII, 1870) ; Hume, Martin. 'Calen-
dar of Spanish State Papers: Elizabeth'; id., (ar of Spanish State Papers: Elizabeth) ; id.,
(Courtships of Quecn Elizabeth) (1896); id., 'The Year After the Armada' (1896); id 'The Great Lord Burghley' (1898); Creighton, 'Queen Elizabeth' (1899) ; Beezley, 'Queen in (Dictionary of National Biography.'
ELIZABETH, empress of Austria: b. Possenhofen, Bavaria, 24 Dec. 1837 ; d. Geneva, ${ }^{10}$ Sept. 1898. She was the daughter of Duke Cousin, the Emperor Franz Josef, on 24 April insigni ogethep hey wen erned with the tion of the dual system was solemnized. She
was greatly admired by Austrians and Hungarians alike. While visiting Geneva, Switzerland, she was assassinated by an Italian anarchist. (Bonsult Frin 189).
ELIZABETH, Madame (EliSABETH Philippine Marie Heline), French princess: She was a sister of Lotiis XVI. She was the faithful friend and companion of the royal family in their flight to varennes, and during their imprisonment was exccuted, on the pretense of corrcsponding with her other Louis XVIII and Charles X.
ELIZABETH, Pauline Ottilie Luise, dowager queen of Rumania (pseudonym "CARMEN SYLVA"): b. Ncuwied, 29 Dec. 1843; d. Bucharest, 2 March 1916. Her father was Prince Hermann of Wied and her mother Princess Maric of Nassaul. She married
Chartes of Rumania, 15 Nov. 1869. She was Chartes of Rumania, and letters in Rumania did much to promote native artistic industries and founded several charitable institutions. She is well known as a writer over the signature "Carmen Sylva," her works including 'Sappho' (1880); © 'Hammerstein'
(Sturme) (1881); 'Leidens Erdengang' ('Sorrow on Earth)) (1882); (Les pensees ('Sorrow on
d'une rcine' (1882); ('Pelesch Marchen' (1883); 'Le pic aux regrets') (1884); 'Es klopft' (1887). She was very much interested in collections of Rumanian legend and folklore. In English she wrote 'Pilgrim Sorrow,'
A Real Queen's Fairy Tales) and 'From Memory's Shrinc.) In 1882 she became a member of the Academy of Science at Bucharest and in 1914 an honorary Fellow of the Roya Society of Literature of the United Kingdom

ELIZABETH, Saint, of Hungary, daughter of Andrew II, king of Hungary, and Gertrude daughter of the Duke of Carinthia: b. Presburg
1207; d. Marburg 19 Nov. 1231. Early in life she displayed a dislike for things worldly, a she displayed a dislike for things worldy, as
the pomp with which she was surrounded, ambition, avarice and vain pleasures, and began to cultivate humility, piety and great charity According to the custom of the times, when she was only four ycars old she was betrothed by her parents to Louis, the son of the Landgrave
of Thuringia, who was about her own age When Elizabeth was 14 years old they were marricd. Her husband admired his wife's piety and approved her great charity, especially during the famine in Germany in 1225, al though members of his own family severely
censured her. She founded hospitals in Mar censured her. surg and other places within her husband's dominion. (Louis' father died the year afte the betrothal, and he was the landgrave when he married Elizabeth). In 1227 Louis lef home with Frederick Barbarossa to engage in the war for Palestine; but before reaching the fortunes soon befell Elizabcth. She was deprived of her regency by the brother of her deceased husband and driven out of her dominion on the plea that she wasted the treasures of the state by her charities. The inhabitants of Marburg, whose miscrics she had frequently relieved, refused her any asylum, for fear of
the new regent. At last she found refuge in the monastery of Kitzingen, where her aunt
was abbess, and later with her uncle, bishop of Bamberg, and when the warriors who had at from the East with his body, she gathered from the East with his body, she gathered
them around her, and recounted her sufferings and the wrongs done to her three children. Steps were taken to restore to her her sovereign rights. She declined the regency, however, and would accept only the revenues which accrued to her as landgravine. The remainder of her and prayer. She became a member of the Third Order of Saint Francis, and in pictures she is often represented clothed in the Franciscan habit. She was canonized by Gregory IX four years after her death. Consult Montalem(trans, into of Saint Elizabeth of Hungary (trans. into English by F. D. Hoyt 1904) Saints' ; Bonaventure. 'Sermon on Saint Elizabeth.' There are extant manuscripts on her life, by contemporaries, Conrad of Marburg, Siegfried of Mentz, Theodoric and Montague of Spire, and others
ELIZABETH Farnese, fär-nä’zĕ, queen of Spain: b. 25 Oct. 1692 ; d. 1766 . She was a daughter of Edward II, Prince of Parma. On prised those who had counseled the marriage by assuming the practical headship of the kingdom; her ambition to place her sons Carlos and Philip in power over principalities in Italy and the aggressive policics of her Minister, Albe-
oni, disturbed the whole of Europe
ELIZABETH PETROWNA, empress of
Russia: b. 29 Dec. 1709 ; d. 5 Tan. 1762 She Russia: b. 29 Dec. 1700 ; d. 5 Jan. 1762. She was the daughter of Peler the Great and Cath-
arine, and ascended the throne on 7 Dec .1741 , as the result of a conspiracy, in which Ivan VI, a minor, who had reigned only one year, was deposed. Elizabeth is said to have rivaled her mother in beauty and to have surpassed her in her love of pleasure. Her reign was stained tyranny of her government, which was conducted by favorites. Banishment to the mines of Siberia and imprisonment in dungeons were awarded for the slightest political offenses. She was a patron of literature and corresponded with Voltaire, to whom she supplied materials founded the University of Moscow and the Academy of Fine Arts of Saint Petersburg Elizabeth sent an army, in 1748, to assist Maria. Theresa in the war of the Succession, which contributed to bring about the Peace of Aix-laChapelle; and she joined in the Seven Years' War against Prussia. Consult Bain, 'The ELIZABETH STUART (London 1899). ELIZABETH STUART, queen of Bo1596; d. London, 13 Fcb. 1662. She was a daughter of James I of England and was marricd to the Palatine Frederick at Whitehall, 14 Feb. 1613. Her husband was then at the head of the Protestant interest in Germany, and in 1619 he accepted the crown of Bohemia offered to him by the revolted Protestants of that country. This he was only able to retain for a Imperialists at the battle of Prague in 1620, he and his wife were obliged to flee, first to Bres-
lau and Berlin, and then to The Hague. Elizabeth had 13 children, several of whom died reinstated ini rine palatine by the Treaty of beth Charlotte, was the second wife Philip, Duke of Orleans, brother of Louis XIV. Her descendants were excluded by their Catholicism from the crown of England, but one of them was regent of France during the minority ascended the and another, Louis Philippe, 1830. Her sons, Princes Rupert and Maurice, distinguished themsclves in the civil war in England. Her daughter, Sophia, married into the house of Brunswick, became electress of Hanover and mother of Gcorge I. Elizabeth Stuart's cause was extremely popular with the prived of the crown of Bohemia she still retained among them the endearing epithet of "Queen of Hearts." She returned to England at the Restoration with her nephew, Charles II. Consult Green, Mrs. E., 'Lives of the Princesses of England' (London 1854)
ELIZABETH OF VALOIS, văl-wä', or ISABELLA, Queen of Spain: b. Fontainebleaut, She was a daughter of Henry II, of France, and Catherine de Medici. She was destined to be the wife of the infante, Don Carlos, but his father, Philip II, being left a widower, became fascinated and marricd her himself. The story of a romantic relationship between Elizabeth to Otway, Campistron, Chénier, Schiller and Alfieri.
ELIZABETH, N. J., city, county-seat of Union County, on Newark Bay and the Arthur Kill, and on the Pennsylvania, Lehigh Valley Baltimore and Ohio, Philadelphia and Reading and New Jersey Central railroads, 14 mile harbor admitting vessels Elizabeth has a good Coal and iron reach tidewater here from the Pennsylvania fields and are transshipped here Yhe city has steamer communication with New York and is the residence of many who com homes and wide strects well it has many fril articles manufactured ware pase. The chict (one of the shops of the Singer Manufacturing Company, employing about 10,000 pcople, bein ocated here), oilcloth, hats, saws, mill-ma chinery, stoves, hardware, edge-tools, harness cordage, combs, leather and rubber works, oi refineries, foundries, chemical works, ship build castings and bronze powder. The United State Census of Manufactures for 1914 showed within the city limits 184 industrial establishments of factory grade, employing 14,297 per$\$ 8,198,000$ annually in wage earners, recciving $\$ 8,198,000$ annually in wages. The capital in' output was valued at $\$ 31,228,000$: of this, $\$ 14$,921,000 was the value added by manufacture. The shops of the Central Railroad, employing about 1,000 hands, and the Crescent Steel Works and shipyard are located here. There are three banks, one savings bank and a trust company
with a combined capitalization of $\$ 700000$ and with a combined capitalization of $\$ 700,000$ and
deposits of $\$ 7,154,000$, and building and loan

Associations. Among public institutions are the Alexian Brothers' Hospital, Gcneral Hospital, Saint Elizabcth Hospital, Orphan Asylum, Old tiodies Home and Public Library. The educahigh schstitutions include the I Sattin and Pingry onllege schools, the Vail-Deane School, a busincs electric lights public schools. The city ha ome churches and contains an old tavern wher ar hington stopped on his way to New York or his inauguration. Gen. Winfield Scott's home the Boudinot House and the old Livingin 1664 ansion are located here. It was settled the first General Assembly of New years later here. Foir two years after 1755 it was the the Pital of the Colony of New Jersey. During he Revolution it suffered from its position becharterec contending forces. In 1789 it was as a city in a 1855 Its as a town in 1790, and $\$ 2,250,000$. In 1855 . Its revenue averages about now Princeton) was established here. Among ander many Hamilton and Aaron Burr. There are tionary types of architecture of the RevoluConsult period still standing. Pop. 95,682 York 1868). (New ${ }_{\text {BETH. }}^{\text {EL }}$

cafe eliza-

Seat of PABETH CITY, N. C., town, countyRiver and Pasquotank County, on the Pasquotank Virginia and Carolina Coast railroads, about
145 miles norn 145 miles northeast of Raleigh. A State normal schoted and United States custom-house are loproduce cotton, fish and oysters. The region about is adapted for and oysters. The region about is raising. The manufactures of the and cotton shine , including cotton, saw- and planing-mills, factorieding, brick yards, carriage and wagon and ries, shingle factories, hosiery mills, flour rels grist-mills, ironworks, machine-shops, barfounded in 1793 and now etc. The town was consisting of a mayor, elected every two vears, a board of aldermen and a board of control. A 10 Feb. 1862. Pop. (1920) 8,925 the Federals,

ELIZABEH (SLAO) 8,925.

15 in LizABETH ISLANDS, Mass., group of Duk number, forming the town of Gosnold, in Vines County. They are situated between square miles. In 1602 the first New Enca, 14 Butement was made on one of these islands, a tyhunk, by Bartholomew Gosnold; but after and Gosnold returned to Engs it was abandoned $B_{\text {Artilole }}$ Gold returned to England (see Gosnold, the islandsew). The climate is healthful and Vacation resort. Nopular with anglers and as a the lan resort. Naushon and Nashawena are 164 porated as the town of Gosnold. Pop.

ELIZABETHAN ARCHITECTURE, a England architecture, which began to prevail in James I. It was a mixture of inferior Gothic th debased Italian, often very picturesque,
but without purity and unity of design. It wa characterized by deeply embayed windows, gal chimneys, strap work in the parapets and win-dow-heads, and many dormented details o surface-carving characteristic of the bizarre in fluence of the combined Renaissance form from Germany and Holland. The names of this style of architecture in associated with hoped to revive classic models. The mansions erccted for the nobility during the reigns of Elizabeth and James I are examples of this style of architecture, particularly the palace crected in the mixed style for Protector Somerset by John of Padua and the mansion of Longwhich may still be seen near London and which represent the architecture of the 17 th century are: Knowle, belonging to the Duke of Dorset, the Marquis of Salisbury's at Hatfield, Holland House, Campden House in Surrey, Bramshill in Kent, Sir T. Willow's at Charlton, Burton Agnes, Blickling, Montacute, Audley End,
Mogus Park, Aston, etc. This style was sucMogus Park, Aston, etc. This style was suc-
ceeded by the Jacobean in which Gothic details disappeared. The greatest architects of the Elizabethan period were Gerard Chrismas, John Thorpe, Thomas Holt and Rodolph Symonds. Consult Gotch, and Brown, 'Architecture of the Renaissance in England' (Lon-
don 1894); Richardson, 'Architectural Remains of the Reigns of Elizabeth and James I' (ib. and ames , (ib. Architecture in England' (ib. 1897)

ELIZABETHTOWN, Ky., city, countyseat of Hardin County, on the Loulsville and about 40 miles south of Louisville. The city is the centre of the trade in asphalt for which the county is noted. It has flouring mills, stave and carries on a considerable trade in live stock, grain, flour, fruit, brick and tobacco. It has
municipal waterworks. Pop. (1920) 2,530 .

ELIZAVETPOL, ě-lê-zā-vct-pol, YELIZAVETPOL, Russia, (1) government of Transcaucasia, Asiatic Russia; area 16,991 square miles; pop. $1,098,000$, of whom about 60 per cent are Azerbaijan Tartars, 30 per cent Armenians and the balance Kurds, Russians, ctc. It is bounded on the north by
Tiflis, Daghestan and Zakataly, cast by Baku, Tifis, Daghestan and Zakataly, cast by Baku,
south by Persia and west by Erivan. It beongs partly to the region of the Little Caucasus and is partly covered with steppes, in the west consisting of high mountains whercas the east s more level. The Kur River and several smaller streams are the chief waterways. Agrieing fertile and well cultivated. Wine is produced in considerable quantities; also cotton, the acreage in 1914-15 being 142,570 producing $23,652,500$ pounds. The rearing of live stock is largely carried on in the steppes. The mounain slopes are well wooded and there are rich eposits of minerals, especially of copper, cobalt arge quantities. The Transcaucasian Railway rosses the government, which is divided into eight districts, Elizavetpol, Zanglzur, Aresh Jebrail, Javanshir, Shusha, Kazakh and Nukha.
(2) A city of the same name is the capital o the government, located on an affluent of the Kur River about 120 miles by rail southeast of Tiflis. It is situated in a rich agricultura region and besides trading in the agricultura products and fruit, the inhabitants are extensively engaged in the silk-worm industry. The new; the former is poorly built with crooked streets and low-roofed houses and is occupied chiefly by Mohammedans; the latter is wel built and contains several handsome buildings churches, mosques, etc., and a bazaar. Ancien remains are found in the vicinity of the city seen. The city changed hands between Pet sians, Arabs and Khozars as early as the 7th century, later came into the possession of the Mongols, Georgians, Persians and Turks, wa taken by the Russians in 1796 and finally annexed to Russia in 1813 , receiving its name in In 1826 the Persians were defeated here. Pop. 60,500

ELK, the name of various deer, but originally and properly belonging to the great, flat horned deer of northern Europe (Alces mach lis), of which the American moose is substan tially the counterpart, although regarded by naturalists as a distinct species. The European ern Scandinavia and the wilder forests of cast ern Prussia; but in Pleistocene times it had far more southerly range, together with othe "Tpecies now extinct. The great-antlered "Irish Elk," whose remains are found abun dantly in peat-bogs and similar places not only is not a true elk (Alces), but a deer of the genus Cervus related more nearly to ou wapiti, despite the palmation of its horns. Sec Moose.

The American deer called clk, by the ignorance or carelessness of early colonists, is th elk but to the red decr of Europe, and the white-tailed and other deer of this country, and would better be called, as commonly nowaday by its Indian name Wapiti. See Wapiti; Deer.

ELKESAITES. Sec Elcesaites.
ELKHART, Ind., city in Elkhart County, at the confluence of the Saint Joseph and Elkhart Rivers, and on the Cleveland, Cincinnati,
Chicago and Saint Louis, the Lake Shore Chicago and Saint Louis, the Lake Shore 101 miles east of Chicago. It is a railroad centre and shipping point for a large agricul
tural region. The rivers afford excellent water power. A large dam and power-house, erccted in 1913 at a cost of $\$ 750,000$, furnishes abundant power for its industries, which include railroad shops, musical instrument factories, autotablishments for the manufacture of carriages, invalid tables, machinery, gocarts, corsets, telephone supplies, furniture, brass sundries, gas generators, paper boxes, rubber and paper The United States census of manufactures for 1914 showed within the city limits 10.5 in-
dustrial establishments of factory grade, employing 3,815 persons; 2,993 being wage carners, recciving annually $\$ 4,382,000$ in wages. The capital invested aggregated $\$ 9,511,000$, and the
year's output was valued at $\$ 8,649,000$: of this, $\$ 4,267,000$ was the value added by manufacture. The city has a Carnegie library and a fine hign Institute and has public schools, business colleges, daily and weekly newspapers, gas and electric lights, electric railways, waterworks and
two national banks. The control of the government is vested almost entirely in the mayor and there is a city council. Pop. (1920) 24,277

ELKHORN, a river in Nebraska formed by the junction, in Madison County, of the North Fork, which has its rise in Brown County, and the South Fork, which rises in east, 260 miles, when it flows into the Platte east, River. Logan Creek is the largest tributary.

ELKIN, William Lewis, American astronomer: b. New Orleans, 29 April 1855. He was educated at the Royal Polytechnic School in Stuttgart, Germany, and was graduated in 1850 at the University of Strassburg. He then w to the Cape of Good Hope on the invitation Sir David Gill, English astronomer there, and heliometer for the determination of stellar parallax, these determinations being the most accurate of the kind ever made up to that time. He became astronomer in 1884 and director in 1896 of the Yale College observatory. H1s
work there was mainly in the lines of determinations of stellar parallax, the solar parallax from asteroids and the photography of meteor trails.
ELKINS, Stephen Benton, American politician: b. Perry County, Ohio, 26 Sept. 1841 ; d. 4 Jan. 1911. He removed to Missouri when a child; was graduated at the University of
Missouri in 1860; and admitted to the bar in Missouri. During the latter year he went to New torial legislature in 1864 a member of the Terial delegate in Congress in 1873-77. Subsequently he removed to West Virginia where he acquired large business interests. He married the danghter of Henry Gassaway Davis. He secured control of great coal fields in West
Virginia and also became a large stockholder in scveral railroads serving also as vicc-president of the West Virginia Central and Pittsburgh Railroad. In 1891-93 he was Secretary of War and in 1894, 1900 and 1907 was elected to the United States Scnate. The Elkins Ralroad

ELKINS, W. Va., city and county-seat of Randolph County, on both sides of the Tygars cinnati and Pennsylvania (Wabash) and its branches, the Coal and Iron and the Coal and Coke railways, 60 miles south of Gra° ton and 130 miles northwest of Charles
ton. Elkins is in the centre of vast timber areas, and nearby are large deposits of coal, glass, sand, limestone, potter's clay, firc clay and shale, suitable for the manufacture of pressed brick and tiling. The industries include railroad car and machine shops, brick works,
plant, foundries and machine shops, tannery, plant, foundries and machine shops, tannery, etc. The principal streets are aved with brich or macadamized limestone, and walks are la with brick. The city owns the waterworks,

Which pump the water from the Tygarts Valley and natural gas is furnished for domestic and manufacturing purposes. There are a national bank and a trust company in the city, with comined capital of $\$ 300,000$ and deposits of about represeno. The city contains seven churches, representing the leading denominations. There Eik a graded public school and a high school.
Eikins is also the seat of Davis and Elkins College and has an Odd Fellows home, two hospitals and an orphans' home. Under a charter of 1905 it is governed by a mayor, chosen annu ry, and a unicameral council. Pop. 6,788.
ELKINS ACT, a law enacted 19 Feb. 1903, nationent secret railroad rebates and discrimi of a . The acceptance as well as the offer of a rebate or unlawful discrimination was a clared to be the only lawful charge, and the nited States Circuit Courts were authorized to rain carriers to charge only the published more The penalty was not less than $\$ 1,000$ nor ration than $\$ 20,000$ for each offense, the corpo receiving the penalty. The law was most enfective and with slight changes was incorporated in the Hepburn Act (1906) and the Mann-Elkins Act (1910). Sce Differentials Act Railroad Traffic; Sherman Anti-Trust

ELKS, Benevolent and Protective Order New traternal association, founded in 1868 in Society, the Jolly Corks. The grand lodge was incorporated 10 March 1871, and was composed of past members of New York Lodge No. 1, the premier regular association. In the same year Lodges empowered to form branch lodges cisco were formed in Philadelphia, San Franmore, Louisville, Saint Louis, Boston, Pittsurgh, Indianapolis, Providence, Washington Denver and in every other city of an ween throughout the country. The order has mem noted for the prompt assistance given it for aid from the outside. In all great calami ties of recent years it cave liberally of its fund to aid the needy. Its membership is close to 50,000 and its annual disbursements are about 0 0,000. There are 1,640 lodges, and sub ordinate lodges in Alaska and the island poscitizens of the United States. White male acter are cligible for membership. In any city there may be but one lodge, and the population Sunch citv must be at least 5,000 . On the first fundry of December is held a memorial service orty the deceased members of the order. Propare owned by the order. Its official organ is the Elks Magazine, a monthly published in New ork. Consult Ellis, C. E., 'Authentic History Elyss $_{\text {the }}$ (Chicago 1910).
ELKTON, Md, town and county-seat of on the County, 50 miles northeast of Baltimore ton Railroad adelphia, Baltimore and Washing a hosicry mill, fertilizer works, boat yards, texFile mills and pulp mills. First settled in 1681. Fikton was incorporated in 1787. It has
adopted the commission form of government. adopted the commi
Pop. (1920) 2,660.
ELKUS, Abram Isaac, American lawyer and diplomat: b. New York, 6 Aug. 1867. He Yas educated at the Columbia. He has been prominent at the New York bar since 1888 and was considered by President Wilson for a place on the Federal court in New York. He is one of the leaders of the American Jewry and has frequently appeared for Jewish immigrants
who have faced detention at Ellis Island and who have faced detention at Ellis Island and cash when they reached this country.

In 1896 he became a member of the law firm of James, Schell and Elkus. On the deaths of his partners he became senior member in the firm now known as Elkus, Gleason \& Pros-
kaner. He has appeared in all branches of his kaner. He has appeared in all branches of his
profession. He was elected by the United profession. He was elected by the aniter ney to prosecute fraudulent bankruptcy cases and met with great success in that work. He acted as counsel for the Merchants'
Association and president of the Hebrew Association and president of the Hebrew
Technical School and as trustec of the Baron Technical School and as trustec of the Baron
de Hirsch Fund. In July 1916 he was nomide Hirsch Fund. In July 1916 he was nomiTurkey to succeed Henry Morgenthau. He remained at this post until July 1917. In November 1919 he was appointed judge of the Court of Appeals of New York. He wrote 'Secret
ELL, an old linear measure, originally denoting the length of the forearm and later de noting different lengths. The English ell qualled one and one-quarter yard
ELLAGIC ACID or BEZOARIC ACID, $\mathrm{C}_{13} \mathrm{H}_{0} \mathrm{O}_{8}$, is separated from Oriental bezoar stones (concretions found in the stomachs of goats and other animals which have fed upon
plants containing ellagitannin) by dissolving them in cold strong potash, away from the air passing a current of carbolic acid, collecting the ellagate of potassium, washing and recrystalliz ing it, and then liberating the ellagic acid by hydrochloric acid. When crystallized from pyridine it forms prismatic necdles. After
washing these with alcohol ellagic acid becomes pale ycllow, tasteless, crystalline powder, insoluble in water, decomposing at 680°, at which temperature it has still refused to melt. With the bases it forms salts, which are not very well known; they are crystalline and insoluble or sparingly soluble in water. The lead and barium compounds are yellow. This acid can be prepared synthatically by oxidizing gallic tanning agent it is considered of great value in the tanning industry.

ELLE ET LUI ('She and He') is noal of comment and enjoyed a kind of celebrity because it was accepted as her version of her unfortunate love affair with Alfred de Musset. After the rupture which brought to a pitiful end their Venetian adventure (1834) many bitter accusations were brought against
cach by the friends and partisans of the other, and neither hesitated to exploit the experience for literary purposes. George Sand's 'Lettres
d'un voyageur,' written immediately afterward already drew largely upon it and echoes of it set (Nuit de mai, Souvenir) and in his 'Con fession d'un enfant du siecle.' The appearance of 'Elle ct Lui) (1859) shortly after the poct's death (1857) revived the bitter memories and recriminations of the affair. It was cvidently substantially the story of their relations, unde George Sand's intention, as she tells us clse where, was not to tell their story, but to "pre sent, under the veil of fiction, a certain situ ation in which others than they may have found themselves." It provoked from Paul de Musset, Alfred's brother, the answering volume
'Lui et Elle) in the poet's defense. The "true 'Lui et Elle,' in the poet's defense. The "truc berch de Louvenjoul ('La véritable histoire d Elle et Lui, Notes ct documents,' 1897). Th original correspondence of Gcorge Sand an Alfred de Musset has been published by Fêlix Decori (1904).

Arthur G. Canfield.

ELLENBOROUGH, èl'lěn-bŭr-ô, Edward Law, Lorn, English lawyer: b. Great Salkeld 1818. He was educated ; Combridge, 13 Dec 1818. He was educated at Cambridge, becam George Wood, in 1771, and was called to the bar in 1780. In $1787^{\text {h }}$ he was made a king's counscl. On the trial of Warren Hastings in 1788, Erskine having refused to undertake the defense, Law served as leading counsel. It required no little courage to encounter such opponents as of the time, who conducted the impeachment. Law, as is well known, obtained the victory. In 1801 he was made AttorneyGencral and in 1802 became Lord Chief Jus tice of the king's bench and was created baron In Parliament he opposed the emancipation of
the Catholics. Believing that the criminal laws were not scvere enough he succecded in estab lishing 10 new capital felonies by the passage of the so-called Ellenborough Act, afterward repealed in toto. He held the office of chic justice for 15 ycars.
ELLENBOROUGH, Edward Law, 1 SI Earl of, English statesman: b. 8 Scpt. 1790 ; d. near Cheltenham, 22 Dcc. 1871. He was educated at Eton and Cambridge; entercd Par1814, and in 1818 succeeded his father as 2 d baron and entered the House of Lords.
He was Lord Privy Seal in 1828, and in 1841 accepted the governor-generalship of India. He arrived in Calcutta in time to take control of the Afghan war, which was brought to a successfull isstue. Scinde was conquered by Sir Charles Napier and annexed in 1843. This was followed by the conquest of Gwalior. The great dissatisfaction at home. He was consequently recalled by the East India Company carly in 1844 . Under Lord Derby's government in 1858 he held the office of President of the Board of Control from February to June, during which he wrote a dispatch censuring the policy of Lord Canning as governor-genand led him to resign his office.

ELLENVILLE, N. Y., village of Ulster on the main line and on the Ellenville and Kingston division of the New Yorb Ontario and Western Railroad, 18 miles north of Middletown. The first house was built in 1805, a post office established in 1823 and the village incorporated in 1856. It has several denominational churches, a high school and other educational establishments, two national and one mining, manufactures of cutlery, paints, handkerchiefs and shirt waists, overalls, artificial stone, and wooden wares, employing about 300 operatives. Ellenville is a popular summer resort. It has finely shaded streets and is near
several places of interest, including Mount several places of interest, including Mound many beautiful waterfalls. The village owns its waterworks. Pop. 3,114.
ELLER, Johann Theodor, German chemist: b. Plotzkau, in Anhalt-Bernburg, 29 Nov 1689 ; d. Berlin, 13 Sept. 1760. In 1721 he was appointed Anhalt-Bernburg physician; in 1724, professor of anatomy in Berlin; in 173.5, phys1councillor and director of the physical class or the Academy of Sciences. His papers were published in the 'Mcmoirs of the Berlin Academy,' and among them is a long and interesting review of the opinions held respecting the clements from the earliest times down to his own day. He also published a series of curious
microscopic observations upon the change of milood corpuscles by the addition of different salts, tinctures of plants and other solutions. E.ller was undoubtedly a man of great learning and abilities, but his writings do not indicatc a high degree of originality.
ELLERIANS, a sect of fanatics which
arose in 1726, and had for its founder Elias arose in 1726, and had for its founder Elias at Ronsdorf in Berg. He was influenced in his religious beliefs by reading the works of Jacob Böhme, and other mystical writings. The sect committed great excesses, and became very numerous. See Вӧнme, Jacob.
ELLERY, William, American patriot: h . Newport, R. I., 22 Dec. 1727 ; d. there, 15 Feb
1820 . He sat in the Congress of 1776, and was 1820. He sat in the Congress of 1776, and was
one of the signers of the Declaration of Inder pendence. He became Chief Justice of Rhode Island in 1785 and in the following year com missioner of the Continental Loan Office for Rhode Island. From 1790 till his death, he rc-
ained the office of collector in his native placc.
ELLESMERE LAND, the most norther region of the continent of North America, dis this region was explored and mapped by Otto Sverdrup (q.v.) in 1899 . Ellesmere Land is a high plateau, without human inhalitants; a fel reindeer, musk-oxen and wolves find suste nance there. It is separated from Greenlan of Smith Sound. Consult Sverdrup's accontic of his discoverics: 'Four Years in
ELLET, Charles, American engineer: b Penn's Manor, Bucks County, Pa., 1 Jan. 1810 d. Cairo, Ill., 21 June 1862. He was educated return to America held various responsible en-

Gineering posts. He built at Fairmount, Phila United States, and in 1845 built at Niagara below the Falls a suspension bridge adapte or railway purposes. He constructed also th ailway suspension bridge at Wheeling, W. Va Which is owned by the Baltimore and Ohi Rilroad. In the Civil War he became colone Mississippincering corps and equipped nin hem dofeat a died of wounds on that occasion
ELLET, Elizabeth Fries Lummis, Ameri can prose writer: b. Sodus Point, N. Y, Octo opular in her day York, 3 June anslation of Silvio Pellico's 'Euphemia o essina' (1834); 'Poems, Original and Sc 1842) : (Pioneer Women of the West) (1852) 'Novelettes of the Musicians' (1852); 'Queen it American Society' (1867); 'Court Circle If the Republic,' with Mrs. R. E. Mack (1869) Whe Practical Housckeeper'; 'Evenings a
ELLICE, èlĩs, or LAGOON ISLANDS group of coral islands, situated north of the tween lat. 5° and $11^{\circ} \mathrm{S}$. and long. 176° and 180° E. They extend for 360 miles in the direction orthwest to southcast, and form nine group he largest islands being Sophia or Rocky sland, Nukulailai or Mitchell, Ellice, Nukufe hab, Vaitupu, Netherland and Lynx. The in and have traditions of a migration from the amoan Islands. They have long been Chris ranized, and reading and writing are general. he islands are of coral formation. Guano ams, fruit, cocontuts and copra are the chie roducts. They were discovered in 1781 by n 1892 , and were annexed by Great Bri
ELLICHPUR, ël-ich-poor', India, town orthwest of A, Bera, ond we Biche, 32 mile prosperous. It contains manufactories of cotons and carpets, and is an important trading entre in lumber. Imperial troops have a regu station here. The town contains many the tombs ruins, including a palace and sever
ELLICOTT, Andrew, American astronomer and civil engineer: b. Bucks County, Pa.
24 Jan. 1754; d. West Point, N. Y., 28 Aug 1020. His father founded the town of Ellicott's ins, Md., where the younger days of his On Andrew were dcvoted to the study of th ciences and practical mechanics. The latter's Cientific attainments carly attracted pulblic at of his death frem was employed in the fulfilment of trusts conferred by the general or State gov ernments. About 1785 he removed to Baltimore, and represented the city in the State cgislature. In 1789 he was appointed by Presiwcen Pashington to survey the land lying be hat year made the and Lake Erie, and during of the Niagara River from lake to lake, with he height of the falls and the fall of the rapids. In 1790 he was employed by the government to
survey and lay out the Federal metropolis. In 1792 he was made Surveyor-General of the
United States, and in 1795 superintended the construction of Fort Erie at Presque Isle (now Erie, Pa.), and was employed in laying out the towns of Erie, Warren and Franklin. In 1796 he was appointed by President Washington commissioner on behalf of the United States under the Treaty of San Lorenzo el Real, to de termine the southern boundary separating the sessions. The results of this service, embracing a period of nearly five years, appear in his 'Journal') (published 1803). Upon the completion of this service he was appointed by Gov crnor McKcan of Pennsylvania secretary of
the State land office, the duties of which he performed to the year 1808, and in 1812 became professor of mathematics at West Point. In 1817, by order of the government, he proceede to Montreal to make astronomical observations for carrying into effect some of the articles of
the Treaty of Ghent.

ELLICOTT, Charles John, Anglican prel1819. 15 . Saint John's College, Cambridge, and after be ing professor of divinity in King's College, Lon don, Hulsean lecturer and professor of divin ity at Cambridge, and dean of Exetcr, was ap pointed bishop of Gloucester and Bristol in 1863. In 1897 the diocese of Bristol was separated from that of Gloucester, Bishop Elli cott remaining at the head of the latter diocese.
He was for 11 ycars clairman of the scholars engaged on the revision of the New Testa ment translation, and published commentaries on the Old and New Testament, as well as 'Historical Lectures on the Life of Christ' (1860); 'Modern Unbelief' (1877); 'Some Present Dangers of the Church of England
(1878): 'The Revised Version of Holy Scrip (1878) ' 'The Revised Version of Holy Scrip-
ture' (1901), which is the best popular accoun ture' (1901), which is the best p
of the work of the revisers, etc.

ELLICOTT CITY, Md., city and county seat of Howard County, on the Patapsco River nine miles west of Baltimore, and on the Balti more and Ohio Railroad. Saint Charles Colleg (R. C.) in charge of secular clergy, and Rock Hill College, in charge of Brothers of the manufactures of flour, cotton, silk and woole goods. Founded in 1772, Ellicott City was in corporated in 1867. Pop. (1920) 1,246 .

ELLIOT, Arthur Ralph Douglas, English lawyer: b. 17 Dec. 1846. He is second son of the 3d Earl of Minto, was educated at Edin burgh University and at Trinity College, Cam1906 he was a member of Parliament 1898 to he was Financial Secretary to the Treasury and from 1895-1912 was editor of the Edinburgh Review. He has published 'Criminal Pro cedure in England and Scotland' (1878) ; 'Th State and the Church' ($1881 ; 2 \mathrm{~d}$ ed., 1889) 'Life of the First Viscount Goschen' (1911).
ELLIOT, Benjamin, American jurist: b.
Charleston, S. C., 1786 ; d. 1836. He was Charleston, S. C., 1786 ; d. 1836 . He wa was admitted to the bar in 1810 and entered on his practice in his native State of South Caro lina. He was the author of numerous literary
historical and pelitical productions. Among his works is a 'Refutation of the Calumnies circulated against the Southern and Western
States respecting the Institution and Existence of Slavery' (1822). He also prepared and published 'The Militia System of South Caroina,' which was adopted as the military code for the State.
ELLIOT, Daniel Giraud, American zoologist: b. New York, 7 March 1835; d. 22 Dec. 1915. He made zoology a special study from his youth; traveled in Europe, Africa and parts
of Asia in 1856-78; subsequently in Canada, Alaska, South America and the in Canada, of the United States. He afterward became curator of zoology in the Field Columbian Museum. He has published 'The Pheasants' (1871-72) ; 'Birds of North America) (1897) ; 'The Grouse) (1865); 'Birds of Paradise'; 'Hornbills'
Shore Birds' (1877-82); 'Gallinaceous Game Birds of North America' (1897): 'Synopsis of the Mammals of North America and the Adjacent Seas' (1901) 'A Review of the Primates' (Vols. I-III, 1913). He has been decorated 10 imes by various European governments for his researches in natural science.
ELLIOT, Sir Gilbert, Scottish philosopher and poct: b. Teviotdale, September 1722;
d. Marseilles, 11 Jan. 1777. His song of (Amynta) beginning "My sheep I neglected, I broke my shecp hook," is famous; he also wrote occasional philosophical papers.

ELLIOTT, Charles, American Methodist lergyman: b. Glenconway, County Donegal, Ircland, 16 May 1792 ; d. Mount Pleasant, Iowa, 3 Jan. 1869 . He came to the United States in 1814 and became prominent in the Methodist denomination. He was a professor of languages
at Madison College, Uniontown, Pa., 1827-31, and president of lowa Wesleyan University
$1856-60$ and $1864-67$. He was editor of The Western Christian Advocate, Cincinnati $1836-$ 48, The Central Christian Advocate, Saint Baptism) (1834) ; ' ${ }^{\text {(De }}$ Delineation of Roman Catholcism' (2 vols., 1841); 'Life of Robert R Roberts' (1844); 'Sinfulness of American Slavery' (1851); The Bible and Slavery,' etc. His most important book was 'The History of the Great Secession from the Methodist Episcopal Church in the year 1845.) 'Southwest(1868) Methodism' was edited by L. M. Vernon

ELLIOTT, Charlotte, English hymn871 . She wrote a number of religious poems which were published under the titles 'Hymns for a Week'; 'Hours of Sorrow' ; 'Invalids' Hymn Book.' The last collection included 'Just as I Am,' a hymn which is widely used, and has been translated in "almost every living

nguage.

ELLIOTT, Edward Charles, American educator: bas graduated at the University of Nebraska in 1895, studicd also at Jena and at Columbia University. In 1898-1903 he was superintendent of schools at Lcadville, Colo., in 1905-07 associate professor, and after 1907 professor of education 1909 he also served as director of the pedagogi-
cal seminar. In 1906-10 he conducted specia Education in for the United States Bureau o Education, in 1911-12 for the New York Boar
of Education and in 1913 for the State of Ver of Education and in 1913 for the State of Ver
mont. He has published (Some Fiscal of Public Education in American Cities' (1905); 'State School Systems' (3d ed., 1910) ; 'Legislation upon Industrial Education in the United States' (1910); 'City School Supervision
1914)

ELLIOTT, Jesse Duncan, American naval officer: b. Maryland 1782; d. 1845 . He entere and in October of 1812 won the first American naval success on the lakes, capturing two Brit ish brigs, the Detroit and the Caledonia, near Fort Erie. He commanded the Niagara, in the battle of Lake Erie, Scptember 1813, being sec in October of the same year as commander of the Lake Erie flect. In 1815, during the wa against Algiers, he was in command of the sloop of war Ontario, under Decatur, being ap pointed captain in 1818. He was court hartialed and suspended for four years, after his service in the Meditcrrancan squadron. He of the Philadelphia navy yard.
ELLIOTT, Maud Howe, American novel ist: b. Boston, Mass., 9 Nov. 1854. She is daughter of Julia Ward Howe (q.v.), and wa married to John Elliott, an artist, in 1887. He writings include (A Newport Aquarelle' Atlanta in the Souih) (1886) ' (Mamon 1888): '(Honor): and (Phyllida) (1903) (Roma Beata) (1904); 'Two in Italy) (1905) 'Sun and Shadow in Spain' (1908); 'Sicily in
Shadow and in Sun) (1910): 'The Eleventh Shadow and in Sun' (1910); 'The Eleventh
Hour in the Life of Julia Ward Howe' (1911); 'Life and Letters of Julia Ward Howe,' with Life and Letters of Julia

ELLIOTT Masi

ELLIOTT, Maxine, American actress: b Thomas and Adelaide Dermot. Making he début with E. S. Willard, she played Felicia Umfraville in 'The Middleman)' (1890), and
later in (The Professor's Love Story)' She later in 'The Professor's Love Story.' She
was with Rose Coghlan, and in 1895 went to was with Rose Coghlan, and in 1895 went to London with Augustin Daly's company. A
mcmber of N . C. Goodwin's company 1896. she played in Clyde Fitch's 'Nathan Hale) (1898); was married to Mr. Goodwin that year, ap peared with him in 'When We Were Twenty One,' and played Portia in the 'Merchant o Venice) (1001) She starred in Fitch's 'Her Own Way' in 1003 and thereafter appeared in
several light comedies. She is manager of the Maxine Elliott Theatre, New York, since 1908. She appeared there in 'The Chaperon' and 'Deborah of Tods,' etc. She has since anpcared in the film drama and with the greatest success.
ELLIOTT, Sarah Barnwell, American novelist. She is a granddaughter of Stephen meliott. Her hest-known works are 'The Fel-
meres' (1879) ; 'Jerry'; 'John Paget': (The Durket Sperret) (1898): 'An Incident and Other Happenings' (1899); 'Sam Houston
(1900) ;'The Making of Jane) (1901); and a (1900); 'The Making' of Jane') (1901); and a
play 'His Majesty's Servant.' She is a memplay 'His Majesty's Scrvant.' She is a mem United Daughters of the Confederacy.

ELLIPSE (Lat. ellipsis, from Gr. elleipsis, if from , a plane curve of such a form that, dram any point in it two straight lines be thawn to two given fixed points, the sum of The ellipse is a species of conic section ($a v$) and is obtained by a plane which cuts all the elepents of one nappe of a right circular cone rojectively considered, an ellipse is a conic wich cuts the line of infinity in two distinc points thy points. If these are the two circula ixed the ellipse becomes a circle. These two A B Coints are and F are the foci. If a straight line ($\mathrm{E} Q \mathrm{~F}$) be drawn joining the foci, and be

then bisected, the point of bisection is called the centre. The distance from the centre to either focus ($\mathrm{E} Q$ or $Q F$) is called the linear eccentricity. The straight line $\left(\begin{array}{l}G \\ Q\end{array} \mathrm{H}\right)$
drawn through the centre and terminated both ways by the curve, is called the diameter. It which passes G and H. The diameter A major axis; the points in which it mects th curve (A and C), the principal vertices. The dameter (B D) at right angles to the majo tis, is called the minor axis. Practically, Derably accurate ellipse may be drawn on paper by sticking two pins in it to represent fnotted putting over these a bit of thread in the logether at the ends, inserting a pencil figure is described. The importance of the eilipse arises from the fact that the planets fove in elliptical orbits, the sun being in on of the foci-a fact which Kepler was the first to discover.
centre as equation to an ellipse, referred to its axes as rectangular axes its major and minor
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and a are the semi-major and semi-minor axes respectively. From this culus it may be shown, by the integral cal π as, that the area of an ellipse is equal to the semi-major and semi-minor axes by 3.1416 It may also be shown that the length of the cirCumference of an ellipse is got by multiplying the major axis by the quantity

$$
\pi\left\{1-\left(\frac{1}{2}\right)^{2} e^{2} 1-\left(\frac{1.3}{2.4}\right)^{2} \frac{2 e^{4}}{3}-\left(\frac{1.3 .5}{2.4 .6}\right)^{2} e^{6}-\& c .\right\}
$$

The eccentricity e, is . $=\sqrt{1-\frac{b^{2}}{a^{2}}}$ and the
ellipticity is the ratio $a-b$ to a. See GromeTry and Conic Sections.

ELLIPSIS, in grammar, the omission of one or more words, which may be easily sup-
plied by the connection. It is common, especially in colloquial language, for the sake of and perspicuity of the sentence; the strength extended use of the sellipsis in hence a more poetry. In the hands of a genuine poct or orator the chlipsis has a very telling value. In nat ural language, from the brevity it affords, the ellipsis becomes in all its phases the language of passion, and especially of sudden and intense emotion; and the imitation of its natural use in this way is to the poet the most powerful in-
strument for painting passion to the life. The works of all the greater poets, and especially the Hebrew poetry of the Old Testament abounds with familiar instances of this use of the ellipsis.
ELLIPSOID, in geometry, a real quadric surface with no real points at infinity. Its equation may be a transformation of axes to $\frac{x^{3}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, a, b$ and c being real. Every real plane section of an
ellipsoid is an ellipse. If a, b and c are not all ellipsoid is an ellipse. If a, b and c are not an
distinct, the cllipsoid is a figure of revolution and is known as a spheroid. An oblate is less than the chords of the spheroid bisecting it perpendicularly; a prolate spheroid is one where the chords are less.

ELLIPSOIDAL STRUCTURE IN IG NEOUS ROCKS. Certain extrusive igncous rocks when viewed at a distance seem to be made up of aggregates of bowlders varying from a few inches to several feet in diameter ever, they are seen not to be bowlders at all ever, they are secn not to be bowlders at all that have a slightly different texture and color from the remaining mass. This difference is believed to be the result of certain differences set up during the cooling and solidification of
the molten rock. The cause is obscure but the molten rock. The canse is obscure but
there is some reason to believe that it is due there is some reason to believe that it is due
to the lava being poured out into a body of water, as in a lake or the occan.
ELLIS, Alexander John (originally Sharpe), English scientist and philosopher: b Hoxton, 4 June 1814; d. London, 28 Oct. 1890. He was educated at Shrewsbury, Eton and
Trinity, Cambridge, and devoted himself to Trinity, Cambridge, and devoted himself to
mathematics, the scientific side of music, and mathematics, the scientific side of music, and more especially to philology and phonetics
His translation of Professor Helmholtz's 'Sensations of Tone' (1875) has taken a place as standard work on scientific music. In 1848 he published two small works: 'The Essentials of Phonetics' ; and 'A Plea for Phonctic Spell ing,' and collaborated with Sir Isaar Pitman (q.v.) in framing a phonetic system. His magnum opus on (Early English PronunShakespeare, appeared between 1869 and 1889 His other works include 'Horse Taming (1842); 'Phonetics' (1844) ; 'On Glosik, Neu Sistem ov Inglish Speling' (1870) ; 'Eng lish Dyonisian and Hellenic Pronunciations o Greek' (1876) ; 'Logic for Children' (1882)
which consists of two addresses. 'O which consists of two addresses; (Origina
Nursery Rhymes for Boys and Girls) (1848) 'Algebra Identified with Geometry' (1874) 'Practical Hints on the Quantitative Pronuncia-
tion of Latin' (1874); 'Pronunciation for
ELLIS, Alston, American educator: b. Kenton County, Ky., 26 Jan. 1847; d. Athens, versity 1865 in 1867-92 he was principal Unischools at Covington and Newport, Ky and superintendent of schools at Hamilton and Sandusky, Ohio. From 1892 to 1900 he was president of the State Agricultural College of Coloado and for the greater part of that time served also as director of the Colorado Experiof Ohio University. He was president of the Ohio Superintendents' Association in 1875, of the Ohio Teachers' Association in 1888, of the Ohio College Association in 1892-93, and of the Ohio Association of President and Deans in 910-11. He published a 'History of the Ungraded

ELLIS, Edward Sylvester, American Writer of school textbooks: b. Geneva, Ohio, he was superintendent of public schools at Trenton, N. J. He published more than 100 juveniles, most of which have been reissued in London and are sold in every part of the world. He is joint author of The World's Great sey His 'History of the United States)' (8 vols. Cincinnati 1887) has sold to the extent of 114,000 sets or 912,000 separate volumes. A number of his historical productions have appeared in the moving pictures. His latest literary work was the editing of some 60 translations, devoted to a full history of all the na
ELLIS, George, English author: b. London, England, 1753; d. 10 April 1815. He was Collcge, Cambridge, and was one of the junta of wits concerned in the well-known political satire, 'The Rolliad.' He published 'Specimens of the Early English Poets, with an Hisorical Sketch' (1790); 'Specimens of Early English Metrical Romances' (1805); and was intimate friend of Sir Walter Scott.
ELLIS, George Edward, American Unitarian clergyman and 1814 ; d. there, 20 Dec. 1894. He was pastor of the Harvard (Unitarian) Church, Charlestown, Mass. (1840-69) ; and held the professorship of systematic theology in the Cambridge Divinity School (1857-63). He was also a lecturer of Lowell Institute in 1864, 1871 and 1879, and was editor of the Aristian Register and Christian Examiner. Society he made valuable contributions to an carly colonial history. He published 'A HalfCentury of the Unitarian Controversy', (1857); 'History of the Battle of Bunker's Hill' (1875) ; 'The Red Man and the White Man' (1882) ; 'The Puritan Age and Rule in the Colony of Massachusetts Bay, 1629-85) ; vari'American Biography.'
ELLIS, Henry Havelock, English scientist ELLIS, Henry Havelock, English scicntist
and literary scholar:b. Croydon, Surrey, 2 Feb.
1850 He taught school in New South Walcs 1875-79, and on his return to England practised
medicine for a short time and then devoted him clf to literary and scientific work. He wa ditor of the Contemporary Science Scries (1889) ; and of the 'Mermaid Scries of Old 'The New Spirit') (1890); 'The Criminal (1890) ; 'Man and Woman: a Study of Humal Secondary Sexual Characters' (1894); 'Sex ual Inversion' (1897) ; 'Affirmations' (1897) 'The Evolution of Modesty' (1899) ; 'Analysi ton in Man) (1005) (Erouc Symble (1906) ; (Sex in ${ }^{\text {Man }}$ (1905); (Erotic Symbolism)
(So Society) (1910) (The World of Dreams) (1911): 'Impression and Comments' (1914).
ELLIS, John, English naturalist: b. Ireund about 1710 ; dea that He was the first who were constructed and raised from the botton of the ocean by means of zoophytes or th polypi inhabiting different species of cora (Essay towards the Natural History of Cor He
for the colony of West For some time agent and the island for the colony of West Florida and the islan
of Dominica. Among his works is a posth mous one entitled 'The Natural History of Many Uncommon Zoophytes' (1786).
ELLIS, John Valentine, Canadian states man: b. Halifax, Nova Scotia, 1835. He wa educated in the public schools of his native city worked several years in a printer's office and where he became a reporter. He brunswick, Globe of that city in 1862 and thereafter was its editor and publisher. In 1882 he entered the political arena, served in the New Brunswick legislature as Liberal for Saint John from 882-87. In the latter year he went to the House of Commons as member for Saint John ings were instituted which involved Ellis in contempt of court and he was imprisoncd and fined. His popularity was greatly increased by these proceedings and the fine was made up
public subscription. He sat in the Commons public subscription. He sat in the Commons until 1891, was again elected in 1896 and in 1910
became a member of the Senate. In 1911 he bccame a member of the Senate. In 1911 h was chairman of the Senate Committec on De of the Natural History Socicty of New Brunswick.

ELLIS, John Willis, American statesman: b. Rowan County, N. C., 25 Nov. 1820 ; d
Raleigh; N. C., 1861 . He was graduated at the University of North Carolina in 1841, was ad mitted to the bar in 1842 and soon acquired large practice. He was a member of the Stat House of Commons from 1844 to 1848, when North Carolina. This office, in which he succceded his former preceptor, R. M. Pearsol who was elevated to the Supreme bench, he hel until 1858, when he was elected governor of North Carolina. He was re-elected in 1860 and dicd in office. On 2 Jan. 1861, Governor Ellis took possession of Fort Macon at Beaufort the works at Wilmington and the Federa
arsenal at Fayetteville, professedly on behal of the State On 20 April he ordered the seiz of the State. United States mint at Charlotte. He was active in promoting the passage of th secession ordinance in North Carolina.

ELLIS, Mina A., Canadian explorer: ited at the Brooklyn (1875 . She was gradu for Nurses: later became assistant superin endent of the S. R. Smith Infirmary (now the taten Island Hospital) and superintendent o ied 1 rginia Hospital, Richmond, Va. She mar in 1901 , heolas Hubbard, journalist and explorer or. She perished two years later in Labra ucceeded in completing the exploration 190 undertaken by her husband by crossing th ortheastern part of Labrador, now known a She District of Ungava, Province of Quebec idge was the first white person to cross th sheds dividing the Naskaupi and George water resulted An account of the expedition, which in her 'A Woman's Way through Unknown Abrador) (1908) and in 'The Bulletin of the

phical Society.

ELLIS, Powhatan, American jurist and Va, about Virginia, about 1794 ; d. Richmond, William and Mary College, settled in Missis sippi while it was a Territory, gained a high to the suprem a lawyer and in 1818 was raised of the first judges of that court. He remained the office until 1825, when he was appointed by of governor to scrve out the unexpired term He ivid Holmes in the United States Scnate at the led of election by the legislature, but a full term hut served os chosen senator for to 1832 , when he resigned to take his seat trict bench as United States judge for the disrict of Mississippi. While in the Senate he joined Thomas H. Benton and William Smith 1828 with Mexico whication of the treaty of ary-line with Mexico, which established a boundrivers, thus leaving only Florida and Arkansas for the expansion of slavery. While on the bench he delivered more opinions than any conpoinorary judge. On 5 Jan. 1836 he was apin M by President Jackson charge daffaires American, and on 28 December he closed the pointed him minister to Mexico on 15 Feb 1839, in which post he was succecded by Waddy Thompson in 1842. After his return he resided

ELLIS, Robinson English classical scholar: Barning Robinson, English classial scholar Oe was educated at Rugby and Balliol College, in Iford, and in 1870 became professor of Latin 1803 niversity College, London. From 1883 till ature at Oxf university reader in Latin literelected to the cornus professorship of he was $\mathrm{Hic}_{\text {is }}$ name is chicfly associated with the clucidaI_{n} of the poems of the Roman poet Catullus. 1007 he published a critical edition of Catullus ('Catulli Veronensis Liber') and in in the 'The Pocms and Fragments of Catullus' followed by a the original, these works being
'Commentary on Catullus' (1876). Other publications of his include of vid's 'Ibis,' with commentary (1881): 'Fables (1887): 'Avianus' (1887); 'Ovientii Carmina'
(Nanilianx)' (1891). 'Thes
vol. $10-17$

Fables of Phædrus' (1894), and a new recen sion of 'Velleius Paterculus,' with commengiliana' (1007): 'Aetna' (1900); 'Appendix Ver American Jourial of Philology (Vol. XXXIV pp. 494-496; 1913).

ELLIS, William Hodgson, Canadian chem ist: b. Bakewell, Derbyshire, England, 1845 He came to Canada in early youth and was 1867, after at the University of Toronto in Great Britain On his medicine there and fessor of chemistry in Trinity Medical School and lecturer on chemistry at Trinity University the P 1900 was in the University to the chair of toxicology as official analyst of the Inland Revenue office at Toronto. He is widely known as an oxpert chemist

ELLIS, William Thomas, American jour nalist: b. Allegheny, Pa., 25 Oct. 1873. He was was on the staff of Philadelphia newspapers when he became editor of the Internationa Christian Endeavor organ. In 1897 he became editor of Forward and in 1903 was cditoria wated social conditions in foreign He investi $1906-07$ and in 1910-11 in the interest of news syndicate. He wrote Sunday-school les sons and also contributed to religious periodicals. He has lectured frequently before religious bodies and has published 'Men and Missions' (1909) and 'Foreign Missions

ELLIS ISLAND, small island situated in tery, where the old immigrant station, Castle Garden, was locatcd. The United States immigrant commissioner has his offices on this island Immigrants detained for investigation as to compliance with the United States immigraion laws are kept on this island until allowed York State to the United States in 1808, and for many years was used as a powder magazine. In 1891 it was made an immigrant staion. The present buildings were erected in 897, when the original structures were burned.
ELLORA, ě-lō'rā̀, ELORA, or ELURU, -loo'ra, India, vilage in the province of Aurungảbàd Hyderabad State; situated in 20°
$21^{\prime} \mathrm{N}$., and $75^{\circ} 10^{\prime} \mathrm{E}$., about 15 miles northwest of Aurungảbàd city. Near by is the red stone temple of Ahalyā Bai, the Rảnê of Indore (1767-95), a good example of modern Hindu architecture. Ellora is celebrated for some remarkable cave temples, excavated in the solid rock, which in magnitude and perfection surThe temples are divided into three in India. Buddhist, Bråhmanical and Jain and are arranged chronologically. There are 12 Buddhist caves at the north end, 5 Jain caves at the opposite end, with 17 Brāhhmanical caves between. Important inscriptions have been found on turm, dating from the 5 th to the 9 th centurics. The Kailăs temple at Ellora is a recourt is about 154 fcet wide by 276 feet long,
entirely cut out of the solid rock, backed by a scarp 107 feet high. A curtain of stone has been left at the front on which forms of Siva, Vishna and the other gods are carved. Rooms inside face an entrance passage at the end of Which are a colossal Lakshmi and her attendant the 8 th and lotuses. An inscription dates from ple proper, guarded by posts. The temple temple proper, guarded by posts. The temple was Malked (760-83). Consult Fergusson and Burgess, 'The Cave Temples of India) (London 1880)

ELLORE, é-lor', India, town, in the Godavari district of the Madras presidency, on the river Jammaler, once the capital of the Northern Circars. It has magisterial and judicial establishments, police station, post office, etc.,
a number of Christian missions and a garrison. There are some manufactures of carpets and saltpetre. Pop. 33,500.

ELLSWORTH, Ephraim Elmer, American soldier: b. Mechanicsville, N. Y., 23 April 1837; d. Alexandria, Va., 24 May 1861 . He organized about 1859 a zouave corps which became noted for the exccllence of its discipline. In March 1861 he accompanied Presiwent to New York, where he organized a zouave regiment of firemen, of which he became colonel. Ordered to Alexandria, he owered a Confederate flag floating over a hotel, for which act the hotelkeeper shot him dead.
ELLSWORTH, Oliver, American jurist: . Windsor, Conn., 29 April 1745; d. there, 26 Nov. 1807. He was graduated at the College menced the practice of law. In 1777 he was chosen a delegate to the Continental Congress, and in 1780 was elected a member of the council of Connecticut, in which hody he continued till 1784, when he was appointed a judge of the Superior Court. In 1787 he was elected Constitution, and was afterward a member of the State convention, where he carnestly advocated the ratification of that important instrument, which his exertions had essentially aided in producing. Sn 1709 he was chosen a Scnator of the United States, which station he filled ton Chicf Justice of the Supreme Court of the United States. In 1799 he was appointed envoy extraordinary to Paris, and with his associates successfully negotiated a treaty with the French. He resigned his office of chief justice in 1800. In 1803 he was made a member of the governor's council of Connecticut, and in was written by W. G. Brown (New York 1905).

ELLSWORTH, Maine, city, port of entry and county-seat of Hancock County, on hoth sides of the Union River, and on the Maine It is the trade centre of the county and has extensive timber, ship-building and fishing interests, exporting over $50,000,000$ feet of lumber nnually. It has shoe, woolen, leather, carfacturing industries. The city contains a court-
house, custom-house, public library and a city hall. The Union River is crossed by several bridges and furnishes good water power for manufacturing purposes. A fish hatchery maintained here by the Federal governmated
The city was settled in 1763, was incorporate as a town in 1800 and as a city in 1869. A mayor and a board of aldermen administer the water-supply system and the electric plan

ELLWOOD, Charles Abram, America sociologist: b. ncar Ogdensburg, N. Y., 20 Jan 1873. He was graduated at Cornell Universit in 1896 and studied also at the Universities o Chicago and Berlin. For one year he was lec Nebraska and in 1900 became professor of so ciology at the University of Missouri. He became also advisory editor of the America ournal of Sociology and associate editor the Journal of Criminal Law and Criminology In 1904 he served as president of the Missour Sonfederated Charities. He has publishc (1910); 'Sociology in its Psychological As pects' (1912; French trans., 1914) ; also mono graphs and special articles on social psychology ELLWOOD, Thomas, English Quaker: b Crowell, near Thame, Oxfordshire, 1639 ; Amersham, 1 March 1714. About 1660 he wasscquently became reader to Milton, with whom he improved himself in the learned languages but was soon obliged to quit London on accoun of his health. In the ycar 1665 he procured odging for Milton at Chalfont, Bucks, and wa the occasion of his writing 'Paradise Regained' by the (Pollowing observation made on rercading lent him to read in manuscript: "Thoul hast said much of paradise lost, but what hast thou to say of paradise found?" In 1705 he published the first part of 'Sacred History, or the Historical Parts of the Old Testament'; and ment.) 'Hacred History, etc., of the New Testathem 'Davideis, the Life of David, King of Israel,' a poem, which is more distinguishe for piety than poctry. His life, written by him self, and published the year after his death, affords many interesting particulars of the ELM
ELM, Ulmus, a genus of trees and a few shrubs of the family Ulmacea. The species, the North Temperate zone and the souther portions of the Arctic zone. Their souther limits scem to be the Himalayas in Asia and the mountains of southern Mexico. None ar They are characterized nate, rough, usually deciduous leaves with ser rate edges; axillary racemes of perfech apetalous flowers which appear in early spril hefore or with the leaves; and compresse winged, dry fruits. Many of the specics are o wide economic importance. Their hard, heavy, facture of barrels, agricultural implements, boats, wagon wheels, buildings, etc., and for fuel. The inner bark of some species furnishe an article of food, and that of others a tous

Famous New England Elms

The fibre used for cordage and cloth making ugar refining of some is used in dycing and were formerly popular remedies employed in nedicine, but except in domestic and local pracice are rarely prescribed. Most of the species and highly valucd as ornamental trees in street and park planting, those specially popular being species, which quickly over-arch the streets and cast an abundant shade. Many cultivated varie es of fantastic form, color of foliage, or habit growth are also planted as curiosities.
the best-known American species is the white, water, or American clm (U. americana) he shores of streams, from New foundland lorida and westward to the eastern side of the Rocky Mountains. It is a tall tree, often at taining a height of 120 feet when growing in forest, and with a wide-spreading, less loft op when growing in the open, where it may as vase plume oak-tree to popording to the rrangement of the branches. Some specimen each one develop numerous twiggy growth upon the trunk and main branches, which are us rendered very attractive because of thei is the vase in which The most common form at about 20 feet or more and at their base radually, and toward their extremities widel iverge. This is probably the most popular Aret form in America. Another well-known Anerican species is the slippery or red elm U. fulva), which attains a height of 70 fee rich soils and is found from Quebec to kotas. It is called red because the bud scales re reddish and conspicuous when unfoldi.g in pring; and it is called slippery because of it mucilaginous inner bark. Its wood is less val that of the white elmg The cork or more than U. racemosa) which Trows on river bank rom New England to Nebraska and as fa outh as Kentucky and Tennessce, attains a eight of 100 feet and is noted for the corky evepments resembling wings on the smalle ranches. Its wood is specially valued for it reat durability, strength, pliability and tough
ness. Another species with corky, winged ranches is the wahoo or winged elm (U lata), which ranges from Virginia to Florida and westward to Texas and Illinois. It rarely xceeds 70 feet in height, is very attractive in ut , and is planted for ornament in the South hardy for the rigors of winter
The most noted European species is the English elm (U. campestris), which range Hrough middle and southern Europe, norther frica, and eastward to Japan. It reaches 100 leet in height and has a rather round-topped or open head, on account of its spreading at home and abroad, and in America is valued ecause its foliage continues green for severa weeks after that of the white elm. It has sevral distinct varieties, which are sometime onsidered as distinct species, and of which there The next most numer of horticultural varieties probably the Scotch or wych elm (U spcabra)
which has much the same range as the preced ing species, like which it attains a height o many cultivated varieties, one of the bestknown of which is the Camperdown elm, whic has long, pendulous branches, on account of which the tree is frequently planted as a curiosity in parks and gardens. The Chinese elm (U. parvifolia) is a semi-evergreen shrub
or small tree, a native of eastern Asia, which has proved hardy in America as far north as Massachusetts.

Elms are readily propagated from seed which ripens in late spring or early summe and should be sown at once. The scedling are easily managed, both as to cultivation, trans planting and pruning. The trees do best in rich are generally grafted. The trees, especially of the American or white elm, are specially liabl to the attacks of certain insects and diseases, which often defoliate them. The latter may be kept in check by the timely and proper applica tandard fungicide (q.
The name elm is also given to various unreabably the following: Water clm (Planer aquatica) ; Spanish elm or Bois-de-Chypre (Cordia gerascanthus). Several Australian trees are also known as elms, especially pinosia myopor pinensis

ELM, Slippery, in medicine, the bark of Ulmus fulva, is widely used as a demulcent It is probable that the ancient Indian inhabitants of the country introduced it into mediamount of mucilage which it for the large rendering it a pleasing which it contains, thus hroat diarro plysenteng and inflormatio of the intestinal tract in general

ELM-INSECTS. Fcw ornamental tree are more subject to the attacks of insects than are the elms, and especially the American elm. The European species are, however, attractive been European insects, of which many have spread remarkably because of the absence of their enemics. One of the most notable is the plant-louse known as colosha ulmicola, whic produces the cockscomb galls upon the foliage It is rarely very troublesome, and has usuall done its damage before it can be attacked effective. (Sce INSECTICIDE). A borer (Sap erda tridentata) is sometimes troublesome, but there seems to be no satisfactory way to contro it, though it has been suggested that the trum Iune and washed with lime or soft soap during attack the elms are beetles, their larvæ, or the caterpillars of various moths. These all bit their food, and hence may be attacked with arsenites or other stomach poisons sprayed
upon the foliage. Among these insects are the four-horned sphinx-moth (Ceratomia amyntor or quadricornis), a green caterpillar with fou little horns near the head and the long ana horn characteristic of the sphinx-moth. The bag-worm (Thyridoplery sphemerceformis) moth (Notolophus or Orgyria le leucostigua)
and several other general fceders are frequently ng enemy of the elm is the elm-leaf beetl (Galeruca xanthomelena), a reddish-yellow two-striped European insect which appears anc eats the leaves in spring. The bottle-shaped ycllow eggs are laid in rows on the under sides of the leaves, and the hairy, black-spotted, yelcins. Spraying with arsenites is effective, but where more than one brood is produced the prayings must be repeated frequently throughout the summer. Consult Marlatt, 'Elm Leaf Beetle,' Circular 8, Division of Entomology, Washington 1895) Partment of Agricult
Washington 1895).
ELMAN, Mischa, Jewish violinist: b. alnoje, Russia, 189 . He showed such remarkable talent that at the age of six he was under competent masters for four years. He met Leopold Aucr in 1902 and so impressed the atter that he secured the permission of the sar for Elman's admission to the Imperial Conservatory at Saint Petersburg, hitherto spent two years there under Auer and at his début in 1904 he was at once acclaimed as an artist of first rank. He toured Germany and everywhere scored a triumphant success. He isited the United States in 1908 and again in 1911, 1912,1913 and 1914, being eminently sucnow recognized as a veritable genius.
ELMENDORF, Theresa Hubbell West, American librarian: b. Pardeeville, Wis., 1855 She was graduated at Milwaukee, in 1874 and from 1880 to 1896 was deputy librarian and librarian of the Milwaukee Public Library. In 1896 she married Henry Livingston Elmendorf (d. 1906), and in Public Library. In 1903-04 she was president of the New York Libraty Association and in 1911 became president of the American Library Association - the first woman to fill that office. She was also coeditor of the 'American Library Association Catalogue' and has published many topics.
ELMINA, exl-mẻnä, or SAINT GEORGE DEL MINA, West Africa, town belonging to Great Britain, formerly the capital of the miles west of Cape Coast Castle. The Castle of Saint George del Mina was the first Eluropean estabishment on the coast of Guinca, having been erected by the Portuguese in 1481. The castle is the residence of the government officials of
the district. It is the chief outlet for the trade of Ashanti. It came under English control in 1872, when it was claimed by the King of Ashanti the result being the Ashanti wars of 1873-74. Pop. about 4,000 .
ELMIRA, N. Y., city, county-seat of Chemung County, on hoth sides of the Chemung River, and on the Delaware and Lackawanna, he Lehigh Valley, the Northern Central and the Erie railways; 100 miles southeast of Roch-
ester, 149 miles east-southeast of Buffalo, and 46 miles south-southwest of Ithaca. Among the more important establishments are railroad-
car shops, iron and steel bridge works, steelplate works, valve and radiator works, mannfactories of boots and shoes, automobile parts, tables, bicycles, glass, fire engines, tobacco and blinds, hard-wood finishing works, silk and knitting mills, tobacco warehouses, dyeworks, breweries and aluminum works. The district is fertile, and there are also stone-quarters in (q.v.), a State armory, the State reformatory (sce ELMira Reformatory), the Arnot-Ogden Memorial Hospital, the Steele Memorial Free Library, a Fcderal government building housing the Federal courts, the post office, etc., and various charitable institutions. The park sys-
tem includes Wisner, Riverside, Eldridge and Hoffman parks. Elmira is finely laid out, and
has an excellent water supply, and gas and has an excellent water supply, and gas and
electric lighting. Elmira was permanently setelectric lighting. Elmira was permanently set
tled in 1788, was incorporated as the village of tled in 1788, was incorporated as the village
Newtown in 1815, and in 1828 was reincorNewtown in 1815, and in 1828 was the village of Elmira. In 1836 it became the county-seat of Chemung County, and Civil War it was the State recruiting and mili tary rendezvous, and in 1864-65 one of the Federal prisons for Confederate prisoners o
war was here situated. Near the present site war was here situated. Near the present site
of Elmira the battle of Newtown was fought, 29 Aug. 1779. General Sullivan, with an American force numbering 5,000, defeating a com bined band of Torics and Indians commanded respectively by Sir John Johnson and Joscph Brant (Thayendanegea) and numbering ap proximately 1,500 . The battle-ground is now governed, under a charter of 1906, by a mayor who is biennially elected, and a common council, which is unicameral. In addition to the aldermen who are chosen by wards for terms
of two years, the recorder, municipal judge of two years, the recorder, municipal judge
and 12 supervisors, to act as a county board and 12 supervisors, to act as a county board
are also chosen by popular vote. Pop. 45,305 .

ELMIRA, Battle of, 29 Aug. 1779, in the Revolution. See Chemung, Battle of.

ELMIRA COLLEGE, at Elmira, N. Y. The first college founded exclusively for women
in the United States (1855). Under the ausin the United States (1855). Under the antspices of the Presbyterian Church, its cours
of study from the first demanded as high a of study from the first demanded as high a The degrees conferred are bachelor of arts, bachelor of science, bachelor of music and master of arts. The college maintains a graduate department and also a summer ses sion. The average enrolment is about 260 with 20 mombers in the faculty. There are 11,000 volumes in the library. The annual
come is about $\$ 90,000$, and the productive fund come is ahout $\$ 90,000$
amount to $\$ 140,000$.
ELMIRA HEIGHTS, N. Y., village in Chemung County, adjoining Elmira, on the Delaware, Lackawanna and Western, machinc shops, knitting mills and pump fac tories give employment to a very great number Pop. 2,732.
ELMIRA REFORMATORY, State inst tution, located in Elmira, N. Y. It is a re formatory to which may be sent only males served a period in a State prison. The cout
of the State of New York, in sentencing a limit the to this institution, has no aluthority to agers of the ; that is determined by the mandependent upon the conduct of the wholly However, the term of imprisonment shall not according to the law of the State, "exceed the maximum term provided by law for the crime or which the prisoner was convicted and sentenced." This reformatory, which takes the have not a Secome hardened in crime, has effected a radical change in methods of dealing with the lass of law-breakers intended to benefit. Although the law authorizing the institution was passed in 1866 it was not until 1876 that the insplendid success and The plan has been a About 22,000 prisoners have passed through its regimen. About 1,300 is the average detained here. Consult Winter, 'The Elmira Reformaory'. New York State Laws of 1887 , sec. 2 , (1895). Wincs, 'Punishment and Reformation' ELMO FRMO ORASMUS, Saint, ELMO, ERMO, or ERASMUS, Saint, a of ancient Italy, during the persecution under Diocletion, in 303. He is considered the patron saint of sailors, and is usually invoked by Lalian sailors during a storm. His feast is ept on June 3.
ELMO'S FIRE, Saint, is the popular name climates duric appcarance, especially in southern star of light at the tops of masts, spires, or other objects. Greck superstition embodied Pollux phenomenon in the story of Castor and

ELMORE, Alfred, Irish artist : b. Clonailty, Ireland, 18 June 1815; d. London, 24 Jan. traveled through Europe to Rome, where he lived two years, returning to England in 1844, 1845, and Royal Academician, 1856. Among his works are (Martyrdom of Thomas a
 (Ceath of Robert, King of Naples' (1848);
(185celda) (1850); 'Charles V at Yustc) (1856): 'Maric Antoinette in the Tcmple) 'Sphelia' (1875) ; 'Mary Queen of Scots and Darnlcy) (1877); 'Pompeiii') 'John Alden and
Priscilla) (1878) ; 'After the Ruin,' and

ELMWOOD PLACE, Ohio, village of Which in County, adjoining Cincinnati, to and on the Cincinnati, Chicago and Saint Louis and the Dayton and Cleveland railroads, the Mami River and the Erie Canal. It contains failre steel manufacturing plants and extensive ailroad freight yards. Pop. (1920) 3.991.
of ELOBEY ISLANDS, a-lo-båeê. The name in Afo small islands off the coast of Guinea, is the smaller and Elobey Grande the larger. Pop. 350 .
ELOCUTION (Latin elocutio, ε, out, loqui, voice and action. Though expression is depend-
ent upon the thought or emotion to be given In a larger sense it relates manner of de delivery In a larger sense it relates to all forms of ex pressive art, such as music, painting or sculpuses in human action and spech As a science it discovers and sets forth the elements or principles of expression; as an art it embodies these elements in the portrayal of our physical, mental and emotive moods.
The principles of elocution are as old as the human race and are exemplified in nature whenever or muscular activities reveal a psychic state. They are heard and seen in animate nature, and their proper use constitutes that naturalness so desirable in public speech. The laws governing the use of these elements are tablished sciences, and a violation of these laws results in unnatural, ineffective expression. The relation between psychic conditions and the elements and laws through which impressions are received and expressed presents a
useful and consistent philosophy by which all students of the art of expression in any of its forms may be guided.
Man is endowed with a vital, a mental and an emotive nature. Through these three natures he receives all impressions, and through the elements of elocution corresponding to
these triune natures he must communicate all expression.
part I.- elements of vocal expression.
There are four generic vocal elements of elocution, namely. Quality, Force, Time and
Pitch, all of which are embodied in every utterance, while, in turn, every shade of human expression may be traced in its various subdivisions and combinations. A tabular view of the vocal elements is given on p. 262.
I. Quality.-Quality is the tone-color or kind of voice, the purity or impurity of the
tone, and is dependent upon the size, shape and physical condition of the vocal organs and cavphysical Broadly speaking it is an emotive clement which subdivides into eight varieties, each having a definite correspondence to man's triunc nature. Each quality is determined by its esonance, which Helmholtz defines as "the strengthening or reinforcing of sound" in the changing these resonances at will the speaker can employ the qualities to express his various moods and emotions.
(1) Normal.- The normal is the ordinary, predominant, characteristic quality of voice
peculiar to each individual. Its resonance is peculiar to each individual. Its resonance is
in the upper and back part of the mouth, and the tone should be purc. By this quality we recognize the voices of different persons. It belongs to the mental division and is the natural expression of our ordinary thoughts, such as solemnity, tranquillity, mild pathos, conversa(2) Orotund.-The orotund is a strong clear, decp, voluminous quality, the resonance of which is in the upper part of the thoracic cavity. It represents about equally the mental and vital natures and is used to express thoughts and emotions of a lofty nature, such as reverence, sublimity, grandeur, courage,
(3) Oral.- The oral is a thin, feeble, shallow quality with the resonance in the forward part of state of inherent or exerted vitality and logically belongs to the vital division. It is generally used by a speaker in a personative sense to express sickness, feebleness, idiocy, timidity and fatiguc.
(4) Nasal.- The nasal is an impure twanging, head-tone with the resonance in the front and belongs to that division. As an habitual
 quality it is a grave defect in a speaker. Under
control of the will it may be used in an impersonative way to express laziness, mockery, burlesque or drollery; and in more serious thought, it is often employed to give pungency to irony, insinuation or contempt.
(5) Falsetto-- The falsetto is a pure, shrill, pitch. Its resonance is in the tinper part of the pharynx and it belongs to the vital division. Its use shows a lack of physical poise and expresses great excitement, fright, yelling, scream-
(6) Guttural.- The guttural is a harsh grating, impure quality the resonance of which sents a vital condition under a strong emotion and belongs about equally to the vital and emo tive natures. It is used to express the malig nant passions such as malice, scorn, ange evenge, violent hate and rage.
(7) Pectoral.- The pectoral is a hollow, hoarse, sepulchral quality with the resonance in the lower part of the chest. It is emotive in
nature and is never used except under the influence of the deepest emotions such as veneration, dread, amazement or horror.
(8) Aspirate. The a
(8), Aspirate. - The aspirate is a hissing, breathy, whispered quality in which intensity
of emotion forces out more breath than can of emotion forces out more breath than can
be vocalized. It belongs to the emotive division. The resonance varies according to the position of the organs and resonant cavitics and its use ranges from the gentlest whisper of
secrecy or caution to the intense, half-whispered secrecy or caution to the intense, half-whisper
cmotions of fear, terror or consternation.
II. Force.- Force is the power or energ with which sound waves are sent forth from the vocal organs. Figuratively speaking, it the exploding powder back of the projectile an learly represents the vital thas three divisions.
(1) Form.-Form is the manner of exert hich a sond smoothness or abruptness with eveals the sent word is begun and ended. It elongs to the emotive division. It has thre divisions which also correspond to the triune divisions which
a. Effusive.-The effusive is that form of and evenly which the sound flows forth smoothly in the beginning or abruptness of force eithe represents the emotive ending of the tone. express such gentle and solemn emotions a pathos, tranquillity, reverence, awe or sup b. Expulsive. - The expulsive is that form in which the force is applicd abruptly causing the sound to rush forth from the vocal organs. It is the ordinary form and represents the menta thought, gladness, patriotism, etc
c. Explosive. - The explosive is that form in which the force is excrted very abruptly causing the sound to burst forth from the voca organs. It belongs to the vital nature and 1 used to express those emotions in which grea citment of ecstatic joy, great earnestness, do fiance, alarm, anger, etc
(2) Degree.-Degree of force is the measIre or power with which sounds are uttercd Its subdivisions are subdued, moderate ant cnergetic, all of which correspond to the vital
nature and mark the degree of energy ulsed This scale of degrees is relative and dependont upon individuality and the acoustic propertics of the auditory which, in turn, depend upon the size and shape of the room and whether or not (3) Stress.- Stress is

Stress.- Siress is the anplication of force to the different parts of a sound or
syllable. Any change of the location of the strongest impulse of force from one part of word to another invariably changes the mean-
the mental division of man's triune nature. here are six varieties of stress.
a. Radical.- In the radical stress the force sound applied strongest in the first part of the the It is the ordinaty stress representing thougental nature and is expressive of didactic etc ent, narration, gaiety, patriotism, courage b. Compound. - In the compound stress the parts of iorce is put upon the first and the last parts of the sound. It represents the mental purposetive natures and expresses any irony of mockery, satire, sarcasm, of statement such as c. Median.- Median, stress derision, etc. placing of the force chiefly upon the middle part of the sound. It belongs to the emotive wailing and is used to express pathos, sorrow, d. Final - In awe, etc
placed mainly In the final stress the force is It represents the emotive and vital natures and expresses self-assertion, determination, stube The courage, amazement, hate or revenge. the e. Thorough.- The force conlinues in about thorough intensity throughout the sound in the nature and is appropriate in the cxpression of calling, command, triumph, shouting apostrophe, lofty appcal, etc
the force is ittent. - In the intermittent stress sound which placed upon periodic parts of the or tremblin represents a physical unsteadiness the vital division. It is used to express laughter, crying, cestatic joy, deep sorrow, tenderness, sympathy, extreme fright and defiant
III. Time.- Time is the duration of uttersyllables relates to the length of vocal sounds, between them and the rate of speed with which they are given. It is one of the vital generic reprents with three specific divisions which represent the three psychic natures. tween Pause. - Pause is the time spent beof sounds and syllables or between words or groups of words in speceh. By correct pausing words are grotuped into their ideas, hence this triument belongs to the mental division of the used (a) Befor conjunctive words, relative pronouns always and infinitive phrases generally ; (b) between words of a series, words marking an ellipsis and or ph; (c) after nominative phrases, words or phrases used independently and words of after words or or emotion; (d) before and apposition direct quotations and or used in expressions.
(2) Quantity:-Quantity is the length of ande given to the uiterance of sounds, words vocal syllables. It is especially adapted to the Vocal utterance of the different shades of feeldivision emotion and belongs to the emotive quantity which expresses sorrow, pathos, leng crence, sublimity, apostrophe, command, calling, usc; (b) medium quantity which is ordinarily dactic to express narrative, descriptive and diunernotive thought and all unemphatic words of unemotive language; and (c) short quantity
which is the shortest prolongation of soun consistent with the requirements of articulation nd is expressive of joy, laughter, impatien Tempt, fright, excited anticipation, etc.
The use of the various lengths of quantity netic sounds composing the words. Long quantity, especially, should never be placed on a ort sound.
(3) Movement. - This is the rate or degre rapidity with which a scries of sounds or us der a sentence is given. Since the variion of the physical activities of speech thi clement belongs to the vital division of man's and rapid, and are dependent upon the indi viduality of the speaker and the acoustic conditions. Very naturally the inner or reflective ife requires a slow utterance, while the im pulsive, lively, joyous moods find their expres tates of mind require the moderate degrees IV. Pitch - Pitch is the range or compas of voice and relates to the location, variation and succession of notes upon the scale of de grees. It has three specific divisions which may be subdivided to suit greater varieties of shad ng in exprificance and belongs to that triume divisi
(1) Degree. - The degree of pitch is the
ange of voice from the lowest to the highest range of voice from the lowest to the highest lone, and the position in that range given to a particular note or word. Its subdivisions are subdivided; and like all other scales of degrees in clocution depends upon individuality an acoustic conditions. The degrees of pitch mark plainly the speaker's emotive state, and the cale ranges from the decply serious of rever nary thought of middle to the cry of excitc ment, joy, alarm or defiance of high pitch (2) Change.- Change is the transition from one degree of pitch to another and is accom plished by a concrete glide or a discrete step shading of meaning in convey the various represent the mental nature. There are thre varieties of change or transition which correspond to the triune classification.
a. Inflection.- Which corresponds to the mental nature is a simple concrete change of expressing anticipation or questioning, and fall ing, which denotes decision and conclusion.
b. Waves. - Waves are emotive and consis of two or more inflections united in a continuous concrete movement. They may be ingle, conposed of inflections; double, our or more inflections, all of which are used o extend the vocal quantity without overstepping the interval of pitch that the sentimen equires; and they represent the vital nature Waves are also equal, expressing pleasantry; o nequal, implying irony; both of which repre ion, and inverted, indicating anticipation, both of which are representative of the mental nature.
c. Intervals.- An interval is the distance c. Intervals.- An interval is the distance
between two points on the scale and marks the
length of the vocal slide or step taken. As a measure of the physical act of vocalization it elongs to the vital division. The five relative laintiveness or sorrow : seconds, reverence and laimeness or sorrow; seconds, reverence and sublimity; thirds, ordinary conversation and oratorical and triumph; and octaves representing extreme surnation.
exclamation
(3) Melody. Melody is the succession of peech-notes in utterance and represents the vital nature in the vocal placing of all degrec and changes of pitch upon the scale. Ther re two divisions
a. Current melody relates to the body of he sentence and is made up of monotones how the vital notation of intervals and notes and record the vocal trend in speech or song

h. The cadence, which is that part of melody which gives repose at the close of a sentenc varieties arc (a) the monad in which th lowering of pitch occurs on one syllable; (b) the first and second duads, on two syllables (c) the rising and falling triads, on three syllables; (d) the tetrad, on four; and (e) th pentad, on five syllables.

The distance over which the line of repose current melody.
part in.- tie principles of action
part in-tie princirles of Action.
Action in elocution is that part of delivery which addresses itself to the eye. The main property of students of expression since the days of the ancient Grecks, were set forth in the 'Chironomia,' a voluminous work of a century ago, by Dr. Gilbert Austin, of London but the eminent French psychologist, François
Delsarte, was the first to show the relation of
the whole physical activities to man's triune nature and present anything like a philosophy
of actional expression. More recent writers have presented the subject in textual form and made it practical for the student. Combining the express onal use of the hands and feet, as explained in the 'Chironomia,' with the zonal correspondencies of Delsarte, we
the subject by referring to the diagram.
For the history of elocution and its relation to the material used in speaking, see OrATORY. Bibliography.-Bartlet, B. R., 'The Practical Reader' (New York 1822); Bassett, 'A Handbook of Oral Reading) (Boston 1917); Belle, A. M., 'Essays and Postscripts on Elocu-
tion' (New York 1886) : Brewer, English) (Boston 1916) ; Burgh, (The Art of Speaking' (New York 1785); Fulton, R. 1., (Practical Elements of Elocution' (Boston 1883); Jennings, H., (Voice and its Natural ('Howelopment) (New York 1911); Kliser, G., 'How to Develop I'ower and Personality) (New
York 1909); 'How to Read and Declaim' (New York 1909) ; 'How to Read and Declaim' (New
York 1911); 'How to Speak in Public' (New York 1906) ; Knowles, A., 'Oral English' (Boston 1916); 'Pertwce, E.,' 'The Art of Effective Public Speaking' (New York 1911); Porter,
E., (Rhetorical Reader) (New York 1835); E., 'Rhetorical Reader) (New York 1835), Voice' (Philadelphia 1885) ; Sheridan, T., 'A Voice (Philadelphia 188); Sheridan, T., A
Course of Lectures on Elocution' (Troy 1803); Staley, D. M., ‘Psychology of the Spoken Word' (Boston 1914); Winans, J. A., 'Public
Speaking' (New York 1916). Among the Speaking' (New York 1916). Among the
organs devoted to elocution is The Quarterly organs devoted to elocution is The Quarterl Journal of Public Speaking (official organ ot
Society of Teachers of Elocution, published at Menasha, Wis.).

ELOHIM, èl'-ō-hĭm or ê-lō'him (plural of Eloah), one of frequent occurrence in the Bible, especialiy the earliest writers in the northern domain or the Semitic race. Elohim is used in speaking both of the true God and of false gods, whic
Jehovah is confined to the true God. The Jehovah is confined to the true God. The plural form of Elohim (literally signifying "do great Eloah" or God) has caused a good it has
of controversy among critics. By some it of controversy among contitics. By some ider as containing an allusion to the doctrine of the Trinity, others regard it it the plural of cxcellence, while others hold it as establishing the fact of a primitive polythe-
ism. This word, together with "Jehovah", has ism. This word, together with "ichovah, Critics have professed to find in the comparative frequency of the two terms an evidence of the date of the manuscripts in which they occur; but on this controversy we cannot enter. Elohist
ELOHIST, èlō-hisst, also called Yahwist, both used in contradistinction to Jehovist (q.v.), one of the biblical writers, hypothetically aswho habitually, if not exclusively, used the Hewho habitually, if not exclusively, used the
brew name Elohim for God. The Elohict passages in the Old Testament, as determined upon by biblical scholars, are simple, straightforward, and bear no signs of rhetoric or pocic effort, therein contrasting with the Jehovistic paragraphs. Gen. 1, 27 is Elohistic; Gen. $21-4$ is Jehovistic.

ELOISE, èlō-ẽz, Mich., a hospital settletral Railroad, Wayne County, on the Michigan Censituated a large hospital, an infirmary and a anitarium. These are controlled by the Wayne Cataty Superintendent of the Poor, a board lished in 1832. Pop. 1,750.
ELON COLLEGE, a coeducational instiof Ralion, situated at Elon College, 64 miles north uspices of the Christian Church in 1880 suc ceeding the Graham Normal College, founded 1865. Courses are given leading to the deand liter bachelor of arts, music, philosophy and literature; and master of arts. The addivinity and laws are also awarded. Certifiates are given in music, art, expression and domestic science. The instructors number 27 the students 400 . The library contains 10,000 volumes.
ELONGATION, in astronomy, the angle stars measures the apparent distance of two however, seen from the earth. The term is, distance of a planet from the sun and of a atellite from its primary. The greatest clonSation of Mercury amounts to about 28 degres. 30 minutes; that of Venus to about 47 degrees 48 minutes, and that of the superior planWhen may have any value up to 180 degrees. the word "distance" is employed.

ELOPEMENT, in law, an act of unlicensed departure, especially when a wife forsakes her husband and flees with a paramour, or when a daughter or ward accepting the protection of a aimor leaves her natural or legal guardians. In cipal in an clopement is held guilty of an abduction provided his associate in the act is under age. Marriage, howcver, checks all consequent criminal proceedings unless the female alleges coercion. All persons guilty of aiding or abetdeemed an elopement of a male with a female are proceedings. Elopers themselves are not safe from arrest, their act coming within the purview of the criminal statutes

ELOTHERIUM, an extinct suilline animal of the Lower Miocene Epoch, remotely related to the hippopotami and pigs. The skull suggests that of the hippopotamus, but it has a resemble those of the carnivora rather than the Shearing tusks of the hippopotami and pigs. The limbs and feet are tall and stilted, the latcral toes reduced to small rudiments, as in ruminants. Different species ranged in size
n that of a sheep to that of a rhinoceros.
ELPHINSTONE, Mountstuart, East In-
ian administrator: b. Scotland, 6 Oct. 1779; d. Limpsfield, Surrey, 20 Nov. 1859. He joined the Bengal civil service in 1795; was Ambassador to the Afghan court in 1808; resident at the court of Poonah from 1810 to 1817 ; and British Commissioner to that province from 1817 to 1819, when he became lieutenant-governor of he esty. During a government of seven years and established a code of laws, lightened taxes institutions great attention to schools and public
stablished by the natives was called after him established by the natives was called after him
Elphinstone College. He twice declined the governor-generalship of India and devoted the remainder of his life to literary pursuits. He was the author of an (Account of the Kingdom 'History of Inds Dependencies' (1815); and a History of India) (1841)
ELPHINSTONE, William, Scottish prelate: b. Glasgow 1431; d. 25 Oct. 1514. Havycars, and was appointed professor of law first at Paris and subsequently at Orleans. He was later made general of the diocese of Glasgow (1471) ; rector of that university (1474) ;
archdeacon of Lismore (1478), and commissary of the Lothians, and in 1479 became archdeacon of Argyle, and Privy Councilor. Soon was transferred to the see of Aberdeen. In 1488 he was appointed Lord High Chancellor of the kingdom. In October of that year he assisted in the coronation of James IV. He was on his return was installed in the office of Keeper of the Privy Seal, which he held till his death. In 1494 he obtained a papal bull for the ercction of a university at Aberdeen, and King's College and University soon came into existence. He was the author of 'Breviarium 1850).

ELSBERG, èlz'bèrg, Louis, American physician: b. Gerlohn, Prussia, 1836; d. in the the United States in 1849 at Philadelphia. He introduced the art of laryngoscopy in the United States, wrote many papers on the throat Production of the Vobly, 'The Throat and the trate the character of undertones and divisions of sound in articulation, and invented many instruments which are used in surgical treatment
of the throat and ear
ELSHEIMER, èlz'hïm-èr, Adam, German painter: b. Frankfont-on-the-Main 1578; d. probably at Rome 1620, called the "Roman settled there while still very young. He painted many biblical and mythological scenes and was master of landscape, being the chief Germa artist of the end of the 16th century to acclima tize Roman art in Germany. Among his principal works are 'Jupiter and Mercury with and 'Judith' (at Dresden): 'Martyrdom of Saint Lawrence,' and 'Flight into Egypt (Munich) ; his portrait and 'Triumph of Psyche' (Florence); many landscapes at Naples, Venice and Madrid; 'Good Samarian,' and another (Flight into Egypt' (Louvre) and a collection of drawings.
ELSIE VENNER, the first novel of Oliver 'The Professor's Story' in the Atlantic Monthly for 1860 , where it followed 'The Professor at the Breakfast Table.' The story centres about a young woman whose nature has a strange element not human, which she acquired before birth when her moher was bitten by a attlesnake. The author aims to enforce his ing heredity as modifying moral responsibility

- ideas which he had advanced in the 'Autocrat) and the 'Professor at the Breakfast
Table,' and which had been vigorously chalTable,' and which had been vigorously chal-
lenged by orthodox New Englanders. His moralizing is not, however, obtrusive, and his strange heroine is fascinating and not in the least repulsive. As in all Dr. Holmes' novels, and some of the incidents are almost melodramatic. The humorous and realistic picture of New England'village life, and of a young ladies' boarding school are delightful, and some of the more serious scenes are portrayed with force. The work has the limitations that might be exat the age of 50 , and who was by nature an essayist and a social philosopher rather than a essayist and a social philosopher rather than a execution not unworthy. The story has a strange power of impressing itself on the reader and is usually remembered longer than
many novels of far greater technical merit. many novels of far greater technical merit.

ELSINORE, El-sǐ-nôr', or ELSINEUR (Danish, Helsingör), Denmark, seaport, on the
island of Zealand, 24 miles northeast of Copenhagen. The town has a charming site, with several interesting buildings, notably the town
hall and the hospital. Its inhabitants are engaged chicfly in commerce and seafaring. The gaged chicfly in commerce and seafaring. The defense of the town. It is a Gothic-Byzantine edifice, built by Frederick II in the boldest style, and is said to be one of the finest structures of its kind in Europe. Until 1857 tolls were exacted of all ships navigating the strait.
Scenes in Shakespeare's 'Hamlet' are laid here. It is now chiefly used as a prison, and was the place of confinement of the unfortunate Matilda, sister of George III of England. The manufactures are chictly fishing-nets and a coarse cloth, iron founding, shiphuilding
marine engines and net weaving. It has a good harbor, with excellent dry-docking facilities for repairing vessels. Coal is imported in great quantities. To the northwest lies the bathing place of Marienlyst, once a royal sum-

ELSON, Arthur, American musical critic:
Boston, 18 Nov. 1873. Son of Louis C. Elson (q.y.) He studied music with his father and (q.v.) He studied music with his father and degrees from Harvard, and the Massachusetts Institute of Technology, and has been prominent as a teacher. His chief works are 'A
Critical History of Opera' (1901); 'Orches tral Instruments and their Use' (1902) 'Woman's Work in Music' (1903); 'Modern Composers of Europe' (1904); 'Musical Club Programmes from all Nations' (1907); 'The
Pook of Musical Knowledge' (1915); and Book of Musical Knowledge' (1915) ; and
'The Pioneer School Music Course' (1916). 'The Pioneer School Music Course' (1916).
He is editor-in-chief of the 'Musician's Guide) (10 vols., 1913) and author of many musical essays. He contributes occasional concert reviews to Boston Advertiser and many articles to magazines.
ELSON, Henry William, American author: b. Muskingum County, Ohio, 29 March 1857 ;
spent early life on farm; took classical college spent early life on farm; took classical college course at Thiel College, Greenville, Pa., after
which he spent threc years in the Lutheran Theological Seminary at Philadelphia and later
two years in the University of Pennsylvania. After six years in Lutheran pastorates, at Kitministry and Philadelphia, Pa., he left the active historical subjects and lecturer in the University Extension Society of Philadelphia. In 1912 Dr. Elson was elected a member of the took a very active part in the debates and proccedings, especially as champion of the short cecdings, especially as champion of the shon about a reform in the judicial system of the State. He introduced and piloted through the
proposal to enable threc-fourths of a jury to proposal to enable threc-fourths of a jury to
render a verdict in civil cases. This was made a part of the constitution of the State. In 1905-16 Dr. Elson was the head of the history department in Ohio University. Since 1916 he is president of Thiel College. He was pres1dent of the
tion in 1915-16.
He publisthed 'Side Lights on American He published 'Side Lights on Americarl United States' (1 vol., 1904); 'History of
the United States' (5 vols., 1906); 'Guide to the United States') (5 vols., 1906); 'Guide HisAmerican History' ; 'Guide to English
tory' (1906-07) ; wrote most of the first four volumes of the 10 -volume set of the 'Photographic History of the Civil War' (1911).

ELSON, Louis Charles, American writer on music: b. Boston, Mass., 17 April 1848; d. Boston, 14 Feb. 1920. After studying music at Leipzig he returned to Boston and taught and lectured on music there from 1880 . He was
musical editor of the Boston Advertiser since musical He published 'Curiosities of Music' (1883) ; 'German Songs and Song Writers' (1886) : 'Our National Music and Its Sources' (1896); ' M (18eory of Music) (1890); ' (Rcalm of (1893); 'Great Composers') (1897) ; 'Shakcspeare in Music' (1900); 'Famous Composers and Their. Works,' new series (1901). His later activities were wide-sprcad. He was twice a Lowell Institute lecturer, giving one course of eight and one of 10 lectures before that institution. He was city lecturer of the general public of that city, assisted by an orchestra, and he traveled over the United. States ana Canada with musical lectures. His 'Shakespeare in Music,' and 'Great Composers' have been reprinted in London. He wrote a 'History of American Music' 1915): 'Mistakes and Dis-
tion of the same puted Points of Music) (1912) ; and he was editor-in-chief of 'The University Musical Encyclopedia) (10 vols.). He wrote two musical dictionaries, numerous magazine articles, in
and was teacher of the advanced courses in and was teacher of the New England Conservatory of Music, Boston.

ELSSLER, èlz'lèr, Fanny, Austrian dancer: b. Vienna, 23 June 1810 ; d. there, 27 Nov. 1884. Haydn's factotum, and was educated at Naples for the ballet, with her elder sister Theresa (b. 1808; d. 1878), who in 1851 hecame the mor. ganatic wife of Prince Adalbert of Prussia and was ennobled. Fanny Elssler during her visin
to the United States gave an entertainment in to the United States gave an entertainment
order to raise money for the Bunker Hill Monument. She retired in 1851.

New ELSWICK, èlz'wǐk, England, suburb of of Sir Willia, containing the great ordnance work pany. These works are probably the largest of about 14,000 Eurone, employing 35 normal times

ELTON, Charles Isaac, English jurist and erset, 23 April 1000 merset 1839 ; d. Chard, Som ford and was called to the bar in 1865 . He Consented West Somerset in Parliament as a Conservative $1884-85$ and $1886-92$. On legal (1867) hects published 'Tenures of Kent' (Copyholds and Customary Tenures' (1874-93): 'Improvement of Commons Bill' (1876) ' 'Custom and Tenant-Right' (1882); and 'Robinson on Gavelkind' (1897). Other works of his are
(Norway, The Road and Fell) (1864): 'The Norway, The Road and Fell' (1864); 'The
Career of Columbus' (1892): 'The Great BookCorlectors' (1893); and 'Sheiley's Visits to France' (1804). His greatest work, however, is his 'Origins of English History' (1882). It is chiefly characterized by its thorough investiSation of the evidence furnished by Greek and cimstances of early Britain, by its discussion of the ethnology and prehistoric archeology of the Country, and by the importance assigned to the Celtic and even pre-Celtic element in forming
the English nation. ELTON, James Frederick, English ex-
plorer: b. 3 Aug. 1840 ; d. 13 Dec. 1877 . He chitered b. 3 Aug. 1840; d. 13 Dec. 1877 . He
Colian army in 1857 . In 1871 he found himself in the Transvaal and Natal; in aiterward as consul in Mozambique he explored the coast of East Africa for the sake of repressLigh the slave trade. With Cotterill he reached
Lake Nyassa in 1877 and scaled the Konde Lake Nyassa in 1877 and scaled the Konde
Tange of mountains at the north end of the lange of mountains at the north end of the
death to height of 10,000 fcet. After his ditle (Totterill published his journal under the titte 'Travels and Rescarches among the Lakes
and Mountains of Eastern and Central Africa' (1879)

ELTON, Oliver, English literary historian: School He was educated at Marlborough From 1890 to 1900 he was lecturer on English
literature at Owens College, Manchester, and in literature at the University of Liverpool He published an edition of Milton's 'Comus and other Poems'; 'The Mythical Books of Saxo Grammaticus,' 'Historia Danica,' translated for the Folklore Society; 'The Augustan Ages' (in 'Periods of European Literature,' 1899) ; Writings of Frederick York Powell' (1906). ‘Modern Studies' (1907): 'Survey of English' Literature from 1780 to 1830' (1912) ; contributions and reviews in the Manchester Guardian,
the Quarterly Revicw, etc.

ELTON, a shallow lake in the government of Astrakhan, in Russia; area, 60 square miles. and it has no visible outlet ; thus a large salt deposit rests on the bed of the lake. From about the middle of the 17 th century for 100 years, the salt from this lake was in demand; but since the opening of the salt fields in the southern part of Russia (lisbe the Elton

ELTZBACHER, èts'bar-èr, Paul, Gcrman versitics of Heidelberg, Leipzig, Strassburg and Göttingen. He was appointed a judge; in 1900 privatdozent at Falle, and in 1906 professor of law at the Berlin Handelshochschule. He has published 'Ueber Rechtsbegriffe' (1900); 'Die sungsklage' (1906): 'Gross-berliner Mietsverträge) (1913). His best-known work is 'Anarchismus' (1900; Eng. trans. by Byington, 1908), the most complete and unbiased treatment of the subject; it has appeared in most der Politik' ' Eltzbacher in 1910.
ELVAS, âl'vâs (Rom., Alpesa; Moorish Balesh), Portugal, the strongest fortified city near the Spanish frontier 10 miles west of Badajoz. Standing on a hill, it is defended by seven large bastions and two isolated forts. The city contains a 15 th century cathedral, in hospital and ased some fine paintings; a theatre construction. It was completed in 1622 . Fire arms and jewelry are the only articles manucity suffered from the wars between the Moors Portuguese and Spaniards. It fell to Porturga in 1226, was taken by the French in 1808, but was ceded to Portugal after the Convention f Cintra. Pop. 14,018.
ELVES (O. Eng., xlf; Gcrm. Alp; phan tom, spirit), imaginary creatures of the northern mythology, forming, according to some
classifications, with the undines, salamanders and gnomes, groups of elementary sprites identificd respectively with the water, firc, earth and air The elves are of the air, and have been more widely received in the faith and poetry of Europe under this name than under that of sylphs invented by Paracelsus. They are capricious
spirits, of diminutive size but preternatural spirits, of diminutive size but preternatura young girl's thumb, yet their limbs are most delicately formed, and when they will they can hurl granite hlocks, bind the strongest man o shake a house. They are divided in the sagas
into good and bad, or light and dark elves, the former having eyes like the stars, countenances brighter than the sun, and golden yellow hair the latter being blacker than pitch, and fearfully dangerous. The elves ordinarily wear glass shoes, and a cap with a little bell hanging from
it. Whoever finds one of these slippers or bells may oltain from the elf who has lost it any thing which he asks for. In the winter they retire to the depths of mountains, where they live in much the same way as men, and in the frst days of spring issue from their grottoes, run along the sides of hills, and swing upon th
branches of the trees. In the morning the slcep in blossoms or watch the people who pas by, but at the evening twilight they meet to gether in the ficlds, join hands and sing and dance by the light of the moon. They are gen can see them, and the elves may extend th privilege to whomsocver they please. In End privilege to whomsocver they please. In Eng former, and brownies in the latter country, and were subject to a king and queen. The island of Stern and Rugen, in the Baltic, are especially subject to the king of the elves, who rides in passage from island to island is recognized by he neighing of the steeds, the blackness of the water, and the bustle of the great aerial company who follow in his train. The elves somemes become domestic servants, and would b valuable as such if they were less easily offended
and less dangerous after taking offense. As long as their caprices are gratificd, their food and drink regularly left at an appointed place and no attempt made to interfere with thei reedom, the furniture is sure to be dusted, the loor to be swept and every chamber to be perfectly in order. But the brothers Grimm, in isfortunes of many a young girl, who havin called an elf to her aid, repented too late of having offended it.

ELVIRA COUNCIL OR SYNOD. This

 council was held at Illiberis or Elvira in Gran ada, Spain, at the beginning of the 4 th cen305, 309. Felix, bishop of Accis, presided. The town is no longer in existence. The council was attended by 19 bishops and 26 priests Hosius of Cordova, adviser of the Emperor Constantine, was the most important personage present. Eighty-one canons were adopted, was largely influenced at the Sime by Noratian was largely influcnced at the time by Noratian many of them very stringent and are largely negative in character. They deal with idolatry marriage, unchastity, penance and the prohibi tion of communion to specificd classesELWELL, Frank Edwin, American sculptor: b. Concord, Mass., 15 June 1858 ; d. Darien,
Conn., 23 Jan. 1922. He studied under May Conn., 23 Jan. 1922. He studied under May Alcott and Daniel C. French; subsequently at the School of Fine Arts, Paris, the Ghent
Academy, and with Falguiere of Paris. He settled in New York soon after his return home in 1885. His principal works are 'Death and Strength' at Edam, Holland: 'Diana and the Lion,' now in the Chicago Art Institute; tlefield; 'New Life,' in the cemetery of Lowell,

Mass.; monument to Edwin Booth, Cambridge, Mass.; 'Charles Dickens and Little Nell,' a Philadelphia; statues of Greece and Rome on the Sewate, Washington, D. C.; 'Water Boy of Pompey,' in the New York Metropolitan Museum. From 1902 to 1905 he was curator of a icpartment at the Metropolitan Musenm
and in 1910 was chosen director of the School of Applied Design for Women, New York.

ELWOOD, Ind., city in Madison County, on the Pittshurgh, Cincinnati, Chicago and Saint Louis and the Lake Erie and Western railroads, about 50 miles northeast of Indianapolis. It is surrounded by an agricultural re-
gion and is in a natural-gas belt. Its industries are chielly lumber, flour, tin-plate mills, window, iron works, saw and planing mills, brickyards canneries, plate glass and lamp chimncy and other factories. The United States census of manufactures for 1914 showed within the city grade, employing 2,216 persons, 1969 factory wage earners, receiving annually $\$ 1,484,000$ in wages. The capital invested aggregated $\$ 4,624,000$, and the ycar's outpul was valued at $\$ 8,199,000$: of this, $\$ 2,507,000$ was the value added by manufacture. Its shipping trade consists in the agricultural products of the sur-
rounding country and the articles manufactured in the city. The city maintains a public library: Pop. 12,000
ELY, Richard Theodore, American political economist: b. Ripley, N. Y., 13 April 1854 He was cducated at Columbia College (A.B. 18tudicd at the , Fellow in Letters, 187 - 9), and studicd at the universities of Halle, Heidelberg
(Ph.D. 1879) and Gcneva ; Royal Statistical Bureau, Berlin, 1879-80; LL.D. Hobart College, 1892. He was head of the department of political economy at Johns Hopkins, 1881-92, when he became professor of political cconomy in the University of Wisconsin. He was memof the Maryland Tax Commission, $1886-88$, and founded the American Burcau of Industrial Research in 1904 and has since been one of its directors. He was one of the founders of the American Economic Association, 1885 ; its secretary, 1885-92; its twice elected president, can Association for Labor Legislation, 1907-08. In 1913 he was appointed lecturer at the London University; has traveled in Great Britain and Ircland and Germany investigating land problems; was invited in 1914 by the New member of the International Statistical Institute. He published (French and German Socialism in Modern Times' (1883); 'Taxation in American States and Cities' (1888); 'Outlincs
of Economics' (1893): 'Monopolies and of Economics' (1893); (Monopolies and
Trusts' (1893); 'Socialism and Social Rcform' Trusts' (1893) ; 'Socialism and Social Reform Society) (1003): 'Property and Condustrial their Relation to the Distribution of Wealth' (1914) ; cditor of 'Macmillan's Citizen's Library of Economics, Politics and Sociology,', also

ELY, Theodore Newel, American civil engineer: b. Watertown, N. Y., 23 June 1846;
d. 28 Oct. 1916 Graduated at the Rensselaer d. 28 Oct. 1916 Graduated at the Rensselaer
he was a member of the engineering department directorships in the Pennsylvania Steel Company and the Cambria Stecl Compary; was trustee of the Drexel Institute and director of was Philadelphia Academy of Fine Arts. He was honorary member of the American Institute Can Acadets and vice-president of the Ameri can Academy in Rome. In 1904 he was pr
ELY, England, an episcopal city in County of Cambridge, about 15 miles northeas i Cambridge, on the Ouse. The place is noted or its cathedral, one of the most remarkable edifices of the kind in England. It was styles of architecture from early Norman to late Perpendicular. It is a cruciform building, 37 fect long and 190 feet across the transepts. he nave is 208 feet long and the tower 215 ieet high. It occupies the site of a monastery (or Audry) about the year 673 by Saint Etheldreda Anglia. Its ancient history is most interesting. In 1071, Hercward, the noted English outlaw, lefended Ely against the Normans. (See Hereward). Market gardening and fruit pre serving are among the important industries Cop. 7.917. Consult Van Rensselaer, 'English
Cathedrals' : Bond, F., (English Cathedrals': Stewart, (Architectural History of Ely Cathedral.
ELY, Minn., city and summer resort in Saint Louis County, 115 miles northeast of Duluth, on the Duluth and Iron Range Rail
road. It is in the centre of the Vermilion Iron Kange, It is in the centre of the Vermilion Iron falls. There is a large trade in fish, furs, lumber and iron. The government is vested in a mayor, elected annually, and a board of alder and. The city has a fine high-school building electric-lighting plants. Por. (1920) 4,902.

ELY, Isle of, a district in England, in the the O of Cambridge, scparated on the south by county and forming in itself an administrative County; area, 283,073 acres. It rests about 100 end above the general level of the fen country, Which was formerly surrounded by marshes, whole at times became shects of water. Th crtile fields drainage bost converted into rowing district Pop 69,752
eLYMAS. See Bar-Jesus
ELYOT, êli'-ǒt, SIR Thomas, English atuthor: b. Wiltshire not later than 1490; d 1511 he became clerk of assize, in 1523 clerk of e king's council. In 1531-32, as Ambassado Charlcs V, he visited the Low Countries and sible, the havest of Tyndale. 'The Boke named he Gonernour, deuised by Sir Thomas Elyot Knight,' was published in 1531. It may be described as the earliest treatise on moral phi losophy in the English language, the author's vertues object being "to instruct men in such Shaii have authoritie in a weale publike." An avorate 10th edition appeared in 1880, with e notes and glossary by H. H. S. Croft.

Elyot's 12 other works include 'Of the Know quil the Playneth a Wise Man (1, (Doctrina of Princes' (1534); Picus de Mirandola's 'Rules of a Christian Lyfe) (1534); 'The Castel of Helth' (1534); 'The Bankette of Sapience) (1534); 'Bibliotheca) (1538), the first Latin-English dictionary; 'The Image of
Governance' (1540) : 'Defence of Good Women' (1545) ; and 'Preservative against Deth' (1545). These books went through edition after edition in their author's lifetime, and have now become among the rarest treasures book collector

ELYRIA, Ohio, city and county-seat of Lorain County, on the Black River and on
the Baltimore and Ohio and Lake Shore and Michigan Southern railroads, 25 miles southwest of Cleveland. It has a public library, a hospital and a fine natural park. Agriculture is the chief industry of the surrounding country; a number of quarries The chisf manufactures in the city are supplies for automobiles and bicycles, saddes, telephones, home-lighting plants, flour, feed, canned goods, concrete locks, moldings, paints, metal polish, switchoards, screws, machine parts, iron pipe, angle of manufactures for 1914 showed within the city limits 63 industrial establishments of faclory grade, employing 3,236 persons; 2,735 being wage carners, receiving $\$ 1,759,000$ annually in wages. The capital invested aggregated $\$ 9,485$,$\$ 8,792,000$: of this, $\$ 3,776.000$ was valued at added by manufacture. The waterworks are cwned by the city. Pop. (1920) 20,474.

ELYSEEE, Palais de l', pãàlâ dé lâ-lê-zā, the official residence of the President of France, in Paris, on the Rue du Fauburg Saint Honoré, with its garden extending to the Champs Elysées. It was built in 1718 for the Count d'Evreux; in the reign of Louis XV it became
state property and was the residence of Madame de Pompadour. It was also used as a residence by Napoleon I and by Louis Napoleon, and became the presidential residence

ELYSIAN FIELDS, or ELYSIUM, in classical mythology, the residence of the blessed after death. Elysium was supposed by Homer
to have been at the western end of the earth. other poets placed it in the Fortunate Isles; later it was supnosed to be in the under world. It was represented as a region of perfect happiness, where the sky was always cloudless and a celestial light shed a magic brilliancy over every object, where cach one was free to folities ware unknown.

解

ELZE, el'tsé, Karl, German historian of Jan. 1889. His specialty was English literature, and he was professor of English philology in the University of Halle 1875-89. One of his first works was a compilation entitled a 'Treasury of English Song.' He produced critical
cditions of Shakespeare and other English dramatists, and wrote biographies of Byron and other English authors. Specially noteworthy is his 'Grundniss der englischen Philologie'
(1877). 'Westward' (1860) contains translaons of English and American poems
ELZEVIR, êl'zē vǐr, name of a notable amily of printers edescended on Lriovic native of Louvain: b. 1540; d. 1617. Having earned the bookbinders' trade, he practised it for some years in his native town, but in 1580 he removed to Leyden in the United Provinces and there set up a printing press. His five sons, entura, were also printers and booksellers; but t was the youngest of the five, Bonaventura, orn 1583 at Lcyden, that gave the name Elzevir its great celebrity. The first work pub shed by the house of Elzevir appeared is 1583, the 'Ebraicx Quæstiones et Responsiones' he second and third. In 1608 , nine years before his father's death, Bonaventura Elzevir founded separate printing and publishing establishment in the same city and then commenced the issue which have ever since been regarded as models of correct and elegant typography. He con ducted the business of his house more than 42 years, till his dcath in 1652, having had as partner from 1626 Abraham Elzevir, his nephew, whom he survived one month. He was succeeded by his son Daniel and Abraham's so John; this partnership was soon dissolved migrating to Amsterdam in 1655 and entering into partnership there with another of his cousns; both of these were dead 1680 . The last of he Elzevirs to figure in the history of typography was Abraham, son of Abraham, one of he was printer to the University of Leyden. The Elzevir editions of the ancient classics, especially Latin, while admirable in point of typography, are mostly reproductions of the texts adopted by previous printers and hence are inferior from the critical point of view. Elzevir houses nears the 2,000 mark

EMANCIPATION, the act by which freedom of various kinds is granted to individuals,
races or nations. In Roman law the dissoluraces or nations. In Roman law the dissolu
tion of paternal authority (patria potestas) in the lifetime of the father. It took place in the form of a sale by the father of the son to a Tables, the foundation of Roman law, required that this ceremony should be gone through three times. In general, the son was at las resold to the father, who manumitted him, and thus acquired the rights of a patron which purchaser who finally manumitted him. In the case of daughters and grandchildren one sale was sufficient. This form of emancipation continued in the Empire until the time of Justinian, who substituted a declaration hy the father before a proper tribunal. This emperor also
changed the succession law, by making kinship by blood decisive. According to Teutonic law the marriage of a daughter freed her from parental control and a son became free upon setting up a home of his own. In modern
states liberty from parental authority comes on states liberty from parental authority comes on freedom before attaining full age he is said
to be "emancipated." For full information on this question it is necessary to consult the various codes. The Catholic Emancipation Act
was the act signed 13 April 1829, which removed the most galling of the Roman Catholic disabilities in England. See Emancipation, Catholic, emancipation Proclama tion ; Slavery.

EMANCIPATION, Catholic, the customary designation of a measure of relief from
penalties and civil disabilities granted to propenalties and civil disabilities granted to proIreland hy acts of the British Parliament 1829: the act did not extend to Scotland. The necessity of granting relicf to the Catholics of Ireland became apparent soon after the outbrcak of the war against the American colonies, and the first relaxation of the penal laws agains made in 1780. At that time it was high treason for a priest, native of the kingdom, to perform any of the duties of his office. Catholics could not own land in fee. Roman Catholics whose titles to land antedated the penal laws were
ousted if the legal heir professed Protestantism. ousted if the legal heir professed Protestantisuct a school. In 1780 a bill for removal of some of the disabilities was passed for England and Ireland. When the act of union of the kingdom of Ireland with that of Great Britain was passed in the Irish Parliament 1800 , solemn pledges were given by the British Cabinet that but after the union the promise was ignored. In 1824 in Ireland was formed the Catholic Association to agitate for civil rights, such as the right to vote for members of the Parlia-
ment, to be clected members of the same and ment, to be clected members of the same and tional and local. In 1829 it was seen by English statesmen that to withhold these rights and franchises any longer would provoke a rebellion in Ireland; and a bill of relicf was introduced in the Parliament 5 March, and passed in both houses and approved by King George be elected to the Parliament, and to hold offices under the Crown; but they remained still expressly excluded from certain high offices that of lieutenant-governor of Ireland, that of regent of the universal kingdom, or lord chan-
cellor of the United Kingdom, or of Ireland, etc. In 1867 the last named disability was removed, as was, many years after, the disability of a Catholic to be lord chancellor of the United Kingdom. But the Act of Grace of 1829 containcd a clause forbidding Catholic ecclesiastics tire or habit of their respective station or order in public under a penalty of $\$ 250$ for each of fense. This proviso was ostentatiously violated in Ireland, and with impunity, for, like the $\$ 500$ forfeiture for violation of the Ecclesiastical Titles Acts (q.v.), no penalty was ever exacted.
Another clause of the Catholic Emancipation Another clause of the Catholic Emancipation required that Jesuits and members of religious orders of the Roman Catholic Church living within the kingdom should recister in the office of the clerk of the peace of the county under a penalty of $\$ 250$. (See O'Connell, Daniel). 'Supplementary Memoirs'; Lingard, 'History

of the Church in England'; Green, 'History
of England.'
EMANCIPATION IN LATIN-AMERto the several Declarations of Independence. In Haiti, where African slavery was first introduced into America, the negroes received as a gift "the full liberty, equality, and fraternity" of the French republic in 1794, and by fighting established their independence in 1804 . In Cenduras, Nicaragua, and Costa Rica were united 31 Dec Central American republic), the laws of 31 Dec. 1823 and 17 and 24 April 1824 emancipated all slaves, and made free, slaves of other slave trade was to Central America. The forfe trade was prohibited, under penalty o Bancroft, in his 'History of the Pacific States, says "Of all the nations of North America ho the Central American republic belongs the ery.) We having first practically abolished slav ery." We shall presently show, however, that Fcuador, which made its first effort to gain independence at Quito, 10 Aug. 1809, and act1820 threw off the yoke of Spain on 9 Oct 1820, abolished slavery during the presidentia tirm of General Urvina, 1852-56. The Argen25 May 1810 , and ats struggle for independenc 9 July 1816, the formal separation from Spain was declared. Article XV of the constitution of 25 Scpt. 1860 provides that "there shall be no slaves in the Argentine nation. Those few who now exist in it shall become free at the The indemnification which the goes into effect. involve shall be provided for by special law Any contract involving the purchase or sale of person shall be heli to be a criminal offense ver into the introduced in any way what virtue of the country shall become free by Gril of the republic.) In Colombia (New Granada) the number of negroes was neve middle great; it was estimated at 80,000 in the independence the 19 th century. The struggle for vigorous insurectining 20 July 1810 , or as a fter the union with Venezuela (December 1819), and the republic of New Granada wa formed in 1831. In 1821 a law was passed by the republic of Colombia for the gradual manumission of slaves, and all born after that date gradual process applying, of course, to all the territory of the Greater Colombia at the tim the law's enactment. (See Colombia, Hisin New Granada, by giving liberty to all who remained slaves on giving liberty to all who made for the on 1 Jan. 1852, provision being owners. The beginning of the war for inde pendence in Mexico dates from 16 Scpt. 1810 (see Dolores, el Grito de) ; on 6 Nov. 1813 the Chilpanican Congress, installed in the town of pendencingo, issued the declaration of indeslavence and decreed the emancipation o of emancipation on the mainland of America July zuela's declaration of independence uly 1811) was followed after 10 years by the
law for the gradual manumission of slaves which we have mentioned above, that is, the aw of the Greater Colombia of 1821. Para une 1811, when ance should be dated from its sessions; for the resolution passed by thi assembly, renouncing allegiance to Spain, was ard ion of African slavery was comparatively unimportant in Paraguay. In 1865 there were negroes and mulattoes at Emboscada, Tabapy, and Aregui; but the negroes have now almost completely disappeared"' ('Handbook of ParaBureau of the American Repullics) entered upon a contest with Spain on 18 Sept. 1810, and the independence of the country was proclaimed 12 Fcb . 1818 . The negro problem did not weigh upon that country, the population being recruited from Europe quite largely.
The independence of Peru was declared at Lima 28 July 1821; that of the Dominican republic 1 Dec. 1821 ; that of Brazil 7 Scpt. 1822 and Bolivia became an independent republic Aug. 1825. In Brazil the conservative statesman, Silva Paranhos, obtained from the Parliament the passage of a bill (28 Scpt. 1871) for
the gradual extinction of slavery, which provided that thereafter every child born of a slave mother should be free, and created a special fund for emancipation by redemption. Private philanthropy, largely directed by the Masonic lodges, effected more than the fund created for to decrease. A bill for the immediate and unconditional abolition of slavery in Brazil was signed by Princess Regent Isabel 13 May 1888 the monarchy was overthrown 15 Nov. 1889 ; the new constitution approved 24 Feb. 1891 . In Cuba the slaves were cmancipated on the 1878, and Cuba became a republic 20 May 1902 The experiences of the French, Danish and British possessions may be referred to briefly in conclusion. Napoleon restored slavery in
French Guiana, Martinique and Guadeloupe, although his efforts to accomplish the same result in Haiti were, as mentioned above, frus trated by the resistance of the blacks themselves. The freedom of all who were held in bondage throughout the French dominions was declared in 1848. Slavery in the Danish West
Indies (Saint Thomas, etc.) was abolished also in 1848. The act to abolish slavery throughout the British colonies, providing $£ 20,000,000$ for compensation of the owners, was dated 28 Aug. 1833, and its effect was to free 770,280 slaves on J Aus. bein 309,000

FMANCIPATION PRO the announcement issued Pr Abramation, 1 Jan. 1863 abolishing slavery in all military sections of the South except those territorie occupied by Union arms. The Republican administration at the outbrak of the Civil War To assail it in its own territory was not slavery belie the past professions of the not only to alienate so much Northern support as to assure party any thought beyond fettering the slave
power for future aggression. On the othe to chill the energies of the most reliable up holders of the War, but to give foreign coun tries a pretext for asserting that the North was fighting mercly for dominion, and that th Southern cause was that of liberty and morally entitled to help. The former horn of the diment moved very cautiously, restraining it subordinates like Fremont (30 Aug. 1861) and Hunter (9 May 1862) from forcing its hand by mancipation orders. On 9 Aug. 1861 an act had declared masters employing slaves against the government barred from further claim to of court. The first embarrassing problem was how to deal with slaves in conquered districts, or who had come within its lines: was the gov ernment to act as slaveholders trustee and re urn them to servitude? The growing resent the rebellion, and disgust at being slave-catchers to the behoof of their enemies, supplied the answer, and on 13 March 1862 all army officer were forbidden to return fugitive slaves; thei surrender from any quarter was made harder though the Fugit 28 June 1864) 1862 all captured, deserted or fugitive slaves of owners in rebellion were freed. As to the main body who plainly could not be left in unchanged status as the core of a fresh abscess, Lincoln's wish was for compensated emancipaion; he sent a special message to Congress 6 10 April, declaring that the United States ought to co-operate with any State which would adop gradual abolition, by paying for the slaves, and on 16 April those in the District of Columbia were thus emancipated; but despite his repeated meascies, the border States would take no in the Territories were freed
The final blow came, as John Quincy Adam 20 years before had forecast that it would, by using the President's war power to suppress in surrection. As the second year of the conflict wore on, the majority demanded the crippling
of its enemy by the most efficient means, and very many believed that a threat of general mancipation would bring about a general surender. Lincoln wished for a great victory rst, that it might not appear the selfish reource of an overmatched power; but the dis couraging Peninsular campaign obliged him to ver the enemy. On 22 Sept. 1862 he issued a proclamation announcing that 100 days after on 1 Jan. 1863, the Executive would issue an other proclamation designating the States o parts of States then deemed in rebellion, evi dence to the contrary being the presence of slaves in the designated sections should be per manently free, and that the civil and militar authorities of the United States would maintain their freedom, and would not repress any effort of theirs to make it good. The only re sult was a retaliatory proclamation by Jeffer-
son Davis 23 December, ordering that captured negro Federal soldiers and their officers should be turned over to the States, and that Gen
B. F. Butler should be hanged if captured. On was issued anuary the threatened procla in me was issued, as "by virtue of the power in mic
vested as commander-in-chief of the army and navy of the United States, and as a fit and necessary war measure for repressing said rebel-
lion." It designated Arkansas, Texas, Louisilion." It designated Arkansas, Texas, Louisisippi, Alabama, Florida, Georgia, South Carosinpi, Alabama, Florida, Georgia, South Carth Carolina and Virginia except West Virginia and seven other counties, as in rebellion, emancipated all the slaves in them; cnjoined these freedmen to abstain from all vio-
lence except in self-defense, and to work faithfully for reasonable wages; announced that suitable members of wages; announced that into United States military and naval scrvice, and for this act invoked "the considerate judgment of mankind and the gracious favor of Almighty God.)
The curious feature of this proclamation is that it abolished slavery only in the sections not under the military power of the United States,
and left it untouched in those which were, namely, the ones specially excepted by it, "which are, for the present, left precisely as if this proclamation were not issued." Hence it was argued by the Democrats that it had no legal
force whatever, and emancipated no one; a question the Supreme Court never passed on. It was always accepted by the majority party, however, as a continuing act, applying as fast as any of that territory fell into the Union,
power, and not necessary to repeat Politically, power, and not necessary to repeat. Politically, Confederacy thenceforward meaning a flat Confederacy thenceforward meaning a fai entire anti-slavery sentiment of France and Great Britain was thrown against those countries' interference, which at once bccame unthinkable. It drove away many lukewarm and State defeats to the administration; but it took the party. "off the fence" and made it a coherent organization with one firm, open principle, for many years unassailable. In the South, as defeat meant emancipation by their themselves, some of the leaders (as Lee) seriously thought of offering freedom to slaves to fight in their armies in the latter part of the war, hoping to save independence and the control of their own destinies at least

EMANTS, ěm'änts, Marcellus, Dutch poct and descriptive writer: h. Voorburg, near Thels Hague, 12 Aug. 18 dis. Hey volumes of travel imagination. Among his best are 'A Journey Through Sweden' (1877); 'Monaco) (1878); 'Along the Nile' (1884); 'From Spain' (1886). He holds a permanent place in the literature of the Low Countries through his
charming narrative poems, (Lilith) (1879); charming narrative poems, (Lilith

EMANUEL THE GREAT, king of Portugal: b .31 May 1469 ; d. Lishon. 13 Dec.
1521. He ascended the throne in 1495 . During 1521. He ascended the throne in 1495 . Durinh
his reign were performed the voyages of dishis reign were performed the voyages of Americus Vespucius and the heroic exploits of Americus Vespucius and the heroic exploits was prepared by the discovery of the Cape of

Good Hope in 1486 by Bartolomeo Dias), the the Brazils, the Moluccas, etc., were discovered The commerce of Portugal under Emanuel was more prosperous than at any former period. The treasures of America flowed into Lisbon and the reign of Emanuel was justly called lamented by his subjects, but hated by the Moors and Jews, whom he had expelled. As a monument of his discoveries Emanuel built He monastery at Belem, where he was buried. He was a friend to the sciences and to learned men. He left 'Mcmoirs on the Indies.'
EMBA, êm'ba, a river in the district of Orenburg, Asiatic Russia; the Russians call it Jemba, the Kirghiz, Dchem. It rises at three
sources in the western slope of the Mugodchar fources in the western slope of the Mugodchar
foothills, flows sluggishly through an area of steppes, is about 200 feet wide and 500 miles long, and forms a delta at its embouchure in the Caspian. It is not navigable, but abounds in tish. The fortress Embinsk is built on its upper
waters.

EMBALMING, the art of preserving the
edy after death. It was probably invented by the Efter death. It was probably invented by the Egyptians, whose bodics thus prepared for prevailed among the Assyrians, Scythians and Persians. It is at least as old as 4000 b.c. The Egyptian mummies were placed in costly coffins ready for sepulture; but were frequently kept some time before being buried-often at home call to the gucsts the transient lot of humanity. The usual method of embalming among the ancients was as follows: The intestines and brains were taken out, and the cavities filled up with a mixture of halsamic herbs, myrrh, cassia, etc.; the arteries and other vessels were injected
with balsams. The ancient Egyptians filled the cavities of the trunk with aromatic, saline and bituminous stuff. The cloths in which the mummies were swathed were saturated with
similar sulstances. So effectual were some of similar sulsstances. So effectual werc some of The processes that after 2,000 or 3,000 years,
the soles of the feet are still elastic and soft to the touch. 13y 700 A.D., when embalming practically ceased in Egypt probably $730,000,000$ them are still concealed. In 1881 upward of IR mummies of potentates, including that of ei-Bahari. (Sce Mummy). The Persians employed wax for embalming; the Assyrians, the Gey; the Jews aloes and spices. Alexander Desicreat was preserved in wax and honey. Desiccated bodies, preserved by atmospheric or other influence for centuries, have becn found cially in Central America and Peru. The art of Embalming was probably never wholly lost in Europe. The body of Edward I, buried in in 1770 . The Abley in 1307, was found entire in 1770. The body of Canute, who died in 1036, in 1776 . The bodies of William the Conqueror and of Matilda, his wife, were found entire at Caen in the 16th century.
Chaussicr's discovery, in 1800 , of the preserv-
ative power of corrosive sublimate, by which ative power of corrosive sublimate, by which introduced new means of embalming; but, owvol. $10-18$
ing to the desiccation, the features do not re tain their shape. The discovery of the preservative power of a mixture of equal parts of acetate and chloride of alumina, or of sulphate of
alumina, by Gannal, in 1834, and of arsenic 1 ly Tranchini, pyroxilic spirits by Babington and Rees in 1839, and of the antiseptic nature of chloride of zinc, have led to the application o to be salts to the embalming of bor for a limited time. The lates method common in the United States is an in jection of a fluid into the femoral artery ant the cavity of the abdomen. The most efficient agents are mercuric chloride, arsenic and zinc
chloride. Embalming has taken the place of ice in preserving the dead until funcral service are ended. The reasons for this are its prescr vation of the body for transportation and leisurely disposal and its absolute prevention of communication of infection, either before the
body is buried or after it has crumbled and mingled with earth in a cemetery. Consult Budge, 'The Mummy) (2d ed., London 1894); Dhonan and Nunnamaker, (Hygicne and Sani(Practical Ecience) (Cincinnati 1913); Eckles, 'Practical Embalmer' (Philadelphia 1904);
Gannal, 'Traité d'embanmement' Gannal, 'Traite d'embanmement' (Paris 18.38 ,
trans. by Harlan, Philadelphia 1840); Myers, Champion Textbook of Embalming) (5th ed. Springficld, Ohio, 1908) ; Pettigrew, 'History of Egyptian Mummies' (London 1834); Smith, G E., 'A Contribution to the Study of Mummification in Egypt' (Cairo 1906) ; Sucquet, 'Emof the; Mummy.

EMBANKMENT. See Levee; Missis-

 sippi Levee System.EMBARGO IN THE UNITED STATES. Prohibition of forcign commerce, to distres oreign countries and obtain the revocation of hostile measures; peacectir war, intended to be efficient, that in fact injuring ourselves deeply and the others little, and ending in real war at ast. Our embargoes belong exclusively to the French-English wars of 1794-1814. Their ultimate cause was that the agricultural classes, who controlled the administration, did not be-
lieve in commerce, and preferred abolishing it to spending anything for its protection; moreover, they were mainly Southern and' Demo cratic, the commercial interests mainly New England and Fedcralist, and the former werc not loath to spare themselves the cost of war b for 60 days, due to mutual orders of France and England for seizure of neutrals which placed the United States between hammer and anvil Jay's Treaty (q.v.) of 19 Nov. 1794, for 12 years measurably protected our commerce, but near its end conditions became infinitely worse. In
$1806-07$ the thronging mutual blows of Eng land and Napoleon, ending in the former's Orders in Council of 11 November, and the lat ter's Milan Decree of 7 Dcc. 1807, made prac ically every neutral vessel good prize to one or the other. Even more intolerable were the
rights of search and impressment claimed by Great Britain, which swept several hundred American sailors every year into the British fleets, and in one massacre (see Chesapeake AND Leoparn) outraged and humiliated this
till the victory of Old Ironsides (sec ConstiEntion, The) that American ships could fight conviction cqual terms, and it was the general would at once be "Copenhagenized" (that is, captured bodily and added to the British flect, mendation, thercfore, At Jefferson's recom22 Dec. 1807 , forbidding all foreign commerce till the obnoxious decrees were repealed. The havoc not only in trade but in the interior life of the people was terrific; the exports fell
from $\$ 110,084,207$ in 1807 to $\$ 2,430960$ in 1808 from $\$ 110,084,207$ in 1807 to $\$ 22,430,960$ in 1808 . that fomming sections were dismayed to find as well as the carrier's profits and that they
raised and sold much of that $\$ 87,000,000$; but raised and sold much of that $\$ 87,000,000$; but
they clung all the more stuiblornly to thcir antithey clung all the more stuiblornly to their anti-
war recipe, though England and France approved it highly. Napoleon was glad to see his England was glad to regain her carrying trade and see Canada and Nova Scotia receive American capital. Meantime New England fought it with the ficrecness of a struggle for life; evaded it largely by sea and sent armics of
smugglers overland to Canada. Congress then smugglers overland to Canada. Congress then
extended the act to rivers, lakes and hays, and allowed collectors to scize on suspicion; and the next Congress, 9 Jan. 1809 , passed a savage enforcing act with all the fury of baffled doctrinaires, imposing enormous fines, forfeitures
and bonds and making the collectors supreme and bonds and making the collectors supreme
despots of their districts. New England was nearly in insurrection; the collectors were in danger of the fate of those under the Stamp Act, some resigned, others were sued in the State courts; the judges would give no findings against smugglers; finally the States threatencd to its support) declared that they had resolved to withdraw from the Union at least temporarily, if force were used, and had opened negotiations with Great Britain. A Federalist declared in the Scnate that blood would flow. fixed (3 Feb. 1809) 4 March for its discontinuance. But the next month they had regained courage and passed a "non-intercourse act" to Fake its place; still prohibiting intercourse with France or Great Britain, but restoring it with other countrics and allowing free coasting trade. opened. The hostility of New England to the war, only less destructive than the cmbargo and against her political fcelings, induced the British government ostentatiously to relieve that section from the blockade, to sow discord and make a base of naval supplics; and on 17 Dec. 1813 a however, was repealed 14 April 1814. Jefferson always asserted that the policy was the best and he embargo would have accomplished its object f New England would only have helped. It is now pretty generally agreed that the laying of mistake and it is certain that, as a result of it American shipping sustained hetween 1807 and 815 almost irreparable damage. Consult hisories of the United States through this period, as Schouler, McMaster, etc.; especially Henry Adams 'History,' covering $1801-15$, devoted to
the causes and conscquences of these measurcs.

EMBASSY (ambassy, from O. Fr. am sal) in its strict sense, significs a mission pre sided over by an ambassador, that is, a diplo matic agent of the first rank, as distinguished from a legation or mission entrusted to an en voy or agent. The difference betwcen the pow voy is, that the former, as the representative of the person of his sovereign, can demand a private atudicnce of the sovereign to whom he is accredited, while the latter must communicate

EMBER-DAYS, called in the Roman Mis sal and Breviary Quattuor Tempora (the fou seasons) and in the Anglican 'Book of Com are in the Roman and in the Anglican calenda the Wednesdays, Fridays and Saturdays which come next after 13 December, the first Sunday of Lent, the Feast of Pentecost (Whitsunday), and 14 September, respectively. In both the days of fasting. The Onatituor these days are days of fasting. The Quattuor Tempora were ine (the bishop of Hippo, early in the 5th cen fury) and doubtless the observance was already Britain by dhat other custom was brought int the herald of the gospel to the Anstine who wa It was anciently the custom for Anghops to hold ordinations only on the Saturdays of the Ouat nuor Tempora. The origin of the phrase Ember days cannot be definitely ascertained; but it is probably a corruption of Quattuor Tempora, as week

EMBEZZLEMENT (O. Fr. besiler, to rifte, lay waste) is the fraudulent appropriation son of property entrusted to him be confounded with lareeny, which is the wrongful taking and carrying away of the personal property of another, with the felonious intent of converting such property to one's own
use without the consent of the owner. This use without the consent of the owner. This
"taking" implies a trespass, which does not exist in embezzlement. By common law, embezzlement was not a crime, but it has been uni-
versally made so by statute both in the United versally made so by statute both in the United States and Great Britain. The earliest statute
recognizing the offense was that of Henry VIII, recognizing the offense was that of Henry 7 (1529). This act was passed with the object of remedying an admitted defect in the existent criminal law, by which persons who had fraudulently appropriated goods or money, coming into their possession legally, escaped all punishment, although their moral guilt was great. Obviously they could not be convicted
of larceny, as their offense lacked some of the cssential elements of that crime. The abovenamed statute, however, restricted the offense to servants and in 1 another statute was passed extending it to include clerks. This act, not proving completely satisfactory, the Lar-
ceny Act, passed in England in 1901, which ceny Act, passed in England in 1901, which of 1861, further extended the offerise to include trustces, directors of companies and others. This act makes the offense a misdemeanor and provides that the punishment therefor shall be penal servitude for a term not exceeding seven
labor, for a term not exceeding two ycars. In Scotland certain designated courts have inherent jurisdiction to punish all offenses, even when not declared to be crimes by statute, with the result that no legislation on the subject has Mound necessary in that country. Most of the statutes in the United States are broader in their scope. In this country much bezzlement is a misdemeanor or a felony, depending usually on the value of the property appropriated, although in some States embezzement by an officer of a corporation or embeztive of of certain animals is a felony irrespecStatutes often define embezzlement and mention is frequently found therein of the persons Who may be guilty of the crime, as adminisrators, guardians, trustecs, public officers, servants, agents and others who occupy fiducrime that the person charged therewith should have come into possession of the property by virtue of his employment and that he intentionally violated some confidence. There must also of a criminal intent to appropriate the property legally in Thus one holding property which is mistaken belief that he owns it cannot be convicted of the crime. In some States, as Massachusetts and New York, embezzlement is in cluded in the offense of larceny. The punish ment differs in the various States, usually being 10) years.

EMBLEMENTS (O. Fr. emblacment from emblaer, to sow with grain), a term ap-
plied to the growing crops of land when the lease of a tenant for life has expircd by the teath of the tenant, or when an estate at wil has been determined by the lessor. In either case the emblements belong to the tenant or his exccutors. But when the tenant puts an end to not be entitled to the crops
EMBOLISM, ēm'bō'1izm (Gr. ${ }^{\varepsilon} \mu \beta \circ \lambda \iota \sigma \mu \rho_{S}$ the calendar, εv in intercalation of a dast). In the calendar, an intercalation of a day, as in of accond month of our year in leap-ycar, or
of lunar month, 28 days, in the Greck calen-
dar di a lunar month, 28 days, in the Greck calen-
dar. In medicine, the blocking up of a bloodvessel by a clot of blood that comes from some distance till it reaches a vessel too small to permit its onward progress. The immediate cause or clot is called thrombus and the disease is known as thromb
Tinomibus; Tinombosis.

EMBOSSING (Fr. bosse, a protuberance), Surfaces, such as leather, paper, cardboard metal, textiles, ctc., by means of powerful presses furnished with dies of the desired patesses. Color embossing is done by two procpart: (1) By applying the color to the raised pread the design, in which case the color is surface cleaned, leaving the ink in the depressed parts of the engraving only; (2) by leaving the printing-rollered and applying the color with a printing-roller to the flat portions of the die.
For large designs, engraved plates or electrotypes are used with a counterpart of mill board
faced with gutta-percha. Book-binding makes
extensive use of the art of embossing. Emossed wall-paper designs are effected by mean of copper cylinders on which the design has softer surface. These are mounted on cal endar frames. A common type of embossin machine has been adapted from the fabric printing cylinder machine, by for some pur poses the cylinders must be heated and kept at a high temperature while being used. Metal ornaments are likewise often made by an em bossing process and finish ce Chasing; Repousse.

EMBRACERY (O. Fr. embraser, to sct on fire), an attempt to corrupt or influence a persuasions. This offense in the United States is punished by fine and imprisonment.

EMBRASURE, em-brā'zür, in fortification, an opening made in the breastwork or parap of a battery or fortress, to admit of a gun

EMBRO
corrupted form of the name dinburgh.
EMBROIDERY, the art of working on an already existent material a decoration with needle and thread. Form and shading are expressed by means of stitches; and it is essential visible. Stitches the stitches must be frankly guised.
Technique- A stitch is the thread left on the surface of the cloth after each ply of the needle. A piece of embroidery mayber of different stitches may occur in the one article. Embroidery stitches are ancient and have spe-[petit-point] and cushion), crewel (also outline and stem), chain (simple, twisted, cable, zigzag and checquered), button-hole, fcathcr, rope, fern, herring-bonc, back, satin, basket, brick, braid, interlocking, overcast, plait, rococo, running, split-stroke, Lambour, coral, (Crning, two-sided Italian, trellis, old English knot, German knot, French
bcin and many others.
Couching is the word used to define the method by which one thread is sewn down by
another thread upon the material. Cord and another or a budle of they threads, may also be "couched.") Couching is much used in gold thread embroidery. Geometrical open fillings of leaves and backgrounds are often composed of lines of threads thrown across and couched down at regular intervals. , much used for which imi
Laid-work is an claborate kind of couching. The stitches are laid down loosely on the suriace of the material and then sewn down by cross lines of stitching. The Japanese use laidwork more extensively than any other nation.
The Chinese, on the other hand, prefer to sew The Chinese, on the other hand, prefer to sew ration is as beautifully embroidered on the wrong side of the material as on the right side. "The Chinese and Japancse," writes Mr. Townsend, "are remarkahle for flat treatment of plant-forms and are supreme in effects pro-
duced with one or two shades, partly through
their skill in placing the stitches. Constantly hanging the direction of the stitches, they work for a pleasant play of light and shade acquired the intention of showing where one shade with and another begins. They are also fond of voiding, i.e., leaving the ground to show between the petals of flowers, similar to the use (ties) in stencilling.'
Raised-work is formed by a layer of padding placed on the material and worked over with was carried to excess in the 18th century (particularly in England), when stump-work, in which figures were stuffed like dolls, was developed. Turkey-work, in imitation of Oriental It was worked in worsed in the 16th century table-covers, cushions and chair-scats. Eastern patterns were superseded by floral ones characteristic of the Renaissance; and these, in turn, by 18 th century designs. Turkey-work chair-scats were plentiful in American homes in stitch, is often used generically to describe the needlework that most nearly imitates tapestry It enjoyed favor in the 16th, 17 th and 18 th centuries. Bargello, or Florentine, work is prodation by the cushion-stitch on a canvas founthe satin-stitch is employed in cod. Sometimes the cushion; the one for the pattern and the other for the background. Zigzag patterns are characteristic. Bargello was much used in the 17th century. It has lately been revived and is color in mass are artistic cmbroiderer, who also takes delight in producing effects in shading and a beautiful finish by a perfect control of the stitches. Occasionally the worker uses a frame on which the material to be embroidered is stretched. The tambour-frame, shaped like a sieve, or gave its name to the tambour-stitch. Chinese cmbroidery, exquisite in design and workmanship, has been unchanged for centuries. The devices and motives resemble those on porcclain vases and cloisonnee enamels. Nothrobes of mandarins and noble lacies has the been produced. Sometimes to the dragons hoenix, flowers, butterflies, pagodas, clouds and emples the embroiderer adds something from his own fantastic imagination. The trcatment of flowers in Chinese embroidery, in color, form The most beautiful Japancse work is on study. monial robes on sashes for women and on the quares, called fukusa, used for covering fine presents. The best Japanese embroidercrs live Kioto. In the Mikado's collection at Nara there are specimens of Indian embroideries worked 1,200 years ago. India is said to have though the chicf source of inspiration was

Indian embroidery is done on silk, velvet cotton, wool and leather. Most famous of all is the embroidery on wool, both loom-wrought the Cashmere shawl. Muslin is embroidered at Dacca, Patna and Delhi. Rich embroidery in colored silk and gold and silver is made in Hy-
derabad and other places in Sindh. The embroidery of Nauanager and Gondal in Kathiwar of which Cutch gets the credit) resembles that
of Resht on the Caspian. Gold is also used in Cutch for eme Caspian. Gold is also used in Isphahana and Delhics in the Persian style of broidered velvets of I he gorgeous gold-en rungabad and Hyderabad in the Deccan, used for canopics of state, umbrellas of dignity, elephants cloths and state-housings, have remaned unchanged from the earliest periods of ornamentation ; but their sumptuous gold-scro 16th century. The Portuguese used to send satin to India to be embroidered in Europcan designs and Oriental workmanship. Of such exquisite material were made many of the beau courts in the 17 th and broidered native apparel of Centuries. The emLahore, Delhi, Lucknow, Murshedabad, Bombay and Vizagapatam are highly prized.
History. - Whether embroidery originated in China or India is a disputed point. Th B.C. India also boasts similar antiquity in this bcautiful art. All ancient nations carricd embroidery to perfection; for the art of the needle was developed before that of the brush (q.v.) was worked before the Baycux Tapestry (q.v.) was worked with the needle to chronicle may be believed, "Helen en A.D.), if Home palace a large cloth, white as alabaster, with he story of the conflicts in which Trojans and Greeks contended for love of her." Embroidery was, thercfore, not only an artistic enrichment of material, but it was used for centuries as a dotal vestments, draperies and curtains for temples, robes of ceremony, clothes for ordinary use and household articles were embroidered with appropriate symbols and designs in col every wools, silks and threads of gold in every country of civilization. The Egyptians excelled in embroidery, rivaling the gorgeous
work of the magnificent Babylonians. The Jews learned the art from Egypt, as is proved by the veil that Moses had made for the Holy of Holies "of fine linen embroidered,

The Greeks attributed purple and scarlet."
The Greeks attributed the invention of cm^{-}
roidery to Athene; and a magnificently cm^{-} broidered feplos hung behind her statue by Phidias in the Parthenon, and was renewed cvery five years. Persia was also famous for this art. Strabo speaks of the impression made upon the Greeks by the aerial and delicately embroidered fabrics, as well as the heavy and
magnificent ones. Phrygia was that all splendid embroideries were known in Rome as "Phrygian." Roman emperors were not behind others in patronizing the art. Even more sumptuous were the Byzantine emperors, enormous were stiff with gold and of favorite scheme of Byzantine stitches. Tonsisted of pairs of birds or animals (often enclosed in circles), separated by the sacred tree of Persia, a kind of palm - the "tree of life." This Byzantine style dominated ecclesiastical embroidery throughout Europe during the
Middle Ages when monasteries and convents had special rooms for male and female em-

EMBROIDERY

EMBROIDERY

1 French. Towis XV

broiderers. Embroidery was also one of the in dignity with painting and sculpture. Superb articles were warked on linen grounds with Worsteds, silk and gold threads. Sometimes the entire material was covered with emin the illumina in thyle of the miniature paintings it is noticeable that the great period of church embroidery, from the 12 th to the 14 th century, is also the great period of the illuminated manuscripts. In these "paintings with the needle," as contemporary writers call them, the english were the nost celebrated. Their special Work was known as Opus anglicum. It became
fo famous that great lords had to have specimens in their collcetions and many churches throughout Europe received gifts of this artistic production. The Syon Cope, now in celebrated Kensington Muscum, is the most celebrated specimen in existence.
chasubles, dalmatics, mitres, gloves and copes, for church ceremonials in the Middle Ages Wut was also used to decorate the costumes of hold and women and for draperies and household decoration. Beds were magnificent with was it sufficient to embroider one set of bed and window hangings, but several sumptuous sets of hangings" were produced to suit the changing seasons and various occasions. Hang broider tents were also marvelously em broidered and so were the armorial bcaring ners. Much of this work was done in the convents and monasteries and by the groups of embroiderers supported in wealthy homes and nuch of it was done by the accomplished and noble ladics. We know this from allusions in ciescriptive entries in inventories detailed and In the 16 th century embroidery was no uscd. It sul)mitted, however, to Renaissance influence. Superb work was produced in opain, Italy, France and England. Beautiful specimens cxist in private and public collccabbey churches; and, morcover we cathedral and paintings of the old Italian, Flemish and Spanish masters to show what gorgeous embroideries people wore. Household articles received much small from the embroiderer and also such chicfs, gloves and covers for books. Sets of hangings for windows and beds were broidered and "Turkey work" and petit-poin Chair-seats and cushions were made. Quec Mary and Queen Anne, like Queen Elizabeth and their Stuart ancestor, Mary Queen of lowed, were expert embroidercrs. They fol day led by the artists of Louis XIV and inspired by the growing Eastern influence. Still employed to adorn costume, the art of cm roidery grew ever more and more delicate and in the days of Louis XV, when there was a rage for Chincse decoration, the handsome often sent to China to be embroidered were ing to order with European patterns. Floss an pur silks were now made up into variou new threads, such as the fluffy velvet chenille or caterpillar cord. Delicate gold and silver
threads were also produced; and with these pretty materials beads and spangles were often designs even lovelier by their added brightnes and sparkle.
Embroidery was still exquisite in the days of Louis XVI and in the time of Napolcon Josephine favored delicately embroidered and Cashmere shawls. French, English and American fingers were soon able to produce lovely flowered and figured muslins and to decorate tulles and nets with "tambour" until machiner was invented to make their beautiful work Winecessary.
Within the last 30 or 40 ycars there has been a revival of artistic needlework-a move Morris which Walter Crane and William been formed in the United States similar to that of the South Kensington Muscum in Lon don in which the stitches and styles of ancient and decorative embroidery are tanght

Bibliography.-Christie, Mrs. Archibald H 'Embroidery' (London 1899) ; Day, Louis F. Art in Needlework: a Book about Embroid ery' (ib. 1900) ; Dreger, 'Weberei und Stick erei) (Vienna 1904); Drew, Joan H., 'Em broidery and Design; a Handbook of Pat-
terns' (London 1915) ; Higgin, L., and Alford Lady Marian, 'Handbook of Embroidery' (ib 1880) ; Jourdain, M., 'English Secular Em broidery) (ib. 1910); 'Kendrick, A. F., 'English Embroidery' (ib. 1905) ; Migeon, 'Les art Paulson (Embroidery) (London 1007), W.

Esther Singleton.
EMBRUM, ǒń-brû̀n (ancient Eburodumun of Hautes-Alpes, on a rocky cminence in th centre of a large plain watered by the Durance 20 miles east from Gap. It is an ancient place, surrounded by walls and ditches, and of very picturesque appearance. The principal buldinge It was pillaged successively by Vandals, Huns and Saxons, and its inhabitants almost ex terminated by the Moors in 966. It is still a bishop's, and was once an archbishop's see The manufactures consist of broadcloth, ha yarns and farm tools. Pop. 3,812.

EMBRYO. See Embryology.
EMBRYOLOGY, that branch of biological science which is concerned with the development of the organism from the egg. The term
is applied to the development of plants as wel as animal organisms, but in the present article only the latter will be considered. Though cvery species of metazoan or multicellula animal produces eggs, not every individual arises dircetly from inced, in som sexual. It may occur by fission, or division o the organism into two or several individuals, as in certain flat-worms and annelids, or by gemmation, where new individuals bud o sprout out from the older ones, and either separate completely, or remain attached, form
ing colonies as in hydroids and bryozoans However, strictly speaking, embryology applic only to the development of the organism from the zygote or fertilized egg-cell, or in sume cases from eggs which develop by partheno
genesis,i.e., without fertilization by a male gamete. Historical.-Before the invention of the miscroscope observations on development were of the most superficial sort and the genesis of the organism from the egg was chiefly a prob-
lem for the philosopher. The relation of the embryo to the two parents was not in any sense 17 th century spontaneous generation was believed to occtur in some animals, even by so great a physiologist as William Harvey. During the 17 th and 18th centuries the theory of "evolution," later known as preformation, of which Bonnet, Lcibnitz and Haller were among the greatest exponents, was the dominant view.
Evolution in this sense denotes mere unfolding, like the flower from the bud, and has no relation to evolution in the sense of a theory of descent with modification. In brief, preformation is the doctrine that all the structures of the adult body are present in miniature in the germ and that development consists merely in their unfolding and growth. According to known as the "emboitement" or box-within-boxtheory, the germ must contain in diminishing series the germs of all succeeding generations. Naturally, most of the preformationists believed the germ to be contained in the egg, but after 1077 , a ncw school arose known as the spermists or animalculists, who adopted the view that these minute motile bodies, so obviously living, contained the germs, the egg serving merely as a nutrient medium in which the minute but fully formed offspring of male origin was enabled to grow. Some of the spermists even
published figures showing a miniature human body, the homunculus, enclosed in the spermatozoon.
An important advance was made in 1759 by C. F. Wolff, who demonstrated, from observations on the developing hen's egg, that bodily parts are not performed but actually which had been advocated though not proved by Harvey a century carlier and even vaguely stated by Aristotle. This conception, which is termed epigenesis, shortly supplanted the purely speculative preformation theory, hut what regu problem and still remains the great problem embryology, notwithstanding a vast amount of observation and experimental research. During he 19th century great progress was made in morphological or descriptive embryology and is pace permitted many important discoveries might be enumerated. The greatest of the early investigators in this field is generally ad sometimes called "the father of embryology," who, working mainly on the chick, was the first to give an orderly account of the chief phenomena of development, including cleavage of the egg, formation of germ-layers and the differentiation of organs. Von Baer also lai The cell theory formulated by Schleiden an chwann in 1838, which has so completely revolutionized biological thought, led only gradually to the recognition of the unicellular character of the gametes, egg and spermatozoön, and despite the much carlier germ
theory of the spermists it was not until nearly
the middle of the 19th century that the spermatozoa were generally recognized as the agenis of fertilization; indeed by many naturalists hey were regarded as parasitic micro-organ isms, accidentally present in the fertilizing fluid. In 1843 Martin Barry witnessed the penctration of the rabbit's egg by the spermatozoon, bu
strange to say the unicellular character of the two gametes, a fact of fundamental importance was not clearly demonstrated until after 1860 . As a consequence of the rapid development of comparative embryology during the middle and latter part of the 19 th century, together with the newly awakened interest in organic evoluone of the greatest sources of evidence of phylogenetic relationship, and it is not surpris ing that a generalization known as the "re capitulation theory," namely, that the individual in its development repeats in brief its racia history, should have been developed. Though this theory has frequently been forced farthe that embryology has yielded highly importan data as to the relationships of classes and smaller groups within the same phylum, thus confirming in many instances evolutionary evil dence from comparative anatomy and palxonthe carlier years of the 20 the witnessed the dethe carier years of the 20th witnessed the at
velopment of a school of experimental an bryology, concerned with the physiology and the philosophy of development, with the problem of what makes the egg develop and what factors regulate the progressive differentiation of the embryo. In this field of morphogenesis some of the leaders have been Roux,
Herbst and Driesch in Europe, and Loeb, Morgan and Lillie in America. Experimental studics have shown that while organs are not preformed in the egg, still in many cases the egg substance is differentiated into formative zones at, of even before, fertilization, that it exhibits in tion" of material for future organs, but not the organs themselves. This predeterminism in the egg has been termed "promorphology." In eggs of some animals this is so definite that removal of a portion of the egg will result in in other cases of an incomplete embryo, which of the first four or cight cells of the segmenting egr if artificially separated, will give rise to an entire dwarf embryo; hence it is not pos sible to make categorical statements regarding promorphology in general. It is, however, ${ }^{\text {a }}$ very diferent conception from the old preformation theory and does not imply a negation of epigenesis. In some types the normal pro
morphology, even though very early established, is readily alterable, in other cases it is As to the general factors of differentiation, the majority of physiologists undoubtedly incline toward a purely mechanistic explanation, or interpretation in terms of chemical and physical notably Hans Driesch. A discovery of peculiar interest in connection with promorphology is the phenomenon known as "polyembryony," on the development of two or more embryos from a single zygote. The most familiar example
the production of the so-called "identical twins"

Fig. 1 Diagram of maturation of male and female germ cells, fertilization and the first cleavage of the zygote. (The of male and female germ cells, fertilization and the frist
paternal chromosomes are here differentiated by stippling)

in man and other species. These are always of course sex. Ordinary or dissimilar twins, of may not be of the same sex, as is the case in ordinary litters of young in mammals. In the nine-branded armadillo a litter contains four young, all of the same sex, and these have been
conclusively shown to come from a single egg, and in a related species the polyembryonic and in a related species the polyembryonic
iitter contains eight or nine. In certain hymenopterous insects (chalcids) a single ovum produces a great number, in some cases hunmethod of individuals. It follows from the tion that all embryos thus arising from a single zygote must be of the same sex.
The Germ Cells.-The great generalization on which modern embryology is based is the cell concept as applied to the gametes. This is the fact that the ovum and spermatozoon are related with of this the relatively new knowledge of the physical basis of heredity as located in the chromosomes. It is essential to realize not only that the gametes are true cells, but that they are exactly equivalent as regards their chromatin content and consequently their
hercdity-carrying capacity (with the exception hercdity-carrying capacity (with the exception
of the sex-chromosomes, for which see the articles Cell and Heredity), and that their great diversity in size and form represents only a physiological differentiation by which the spermatozoon, minute and capable of locomotion plied with foodstuff for the future embryo is much larger and non-motile. It is scarcely possible to conceive of two types of cells more widely different in form and appearance, yet both are the descendants of similar primordial germ cells, and their differences, except for the in the extranuclear structures. The spermatozoa are proliferated in the testis in enormous numbers. In their commonest form, often de-
scribed as tadpole-shaped, there is a head comscribed as tadpole-shaped, there is a head composed of condensed nuclear chromatin, a middle piece containing a centrosome, and a vibratile spermatozoon is actively propelled and enabled to reach the egg. Frequently also a pointed vody, the acrosome, is present at the anterior end and facilitates penetration into the ovum. tozoon is no relation between size of spermalozoon and size of organism. In man the entire many minute invertebrates it is very much greater. In a few animals, the spermatozoa are The motile and not of the usual flagellated form. The ovum, or egg, is always much larger than spherical form. During the elaboration of of egg in the ovary granules of inert food-yolk or deutoplasm are stored up in its extranuclear protoplasm. This food-yolk is rich in protein, ats, lecithin, etc., and serves during development as food for the embryo. The difference difference in the amount of yolk and according to distribution of this substance eggs are described as (a) dlecithal or homolecithal, hav-
ing very little yolk evenly distributed as in the ing very little yolk evenly distributed as in the
minute ova of mammals; (b) telolecithal, with minute ova of mammals; (b) telolecithal, with
the yolk massed toward one pole of the egg, the condition in most vertebrate eggs; and
(c) centrolecithal, in which central mass of yolk is surrounded by a superficial layer of protoplasm, a type occurring in some arthro-
pods. The amount of yolk affects the develop ment of the amount of yolk affects the deveg are those of sharks, reptiles and birds, which are of extreme telolecithal type and compris are of extreme telolecithal type and compris
the largest cells known. Those of placental mammals are very minute, that of man only 17 hundredths of a millimeter in diameter In oviparous animals the eggs are usually en closed in protecting envelopes of which some are formed in the ovary and others secreted
by the lining of the oviduct. In the hen's egg to cite a familiar example, the delicate membrane surrounding the yolk is of ovarian origin while the albumen, shell membrane and shel are oviducal secretions. Frequently, as in in sects and bony fishes, the egg membrane is pierced by one or more minute pores, microat fertilization.

Maturation.-A phenomenon long known to be of almost universal occurrence in the his tory of the egg is the successive extrusion from it coincident with or shortly preceding fertilization, of two minute globules known as "pola
bodies." The significance of these bodies long remained a problem, the solution of which during the later years of the 19th century constituted one of the most brilliant discoveries of cellular biology. It invested chromatin with a dew importance, rendered possible a new nu opened a new avenue for the investigation of the mechanism of heredity. It is a well-estab lished fact that the cells composing the body (somatic cells) of every animal contain a defi nite number of rods of chromatin called chromosomes, this number characteristic of the par
ticular species; also that these chromosome are in even number and composed of two equivalent groups derived respectively from the two parents (an exception to this occurs in the case of the sex chromosomes. See articles on Cell and Heredity). By a series of researches beginning in 1883, in connection with which th
names of E. Van Beneden, Theodor Boveri and Oscar Hertwig are especially identified, it wa demonstrated that the ripe germ-cells of both sexes have only one-half the somatic number of chromosomes, though in the earlier primorThis reduction is accomplished through a phe nomenon known as "synapsis" or union in pair of the chromosomes of paternal and materna origin. Thus the somatic "diploid" number of singles chromosomes becomes reduced in germdouble thromosomes, this reduction occurrin in the spermatocyte or oöcyte cell generation prior to the last two cell divisions known as maturation divisions, by which the definitive gametic cells are formed. During the matura tion divisions the bivalent chromosomes are wice divided and the resilant univalent ber, to each of the four resulting cells. In th male these four cells all develop into func tional spermatozoa, but in the female the di visions are so unequal as to consist merely in he successive extrusion from the egg of two bortive eggs or polar bodies. In some case
the end result is one functional egg and three polar bodies, which differ from the egg only in the smaller amount of cytoplasm and yolk, lent. The racial significance of the reduction of the number of chromosomes to one-half in oth gametes will be obvious in connection with Fertiliz these cells in fertilization. Fig. he union of adequate term, a relic of carlier days when it was supposed that the male semen merely acti vated the germ contained in the egg. While it s quite true that the spermatozoon does initiate it in the same sense in which artificial treatment with chemicals may fertilize many kinds of eggs, another essential fact of the conjugation of the two gametes. is the combination in the new zygote of two equivalent groups of
chromosomes from the two parents. In many invertebrates and some aquatic vertebrates eggs and sperm are shed in the water, where conjugation occurs, but in many other animals he spermatozoa are transferred to the genital ducts of the female and fertilization is internal. in the fertilization of an egg, though poly spermy, or the penetration of several into the egg-cytoplasm, frequently occurs, especially in orms having large eggs, but such supernumer ary sperms always degenerate eventually and Whe no part in the formation of the embryo the ovum it penetrates the cytoplasm and in many cases a delicate membrane, the fertilizaion membrane, is instantly secreted from the surface of the cgg, thus preventing the entrance any more sperms. At the same time othe chemical equilibrium occur, often with violent streaming and new arrangement of formative zones in the protoplasm, and in some eggs the promorphology is rapidly established at this ime. The tail, which is of no further use after left outside. The head upon entrance speedily enlarges and assumes a vesicular appearance, becoming the male pronucleus. The egg nucleus after the last maturation division is called the female pronucleus. Each of these pronuclei, as a result of previous reduction, has the
haploid or halved number of chromosomes and by the union of pronuclei to form the zygot nucleus the normal diploid number characteristic of the species is restored. Thus reduction maintains the specific number of chromosomes from generation to generation. A centrosome, the function of which is to initiate the process matozoön, usually in the middle piece, replacing the egg centrosome which disintegrates afte the last maturation division. The zygote, as the fertilized ovum is called, is now a complete cell, really a new individual in the stage of a unicellular embryo, with its chromatin, the veparents.
Cleavage.- Development of the zygote may be defined briefly as a progressive differentiation accompanied by cell-division and sooner or later by growth, but it must not be assumed division, for experimental embryology indicates
rather that the converse is the case. The term cleavage or segmentation is applied to the mitotic divisions by which the zygote is divided
into numerous cells or blastomares. When this process involves the entire zygote, it is described as total or holoblastic. In some cases the cells may for some time be equal in size, but where there is a unipolar aggregation of yoke, cleav-
age is mechanically retarded at the vegetal pole, the result being unequal cleavage, well shown in the egg of the frog, while if the yoik be very abundant cleavage may be parrial or meroblastic, limited to a small disc of yolk-free protoplasm at the so-called animal pole, as in
the hen's egg. In such cases this small disc, the blastodisc or blastoderm, gives rise to the entire embryo which gradually encloses, digests and absorbs the inert mass of yolk. In centrolecithal eggs of arthropods the cleavage is
superficial over the entire egg. As a result of superficial over the entire egg. As a result ol
cleavage the egg in most cases soon attains the form known as the blastula, which in its most typical condition is a hollow sphere of cells containing a central segmentation cavity or blastoccol. Where yolk is very abundant the blastula is greatly altered and in some forms
there is no true segmentation cavity and strictly there is no true segmentation cavity
speaking no blastula. See Fig. 2 .
Gastrula and Primary Germ Layers.-The single-layered blastula becomes transformed into a gastrula, a two-layered sac-like stage, in which there is an outer cell-layer calied ectoderm (or ectoblast) and an inner layer, the entage is variously formed; in some cases as in certain colenterates, cells wander inward from one pole of the blastula forming a solid inner mass which later becomes hollowed out, but a far commoner method of gastrulation is that known as the embolic type, in which a part of
the gastrula wall, generally the part richest in yolk, becomes turned in or invaginated as a result of unequal growth to form a cup-like endoderm. The new cavity thus formed in the endoderm is the archenteron or primitive gut cavity; the mouth of the sac is the blastopore,
which in various animals may form the mouth or the anus or neither. This simple sac-like gastrula is found only in eggs which have very little yolk, thus among vertebrates it is met with in typical form only in amphioxus, though readily recognizable in lamprey, amphibian and some other forms, while in most vertebrates the
abundant yolk masks the sac-like character of this stage. Frequently in eggs with abundant yolk invagination of endoderm is mechanically impossible and in such cases gastrulation may be effected by an overgrowth of the ectodermal layer which surrounds the large yolk-filled por-
tion of the egg. Such overgrowth is termed tion of the egg. Such overgrowth is term inturning of endoderm. However formed, the gastrula has considerable differentiation and
foreshadows the orientation of the future body foreshadows the orientation of the future body and some of the great organ systcms. Its ectoderm is the source of the epidermis and the
nervous system. The endoderm forms the linnervous system. The endoderm forms the lintgrowths which become the chicf digestive glands. These two layers 'are called the primary germ layers and are of well-nigh universal
occurrence. In those vertebrates which have very abundant yolk and consequent part to
large the developmental mode of forms with large eggs, the two-layered stage is so moditrula an to be scarcely recognizable as a gascompressed such cases the blastopore becomes primitive streak which is almost the earliest evidence of the body axis.
Mesoderm.-In all animals above the coelenterates a third germ layer called the mesoderm (or mesoblast) develops between the two primary layers and gives rise to the gonads. This layer prises in very system and in mads. This layer arises in very diverse ways. cleavage as special mesoblast cells. Usually it appears much later as a differentiation from the endoderm or in rare cases even from the ectoeither In its origin from the endoderm it outer surface of that layer, or arises as a series of hollow, sac-like outgrowths from the endouerm called enteroccels or gut-pouches. When tormed by the latter method the mesoderm from originallyning contains cavities which were originally parts of the primitive gut cavity. In
cases where it splits off as solid masses similar cavities appear within it later. Such cavities in the mesoderm become the coclome or true body cavity. In animals in which the body is seg mented or metameric, such as the annelid worms, arthropods and vertebrates, the first evidence of segmentation appears in the mesotissue appears composed of loose cells and called mesenchyme. It may be produced very carly, before the true mesoderm, or it may be proliferated from that layer. In general it gives rise to connective tissues.
ing sponges and coclenterates, exhibit three germ layers, a fact to which great significance has been attached by many embryologists. The sponges are so aberrant in their development two layers with ectoderm and endoderm; while the collenterates, as suggested by Haeckel, may be regarded as a primitive group which has not progressed morphologically beyond the gastrula stage of complexity. The question of the homology of the three germ layers in the other and has led to considerable difference of opinion. As comparative embryology became known, the well-nigh universal occurrence of respe layers and the general similarity of their sumption derivatives naturally led to the as known as the "germ-layer theory" thourh, a stated above the middle layer differs greatly in its mode of origin in different groups. In nearly all cases, however, the ectoderm gives rise to the epidermis, the lining of the mouth some invertebrates, to the kidneys. The endosome invertebrates, to the kidneys. The endotive yolk is especially identified, becomes the lining epithelium of most of the alimentary canal and the chief digestive glands and in vertebrates gives rise to the germ cells which term, the latest layer to appear, is the meso of the connective tissucs, including the internal supporting hard parts when such are present the blood and blood vessels, the muscular sys
tem, the gonads with the germ cells in most cases, and usually the kidncy system. The methods by which germ layers become differ-
entiated into their derivative tissues and organs are so varied that limitation of space precludes are so varied that limitation of space prechated that common accompaniments of histogenesi are thickening, folding and delamination (splitting) of layers and also localized prolit ration of free cells. The assumption of homo ogy of the germ layers in different groups was
quite natural, but of late years evidence has accumulated which indicates that many of the developmental resemblances of different phyla are to be interpreted rather as similar but quite independent reactions to like environmental fac ors; or in a word, as homoplastic rather tha truly homologous
Nutrition of
Nutrition of Embryo.- Throughout the entire course of development the mechanical
effect of food-yolk is very marked, not only in its retardation or prevention of cleavage in certain parts of the egg but in its mechanical ef ect on the formation of the germ layers and nutritive system. In gencral, though there ar many exceptions, large eggs rich in yolk de velop slowly and the resulting embryos hatch in an advanced state, often with essentially the adult form, while small eggs poor in yolk mus usually in such cases the embryonic period is very brief, the embryo hatching in the form of a larza, often totally different from the adult. Such larve are especially common among ma the form of minute freen usually they hav often with no resemblance to the adult cithe in form or habit. Examples are the trochophores of annelids and molluses, the nauplius of the crustaccan, bipinnaria of the starfish ctc. In some cases the larva represents only a small portion of the future adult animal, occa
sionally only a portion of the head precociously equipped with an alimentary system and means of locomotion. These larvae fced on various micro-organisms and eventually become mad over into the adult form by a more or less complete metamorphosis.
nimals extra-embryonic membranes - In some animals which subserve a temporary function in the protection or nutrition of the embryo and which are lost at hatching or at birth. In the higher vertebrates such structures include the of the entire embryonic vesicle; the amnion, a closed water-sac lined with ectoderm and completely enclosing the embryo, and the allantois, an extension outside the body of the urinary bladder which in reptiles and birds and also in the primitive egg-laying mammals known as
monotremes spreads its vascular wall inside the chorion close to the porous egg shell and serves physiologically as an embryonic respiratory organ. In the marsupial mammals, such as the kangaroo and opossum, the young are nourished during the very brief period of gestation by "uterine milk," a secretion of utcrine glands
which the embryo absorbs by means of its vascular membranes, chiefly the yolk sac. Uterine milk is also an important source of nutriment to the embryo even in some placental mammals, where it contains leucocytes and the detritus of
disintegrated cells of various sorts in additio to glandular secretion. The placental mammal are so called because an organ named the placenta is developed, which is essentially composed of villi or vascular tufts developed on blood vessels by the allantois. These chorionic villi come into intimate contact with the mucous membrane lining the uterus, which becomes profoundly modified during pregnancy, and through their rich vascular supply the blood of the embryo is brought into close osmotic relathe diffusion into the embryonic circulation of soluble foods and oxygen from the maternal blood and at the same time removing carbon dioxide, so that the placenta serves the functions of embryonic nutrition and respiration. ture of maternal and that there is no admixin all cases being separated by an osmotic membrane. In some mammals the placental villi are minute and scattered over almost the entire chorion, forming what is known as a diffuse placenta, as in the horse and pig. In others they are aggrcgated into a number of brushof the ruminants, as the deer, ox, etc. In other cases the villi are limited to a broad girdle forming a zonary placenia, as in most carnivora and in the elephant. In insectivores, rodents and most of the primates, including man, a discoidal type of placenta is found in like mass. In many cases, especially the diffuse and cotyledonary types, the villi fit into corresponding crypts of the uterine mucous membrane from which they are drawn at birth without injury. In other cases, the so-called deciduate placentæ, the uterine lining becomes comes so firm that at birth portions of the maternal tissuc are torn away with the embryonic placenta. Recent investigation, however, favors the view that even in deciduate types the maternal portion is largely absorbed almost wholly of foetal origin. Though the eggs of mammals are very minute and undergo complete cleavage, their development is remarkably like that of the large eggs of reptiles and birds in the mode of germ-layer formation, organogeny and relations of extra-embryonic of mammalia from ancestors whose erss had abundant yolk and underwent partial cleavarc. This, indeed, is often cited as one of the classsic examples of the persistence of ancestral developmental habit. In this particular case the evidence is confirmed by the occurrence of ovipof development in the primitive monotreme mammals.

Bibliography.-Among numerous works on embryology the following may be mentioned as of especial value: Balfour, F. M., 'A Treatise on Comparative Embryology) (Vols. I and II, London 1885); Ziegler, H. E., 'Lehbruch der niederen Wirbelthiere) (Jena 1902): Lillic. F. R., 'Development of the Chick) (New York 1908) ; Kellicott. W. E., 'General Embryology' (New York 1913) ; Jenkinson, J. W., (Verte-
brate Embryology' (Oxford 1913) ; MacBride, E. W., 'Textbook of Embryology' (Vol. I, Invertebrates, London 1914) ; Hertwig, O., tebrates) (5er Entwickelungsgeschichte: VerA., 'The Physiology of 1915 ; Marshall, F. H. A., 'The Physiology of Reproduction' (London

Professor of Zoology, Columbingegreor,
EMBRYOLOGY, Human. In the huma female, at birth, the ovaries contain several thousand ova. These remain quiescent during the years of childhood, but beginning at pu berty and continuing until the climacteric ova occurs, usually a single egg escaping from one of the two ovaries at intervals of four weeks. There is without doubt a correlation between the phenomena of ovulation and men struation, though difference of opinion exist regarding their exact timc-relation. During the proximately 400 ova may be thrown off, bu pregnancy and lactation temporarily suspend ovulation and menstruation. After the climac teric the ovaries, which still contain vast numbers of ova, undergo very gradual degeneration
Maturation, fertilization and cleavage been studicd in the human cgg, but on the basis of studies of the early stages of many other mammals, especially mouse, cat, bat and rabbit, the corresponding conditions in man can be in erred with great probability. Early embryo where direct comparison is possibe shater stage, tical identity with human development hav also supplied important evidence. The human ovum at maturity is spherical, about .17 millimeter in diameter, and is surrounded by transparent zona pellucida, and a mass of follicle in a vesicle, the Graafian follicle accomplished by the rupture of the follicle, and the egg thus escaping from the ovary passes into the funnel-like end of the oviduct or Fal opian tube, being carried along by the cilia which line this structure. In most mammals thus far studied the egg undergoes the first maturstill in the ovary and before rupture of the folicle. Fertilization occurs in the upper portion of the oviduct in case spermatozoa are present, and shortly after penetration of the egg by a spermatozoon the second polar body is ex-
truded. Fertilization in mammals is frequently termed "conception." Judging from conditions in other mammals, including monkeys, the zygote undergoes cleavage in the oviduct while is being slowly swept along by cilia and caches the uterus or womb in the stage of the early blastocyst, a minute hollow sphere or herent at one side. This inner mass is the em bryonic mass and from it come all the cell which form the embryo, while the wall of the vesicle, the trophoblast, has only protective and nutritive functions, becoming later the outc layer of the chorion. At the time when the brane lining that organ is soft, thick and congested. During pregnancy this merabrane becomes profoundly modified and is called the decidua. Apparently in consequence of some

EMBRYOLOGY, HUMAN

chemical interaction the embryonic vesicle ternal form. About the 11 th or 12 th week it

Chemical interaction the embryonic vesicle Superficial layer of the decidua, which grows ${ }^{\text {over and encloses it, thus separating it from the }}$ Dosterine cavity. Implantation is usually on the posterior wall of the uterus, though it may embryo may become attached in the oviduct, Causing a tubal (extrauterine) pregnancy.
The earliest human embryos studied had al(eady become implanted. In one of these (reters' ovum) the entire blastocyst was about one millimeter in diameter, the embryo one-iwenty-fiftheter, or about one one hundred and estimated by Peters at three or four days, but it is now believed to be several days older. The hree germ layers are distinguishable and the chnon and yolk-sac are arready formed. The vaded the covered with villi which have inuringing the embryo even at this early stage into nutritive relation with the maternal blood by osmosis. (Fig. 4).
In a slightly older embryo (Graf Spee's neuryo) measuring 1.54 millimeters in length, the neural plate or rudiment of the spinal cord and
brain is formed. Blood-channels representing sain is formed. Blood-channels representing tinguishable, and also the two heart rudiments, not yet united in the median line. The chorionic villi already contain blood vessels. The Yolk-sac, though quite empty of yolk, is of Considerable size, and the allantois has appeared. Several embryos of the third week cord and brain form a closed canal, the heart is a twisted tube, and from comparison with other nammals there can be no doubt that the heart eat is already established. By the 21 st day the embryo is four or five millimeters in length, and head, tail, gill-clefts and rudimershable. By he end of the first month the arms and legs appear as lateral buds and the rudiments of th ace are formed. There is a well-marked tail, ne head and tail are so flexed as nearly to meet Measured from neck to rump the embryo is has not kept pace with the body and is a smal pedunculate vesicle. Practically all the grea organs are indicated by the beginning of the fan week. For example, from the almentar Canal the rudiments of thyroid, thymus, lungs, Structural pancreas have budded out. in genera rather more like a fish than like the adul numan. This is especially true of the blood ascular and urinary systems.
During the second month growth is rapid Dy the end of this period the embryo could now identify it not merely as a mammal but as human or at least as a primate. The fac is now fairly well formed, even to mouth and hostrils, and the external ear is taking shape The tail diminishes after the sixth week and has almost disappeared by the eighth. Elbow and knee flexures are well marked and hand
and foot exhibit digits. The third month witnesses an increasing humanness in the appearance of the embryo - or "foetus," as it is commonly called after the establishment of its ex-
the external genitalia. Before this time these the external genitalia. Betore this the development, though sex is actually determined at fer tilization and can be distinguished about the end of the first month by microscopic examination of the genital ridges, the structures which later give rise to ovary or testis. About the middle of pregnancy, toward the fifth month, muscular movements of the foetus become a fact which to be given rise to a vulgar belief what life begins at this period of "quickening" as it is called. About this time the face and most parts of the body become cov"lanugo.) a dense foetal hair increases for a month or two, but is shed to a great extent before birth. With the growth of the foetus great changes have taken place in the embryonic membranes, the later conditions of which an their relations to the decidua or uterine mucous membrane are Fig. . enlarges greatly, becoming adherent to he chorion. The yolk-sac and allantons virually disappear. The chorionic villi disappea except on the portion of the surface dirceted oward the original site of attachment, wher they persist, forming the choion with the cor which comes art the decidua, and with forms the placenta, the vascular organ by which the foetus, physiologically a parasite, derives its nourishment and its oxygen from the maternal flood.

Birth occurs approximately 280 days after ertilization, though a foctus born as early as weight at birth is near seven pounds. The foetus is expelled by involuntary contraction of the uterus, aided by contraction of the abdominal muscles. Rupture of the amnion by muscular pressure precedes biacenta, torn loose after the child is born the piacenta, torn loose gether with the amnio-chorion. The entire mass is called the "afterbirth." Tremendous physiological changes occur suddenly in the child at birth. Cessation of placental oxygenation of the blood stimulats at the first breath reflex. Dilation of the pulmonary circulation, including the functioning of the left side of the heart, and also effects the closure of the foramen ovale, an opening between the two auricles. Certain arteries and veins, hitherto very important, suddenly become no almost in an and undergo rapid atropaleration is effected in the respiratory, circulatory and nutritive mechanisms by which the physiologically passive fœtus is transformed into the active breathing nd feeding infant.
Bibliography.-Many excellent works on human embryology have been published. Amon Development of the Human Body) (Philadel phia 1907); Bryce, T. H., 'Embryology Vol. I of Quain's 'Elements of Anatomy, London and New York Manual of Human Embryology' (Vols.

I and II, Philadelphia and London 1912), a very exhaustive work; Bailey and Miller,
'Textbook of Embryology' (3d ed., New York 'Textbook of Embryology' (3d ed., New York
1916). 1916).
J. H. McGrecor

Professor of Zoology, Columbia University
EMBRYOLOGY OF PLANTS. That phase in the life history designated as the emend is not marked by any such definite feat its In general, the embryo represents the early stages in the development of an individual from the egg. In the ferns and their allies, somewhat later stages, in which one or more leaves are visible to the naked eye, are called sporelings. There is no definite feature to mark a In the seed plants, the series is embryo, seed. ling, adult, with no features to mark the transitions. The difficulty is the same as that in defining baby, boy and man. The early stages in known in all groups from the are fairly well

$$
\text { Fig. } 1 .
$$

highest flowering plants. In the liverworts and mosses, the development of the embryo from the fertilized cgg up to the adult stage, and short. The embryo, and even the adilt are small, are parasitic upon the egg-bearing plant (gametophyte), and do not produce any leaves. In the lowest liverworts the egg divides into halves, then into quarters and continues dividing unto an outer protective layer enclosing a larg number of spores. In the higher liverworts and in the mosses, the embryo starts in the same way, but later becomes differentiated into three regions called the foot, stalk and capsule, the latter producing the spores. In the lower liverworts, the adult is a small spherical body not more than one-sixtcenth of an inch in diameter;
in the higher liverworts and in the mosses the diameter is not much greater, but there is considerable elongation. A couple of irches is rather long; but a few liverworts reach a length of five or six inches and one of the highcr
inches. (Figures of some of these featurcs may be found under Sporuphyte, Evolution
OF). In the ferns and their allies, the embry begins to develop in the same way, forming spherical mass of cells, but definitc growing regions soon appear, marking the root, stem, lea gametophyte until the root becomes developed and begins to get nutrition from the soil an the leaf begins to securc materials from the air. When this stage has been reached, we no longer call the young plant an embryo, but a
sporeling. In the seed plants, which include the sporeling. In the secd plants, which include top ment of the embryo presents gieat variation and complexity. In the cycads (q.v.) which rep resent the lower living Gymnosperms, the fer mass of cells, but nuclear divisiong give rise to ${ }^{\text {a }}$ separating walls, take place until there may be as many as 1,000 nuclei lying free in the cyto plasm of the egg (Fig. 1, A). Cell walls the appear at the lower part of the egg (Fig. 1,B) The cells, thus formed, become differentiatc ing within the limits of the eog (2) remain of rapidly elongating cells called the suspensor and (3) at the tip of the suspensor some smal cells with dense protoplasmic contents (Fig $1, C$. The root, stem, cotyledons and leave of embryo come from these small cells, the which function only during the early develop ment. After the embryo breaks out from the seed and becomes independent, it is usually alled a scedling. The eggs of the cycads are cry large, reaching one-eighth of an inch or igher Gymosporms an inch ingth. In the maller, in most Pines not more than one-one undredth of an inch in length. In these higher orms there is a constant tendency to reduce ot only the size of the egg, but also the number of free nuclei. There are still the three reonly a few cells. In a few each consists the ree nuclear period is cntirely eliminated, a cell wall following the first division of the egg nulcleus. In the Angiosperms the eggs are still smaller, all being microscopic in size, and in al fertilized egg is followed by the formation of a cell wall so that there is no free nuclear stage. Even under the microscope, the cggs of this group look so exactly alike that it hardly seems possible for one to develop into an herb, anothe
into a shrub and another into a tree We say the course of development is determined by the course of development is determined the mere naming of a phenomenon may be satisfied with this explanation. Although the eggs and embryos are very small, modern technic is so efficient that the embryology is well known
from the willows and crowfoots to the sunflowers and orchids. A simple and fairly typical type of embryology is illustrated by the Shepherd's Purse (Capsella), a familiar and widely-distributed weed (Fig. 2). The first division of the fertilized egg is transverse (A), Divisions then take place so that a filament con(B); the terminal cell of the row then divides vertically and from the two resulting cells the stexn. cotyledons, leaves and nearly all the root
cal produced (C). The cell in which the verticmbryo cell has appeared is generally called the mbryo cell, and the rows of cells below it, the tes to the frecond vertical wall four cells ach of which immediately divides transversely that eight cells, apparently just alike, are produced (D). Each of the eight cells now vides, forming a wall parallel to its outer sur face (E). These outer cells (dotled in the il perpendicular to the surface, so that the result an extensive layer of cells only one cell in hickness. Since this layer, at maturity, is th pidermis, it is called the dermatogen, which eans the epidermis producer. In the lowe our of the more or less spherical embryo, the ongitudinally (F). The four inner cells re uiting from this division (dotted in the illus

the vascular system of the root; the outer four sive rise to the periblem which gives rise to the mbry of the root. In the upper half of the the differentiation into cortex and and leaves, sion takes places much later, after a large umber of cells has been produced. Thus there e three embryonic regions, one producing em and another producing the vascular sys hree regions third producing cortex. These ment regions, established in the early developplant.
There are other types of embryology in the owering plants. Many have no filamentous cell, some have a single, very large suspenso thany while some have a massive suspensor. Onic regions takes place much later; some do tot differentiate at all until the seed germinates stille in others, like the bcan, the embryo, while Well-d the seed, has not only cotyledons but well-developed leaves. Some special features o Capitulation in, and Sporophyte, Evolution

OF. Consult Morphology of Gymnosperms, by John M. Coulter and Charles J. Chamberlain; 'Morphology of Angiospcrms,' by the kinson; 'Mosses and Ferns,' by D. H. Campbell. Cifarles Chamberlain, Professor of Cytology and Morphology, University of Chicago.
EMBURY, Philip, Methodist clergyman: b. Ballygaran, Ireland, 21 Sept. 1729 ; d. Camden, N. Y., August 1775 . He joined John Wes-Court-Mattress in 1758. Emigrating to New York in 1760, he began to preach in his own house in 1766 and two years later erected a chapel on the site of the present "Old John Street Church." Being a carperter by trade,
he worked on the building with his own hands he worked on the building with his own hands the sermon of dedication 30 Oct. 1768. This was the first Methodist chapel of the New World and he has been called "the founder of Amcrican Methodism." It was, howeyer, at did his greatest work, forming there a congregation which grew into the flourishing and influential Troy Conference. Consult Buckley, 'History of Methodism' (Vol. I, New York' 1898).

EMDEN, Germany, town, in the province of Hanover, on the Ems, near where it discharges itselt into the Dollart estuary Emden connected with this by a canal admitting large vessels. The Dortmund-Ems and other canals connect it with the interior. The town has a Dutch appearance due to its quaint architecture and the dykes which protect from hall, dating from the 16 th century, has a remarkable collection of ancient armor and is one of the finest putblic buildings in Germany. The town contains also a 12 th century church, a muscum, art gallerv, barracks, a public library, trade and industrial schools,
and a deaf and dumb institute. Emden has cable communication with Great Britain, America, and other countries. Its export trade includes grain, dairy produce, cattle, tallow, wool, hides, etc.; and it imports coal, timber, wine and colonial produce. A considerable number ufactures include leather, paper, dairying instruments, basketware, cement, wire ropes, bricks, soap and tobacco. There are also oil-mills, breweries and distilleries. Emden was founded in the 10 th century or earlier and in 1433 was
added to Hamburg. It became a free city in 1595 , and a frce port in 1751 . In 1806 it was taken by Holland, but nine years later was added to Hanover, which in 1866 was itsclf made part of Prussia. Pop. 24,038

EMELE, â-mā-lā, Wilhelm, German painter: b. Buchen, Odenwald, 1830 ; d. 1905 .
He first adopted a military career but studicd He first adopted a military career but studicd art with Dictz at Munich and later at Antwerp
and Paris. His canvases are noted for exact knowledge of military detail and are spirited in conception, his subjects being military. H lived in Vienna after 1861 where he attained great popularity as a painter of equestrian por traits and hunting scenes. Among his works berg Bridge in 1799) (1857), purchased by the

Austrian emperor; 'The Fight Near Aldenhoven' (1859); 'The Square of the Battle of Aspern' (1860); 'Capture of Camp Near Farmars'; 'Attack on the Enylish by French Cui-
rassiers at Waterloo': 'Battle of Wurzburg' (1867), his best work;' 'The Archduke Charles at Battle of Neerwinden' (1872) ; 'Attack of the Bournernain Division Near Elsasshausen'; 'Battle of Dijon'; 'Meeting of Patrols of Seventh and Fourteenth Corps, Prussian Army, Corps in Battle of Belfast). (Episode 14 th Army Corps in Battle of Belfast'; 'Episode of Battle French at Dettingen' (1879). His 'Cavalry Encounter near Langenbrück' gained first medal at the Vienna Exposition in 1873.
EMERALD (O. Fr. emeraude, Gr. $\sigma \mu \dot{\rho} \rho a-$ y $\delta o \varsigma$), a gem of pure green color, often very rich and beautiful. It is a variety of the mineral beryl and is, therefore, a silicate of aluminum and glucinum (q.v.), its grecn color being
due to the presence of a little chromium. It is usually found in nodules or in distinct sixsided prisms of the hexagonal system. It is a ittle harder than quartz and has a specific gravity of about 2.69. It is not acted on by acids. Many of the most intensely colored and valuable emeralds that we are acquainted with were
brought from Peru, the largest from Takowaja in the Urals, a specimen of which is seen in the $63 / 4$-pound stone at Saint Petersburg. Most modern emeralds come from the republic of Colombia, which quite supplies the current market. In the United States emerald crystals up been found in Alexander County, N. C while extensive mining in Mitchell County, N. C., has yielded beautiful gems and much so-called "cmerald marrix. The rarity, rich color, brilliancy and hardness of emerald have made it one of emerald" is green sapphire, "lithia cmerald" is hiddenite (q.v.), "Uralian emerald" is demantoid, "Brazilian emerald" is tourmaline (q.v.). Sce also Beryl and Precious Stones.
EMERALD GREEN, known also as by a great number of other names, is one of the most beautiful green pigments. It appears to contain copper, arsenic and acetic acid and is
usually regarded as an aceto-arsenite of copper usually regarded as an aceto-arsenite of copper. by grinding, is not affected by light and air and is insoluble in water, but is decomposed by alkalis. It is employed as a water and as an oil color and is used for tinting wall-papers, though with much less frequency since the danger of that practice has been
discovered.

EMERALD ISLE, an epithet applied to Ircland, from the freshness and bright color of moisture continually reaching it from the Atlantic. This epithet was first used by Dr. W. (Erennan (1754-1820), in his poem entitled

EMERSON, Edward Waldo, American physician, writer and lecturer: b. Concord, Mass., 10 July 1844 ; son of Ralph Waldo Emerson (q.v.). He was educated at Harvard,
where he was graduated in 1866 and from the
medical school in 1874. After retiring from practice he was instructor in art anatomy 88. 1906. He published 'Emerson in Concord' (1888); he edited 'Correspondence of John Centenary Edition of Ralph Waldo Emerson, annotated (1903) ; 'Life and Letters of General Charles Russell Lowell' (1907); 'Emerson Journals,' wilh W. E. Forbes (1909); jot $\frac{1}{\mathrm{~K}}$ Hoar' (1011). Storey of 'The Life of E. K. zincs. ,
EMERSON, George Barrell, American educator: b. Kennebunk, York County, Me. 1881. He was graduated at Harvard College (1817), and was the tutor in mathematics and natural philosophy there (1819-21). In 182 he opened a private school for girls in Boston
which he conducted until 1855, when he retired which he conducted until 1855, when he retire
from professional life. He wrote the second part of the 'School and Schoolmaster,' of which the first part was written by Bishop
Potter of Pennsylvania. He was appointed chairman of the commissioners for the zoologi cal and botanical survey of Massachusetts, in which capacity he published a 'Report of the Forests of Massachusetts) (1846) ; and was also the author of 'A Manual of Agriculture' (with C. Flint, 1861) and 'Reminiscences' (1878)

EMERSON, Luther Orlando, American composer: b. Parsonsfield, Me., 3 Aug. 1820 d
d. Hyde Park, Mass 20 , d. Hyde Park, Mass., 29 Scpt. 1915. He studied music and later taught for eight years in Salem, Mass. He then served as organist and musical
director in various churches in Massachusetts, and was the director of about 300 mussical fes tivals and conventions. He published 'The Romberg Collection' (1853) ; 'The Golden Wreath (1857); 'The Golden Harp' (1858); 'The Judah) (1863); 'Jubilate) (1866), etc.

EMERSON, Oliver Farrar, American edut cator: b. Traer, Iowa, 24 May 1860. He studied at Iowa College, taking a post-graduate coursc at Cornell University, where he reccived the
degree of D.Ph. in 1891. After serving superintendent of schools in Grinnell and Mus catine, Iowa, he was principal of the Academy of Iowa College ($1885-88$) ; instructor ir. Eng lish (1889-91) Cornell University, and assistant professor of rhetoric and English philology in the same institution (1892-96), when he took the
same chair in Western Reserve University. is member of the Modern Language Asscciation is member of the Modern Language Asscc
American Dialect Society, Simplified S Board, and is a regular contributor to philologi cal papers. He has published 'History of the English Language' (1894); 'A Bricf Histor's of the English Language) (1896) ; an edition 'Memoirs of the Life and Writings of Edward Gibhon' (1898) ; 'A Middle English Reader' (1905) ; 'Poems of Chaucer' (1911); 'Outlinc History of the English Language' (1906) ; and magazines. various philological jou and magazines.

EMERSON, Ralph Waldo, American poct

Concord, Mass., 27 April 1882. The celebration Emerson served as a meter to mark how wide and deep was the influence which a single original think was the infuence which a single on can xert at the end of his first century; for there was public recognition of his ethical and poetic enius in every quarter of the globe. Along this appreciation went also the perception had a distinct Emersonian school of though circle of striking writers and talkers-men and women of thought, fancy, imagination and eloruence - who gathered around Emerson early late in his carcer and now constitute the Concord known as the "Concord Authors," or the one time or another lived in the rural village of Concord in Massachusetts, where Emerson spent a half century of his life. Such were icott, Hawthorne, Thoreau, Ellery Channing Louisa Alcott, George William Curtis, Eliza horne, J. W. Chadwick, W. T. Harris, John Atbee, F. B. Sanborn, F. P. Stearns - all of word lived for longer or shorter times in Conard; and on the outside of the circle, yet no D_{r}, Baray, Margaret Fuller, Theodore Parker Christopher Cranch and John S. Dwight. All hese stood in relations more or less direct to Emerson, and were influenced in varying derees by his fertilizing mind and gentle social Thaction. Several of them, as Hawthornc horeau, Channing, Margaret Fuller and A1 fifted were as original as Emerson, the qualities that form a school or oteric; and none of them could properly be tyied satellites or Emersonidæ although tha erm has been applied 10 several of them. Alicorson was the eldest born of all these, excep Rev. William Emerson of a Be First Church which had become Unitarian instead of Cal Vinistic. Most of his male ancestors as fa ack as the English Reformation were clergy traditionally to come from one of those Walenses who incurred the censure of the pope heretics far away in the Middle Ages. Hi Church in Concord in 1635 (Rev. Peter Bulke the and by that line Emerson was related to which noble English family of Saint John, o From another clerical ancestor, Rev. William Thompson through the Cosswells, he was re ted to Wendell Phillips, Phillips Brooks and ther men famous for eloquence; and by an of Mer line he descended from a clerical family This last, whose genius verged upon insanity. aunt, Mary Moody Emerson, his father's sister ho had more to do with his intellectual an nititual training than any other of his earl his ructors. With this strong clerical bent in tinecl to the youlpit Waldo Emerson was desarefully educated in Boston and Harvard Col cge with that view. He entered college early End came under eminent teachers, Edwar Chantt in Greek, George Ticknor and Edward mathematics - but for the last-named study he
had no inclination, and did not stand high in general scholarship at his graduation in 1821 He read widely, however, and the discipline
teaching in his elder brother William's school for young ladies at his mother's house in Franklin strect, Boston, gave him exactness in Latin, French and Greek. He presently (1823) took up the study of divinity with Dr. Channing and Prof. Andrews Norton, and began to preach
sermons in 1827 . He spent much time in youth at his grandmother's, who owned the Old Manse in Concord, and there he preached for some months in 1828, during the absence of her second husband, Rev. Dr. Ripley. His own grandfathe,, Re Old Manse died as a Concord, the Revolutionary army in 1776

The clerical life of Emerson was a distinct era, marked hy originality and independence in the young divine. His first and only settlement was at the Second Church of Boston, which had been Cotton Mather's, and was
Henry Ware's when Emerson was ordained as a colleague in 1829. He became sole pastor in 1830, and in the meantime had married a delicate young Bostonian, Ellen Louisa Tucker, who died in 1832. In 1833, upon a point of doctrine concerning the rite of the Lord's Supper, in
which he found himself at variance with his deacons, he preached a sermon gently setting forth his scruples and resigned his place, much against the wish of his pcople. But he had been ill and despondent since the death of his wife and the illness of his brother Edward; and a
foreign tour was prescribed for him, which froke the continuity of his preaching, although he continued to officiate in pulpits here and there for some six years after his first visit to Europe. Miss Elizabeth Peabody, who had often heard Emerson preach, said at the Con-
cord School of Philosophy in 1883:
From 1834 I never onitted an opportunity of hearing
Emmerson preach. I sought and obtainer luave to read the
sermons he had in manuscript. They were all as truly Emerson preach. I sought and obtained leave to read the
sermons he had . in manuscript. They were all as truly
transcendental." as any of his later writings in prose or

 own or an
him the
of the L

No doubt he would have made much of it. But what he did was better; he turned the lecture desk into a pulpit, and for more than 30 years preached righteousness there. From 1835, the date of his second marriage, to Miss Lidian Jackson of Plymouth, lecturing was his chief occupation during hal the year. His esgiven to many audiences before he thought them good enough to print.
His first book, 'Nature,' published in a small edition in 1835, was not a course of lecfor years, and mostly written out in their final form at the Old Manse, or finished in his own study at the home he made for himself in 1835 at the east end of Concord village, and where he died, 27 April 1882. The book attracted
and a second edition was not issued until 1849 , a dozen years having been required to sell at Craigenputtock in 1833 , and with whom he formed then a strict friendship and corresponded until Carlyle's death, saw its value, and so did Alcott, Hawthorne, Parker, Thorcau and a circle of high-minded women, who became his nearest approach to a system of philosophy which he put forth in successive chapters during his whole active life. He planned another and more claborate work, which he called 'The Natural History of Intellect,' and of which he wrote several chapters, intended to set forth he human mind - memory, imagination, reason volition, etc.- but he never brought it to such completion that it could be published as a whole, either by himself or his successive ditors, Mr. Cabot, Dr. Emerson, etc. When as he was in 1870, he threw these chapters and copious notes and readings into 18 lectures wo in a week, but the effort was too great or him at his age and in his failing strength, and could never afterward bring the papers to form for printing. Several of the chapcholar may combine them perhaps some future a single work.
Emerson was actually introduced to noisy public notice by two of his early addresses, which are now printed in the same volume with 'Nature' - his Phi Beta Kappa oration 1838 . The first attracted attention Address of
of mingled with surprise; the second, from its hold appeal to preachers to revise their theology and mect their hearers with original truths, not with traditional forms of religion, aroused the native intolerance of New England to shrill college, of which he was the most ilfustrious graduate, drew Dack in timid aversion from
thoughts alleged to be revolutionary, and it was not until 1807,30 years after his first Phi Beta oration, that he was again invited to address the Student-body, or to receive any collegiate honor,
About the same time (1837-38) he identified himself with the unpopular cause of negro emancipation, with the advanced ideas of Alcott in education, and with several schemes of social reform, which the commercialism of the period viewed with dislike or scornful indifference; and so he alienated another class in the New
England and New York communities might otherwise have been charmed with his literary skill and his peculiar eloquence. Thus his audiences continued small and his writings had little general circulation, until the gradual education of people in his ideas and his phraselogy gave him the hearing that his genius Meanw
Connwhile Emerson was drawing about him nd other New Foston, in Plymouth, Salem friends and a school of thought. a circle of ber of these persons was small. The numtheir enthusiasm was fervent, and their inellectual and social force was considerable woman of genius who drew other women by her
talent and her sympathies, and who had formed a circle of her own in Cambridge and Boston. Among men, the most prominent for a time
was Bronson Alcott, an educational reformer, who had shown insight and eloquence in dealing with the young, but whose talent for conversation was not accompanied by any corresponding gift of expressing himself in writing. Others of the circle were F. H. Hedge, an accomplished student of German literature, afterward a learned pastor and professor at Cambridge; Theodore Parker, equally learned and more radical in opinion; with younger man like William Henry Channing, James Freeman Clarke, Henry Thoreau, Wentworth Higginson, Ellery Chaming, S. G. Ward, Marston Watson of mediate acquaintance, Mrs. Sarah Ripley, the most learned woman of New England, who had married Emerson's uncle, Rev. Samuel Ripley; her brother, George Bradford; Miss Elizaheth Hoar, an accomplished woman, betrothed to Emerson's brother Charles (who had died in
1836), and Emerson's own aunt, Mary Emerson, who at times favored and at times opposed the movement in which her nephew was engaged. This movement presently was called, rather than called itself, "Transcendental" - the term borrowed from the phraseology of GerNew England to the meaning it had in Germany, and indeed used loosely in America with no fixed meaning. Its followers were in fact idcalists of various shades and divisions of hought and speculative philosophy, whose or isting four years ($1840-44$) called The Dial, ex tacle of much youthful literature and many carnest essays toward the reformation of socicty in education, morals and politics, Its first editor were Margaret Fuller and Rev. George Ripley Farm; but of the famous community at Broo influence in its councils, its proprietor and editor, associating Thoreau with himself in editing it. Hence much o the carlier writing of Thoreau first came out in The Dial, as did that of Emerson and Margaret Fuller and Theodore Parker. Fo essay, as he did in December the introductory essay, as he did in December 1847 for a kindred venture, the Massachusetts Quarterly Review writers. In these two brief essays must we stil look for a characterization of the so-called franscendental movement, so unimportant in its first appearance, yet so momentous afterward in determining some of the chief results of the
Civil War of 1861-65. In The Dial Emerson spoke of it as "the progress of a revolution," and such it proved indeed to be. He added: Those who share in it have no external organization. no
bade, no crece, no name. They do not vote or print. or even
 and love of its work. ${ }^{\text {mat. }}$. Withut concert or proce
lamation of any kind, they have silently given in their several lamation of any kind, they have silently given in their several
adhenion to ny new hope and in all companies do signiy
greater trust in the nature and greater trost in the nature and rescorces of man than the
laws or the popular

Seven years later, aproaching the same experience of his countrymen, Emerson said in

RALPH WALDO EMERSON
the first number of the Massachusetts Quar-
terly: terly:
The aspect this country presents is a certain maniacal activity, an immense apparatus of cunning machinery.
Which turns out at last some Nuremberg toys. Has it gen.
erated erated, as great interests do, any intellectual power? One
pould say there is nothing colossal in the country but its
gene geography there is nothing colossal in the country but its
ihe itaterial activitiesi that the moral and
trade andectual effects are not on the same scale with the
trand trade and production. . . . It is a poor consideration
that the country writ is precocious, and, as we say, practical
the

 Mive tasted the enjovments of learning, friendship, and
appear polluted, and the staite exists tollowers outcasts. prizes of office
and
The profound discontent so manifested, yet lightened by an ideal hope of better things, Was working in the mass of the Northern
people, as well as in this small nucleus of people, as well as in this small nucleus of York and Ohio. While The Dial had to perish for want of subscribers, the Tribune of New York rose up to more than fill its place; and Margaret Fuller, Thorean, George Ripley and George William Cuiris found Greeley ready to newspaper, which had readers cverywhere. It reported Emerson's lectures, the sermons of Parker and printed the higher criticism of Ripley, Dana and Margaret Fuller. Political parties began to be formed on ideal issues and umphant majorities here and there
In this escape out of the ideal into the practical Emerson rather unwillingly found himsclf involved. He began to be popular, and his books, which up to 1850 had scarcely paid for of moderate pincome the had followed up the publication of essays in The Dial by the issue in 1841 of a volume selected from his earlier lectures and essays, a second series in 1843, a collection of his orations annexed to a reprint of 'Nature' in 1849 , and in 1850 his most
cffective book for European recognition of his high quality, the 'Representative Men.' All these books had been lectures mainly, though much changed in publication, as may be seen by reading the omitted passages cited in the of his to Dr. Emerson's Centenary E,dition of his father's books, issued in 1904. And by
1850 Emerson had become a widely-sought lecturer and went as far west as Galena and Saint Louis, though practically shut out of the slaveholding States by his pronounced anti-slavery in 1841 which began to be made public by him 1844. This wider hearing as lecturer wa fortune which had made him independent since 1832 had become involved in railroad speculations by the ambition of a classmate at college and yielded him little revenue for years. The Way had been prepared for his extended reputavisit in England and on the continent by his sively in England and Scotland under arrangements made for him by Alexander Ireland of the Manchester Guardion and by his friend Carlyle and others in London. He had even aroused the envy of Mrs. Carlyle by his welto which he had access through his friend
vol. 10- 19

George Bancroft and Charles Sumner, as well as by the simple dignity of his own manners, which admitted him ceverywhere in the exclusive society of great cities. On this visit he saw and made acquaintance in England with Arthu Hugh Clough, Matthew Arnold, Froude and others of the rising young men in literature, as well as the older men of letters whom he met at the breakfasts of Rogers and in the circle to which Carlyle, long resident at Chelsea, be longed.
Emerson had ever been more forward to press with his own. The first edition of 'Sartor Resartus' in America was introduced by him in a preface, and he took charge later of American editions of the 'French Revolution' and the author received from sales in America before 1842 about $\$ 1,000$, which he assured Emerson was more than he had then got from his books (not his review articles) in Great Britain. Emerson also edited the first edition of Jones Very in Ellery Channing and Thoreau from 1840 to 1854, when Thoreau issued the second of the only two volumes published in his lifetime. Altogether, for Carlyle, Margaret Fuller and his other friends, he had caused to be printed three times as many volumes as appeared of his own writing during the 20 years after his
second marriage in 1835 . In 1852, while in the midst of his lecturing popularity, he paused at Buffalo, N. Y., from one of his extended tours lo urge on his friends at Plymouth to gratify the ambition of Ellery Channing, who would figure as a lectror W as a poct. "Plymouth Evelyn," as Alcott styled him, thus (4 Jan 1852):

Mr. Scherb is a very proper person to take a part in Mr. Scherb is a very proper person to take a part in
your sesies of Sunday lectures. and will gladily do so. fone
other person Isould like well to have engege, my fried
Ohlery Channing But I dare no lecture for your purpose, dare notil I haite his say he has any Future. Both the others of his three
though they are full of wit and criticism or sarcas; and
round the compass, be nceds practice and pruning. I am round the compass, be nceds practice and pruning
sorry on his very acount to leave home just now; for
more that he should lecture than that In should.

As a poet Emerson had been slightly known to his youthful associates in college and elsethe customary poem for the Phi Betta Kappa anniversary at Harvard and did so. But he was dissatisfied with it and for some years after did not publish verses. In Louisville, Ky., for printing in the Western Messenger of Louisville and Cincinnati three poems of his earlier composition, and he continued to print others in The Dial. In 1846 he collected these and others in a small volume, printed in Boston and London in 1847, and he issued another volume, largely made up from contributions to the
Atlantic Monthly, in 1867 . His son has added many pocms and fragments in the final edition, so that it is now possible to judge of Emerson as poet by a perusal of all that he wrote in metre. At first his verse attracted little attention, except by parodists, who viewed it as
something comical and to be satirized; this he had expected, for it had happened with his
prose also. But cven those who admired and quoted his poetical prose were rebuffed by his years after the volume of 1847 did it begin to be recognized that here was a philosopher putting his thought into oracular verse, some of wont to be. Since 1884, when at the summer scssion of the Concord School of Philosophy this feature of his poetry was set forth, it has become a fashion to interpret it in readings; and the essence of his deeper philosophy is best given in his verse; a key to the whole Emer-
sonian theory of the universe being found in the oracular 'Sphinx' of the first 'Pocms,' where it stands at the beginning as befits a key. Besides this philosophic quality there is also much of the high literary character in single poems devoted to love, friendship, patriotism Had it been predicted professors were scoffing at Emerson's verse and declaring his philosophy unintelligible, that 60 ycars later Harvard would be teaching philosophy in a spacious hall named for Emerson and and friends, the prophecy would have been classed with almanac presages of the weather. Yet that very thing has happened and happened partly in consequence of the 10 years' continuance, from 1879 to 1888 , of the summer school of philosophy and litcrature just mentioned. This school carried out an early dream of till Emerson's death in April 1882 and Alcott's stroke of paralysis in the following October. It
brought together speculative men of different brought together speculative men of different
schools, all in their way idealists, and it raised schools, all in their way idealists, and it raised
into prominence Emerson's share in quickening into prominence Emerson's share in quickening
and deepening philosophic ideas in America. and deepening philosophic ideas in America. a masterly summary of English history and
character, in 1856; in 1857 he became a leading writer for the new. Atlantic; in 1860 published the 'Conduct of Life', in 1864, 'Society and Solitude'; in 1874 a sclection of poems (omit'Letters and Social Aims,' edited by his subsequent hiographer, Elliot Cabot. During the Civil War he was a frequent orator for the Union and emancipation, and his political specches have been posthumously collected in a
volume of 'Miscellanies,' published in 1883 and enlarged in the Centenary edition. A volume of 'Lectures and Biographical Sketches) (1883 and 1904) gives his posthumous lectures and personal tributes, and a final volume (1893 and 1904), 'Natural History of Intellect,' gives others, and a gencral index, long needed.
books does not well agree with the titles, and there are still other volumes promiscd from Emerson's journals and letters, although these have been much drawn upon in notes to the 12 volumęs already issued. It remains for some future editor to arrange the writings with a
better regard to their chronological sequence, since the estimate of Emerson as a writer depends somewhat on the observed growth and decline of his powers as in the analogous cases of Plato and Goethe.
It is in the class with these two world-
hereafter. Less copious and less imaginative han cither Plato or Goethe, he is not les original than they, and his expression of pro-
found thought and ethical truth was guided by a taste oftent and ethical truth was guided nerism and many repetitions are found in his books as in theirs; many apparent inconsistencies also, as with them. But these last grew
of the development of his thought and his inreasing perception of the complexity of the two worlds, Nature and Man. Of his many biogra phers and critics few have fully comprehendec aim - they furnish matcrial for final judgment rather than a statement to satisfy future readers
The best, in this view, are Elliot Cabot and Dr Emerson, to whom the world is indebted for much material drawn from the manuscripts and not found in type elsewhere.
Emerson's health and vigor failed after the partial burning of his house in 1872, and hi He continued active for years, though with drawing more and more from publicity by reason of his failing memory. His virtuous and serene nature remained unshaken by these accidents of mortality, and his final illness, though pathetic from his anxiety to avoid bur-
dening others, was short and hardly affictive dening others, was short and hardiy affictive him - Mrs, Emerson, the mother of all, dying in 1892 at the age of 90 . His descendants are numerous, by various names; his friends are numberless, for he never had a personal enemy admiration. See Emerson's Essays; Trancendental Philosopify

Bibliography.-Mcmoirs of Emerson in arious forms began to appear even before his death in 1882, the first good one being by G. W His Life, Writings and Philosophy'; followed in 1882 by Alcott's last book, 'An Estimate of Emerson's Character and Genius in Prose and (Terse.' In 1883, supplemented in 1885, appeared The Correspondence of Carlyle and Emerson, edited by Prof. C. E. Norton, containing much
not found in any biography of either. (The Genius and Character of Emerson. Lectures at the Concord School of Philosophy) (Boston 1884) contains estimates by 12 or 15 literary and philosophic friends. The authentic biography is 'A Memoir of Ralph Waldo Emerson' by Biography is Dr. Richard Garnett's (Life of Ralph Waldo Emerson' (London 1888). Dr. E. W. Emerson's 'Emerson in Concord, a Memoir) (Boston 1889), is a supplement to Cabot's memoir, dealing chicfly with Concord incidents. The largest recent addition to oult knowledge of Emerson's life and writing 15
found, however, in Dr. Emerson's 12 volumes of the Centenary edition of 1904, containing at least 1,000 pages of new matter, with many dates and incidents not elsewhere recorded (Boston 1903-04). Consult also (Letters from Ralph Emerson to a Friend,' edited by C. E.
Norton (ib. 1899) ; Cooke, G. W., (Bibliography of Ralph Waldo Emerson) (ib., 1908); Howells, 'Literary Friends and Acquaintance', (New York 1900); Eliot, (Emerson as a Seer)' (Boston 1904) ; Morley, John, 'Critical Miscel-
lanies) (Vol. I, London 1893) ; Cary (Emerlanies' (Vol. I, London 1893); Cary 'Emer-
son, Poet and Thinker) (New York 1904);

1904born, F. B., 'Personality of Emerson' (ib. sa vic et son ©uvre) (Paris 1907); Harrison 1. S., 'Teachers of Emerson) (New York 1910)'; Maeterlinck, Maurice, 'Emerson and other Essays' (English trans., ib. 1912). An in French studied to Gome extent in Scandinavia he is Greece, Persia and India. The autobiographie 1 M. D. Conway and A. D. White (1904-05) contain something on these points.

Author of 'Life of Emerson.'
EM'ERSON'S ESSAYS. In 1841 Emerso published a volume which he called simply of the same kind he called it (Essays: Second Series.) So these two books - the First and Second Series - may properly be called (Emerson's Essays.' The name, however, may also De taken to cover all of Emerson's work, for ally collections, often had lectures as wener essays, there was no very striking difference between the two forms. Emerson usually Wrote as if he were speaking to some one, so and in essays always have the spoken tone; and in the actual lectures which he really detuered, he gave, his thoughts much the same Says: First Scrics' are, however, both in thought and expression the most characteristic style Emerson cver did. In the matter of style 'Emerson's Essays' are like Bacon's ($7 . v$. .) in one way; they are scrics of reflections If Emerson writes on history or on art, we are not to expect a systematic account of the subfect, complete within the range allowed by its Whih; we have something very different or disconnected cours of thought is not rambling or disconnected, yet the essay makes its im-
pression chicfly by the sense and meaning of each idea as we come to it, by the illustrations or the figures; by the interest of each element, in short, rather than by the round of completed thought which it presents. This kind of exit gives us Emerson's advought with at least, for sincerity and genuineness and permits utmost say exactly what he wants to say and exactly aided wants to say it. His method of writing
and aided in this effort; he used to write down his
thoughts day by day in a 'Journal,' and when thoughts day by day in a 'Journal,' and when
he wrote an essay on any subject he would gather up whatever he had said on the matter at any other time and use it. His 'Journals' have relatively little as to his goings and comThigs about Concord or about the house, but
they are very full of what he was thinking 2bout. And his thoughts were very likely to be not about everyday things, but about larger yuestions and the philosophies of life. One finds in the 'Essays,' then, the real essence oi Emerson's thought-sincere, original, inde-
pendent, undistorted, unadorned, unmingled. pendent, undistorted, unadorned, unmingled.
Fere we have, not mercly what he might think Dn sitting down to write, but the sum and subStance of his thinking on the matter, as it had iiil years simmered and distilled in his mind thus his writing has a very personal quality,
although there is none of the gossipy character which we often think of as belonging to himself, so intent on his thought that we forget that it is Emerson. As to what the thought is, that will be better found in the article on Emerson. It may be said here, however, that broad scnse namely self and the universe that enables a man to get the best out of life. Two comments may be quoted: one by Lowell from 'My Study Windows' who said of Emerson's later lectures that even if the meaning were not always clear, passed that way; and the other by Matthew Arnold in 'Discourses in America.' that whatcver Emerson might be as poet and philosopher, he was pre-eminently the guide and companion, of those who wish to live by the spirit. The
'Essays' and 'Journals' may be compared in 'Essays' and 'Journals' may be compared in Waldo Emerson and Waldo Emerson Forbes.

Edward E. Hale.
EMERTON, Ephraim, American historian: b. Salem, Mass., 18 Feb. 1851. He was graduatcd at Harvard 187 and studied in Leipprofessor of ecclesiastical history 18 , and His works include : 'Synopsis of History of Continental Europe' ; 'The Study of Church History' : 'The Practical Method in Higher Historical Futucation' (1885); An Introduction to dixval Europe) (1804). (Deside (1888) ; 'Mc(Herocs of the Reformation'; 'Sir William' Temple und die Tripleallianz vom Jahre, 1668). 'Unitarian Thought' (1911).
EMERTON, James H., American naturalist and illustrator: B. Salem, Mass., 1847. He is the illustrator of Packard's 'Guide to the North America): Verrill's papers in (Reports of the United States Fish Commission' (1884). and Minot's 'Embryology.' He is the author of seven papers on "New England Spiders" in the 'Transactions' of the Connecticut Academy; The Structure and Habits of Spiders States) (1902). Emerton constructed anatomi cal and zoological models for musetims at Cambridge, New Haven, New York and Washington.
EMERY, Henry Crosby, American econo mist: b. Ellsworih, Me., 21 Dec. 1872. In 1892 at Harvard, Columbia and Berlin. From 1894 to 1900 he was instructor and professor of political economy at Bowdoin and from 190 to 1909 was protessor of political economy a Yale. In 1909 he was made chairman of the United States Tariff Board, but returned to his ation on the Stock and Produce Exchange of the United States' (in 'Columbia Univer sity Studies' (1896); 'The Tariff Board and Its Work' (1910); 'The Work of the Tariff (1911): ('Politician, Party the Cotton Industry (1911) ; 'Politician, Party and People' (1913);
Some Economic Aspects of War) (1914)

EMERY, John Runkle, Americn juris Flemington, N. J., 6 July 1842; d. Morristown, N. J., 30 Jan. 1916. He was graduated
at Princeton in 1861 and at the Harvard Law School 1864. He was admitted to the New New Jersey from 1895 to 1 Jan, 1916, when he retired under the veteran retirement act.
EMERY, Stephen Albert, American mu sician: b. Paris, 1841; d. 1891. He studied at Leipzig where among his masters were such lights as Hauptmann, Plaidy and Richter. He removed later to Dresden and continued hi turn to America he became instructor at th turn to America he became instructor at the was three years in this position when he became professor of harmony and counterpoint at the newly founded College of Music of Bos ton University. He wrote pianoforte pieces, forte playing and the elements of harmony.

EMERY, an impure variety of the mineral orundum (q.v.), reddish brown, black, blue he hardest mineral known but is not crystal lized. It consists of nearly pure alumina (65 to 75 per cent) and oxide of iron and a smal amount of silica and water. Emery occurs in
large boulder-like masses, closely resembles a fine-grained magnetite ore in texture and is ften mistaken for it. In its native form its value as an abrasive has been known from the earliest times and many references are made was used in Greek aud ors. Then as now it was used in cutting and polishing jewels and harder rocks and in polishing marble. It was undoubtedly used by the Egyptians and there are many evidences of the use of it or as har substance in the manufacture of prehistori tone implements
As now used, in its pulverized form, it is ne of the most useful substances known to the and stamping-mills and separated into powder of varying degrees of fineness by screens or by lutriation. These powders, varying from par ticles one-tenth of an inch in diameter to the
fnest flour, are sprinkled with water or oil upon the lead wheel of the lapidary or spread upon wood, paper or cloth to which a thin layer o glue has been previously applicd; or as has been found to be its most effective application, mixed with various adhesive substances and molded into solid wheels. Emery-stones of various shapes and sizes are also made in the same

Emery-wheels are now made up to 36 inches in diameter and from four to six inches in thick ness and in every variety of coarseness from rough shapers to fine polishers for brass and secret with the manufacturer and upon this and upon the quality of emery used denends the cost and the subsequent life and usefulness of the wheel. Properly mounted and turned at a proper speed it is our most effective cutting tool, tearing its way rapidly into chilled castings that the best file will not cut, or taking the teeth be observed are uniformity of texture that the wheel may wear away evenly under use; carefully fitted bearings, that there may be no vibration under the high speed at which it is run;
the wheel must not be fitted closely to eithe the whecl; and the lest expansion by heat bur wheel must be able to resist the tendencies to centrifugal disruption and to melting under the heat generated by its friction with the objec being cut. Its effective speed must have bec determined and tested and the degree of pres-
sure with which the work is to be applied must sure with which the work is to be applied mav become misshapen through use are turned true hy various special contrivances, all of whic must have a cutting edge of rough diamond Same manner same manner
the island of Naxos and from is chiefly from Turkey. A small amount is mined near Chester Mass., and Pcekskill, N. Y., and it is found in insignificant quantities elsewhere in the United States. Corundum and precious sapphirc hav Consult Merrill, 'Non-Metallic Minerals' (Nes York 1910) and Pratt, 'North Carolina Gcolog ical Survey) (1905).

EMERYVILLE, Cal,, city in Alameda County, on San Francisco Bay, near Oakland on the Atchison, Topeka and Santa Fc Rai road. It has large stockyards, packing-house fon foundries, paint and rubber works, cracker Park, so named from an Indian mound, is the most noteworthy feature. Pop. 2,613.
EMESA, an ancient town, now called Hems. See Hems.
EMETIC, any agent used to induce vomit ing. In medicine the emetics that are used ar now few in number. The main object to be a taincd by their use is to empty the stomach
irritating or poisonous contents. As most emetics act strongly on the sympathetic nervo system, they also cause muscular relaxation, d lated arteries and a sense of wcakness, a mount ing at times to collapse. Emetics are usuall classified as local or as systemic - those act
ing directly on the stomach walls, such as luke warm water, mustard, alum and the more vio lent corrosive metallic salts, or those, as coppe sulphate, whose influence is excrted on the cen tral nervous system, after first being absorbe into the blood. Of these tartar cmetic, ipecac uanha and apomorphine are examples. Emetic
should be given with caution. In children par ticularly the stronger emetics often cause grea prostration and if a child be suffering from discase that causes heart weakness, such a diphtheria, emetics are not advisable. In case of poisoning emetics should be promptly given hut washing out the stomach by means of
flexible rubber tube is preferable. It is some times justifiable to give emetics when ther seems to be danger of asphyxiation from re tained mucus in the bronchial tubes. The relax ation following emesis is sometimes remarkahle See Toxicology.
EMETINE, an alkaloid occurring in ipe cacuanha and constituting its chief active prin
ciple. It can be extracted from ipecacuanh iple. It can be extracted from ipecacuan ammonia and extracting with alcohol. From he total alkaloids so isolated, emetine is sepa rated by extraction with cther in the presenc
tablished with certainty, but is considered to be $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{~N}_{2}$. Emetine is suaringly soluble in in ater and in ether, though it dissolves readity various al, chloroform, carbon disulphide and turned to a yellow by the action of sunlight When taken internally in considerable doses it acts as a powerful emetic, to which circumstance it owes its name.

Emeu. See Emu

EMIGRATION, the removal of the population of a country or region for the purpose of the movement of population from the States States 10 the Western, or from the Northern to the Southern is properly termed emigration The statistics are kept as to such movements cign removals from the United States to for Commissioner General of Immigration the embodied in his annual report to the Secretary or Labor
in the United States two classes of emigrawho came recognized: first, the flow of aliens to their into the country as immigrants back of United States citizens to othe emigration For the fiscal year ended 30 June 1921 the numbered emigrants included in the first class compared with those of previous years to gain a iair estimate of emigration under normal in 1010 In 1920 the number was 288,315 308,190 ; in 1911-12, 333,262 - - the largest record for any one year. The influence of the war is reatily noticeable. Of the total alien emigration or the year 1921, 58,584 were women. By race or people these departing emigrant aliens were
divided as follows: African (black), 1,807 ; Armed as follows: African (black), 1,807 ; 564; Bulgarian, Serbian, Montenegrin, 9,940 ; Chinese, 5,253; Croatian, 3,306; Cuban, 1,059; 2utch, Flemish, 2,405; English, 11,622; Finnish, 13,470; French, 3,836 ; German, 6,770; Greek, Italian (south), 37,032 ; Iapanese 4, 4,352; Lithuanian (south), 37,032; Jananese, 4,352; Lithu-
$\mathrm{P}_{\text {olish }} 4,57 ;$ Mayyar, 12,457 ; Mexican, 5,519 ; 8,603. 42,207; Portuguese, 5,144; Rumanian Scotch, Russian, 11,085 ; Scandinavian, 6,944 Spanish-American, 1,536 ; Syrian, 1,599 ; Turkish, 656; Welsh, 167; West Indian (except Cuban),
The number comprised in the second class tion of Uut as the only considerable emigra he figures must be obtained from the record these the Canadian Immigration Office. From he United appars that 48,09 former residents of 3 the fiscal year ended 30 June 1921 . It is sionificant fact noted by Canadian officials that stits immigration from the United States con for thed 32.4 per cent of the total immigration or that year.
ion from reports show that since emigra Kan in 1898 and 1899 the nutes into Canada be grants totals $1,350,000$ persons - out of a grand tal of immigration of about $3,600,000$ from

11 countries; ard ahout 250.020 other residents fion United Statrs have heen refused admis
sion in the same period because of their undesirable character or destitute circumstances The earlier emigrants were chiefly former Canadians who had settled in the United States, but returned to take advantage of improved group numbers of European immigrants who did not become naturalized in the United States. The larger part of the more recent emigration rom the United States into Canada has been of American-born citizens who have been attracted by the inducements of the Canadian
Provincial land offices and by the great mining opportunities in Western Canada, made available by the completion of the Canadian transane by the completion of the Canadian trans-
continental railroads. See Unitrd States-
Immiration to.

EMIGRES, â-mẽ-grä', a French term for hose who have been compclled to leave their country on account of religious persecutions, as tury, or for some other causes. The term however, is now most commonly applied to those Frenchmen, many of them of noble family who left France at the commencement of the first French Revolution. Princes, nobles and prelates crossed the fronticr into Switzerland, far as Italy. Their conduct made the position of Loutis as a constitutional monarch untenable for they were constantly plotting with th enemies of France. Proscription followed: bet ween October 1792 and the dissolution of the convention more than 300 laws were passed relatives who remained behind were formed into an ostracised class, deprived of civil rights and obliged to live under police supervision and exposed to all manner of special fines and exactions. 1186 relatives were on the list of proscribed. Vast interests depended on the property formed part of the security on which the assignats had been issued, and the granting of an amnesty and reclamation would have made the assignats so much waste paper and brought the social fabric to ruin. At the head of the emigrants stood the royal princes of
Conde, Provence, and Artois, the first of whom collected a part of the fugitives to co-operate with the allied armies in Germany for the restoration of the monarchy. At Coblentz 2 particular court of justice was established to settle causes relating to the French emigres Dumouriez drove them from these provinces in mid-winter in a deplorable condition, while their number was daily increased by the system of violence and terror carried on in France. The corps of Conde was finally taken into the Russian service, and was disbanded in the Russo-Austrian campaign in 1709 . When first acts of grace to grant permission to all but a few of the emigrés to return to their country, but by the terms of the charter of 1814 they were precluded from regaining either their status or their ancient privileges. During the Restoration period they persistently petitioned reinstatement and indemnification but thoug
a government grant was made for their compensation, the measure was rendered abortive lements colevolution, One of the largest setTowanda, Pa., was made at the place now called Rummersfield on the Lehigh Valley Railroad in
Bradford (and formerly in Luzerne) County Here, from 1793 to 1800 , was a centre of French refinement, to which luxury-loving parties from the coast cities came for the purchase of articles from Paris and students for the language. The place was called Azilum, Asylum or Frenchtown. Consult Murray, 'The Story of Some French
EMILE. After all deductions have been
made Rousseau's 'Emile) or 'Emilius' (1762) remains our most important treatise on educa tion. It is so, not necessarily because its prin ciples are sound or its logic always convincing, but because it is a clear and unequivocal statement of a theory formulated by one, who what testably one of the greatest artists of the 18 th century.
Rousseau's artistic instinct led him to cast his work in the form of a romance, as is indicated y the title 'Emile' and it should be considered as such, the story of a lad's progress from in-
fancy to maturity, from helplessness and dependence to complete mastery of self and assurance in independent activity. It is unfair therefore to consider it as a practical manual or guide for teachers, the details of which can be ransferred without change to the schoolroom. It was its character as romance, furthermore, Rousseau realized that the situation there assumed was most unusual and could not often, f ever, be duplicated in real life. He sought, herefore, to inculcate not so much a practica nethod of procedure as the principles on which ay such method should be based. These pringencral philosophy, and it is by them that his theory of education must stand or fall.
Underlying his treatise we find everywhere the two cardinal Rousseauistic assumptions which are the heart of his doctrine - man is his native goodness. For this reason a large part of the work of Emile's tutor is negative consisting in preventing misleading contacts and the remainder lies in guiding and directing natural desires and tendencies rather than in inculcating aims, aspirations, or what is teach any traditional body of knowledge, hut s entirely utilitarian, directed toward developing a healthy, vigorous, right-minded citizen. He insists everywhere on the natural, the normal and the favor which these words have since enjoyed in connection with education is
sufficient testimony to his influence. As any just criticism of Rousseau's philosophy involves criticism of his doctrine of education, w efer to the article on Rousseau where his heories are considered more at length.
EMILIA, ā-mèrē-ā, Civision of Central Italy, comprising the provinces of Bologna,
Ferrara, Forli, Modena, Parma, Piacenza, Ferrara, Forli, Modena, Parma, Piacenza, derived from the ancient Via Æmilia and was
built by the censor Remilius Lepidus in B.C. 186. It is a continuation of the Via Flaminia, which passed through these territories. Area
7,993 square miles ; pop. $2,740,316$. Prior to its inclusion in the kingdom of Italy, in 1860 , it consisted of the former duchies of Parma and Modena and the papal Romagna
EMIN PASHA, a'men pash-a, or pash'a (Eduard Schnitzer), African army surgeon, Oppeln, Prussia, 28 March 1840; d. October 1892. He was educated at Breslati, Berlin and Königsberg, going to Turkey in 1864 and being appointed surgeon in the Turkish army 1865 .
In 1875 he went to Egypt, becoming surgeonIn 1875 he went to Egypt, becoming surgeon-
general of the Egyptian army under Gencral Gereral of the Egyptian army under Geno made him governor of the equa-
Gordon, torial provinces in Sudan. He made several exploring expeditions, his route surveys extending to over 4,000 miles, and gave to the world much information in reference to the fauna and flora of that region, together with much geographicai knowledge. He also showed him-
self an enlightened ruler, and was strongly opposed to the slave trade. He was cut off from relations with the rest of the world by the insurrection of the dervishes under the Mahdi in 1883, although maintaining his position. The Egyptian government made him a pasha 1887. Rescucd hy Stanley in 1888 he entered the
service of the German East Africa Company in 1890. He went with Dr. Stuhlman to East Africa upon an exploring expedition and was assassinated at the instigation of Arab slave
raiders. Consult Schweitzer, G., 'Emin Pasha' (2 vols., London 1898).

EMINENCE, as a designation of cardinalitial dignity, is of comparatively rccent introduc-
tion; it dates from the 17 th century. Down to that time the cardinals werc addressed hy the titles Most Illustrious. (Illustrissimus), and Most Illustrious Lordship (Illustrissima Dominatio): but in 1630 Pope Urban VIII promulgated a decree, drawn up in accordance substituting for the previous formulas Most Eminent (Eminentissimus), and Eminence (Eminentia), respectively. No dignitary but a cardinal (or by exception the Grand Master
of the Knights Hospitallers of the Order of of the Knights Hospitallers of the Order of Saint John of Jerusalem) was to be addressed in this form. Further, a cardinal was to ignore any conmerm; and any prelate who assumed the title Eminence, or Most Eminent, was made liable to penalties. The title was also applied in the Roman Empire in its later days to the emperors and the highest officials.
EMINENT DOMAIN, the power of the State to appropriate private property for putblic use on payment of just compensation to the
owner. A superior right of property subsists in a sovereignty, by which private property may, a sovereignty, by which private property may,
in certain cases, be taken, or its use controlled for the public benefit, without regard to the wishes of the owner. The highest and most exact right of property is immanent in the government, or in the aggregate hody of the
people in their sovereign capacity, giving the people in their sovereign capacity, giving the in the manner pointed out by the constitution and the laws of the various States, wher the

Public good requires it. There seems to be no objection to considering this right, theoretically at least, as so much of the original proprictor-
ship retained by the sovereign power in granting lands or franchises to individuals or corporaing lands or franchises to individuals or corporaoriginal proprietorship prevails. Extraordinary and unforeseen occasions arise in cases of extreme necessity in time of war, or of immediate erty impending danger, in which private proporty may be impressed into the public service, use, or be seized and appropriated to the public consent of the owner The power exists only in cases where public exigency demands its exercise. It makes no difference whether corporeal property, as land, or incorporeal, as a the right, is to be affected by the excrcise of of the United Is part of the constitutional law prived of his property by eminent domain except it be taken for public use, by due process of law, and for just compensation. The first condition has been held by the courts to indirectly not only public improvements carried on docks, fortifications, etc., but also private of semi-public undertakings, as railroad bridges, atc. There exists some difference of opinion The what constitutes "due process of law." ings, usual method is by condemnation proceedings, determined by general law. These are tion, or a referee appointed for the purpose, just as any equity suit. The final step is an order of condemnation and award. The legislaProvided the owner is given notice of the pro-
proces, ceedings contemplated. Just compensation theans payment of the full value of the property taken or of any interest thercin, whether vested or contingent, prescent or futurc. (Scc Sover$E_{\text {IGNTY }}$; Taxatron). Consult Cooley, 'Treatise
on the Constitutional Limitations which Rest In Constitutional Limitations which Rest
upon the Legislative Power of the State) (7th upon the Legislative Power of the State) (7th
A.d., Boston 1903); Kent, 'Commentares on American Law'; Lewis, 'Eminent Domain' (2d (2d ed., Saint luis 1888) ; Randolph, 'Eminent Omain' (Boston 1894).
EMINESCU, â-mên-ĕs'koo, Michael, Rumahian lyric poct: b. Botuschani 1849; d. Bucatest, 27 June 1889. After recciving his eduRumania and was appointed he returned to University of Jassy. He was for a time editor of Timpul, a strong Conservative journal, and he ficrceness of political strife would seem to have spoilt his fine poetical genius. He died tme madhouse. His fame rests on his first volmostly elcgiosatiric, and touch questions political, social, religious and moral: all of his cimight being pervaded by the philosophic pesimism of Schopenhauer, who influenced him EMIR.
EMIR, èmèr, or AMEER, ê-mēr' (that is, East and in North a title of honor given in the descent from Mohammed and his danghter Fatha. These emirs are found in Arabia, where they are the chieftains of the Bedouins. Their Origin, however, is doubtful. In Turkey they
form a kind of hereditary nobility, and wear a a badge a green turban, as Mohammed is said to have done. They have certain privileges, but otherwise no higher claims to civil offices than
other Mussulmans. The word cmir is also applied to certain offices and cmployments, for example, evinir hadji, conductor of the pilgrim ish horse; emir-bazar, overseer of the markets: emir-alem, the Turkish standard-bearer; emiral Unara, prince of princes. The title emir-almumenin, commander of the faithiful, was borne was much more generally assumed by nobles and princes of high rank. It was borne, for instance by the Thaherids and Samanids in Persia, by he Tulunids in Egypt and by the first seven Ommiads of Cordova, Spain. There were also tine, who represented Mohammedan clans con verted to Christianity.
EMMA, Adelheid Wilhelmine Therese, queen dowager of Holland: b. Arolsen, Germany, 2 Aug. 1858. She was the second daugh-
ter of Prince George Victor of Waldeck and Pyrmont, and was married 7 Jan. 1879 to King. Wiliam III of Holland. She is the mother of Queen Wilhelmina of Holland, and was queen regent of the Netherlands after the death of illiam III 23 Nov. 1890 until 6 Sept. 1898 wher haughter ascended the throne. She took an active interest in charities, especially
EMMA. From the time of its publication in 1816, this has been one of the most highly reIt is the fruit of matured artistry, meditated observation and ripened judgment. The plot involves rather more strands than is customary in her work, but the main line of action is simple. Emma Woodhouse, the youthful heroine, is much given to matchmaking. Having of the story, she sets herself to bring about other marriages among her friends and acquaintances. But the men and women around her are not mere pawns; they act in unanticipated ways; unsuspected factors alter situations; and in the resulting comedy of crrors herself has fallen in love. Difficulties and mis inderstandings are smoothed away and she is happily married. The easy, natural development of the action, by means of incidents and conversations so normal in aspect as to conceal the artistry of their conception, is espe-
cially noteworthy. Plot, however, is sulsidiary to characterization. The book abounds in living personalities: the aggressive, vulgar Mrs. Elton; the valetudinarian father of Emma, with his taste for thin grucl; the immortally loquacious, tender-hearted Miss Bates; the admirable, thoroughly sensible Knightlcy; and Emma
herself. It is one of the triumphs of Miss Austen's art that, despite the writer's fears "I am going to take a heroine whom no one hut mysclf will much like," she had observed Emma is one of her most fascinating creations; the girl is fundamentally generous, sincere and
affectionate; her olvious faults but serve to make her more richly human and appealing. In recounting the experiences of these delightfully normal but highly individualized char-
acters, the author has presented us with an account of English village life remarkable for ight, related with amused tolerance and unobtrusive irony, in a style easy, limpid and abso utely adequate. The nove is not a complete world the stormy passions of metery of no place here. But what is done is done supremely well. The ordinary occurrences of ordinary lives are transmuted into the pur oold of literature. Consult Howells, W. D., 'Heroines of Fiction'; Cornish, Francis Ware, of Jane Austen'; Scott, Sir Walter, 'Review of Emma' (Quarterly Revierv, Vol. XIV, 188) George B. Dutton.
EMMANUEL COLLEGE, founded in connection with Cambridge University in 1584 ion. The chapel was designed by Wren. John Harvard, who gave so liberally to education in
America, was from this college. It consists of master, 16 fellows and 36 scholars. In 1913-14 there were 74 undergraduates.
EMMANUEL MOVEMENT, The, So named after the Emmanuel Church, Back Bay, Boston, Mass. The movement was started by the rector of the church, Rcv. Elwood WorMcComb, D.D. Dr. Worcester had been residing in Philadelphia, where he enjoyed the great nerve specialists of the country. Ncithe of the leaders of the movement had studied medicine, but Dr. Worcester had not only studied psychology under Wundt at Leipzig but for several years had taught the subjec he sulbject at Oxford University. In 1905 work was begun with a tuberculosis class and in 1906 similar work was begun "among the nervously and morally discased." From the first, the movement had the co-operation of several lead ing physicians. Dr. Cabot of Boston, Dr
Barker of Johns Hopkins University, Ir. Put Barker of Johns Hopkins University, Dr. Putsubjects as worry, anger, habit, suggestion, inomnia, nervousness, what the will can do, what prayer can do and similar topics. Patients were given mental treatment along with the time the movement attracted considerable at ention and the Emmanuel Church had many mitators in nearly all denominations. At th present time it seems to have nearly passed away. Consult (Religion and Medicine - The wood Worcester, Samuel McComb and Isador H. Coriah, M.D. (1908) : 'Faith and Health,' by Charles Reynolds Brown (1910).

EMMAUS, č-mả'us or ěm'mâ-ŭs, Palestine, (1) A village, about eight miles from JeruThe exact location of this village is not known he modern El Kubebe, 60 furlongs northwes of Jerusalem, on the road to Lydda, has in its favor as the location of Emmaus its distance
from Jerusalem and the fact that in 1099 A.D. the Crusaders found the name Castellum Emmaus given to the place. Recently the modern Koloniyeh has been favored by expert
opinion as the site of Fmmans. In its favor is cited the evidence of its name to the coloniz ing of the place and the statement by Josephus a village called Emmaus, 30 stadia from Jeru salem. (2) Modern Amwas, the place mer tioned in Macc. iii, iv and ix. In ancient times medans, this Emmanis was a place of import ance. Its position, about 18 miles northwest of Jerusalem and near the Roman road from Jerusalcm to Jaffa, on the seacoast, made it prominent. It was the capital of one of the time divided. It was known as Nicopolis after the 3d century. Consult Sanday, 'Sacred Sites of the Gospels' (Oxford 1903), and Schürer, 'History of the Jewish People)' (Eng. trans.,

居,
EMMENAGOGUES, ě-mě̌n'a-gŏgz, are agents that stimulate the pelvic organs and arc of the menstrual function if it should regulationt or abnormal Occasionally absence of menstruation is due to anæmia or lack of iron in the blood, in which case taking iron internally, by overcoming the anæmia, restores menstru ation and may be thus termed an emmenagogue. More properly speaking, however, the term is
applicd to such drugs as ergot, quinine and hydrastis. These bring about direct stimulation of the unstriped muscles of the body and hence act most forcibly on the uterus, it being the largest mass of unstriped muscular tissue in the body. Alocs, myrrh and the active cathar amount of blood in the large intestine and other pelvic organs, thercby increasing the nutrition of the uterus. Occasionally massage and electrical applications are used to bring about the restoration of the menstrual flow and hence
may be included in this group.
EMMERAN, or EMMERAM, Saint, maryr, bishop of Poitiers : b. the last of the 6th tember, but the exact date and place of his death is not known. In his own day he was renowned for his piety and learning. His biographer says of him "For his great learning and sanctity he was chosen bishop of Poitiers in the the century; he preached the pure maxims respect of persons." After a time his zeal led him to ask permission to go to Bavaria to nreach to the "infidels and idolators." After three years' work in Bavaria he began a journey to Rome. On the way he was assassinated by men who ben had fade Ratisbon, where he was buried.

EMMERICH, ěm'měr-ǐH, Germany, tow in Rhenish Prussia, on the Rhine, five miles ditches, contains several ancient and modern churches, a gymnasium, ecclesiastical seminary and orphanage, and has manufactures of woolen and linen cloth, hosiery, leather, ma-
chinery, oil, soap, cigars, tobacco, etc.; some chincry, oil, soap, cigars, tobacco, etc., some trade is carried on, chiefly with Holland. Its history dates from the 7th century. In 1233 it came under the dominion of the counts of

Geldern, by whom it was raised to the rank o city, but in 1402 it passed to Cleves. In 1407 elieved to have the Hanseatic League and 0,000 . It subsequently shared the fortuncs of he duchy of Cleves. Pop. 13,418.
EMMERSON, Henry Robert, Canadian wyer and politician: b. Maugerville, N. B.,., 2 legislature in 1888 and was Premier of the province, 1896 to 1900, when he was elected to the Dominion House of Commons and wa Minister of Railways and Canals in the Laurie
administration, 1900-07.
EMMET, Robert, Irish patriot: b. Dublin aw and with lege, Dublin, from which, however, in 1798 he was expelled on the ground of exciting rebellion. Subsequently he became an object o uspicion to the government and accordingly quitted Ireland and traveled on the Continent. He interviewed Napoleon and Talleyrand, the utionary movement He returned to Ireland the repeal of the suspension of the Habea Corpus Act. He now became a momber of the oclety of United 1rishmen, whose object wa establishing the independence of Ireland planned 1803 he was the ringlcader in the badly seizing of Dublin Castie, and in which Lor Kilwarden and several other persons were killed, but which was almost immediately sup pressed. Emmet was arrested a few days after ard, tried and executed by the sentence of erest from the circumstance of his attachment Sarah Curran, daughter of the celebrate arrister. Moore has immortalized his memory Cu 'O breathe not his name,' and that of Mis Curran in the poem beginning "She is far from sult Mader (Lif and Times of Rean Enmet) (Glasgow 1902): O'Donoghue, (Life) (Dublin 1902): 'Robert Emmet: Causes of th Rebellion' (London 1871).
emmet, Rosina. Sce Sherwood, Rosina
EMMET, Thomas Addis, American law er: b. Cork, Ireland, 24 April 1764; d. New York, 14 Nov. 1827. He was a brother o crime of treason was sentenced to exile. H came to the United States and became a note wyer in New York. In 1812 he was electe mey-gencral of the State
EMMET, Thomas Addis, American gyne d. New York 1 March 1919 He was of a dis tinguished Irish family. His father was proessor at the University of Virginia and hi mandfather was a prominent leader of the Irish hovement for independence in 1798 and after of New to America served as attorney-genera Medical College 1850. He served as physician ard Ward's Island Hospital for Immigrants 1052 established his practice in New York in after He was successively assistant surgeon, ing surgeon after 1000 at the Women's Hos
pital. He was also consultant of Roosevelt Hospital. He published 'Principles and Practice of Gynecology' and Yreland inventor of several special surgical instruments and operations.

EMMETSBURG, Iowa, city, county-scat of Palo Alto County, on the Des Moines River, the Burlington and M., the Chicago, Milwaukee and Saint Paul and the Cedar Rapids and other railroads, about 123 miles northcast of Sioux and it is several grain elevators. Some state and it has several grain elevators. Some of the cheese, flour, brick, cement and tile works. It contains a fine lake and a Carnegic library and owns its waterworks. Pop. (1920) 2,762.
EMMETT, Daniel Decatur, American song Witte ant ng min Ohio, 1815: d. 1904. He served in the army, oined a circus company 1835 formed the Brown, William Whitlock and Richard Pelham, appearing at the old Chatham Theatre, New York, and latcr in Boston and in England, where Emmetl remained til 1844. He was with (Dixie) in 1859 He became the famous song returning to his native town 1878 . He was a most prolific song writer and among his productions werc 'Old Dan Tucker'; 'The Road to Richmond' and 'The Boatman's Dance.'
EMMITSBURG, Md., town in Frederick County, on a branch of the Western Maryland Railroa, abour miles more. The town is known chicfly for its two Mary's Theological Seminary (q.v.), just outside the town's limits, and Saint Joseph's Academy, within the town. It contains also the mother-house and seminary of the Sisters of Charity of Saint Vincent de Paul, from Paris. Mother Fliza Scton (q.v.) when establishing the Sisters of Charity in the United States. There are about 1,800 sisters working in different parts of the country who belong to this mother-house. The city contains a public library
and a museum. Its industries include cattle raising and the manufacture of furniture, brooms and hosiery. Settled about 1757, Emmitsburg received its present name in 1785 , was incorporated in 1824, and under a charter of 1911 is governed liy a burgess and three ommissioners. Pop. 1,054
EMMONS, Ebenezer, American geologist: cducated and afterward taught at Williams College, later becoming geologist-in-chief, sccond district, New York State Geological Survey. He introduced the new Taconic stratigraphic systcm, not now in vogue. He was mallege at Albany 1838, and had charge of the geological survey of North Carolina 1858. His works include 'Manual of Mineralogy and Geology' (1826); and 'American Geology' (1856), and the monographs published in the reports of the geological surveys of New York
and North Carolina.
EMMONS, George Foster, American Princcton. T. J 2 July 1884 ., He entered the
navy as midshipman in 1828; was promoted lieutenant in 1841; rear-admiral 1872; and was
retired the next year. He was a member of the retired the next year. He was a member of the Wouth Sea exploring expedition under Captain War: and during the Civil War captured Ceda Keys, Fla., and Pass Christian, Miss., with 20 prizes, in 1862. He served as captain of the heet under Dahlgren, off Charleston, 1863 ; and raised the American flag over Alaska in 1868 He published (The Navy of the United States 5-1853 (1853).
EMMONS, Samuel Franklin, American cologist: b. Boston, Mass., 29 March 1841; graduate courses at the Ecole Imperiale des Mincs, Paris, and Freiberg, Saxony, Mining School, and was a member of several scientific societies, including the National Academy o Sciences and the Geological Society of Amer-
ica, of which he was president in 1806 and 1903. H: was in the employ of the government almos uninterruptedly after 1867 and geologist upon he United States Geological Survey, Colorado division, after 1879 . He made a survey in 1870 of Mount Rainier, the loftiest point in the State of Washington. Among his writings are
Descriptive Geology of the Fortieth Paralle Region' (1877); 'Statistics and Technology o the Precious Metals) (1885); 'Gcology and Mining. Industry of Leadville, Colorado (1886) ; 'Geology of Lower California' (1890) Geological Distribution of the Useful Metal in the United States' (1893): 'Progrcss of the (1893): 'Geology of the Denver Basin in Colorado' (1896); 'Ten-mile District, Colo ado' (1898) ; 'The Downtown District of Lead
le, Colorado' (1907); 'Orc-Deposits' (1913)
EMODIN, one of the active constituents in Cascara sagrada and in other species of the
EMORY UNIVERSITY, an educational institution in Oxford, Ga., founded in 1836 under the auspices of the Methodist Episcopal Church. There are in attendance an average of students
40,000 .

EMOTION, a complex mental state intimately associated with our actions and with mately associated with our actions and with
cxtensive and often sudden physiological changes. Among the more familiar emotions are fear, anger, hate, joy, love, pity, pride, shame, gricf, awe, contempt and surprise. They lmost invariably seem to involve all the fol lowing factors: (1) an expericncing subject
(2) an object toward which they are directed 3) a set of cocxisting actions and physiologica changes on the part of the experiencing sub ect; (4) the mental representation of a future course of action, together with the intention to pursue or to avoid it; (5) a general pleasantess or unpleasantness the to William theory and C. Lange. These authorities regard an motional state as entirely constituted by fac or (3), the set of cocxistent actions and more specially of physiological changes on the part of the experiencing subject. "In their opinion heart-bcats. . . of shallow hreathing ... of trembling lips, . . . of weakened limbs, . . . of
gooseflesh . . . [and] of visceral stirrings. chest is constituted by ... cbullition in the chest, . . . flushing of the face, . . . dilatation of the nostrils, ... clenching of the teeth, . of [and an] impulse to vigorous action." Each our emotions is subject to a similar analy
and nothing is found beyond our awareness of an active response to some excitant object. The consciousness of our own reactions is indeed a factor of the utmost importance in the generation of an emotional state. Whether tain recent experiments as to the nature of the vascular and organic changes characteristic of emotional states appear to tell very strongly against the James-Lange theory. As Prof. Wain,
Cannon writes in his 'Bodily Changes in Pa Cannon writes in his 'Bodily changes and rage and intense elation, for example, the responses in the viscera secm too uniform to offer a satin man at least, are very different in subjective quality. For this reason I am inclined to urge that the visceral changes merely con-
tribute to an emotional complex more or less indefinite, but still pertinent, feelings of disturbance in organs of which we are not usually conscious." The peculiar marks which separate emotion from emotion cannot always reside in
the grosser concomitant actions, for these are the grosser concomitant actions, for these are
by no means invariably present, while on the basis of what Professor Cannon has shown, the visceral aspect of the immediate emotional act is too gencralized to serve as a principle of individuation. The main differentix of the emotions are to be found in the courses of pur-
posive conduct intended by the subject and the posive conduct intended by the subject and the
shadings of pleasantness or unpleasantncss with which the emotional states are tinged. It is not the involuntary organic preparation for flight which makes fear distinct from rage, but the conscious intent to flee; while no state of excitcment can be called elation unless it
distinctly and intensely a state of pleasure distinctly and intensely a state of pleasurc.
The intimate association between emotion and hedonic tinge demands a more thorough analysis, for it is closely connected with one of the most interesting features of an emotion - its directedncss. Both pleasure and the most complex cmotion may have an object. To be pleased or angry at something, or in fear of something. The relation between the emotion and its object is not one of the simple coexistence of an awareness of the object and the cmotion; it is possible, for example, to be conscious of many things and to be annoyed at but one of them. The object need not annoyance may be caused by indigestion, but directed toward those whom one chances to mect. Furthermore, the object of an emotion does not gain its rank as ohject by virtue of a
place in the focus of attention. One may be place in the focus of attention. One may ach annoyed at the buzzing of a mosquito of which
he is but dimly aware, while his main atten tion is directed toward a book which he is reading. It is by no such extraneous means as these that the reference of mental states can be explained. The reference of one experience to another is due to the fact that
the unity of the content of the mind is the unity of a system and not the unity of a mere fortuitous aggregate. The definite directions of
pleasure or emotion can only be explained on the basis of the existence at each stage of psychological analysis of some unanalyzed state and emotion are not themselves simple unanalyzable directed states. From what had al ready been shown of emotion, it is clear that it involves many undirected experiences of the nature of organic and kinæsthetic sensations or images. Pleasure likewise appears to have the doil aspect of a mass of organic experiences, going to make up what may be called a sense mental states. being from our pleasure, say, at a dinner, al hat remains is an act of bare approval. This approval does not appear to be qualitatively disment from that ment, an ethical judgment or a normative judg-
ment of any kind. (See Norm). Similarly active displeasure is apparently composed of a sense of ill-being, accompanied by, and possibly orming a portion of the object of, an act of experproval. The hedonic tone of an emotional experience thus generally seems to involve: or ill-being and (b) an act of approval or disapproval directed toward some definite object It is almost, if not quite, impossible to think of a case where an emotion involves an act of the the objects of the emotion and those of the act are distinct. There seems to be no valid of the emotion with the objective reference of the act. On the basis of this and of what has been said previously concerning the emotions,
it is easy to account for the coexistence of it is easy to account for the coexistence of physiological excitement characteristic of all emotion is present; but it is accompanied by a ackground of organic sensations conforming in entirety neither to that of well-being nor to those of definite ill-being though sensations certain sorts are present; by the approval of or by the intention of pursuine different courses of conduct with regard to the different emotional objects.

The emotions are clearly indispensable for the propagation of the species, the nurture of young, the protection of the individual in times of the race They have undergone a strict process of natural selection. Among the emotions showing the deepest and most recent effects of this natural selection are those that form the basis of the moral conduct. In many Ways our emotions and their modes of expresprimitive existence - thus a sneer is a more mentary unfleshing of the tecth for comblat. (See Æstietics; Feeling). Consult Cannon, W B, 'Bodily Changes in Pain, Hunger, Fear and Rage) (New York 1915) ; Darwin. C., (Exjression of the Fmotions) (London 1873); York 1890) ; Mantegazza, (Phytiognomy and Expression) ; (tr. London 1904) ; Ribot, 'Psychologie des sentiments) (Paris 1896); Stout, 'Manual of Psychology' (London 1899).

Norbert Wiener,
Editorial Staff of The Americana.

EMPALEMENT, a mode of executing criminals, mentioned by Juvenal, often inflicted in Rome, and still used in Turkey and Arabia. sometimes staked in this manner, previous to being
1823.
EMPANEL, or IMPANEL, the placing of the names of jurors on a list, often called a panel from the former custom of using a pane,
late or panel for this purpose. Abroad the term cmpanel is more generally applied to the act o the sheriff, upon whom devolves the duty o naking up the list of jurors who are to be America the term is also used in this sense but is also employed to the selection of a jury to try a particular case.
In the popular sense, therefore, a jury is said to be empanelled when its members have been el as to their qualifications, impartiality, etc and are sworn to try the case
EMPÁRAN, Diego de, dề-à'gô dâ ểmpä'rän, Mexican writer: b. Puebla, 5 April 1718 d. Ravenna, Italy, about 1807. His books, 'The Jesuits and the Pope' (1746), published soo after, entering the priesthood, gained him fiv years imprisonment. he issued a bitter criticism of Church dignitaries, for which he was deposed from the priesthood and imprisoned in the Castle o Sant' Angelo, but released later. His work was burned by the executioner. His othe works include The Tombs of Mohammed and and Superstition). and (Religion and Hygiene.
Empecinado, Ei. Sce Diaz, Don Juan EMP
Martin.

EMPEDOCLES, Greck philosopher: b Agrigentum, Sicily, about 460 B.C. His fellow wished to make him king; but being an enemy to all political forms which elevate a fcw and prevailed on them to abolish aristocrac and introduce a democratical form of govern ment. Aristotle states that he dicd in ob nesus, but there are various legends respect ing the manner and place of his death Empedocles presented his philosophy in a poet cal form. His general point of view is deter mined by the infuence of the Eleatic schoo phers. He assumed four primitive independent substances - air, water, fire and earth, which he designates often by the mythical names Zcus, Hera, etc. These four clements, as they were called, kept their place till modern chemistry dis lodged them. Along with material elements he ating powers, love and hate, or affinity and an tipathy, the first as the uniting principle, the second as the scparating. The contrast between matter and power, or force, is thus brought ou more Strongly by Empedocles than by previous philosophers. His theory of the universe seem out of the imperfect and a periodical pere things to the elemental state, in order to again separated and a new world of phenomena
formed. Of his opirions on special phenomena may be mentioned his doctrine of emanations, y which, in connection with the maxim tha eis known only by like, he thought to ex plain the nature of perception by the senses. H loctrine of the transmigration of souls, his view of which resembled those of Pythagoras. Th ragments of Empedocles have been edited b Sturz (1805); Karsten (1838); and Stcin (1852). Consult monographs by Lommatsch
(1830) ; Raynaud (1848); and Gladisch (1858); (1830) ; Raynaud (1848); and Gladisch (1858); also Windelband, 'Geschichte der gri
Philosophie' (3d ed., Munich 1912).
EMPEDOCLES ON ETNA is a dramatic poem by Matthew Arnold, based on legendary accounts of a Greek philosopher who lived in Agrigentum, Sicily, in the 5th century before Christ. Theointerest of the drama centres in the hilosophical despair of Empedocles and his suicide, which he accomplishes by leaping into he crater of theourses at length on the consolations o philosophy for the benefit of his friend, the physician Pausanias, who accompanies him part way to the summit. Dramatic relief and con trast are provided by Callicles, a young harp-
player, who on the lower slopes of the mountain player, who on the lower slopes of the mountain divinities and the eternal freshness and delightulness of nature
Arnold first published this drama in 1852 ut the volume in which it was contained was ithdrawn from circulation before 50 copies were sold. He reprinted fragments of it in 1853 , at the instigation of Robert Browning. In an interesting preface to a volume of verse pubished in 1853 he explains both why he wrote he poem and why he withdrew it. He had been attracted to the theme because Empedocles, like Arnold himselt, was a troubled spirit wander
ng between two worlds, one dead, the othe powerless to be born - "the calm, the cheerfulness, the disinterested objectivity have disap peared; the dialogue of the mind with itself ha commenced; modern problems have presented hess the discouragement, of Hamlet and o Faust." He had seized upon this parallelism between his position in the 19th century and hat of the Greek philosopher in the 5th cen tury b.c. to express with penetrating power the which sorely afficted his early manhood. As a ritic, however, he felt bound to condemn a morbid, monotonous and painful the representation of a situation "in which a continuous state of mental distress is prolonged, unrelicved by incident, hope, or resistance; in which there is
everything to be endured, nothing to be done" and accordingly ene sured, nothing to be done restoration was justified by its poctic beauty and power, by its importance to an understanding of Arnold's intellectual development and by its illustrational value in the history of W elt schmerz in the Victorian Age. For periodica of Matthew Arnold) (1892) : books on Λ rnold by George Saintsbury (1899); H. W. Paul son (1904); J. M. Dixon (1906); S. P. Sher $\operatorname{man}(1917)$.

Stuart P. Siferman

EMPEROR, the title of the highest rank of sovereigns. The word imperator, from inp perare, to command, had very different meanings among the Romans at different periods. It sig
nified one who excrcised imperium authority, whether in a civil or military capacity. In the atores before they entered on their office. The soldiers afterward conferred the title on thelr general, after a victory, by hailing him imperator; the Senate also called a victorious genera imperator until he had celebrated his triumph became the title of the rulers or emperors who assumed to themselves personally every department and privilege of civil and military mpe rium. Victorious generals were still, however, sometimes saluted with the title imperator, in was lost in the West, tut was kept up in the Eastern or Byzantine empire for nearly 10 centuries. In 800 it was renewed in the West when Charlemagne was crowned, by Leo III, as "Car olus Augustus, the God-sent and pious emperor ors until the dissolution of the by his succean Empire in 1806
The Eastern Empire having been finally overthrown by the conquest of Constantinople in 1453, the imperial dignity in the East became extinct. The sultans, who succeeded the emperors, have never received, in official language, tsia by Peter I in 1721, but the right of the Russian sovereign to its possession was not acknowledged by the German Empire until 1747, by France in 1745, and by Spain 1759. Napoleon adopted the states under the protection, ar at least political preponderance, of one powerful state. Napoleon crowned himself as emperor in 1804; the title fell into disuse at his deposition in 1815, but was revived by his nephew in 1852 , with whom it again ended on 5 Sept. 1870 . In 1806 the first and the German emperor, Francis II, adopted the title of Francis I, Emperor of Austria. In December 1870 the sccond German Empire was formed, King William of Prussia having accepted the imperial office and title offered him Paris. This empire fell in 1918 . Paris. This empire fell in 1918.
crown as imperial and the Parliament is styled the Imperial Parliament of Great Britain and Ireland; but the sovereign has not the imperial title in reference to the home dominions, thoula The sovercigns of Japan and Morocco arc often, though with little propricty, called emperors.

EMPEROR, or PURPLE EMPEROR, name of a butterfly of the genus Apatura. The antennæ are rather long, the ground color of the wings is rusty black, decorated in the male with a purple lustre wanting in the female; seven nes in the fcmale; on the four wings above a transverse white band; an ocellated spot and a larker marginal bar on the hinder ones

EMPHYSEMA, ēm-fĭ-sḕma, a disease of the lungs, in which there is a dilatation of the air vesicles with lack of elastic recoil. It is
most frequently the result of persistent high most frequently the result of persistent high
intra-alveolar tension, acting upon weak lung
tissute. The most important symptoms ar bronchitis, loss of breath with harsh and wheezy espirations, and a certain amount of cyanosis ion in the of the face, due to insufficient oxida on in the lungs.
EMPHYTEUSIS, em-fĭ-tû́sis (Gr. ©implanting"), in Roman law, a perpetual right in to the proprietor. it was secured by contract n condition of improvement, as well as pay ment of rent, and much resembled a feuda holding in the features of perpetuity, etc. See eudal Systen
EMPIRE STATE, a name given to New Iork State because of its predominant wealth ably rendered more vivid by Berkeley's prophecy made at Newport, R. I., a generation previous. "Westward the course of empir kkes it way" was quite common after the political significance. It was not necessarily o overnment but referred rather to the cours of progress in civilization; or, as we say, "ex pansion." As such, it was applied especially to ew York. When the Free Quakers of Phila elphia, led by Colonel Eyre, built their firs delphia, they dedicated it, as streets, in Philaand set in the faende declared, "Erected in the year of our Lord, 1783, of the Empire.'

EMPIRICAL SCHOOL. See Empiricism.
EMPIRICISM (Greek, empeiria, trial, exerience, from the adjective emperros, which seans expert, or experienced in). The philo the criterion of all knowledge; the theory that all knowled of all knowledge; the theory and xisting in the form of particular states of con lousness. As sense, outer and inner, is com miy regarded as the source of this material mpiricism, as a theory of the origin of knowl ge, is nearly synonymous with Sensationalism Customary for representatives of empiricism to explain the connections and relations of ideas by means of the principle of association, the heory is closely connected with Associationism mpiricism, however, is not alone in its appea experience; all modern systems profess to as a philosophical theory it is distinguished by ne particular way in which it envisages the ind and its content. For it, the mind is either merely the place or support of ideas (as for ame that is piven to we stream of a genera processes ; it is not itself a coutributing factor 4 experience, and has no power to supply idea principles which are not already furnished it by the original data. At birth the mind is like a blank shcet of paper: it contains no innate respect and has no original capacity. In this q.v.) Transcendentalism (q.v.), and all theoies which ind in experience some expression of the nature of reason or intelligence.
As a theory of the origin of knowledge, emcompm has the task of explaining how the more of concrete gexprience have been derived from ine simple psychological clements which it as umes as its data. As these elements are par-
ticular and isolated states of consciousness, the most difficult problem for empiricism has been to explain the connectedness of experience, and more especially the nature and validity of general propositions. How can experience, which is by stales, guarantee the truth of universal statements, such for example as are arrived at by science? Since for this theory the mind possesses no general principles in the form of nnate truths it clusions, it is evize as its method of will emand scek to explain universal propositions as derived in this way from particular experiences. In regard to the validity of knowledge, empiricism holds that only those ideas are valid that have their source in and can be traced back
to some original data which can be exhibited in the form of actual impressions or contents of consciousness. In Hume's statement, all ideas are derived from some original impression. If then it is impossible in any case to point to the impression from which our supposed idea is de-
rived, we have to conclude that the idea is no proper idea at all, but only a "fiction" of the imagination. It is by means of this principle that Hume and the empiricists who have consistently followed his lead discredit the idea of the self, and all universal principles and categories which cannot be traced back to some par Eimpirical views regarding the origin criterion of knowledge were maintained by the Greek Sophists, and more systematically by both Stoic and Epicurean schools. In the Middle Ages, the doctrine was maintained in the formula, "Nihil est in intellectu quod non
priusquam fuerat in sensu." But it has been in the modern period that empiricism has been systematically developed and applied as a philosophical doctrine. The name is especially connected with the English school that begins with tives, George Berkeley, David Hume, David tives, George Berkeley, David Hume, David
Hartley, Joseph Priestley. James Mill, J. S. Mill and A. Bain. The views of H. Spencer also are very largely determined by the influence of this school, though his application of the doctrine of evolution leads him to some new that the influence of empiricism has not been confined to any single group of thinkers, trut that it has in a sense formed a general platform for the sciences of mind and socicty. By providing a set of conceptions through which the prehensible, empiricism came to be accepted as a matter of course by writers on psychology, ethics, sociology and education, oftentimes without even being aware that their procedure had committed them to any philosophical position. During the past generation the empirical view of mind and experience has furnished the frame-
work which has largely determined the course of investigations in these fields, even when, as in the case of Spencer, they have been accompanied by professions of allegiance to the principle of development. The truth is that the cmpirical way of representing experience, as
constituted out of atomic "states" or "elements" which unite in accordance with certain principles to form "complexes," is so convincing to "common sense" and at the same time to suc-
cessful in rendering the mind picturable and
lescribable in terms of science, that it appear to be both natural and indispensable. It has accordingly happened that the demonstrations of the shortcomings of empiricism as a philo otably from the point have been furnished notably from the point of view of Kant and the to Hume'), have failed to overthrow the influence and standing of this doctrine in popula avor. The rival view of experience put for ward by Kant and his followers, being more so readily form the basis for investigation no discussion in this field, and so the dominance o empiricism remained almost unshaken. In recent years, however, there are signs that in estigations into psychological and social phe nomena are becoming more fully penetrated and are being carried beyond the atomic and mechanical logic of the older empiricism. This movement beyond empiricism is illustrated by he importance attached to studies of behavio nd function at the present time, and especially arious types of experience in the light of the categories of historical development.
Radical Empiricism. - With the movements described in the last sentences there may be onnected the position outlined by William ames, to which he gave the name of "radica piticism from that of Hume and the English school by insisting that in addition to the subtantive states of consciousness to which the atter had called attention, there are also certain "conjunctive relations" given directly
through experience, and so to be accepted as equally real in a true empirical theory. Radical empiricism thus professes to give a more accurate description of experience than that of the earlier school; it recognizes the fact that experience presents itself as whole and continuous, and not as a series of ciscrete substantive states wholeness and contintity of experience, and at the same time to avoid any appeal to rationa elcments which cannot be themselves experienced as facts. "Radical empiricism," just by being thoroughgoing in its empiricism, believes experienced, without imposing upon it any conceptual form through logical interpretation. Empiricism in Medicine.-The Empiric school of medicine arose in Alexandria in the 3 d century B.C., in opposition to Dogmatism.
The latter supported itself by appeal to the The latter supported itself by appeal to the
theories of Plato and earlier philosophers, while the empirics took Aristotle as their leader. They avoided the one-sided theorizing tendencies of the dogmatists regarding the ultimate causes of disease, and emphasized the practical ends of medicine as an art of therapeutics.
Though the influence of this school was in many respects beneficial in leading to the study of cases, and to careful methods of observation, it tended in the end to resolve itself into charlatanism, and to occupy itself exclusively with a search for specifics. At the present day what is meant by empiricism is the following of acexplanation. A physician uses a drug empirically because he, or others, believe it to be of service, although no reason can be given by
him, nor by others, why it should be of scrvice. Little by little, the real causes of the action of drugs that physicians have used from time immemorial has been revealed by students of
medicine and the reproach that medicine is merely an empirical science and in the sense above defined, has little weight at the present ing Human Cocke, J.: 'An Essay ConcernAn Analysis of the Phenomena of the Human Mind) (1829) ; Hodgson, S. H., (Metaphysics of Experience' (1898); Green, T. H., 'Introduction to Hume) (1874); James, W., 'Essays 'The Relation of Medicine ; Philosophy' (1909).

Professor of Logic and Metaphysics, Cormell University.
EMPIS, an'pe', Adolphe Dominique Florent Joseph Simonis, French dramatist and ceiving a liberal education in his. After receiving a hiberal education in his native city, and the drama. Of the two the latter proved the more successful. In 1856 Empis became administrator of the Theatre Français, which position he retained until 1859. Empis published several plays which have more than a passing, their graceful style, their heightened dramatic situations and their excellent character delineation. Among the best known are 'La Mere et
la fille' (1820); 'Bothwell) (1824); (Un la fille' (1820); 'Bothwell') (1824); 'Un
changement de ministere) (1831); 'Un jeune chángement de ministere' (1838): 'L'Héritiere) (1844). (Les six femmes de Henri VIII' (2 vols., 1854)

EMPLOYERS' ASSOCIATIONS, compose of dealing with or figlting labor organiza tions. They are a special form of capitalistic organization, exclusive of those general com binations (see Combination, Industral) commercial or pal to advance the politict Their history follows the history of trade unions - they have been weak or strong ac cording to the strength of the unions. Two (1) istinct types of employers associations preval (1) bargaining associations; (2) hostile asso while the latter are opposed to every form of collective bargaining.
The bargaining associations aim to check the abuses and excesses of organized labor by en deavoring through deliberation and discussion their cmployees. The employment of labor is treated as a simple business proposition. The first employers' association of national im portance of this type was the United State. Potters' Association formed in 1875. The Stove Founders' Association formed in 1880 of that industry. By 1905 national employers associations representing the stove and furnace making, metal foundry work, lake transporta on, machine construction, publishing and print ing, marble cutting and ready-made clothing ndustries were successful in making working ciations have been stcadily on the increasc. Their organization is essentially similar to tha of the unions. They have local bodies with
national fcderations, and nearly all maintain employment agencies, secret service depart ments (analogous to the walking delegate system) ; control the members who are forced to
agree to measures adopted by the central orgree to measures adopted by the central or anization; issue publications; and he
is a class of hostile employers' association epresents the counteraction of the forces of ag gressive industrial unionism. In many cases the associations were first formed for the purnose of negotiating joint agrecments with the ne breakdown of an agreement, they assumed heir present form. In some cases associations which have been hostile have resumed rela hons with unions.
But there is a strong tendency for an orpanization of this type to develop exclusiv principles and policies which make an agree-
ment with the unions impossible. Their plat form shows absolute disagreement with unionis rinciples. They insist that the conditions o employment shall be determined by the indi Vidual workman and the individual employer an association, or, in many cases, as individuals, have the right to dictate the terms of employ ment and of discharge. Discrimination is nade either against all union workers, or els their number is so limited as to prove in of union in principles is watched for and in tantly suppressed. They deny the privileges of boycott, strike, etc., but do not hesitate to eek redress in event of such crises by em loying strike breakers and spics. This extrem orm hostility takes on a highly anti-socia the hostile associations have begun to realize he vast psychological problems underlying unrest and opposition of laborers; and they at empt to change conditions where there is cvi dence of dissatisfaction. They also endeavo to ameliorate affairs by profit-sharing and welportunitics for advancement. This minimizes the advantages of unionism and secures satis actory results. A striking example of thi ype of reform was evinced by the voluntar Weduction of the eight-hour law into th Among Uoteworthy hostile employers' associations may be mentioned the National Associa on of Manufacturers (q.v.) and the Citizens ndustrial Association of America.
The weakness of the first type of employers ssociation lics in the fact that a consicrable of collective bargaining do not belong to the associations and thus lessen the force of bar Kaining power. The United States government hrough its Board of Mediation and Concilia ion recognizes the fact that agrecments mad unionsen employers associations and trad which form a basis for settling trade problem democratic. Consult Hollander and Barnett, Studies in American Trade Unionism) (Chap 12, 1912): Mitchell, 'Organized Lahor' (Chap
22. Philadelphia 1903) ; Gilman, N. P., 'Mcthods of Industrial Peace' ('Chap. 3, 100.). 'R.
sion' contain valuable studies in mediation and conciliation which are pertinent to the workings of these associations. Consult especially 'Senate
1916).
EMPLOYERS' LIABILITY, a term gen erally used to denote the liability of employer for injuries inficted upon workmen in their em course of their employment an recover damage from their employers only if the employers proved guilty of negligence and if such negli gence resulted in the injury. Employers are not liable for injuries resulting from the obvious occupationar which ber Since an employer is responsible for injuries due to his own negligence or that of his scrv ants, an employee thus injured supposedly woul be entitled to recover damages from the cm ployer. But under the common-law relation of master and servant, as interpreted in foreign nearly all civilized countries save the United States, an employec, on entering service, agrecs to run all the ordinary risks of the service, including injuries that might befall him through negligence on the part of fellow-employces. The so-called absolute duties of the employer are to
furnish a reasonably safe and proper place in which employees may engage in their work, suitable appliances, reasonably competent employees, such as superintendents, foremen and other servants, and rules and instructions when they are reasonably necessary. The employer is liable for gross negligence, for risks of an ex-
traordinary nature involved in the service, and for all acts of negligence, whether committed by himself or by employees, occurring outside the regular service. Modern industrial conditions necessitated a modification of these com-mon-law rules, especially in England, where the extended by such acts as the Employers' Liability Act of 1880 (43 and 44 Vict. c. 42) and the Workmen's Compensation Acts of 1897, 1900 and 1906 (60 and 61 Vict. c. 37; 63 and 64 Vict. c. 22; and 6 Edw. VII c. 58). Under this legislation employces arc virtually insured
by the cmployer against injury while in his employ, the employer being compclled to pay a limited sum to the injured or to the families of employees killed by such accidents, whether or not due to the negligence of the employer or to that of fellow-employecs.

In the United States the employee must prove that in a given instance the master has
failed to fulfil one of the above-mentioned absolute duties. In contesting such an action the employer, in general, may rely on three defenses: (1) that the injury sustained by the employec was among the ordinary occupational risks which he assumed when entcring the employ of the master, or was caused by a danger
of which the employee either was or should have been cognizant, but in spite of which he continued to work; (2) that the injury inflicted upon the employce was not due to negligence on the employer's part but on the part of a fellow-servant of the plaintiff, whercfore the employer is not liable since the employee asployec failed to use reasonable precautions
gainst accident and that this contributory negligence had resulted in his injury. During the past few years several of the United States have enacted laws of a very diverse character of the American system and considerably extend the liability of employers. Attempts have been made to offset the liability laws by compelling employees to ign contracts waiving the benefits of such egislation, but subsequent enactments have uch contracts or rendering them nyll forbidding such contracts or rendering them null and void
The liability laws should be studied in connecton with the new compensation laws which have been enacted to replace the former in rder to provide a system of definite compen sation for accident without litigation. Some of these laws have becn attacked as unconstitucompensation to an employee injured through no fault of the employer was confiscation of property for no public purpose and without due process of law. Where the courts have susto amend the constitulions so as to permit buch legislation, and acts passed under such amendments have been upheld in the court of last resort. The rapid advancement of the movement to compel compensation to injured workmen led to the extension of the field of ers' liability policies, under which for a stipulated promium, the employer is insured against loss resulting from accidents to employecs, any damages for which the employer ance company. The most paid hy the insursuch insurance compulsory, while State insurance funds, placed on a sound actuarial basis, have been created in some States, since, as the New Jersey commission on employers' liability
reported in 1915, previous laws have not ensured the payment of compensation in case the employer should become insolvent. Most of the employees, while the Canal Zone order and the Federal statute apply to public employees and to persons engaged in interstate commerce. In general either either type of law may be elective or anded and sory. Alaska, Colorado, Connecticut, Illinois, Indiana, Iowa, Kansas, Louisiana, Mainc, Michigan, Minnesota, Montana, Nebraska, New Hampshire, New Jersey, Pennsylvania, Rhode Island, Vermont and Wisconsin provide elective compensation; while in Arizona, California,
Canal Zone, Hawaii, Maryland, New York and Oklahoma the compensation is compulsory as it is under the Federal statute. Massachusetts, ${ }^{\top}$ Tevada, Oregon, Tcxas and West Virginia have elective insurance laws, while Ohio, Washington See Accidents: Workmen's Compensation: Labor; Family Law; Factories and Factory Inspection; Diseases, Occupational.

Bibliography.- Consult the files of the American Labor Legislation Review; Barnett, H. N., 'Accidental Injuries to Workmen' (Lon(lon 1909); Beyer, D. S., (Industrial Accident
 surance) (Indianapolis 1913); Cowee, G. A.,

Practical Safety Mcthods and Devices) (New York 1916); Connor, J. F., 'Employers' LiaInsurance) 'Law of the Employment of Lahor' (New York 1911) ; Dawson, M. M., 'Constitutionality oi Workmen's Compensation and Compulsory InXXII, (in Case and Comment, Vo P. J., 'Liability, New York 1915); Doherty, ployces) (Bosty Railroads to Interstate E Accidents and the Law' (New York 1910) Forsyth, C. H., 'Workmen's Compensation in Vol Unted States) (in American Underwerrite York 1916)'; Glass, W, M. 136-145, 239-250, Ne men's Compensation' (Rochester, N. Y., 1916) Henderson, C. R., 'Industrial Insurance in the United States) (Chicago 1911), and 'Working men's Insurance' (Philadelphia 1912) ; Hotch(New York 1913) ; 'Legal Liability of Employ ers for Injuries to their Employees in the United States' (U. S. Labor Bureau 'Bulletin No. 74, Washington 1908); Otis, S. L., 'Manulal of Compensation and Liability Insurance) (New
York 1914) ; Paterson, J. V., (Workmen's Compulsory Compensation System' (Seattle 1912) 'Risks in Industry) (in 'Annals of the American Academy of Political and Social Science, Vol. XXXVIII, Philadelphia 1911); Sherman, Porkmen's Consequence of Accidents unde of Pennsylvania Lave Rerview Vol. IXIV PD 417-448, Philadelphia 1916) ; Seager, H. R., 'So cial Insurance' (New York 1910); Thornton, Liability and Safety Appliance Acts' (CinctnLiability and Safety Appliance Acts' (Cinctn-
nati 1916) ; 'Workmen's Compensation Laws of the United States and Foreign Countries) (U. S. Labor Statistics Bureau 'Bulletin' No. 126, Washington 1914; Walgren, J. A., (Federal
EMPLOYMENT BUREAUS, establish ments, whether private or public, at which those with those who are offering it- Private employment burcaus are found in every large city but they are often conducted without judgment ometimes have been accused of dishonesty, in many cases are mercenary, and their usefulnes he evils arising from the oractice of these burcaus, much remedial legislation has heen passed. No agency is now allowed to charge fee before informing an applicant of a situa tion that is actually open to him, and should such position, through no fanlt of the applicant, the fee was paid such fee is required to be returned promptly. All employment hureats are under the supervision of some State hureath, while some cities impose license fces and bonds of varying amounts and limit the amounts of the fees to be charged for registration, also requiring the return of fees should applicants
fail to secure positions within a prescribed time. Public bureaus, opened by the national or city government, are non-mercenary and the motive that has prompted their establishment is a sound humanitarian and political motive. Such
bureaus have two a mcans of communication between employer
and employec-labor exchanges, as they are something toward settling the wage question by giving quotations of the amount offered and for f. Ohio was the pioncer in the movement States public employment offices in the United ment has instituting hers in 1890 , and the movement has spread so that 19 States now have ment offices in about 60 different citics, the offices usually being under the supervision of a some suntendent of free employment offices, or some other State official, such as the commisof statistics labor of chice find the hurcau annually for about 300,000 wage-carners exceedingly low cost, ranging from four cents or unskilled workers in Seattle to $\$ 2$ or more in some small offices. With two exceptions the charge laws stipulate that there shall be no rendered. Municipal hureaus are operated independently in seven States. In 1914 the United Cates Department of Labor, through a bureau thited the Federal Employment Bureau, began parts of ened the scope of the work so as 0 binde Woman's division. The country is divided into is zones of distribution, each with headhearters in a large city; besidcs the station cadquarters there are 80 sub-branches. origineted in governmental employment bureau Was established in each of the mairies of Purcau The institution lancuished and in 1851 a measthe submitted to the legislative assembly for cmpestablishment of a comprehensive system of failed to to burcaus throughout the country Was accomplished until 1888 when the Bourse he Travail was opened at Paris, which instituthe reccived a subsidy of 150,000 francs from the government. In 1892 a large building was syected and became the headquarters of labor becaulse of but a year later this was closed and the of a dispute between the government
apyndicates. In 1896 it was repened under the management of a commission appointed jointly by the government and the reaus syndicates. There are also numerous bureaus in France operated and managed by is to place members of syndicates but endeavor aid oplace members of syndicates but who may
other workmen in the hope that they will join the syndicate. In order to equalize the couply of labor in the various sections of the thountry, a national bureau was established, but Such aid has received government aid in 1900 , bureaud has since been withdrawn because the entering districts whercin strikes were in prog ress. About 50 cities have labor bureaus of in 1870 sort. Belgium established such a system 1870; Switzerland followed suit with a labor Bract at Bern in 1888 and with another at developed a system since that time Italy ha hange being at Milan.
The
oned at Egham, near London, in 1885, but When the ILocal Government Act of 1894 went 1906 a voluntary bureontinued. From 1885 to
voluntary bureau was in operation at vot. $10-20$
pswich but in the latter ycar the Distress Comime numerous municipal and private bureau were taken over by the Distress Committees under the local governments. In 1909 an act ocame law making the establishment of em ployment bureaus or labor exchanges compulsory throughout the United Kingdom, and there are now more than 425 such exchanges with of a central office at London and eight divisiona offices in various cities. This federated system of labor exchanges is chiefly for unskilled labor but it works in conjunction with the trad very successful
Germany's first municipal burcau grew out of a private burcau established at Freiburg in 1892, and the movement has been taken up enthusiastically by almost every city of importance. Ordinary commercial burcaus in uring positions for domestic servants. The rade unions have their own burcaus. The Berlin public employment bureau is under the charge of various united societies but it is granted a subsidy by the city government and charged to workmen who register but it is free to all employecs. The management is cqually divided between employers and employees and prominent citizens are in charge of the im portant committecs. The best system is that of Munich. The Bavarian communes are held legally responsible for the conduct of the em
ployment bureaus; the separate municipal bureaus are federated into a complete system with central burcaus in the largest Bavarian cities No charge is made for services, the municipality defraying the entire cost with the aid of appro-
priations by the Bavarian government priations by the Bavarian government. In inhabitants a municipal burcau will be found and such bureaus are particularly successful in southern Germany, but in the northern part o the country the work of the municipal bureau is performed, to a great extent, by voluntary
associations, aided by the municipalitics. See Labor Legislation in the Unicied States,

Bibliography- Barnes, C. B., 'Public Bureaus of Employment' (in 'Annals of the American Academy of Political and Social Science) Vol. LIX, pp. 185-193. Philadelphia (London Beveridge, W. H., 'Unemployment' Desirability of an Employment Bureau in the City of New York' (New York 1909) ; Greenwood, Arthur, (Juvenile Labour Exchanges) (London 1911); Hodges, H. G., 'Statutory Provisions for the Achievements of Public Employment Burcaus' (in 'Annals of the American LIX, pp. 165-184, Philadclohia 1915) ; Kellor F. A., 'Out of Work' (New York 1904) Lciscrson, W. M., 'The Movement for Public Labor Exchanges' (in Journal of Political Eronomy, Vol. XXIII, pp. 707-716, Chicago
1915): Nash, M., ‘Municipal Employment Bureaus in the United States) (in National
in (Municipal Employment Bureaus in the United States) (in National
Mumicipal Revifev, Vol. IV, pp. 420-436, ConMunicipal Revierv, cord, N. H., 1915); Persons, Parsons, Moses, e al, 'Lahor Laws and Their Enforcement) (New York 1911); Willoughhy, W. F... 'Employment
Bureaus in the United States' (Boston 1900).

EMPLOYMENT MANAGER. The new profession of employment manager has within the past few years come to be recognized as
one of the most vital factors in industry. Ten years ago, workmen were hired by foremen or clerks simply because they happened to apply for jobs that were vacant but without regard for any particular fitness for the work to be performed. Naturally, there was general dis-
satisfaction, both on the part of employer and employee, and as this greatly increased and employee, and as this greatly increased the closer study of the question of the human element in the industrial organization was made, with the result that many manufacturing conhands of a trained executive, with the power to hire, place and handle the working force with a view to more efficient labor management.
The employment manager occupies the position of the representative of his company in the labor market. He must be familiar with all
sources of labor supply and be capable of sources of labor supply and be capable of
selecting the men and women needed for the different positions in his plant in accordance with their fitness for the jobs, for the duties of the employment manager are not only to keep the machines running but to see that they are operated by workers who are able to maintain
a high standard of efficiency in the quality and quantity of the goods produced.
As the connecting link between the management and the worker, the employment manager is entrusted with all matters of personnel connected with the company. The hiring of the help, their assignment to tasks that they are fer from one depariment to another, and, when necessary, their discharge, are matters that rest in his hands. He is the "friend at court") to whom all requests for assistance are made and it is he who must sit as a judge upon all
gricvances that arc brought to his attention, separating the imaginary from the real.
The employment manager must not only enforce the policies of his company and see that all rules for the management of the help are understood and obeyed, but he must also see that there is effective co-operation between his
office and the heads of other departments, for his duties require that he keep as fully in accord with the various foremen as with the accord with the various foremen as with the varicd relations requires both intelligence and executive ability of a high type.

This plan of delegating all personnel probproved so successful, both in improving production and in promoting an esprit de corps, that is has been adopted in nearly all important industrial concerns and i
mercantile establishments.
Employment Managers' Associations.The development of the profession of employof associations, or clubs, where the employment managers could meet to discuss the problems arising in their work, exchange experiences and otherwise fit themselves to handle more efficiently the human element so vital to the
success of an industrial enterprise. The first employment management society was organized in Boston, about five years ago, and soon proved so helpful to its members that similar employ-
ment executives' organizations have since been ormed in nearly all of the industrial centres of the country. Three conventions have been
held, Minneapolis, Minn., 1916: Philadelphia, Pa., in 1917, and Rochester, N. Y., in 1910 At the latter, on 11 May 1918, the several organizations formed a permanent association oo be known as the National Association o Employment Managers.
ess of the employment cess of employment manager in promotion and stabilizing industrial employment came to be so generally recognized that, in 1918, as one of its war measures, the United States government established an intensive course in employment management, under the sion of the War Industrics Board. The first course was inaugurated at the University of Rochester, where the first class graduated or May 1918, and courses have since been estabchusetts Institute of Technology; Boston Univer sity, Boston; Columbia University, New York; Carnegie Institute of Technology and the University of Pittsburgh, Pittsburgh; the Case School, Clevcland; the University of Washing at Berkelcy. The courses of instruction occupy from six weeks to two months, and the classes, which are conducted by the foremost employ ment executives and industrial authorities in the country, devote themsclves to such subjects f study as the following
Ftions and organization of an employ how to reduce it ; character analysis; science of hiring; transfer and promotion; discharge; fol owing employces progress in the plant; ccuca for employecs; safety and sanitary engineering; method of wage payment; bonuses and profil sharing; hours of labor and fatigue; industria organization; sources of labor supply; public employment offices and methods of co-operating with them; labors statistics; canses of labor unrest; employers' liability and compensation
In outlining this course of study, the War Industries Board stated that the introduction o the employment manager into industry and in Standardization of the services of an employment department is one of the greatest move
ments taking place in the manufacturing industry in this country, and employcrs of labor, particularly those having war contracts, wer urged to suggest men or women from thei organizations as candidates for the governmen courses.

Johin R. Meader.
EMPLOYMENT MANAGEMENT. EM ployment management cmbraces the work of re workiting, placing, retaining and discharging of handling personnel problems was inaugurate y one or two employers of labor a compara tively few years ago, but the plan quickly der onstrated its value so clearly that it has no in important industrial plants but by many larg inercantile estahlishments and financial institu tions as well.
The development of the present system of employment management began when large ent
ploycrs commenced to realize the fact that the
greatest Was that of the prober handling of the working organization. The studies of the efficiency cingincer proved conclusively that a plant, to operate effectively, must have something more nachinery. If the highest possibilities of the dachinery. If the highest possibilities of proobtain and retain the goodwill and active co${ }^{\circ}$ peration of the operatives.
Chis was a problem that had steadily been years. mars. In the old days of industry, when bench the spirit of co-ordination in the average shop was similar to that in the family, but with the growth of industry came the development of the impersonal corporation and the loss of Source of the loyalty and friendship existing
bel between the "boss" and the worker. The great industries, therefore, found themselves face to face with the necessity of finding a substituie for the human relations which they had a trained and employment management, under of this problem

The primary purpose of employment manby ment is to stabilize the working organization maintaing the number of men employed to or, in other words, by reducing the "lang force, over." To accomplish this end, "mpor tument management includes many and varied functions, ranging from the preliminary work of securing the help to the larger social problems The functions of the department devoted employment management begin with the selecthon of the right type of person for the "jobs" to be performed and this naturally includes an analysis and classification of the various tasks, shall is necessary that all prospective employees specifications of the "job-analysis." Once employed, the new operative, if he is a "learner," Dreft be placed under competent instruction, preferably in a segregated school under a spekept upaned teacher. Close watch must be Deriod of instruction, but during the lengeth of fin stay with the concern, in order that he may men no occasion for discontent or discouragement in the fact that he does not profit in pro-
Dortion to the degree of cfficiency which he attains to the degree of efficiency which he as well as these of a so-called "welfanctions, acter (which are almost as closely allied to the close of employment management), require close personal contact with the workers, the of the to inspire confidence in the genuineness individual employces and the careful maintenatice of employces and the careful mainte-
the thnrough a supervision may be kept over the development of the plant personnel
Broadly stated, these are the functions of tail, the toyment department. Described in deLabor Market and a List of Available the plicants for Positions. Both are necessary
if the organization is to be maintained at it normal standard. It is assumed that an employment department will receive advance not
from foremen of places to be filled and the men to take these "jobs" must come from one of two sources of supply: the outside labor market or prospect files built up from informa from obtained from voluntary applicants or from inside the organization, through personal
recommendations by operatives already employed. To accomplish this purpose, however the data must be easily available, which means that the information must be secured and
properly filed in anticipation of every possible demand.
2. Hiring the Right Type of Employees.To mect this demand, the employment depart acter of every operation to be performed but must employ new operatives in conformity with technically correct "job specifications" for al cesults in help required. To assure the best fully interviewed as to domestic relations and individual responsibilities as well as to record of previous employment. While employment managers differ in their opinions regarding the value of references, the data supplicd by a fords an illuminative record of the unally al complishments and most authorities are agrec that knowledge regarding an applicant's per sonal responsibilities is important in preventing the possible hiring of men for "jobs" paying a smaller wage than that on which they are accustoned have previously employed at les regard the place as a make-shift rather than permanent position. The opinions of employ ment men also differ regarding the value o character analysis based upon personal appear ance or psychological tests, althotigh there is in the case of operatives who are to perform tasks requiring certain well-established qualifications.
3. Examination of Applicants.- Many im portant concerns now require a physical exami nation of applicans not only as a safeguard against conditions for
which the firm might be held responsible under the compensation laws (such as hernia, etc.) hut also as a protection for other employees against possible infection.
4. Introduction of New Employees.- Th introduction of the newly employed worker also devolves upon the employment department. I both to the instructor and to other member of the "school"; if a skilled, or semi-skilled operative, to the foreman and the operative working near him. An "introduction" mus lso include an explanation of the policies and regulations of the concern, a description of it ing the location of such important points as the mergency hospital, lunchroom, lockers, wash ooms and toilets, stockroom, etc. Lasting impressions of a plant are frequently gained durng the first days of employment and an introuction which shows a personal interest in the elfare of a new employce is of incalculable value.
5. Following up Employees' Performances. -The work of following up the performances of new cmployces is one of the most important functions of employment management. In
the schools, it assumes the responsibility of determining when the "learner" has attained sufficient degree of effearner" has attamed killed operative; with all operatives, the "follow-up" covers such tangible evidences of efficiency as: (a) General conduct; (b) Earn ing capacity from week to week; (c) Absence and tardiness; (d) Gencral health and acc dents; (e) Regular ratings as to effciency in
(i) Workmanship, covering both quantity and quality of product as well as record of waste (2) Reliability and industry; (3) Attitude toward work
A record of this character is of great value to the employment director in many ways. enables him to see "that "earners" are tran capable of assuming greater responsibilities; it supplies the information from which a careful study of the average earnings of the employees can be made, both as a check upon possible decreases in productive ability of the individual
worker and as an indication of rate-changes worker and as an indication of rate-changes, desirable. From this record may be secured the facts regarding tendencies toward absences and ardincss that require further investigation. . Investigations.- Mont of the succes in employment management depends upon the All instances of chronic tardiness should be investigated and, if possible, a means should be found to remedy this defect. Absences mus also be investigated and in each case a record should be made of the causes. In cases wher the absence is due to illness, injury or personal assistance afforded, and where the failure to eport is the effect of a misunderstanding tha has inspired the desire to "quit," a personal in tervicw at this early stage in the withdrawa ences and saving a valuable employee
7. Arrangement of Transfers.- Transfers in an industrial plant ustually are made for one of two reasons: (1) Because an operative ha been found capable of assuming greater re sponsibilities, and (2) becanse an operative has
failed to "make good" in one "job" but is to he given a chance to perform a different tas for which he seems to be better fitted. The practice of filling the higher positions by pro motion has proved so valuable in developing an espirit de corps that this rule should never b ial available within the plant, while the plan of transferring the more inefficient operative instead of discharging them has been proved to be a valuable change in practice by many mportant concerns. It is one of the vital func tions of employment management to see that and that the "misfit," who may be nothing worse than a round peg in a square hole, is put where he may perform effective service 8. Power of Discharge.- In plants wher the hiring and placing of workers is delegate charge of an operative becomes one of the func tions of employment management. In concern
where this rule is in force the authority to dis harge unconditionally does not rest with the foreman. A foreman usually is given the privi ege of saying when a man shall not conity to do work in his department but the authority to work in any other part of the plant is delecourse, to the approval of the plant manage To perform these dutties successfully and without weakening departmental discipline requires that all cases shall be handled diplomatically and each case upon its own merits. mployment manager becomes a man who sit in judgment upon all questions of differences between the employees and their superiors, who s entrusted with the important duty of seeing hat the foreman is protected in the exercise of all just methods of directing his help and that every employee is assured a square Firm.
9. Maintaining the Reputation of the Fir - If a desirable class of employees is to lic obtained and retained it is necessary that the concern should have a "good name" among the labor and other conditions that depend upoil the policy of the management, have a grea deal to do with the development of the reputation of the firm, fully as much depends upon the character of the employment management, a ${ }^{\text {a }}$ is essential that both applicants for "jobs and those actually working in the plant shal cceive at the hands of the employment departnent. This means (1) All applicants must be handled promptly and treated courteously, applications being taken and filed for future ret(2) Employecs shall invariably be treated collr(2) Employecs shall invariably be treated cond assisted in cvery way practicable; (3) Evel hose who are discharged, or who are leaving he concern because of dissatisfaction, shall pe treated so fairly and courteously that they whe
go away with as agreeable an impression of the firm as possible
10. Management of Welfare Activities. The various welfare activities of the firm, in^{-1} cluding those of a social and educational character, also come under the direction of the em ployment department. Sce NDustrial In order that these various functions may be performed effectively, it is necessary that a system of ofpartment records shall be adopted and care fully kept. These include records of (1) Ap pondition of employment and data regarding cards, containing such information as: Name and address, date of application, place and datc of birth, date of arrival of foreign-born immigrant, degree of education, language spoken, ployment. (3) Physical examination (4) ployment. (3) Physical examination. with causes. (5) Industrial progress of the individual worker, with special attention to progres of "learners." (6) Lahor turnover sheet. detailing the number "quitting" or discharged bath (a) reasons for withdrawal, (b) length of serv(a) reasons for withdrawal, (b) length of ser
ice, etc. See Labor Turnover. In plants where these methods have heen
adopted there has been a marked improvement over personnel, a reduction of the labor turnbeen and general stabilizing effects that have quantity of product.

John R. Meader.
EMPORIA, Kan., city and county-scat of junction County; on the Noosho River near its part of the State, and on the Missouri, Kansas and Texas, and a division point of the Atchi60 , Topeka and Santa Fe and other railroads; miles southwest of Topeka. It is the comdevercial centre for a large section of country tening of western range cattle for the the fatmarket. Emporia has a thriving jobbing and export trade and some manufactures, including farble and iron works, carriage and canning and fles, woolen mills, corrugated metal works, with a and grist mills. It has three banks, doing a large annual business and daily and weekly newspapers. Gas is scrved by a private company, and the waterworks and electricfitying plant are owned and operated by the School Emporia is the seat of the State Normal Emporia (Presbyterian), and the Western Cof servatory of Music, and has a business college railroad and public libraries, nine school buildings, 11 churches, and many handsome busiless buildings and private residences. It is the a salost town in Kansas that never has permitted sage of the prohibitory law init 1880 . The city aciopted the commission form of rovernment in ${ }^{19} 10$. Emporia was founded in 1856 by P. B. Prumb, afterward United States Senator, and a was inc pioncers from the Middle States; it

EMPYEMA, č̀m-pī̀ \bar{c} 'ma, a collection of pus secreted from the pleura; the false, when an abscess of the lung bursts into the covity of the chest. When the quantity of fluid is so lifge as to cause great dyspncea and endanger life, it must be let out by tapping the chest.
EMPYREAN, a word used by the ancient reeck philosophers to designate the highest most of the heavens, where the purest and and by medixval heaven, the home of the blessed. In modern poctry the empyrean is merely the over-arching dome of the heavens
EMPYREUMA, èm-pi-roo'ma (Gr. "a live by preserved in ashes"), the smell acquired of organic matter when subjected to the action The products of imperfect combustion as from Wood heated in heaps or distilled in close vessels, are frequently distinguished as empyreu-

EMS, ěmz, Gcrmany, a celebrated water$N_{\text {assaut }}$ place in the Prussian province of Hesseheassaut; on the river Lahn. The environs are
beatil. As early as 1583 it was a town of at Ems a watering-place. The mineral waters are of the saline class, containing large guantities of carbonic acid gas, and are used with
much effect in chronic catarrhs, pulmonary complaints and some other diseases. The history of the town dates back to the 9th century and the lead and silver mines have been worked the springs has overshadowed its industrial an rade advantages. It was here that the memor he interview between the king of Prussia and which formed the prologue to the Franco-Prus ian war of 1870-71. Pop. 6,519.
EMS, river of Germany, which rises at the in Lippe-Detmold, fows northwest through Rhenish-Prussia and Hanover, and into th Dt drains near Emden; length about 210 mile Its chief affluents are the Aa, the Haase, the Hessel, and the Leda, all from the cast. It is navigable as far as Papenburg for light ves sels, but it supplies water to numerous canal, tion In 1818 it was connected by a canal with the Lippe, and thus with the Rhine, and its im portance has been greatly increased by the open-

EMS DISPATCH. The historical designa ion of the communication when precipitated he Franco-German War of $1870-71$. The his texts of the original dispatch, is as follows: Isabella, Quecn of Spain, deposed in 1868 formally abdicated 25 fune 1870, and the Spansh throne was thus left vacant. On 5 July the foreign governments were notified, and the fac was gencrally made known that Prince Leopol
of Hohenzollern, evidently with the approval of the King of Prussia, had consented to be come a candidate for the vacant throne. The announcement created intense excitement in France. Seven days later the withdrawal o rince Leopold's candidacy was made public. The next day, 13 July, the French ambassapresence of the King of Prussia at Ems and insisted that the king make a formal and specific declaration that no Hohenzollern Prince would be permitted to accept the throne o pain. The king declined to listen to such de ccount of what happened was sent to Bis narck, it was with permission to "use" it. Bis marck uscd it by giving to the press abridged eatures of the French demand, with the result hat the Germans were inflamed against France as declared The details are shown in the exts, which follow
This is Abeken's telegram of 13 July 1870 Bismarck
"His Majesty the King writes to me Count Benedetti caught me on the Promenade and importunately requested me to authoriz myself not to consent to the Hohenzollern can idature should they recur to it at any futur time; this I declined, and rather sternly at las One cannot enter a tout jamais into such an en gagement. I, of course, told him that I had no news, but as he got his from Paris and hat my goverument was taking no understand matter.)
"Since then his Majesty has received a letter from Prince Karl Anton. His Majesty had informed Count Bencdetti that he was expecting news from the Prince, but, having regard to the
above reasonable demand, his Majesty resolved, above reasonable demand, his Majesty resolved, not to reccive Count Benedetti again, but merely to send him a message by an adjutant to the effect that his Majesty had now received from the Prince the confirmation of the news which Benedetti had already received from Paris, and that his Majesty had nothing further to say the decision of your excellency whether this new demand of Benedetti and our refusal to comply therewith should not be forthwith communicated to our ambassadors and to the press."
As issued by Bismarck, the telegram read as follows:
"After the news of the renunciation of the Prince of Hohenzollern had been officially comFrench government, the French ambassador in Ems nevertheless demanded that his Majesty should authorize him to telegraph to Paris that his Majesty pledged himself for all future time never again to give his consent to the Hohen-
zollerns resuming their candidature. His Majesty has thereupon declined to receive the ambassador again and has informed him through the adjutant that he has nothing further to communicate to the ambassador.
Consult Barrett-Iennard (Mrs.) and Hoper (M. M.), Bismarck's Pen: 'The Life of Hein-
rich Abcken' (London 1911). EMSER ëm'zĕr, Hieron Roman Catholic theologian: b. Uus, German Roman Catholic theologian: b. Ulm, 26 March
1472; d. Dresden, 8 Nov. 1527. In 1502 he became professor at the University of Erfurt, where Luther is said hy him to have been among his pupils. In 1504 he establishcd him-
self at Leipzig, where he also lectured at the self at Leipzig, where he also lectured at the
university. He served as secretary to Duke George of Saxony, who sent him on a mission to Rome, in order to obtain the canonization of Bishop Benno of Meissen. With Luther and the theologians of Wittenberg generally he was on good terms until the disputation of Leipzig
in 1519 , from which time he made, in union with Dr. Eck, incessant endeavors to oppose the increasing influence of Luther and the progress of Protestantism. The German translation of the Bible by Luther was attacked by him as erroneous, whereupon it was forbiden in Saxony by Duke George. Emser then himself published a
translation of the New Testament into German, made from the Vulgate (1527). He also wrote 'Vita S. Bennonis,' as he ascribed to Saint Benno his recovery from a severe sickness. EMU, the only representative of the fam-
ily Dromaiida, and with the cassowaries the
Australian representatives of the order StruthAustralian representatives of the order Struthiones. In size the emut ranks between the the African bird being seven feet in height and the emu five. In general appearance and form it is more bird-like than either of the others. Like the cassowary of northern Australia, its head and neck are feathered, and the back is rich brownish plumage. With the rhea and cassowary, it has three toes on the foot, while the African ostrich has but two. The emu is a bird
of the plains, where it feeds upon fruits, herbs, and roots. The nest is scooped in the sana, and the number of eggs is six or seven, of an attractive green, each measuring five inches in length. The feathers have no ornamental valut, and the flesh is eaten only by the natives.
Coursing the cmu has been carried to such an extent that the birds of New Holland, once spread throughout the whole continent, are now in many parts exterminated. It is valued by the natives chiefly for the fat beneath the skin
which contains grat quantities of oil. The emul which contains grcat quantities of oil. The emu
utters a faint booming noise and sometimes a shrill piping note. In confinement it is found to be tractable, and is readily tamed.

EMUCKFAW AND ENOTACHOPCO, Battles of, in the War of 1812 . After the battle of Talladega (q.v.), the volunteers mutinied and on 10 Dec. 1813 demanded their discharge, but on 14 Jan. 1814 Jackson was re-
inforced by 900 sixty-day militia and therefore inforced by 900 sixty-day militia and thereford (who had recently won the battle of Autessec, aiming at Emuckfaw, a town 40 miles north of Tuckaubatchce (q.v.). On 20 January with 930 militia and about 200 Creeks and 12 mics, he camped on Enotachopco Creek, 12 miles from Emuckfaw, where on the morn-
ing of the 22 d he was attacked by the Indians but repulsed them with great slaughter and drove them nearly two miles from the field. On the 23d Jackson began the return journcy to Fort Strother but the next day, while crossing Enotachopco Creek, the Indians attacked alld threw his force into disorder, many of the
troops fleeing. But Colonel Carroll with 25 men maintained their ground and, rallying the fugitives, Jackson soon turned defeat into vic tory. His loss in the two fights was 24 killed and 71 wounded, and that of the Indians 200 dead and many wounded. On 27 January ine returned to Fort Strother where he rennail (u .), Floyd in the meanwhile having fought the battle of Tuckaubatchee (q.v.). Consult Adams Henry, 'United States' (Vol. VII, pp. 247249) ; Fay, H. A.' 'Official Accounts' (pp. 177) 178) ; Lossing, 'War of 1812' (pp. (773-777), pp. 452-453) ; biographies of Jackson by Parton
 321), Frost (pp. 205-223).

EMULSIN (β - glucase), a mixture of closely related enzymes which hydrolyze the β. glucosides. It contains a β-glucase proper, ${ }^{\text {a }}$ cyanase, an amygdalase and a lactase.
found in many sceds and especially in the bitter found in many sceds and especially in the bitt the kernel of the cherry pit. The addition of small amount of water to this seed deyelops the characteristic reaction and the formation of the oil of bitter almonds, containing the deadiy poison prussic acid in solution. Emulsin is ${ }^{\text {ex }}$
ceptionally wide in its action, owing probably to its compound naturc. But it is commonly considered as a unit, and a specific enzyme for β alkyl glucosides; and all glucosides which arc hydrolyzed by it are regarded as derivatives of β-glucose. Some of its properties are erratic: it hydrolyzes isomaltose, but synthesizes glucos
to maltose. Emulsin hydrolyzes the natural to maltose. Emulsin hydrolyzes the natits tin, aucubin, bankankosin, calmatambin, coni

 ormed Co hav koter pis aracsy hal the news from the frmes, blat hivits :ased to th above reasone demand. his simisty risoivat,
 to send ho a begage by an adjutant to the efifet that ris Nnievy had now received from the Irrace $i=$ enfumatan of the news which Runcleri dad sloesedv rwaved from Paris, and that has Majesy loct fothing further to say the hasis of your excellency whether this solpiy the with should not be forthwith cinhcutucateds our amber sadors and to the psem. as follows:
Aiter the news of the ranuciation af the Prince of tohenzolern had ey the Spanish owermment 10 the French governmentit, the French ambas sus in Ems nevertheless denandec that his Numaty should authorize him to iclegrart: Pats its:
his Misicsty plected himscif for all future thmet his hajesty plecloed himscif for all fur never a atain to pive his consent to the 2ollerme restiming their candidature Fis ambassaudr agrain an I has informed him through the adjutant that ie has nothing furtheto communicate to the ambassador.)"
Consult Barrett-T, Consult Barrett-Tennard (Mrs.) and Toner
(M. M.), Bismarck's Pen: 'The Life of He'm (M. M.), Bismarck Ahenen' (I.ondon 1911). EMSER, êm'zēr, Hieronynus, Cerman Poman Catholic therlogiase t, Nas,
 athere Luther is shid hat an hate bect seif at Leitige, when be diso lectured at the

 on fond terms until tha ditpuit yy of coupe with Er. Eck, imisesanc enderow fo ghone the

 ous, wheretiton it was forbidita in: Saxony hy Duke George. Emser then himself published a made from the Vulgate (1527). He also winte 'Vita S. Bemnonis,' as he ascribed to Saint Benno his recovery from a severe sickness. EMU, the only representative of the family Dromaiide, and with the cassowaries the Australian rellresentatives of the order Strulto iones. In size the emu ranks hetween the African ostrich and the rhea of South Amerish
the African bird being seven feat in height the emu five. In gencral appearance and form it is mure bird-like than elther of the others Like the assowary of northern Australia head and acek are feathered, and the frach as natilbresish plumage. With the rhea and at sownre, it has llamere iwes on the foo, whic Aificki osirich has but two. The cmuls is lat
and replains, where it feeds upon fruits, A.d the nunber of egges is six or severn, firractive green, each muasuring five incl: - ngth. The feathers have no ornamental 1.)ursing the emu has been carried to sul finnt that the birds of New Holland, 1 many parts exterminated. It is vallin 1. mitives chisely for the fat bencath the - in contaise great quantities of oil. The 2. it onng note. In confinement it

QUGKFAW AND ENOTACIYO faties of, in the War of 1812. After hanid and on 10 Dec. 1813 demanded 1h. ciame in:t on $1 \frac{1}{4}$ Jetn. 1814 Jacksols wal Nocicim! b: COI sixty-day militia and her froons andy won the battle of Alat ainionarlevi a town 40 mii
 Whathe uilia and about 200 (racte 1. nite limuckfaw, where on tis Min
 Io in tho miles from the 1. Ahernan thegan the return joent Wathera Creek, the Indians whit farcy his force into disorder, many arn Thintained their ground and, rally fonitire lackson soon turned defeat into fory. His lurs in the two fights was 24 kh and 71 wounded, and that of the Inciun fara many wounded. On 27 Jamul |hi the battle of Horscshoe Bcnc Thogis the meanwhile having foughi shat Whackauhatchce (q.v.). Consult (101) FeA. 'Official Accounts' , - 1 eni 15 . The United State. (01. 1, ip) : 487-40.), Buell (Vol. I, 321). Firuit (pp. 2n5-223).

EinULSIN (3 --rlucase), a mix: chosely related enzames which hydroly: 1 cymares, an amygdalase and β-glucase found in many monds and especially in th fincad, hut alos it the sweet almond and ancoun of water to this sced de famet ristic reaction and the formatio - I of bitior almonds, containing the I-ptinnally wide in its action, owing 1. is compound nalure, But it is common alkyl glucosides; and all glucosides wl: hydrolyzed by it are regarded as derival β-wlucose. Some of its properties arc it myrolyzes isomalinse, but synthesizic:
to maltose. Emulsin hydrolyzes the tin, aucubin, bankankosin, calmatambin.

EMU (IIippalectryo Uniappendiculatus)
ferin, daphnin, dhurrin, gentiopicrin, helicin, incarnatrin, indican, mandelonitrile glucoside, meliatin, oleuropein, picein, prulaurasin, salicin, and the synthetic β-glucosides.
pulp of sin is prepared by digesting the oil-free ene or chlound sweet almonds with a little toluovernight. The whole is then put into a cloth bag and the liquid pressed out. This is treated With acetic acid, drop by drop, until the protein treated with alcohol in repeated small quantities until no more precipitate falls. Pouring of the liquid the precipitate is hurriedly washed with absolute alcohol and ether to remove all moisture. It is then thoroughly dried in a Strong to a soft white powder. Consult Arm(London 1912).
EMULSION, the term applied to those preparations in pharmacy in which oily substances are suspended in water by means of gum, sugar, carrageen, etc., called emulsifiers. In general it will be found that the bulk of the
emulsifier should only be added little by little, rubbing together in a mortar, and taking care that it is completely absorbed or emulsified before further is to tions. Should too much be added, the effect is to throw out most of what has already been incorporated; it is then practically impossible to
remedy the error. The emulsion of cod-liver oil is familiarly known. Milk and the yoilk of eggs are natural emulsions. The name is also given to suspensions in water of certain in ingluble substances, such as resins. These being reduced to impalpable form are mixed with a syrup of gum or sugar, or other viscid fluid amiliar instance of this form of emulsion is common coal tar, which appears black because the colorless pitch
colorless pitch
ENAMBUC, ã-nŏñ-bük, or ESNAMBUC d. Saint Christopher W. W. Dieppe about 1570 being of an adventurous spirit, he sailed from Dieppe in 1625 in a brigantine of eight guns,
for the Antilles. He landed in the island of for the Antilles. He landed in the island of Saint Christopher on the same day with a party
of English colonists, with whom he divided the islanglish colonists, with whom he divided the
intil his death, held the French half of the colony with extraordinary tenacity. In 1635 he took possession of Martinique, in the name of the king of France,
town of Saint Pierre (q.v.).
ENAMELS AND ENAMELING. The erm enamel is used for certain siliceous com in eunds employed for coating metals. They are parent, opaque, white or colored. The art is a very ancient one, some claiming it originated with the Scythians, who are said to have introduced it into China during the reign of a certain Emperor Thaiwonti, but India was accridence with the art before China. Extant Phence exists that the ancient Egyptians, in the decoration of jewelry, and of the clay beads and scarabs of the Nile-dwellers in our museums many are covered with colored glass.
The subject of enamel work on the precious
metals is discussed in another article (see ArT Enamels), so we will confine this article to the industrial utilization of cnamel.
Raw Materials.- The ingredients used in the production of the different kinds of enamel are felspar, quartz, fluorspar, horax, boric acid, soda, potash, saltpetre, cryolite, clays, ammonium carbonate, stannic oxide and water. iron oxides, chromic oxide, cupric oxide, etc. The felspar composition most desirable consists of siliceous earth 65 per cent, alumina 18 per cent, alkalis 16 per cent. For the creation of white enamels it is essential that the felspar shall be as free from iron oxide especially, as
possible. Quartz must be pure but it is frequently replaced beneficially with a "fine white river sand, which is pure quartz. Fluorspar or calcium fluoride of the purest quality only can
be used, for white enamels especially. The be used, for white enamels especially.
borax needed for enamels is of the monoclinic system of crystallization (containing 10 molecules water of crystallization) not the octahedral crystals regular system, which contain only five molecules water. It is used as a flux or accelcrator of fusion. Boric acid functions the same as borax but the former is more frequent identical action in enamels and their presence heightens the lustre if it is not used too freely. The soda of commerce, being cheaper, is mostly employed; it is first calcined to obtain its anhydrous condition, then inely powdered. Saltpetre (nitre) used is the sodium variety, be-
ing cheaper than the potassium salt. It is used chiefly to decolorize; little or none at all is needed in the blue enamels. Cryolite used in the enamel industry may be either the natural or the artificial. This sodium-aluminum-fluoride is utilized for its double reaction of acting as
flux and creating opalescence. Ammonium carflux and creating opalescence. Ammonium in ingredient to inhibit cracking or crazing of the enamel in firing on account of its making the substance more uniform. Some authorities, however, declare its use a waste of money and
useless. Stannic oxide is expensive with the useless. Stannic oxide its expensive continues as a necessity after many attempts with substitutes. Care must be taken in maintaining the purity of the metal while in the oxidizing process or small black spots will appear in the baked enamel from impurities or may occur from This chemical produces perfect opacity, which antimony sulstitutes do not, unless sufficient be used to cause -other defects. The poisonous character of antimony has also caused its use to be forbidden in many countries. Lead oxide also as a flux of great power. The lead oxides were formerly used considerably on earthenware utensils to assist the glaze, but long since they have been eliminated by law on account of their poisonous nature, their solubility rendering them exsels for cooking, or even containing, foodstuffs. The use of the lead oxides is, therefore, restricted to the glazes of ornaments and art work.

Coloring Matters.- Cobalt oxide affords an intense blue color when used in strength and
can be reduced in tone in lesser proportions.

Aside from its use in pigment cobalt oxide has the physical value of adhesiveness to shect iron through its cocfficient of expansion being the same as shcet iron. re, therefore, forms an ideal ingredient for the enamels used in cooking
utensils. Perhaps it is here necessary to the uninitiated to state that one of the first requirements in an efficient enamel body is that it shall adhere to the metal under the stress of changes of temperature. On account of the high cost of cobalt nickel oxide is much used, through its considerably lower price. Limonite is a per-
oxide of manganese (called also pyrolusite) and is used in enamels to bleach out any impurity of tone in the white enamels. Additional proportions will produce dark violet (the noted manganese violet of the ceramist) and mixing a proportion of iron oxide with the limonite nite in small proportions is sometimes blended with the more costly cobalt, producing a reddish blue of much brilliancy. Ferric oxide may be prepared to produce either a bright red or a of heat applied in its manufacture. Chromic oxide produces a green enamel and cupric oxide gives a dark-green and a bluish-green; again a bluish-green can be obtained by a combination of copper and cobalt salts or chromium and copper salts, varying from bluish-green to
greenish-blue according to their equivalents in greenish-blue according to their equivalents in
the mixture. The salts of chromium, cadmium, uranium and titanium can each be used in obtaining yellow enamels. Ferrous chromate produces a lovely brown; it is called Brongniart's brown, after the great French ceramic chemist Nickel is used in obtaining a gray enamel. The salts of gold produce a beautiful rose enamel
as well as the loveliest pink. But a far less expensive pink is produced by chalk, quartz, stannic oxide, borax and bichromate of potash mixed and heated to a frit, the pigment being solids. Antimony produces several vellows insolids. Antimony produces several yellows in-
cluding the noted Naples yellow (lead antimonate) of the art porcelains; they are, however, poisonous and forbidden in food utensils. Enamel Manufacture.- In the mixing operations only absolutely trustworthy operators are cmployed. The working formule are kept
strictly secret from all but the highest officials. From this point our description will be devoted to practices applied in the shect iron and steel enamel industry. Every ingredient has to be dry and the degree of pulverization cannot be too fine to obtain a homogeneous enanel. The process of mixing the different ingredients. The French machine (nélangeur) does very effective work. The various chemicals are kept in separate bins, and, in order to maintain secrecy, each ingredient is known only under a letter or number. Taking the raw material termed "dollies," which are loaded to a height approximating the quantity, then run on to a
scale and weighed and the excess shoveled hack or fresh added. The precaution is taken to have the scale beam and its graduation marks invisible to all but the person presiding over the work.
With the completion of loading all the differcnt materials in correct proportions in their hard maple floor of the machine. First comes
the coarser material at bottom, the finest on top The mixture made, it is hoisted by an electri elevator and run to its bin and the process renewed in preparing the next kind of ename again to be stowed in its special bin.
means of a traveling bucket. holding the cor rect amount for a melt the mixed raw materia (about 1,200 pounds) is carried to the bia furnace (rarely a crucible furnacc). The k of furnace common in American use is the same that is used in the manufacture of gia the most economical fuel, though coal is used in the older factories. The furnace temperatur has to be very carefully regulated as insulficien heat produces a slow melt liable to create a de composition, whereas too high a degree may injurious to the outcome chemical reacities place $1,000^{\circ} \mathrm{C}$. for a glaze heat and about $1,300^{\circ} \mathrm{C}$. for a ground coat. Control over the heat is permitted by the installation of pyrome ters. A furnace can afford from seven to cig meparately according to the ingredients ifitin points great carc has to be taken that the mixe mass be kept stirred lest they separate. The length of time needed for the smelt differs ac cording to the enamcls, a white fusing well two hours while ground enamels and blues tak
from two-and-a-half to three hours, and forth. The cnamel is now a liquid glass, which state it is drawn off by releasing a nir clay plug located in the front of the furnac The molten body flows into a tank of col water and, with noisy reaction, the vitreo liquid is torn into shreds and small pieces wit
explosive violence, leaving minute fissure throughout the substance. Besides toughening the enamel body this so-called "quenching" as sists in easing the next process, which is grind ing. This grinding cannot be too finc, in tat the finer the resulting impalpable powder the
brighter the resulting lustre of the enamel. Th suddenly quenched glassy mass is known as "frit." During the grinding other materials at added, such as stannic acid for creating a opaque white, or pigments for the differen colors. About 30 hours is required for grind
ing in the large ball mills. The latter are ing in the large ball mills. The latter har a diameter of about six feet, and are lined with porcelain bricks. To the frit, which should re^{2} tain about 50 per cent of water, is added mall percentage of white ball-clay. About per cent zinc oxide improves a whitc. The cia adition is made to help hold the other rom suspension, hindering. them from sul siding according to their specific gravities also creates opacity, increasing at the same tim the needed quality of elasticity of the ename cord with the secret formulx, such as sal-ant moniac , magnesium chloride, burnt magnesia, chloride of sodith (table salt), borax, soda, ctc. The ground ma should reach the consistency of a rich creat when it is poured into tanks and left to matur for a weck or more.
Formulæ.-A Ger
Formulæ.-A German formula for a white 132; quartz, 152; felspar, 130; soda, 26; salt petre, $6 ;$ cryolite, 78 ; fluorspar, $3 ;$ magnesia, ${ }^{6}$ An a@id-resisting enamel white is borax, it
${ }^{\text {Pelspar, }} 100$; quartz, 115 ; cryolite, 47 ; stannic nade, 40 ; fluorspar, 6 ; soda. 20; saltpetre, 10 ; meal, 53; clay, 12; calcspar, 6. A blue enamel ${ }^{10} 10$ mula is borax, 60.0 ; alumina, 3,6 ; felspar, Detre; soda, 6.2; natural cryolite, 24.0 ; saltcobalt oxide, 3.0 ; limonite, 0.3 ; ferric oxide, 0.1. A black fused enamel formula is borax, 2; ielspar, 120 ; soda, 14 ; ferric oxide, 8 ; cobalt die, 2 ; smalt, 16 ; limonite, 16.
duction Metal and Treatment. - In the prometal should be enameled kitchen utensils the phar, carbon, silicon or phosphorus from sulECneral manganese content of about 0.2 per 27 . The sheets (oblong or square) run from sible 20 gauge. Applying as little heat as posa lubricy are circled, stamped and spun, using ling proccss must of course cleanse A picktrom impurities before the shaping is done. she additional trimmings (ears, handles, etc.) should be welded on because the cnameling of The Enameling Process process.
Carried Enameling Process.- The operation described by R. D. Landrum, an expert. This Work starts in the "dipping room," where the form sunk into is placed in tanks of dish-pan "siusher," dips the stamped steel vessel (which has been previously cleansed of all grense and impurities) into the clamel. Coming ount the immersion the vessel is covered with a film of the wet enamel, any drip or excess is eliminated by the slusher gently swinging the object, points it is placed, bottom down, on three metal vessels that project from a board. After several rack, and, when dry and the rack full, they are conveyed to the furnace room, where a bank of labout ovens receives them. The temperature
$1,000^{\circ}$
C.) here fuses the minute powder $1,000^{\circ}$ C.) here fuses the minute glass coat particles of enamel together into a ess requiring but three to five minutes. Other coats are added, as needed, over this ground that. In a threc-coat picce we wish, perhaps, blue outside. The ground coat enamel having dried and been passed through the oven comes oxides, and the piece is left to cool. The slushmersion in white enamel and adds ablack "bead" mersion in white enamel and adds a black "bead"
or edge on the rim. This second coat still shows ${ }^{4}$ up grayish as the first coat penetrates through at the firing, so it is subjected to another dip A spray of hlue-green enamel is applied to the outside, before drying, with the aid of a wire acts as or the more up-to-date machine which and as an atomizer. The vessel is next driced blue fired again in the oven, leaving turquoise The next process is the assorting of the finished Wares into "firsts," "seconds" and "thirds" or fectots, according to their perfection or deorig. Imperfection in the cleaning of the ariginal vessel may have caused minute spots to defear on the surface, due to rust or dirt. This spots off, or subjecting them to a sand-blast,
and giving the vessel another coat of enamel The discovery, or invention, of applying ename bathtubs, etc., in the same manner as the bath tiles and carthen utensils which had been used by our fathers was indeed opportune, for the
rising price of the metal had made the proces of tinning so exorbitant had made the proces of tinning so exorbitant that the industry wa the price of tin advancing to much higher proportions. The iron-enamel industry has ex tended its lines into sanitary ware, hygienic implements, chemical apparatus and numerous
other branches. The growth of the industry, other branches. The growth of the industry,
starting principally in France and Gcrmany on a large scale, has extended to the United States all in the course of about 25 years. The German output, by 1909 already, was $90,000,000$ kilos, employing a capital of near $\$ 15,000,000$ Hungary employed in the neighborhood of 60 000 wage carners. In the United States the last 'Census of Manufactures,' gives us the following interesting statistics of the sheet iro and stcel enamel industry. There were 279 producad employing $23, \$ 101004000$ ors. The produccd goons valued at $\$ 101,094,000$, and had a The Theory and Practice of Enameling on ron and Steel' (translation by H. H. Hodgson, London 1909); id., 'The Raw Materials for the Enamel Industry and their Chemical Technol (Eny) (London 1914); Landrum, R. D., Manuel pratique de l'émaillerie sur métaux' (Paris 1917).

Clement W. Coumde.
ENARA, å-nä'rā, or ENARE, â-nā'rã, a lake in Finland; area, alout 145 square miles The outlet is Patsjoki River, which flows into
the Arctic Ocean. A town of the same name, at the Arctic Ocean. A town of the same name, at
the southwest extrcmity, is inhabited chiefly by fishermen.

ENAREA, ènä'rê̄-ä, a country of the Gallas south from Abyssinia, between lat. 7° and 8° N., and long. 35° and 37° E. In the valley of
the Gibbi, immediately beyond Sakha, the chief town of the country, are extensive plantations of coffce, which, along with ivory, is largely
exported. The inhabitants are the most civil. ized of the Gallas, and show much skill in manufactures. Pop. about 40,000 .

ENARGITE, en-är'jit, a native sulpharsenate of copper, of which it contains 48.3 per cent. It constitutes an important ore of copper
and is found in cleavable-granular masses, also and is found in cleavable-granular masses, also matic cleavage, a brilliant metallic lustre, and grayish-black color and streak. Its hardness i 3 and specific gravity 4.44. It is common in Chile, Peru, Mexico, South Carolina, Colorado

ENAULT, änō, Louis, French novelist b. Isigny, Calvados, 1824 ; d. Paris 1900 . He
used the pen-name "I-ouis Vermond". He wrote many novels and books of travel, including among them, 'Promenade en Belgique e sur les bords du Rhin). (1852); 'Ta terre sainte) (1854); 'Constantinople et la Turquie) (1855) : 'Voyage en Paponie et en Norvege) (1857) : 'La Méditerranée, ses îles et ses bords' (1866): ' P aris brulé par la Commune) (1871).
'Valncige' (1887); 'Le Château des anges'
(1891); 'Tragiques amours' (1891); (Jours d'cpreuve) (1894); 'La tresse bleue)' (1896); 'Myrto' (1898); and a French translation of
ENCENIA, ën-sénĭ-a, or ENCENIA, a name given to the feast in commemoration of churches. In carly times it was applied to the feast in honor of the founding of a city as well as in honor of the founding, or taking pos-
session by dedication or consecration, of session by dedication or consecration, of churches. The custom of observing the annicathedral dates from the time of Constantine, when Christians were permitted more freedom of worship in the Roman territory; but the Jews before the coming of Christ solemnly dedicated their tabernacles; and in a certain sense,
consecrated their houses of worship. The Christian cercmonies became very claborate on these occasions and were disapproved and
finally modified. The name is applied also to commemorating festivals in honor of the founders and benefactors of Oxford and "Commemoration," or "Encænia," usually takes place the third Wednesday after Trinity Sunday. The oration in honor of the founders and benefactors is given in Latin.
ENCALADA, ản-sä-lă'dă, Manuel Blanco, Chilean soldier and statesman: b. Buenos Aires, Argentina, 1790; d. Santiago, Chile, 5 Naval Academy at Leon, and after deserting from the Spanish ranks joined the Chilean revolutionary party, and served with distinction both in the artillery and in the navy. He became rear-admiral in 1819, and major-general of infantry in 1820 ; and in 1825 was appointed head of the army of Chile. He was for two
months President of the republic in 1826, govmonths President of the republic in 1826, gov-
ernor of Valparaiso 1847-52, and Minister to Frnor of 1853 -58.

ENCAMPMENT, the military camp in its more comprehensive sense, including the occu-
pants of the camp proper, as well as the physpants of the camp proper, as well as the physical equipment collected and arranged to shelter and provide for them. In military parlance whole significance of the term encampment which thercfore has lapsed to a greater or less degree into disuse, except among the romantic
encaustic. Sce Mural Painting.
ENCAUSTIC PAINTING. See Painting, Technique of.
ENCAUSTIC TILES, a species of ornamental tiles made of a finer kind of clay than the ordinary tiles, but not so fine as porcelain. plain tiles are sometimes square, hut more frequently triangular and of different colors; the latter shape renders possible a greater number of designs when the tiles are employed in a sort of mosaic work for the paving of churches, halls, etc. They are made by putting the colored clay into strong steel molds and subjecting it to a pressure of several hundred tons, by
means of a plunger fitting accurately into the means of a plunger fitting accurately into the ribbed in order to afford a better hold for
mortar. The clay for figured tiles is pressed into an iron mold, the bottom of which is he desired design. The pattern being removed, he depressions on the surface of the tile are haved to remove all superfluities and ruged ness, leaving the pattern intact. The tile is then dried for two or three wecks and finally
fired by being exposed to an intense heat for 60 fired by

ENCEINTE, ŏn-săñt, in military cngincer ing and in fortification, the continuous line of town or fortress. The term is also applied to the area within this line

ENCELADUS, son of Tartarus and Grea in Greek mythology; one of the hundredhanded Titans who made war against the
gods. Jupiter slew him with a thunderbolt and gods. Jupiter slew him with a thunderbolt and
burned him under Mount Etna . The name burned him under Mount Etna. The name
Enceladus was given to the second satellite of Enceladus was given to the second satellite
Saturn, discovered by Herschel 28 Aug. 1789

ENCEPHALITIS, an inflammation of the brain proper which may be localized or ditfused, and results from cocxistent intoxications, ative endocarditis, rhcumatism, mumps, etc. It is quite probable that many cases of acute encephalitis occur in children, resulting in the
well-known picture of infantile hemiplegia. The symptoms are very indefinite. There is headache, vomiting, somnolence. There may be coma or delirium, the symptoms all pointing to acute inflammation of the brain. Acute encephalitis is usually fatal. In many of the insan1lytica, there is a form of encephalitis usually present. Localized encephalitis usually results in abscess. Sce Brain, Diseases or the

ENCEPHALOCELE, ěn-sēff'a-lō-sēl, ${ }^{a}$ hernia or a protrusion of a portion of the contents of the cavity of the brain through an opening in the skull beneath the skin. At least gocele, when the dura mater alone protrudes from the cavity, forced out by the pressure of the cerebrospinal fluid; hydrocephalocele, in which the tumor consists of an internal hydrocephalus; and encephalocele, which is made up rounding it. Most of these tumors are of congenital origin, due to insufficient union of the bones of the skull; a few are acquired later in life. Surgical procedure is the only efficient mode of treatment

ENCEPHALON, the contents of the skitll. Sce Brain.
ENCHANTER'S NIGHTSHADE, a name common to plants of the genus Circca, helonging to the family Onagracece, of whind,
there are thrce American species, C, C. pacifica and C. alpina. The first is about a foot and a half high, and has delicate ovate lcaves, small white flowers tinged with pin and small roundish seed-vessels covered witi
hooked bristles. It abounds in woods from hooked bristles. It abounds in woods from Nova Scotia to western Ontario, south to Geor-
gia and west to Nebraska. It is also called the bindweed nightshade. C. alpine, which is similar hut smaller and more delicate, is found in cold, moist shady woods throughout the north-

En hemisphere. Both plants are common in Europe and Asia. Neither has any affinity with the true nightshades.
ENCHASING, or CHASING, the art of enriching, beautifying and finishing ornamental designs in raised work upon metal surfaces, especially gold and silver. When these designs lave reccived their general form by casting or
nammering they are ready for the skilled hand of the artisan and his chasing tools. These are of a great varicty of shapes and sizes, fitted to correspond with the minute details of the most complex work. Some are grooved or checkered are the ends, and some of the gravers and burins are curved and blunt, while others taper to a hammers, big and little, graded in size to suit any kind of tool. To offset his alternating task ot punching and carving he employs sand bags upon which to rest his work. In order that the form of hollow articles may not suffer inJury during the operations they are filled with
a composition of melted pitch and brick dust or rosin. Articles in copper and brass are sometimes filled with lead to give them firm topport within. Fine steel blocks are often used work same end. Excellent specimens of chased in vase seen in pieces of ancient armor, and in Vases and other ornaments in gold and silverCuted by Benvenuto Cellini (q.v.) in the 16th century. Bronze, richly wrought, has taken its place beside gold and silver work.

ENCINA, ěn-thê’nä, Juan del, Spanish 13amatist: b. La Encina, Spain, 1469; d. there 1334. Litile is known of his life; the probable lacts are that he was edtucated at Salamanca, and in 1492 became a member of the household began to write his plays. He was appointed mastro di cappella to Leo X at Rome, took orvolume and was ordained prior at León. His first also a dissertation one 'The Art of Castillian Poesy, His lyrics are full of charm and lively wit. He wrote 14 dramas, cight of which are hepherd-plays or eclogues; the rest are picces or church holy seasons. It is to the former that the owes his position in Spanish literature, for inese homely scenes were the first secular plays
in Spain. He made the Jerusalem pilgrimage, and described it in the poem 'Tribagia; or, the Sacred Way of Jerusalem" (1521). He
has been styled "The father of the Spanish "Arama." His dramatic works were edited by Asenjo Barbicri, in 'Teatro Completo' (MaGieri in (Cancionero musical de los siglos XV y XVI) (Madrid 1894). Consult Díaz Jiménez 1909).
de, ENCISO, ěn-thēsō, Martin Fernandez de, Spanish geographer: b. Seville, about 1470 ; practised law in Santo Domingo and supplied Practised law in Santo Domingo and supplied
funds to Alonso de Ojeda for the colonization of Ths to Alonso de Ojeda for the colonization
1509 Firme, the region ahout the Isthmus the city Santa Maria la Antiqua del Darien in soldiers revolting, he was arrested by Vasco to Difez de Balboa, and went to Spain. returning to Darien 1514 as alcalde, and opposing Balboa
till the latter's unjust execution by Pedraria Davila at Darien 1517. He was the author of Suma de Gcographia, que trata de todas las partidas del mundo,' the first Spanish descrip ton of America which touched upon the dif erence in level of the two occans.
ENCKE, êng'kē, Erdmann, Gcrman sculppupil of the Berlint Academy and of Albert Whill of the Berlint Academy and of Arst piece being a group entitled 'A German Struggling With Two Gauls. was made fror the statue of Berin Academy in 1883. His art was related to the school of Rauch, his temperament being at the same time
realistic and poetical. Among his prominent works are a statue of the Great Elector, Frederick I of Brandenburg (Town Hall, Berlin) a colossal statue of Queen Louise of Prussia (Thiergarten, Berlin); and the sarcophagi of Emperor William I and Empress Augusta in
the mausoleum at Charlottenburg.

ENCKE, Johann Franz, German astrono26 Aug. 1865 . He studied under the astrono 26 Aug. 1865. Hee studied under the astronoliberation (1813-15) served as artillerist in the German army, and on the conclusion of peace was appointed assistant in the obscrvatory of Seeberg, near Gotha. Here he calcitlated the orbit of the comet observed by Mechain, in
1786 , by Miss Herschel in 1795, and by Pons 1786, by Miss Herschel in 1795, and by Pons
in 1805-18. He predicted its return in 1822-$25-28$, and with each reappearance more data were afforded for computing its exact orbit, which, it was calculated, requircd three and a quarter years to complete. By comparison of Encke was subsequently led to detect a gradual acceleration of its movement, amounting to about two and a half hours on each revolution. This acceleration he ascribed to a resisting medium, which sensibly affects the body of the extreme rarity of this comet, which is translications (Dic Entfernung der Sonne) (1822) and 'Der Venusdurchgang von 1769' (1824), led to his appointment as director of the observa-
tory of Berlin (1825), a position which he held tory of Berlin (1825), a position which he held
till his death. Many of his works are contained inl his death. Many of his works are contained in publication during these years issued under his direction. His various scientific publications were collected and published as 'Gesammelte mathematische und astronomische Abhandlungen' (3 vols., Berlin 1889) ; and 'As1868). 868).

ENCLOSURE, or conventual seclusion of nuns who have taken solemn lifetime vows, is Catholic Church. The conventional seclusion of monks is less strict, the prohibition of converse with the outer world being in their case limited to the exclusion of women from the interior of the monasteries and rigid rules on Trent forbids nuns to leave their convents, even for a short time, on any account whatever save for a legitimate cause - a cause specified in the law - with the approval of the local bishop. And no person from outside, male or female,
young or old, high or low, lay or clerical, is to be admitted within the ciausura of a nunnery unless with leave in writing from the bishop or
superior. By violation of this rule excommunisuperior. By violation of this rule excommunication is incurred ipso-facto. These rules, take solemn life-vows of detachment from the world: they do not apply to the houses or convents of religious women whose work brings them in contact with the outside world, such as Sisters of Charity, of Mercy, Little Sisters o. he Poor and the like. In such religious instinot the letter.
ENCRATITES, ën-krầtī-tēs (continentes abstainers), a Gnostic sect of the 2 d century disciples of Tatianus, who was himself a dis an Apologia on behalf of Christian believers Tatianus held that the material world is essen tially evil, proceeding from the evil principle
For him marriage was sinful and animal food an abomination; he employed water instead of wine in the eucharistic rite.
ENCRINITES, ên-krī-ni’tèz, a division of ossil crinoids or so-called "stone-lilies" distinguished from the more common forms with angular stems (pentacrinites) by having stems Derbyshire "birdseye" marble is noted for the ast numbers of encrinital remains it contain vast numbers of encrinital remains it contains, stone as if in relief. See Crinotid.
ENCYCLICAL (literce encyclica), a circular letter. The word used in an ecclesiastical sense means a letter addressed by the Pope to all the bishops in the world who are in communion with him, in which he condemns errors prevalent in the world, or explains the line of crence to practical questions pertaining to faith and morals. Pius IX was the author of a renowned encyclical which noted 80 prime errors in current thought. Leo XIII issucd a larg rights of labor, education, marriage, Bible study, etc., and Pius X in 1907 condemned certain trends of modern thought and actions. An encyclical differs from a bull or brief, in that the encyclical is to the bishops of the whole and is of concern to the entire Church. A bull or bricf is determined by circumstances, is of a special nature and may be of particular value only to some locality. There is a difference in the form of an encyclical from that of a bull or brief,- that is, in the seals used, the signatures
and the introductory words. ENCYCLOP
CYCLOPEDIA. This word formed for the Greek en, in, kuklos, a circle, and paideia ine Greek en, in, kuklos, a circle, and paideia, originally denoted the whole circle of the various branches of knowledge which were compreended by the ancients in a liberal education (the artes liberales of the Romans). The discyclopædia is almost too trifling to be comprehended. At a later period the word was applied to every systematic view, either of the whole extent of human knowledge or of par-
ticular departments of it. The want of such
gencral surveys was early felt; and as knowlpartly frcased they became still more desirable, arrangement of the sciences in their mutual relations, partly for the readier finding of particuworks were and, for these two reasons, sometimes alphabetically, arranged. The spirit of compiling, which prevailed in the Alexandrian School, soon led to attempts remotely allicd to this, and Varro and Pliny the Elder, among the Romans, composcd works of a similar kind. The honor of undertaking encyclopxdias on
regular plan belongs to the Middle Agcs, a regular plan belongs to the Midade produced not only a large number of cyclopædias of particular sciences, called Sunime or Specula (for example, the 'Summa The-
ologiæ) of Thomas Aquinas), but also a Uniologix' of Thomas Aquinas), but also a
versal Encyclopxdia, such as had never bern versal Encyclopxdia, such as had never
sen before. The indefatigable Dominican, Seen before. The indcfatigable Diddle of the 13 th century, exhibited the whole sum of the knowledge of the Middle Ages in a work - or rather three works - of considerable size-a
real treasure to the inquirer into the literary real treasure to the inquirer into the literary history of the Middle Ages. An excecdingly
popular work was the (De Proprietatibus Rerum' of Bartholomeus de Glanvilla, an English Franciscan friar, which maintained its reputation from the year 1360 to the middle of the 16th century. In the 17 th century various enLatin onc of John Henry Alsted, (Encyclopxdia vii Tomis distink ' (Her 1630) a work vii Tomis distincta' (Herborn 1620), a work. and treated in 35 books. In 1674 appeared the first edition of Moréri's (Le Grand Dictionnaire Historique.' In 1677 John Jacob Hoffman puhlished at Basel his 'Lexicon Universale,' the
first work of the kind in which a summary of first work of the kind in which a summary form. In 1697 appcared Bayle's famous 'Dictionnaire Historique et Critique) (Rotterdam, ${ }^{4}$ vols.), a work which is still of great value. Among the grcatest works of earlier date would of Coronelli, had it enibeteca Universaling to the original plan. It was to have appeared in 45 folio volumes, of which only seven were published (Venice 1701-06). More successful, especially in being brought to a completion, was Wiss Grosses volistandiges Universallexicon alle Wissenschaften und Kunste) (Grand Universa
Lexicon of all the Arts and Sciences) commonly called Zedler's, from the person, a bookseller, who conducted it (Halle and Leipzig 1732-50, 64 vols.; Supplement 1751-54, 4 vols. folio). It has, on the whole, much merit. Lives of living men were included after volume XVIII.

The transition from the ancient type to the modern occurred about the middle of the 17 th century and originated in the desire to make This changed the arrangement of the material by classified subjects to its alphabetical arrangcThe encyclopxdia thus approached and was assimilated to the dictionary. The change was not confined to the form, for the alphabetical arrangement inevitably led to a change in the purpose and character of encyclopedic compilation, viz., that from the exposition of the system
of human knowledge to the mechanical arrange ment the encyclopredia hecame a work of reference in the strict sense of that word work for occasional use, in which any particular fople or item of information desired can be vound under the proper word in an alphabetical have, however, been adopted by modern encyclo pedists in varying degrees. On the one hand nere has been a tendency to approach more and more closely to the dictionary type by in reasing the number and variety of the vocabulary words, and correspondingly subdividing the
material contained in the book and on the ther, a tendency (traceable to the ancient sys ematic type) to restrict the vocabulary and mbine the material as much as possible under omprehensive titles. In its extreme form the cormer tendency has given rise to the modern cyclopædias andic are little or latter to en aggregations of monographs.
In practice, however, encyclopædia makers incline more and more toward the adoption of tical needs of scientific and literary workers and as, in fact, essential to the adequate presentation of the vast accumulations of modern science, history and biography. An important characteristic of modern methods is the cmployment of a large corps of specialists, both as
compilers and as editors. In general it may be said that no good general encyclopxdia is now Said that no good general encyclopxdia is now
possible which does not include in its cditorial staff a small army of men of science, historians theologians, lawyers, and so on. The aim is to collect at first hand the special knowledge of the time and to present it in a manner that is acceptable to specialists. Lastly, the use of pic-
torial illustrations- plates and diagrams and pictures in the text, which found a place in encycloprdias at an carly date - has been exlended and their quality improved.
and we first encyclopredia written in Erglish was the (Lhe articles alphabetically arranged English 'Lexicon Technicurn,' or a 'Universa don 1704, 1 vol. folio), by John Harris, a London clergyman. This was a useful and popular vork, though it omitted from its scope theology, printed in 1710 . Amone other important encyclopxdic Works in English the following may be mentioned: Ephraim Chamber's 'Cyclopædia'; or a 'Universal Dictionary of Arts and Sciences' folio. work published in 1728, in two volumes Out in 1738 . Latterly it was revised and ensevera times reprinat 'Recs' Cyclopredia,' and published in known as of yolumes. Then was published the 'Encyclo11 editian Britannica.' Of this there have been $17{ }^{2} 1$ editions. The first edition was completed in $1910-11$ in 29 volumes. A three volume supplement was issued in 1922. The 'Edinburgh Encytopaedia' (1810-30, 18 vols.) was devoted par Condurly to the scicnces and technology and was
Cy Sir David Brewster. The (EncyConducted by Sir David Brewster. The 'Ency-
Coparlia Metropolitana) (London, begun 1815 ,
Cond completed 1845, in 25 vols., was published in
four divisions, according to a plan devised by the poct Colcridge). The (London Encyclopædia,' clopxdia) (29 vols.) (Chambers' 'Encyclopxdia' (in 10 vols.) was
published in 1860 and new cditions appeared published in 1866^{\prime}
in 1902 and 1923.

During the 19 th century, the various branches of science and technology, history, biography,
theology, commerce, politics, law, the fine arts, theology, commerce, politics, law, the fine arts,
etc., are all admirably represented in special works; the growth of the special encyclopædia having kept pace with the advance of knowlant are the encyclopredias of the most importexcellent examples of the special encyclopredia date from the 17 th and 18 th centuries; but those produced in the 19th century are much more numerous and, in several cases, far more comprehensive. The most notable of these later berselle ancienne et moderne) (85 vols., 1811-62, including supplement; 2 d ed., 45 vols., 1842-65) of Joseph and Louis Gabriel Michaud; and the 'Dictionary of National Biography' (66 vols., 1 st supplement, 3 vols., 1885-1901; 2d supplement, 3 vols., 1901-11; republished in 22 vols.,
In the United States an early work in the general field was the (Encyclopxdia Americana,' edited by Francis Lieber and published
1 st ed., 13 vols., 1829 . (The American Cyclo1 st ed., 13 vols., 1829. 'The American Cyclopædia,' edited by George Ripley and Charles A. publishers of this work from 1861 to 1905 published the 'American Annual Cyclopredia,' designed to record the progress of science and the arts, and the world's history from year to year, and to serve as supplements to the 'American work, octave per volume. 'Johnson's New Universal Cyclopædia' first appeared in 1874-77, in four imperial octavo volumes. It was especially strong in the departments of natural science - physics, chemistry, mechanics, etc.-- and American son's Universal Cyclopædia) (1893-95, 8 vols.) with a change of publishers, the work was thoroughly revised, by a corps of 36 editors, under the direction of Charles Kendall Adams. Then York 1884), which was succeeded by (The 'New International Encyclopedia' in 20 volumes (1902; 2d ed., 24 vols., 1914), and later by the Encyclopedia Americana) (1st ed., 16 vols., 1903; 2d ed., 20 vols., 1906; 3d ed., 22 vols., 1910; new and enlarged edition, 30 vols., 1918 eviscd, 30 vols., 1923).
Of the French cyclopædias the most famous sonné des Sciences, des Arts, et des Métiers, by Diderot and D'Alembert. This was published in 35 volumes 1751-80. Not only information was given in these volumes, but opinthe Church, subversive of religion, intensely antagonistic toward everything in the old order of things. The clergy and the court had fought the work, had even broken into it with alterations secretly made at the printers, and left no Etone unturned to prevent its circulation. Yet Europe was filled with it and shaken with the
thing which journalism to-day means; a fierce prophecy of changes which are stim pen hig, a waspiration and desire. Not only were the sciences pushed to the utmost by Diderot, but he made industry, labor, human toil in the shop, an interest unceasingly cherished. It was an of a century later. Still more comprehensive is the 'Encyclopédie Méthodique, ou par Ordre is des Matieres' (Paris 1781-1832, in $166 \mathrm{t} / 2 \mathrm{vols}$.), an aggregate of dictionaries rather than a sin-
gle work. The French have also the (Encyclogle work. The French have also the 'Encyclo-
pedie Moderne,' begun in 1824, finished in 1832, pedie Moderne,'
26 volumes, and subsequently in republished; the 26 volumes, and subsequently repub) ished; the
(Encyclopedie des Gens du Monde) (1835-44), 22 volumes; Larousse's more recent and valuable 'Grand Dictionnaire Universel du XIX
Siecle,' 16 volumes folio (with two supplementary volumes) ; 'La Grande Encyclopédic,' completed in 1903, and 'Dictionnaire encyclopédique universel, illustre de 20,000 figures,' edited by E. Flammarion and begun in 1895. Of works published in Germany the most fanow in its 14th edition. It is equaled, if not surpassed, by the similar work of Mcyer. The huge (Allgomeine Encyklopãdie der Wissenschaften und Künste,' originally edited by Profs. J. S. Ersch and J. G. Gruber, begun 1818, is not yet completed. To 1916168 volumes bet are carried on simultaneously. Other German encyclopxdias deserving mention are those of Pierer and Spamer.
In Italian, the 'Nuova Enciclopedia popolare' (14 vols., Turin, 1841-51) ; the 'Diziona-
rio universale di scienze, lettere ed arti) rio universale di scienze, lettere ed arti) ciclopedia popolare italiana' (ib. 1872), edited by Giovanni Berri, and 'Nuova enciclope-
dia italiana' (25 vols., Turin 1875-88), are the (Erincipal. In Spanish Mellando published the 'Enciclopedia moderna) (34 vols., with an
atlas) at Madrid in 1848-51. Another Spanish atlas) at Madrid in 1848-51. Another Spanish
work of note is Montaner y Simon, (Diccionario enciclopédico Hispano-Americano de literatura, ciencias, y artes) (25 vols., Barcelona
$1887-99$) ; the greatest of all such works in 1887-99) ; the greatest of all such works in
Spanish is the new (Fnciclopedia Segui), begun Spanish is the new 'Enciclopedia Segui,' begun
at Barcelona in 1907 and of which the volumes are still appearing. The 'Diccionario popular historico, geographico, mythologpopular
ico etc.) (16 vols., Lisbon 1876-90) $)$, by Chaga; 'Diccionario universal portuguez illustrado,' by Zcforina, are the standard works in Portugutese. Other works deserving of notice are
Salmonsen's 'Store illustrerede Konversationsleksikon' (19 vols., Copenhagen 1891-1911) in Danish; the 'Geillustreerde encyclopedie: woordenboek for wetensthap en kunst) (2d ed.,
16 vols., Rotterdam 1884-88): 'Nordisk Fam16 vols., Rottcrdam 188488) : 'Nordisk Fam-
ilyebok' (Stockholm 1904, 15 vols. to 1911); (Entsiklopeditchesky Slovar) (41 vols., Petro-
grad 1890-1904) and (Encyclopedya Powszechna, etc.) (16 vols., Warsaw 1898-1904).
The rapid advancement of the sciences and arts and the proportionately rapid communica-
tion between all civilized nations, have made a general acquaintance with many different branches of knowledge more necessary than
ever before. This is one of the chief causes which have produced in our time so many en-
cyclopædias of various kinds, some very learned and others more adapted for the genand arts, others only single branches

END-BRAIN, a name given to the front part of the brain, which corresponds to
fore-brain or telencephalon. See Brans.

END-ORGANS, important nerve-structures specially designed for particular purposes. Thus the taste-buds in the mouth and tongue, plates in the muscles are special forms of nervous end-organs. There is a vast variety of nervous end-organs found in the special glands, such as the secretory glands of the skin, of the mucous membranes, in the liver, the spleen, tin kidneys, etc.

ENDE, ēn'dẽ, Hermann, German architect: 2. Landsberg 1830; d. 1907. He studicd at the Acadcmy of Architecture at Berlin; made the reat models. At Berlin, with Bockmann, ho erected the Red Palace, Royal York Lodge, th Bank of Commerce, the Ethnological Museum 1866 he designed several public buildings for 1866 he designed several public buildings tor he city of Tokio, Japan, at the behest of 1801 ic was chicf professor in the High School for Technical Arts at Berlin. He was a member of the Berlin Academy of Arts and honorary memb.

ENDEMAN, ěn'dë män, Wilhelm, German jurist: b. Marburr, 24 April 1825; d. 1809 . Hc studied at Heidelberg and was professor of
law at Jena 1862-66 and at Bonn in 1867. He was a member of the Reichstag 1871-73. Fiis writings on Gcrman commercial law are hights esteemed. Among his works are 'Dic Bewe
lehre des Civilprozesses) (1860) ; (Der deutschc Civilprozess' (1878-79) ; 'Die Entwicklung des Beweisverfahrens im deutschen Civilprozess (1895).

ENDEMIC (Gr. "prevailing among the people"), a name often applied to diseases which attack the inhabitants of a particular district of country, and have their origin in some local cause, as the physical character of the , inabits and mode of living of the people. Every part of the world, every climate and every countr has its peculiar endemics. Thus the tropical and warm climates are subject to peculiar cutaneous disorders, eruptions of various kinds, becaus
the constant heat keeps up a strong action of the skin. In northern climates eruptions of the skit occur, but they are of a different kind. Thus in all the north polar countries, especially in Norway, a kind of leprosy, the radesyge, is preva-
lent, arising from the coldness and humidity of lent, arising from the coldness and humidity of the climate, which dispose the skin to such the orders. Hot and moist countries generars the most violent typhoid and putrid fevers;
West Indies and some of the South Americar coasts, for instance, produce the yellow tever In different parts of the United States inter mittent fevers, arising from local malarial con ditions, are common, as they are in colntric
generally in places that are damp and not warm generally in places that are damp and not
on marshes and large rivers, ete. Places in more dry and clevated situation, northern coun

Tlies particularly, are peculiarly subject to in very much disorders. In countries and district cially in mountainous places, we find at a seasons of the year rhcumatism, catarrhs and urigin in train of complaints which have the the skin a sudden stoppage of the functions With1 the most numerous instances of pulmonary Consumption. In cold and damp countries lik England, Sweden and Holland the most frequent Disea croup occur
iseases which are endemic in one country if the weather and others and become epidemic semble those which are the causes of the en demic in the former place; the climate being for other transferred, as it were, from one to the become Endemic disorders in some circumstance Dersons, and may be thereby spread to othe Dlaces, the situation and circumstances of which predispose them to receive these disorders. This sprown by the migrations of diseases, th Eurcading of leprosy from Oriental countries to
It is fo

It is favorable the oricrs for the invalid to cure of obstinate dis Where his particular complaint is rare. Thus it is Customary for people attacked with pulmonar complaints to remove to localities where the it is pure and dry and sunshinc abundant. So change advantage to the consumptive to excolmtry. Modern sanitation is learning to dea with conditions which, alike in populous an parsely peopled places, have hitherto bred dis mases; so that immunity from fatal disorder science said to show the good results of sanitar longevity.

END

Vienna 1824 , Eduard, Austrian painter: b (q.v.) and is noted alike for his historical and ${ }^{\text {genre }}$ works, among which are 'Francis I in the Stldio of Cellini') '(Shakespcare Reading "Macbeille de de Mariage'; and 'A Game of Chess.)

ENDER, Johann, Austrian artist: b. Vi Dortrait painter he was successful at an early Ige, In 1818-19 he made a tour of Italy, Turkey his Grecce, remaining in Rome 1820-26. Upon mis return to Venice he devoted his attention to fessor ature and historical paintings, being pro Among his works are (Madomna with Slumber Ag Christ-Child) (Vienna Museum) ; (Marcus Garelius on His Death Bed) (1814, Esterhazy Gralery) ; his masterpicce, 'The Crucifixion' (a
 lthaca to Furies' (1815); 'Minerva Showing 'Sleeping at Christ's Sepulchre) (Assimption'; portraits.
ENDER, Thomas, Austrian artist: b. ViWas twin brother of Johann Ender (q.v.). He holed sludied at the Vienna Academy, becoming a prize at the Vienna Academy won the grand razil in 1817, he brought back ncarly a tho to
sand drawings and water colors. He visited Italy, Palestine, Greece and Paris. In 1836 h Vienna Academy, filling that chair until 1849 Among his works are 'View of Grossglockner' 'Castle Tyrol'; 'Coast of Sorento'; 'View of Rio de Janeiro' (Vienna Academy) ; Chapel in ry, Berlin)
ENDERBY LAND, a region in lat. $65^{\circ} 57^{\prime}$ S., long. $47^{\circ} 20^{\prime} \mathrm{E}$., named by John Briscoe in
1831, when on a whaling voyage, in honor of his employer, Samuel Enderby. Briscoe could not approach within 20 or 30 miles, and was unable to say whether it was an island or a strip of continental coast. It was first discovered by Dim
ENDERMIC, a term designating a form of medication once much in vogue, but now alupon the affected part and applying to the raw surface the remedy to be absorbed. It has been superseded by the hypodermic method. See Hypodermic Injection.

ENDICOTT, Charles Moses ("Junius Americanus"), American historical writer: b 1863 He contributed d. Northampton, Mass. 1863. He contributed to the 'New England the Boston Gazette. He wrote a 'Life of John Endicott'; 'The Pcrsian Poet, a Tragedy' 'Essays on the Rights and Duties of Nations'
and 'Thrce Orations.'

ENDICOTT, John, American colonial govcrnor: b. Dorchester, England, 1589; d. Boston, country by the "Massachusctts Company" to country by the "Massachusctts Company" to where he arrived 6 Sept. 1628. In April 1629 he was chosen governor of "London's plantation" but in August it was determined to transfer the charter of the colony to New England, and was deputy-governor of the Massachusetts colony 1641-44, in 1650 and 1654. and cornor in 1644 and 1649, 1651-54 and 1655-65 He was bold and energetic, a sincere and zealous Puritan, rigid in his principles and severe in the execution of the laws against those who differed from the religion of the colony. So
averse was he to everything like popery that he cut out the cross from the military standard He was opposed to long hair, insisted that the women should wear veils in public assemblies and did all in his power to establish what he deemed a pure Church. In 1659, during his ad ministration, four Quakers were put 10 death in
Boston. Consult Endicott, C. M., (Memoir of John Endicott' (Salem 1847).

ENDICOTT, Mordecai Thomas, American naval officer: b. May's Landing, N. J., 22
Nov. 1844. He was graduated at the Rensselaer Nolytechnic Institute in 1868; practised as civil engineer from 1868 until appor in the United States navy in 1874 . He served and in the Navy Department at Washington. In 1895 he was appointed member of the Nicaragua Canal Commission, of the United States naval armor factory board in 1897 and in 1898 became chief of the Bureau of Yards and Docks with to the rank of rear-admiral and was advanced

1902 and 1006. In 1905 he became a member of the Isthmian Canal Commission, retired in 1906 but continued upon active duties until 30 June
1909 . He is a member of the American Society 1909. He is a member of the American Society
of Civil Engineers and was its president in of Civ
1911 .
ENDICOTT, William Crowninshield, American lawyer: b. Salem, Mass., 19 Nov. 1826 ; d. Boston, 6 May 1900; was a descendant of John Endicott (q.v.), the Puritan governor of Massachusetts. He was graduated at Har-
vard College in 1847; served as justice of the vard College in 1847; served as justice of the State Supreme Court (1873-82); was an unsetts, on the Democratic ticket, in 1884; and was appointed Secretary of War in President Cleveland's Cabinet in 1885.

ENDIVE, ên'dĩv (Cichorium endivia), an annual or biennial herb of the natural orde Compositce. It is an East-Indian annual or bi ennial, with a rosette of smooth radical leaves, more or less lobed or cut, blue axillary sessile been cultivated as a salad, for which use it probably ranks in Europe next to lettuce, but not quite so high in America. It is as easily
cultivated as lettuce, but must be blanched, either by loosely tying the outer leaves up over the inner ones or by covering the plants with merous varieties, those that naturally are mos curly-leaved, and that ordinarily develop a white centre without blanching, are the most esteemed The leaves are also used as a pot-herb and a ingredient in soups, stews, et
ENDLESS or PERPETUAL SCREW, a mechanical contrivance consisting of a screw the oblique angle corresponding to the pitch at an oblique angle corresponding to the pitch endless recurring effect its thread produces when in motion. It is in general use as a mcans of producing slow motion in the adjustment of
machines rather than as a transmitter of great
EN.
ENDLICH, Gustav Adolf, American ju ist: b. Alsace Township, Berks County, Pa., 29 Jrinceton; studying law and being admitted at he bar in 1877. He was elected judge of the 23 d judicial district, Pennsylvania, 1879, and re lected 1899. He was member of the United 1906 to 1910 was president of the hoard of trus ces of Muhlenberg College. He edited th Criminal Law Magazine and Reporter 1890-94 He has published 'The Law of Building Asso iations' (1882); 'The Law of Affidavits o Defense in Pennsylvania' (1884); Woodward Decisions' (1885); 'Commentaries on the In-
terpretation of Statutes' (1888): 'Rights and Liabilitics of Married Women in Pennsylvania 1889) ; and numerous articles on legal sub ects for periodicals
ENDLICHER, ěnd'lǐ-èr, Stephen Ladis las, Hungarian botanist: b. Hungary, 24 June 1804 ; d. Vienna, 28 March 1849. He was destined for the priesthood, but in 1827 began
hotanical and linguistic studies. He became otanical and linguistic studies. He became Imperial Library at Vienna in 1828; and in 1836 of the botanical department of the Royal

Natural History Museum there, and in 1840 b came professor of botany in Vienna and d rector of the Botanical Garden. Much dian
turbed by the events of 1848 , he fell into mela choly, and in 1849 put an end to his own iifc His 'Genera Plantarum' (1836-40) has hal great influence on succeeding botanists. studies in Oriental philology are also imporand der chinesischen be mentioned (1845) ; and with Eichenfeld, 'Analecta Grammatica) (1837)

ENDOCARDITIS, inflammation of the endocardium or serous membrane lining
valves and internal surface of the heart.
ENDOCERAS, èn-dǒs'e ras, genus of ios sil cephalopods, found in the Ordovician roct of the United States, Russia and Scandinava
Many species have been uncovered; the conch Many species have been uncovered; the conch Specimens have been found in the Trento rocks of New York, having a length of over feet. See Ceptialopoda

ENDOCHROME, the characteristic pigment mixture of diatoms. It is apparently mixture of a green constituent and a goluen ceous Earth.

ENDOCRINOPATHIES. Diseases

 disorders of growth or adjustment due to turbances of the endocrinous glands, or glat of internal secretion. The early mechanly conceptions concerning the push that lies be hind the metabolism of the human body until the importance of a number moverloake structures has forced itself, almost with a whirl, upon the medical horizon. Then structures are the endocrinous glands. study of their anatomy and functional implo As carly as 1828 Parry called attention the relationship between enlarged thyroid and increased frequency of the heart beat (tach) cardia), since which time the works of f hannes Muller, Addison, Gull, Brown-Séquar Marie and many others have served as stru ing points which is amply recorded in a sco monographs. The chief of these are Biedl, 'Internal Secretions' (bibliography of 415) titles, 1913); Falta, 'Ductless Glands' (191)Parhon et Golstein, 'Les Sécétions Interte' Parhon et Golstein, 'Les Secretions Intent
(1909) ; Levy and Relogic (1913) ; Gley, 'Les Sécétions Internes' (1914), Sajous, 'Internal Secretions'; special articics Lewandowsky's 'Handbuch der Neurolog the (1913), and Jelliffe and White,
Nervous System' (2d ed., 1917)

Out of this prodigious development to found in the works just cited and in curren and hastily constructed, a large amount of so substance remains and a number of perman acquisitions have been made. The net re has been to show much more essentially thical ever before the fundamental physicocheriic ${ }^{\text {a }}$ foundations of biological metabolic processes they are utilized in the upkeep of the and th
machine. The viewnoint has been attained machine. The viewnoint has been attained takes place between the different organs of body. That this is automatically regula
hrough the vegetative nervo:1s system (the ol ympathetic) chiefly, apparently in some cases, nough this is by no means clear, solely throug chemical regulation. The disorders of this ad justment now constitute a special department of srouped under the terms endocrinology, or the ndocrinopathies.
In the earlier period of the study of these glandulapathies individual discase groups, unirost ase, diabetes mellitus, myxedema, eretinism and acromegaly; but of recent years it has been acreasingly emphasized that whereas a certain Toup of symptoms, which may be linked to sland minus activitics of one or another other may be most prominent, nevertheles hem and ala to be neglected Hence in arisen the viewpoint that most of the endocrin pathies are, strictly spcaking, poly- or plurilandular syndromes, that is, that disease or compenstment in one gland usually induces For days of primitive animistic magic it has bee eld that every living tissue yields a chemica product which will act upon other tissues. The early alchemistic studies, those of Paracelsus, therapists, are all oftempts to co-ordinate a host of empirically observed facts. They are all Worth rercading if the reader will put himself simpathy with them through a comprehension of the now strange symbols then used. endocrinous glands for the present purposes termed hormones and chalones having some definite or specific action related to, yet different rom, enzyme activities. These structures are tiveloped from different embryological formations. The hypophysis (posterior lobe) and mervous; the thyroid and pituitary (anterior lobe) come from the buccal cavity; the pancreas and mucosa of the small intestine from the intestine, the parathyroids and thymus from the branchial arches (old gill slits of fishes), renal bodies from the genital ridges. Some of these, in humans, merge into one structure as thyroid and parathyroid, as chromaffin and in(errenal cells in the suprarenals, as hypophysis (Dosterior lobe) and pituitary (anterior lobe). author's present resume, largely following the Handhook sumary in Stedman's, Reference to sketch only the general outlines of the various uniglandular and pluriglandular disease pictures. The more radical French school is be calld, hut at the same time attention shonld presented to the fact that the French school be read cum arano salis. Still the clinical sut gestions of these writers are so rich it is felt the be a hetter course to call the attention of rather than to take the more conservative attituder than to take the more conservative atti-
turecting attention only to that which can indubitably be proved. . This whole subject is still so largely empirical that the principle of putting the hypotheses to a test will be found to be more advantageous than that of
recording only the obvious. The former attitude may result in gaining useful therapeutic
truths, the latter becomes monotonous and frequently encourages stupidity
summaries of Biedl Falta Levi and Rof Biedild Fare, Laignel-Lavastine, marized.

Uniglandular Syndromes. Thyroid.- Myx-edema.- The chief symptoms are arrest of development, dwarfism, infantilism, infiltration of skin and mucous membranes, mental torpor, slow ideation, slowness, sleepiness memory, apathy, laziness. The pulse is usually small, rapid and irrcgular, at times increased tension. There are constipation, diminished urination, hypothermia and chilliness of the skin. Reffexes diminished. The voice is frequently nasal,
slow, monotonous and raucous. Headache is frequent and at times epileptic attacks occur. These are all symptoms of diminished secre-
Exophthalmic Goiter. - A more or less com plete catalogue of findings for a lot of case pulsations in the neck, exophthalmos, eniphora v. Graef's, Stellwag's, Möbius' symptoms, facial paresis, cramps, tremors, neuralgias, chiefly frontal and ocular, colic, hot flashes, profuse weats, thermophobia, engorgement of the skin, dermographism, transitory edemas, pigmenta resistance, albuminuria, polyuria or glycosuria, anorexia, bulimia, vomiting, ntyalism, hyperchlorhydria, diarrhce, dyspncea, amenorrhne atrophy of mammx, loss of flesh, agitation, emotional instability, volubility, insomnia excitement, marked depression, maniac variations, confusion, epileptic attacks. Eppinger and Hess have endeavored to separate a vagotonic and sympathicotonic type.
igns are vagotonic type the more prominent signs are decreased lacrymation, less cxophthal--. Graef's sign, abundant sweating, diarrhoca mild tachycardia, no alimentary glycosuria, pilocarpine and oculocardiac reflexes positive In the sympathicotonic types there are exoph glycosuria, oculocardiac reflex reversed or a sent, increased reaction to adrenalin. Most cases are mixed in type. In all save infectious forms psychical influences are striking and psychotherapy is extremely valuable in the early stages, less so in chronic cases. Money ation of the psychogenic cases. Thyroid insufficiencies, other than those of myxedema, are infantilism, obesity, Dercum's syndromes, pseudolipomata, alopecia, precocious loss of hair, scleroderma, urticaria, pruritus, recurring herpes, transitory edemas, migraine,
asthma, constipation, mucous enterocolitis acrocyanosis, Raynand's syndrome, localize rythemas, rhinorrhcea, glucose tolerance, geni tal instability, chilliness, mammary hypertrophy.
Thyroid Instability (Levi and Rothschild). Thyroid Instability (Levi and Rothschild). css, headaches, depression, crying, giddiness passing edemas, neuralgic pains, suffocations, predominant dyshyperthyroidism: thinness, in
crease of eyebrow development, hot flashes, palpitation, intestinal spasms, irritability, emotionalism, phobias, inquietudes, migraine,
asthma, hyperidrosis,
dvsidrosis,
tremors. asthma, hyperidrosis, dvsidrosis, tremors.
Mixed cases: chilliness, shivering, migraine, Mixed cases: chilliness, shivering, migraine,
frequent urination, neuralgic pains, distractable frequent urination, neuralgic pains, distractable
reddening of eycbrows, catamenia; neuralgias anxicty, dilatation of palpebral fissures, swelling of feet, variations in volume of the feet, tremors, nervous crises, hysterical attacks.
Parathyroids. - Tetany. - This syndrome is unquestionably related to parathyroid loss or point of Lundborg and of Gauthier is that this syndrome belongs here, and is a hyperfunction disorder but it rests on very unstable foundations.
Thymus.- Vagotonic Symptoms of Basedow Syndrome(?) : Profuse sweating, palpitaweakness.
Myasthenia of Erb-Goldflam (?): Headache, ptosis, external ophthalmoplegia, fixed or transitory palsies principally of the face, the neck, myasthenic electrical reaction.

Thymus Loss: Idiocy of Klose and Vogt.
Tetany (?): Basch.
Suprarenals.-Addison's $\begin{gathered}\text { Syndrome and } \\ \text { Suprarenal Insufficiency: Asthenia, arterial }\end{gathered}$ hypotensiont, morning nausea and vomiting lumbar pains, melanoderma, white lines on the skin, amyotrophy, aboulia, depression. At periodic palsies, delirium, mental confusion, sudden death.
Suprarenal-genital Syndrome: External feminine pseudo-hermaphroditism with virile secondary sexual characters; suprarenal virileasy bruising, all signs of feminine maturity. hypertrophy of the clitoris, hypertrichosis of masculine type, masculine voice, muscular and nervous hyperasthenia, active and violent sexal inversion; artion hypertension, arte sclerosis; glycosuria.
f the solar plexus, analia--Chromaffine cells Zuckerkandl, cardiac partaganglion of Wiesel and Weisner, Luschka's carotid and coccygeal glands, tympanic paraganglia. The syndromy of the affections of these glands is entircly ob
Pancreas.-Diabetes Mellitus: Glycosuria, polyuria, polyphagia, polydipsia; neuralgias, pruritus, impotency, constipation, dry mouth, dry skin, diminished perspiration, atrophy o the testicles, abolition of the tendon reflexes, arterial hypertension, asthenia, headache, sus-
ceptibility to cold, perforating ulcer of the foot, syncopies, comatose or apoplectiform attacks, paralyses, vertigos, asthmatic dyspnocas, pscudoangina, narcolepsy, depression, apathy hypochondria and coma.
Hypophvsis.-Frochlich's Genital Adiposity Syndrome: Adiposity, arrest of development o regression of the genital glands of the genital
organs and the corresponding secondary sexual characters; somnolence.
Syndrome of Hypophyseal Insufficiency of Renon and Delille: Tachycardia, instability of the pulse, arterial hypotension, insomnia, anorexia, distressing sensation of heat, exag
Acromegaly: "A simple
congenital, of the upper and lower extremitie and also cephalic," headache, amenorrhoea, ten-
don reflexes increased, arrhythymia, syncope, don reflexes increased, arrhythymia, syncope,
perspiration, polyuria, glycosuria, sensitiveperspiration, polyuria, glycosuria, sensine cramps, lancinating pains, lassitude irritability,

Gigantism: "Acromegaly of the subjects in the epiphyseal cartilages which have not yet
ossified," impotency, amenorrhoea, indolence, ossified," impotency, amenorrhoea, indolence,
infantilism, aboulia, asthenia, glycosuria, infantilism
polyuria.
polyuria.
Pineal.
Pineal.-Genital Macrosomia: Abnormal increasc in height, premature genital and sexual
development with secondary sexual characters, hypertrichosis, exaggerated mental precocity.

Pincal Adiposity: Diffuse obesity.
Choroid Plexus.- Hydrocephalus: Hypertension of the cerebrospinal fluid, rapid de-
velopment, nervous and mental syndrome of velopment, nervous and mental syndrome of
ventricular hypertension, obnubilation, idiocy. Ozaries.-Infantilism: Amenorrhea, absence of secondary feminine characters, obesity, deficiency of hair, childishness.
Acquired ovarian insufficiency. (a) Peripiteral vasodilatation, subjective crises of heal sweating, continuous or paroxysmal tachysomnia, severe headache, facial neuralgia, lumbago, neuromuscular asthenia, memory instabiity, irritability, enervation, hysterical crises; exaggeration of the sexual instinct(?), more often absent or inverted; obesity, restlessnes, anxicty, phobias, impulsions, gastrosp
stipation, vomiting, vertigo, syncope.
(b) "Vagotonic crises" before the menses and at the beginning of pregnancy, palior, tendency to syncope, nausea, vomiting, constipation, diminished arterial tension, pulse rather slow, oculocardiac reflex positive, Samogyus with the development of the corpus luteum. These crises occurring before menstruation of at the beginning of pregnancy must not confused with the reactionary dyshyperthyro of
ism of the menopause marked by flashes of ism of the menopause marked by flashes
heat, sweating, hypertension, paroxysmal heat, sweating, hypertension, paroxy
tachycardia, palpitations, anxiety.
"Hyperovaria" (Dalché): Precocious puberty, copious menstruation, pain before and during the first days of the period,
menstrual leucorrhoca, developed sexual
in stinct, well-marked cyebrows, thinness, pallor, small breasts, large pelvis, rounded lower limal
contrasted in size with the upper ones, arterial hypotension, craving for movement and action, enervation, tendency to loquacity, erotic crisc ${ }^{-}$-Testicles.-Infantilism : Defective development of the male genital organs, absence of secondary sexual characters, obesity, deficienc of hair length of the niun,

Acquired Testicular Insufficiency: Increase glabrous state of the body, tendency to obesity, gynccomasty, frigidity, impotency, senility, arterial hypertension(?), asthenia.

The tynes of testicular insufficiency accorde ing to Rebattus and Gravier are: (a)
stcrile. (b) Eunuchoid gigantism, becanse the stcrile. (b) Eunuchoid gigantism, because the internal secretion of the testicle is estan antil-
late. In this case there is a prolonged infanter ism. (c) Eunuchism by castration character

1zed by gigantism and infantile appearance
The secondary sexual characters do not appear (d) The reversive infantilism of Gandy, Where simply a sort of a sexual condition is Chared, with attenuation of secondary sexual naracters and a certain degree of obesity, vith late testicular difficulty in the adult. nd cranium very large Lower limbs short veloped, especially the mustache, thinness, per istence of youth, a degree of arterial hyperten on, virile character, activity, moral and physi encrgy.
iminution.-Prostatic Insufficiency: Asthenia licide. Hypertrophy of Prostate: Arterial hypcr-
tension, retardation of the heart, cerebral Pluriclandular Syndrotion.
Pluriglandular Syndromes.-Basedow's disymptoms thymic hypertrophy and vagotonic rrhea, Addison's syndrome and letany, amenMyxedematous with Thymic Hypertro Tetany, acromegaly, Addison's sync ome menorrhoca, infantilism, mammary hyper Acrome.
arious distic or ovarian insufficiencies with motor, trophic, etc., connected at one vasoFith the myxcdematous, at another with the asedowian series
Ovarian Predominance.- Thyroid Reaction tions, perspiration Insuffiency: Tachycardia, palpitascanty urination, trembling, anxicty, etc The differences letween these nervous manifestations and the picture of the attenuated says Laignel-Lavastine. This pathogenic slight ception permits of important therapcutic resuits; one may ask, for example, whether the anti-1)asedowian therapy with hematothyroidin Would not be of advantage in the nervous and psychic disturbances of the normal menopause which repeat one feature after another of the Dyshyperovaria pation, prolongation and copionstiess of the Thyro-ovarian Disturbances of Significance-.-Either ovarian of the Same the myxedematous series, or the dyshyperovarian in the basedowian series; in cither case no nervous disturbances of the dysthyroid are whadifed by all factors of the ovarian rhythm, Watever they may be.
siants, with their clinical varieties. Infantile eunuchism cryptorchidism, feminine pseudoermaphroditism, mental infantilism.
Acromegalics with deficiency syndromes, asthenia. infantilism, amenorrhœa, obesity, - Acron
ity, Acromegalics with syndromes of hyperactivtive, more or less vicious, synergetic or substitu-
hyple or exophihalmic goitre, arterial hypertension and atheroma, lacteal secretion. Suprarenal Predominance.-Addisonian with the other hand, exophthalmic goitre.
Very often basedowians, acromegali
with spontaneous clycosuria alimen, giants, merely adrenal, the latter making it possible in
certain cases to suppose a certain degree of suprarenal hyperactivity
Without Mared of Claude and Gougerot is minance. - The case sexual characters, countenance example: Loss of thickened, wrinkled, pigmented; chilliness, absence of perspiration, asthenia, arterial hypotension, tetany; testicular, prostatic, suprarenal,
thyroidal and perhaps parathvroidal atrophy. Consult Jelliffe and White, 'Diseases of the Nervous System" (Chap. III, "The Endocrinopathies"); Eppinger and Hess, (Vagotonia, Nervous and Mental Disease)' (Monograph Series, No. 20, New York).

Smith Ely Jelliffe.
ENDODERM, or ENODERM (also layer of cells in the developing embryo man it sul)sequently develops into the epithelium hat lines the digestive canal and its appendages, the pancreas, liver, lungs, etc. See Embryology.
ENDODERMIS, in plants, the layer of cortical cells which surrounds the vascular In many cases therc is but a single sheath surrounding a single vascular region; in others here are scveral vascular regions each protected by its own sheath or endodermis. See Morpholocy

ENDOGAMY, a custom among some savage peoples of marrying only within their own .
ENDOGENS, ên'dō-jēnz, a name tor monocotyledonous plants, referring to the mode
of growth of the stem. See Borany; Monoof growth

ENDOR, ën'der, a village of Palestine, four miles south of Tabor, now a poor mud hamlet. It was the place which "Saul visited (1 Sam . xxvili,") to consillt the "woman with a familiar spirit." The word is in common use in the writ-
ings of the Philistines. ENDOPSE in
ENDORSE, in heraldry, a subordinary equiv
pale.

ENDOSCOPE, in surgery, a gencral term for an instrument for the examination of inratus for lighting. The devised by Nitze and Leiter

ENDOSMOSIS. Sce Osmosis.
ENDOTHELIOMA, ĕn-dō-thē-l̆̄-ō'ma. See Tumor.
ENDOTHELIUM, a modified form of the cells lining certain internal organs. Such are
the internal lining membranes of the heart and he internal lining membranes of the heart and ies. Endothelium is a modification of epithelium (q.v.). ENDOTHYRA, genus of fossil. Forami-
rifera, the shells of one species of which (E. baileyi) form a large part of the oollitic limestone of the Lower Carboniferous and known as Bedford limestone. Sce Foraminifera.
ENDOWED SCHOOL ACTS. Acts of the British Parliament made to prevent misapsecondary the forion in Enclan support of Britain - Education in England. See Great
J., 'The Educational Systems of Great Britain and Ireland' (Oxford 1912)
ENDROMIS (1) a kind of boot which was first gencrally worn by Cretan huntsmen and then by athletes in general. It was close-fitting, down. (2) a woolen rug or covering worn by Roman athletes, gladiators, etc., after violent exercise. They were made in Spain or in Tyre.

ENDYMION, in classical mythology, according to some a huntsman; according to others a shepherd; and according to a third account a king of Elis. One tradition is that he and that Selene (the moon) saw him sleeping and became enamored of him. Others relate veyed him to Mount Letmus in Caria and threw him into a perpetual sleep in order that she might kiss him whenever she pleased. The legend is the subject of Keats' 'Endymion.'
ENDYMION. Kcats was 23 when, in April 1818, he published his first long poem, 'Endymion.' The young poet, in love no less "the the beauty of his native England than with in the poom his own passionate seeking for the soul of beauty in the world. We may trace this theme through the "uncertain path" of a story which is almost lost in the luxuriant tangles and by-paths of incident and description. feast of Pan, confesses to his sister the vision of an immortal loved one that has turned waking life to despair. Led on to "woe-worn wanderings" by a mysterious command, he descends "into the silent mysteries of earth." He is succored by Diana, urged on by Venus, who foretells his happiness, and is moved to
pity by the vain loves of Alpheus and Arethusa. pity by the vain loves of "fipheus and Arethusa. through the sea-depths to the rescue of spellbound Glaucus, Endymion's awakened sympathy with suffering gives him power not only
to restore "all lovers tempest-tost" to eternal to restore all lovers tempest-tost" to eternal love and youth, but to win Cynthia and im-
mortal bliss. So at last his mortal love the Indian damsel, reveals herself as the goddess; and through earthly loveliness he attains immortal beauty. And so this story of Endymion's love for the moon-goddess is the symbol not only of Keats intense susceptibility to the loveliness of moonlight but of his life-long
passion for "the principle of beauty in all passion
The form of the poem is, like its spirit, wavering, but shot through with imaginative glory. Structure is lacking - the poet does not master his story, but is swept on by it, like
Endymion on his celestial steed. Metre and Endymion on his celestial steed. Metre and
diction are treated with a freedom not only diction are treated with a freedom not only
Elizabethan but revolutionary. And in such lyric ecstasies as the "Hymn to Pan" and "O Sorrow," in such perfect images as "the dancing poppies," "tip-toe Night," "panting light," magician of English poctry. Consult article "Keats," 'Cambridge History of English 'John Keats) (New York 1917). Frances

ENEMATA fuid substances passea into the rectum and large intestines for cleansing, the treatment of chronic constipation, enemati of cold or hot water, water and soapsuds, water and glycerine, are found to be of great service Almost any remedial substance capable of solu ion and absorption may be placed in the rectum r large intestine to affect the parts locally o exert a general action on the body. Almo
all remedies that are taken into the stomach may be taken by means of enemata. The dose has to be somewhat larger in most instances For the treatment of pinworms, diarrhoa and ysentery enemata are invaluable. In medene han it is. In acute colicky pains from "wind in the bowels there is nothing better, as a rule, han a hot enema of at least two quarts, at emperature of from 116° to $118^{\circ} \mathrm{F}$. As the ower bowel is not provided with digestive the insoluble food-substances should be so con verted as to render them capable of absorptio - hence all gruels, eggs, milk, etc., to be use should first be predigested by peptic or pan creatic ferments. A special form of enema consisting of hot (116° to $118^{\circ} \mathrm{F}$.) salt son (teaspoonful of salt to 1 pint of water) allowed to pass in and out of the bowel slowly and made to ascend some distance, is of im mense service in cases of surgical shock, profuse bleeding, and in cases in which the kidneys refuse to secrete urine. This is term enteroclysis (q.v.). Enemas for cleansing purposes should be small- not over half an ounce.

ENEMY, in international law, a nation the war with another. The term includes the
nation as a whole, and also individuals belong ng to the latter. A state of war must ext before States assume toward each other th status of an enemy is regulated according ${ }^{\text {a }}$ it is a combatant or non-combatant. If a com batant the opposing nation may employ it whole force toward its destruction. Non combatants, however, in as much as they have no connection with the war but continue the according to the usage of modern civilize peoples. A state of war precludes commercial relations between the non-combatants of statc at war, contracts are not upheld, and the cour are closed to enemy aliens. Ordinarily not combatants are not liable to injury in persons, or property arising from miltary oper frequently happens that they suffer crty losses through bombardments, etc. If a tacked or robled by troops of the enemy out authorization and contrary to internation law those troops are liahle to punishment their own military superiors for violation
the rules of war. The modern tendency civilized peoples is to limit all acts of hostilit to the actual combatants in the theatre of w^{2} It has frequently happened, however, th modern nations while engaged in hostilities wi savage peoplcs have been unable to observe the rules of international law, and especially
distinction between combatants and non-com distinction between combatants and non-cryi-
batants. See Alien; Belligerent; Interial

Honal Law; War, Rules of, and consult the ENES referred to under these articles. ENEMY ALIEN PROBLEMS. In early ents upon the outbreak of war to arrest the itizens or subjects of the enemy power residing within their jurisdiction, to confiscate their marily from the country. In the course of time, however relaxations from this harsh practice began to be made and many treaties ere concluded providing that such persons thould either be allowed to remain in the counthey, or in case they were required to leave, Which to dispose of their property and wind up tineir business affairs. The policy of confiscating their property also ceased and wholesale expulsions became rare. During most of the Wars of the 19 th century the treatment accorded humane eny aliens was uniformly liberal and of 1898, for example, neither belligerent molested the citizens or subjects of the other, so and their property was not interfered with in the their property was not interfered with in pean Whightest degree. When the great Eurohad not bre out the rights of enemy aliens international conventions; the treatment to Which they were entitled, therefore, depended upon the customary law of nations and upon particular treaty stipulations between the opposing belligerents.

The enemy alien problem of the late war preceding war, partly because of the of any dented number of enemy aliens which were found in most of the belligerent states at the outbreak of the conflict, and partly because of persons in the countries where held by such resided. ${ }^{\text {in }}$ Eng in the countrics where they resided. 50,000 German subjects; in France the numthe was still larger; and in the United States the number of such persons probably exceeded a million. In consequence of the German policy of universal compulsory military scrvice large had heen allowed to depart would have returned to Germany and joined the army. Many of nem were of course spies, for the German hisWars Treitschke tells us that "in the national Wars of the present day every honest subject is a spy." The presence of such persons in so large close geographical proximity of those countries lo Germany naturally constituted a grave danger to hoth countries. It was impossible in view of these circumstances to allow males of mililary age to leave the country and it was equally freedom to leave them to remain in complete The
alien try the thent which was accorded to every may be discussed various belligerent governments n respect to their personal freedom; (2) measures in respect to their property and busicess to the courts. At the outset Great of acaecorded to German subjects a period of seven days during which they might leave, but it does ot appear that any considerable number suc-
ceeded in getting away. France allowed them ceeded in getting away. France allowed them
to lave before the end of the first day of mobilization, but few were able to return to States did countries. Germany and the United purpose and Germany even went to the length of arresting all Japanese subjects found in th country at the outbreak of the war between tha country and Japan. British and French nationals were summarily expelled from any German lowns and cities and without being allowed to he outbreak of war between. France and Ger many the French government as a military pre atution required all enemy subjects to evacuat he region of the northwest, and also the citie egions and Lyons and to retire to othe expelled Pe west. They were not, however only belligerent country which went to the length of expelling all enemy persons between measures were early taken to restrict the iberty of movement of enemy aliens. In Eng land they were required to reside in certain approved places; they were forbidden to reide in certain designated regions or to chang five places of residence or travel more than bidden to have within their possession any firearms and various other articles such as signaling apparatus, military maps, motor cars, etc.; they were forbidden to frequent clubs; to ee any but English newspapers, etc. In every er and were placed under reqt surveilance by the authorities. In the United States they wer forbidden to reside within a certain distance of any fort, arsenal, armory or similar place; the were excluded from residing near to or from pproachor water fronts or wharves, and the were prohibited from remaining or residing aliens including women were required to register, and in general they were subjecte o other restrictions similar to those adopted by the British government. On account of the close geographical proximity of France to Ger ordered a general internment of the outse population. They were therefore removed to oncentration camps located in various parts of France, mainly in the west, behind a line ex ending, roughly from Dunkirk to Nice. For some eight months after the outbreak of th lengths, although considerable numbers of suspicious and dangerous characters were interned as a precautionary measurc. In consequence however, of various acts of the Germans, such as the bombardment of undefended coast towns, Zeppelin raids upon England, the use of asphyxiating gases as a means of combat, the illpublic opinion in England came to demand that the whole enemy population of England shoul be interned, and the sinking of the Lusitania in May 1915 greatly intensified the popular demand. This last act led to serious mob out-
brcaks against the Germans in England and breaks against the Germans in England and the
dominions, during the course of which dominions, during the course of which many considerable number of lives were lost. Partly,
therefore, in the interest of the national defense and partly in the interest of the Germans themselves, whom it was difficult for the pub-
lic authorities to protect so long as they were scattered throughout the United Kingdom, the British government in May 1915 ordered the internment in concentration camps of practically all enemy persons then left in England, although exemptions were granted in particular
cases where internment would have worked a serious hardship without subserving any purpose of national defense. The order for internment, it may be added, applicd not only to
enemy subjects but also to British subjects (of which there were some 8,000), of enemy origin. So far as possible work was provided in the camps for such persons; classes for instruction were organized, libraries were established, and instructors in the handicrafts were furnished. Long before the British policy of internment ment, in consequence of reports that large numbers of Germans were being arbitrarily arrested and imprisoned in England, had issued an order (6 Nov. 1914) for the general internment of all British males between the ages of buildings of a race course at Ruhcleben near Berlin. The United States was almost the only great power which did not resort to the policy of general internment, for there the presence of enemy aliens at large did not, by reason of the remoteness of the country from Germany, constitute the same danger as it did in England
and France. Large numbers of individual Germans whose disloyalty was clearly established, others who were regarded as suspects or dangerous persons, and still others charged with espionage and other crimes were, however, arrested and confined in internment camps in various parts of the country. The members of the crews
of German merchant vessels in American ports as well as the crews of German warships which took refuge in American ports were likewise interned. Other enemy persons' who conformed to the regulations in regard to residence, movement and registration and who demeaned themselves peaceably were left at large, although
they were subjected to close surveillance and were frequently warned against the consequences of misbehavior and disloyalty.
Subsequent to the inauguration of the policy of wholesale internment, special conventions were concluded between a number of the
belligerent governments providing for the rebelligerent governments providing for the re-
ciprocal exchange and release of women and males except those of military age. Thus in January 1917 an arrangement was concluded between the British and German governments under which all males over 45 years of age and
under 17 held in either country as interned under 17 held in either country as interned prisoners were released and allowed to return
to their own countries. In pursuance of this arrangement some 7,000 Germans in England and some 600 or 700 British subjects in Germany were repatriated. Somewhat similar arrangements were concluded between the German and French governments and between the German and Austro-Hungarian governments. countries of cnormous property holdings and business houses owned wholly or in part by, or under the control of, enemy persons raised
a difficult problem for belligerent govern national defense made it necessary to dc prive the encmy of the use and control of such property or business; otherwise his power would have been employed to increase its own strength and resources. Steps were thercfor enemy-owned property and enemy business undertakings under the control or supervision of dertakings under the control or supervision o United States all such property was placed in the hands of a public custodian who was cm powered to hold and administer it and in gen common-law trustec throughout the period of the war. At first the American custodian was given only a limited right to dispose of such property by sale, as for example, when it was necessary to prevent waste or protect the rights of the United States therein, but later he was Given a gencral power of sale and enormotu German holdings aggregating many millions of ceeds were turned into the treasury of the United States with the understanding that the eventual disposition of it be determined by The treaty of peace at the close of the war
The proceeds in some cases were used to purThe proceeds in some cases were used to pur-
chase war bonds. It should be remarked, however, that this somewhat rigorous policy wa not enforced against the property owned by nemy persons residing or domiciled in the United States, but only against property of those living in the enemy country and who were
presumably engaged in making war upon the presumably engaged in making war upon the
United States. The property holdings of the former, except those interned, were not molested. The property of American citizens residing in Germany, however, was treated a enemy property on the theory that the test of
enemy character is domicile rather than nation enemy
ality.
In

In France enemy property was put under the control of sequestrators appointed by the courts and their power over such property was substantially the same as that of the English and American custodians, except that they were and again it was emphasized in France that sequestrators were mainly conservators with no general power to dispose of the property placed in their custody. They were anthorized to sell enemy property only when it was perishable of when it was necessary to protect it from waste or loss. Germany began by placing enemy
property under supervision, but later on adopted the policy of other countries and put it in the hands of administrators who had the power to manage it and in some cases to dispose of it by sale. There was widespread complaint il France of the conduct of the German govern-
ment in respect to its treatment of Frencll property, especially in Alsace-Lorraine where large quantities were held and the proceeds of which in some cases were employed for the purchase of war bonds. As regards enemy business enterprises and undertakings, all belligerents adopted a somewhat similar policy. In England an official known as carry on any enemy lusiness undertakings
the continuance of which was demanded by
the public interest. Other busincsses were the Board of Trade. In the United States this Dower was exercised by the alien enemy cussuran. Certain enemy businesses such as in${ }^{8}$ burance were prohibited; in the case of other etremy persons residing in Germany control of of directors were reorganized lyy the apoaintment of new directors by the custodian, and the reiness was continued by the reorganized ditectorate. In Germany all enemy business enterprises werc put under a régime of comgovernment appointed agents. Some of them Were continued; many were wound up and Were appoidated. Likewise, in France administrators Were appointed by the courts to operate and of whige any enemy enterprise, the carrying on others were wound up by the public interest; appointed by the courts. In the case of that particular species of property in the form of patents, trademarks, copyrights, etc., the policy than belligerent governments was more liberal general was in respect to other property. In pend such rights but without confiscating them Citizens who held patents in enemy countries ere allowed to transmit money thercto in orof to pay the necessary fees for the renewal beiliger patents or copyrights. In most of the manufacture and sale of artices which for the iic interest required to be manufactured were Ssigned to local firms or persons, the licenses such cases being required to pay the fees and lic trealies due the enemy patentec into the pubof theasury the same to be held for the bencfit war or to bemy patentee until the end of the then be determined, presumably by the treat of peace.
As to the right of enemy subjects to enforce in cir rights by suits in the courts or to appear them court and defend actions brought against ennments policy of most of the belligerent gov common law no enemy alien was allowed such right unless he remained in England by permision of the Crown and was under the special proevertion of the king. During the late war, howaner, the English courts have not only held that an enemy alien residing in England may defend that an enemy subject who was interned might ring an action as a plaintiff. Since practically cliect entire enemy population was interned the liect of the decision was to open the courts This privilege, enemy aliens in the country. persons residing or domiciled in exch teri tory. Germany allowed enemy aliens domiciled o the empire the right of access to German courts but denied it to those residing or domithe outside the empire. In France some of actions low courts admitted enemy aliens to bring discrimination resulted in great confusion. The Court of Appeals of Paris in April 1916, howTight, rendered a notable decision upholding this right, In the United States the policy of the ourts was somewhat divided but in general
enemy aliens residing here were allowed acces to the courts on a footing of equality with however, were not allowed the privilege. Bibliography..Hall, 'International Law'
(Pt. III, ch. 1); Lawrence, 'Principles of In (Pt. III, ch. 1); Lawrence, 'Principles of In(International Law' (Vt. III, ch. 3) ; Oppenheim, Phillipson, International Law and the Great War) (Ch. 5): Baty and Morgan, (War Its Conduct and Legal Results) (Pt. I, chs. 1-3) Garner (in American Journal of International Lave, Jan. and July 1918).
Professor of Political Science, University of
ENERGETICS. In physics, mechanics and chemistry, Encrgetics is the scicnce that treats
of energy and its transformations - "encrgy" being defined as that attribute of a body of a material system, by virtue of which th "ody or system can do mechanical work; and work" being simultaneously defined as the Any such body or system, that can do mechan ical work by changing its shape nosition or configuration, or its physical or chemical state is said to possess "energy" - that is, power to do work.
The mechanical work is often performed directly and immediately by the body possess
ing the energy, without the intervention of other agency. This is by no means essential however, because the conception of energy has been extended so as to include all systems and processes, however complicated or indirect the development of the work may be. Thus a hot can be used to actuate a heat engine; and galvanic battery is similarly said to possess en ergy, because it can generate electricity and thereby operate an electric motor. We even speak of food as possessing energy, becaus when eaten, digested, assimilated and oxidized in the muscies it enables human beines or ani In view of the varied kinds of bodies and systems that exist, and the varied ways in which they may perform work, we speak of "heat crgy" and energy of other types. such expressions we merely indicate, in a rough way, the kind of source that we are deal ing with and the general nature of the proc esses to which we may have to resort, if we attempt to utilize the energy. The energy is
the same thing in every case - namcly, it is the same thing in every case-namely, it is
the capacity of the body or system under conthe capacity of the body or system under con-
sideration to do mechanical work. In many cascs, in fact, it is hard to say in what condition the energy exists in a body. For example, a mass of hot, compressed gas certainly possesses energy, but in view of the fact that we can obtain work from it cither by direct adiastant and using the heat (for example) to operate a thermoelectric battery and a motor, it is scarcely logical to say that the energy of the original mass existed cither in the form of heat or in the form of mechanical compression. If we try to solve this difficulty by re-
plying that it existed in both forms we are quickly made aware of the superficial nature
of the answer, if we attempt to determine how much is present as heat, and how much is present as mechanical compression. When we increase the energy of a body or system, we say
that we "add energy" to it; and when we decrease its energy, we say that we "subtract form the energy has that we add or subtract hut it is often impossible to tell what form it has, while it actually resides within the body or system with which it is associated.
For purposes of measurement and computation it is necessary to have a satisfactory quit, in terms of which we can make definite and in view of the definition of energy, it is evident that this unit must necessarily be either the same as the one that is uscd for measuring work or else a mere multiple or submultiple of ment of work depends upon the nature of the problem that is under consideration. In modern scientific investigations the unit of work is commonly the erg, which is defined as the work done in overcoming a resistance of one dyne, through a distance of one centimeter. In monly employed (at least in the United States and in England) is the foot-pound, which is defined as the amount of work done in overcoming, through a distance of one foot, a resistance equal to the weight of one pound of mat-
ter. (In countries using the metric system, the unit of work in engineering operations is the kilogram-meter). The foot-pound is not as precise and definite a unit as the crg, bccause the attraction that the earth exerts upon a
pound of matter varics with the latitude and pound of matter varies with the latitude and
with the elevation above the sea and hence the with the elevation above the sea and hence the
foot-pound varies in the same manner. The stroy the usefulness of the foot-pound as a unit of work or energy for engincering pur-
poses, and hence this familiar unit is not likely poses, and hence this familiar unit is not likely
to be superseded, for ordinary, rough purposes. To avoid the indefiniteness of the foot-pound, we might adopt the far more scientific (hut excecdingly uncommon) unit known as the
"foot-poundal," which is defined as the quan-"foot-poundal," which is defined as the quantity of work that must be done in order to overcome a resistance of one "poundal" through force which, when applied for one second to a body having a mass of one pound, subject to no other forces and initially stationary, will produce in that body a velocity of one foot per econd.
A moving body possesses energy in virtue of its motion and work must be done by it
before it will stop. Thus a railroad train, moving at high specd, cannot he brought to rest at once, because the energy of motion that it possesses must first he expended in overcoming the resistance of the brakes, or the natural fric and its wheels upon the tracks. The mechanical energy that a hody possesses in virtue of its motion of translation or rotation is called kinetic energy"; and that which it possesses in virtue of its position or its state "potential elastic train is called "potential energy."
The kinetic energy of a body having a given definition) the amount of mechanical work that
he body must do, in order to come to rest. If V, it can easily be shown in M and the velocity is of theoretical mechanics, that the wotk thu performed is $1 / 2 M V^{3}$. This is thercfore th numerical expression for the kinctic energy of the body. If V is given in feet per second and M is given in pounds, this formula give the kinetic energy in foot-poundals; and hence pounds, it is necessary to divide by the accelera tion of gravity, as expressed in the same fun damental units - namely, by 32.2 , in a locality in which the speed of a body falling freely in a vacuum second.
It is not only impossible, in many cases, to tate what form the energy has, within a given body or system, but it is also usually (and perhaps universally) impossible to say how much energy the body or system contains in the ag
gregate. In other words, there is usually 110 absolute and natural zero from which the en ergy can be reckoned; and hence we have to assume an arbitrary zero point, or else confine our attention to the quantities of energy adde to the body or system (or subtracted from it),
without making any attempt to estimate the total amount present. In the case of ordinary kinetic energy, there is apparently a natura ero, corresponding to absolute rest; but it will ee evident that this zero is only conventional, nody that is seemingly quite devoid of motion is nevertheless rushing through space, with the earth, at a considerable speed. The case is ever plainer in connection with the potential energy of a raised body. The body can do work by falling, but it evidently can do an indefinite nite distance. In applying the principles of energetics to falling weights it is therefore con ventional to assume some arhitrary level (at least as low as the lowest point to which the wcight can go) as the level of zero potential ple, we say that the bob has no potential energy when it is at the lowest point of its swing, for the simple reason that it cannot do more work by descending further, because it is already at the lowest point to which the conallow it to go; yet we know very well that it could do more work if the supports werc removed and the pendulum as a whole were allowed to fall still further

Transformation of Energy.- It often happens that energy of some one given and distinctergy of some other casily recognizable and definite type. The simplest cxample of a trans formation of this kind is alforded by the case of a frcely-falling body. The potential energy that the body possesses in virtue of its clevated position grows less as the body descends, and the same time; and it is a simple matter to show, by the aid of elementary mechanical principles, that the gain in kinetic energy is precisely equal to the loss in potential energy. In the same way, an electric current flowing through a wire causes the wire to become heated and it has is precisely equivalent to the electrical energy
that disappears and which is not otherwise accounted for
When energy is thus converted, it is found that there is always an exact relation between the quantity of energy of one type that disappears and the quantity of energy of the nther type that appears. In fact, these two expressed in work-units - that is, in crgs or toot-poundals. As a matter of practical conventence, however, energy of a given specia type is often measured in some special unit nat lends itself, more readily than the erg or and approximate the particular measurements ated approximate calculations that are assoc miliar case in point, as it is commonly measured in terms of either the "British thermal unit" or the "caloric" - the British therma quired to defined as the quantity of heat re of water by one Fahrenheit degree, at a cer ain specified point on the thermometric scale, and the calorie being defined as the quantit of heat required to raise the temperature o one kilogram of water by one Centigrade de units and others analogous to 0 them which ar ased upon obvious, directly-observable propcrties of substances and which do not involve any physical theories whatever might with propriety be called "natural units.
Owing to the fact that energy of one type type, it becomes exccedingly important to know the numerical relation between the "nat(ral" units in which different forms of energy are measured; for until we possess this know edge we cannot compare quantities of energy these quantities in terms of the erg, or foot poundal, or any other common or fundamental unit. We should, in fact, be in the same positio as a man who had measured one liquid with gallon measure and another one with a pint mug, but who had no idea of the relation of the to the gallon.
It is especially important to be able to com the erge "natural" unit of heat accurately with rate experimental researches have been con ducted for the purpose of improving our knowlregard to this topic the reader should refer to Heat and Thermodynamics; but it may be said, in this place, that Rowland found that one British thermal unit of heat is the equivalen of about 778 foot-pounds of mechanical work the the "pound" here being understood to signify matter, at sea-level in the latitude of Baltimore Efficiency of Conversion.- It is not alway Dossible to convert a given quantity of energy o the tye wholly into energy of some other give ype, or wholly into mechanical work. Heat, for chample, cannot be wholly converted into me Chanical energy - though the reverse process, o is easily performed. This fact has led to the us of the expression "available energy," to signify which part of the total energy of a body or system, The distinctin converted into mechanical energy able energy is arbitrary, however, because th
fraction of the total energy that is available depends upon the completeness of our control over the conditions under which the transformation is
attempted. Heat encrgy, for example, could be wholly converted into mechanical energy (so far as any theoretical limitation is concerned), if we could effect the transformation by means of a zero of temperature cond in at the absolute zero of tempcrature, and in that case all the tations and conditions apply to energy of other types. The fact that heat-energy is not fully convertible into mechanical energy under conditions that we can realize, or which exist in place quite readily and completely, leads to the recognition of the fact that in the processes of nature there must be, on the whole, a tendency toward the "degradation of energy," in the sense hat there is a continuous diminution, in the universe, of the store of available energy. The
supply of available energy, in other words, is tending continually to become dissipated, in the form of diffused, low-temperature heat.

For purposes of mathematical analysis, it is convenient to designate the condition of a body or system by representing, by means of algel)raic
symbols, its configuration, size, temperature symbols, its configuration, size, temperature, tributes that it may have - the particular attributes or fcatures that are selected being to a considerable extent arbitrary, though to serve the purpose of defining the condition of the body or system at every moment, they must be numerous enough, and must be selected in such a way consideration, can take place in the body withou at least one of these symbols (or defining variables) changing its value. It may be that some of the selceted variables will be functionally dependent upon the others; but there will always
be a certain number (small in the cases usually considered) that will be independent, so that any one of them can vary without any of the others necessarily undergoing a simultaneous variation. Then if E represents the aggregate energy (in cluding all types) possessed by the body at a an infinitesimal change of condition so that E increased by the theory of energetics teaches that a relation of the following form exists:

$$
\Delta E=X \cdot \Delta x+Y \cdot \Delta y+Z \cdot \Delta z+
$$

where X, Y, Z, x, y, z, \quad are functions of the independent defining variables - some of them being perhaps identical with certain of those variables. The symbols on the right-hand side may be so selected that each of the severa sent the total quantity of energy of some one type that the body must take in, in order to undergo the physical change corresponding to an increase of x, y, z, \ldots. by the respective amounts $\Delta x \Delta y, \Delta z$, . The variables, more over, may be so chosen that X, Y, Z, will be analogous to intensities, in the sense that they volume of the body, but only upon its physical state; and for this reason they are called the "intensity-factors." At the same time the in finitesimals $\Delta x, \Delta y, \Delta z$, . (since the dimen sions of every one of the added terms must be the same as the dimensions of energy) will be
its mass, or to some other quality or attribute that would necessarily vary if the size of the body should vary, without any change in X, Y,
Z, The terms $\Delta x, \Delta y, \Delta z$, are therefore called the "capacity factors" of the terms on the right of the equation. Furthermore, the intensity-factor X will be of such a nature that value in the environment immediately external to the body, determines whether the energy re resented by $X \cdot \Delta x$ will enter the body or leave it. By way of elucidation, let us consider the case of a "perfect gas," subject to variations
such that any two of the three variables sure, temperature and volume, will suffice to define its condition at any given moment; and let us assume that the only forms of energy to be considered are heat-energy and the energy of elastic compression. Then the foregoing equation takes the form

$$
\Delta E=T \cdot \Delta \phi-p \cdot \Delta v
$$

where T is the absolute temperature, ϕ is the entropy, v is the volume of the gas, and p is of its bounding surface. (See ThermodyNAMICS). The first term on the right is then
the quantity of heat-energy absorbed, and the the quantity of heat-energy absorbed, and the second is the quantity of compression-energy absorbed. (The negative sign is affixed to the
last term because we are considering the energy added to the system, and the internal energy due to compression increases when v decreases).
If the body or system undergoes any kind of a cyclic change, such that its final state is in all respects identical with its initial state, then nternal or intrinsic energy) summed the entire cycle, will be zero; for if this were not the case, then by causing the body to pas around the cycle repeatedly, in one certain direction, we could obtain an indefinite supply of energy from it; and this wourd violate the below). Suppose now, that in the specia case we are considering, the body undergoe the following cycle: (1) With its temperature constantly equal to T_{1} it passes from the state n which $\phi=\phi_{1}$ to the state in which $\phi=\phi_{2}$ (2) with ϕ constantly equal to ϕ_{2} it passes
from the state in which $T=T_{1}$ to the state in which $T=T_{2}$; (3) with T constantly cqual to τ_{2} it passes from the state in which $\phi=$ the state in which $\phi=\phi_{1}$; and (4) with constantly equal to ϕ_{1} it returns to it Initial state, so that T changes from T_{2} to T_{1} In each stage the heat absorbed will be ob followed. Thus in the first stage $T_{1}\left(\varphi_{2}-\phi_{1}\right)$ units of heat will be absorbed. In the second stage there will be no heat absorbed, becaus does not change. In the third stage $T_{2}\left(\phi_{1}-\phi_{2}\right)$ units of heat will be absorbed and in the final stage no heat will be absorbcd. tially positive, it follows that $T_{2}\left(\phi_{1}-\phi_{2}\right)=$ - $T_{2}\left(\varphi_{2}-\phi_{1}\right)$ is negative, if $T_{1}\left(\phi_{2}-\phi_{1}\right)$ is positive. Hence if heat enters the hody during the first stage of the cycle, heat is rejected by the hody during the third stage. The amount whole cycle is $T_{1}\left(\phi_{2}-\phi_{1}\right)$. $\left.T_{3}\right)\left(\varphi_{2}-\phi_{1}\right)$, and in view of the principle of
the conservation of energy, this must have Been converted into some other form of energy. internal notrergy of the body, because a complete cycle has been described, and the body has returned to its original state. Hence it The only heat that has entered the body (in the only heat that has entered the body (in during the first stage of the cycle. Hence the efficiency of the conversion of heat-energy into mechanical-energy is

$$
\frac{\left(T_{1}-T_{2}\right)\left(\phi_{2}-\phi_{1}\right)}{T_{1}\left(\phi_{2}-\phi_{1}\right)}=\frac{T_{1}-T_{2}}{T_{1}}
$$

The cycle we have here considered is known as the Carnot cycle, being named for the distheory of French founder of the mechanical analogous cycle can easily employcd it. An other type of energy.
In the foregoing discussion we have as sumed that the processes considered are reveco sible, and that any change can take place in cither the positive or negative direction. The
theory of irreversible changes is too involved to be considered in the present article - and in fact it has not yet been completely worked out.

Conservation of Energy.- The physical law that is known by this name asserts that the total amount of energy in any isolated system is absolutely invariable in amount. En in a similar manner; but so long as no external influences are permitted to interfcre, the total quantity of energy within the system is incapable of either increase or diminution. easily admitted; but of the pendulum this imagined, in which the truth of the law is no means obvious. For example, a tightly wound watch-spring possesses potential encrgy in virtue of which it may be caused to drive a train of wheets and to do work. But suppose and meanwhile secured in some manner so that it cannot unwind. What becomes of the energy in the spring? This question would be best answered by experiment; but in the absence o experimental data the conjecture may be reason-
ably made that the two sides of the spring, heing in different states of strain, act like plates of different metals when immersed in the acid and give rise to electric currents through the
liquid, whose combined chemical and therma liquid, whose combined chemical and therma effects correspond preciscly to the potentiai energy that was stored in the spring hy windin in a vacuutm is also somewhat confusing a first thought, because although it may be ad mitted that the potential energy is used up accelerating the hody while it is falling, it by no means cvident that the accumulated ki netic cnergy is not annihilated as soon as the
body strikes the ground. But the energy of the falling body is converted into heat wher the visible motion is suddenly arrested, and the body and the ground immediately around it atc warmed by an amount that corresponds pre
cisely to the kinetic energy that the body had cisely to the kinetic energy that the body ha tion is not merely speculative, for it rests upor sound experimental evidence. The arrest of ${ }^{\text {a }}$

Cannon-ball is accompanied by the generation work on batuleshins is of heat, and the woodsequence of the mere impact of projectiles. The Water at the bottom of a waterfall is measurin yarmer than that at the top; and the rise mass perature that is observed when a falling Mass of lead is suddenly arrested was used by inination of the mechanical equivalent of heat. The idea that energy cannot be created appears to have been familiar to Galileo, who simple machines that were in use in his day. Thple machines that were in use in his day. energy is destroyed, however, and the indications werc in fact, that all mechanical cuergy is gradually wasted away by frictional losses which by others of like nature. In cases in Which these losses do not exist, or are negenergies of a system, and of the perpetual transformations of kinetic energy into potential energy and the reverse, proved to be of the discutest service in simplifying the theoretical cven miss of many problems in mechanics, formulated. The motions of the celestial bodies, for example, are much more easily discussed hy the aid of the principle of conservation of energy than they could be without it. The the cases in which it had previously appeared to be ves in which it had previously apppeared was recognized that heat is not a sulbstance: ior, olviously, it was impossible that a substance could be converted into mechanical energy. In
the first years of the 19th century Rumford Inade first years of the 19th century Rumford not a subertance, and he appears to have been of hised, in his own mind, of the correcentury later Carnot prews. Clusion, if we may judge from the note-book about left among his papers. It was not until taken that led weve, hat he great steps were ent views. Several cminent rames are connected with these beginnings of the modern theory of heat and it is difficult to apportion
the credit among them justly. Prominent among these names are those of Seguin, Mayer, Colding and Joule ; but it is undoubtedly to Mayer and Joule that we are chicfly indehted Wer the new ideas, and the controversies that should be given to different investigators for their work along this line were mainly confined imporlance of of erione priong and the relative men. cian of Heilbronn, Germany, who had had some professional experience in the island of Java, Jad olscrved that the venous hlood of the that is commonly ohserved only in the highly oxygenated blood of the arterial circulation; and after much reflection he came to the conCusion that this is because a lesser amount of
oxidation suffices to maintain the temperature oxidation suffices to maintain the temperature
of the body in a hot climate than would be required in a cooler one. These olservations were made in the summer of 1840 . In May

1842 he published, in Licbig's Annalcn, paper entitled 'Remarks on the Forces of In organic Nature,' in which he gave a preliminary
account of his discovery. Here he presents the general outline of the new theory very clearly, and the grasp of the subject that he displays at this early date is truly wonderful. The locomotive itself was then a great novelty, but he uses
it to illustrate the transformation of heat into mechanical energy and back again in the following sentence, which would be a credit to the most advanced physicist of to-day: "Ou locomotives may be compared to distilling apparatus; the heat beneath the boiler passes into the motion of the train, and is again deposited
as heat in the axles and wheels." In 1845 he published a second and much more remarkable paper entitled 'Organic Motion in its Connection with Nutrition,' in which he gives a detailed calculation of the mechanical equivalent of heat, from the known specific heats of air
The contributions of James Prescott Joule of Manchester, England, to the mechanical theory of heat and the conservation of energ were the natural outcome of investigations tha he had been making upon the heating elfects of lectric currents. His first paper that distinctly form of energy was read at Cork in 1843 before the British Association, and vias entitled On the Calorific Effects of Magncto-Electricity and on the Mechanical Value of Heat.' A first written it was very involved, and Faraday who appears to have failed to grasp its exceedHe did submit it, however, and in it he gave a number of estimates of the mechanical equivalent of heat. The paper apparently did not greatly impress either the British Association or the outside world; for when Joule hrough the subject up again before the same association scribed in his own words: "The chairman suggested that, as the business of the section pressed, I should not read my paper, but confine myself to a short verhal description of my discussion not being invited, the communication would have passed without comment if a young man had not risen in the section, and by his intelligent observations created a lively interes the new theory. The young man was Lor years out of collcge. In later years Joule ob aincd far better values for the mechanica quivalent of heat, and spent much of his tim devising and executing new methods for it determination.
In England and the United States Joule is commonly credited with the discovery of the
true nature of heat; but in Europe the honor is frequently given to Mayer. Tyndall compares the two very fairly. "Withdrawn from mechanical appliances," he says, "Mayer fell back upon reflection, selecting with marvelous sagacity, which could be founded a calculation of the mechanical equivalent of heat. In the midst of nechanical appliances, Joule resorted to experiment, and laid the broad and firm foundatio which has secured for the mechanical theory the acceptance it now enjoys. A great portion
of Joule's time was occupied in actual maniput lation; freed from this, Mayer had time to
follow the theory into its most abstruse and follow the theory into its most abstruse and versed, however, Joule might have become Mayer, and Mayer might have become Joule." In 1847 Helmholtz published his remarkable paper entitled 'On the Conservation of Energy,' n which the subject was presented with great found influence in spreading the new doctrine which taught that no energy is ever created o annihilated, but that we have to do merely with endless transformations of it from one orm into another. Attempts have beer: made o deduce the principle of the conservation o in many special cases these attempts have been successful, though they cannot be in al! cases, ecause systems are easily imagined in whic hat these imaginary, non-conservative system hat these imaginary, non-conservative systems to the twofold nature of the subject (that is, he mathematical and physical aspects), it has cen humorously said that everybody believes firmly in the conservation of energy, because observation, while the physicists believe it of be a theorem in mathematics. It is now gen cally admitted, however, to be a fact of ob ervation, the truth or falsity of whick is to e established by experiment. Helmholtz proved hat in any system composed of particles moving "central forces") (that is, and subject only to always toward fixed centres or foci, or which act, between every pair of particles, along the ine adjoining their centres), the energy mus e conserved, if the ordinary laws of theoretica aechanics hold true for the motions of the particles of which the system consists. Hence, toms that act upon one another only by forces hat are central, a long step has been taken oward proving the law for all material systems, Unfortunately, however, we are not sure that he atom. It is an interesting fact that it was he study of the processes of organic nature hat gave Mayer his first inspiration concerning he true nature of heat, and yet it is precisely here that the only doubt as to the entire generThe most general test that can be applied to a system to enable us to judge from theoretical considerations whether it is conservative or no s this: Let the system be protected from external influences, and then, at a given instant, conceive the motion of every one of its particles to be precisely reversed in direction, without
being modified in any other way. If, when left itself, the system would then retrace its previous history so that the events of that history ould recur in reverse order, the conservation of energy is rigorously fulfilled in it. If, on the istory, we cannot affirm that it is conservative but must test the point by a direct appeal to experiment. Now, although this crucial condition is frequently fulfilled in inorganic nature, we certainly cannot assert it to be true in con
nection with living matter, even with respec to the meanest fungus. Hence we cannot, from easoning based on the inorganic world alone draw any sound conclusion whatever about the
conservation of energy in the organic changes that occur in living tissues. To reach such conand analyze the living animal, we must weigh excreta given off; we must determine the oxygen absorbed and the carbon dioxide and other products exhaled; and we must measur
the heat given out and the external work per formed. When these things have been weighe measured and analyzed for a sufficient period and with the necessary precision, then, and then only, shall we be competent to affirm or deny the truth of the conservation of energy to oblain, but much has been done in this direc tion, and while we are not yet prepared to establish it as a fact, beyond controversy, that energy is conserved in the animal hody, all the data that we have point to this conclusion and it is now commonly admitted to be true.
be either created or destroyed has led physicists to speak of it as though it were a real thing, having an objective existence. It is useful to think of it in this way, and convenient to speak of "converting" ellergy from one form
another. In reality, however, it is no more a real thing than is momentum, or "action" (which figures prominently in modern theoretical me chanics). In pure mathematics the theory of transformations makes us familiar with the of "itvariant" functions and configurations, jected to the given transformations. It is more logical to think of energy as being a similar invariant under the physical transformations that the existing universe and its contents cal undergo. If this be admitted, then the discusthe possibility of enen encountered, molecular structure is considered, must be taken in a figurative sense only. It is quite possible that it is given out discontinuously in connection with radiation phenomena, just as the water livered discontinuously. hut the question as to whether or not encrey has a molecular structure, or a structure of any olher kind, appears to have no physical meaning, when interpreted in any strict sense. (For the "quantum hypothesis" of Planck, see Raniation). For an intercst-
ing expression of Planck's own view on the molecular-structure conception, after he had given it mature thought, consult his 'Leçons de thermodynamique,' Chevassus' translation, 1913, page 307.
The first systematic paper on the general theory of energetics (as distinguished from the mechanical theory of heat) was Rankine's 'Outlines of the Science of Energetics,' read before the Philosophical Socicty of Glasgow on 2 May 1855, although Rankine. two ycars before that time, had read, before the same society, ${ }^{\text {s }}$ of the later one, and entitled 'On the General Law of the Transformation of Energy.' The phrase "potential encrgy" occurs in the carlier of these papers, for the first time.

Bibliography.- Carnot, 'Reflections on the Motive Power of Heat') (Thurston's transla'Browne's translation); Duhem, 'Traité elementaire de mécanique chimique,' and (Le
potentiel thermodynamique': Gibbs, 'On the
Equilibrium of Heterogencous Substances' Helm, 'Die Energetik' : Helmholtz (Uestance de Erhaltung der Kraft'; 了oule, 'Scientific 'Thers'; Nernst, 'Theoretical Chemistry,' and 'Thermodynamics and Chemistry); Stewart, (Lois Conservation of Energy'; van't Hoff, Lois de l'équilibre chimique. See also Radioactivity; Thermodynamics.
Director Tefuical Resealan D. Risteen, insurance Company.
ENERGISM, the name given by many philcophical writers to the neo-Aristotelian view life. It is the chief ultimate goal of human at which the will of every living creature aims is the normal exercise of the vital functions which constitute its nature.". Energism is opas the chief goal of human life. Cleasure as the chief goal of human hife. Consult English trans 1899) (Berlin 1894
 spirits. The word is in common use in the writings of the Greck and Latin fathers; it is equivalent to the (daumous ourvos) (possessed by a devil) of the New Testament. In the 3 d century the churches kept registers of their ener-
gumens and dealt with them much as though they were lepers. they were supported by the alms of the faithful and lodged in dwellings near the churches. The treatment of energumens and their relationship to the Church was discussed at and regulated hy a number of 441 and cana, See Exorcism. Consult Hefele K. I. A History of the Councils of the Church' (translated by W. R. Clark and others, Vol. III,
Edinburgh 1883)

ENERGY, Conservation of. Sce EnerGETICS
ENEURESIS, a symptom of many diseases of the bladder. resulting in incontinence or involuntary passing of urine. It is a prevalent
malady of childhood and only hecomes of importance after the period of infancy, when the child should have learned to control the blatlder. The control of the bladder is in part a matter of conscious effort, and has its representation in the higher brain-centres. Bladder-control is thetic nervous system found in the solar and sacral plexuses, and likewise in a number of cells in the spinal cord situated in the lumbar region. Interference with the action of any or all of these centres may result in encuresis. irsease of the spinal cord may cause excessive and may result in nocturnal eneuresis, and the cutting off of the cerebral control may also liring about this condition. During deep sleep
the cerehral control is usually cut off, accountthe cerehral control is usually cut off, account-
ing thus for the prevalence of eneuresis in deep ing thus for the prevalence of eneuresis in deep
sleep in children. Very frequently the immediate cause of eneuresis is some form of local irritation. This is particularly prevalent in young girls, and should always be removed,
Dossible, in the treatment. Drug medication is
extremely unsatisfactory for this condition up the general nervous system of the patien by tonics, cold baths and excrcise in the open

ENFANTIN, oñ-föñ-tan, Barthelemy Prosper, French socialist of the Saint-Simon school: Paris, 8 Feb .1796 ; d. there, 31 May 1864. He was the son of a Paris banker, and
after studying for some years at the Ecole Polytechnique went into business. After trav eling extensively for a number of years he set-
tled in Paris in 1823 . In 1825 he first met Saint-Simon (q.v:) and became strongly inte ested in his poltical and economic theories After the July revolution of 1830 Enfantin propagation of Saint-Simonism. They became the supreme heads of the sect. Bazard ex pounded it in its relations to philosophy and politics; Enfantin mainly in its relations to he social state. whey established a paper views. Soon, however, a schism broke out etween the two on the question of marriage and the relation of the sexes, for his views on which Enfantin was, in 1832, sentenced to one car's imprisonment and to pay a fine of 100 which, together with 40 of his disciples, he had counded at Menilmontant after the break with Bazard and where he was known as "Le pere. Being released from prison at the expiration of few months he went to Egypt. He was sub sequently appointed a member of the scientific Africa published (Colonization of Algeria' (Paris 1843). At this time he became again actively interested in business and in 1845 was made director of the Paris-Lyon Railway Atter the revolution of 1848 he founded and publication in 1850 . He was then made admin strator of the Lyon Railway, in which position he was quite successful and which he occupied intil his death. His library of 1,018 volume and 63 manuscripts he left to the Library of on economic and political subjects, have been published together with those of Saint-Simon as 'Oetlvres de Saint-Simon et d'Enfantin' (47 vols., Paris 1865-78). Consult Howse, E. S Enfantin and Saint-Simon' (in Theological
riew, Vol. IX, p. 50, London 1872)
ENFANTS DE DIEU, ŏ $\dot{n}-$-fannin-dẹ-dyé, a ame of the French Camisards (q.v.)
ENFANTS PERDUS, per-dü ("lost chil dren"), in military parlance the men appointe to perform some exceedingly hazardous duty
from which their chances of returning safely are practically nil. Our English equivalent phrase is "a forlorn hope."
ENFEOFFMENT, , en-féf'mènt, (1) the act of bestowing or investing with a frechold estate; (2) the instrument or deed by which such estate is conveyed; (3) the estate so conveyed sec Fee-simple.
ENFIELD, Conn.: town in Hartford County on the Connecticut River and the New miles north of Hartford. Its chief man factures are carnets shoddy, powder, filter
presses, supplies for undertakers and bicycles, and it has large brick works. A large amount of the now celebrated Connecticut tobacco is
here prepared for use and shipped to different parts of the world. Shaker Station is a par of the town (see Shakers). It contains a tered by town meetings. Pop. 11,708.
ENFIELD, England, a market town in the ENFIELD, England, a market town in the northeast of London. Enfield is the seat of the well-known government manufactory of rifle and small-arms, and the standard rifle used in he British army is made here. At Cuffley to be brought down on English soil Zeppelin down on 3 Sept. 1916 by Flight-Licutenant Robinson, who was awarded the Victoria Cross for the daring deed. The airship fell headlong, sinking to the ground in flames, and the mem解 poople have lived in Enfield. See Beaconsfield
ENFIELD RIFLE, a muzzle-loading rifle ENFIELD RIFLE, a muzzle-loading riffe used in the British army prior to the introduc-
tion of the breech-loading system. It was also used in the United States during the Civil War by the Northern army, when Springfields could not be obtained, and by the Confederate army In England large numbers of these rifles were onverted into breech-loaders on the Snider or simply Snider. The Enfield rifle must not be confused with the recent British Lee-Enfield which is a modified Mauser.
ENFILADE, ěn-fĩllād' (from the Fr. en filer), in the military art, is to rake by fire the enemy's trenches or positions along the whole length. In conducting the approaches at a siege care must be taken that the trenches be not enavoid this they are generally cut in a zigzag The same principle holds true of trench warfare, where the boyaux or communicating trenches are zigzagged and the firing trenches

ENFLEURAGE, öñ-fle--räzh, in perfumemaking, the method of extracting by contact
and absorption the scents of flowers used for perfumery. For this purpose wooden frames containing glass smeared with pure grease are
filled with flowers, which are allowed to remain filled with flowers, which are allowed to remain from one to six days. The grease gradually absorbs the scent, the flowers being renewed
from time to time. The scent is afterward separated from the grease by soaking the latter in strong spirits of wine. Sometimes wire frames covered with cotton cloths, saturated with fine olive-oil, are used instead of glass. In this manner the most delicate odors are extracted from flowers which would be lost in
the process of distillation. This process is employed especially in the south of France. It is rather complicated, and has the disadvantage of permitting the flowers to come into direct touch with the grease and imparting to it possi-
bly some impurities. bly some impurities. In modern perfume factories the process of enfleurage, therefore, is grease in separate containers. A current of air is created by means of an exhaust fan in such a manner that it passes first over the flowers
and later over the grease, which latter rapidly absorbs the odors originated by the flowers. of carbonic acid gas through a tin box containing fresh flowers and then into a glass jar of strong alcohol cooled by water. The carbonic acid absorbs the odors of the flowers, which, in turn, is absorbed by the alcohol. Conmetics, their Preparation and Manufacture? (translated from the German by W. L. Dudley and others, New York 1915) ; Rolet, A. V. 'Les Essences et les Parfums' (Paris 1907); Picsse, G. W. S., 'Chimic des Parfu
Fabrication dcs Essences' (Paris 1917).

ENG AND CHANG. See Siamese Twin
ENGADINE, ěn-gä-dên', a beautiful valley in Switzerland, in the Grisons, on the banks the valley is 60 miles and it has an area of 653 square miles. The language generally spoken is the Ladin, a branch of the Romanic tongue. Several towns and villages are situated in the valley, which is visited by numbers of strangers
on account of its picturesque beauty and its mineral springs as well as its invigorating climate. Pop. 12,193.

ENGAGEMENT. See Betrothment
ENGAGEMENT, Military, a minor battle or encounter in which all the par or part. Engagements or skirmishes usually occur when major forces are bcing manceuvred for position to secure the advantage in a pitched bat
Military Science; Tactics, Military.

ENGANO, ên-gāñ̄o, an island of the Malay covered with forests and surrounded by coral reefs; area, including several small adiacen islands, 300 square miles. The natives arc Malays.
ENGEDI, êtr-gē'dī or ěn'gē-dī (Heb. "Fountain of the Goat"), on the western shore of the Dead Sca, about 30 miles southeast o Jidy. The ancient name was applicd also to the castern part of the wilderness of Judah. Th city in the time of Abraham was calle Hazazon-tamar (Gren. xiv, 7), the tamar mean ing palm trec. In 1 Samuel xxiv mention Engedi to cscape from Saul merous to escape from Saul. There are nin
meferences to the place in the Old Testament. In modern times nothing remain except the never-changing effectiveness of the scenery arising from the combination of stec cliffs, the Dcad Sea, strange vegetables, balm, air and almost excessive quietness. Consu
Rohinson, E, (Biblical Rescarches in ctc.) (Vol. II, Boston 1841); Wilson, Sir C W., 'Picturesque Palestine)' (Vol. I, Londor 1884).

ENGEL, Ernst, German statistician: h Dresden, 1821 ; d. Berlin, 1896 . After a preiminary education he took up the study of nining engincering at Freiberg and Paris. For a time he was a member of the commission Saxony. and in 1850 was appointed chief of the Royal Burean of Statistics at Dresden. He re signed in 1858 and was made chief of the Saxon

Mortgage Insurance Company, but two ycar of Statistics from which the Prussian Burea Was one of the most efficient of modern statis ticians and his investigations into the socia condition of the working classes have prove Invaluable. He wrote (Die Methoden de Volkszählung) (1861); (Land und Leute des des Dampfes) (1881)
ENGFT Frañ

ENGEL, Franz, German explorer: Röbel, Meck, Franz, German explorer: b eled extensivoly in South America in the year $1857-63$ and published the results of his ex plorations in several valuable volumes, including Studien unter den Tropen Amerikas' (2d ed
1879) 1879) ; (Aus dem Pflanzerstaate Zulia' (1881)
From 1872 to 1896 he published the Landwirth schaftliche Jahrbücher.
ENGEL, Johann Christian von, HunGarian historian: b Tcutschau, Hungary, 1770 ; d. 1814 . He received his cducation a She University of Göttingen, where Heyne and Schlozer were among his teachers. He wrote were treasure-houses of knowledge and scholarship. He was the first to put the history o fiungary on a sound scholarly basis. In 1812 he was ennobled. His greatest works ar Geschichte des ungarischen Reiches und sein 'ebenländer) (5 vols., 1797-1804); an 1814).

ENGEL, Johann Jakob, German prose Writer: b. Parchim, 11 Sept. 1741 ; d. there, 28
June 1802 On the accession of King Fred crick William III of Prussia, whose tutor he had been, he was invited by his former pupi to Berlin, where he made himself exceedingly ingen in the Academy of Sciences by his writmentioned his 'Der Philosoph fur die Welt,' istinguished for acute obscrvations on men and manners, enlivened by elegant illustrations. Of
a similar character is his 'Mirror for Princes' similar character is his Mirror for Princes (Furstenspicgel). His 'Ideen zu einer Mimik,'
full of taste, acuteness and knowledge of himan nature, may be regarded as a kind o manual for actors. Anxious to make the German theatre the mirror of the nationa itlle me wrote several plays, but they were of
'Der dankbare Sohn'; 'Edelthe merit- 'Der dankbare Sohn'; 'Edel a masterly picture of life and manners. A complete cdition of his works appeared at 3crlin (1801-06)
ENGEL, Joseph, Austrian anatomist: ierna, 1816; d. 1899. He was appointed proessor of anatomy at Zurich in 1844 and late che chair of physiology fell to him also. Five of patterward he was appointed to the chair Praguc. In 1854 he became professor of tomy at the Josephakademic, Vienna, in whic Dosition he remained until 1874. He mad many important contributions to the system His pion of anatomical science and its study ogischen Anatomie,) (Kompendium de opographischen Anatomic' (1859).
ENGEL, Karl Dietrich Leonhard, Germa

Oldenburg, 21 Feb. 1824. He went to Russia as a violn1 virtuoso at the age of 18 , becoming
a member of the Imperial Orchestra at Saint Petersburg at 22, and later its concert-master He went to Dresden in 1869 and took up his residence there. Among his works are 'Deutsche Puppen Komödien' (1874-93); 'Das Volksschauspiel Doktor Johann Faust' (2d ed., 1882) ; 'Zusammenstcllung der Faust-
schriften vom 16 Jahrhundert bis Mitte 1884' (2d ed., 1884); (Die Don Juan Sage auf der Bühne)' (1887). His musical compositions include a concerto in B minor and the humorous fantasy entitled 'Jüdischer Carneval.
ENGELBERG, Switzerland, a noted health resort, situated in Unterwalden Canton, in the Engelberg Valley, about 3,500 feet above sealevel, and 15 miles south of Lucerne. It is the the 12 th century, with a library of 20,000 volumes, including incunabula and manuscripts of great value. Connected with the monastery is a gymnasium which was founded in the 11 th century. Cheese-making is the main industry Pop. 2,500
ENGELBERT, Bohcmian monastic author: b. Volkersdorf, Styria, about 1250 ; d. 1331 .
He received his education at He received his edication at Prague and Padin 1297-1327 was abbot of Admont, Styria He is best known to scholars through his Roman history; entitled 'De Ortu, Progressul et Fine Imperii Romani,' which has gone through numerous editions. For other works of this author consult 'Thesaurus AnecdotoAscctica Antiquo-nova) (1723-25)

ENGELBERT, Saint, archbishop of Cologne: b. Berg, 1185 ; d. 1225 . In 1206 he was relations with the Church and reinstated two years later. In 1216 he was appointed archbishop of Cologne. He was one of the most progressive men of his age; he greatly im-
proved the administration and governmental methods of his see; patronized agriculture, the industries and art, and opposed the repressive and cruel methods of the feudal barons. He reformed the electorate and after 1220 was administrator of the empire. In 1222 he crowned Henry VII. He was assassinated by hirelings
of his nephew whom he had accused of maladministration. He is commemorated as a martyr on 7 Novemher, although he has never been formally canonized. Consult Stoffel, (Engel

ENGELBRECHT, Theodor Heinrich,

 German geographer: b. Obendeich, Schleswig Holstein, 18.53. He acquired his education at ine universities of Leipzig and Strassburg, and from the University of Breslau. In 1895 he became a member of the Frce Conservative party in the Housc of Deputies. His works include Dic Landbauzonen der aussertropischen Lander' (3 vols., 1899), a valuable work on the study of agriculture in Europe; 'Die geovols., 1908), the first volume dealing with the United States, the second with India; 'Boden-
bau und (1905).

ENGELBRECHTZEN, ěng'èl-brert-zĕn, Cornelis, Dutch painter: b. Leyden, 1468; d engraver Engelbert, and the teacher of Lucas being the earliest known painter in Leyden and the first of his nation to use oil colors. Many of his works were destroyed during the Reformated pictures of large size are altarpiece with 'Crucifixion' and altarpiece with 'Pieta,' Town Hall, Leyden. Doubtfully attributed to him are 'St. Lconard,' Antwerp Museum; 'Crucifixion,' old Pinakothek, Munich; 'Deposition,' Moritz Chapel, Nuremberg; 'Ma'Crucifixion,' Venice Academy. The Van Leydens were his pupils.

ENGELHARD, Friedrich Wilhelm, frēd'rin vil'hẻlm ẻngeèl-härt, Gcrman sculptor and
painter: b. Grünhagen, Prussia, 19 Scpt. 1813; painter: b. Grünhagen, Prussia, 19 Sept. 1813 ;
d. 22 Jan. 1902 . He studied at Hanover, at Co d. 22 Jan. 1902 . He studied at Hanover, at Co-
penhagen with Thorwaldsen and at Munich penhagen with Thorwaldsen and at Munich
with Schwanthaler. He exccuted many groups, wingle figures and genre pieces. Among his
sing creations are 'Love on a Swan'; 'Dancing Springtime'; 'Slinger with Dog'; 'Bacchus Conquering a Panther'; 'Cupid and Psyche' the frieze of the 'Eddla,' his chief work; 'A Child Fishing' ; 'A Child Threading a Needle', Bismarck for the monument of Canossa, near Harzberg; 'Christ Blessing Little Children'; and the legendary characters of Germany
'Odin,' 'Thor' and the Valkyries.
ENGELHARDT, Georg von, Russian statesman: b. Riga, 1775; d. 1862. He went to Saint Petersburg in 1790 and six years later
secured a post in the Department of Foreign secured a post in the Department of Foreign
Affairs. He became Underscerctary of State in 1801 under Alexander I. He was made director of the Pedagogical Institute in 1811 and of the Lyceum at Tsarkoc-Selo in 1816. His liberalism, however, led to his removal in 1823. From 1838 to 1852 he edited the Russische Londwirtschafthiche Zcitung. He published
'Russische Miscellan zur Kenntnis Russlands und seiner Bewohner') (4 vols., 182.8-32) and edited the manuscript journals of the explorer, Wrangel, which he issued in (Reise längs der Nordkiiste von Sibiricn und auf dem Eismeer) (1839)

ENGELHARDT, Johann Georg Veit, German theologian: b. Neustadt-an-der-Aisch, 1822 he became professor of theology at Erlangen; during the years 1845,1847 and 1848 was the representative of his university in tho diet at Munich. His most celebrated works are a translation of the writings ascribed to Diony-
sius the Arcopagite: 'Handbuch der Kirchengeschichte) (1834): 'Richard von St. Victor und Johannes Ruysbroek' (1838); 'Dogmengeschichte) (1839).

ENGELHARDT, Moritz von, Russian naturalist: b. Esthonia, 1779 ; d. 1842. He received his education at Leipzig and Göttingen and the Freiberg mining school. He made a 1811 visited the with Karl von Raumer and in Parrot, and seven years later he traveled
through Finland. He taught mineralogy at explored Russia, and thereafter traveled a gold, platinum, etc., detailed in his reports, which were issued at Riga in 1830 . His principal works are 'Geognosticher Umriss von Fin land' (1821); and, with von Raumer, 'Gcognostische Versuche' (1816) and 'Geognostische
ENGELHARDT
ENGELHARDT, Vassili Pavlovich, Baron, Russian astronomer: b. Kustovitchl,
Grodno, 1828. He reccived his education in Saint Petersburg, entered the government cmploy in 1847 and remained in its service for six years. He built an astronomical observatory in Dresden in 1872 . He also gave valuable as-
tronomical instruments to the University of Kazan and erected buildings there to house them. His published works include 'Observations astronomiques faites à Dresde) (3 vols.,
1886, 1890, 1895). 1886, 1890, 1895).
ENGELHARDT, Zephyrin (Charles Anthony), American writer and missionary:
b. Bilshausen, Hanover, Germany, 13 Nov. 1851. He came to the United States in 1852 , was educated in the parish schools and Saint Francis Scraph College, Cincinnati, Ohio. In 1872 he entered the Franciscan order, was ordained to the priesthood in 1878 and in 1878-80 wa teacher at Saint Joseph's College, Cleveland to the Menominee Indians in Wisconsin and from 1885 to 1887 was stationed at Superio City, Wis. He was vice-commissary for the Holy Land and editor of the Wcckly Pilgrim of Palestine at Ncw York in 1887-88 and for he ensuing two years was missionary in Men-
docino County, Cal. From 1890 to 1894 he was stationed at Saint Joscph's Monastery, Cleveland, and from 1894 to 1900 was superior of the missions of his order in northern Michigan and of the Indian Boarding School, Har California. In 1895 he founded and for five years edited the Anishinabe Enamiad, a periodical in the Ottawa-Chippewa language. He is a member of the Texas Historical Association and of the National Geographical Society and has published 'Kachkenohamatwon Kesekoch'
(1882): 'Kateshim' (1883) ; 'The Franciscans in California' (1897) ; 'Missions and Missionaries of California' (5 vols., 1908-16) ; 'The Holy Man of Santa Clara, or Life of Father Magin Catala' (1909). He is a contributor to Katholische Missionen, California Volksfrennd Sankt Josephsblatt. He writes in German" nut
der the nom-de-plume of "Der Bergmann" and in English of "Esperanza."

ENGELMANN, George, American hotd. Saint Louis, Mo., 4 Feb. 1884 . He studied medicine at the universities of Heidelberg, Ber in and Würzburg, receiving the degree o The first half of 1832 he spent in study at Paris The first half of 1832 he spent in study at Paris ber 1832 he sailed for the United States where relatives of his had bought some land in the Mississippi Valley. In 1835 he began the practice of medicine at Saint Louis, Mo. Although he was highly successful in the practice of his become decply interested in botany. This in
terest grew gradually until almost all his leisure hours were occupied with scientific investigaof them were devoted to meteorology. As his success in tis profession increased he found it possible at times to take protracted vacations, some of which he spent abroad and all of which he devoted to botanical investigations. The reat various times in different scientific journals, especially in the transactions of the Saint Louis Academy of Science which were examples of the most painstaking and thoroughgoing scholaron the be soon was recognizcd as an authority The most important of his papers were on Cuscutinæ, Cactex, Coniferæ, American oaks and grape vines. They together with all his other
writings, hardly less important, have been colwritings, hardly less important, have been collected and published, illustrated by many plates, Engelmann) (ed by WV Trelease and Asa Gray Cambridge, Mass., 1887). This publication also contains an exhaustive biographical sketch. He was the first president of the Saint Louis Academy of Science and an active or corresponding member of many learned societies.
His extensive botanical collection is in the Shaw Botanical Garden, Saint Louis, Mo.

ENGELMANN, Johannes, Russian jurist: b. Mitau, Courland, 7 July 1832. Educated at professor of Russian law at Dorpat 1860 , retaining the chair for 39 years, Dorpat delivering his lectures in Russian instead of German after contributed greatly to the advancement of the science of jurisprudence in Russia. Among his Works are 'Die Vcrjahrung nach russischen Privatrecht' (1867; in Russian, 1868); 'Die Zwangsvollstreckung auswärtiger richterlicher Urteile in Russland' (188
recht Russlands) (1888).

ENGELS, Friedrich, German Socialist: b. Aug. 1895. The son of a German manufacturer he spent two years in Manchester, England, 1842-44, and took part in the revolutionary movement in Baden in 1848. He returned to Manchester in 1850 , and was partner in a
manufacturing business from 1860-69, after which he lived mainly in London. He was an intimate friend of Karl Marx (q.v.), and his most efficient helper in the work of organizing the International Socialist movement. In 1870 Engels was corresponding secretary of the InItaly and Spain. With Marx he wrote the 'Communist Manifesto' (1847) ; he also wrote 'The Working Class in England in 1844' (new ed., 1892); 'The Origin of the Family'; to Se Development of Socialism from Utopia to Science' (1894, a part of a large work left
unfinished) ; and cdited Marx's 'Capital.) Consult Simons, (Friedrich Engel: his Life his Work, his Writings' (1885), a translation from Tautsky's German text; Sombart's biography
(1895); and Dawson, 'German Socialism'
ENGERTH, êngèrt, Eduard von, Au trian painter: b. Pless, Silesia, 13 May 1818; d. taking the gold medal there in 1845 . He be-
vol. $10-22$
ame director of the Prague Academy 1854 and was appointed director of the Belvedere Gallery 1871 and director of the Academy 1874. He was made commander of the order of Franci oscph 1867. Among his works are 'Haman 'Coronation of Rudolph I). '(Joseph Explaining the Dream' (1845); 'Seizure of King Manred's Family' (1853), a masterpiece in the Vienna Muscum; 'Victory of Prince Eugene t Zenta' (1865); 'Marriage of Figaro' 'Fable of Orpheus' (1868); 'Coronation o
Francis Joseph as King of Hungary' (1870) (Death of Eurydice) (1877). Engerth frescoed the church at Alt Lerchenfeld after the caroons of Futhrich, painted numerous portrait nd decorated the new Vienna Opera House.
ENGERTH, Wilhelm, Baron, Austrian engineer: b. Pless, Prussian Silesia, 1814; d. 1884.
He reccived his cducation in architecture at the Polytechnic Institute and the Academy of Arts Vienna. He became professor of mechanical ernationally as the inventor of the "Engerth ystem" for freight locomotives, which was gen erally adopted throughout Europe. He also designed and constructed a river gate near Nusscorf to prevent ice from entering the
Danube Canal, which previously was the cause f annual inundations. In 1873 he was super ising architect of the Vienna Exposition build ings and had complete charge of the engineering epartment at the exposition,
ENGHIEN, ân-gãn, Louis Antoine Henr de Bourbon, Dukf of, French prince: b. Chan tilly, 2 Aug. 1772; d. Vincennes, France, 21 March 1804. He was the only son of Louis 1796 to 1799 he commanded with distinguished merit the vanguard of Condé's army, which was disbanded at the Peace of Lunéville (1801). He then married and took up his residence at Ettenheim, in Baden. He was generaly looked upon s the leader of the emigres, and was suspected of Cadoudal to assassinate the First Consul in 1804. The spies of Napolcon reported that Enghien was often absent for 10 or 12 days ogether from Ettenheim, and it was believed that ons some of these occasions he had secretly
visited Paris. Napolcon therefore invaded the neutral duchy of Baden and the Duke of Enghien was seized 15 March 1804, conducted o Strassburg, and thence to the fortress o Vincennes, where he arrived on the evening o the 201 h . That same night a court-mattial was ground of accusation was changed into that of compassing a new coalition against France, of which he was adjudged guilty. He requested an intervicw with Bonaparte, which was refused, and he was immediatcly led out to exccution he morning in the ditch oltside the walls, and his body was thrown, dressed as it was, into a grave dug, it is said, the day before. His execufion was followed by an indignant protest and he rupture of diplomatic relations with kussia but of the deed Napolcolive of repented. He was the last representative of the Conderse (Paris 1823), and 'Memoires historiques sur
catastrophe du Duc d'Enghien' (Paris 1834) Fay, 'The Execution of the Duc D'Enghien
(in the American Historical Reviere New (in the American Historical Revieze, New (Paris 1888).

ENGINE. A motor or prime mover which is capable of utilizing natural forces, such gas, and converting those forces into mechanical encrgy in the form of motion, which may be employed for doing mechanical work, thus distinguishing it from a "machine," which can receive motion only from a motor or engine aternal to itself.
sense of a machine was originally used in the rose-engine and cotton-gin (gin being simply a short form for enginc). The first textile machines were called engines, and we still speak came familiarly shortened to engine, the term was confusing, and gradually machine was stibstituted for the word cngine in nearly all uses except for generation of power.
All heat engincs act through the medium of a working substance which absorbs heat, con-
verts a portion of that heat into mechanical energy, which is represented by the work performed by the engine, and rejects the remaining portion of the heat, still in the form of heat. The working substance may be a gas, a liquid or a solid. The various successful
forms of heat cngines may be conveniently grouped into three general classes - steam engines, gas and oil engines, turbines and rotary engines.

Steam Engines. - In ordinary forms of steam engines the working substance is satwater and steam in varying of a mixture of expansive energy of which is uttilized to drive or impart motion to a piston working within a cylinder.
Miscellaneous Engines.- Many engines are named from some distinctive feature of their mechanism or a peculiarity of construction.
Hence there is the automatic engine, one that is self-regulating, requiring little attention. In a stationary engine this would mean one that regulated its own speed or point of cut-off ; in an automobile engine it would mean one that gasoline feed, carburetor, spark-plug as the were in order. A cut-off engine is one in which the steam or motive fluid is cut off before the end of the stroke. A quadrant engine is one having a piston that moves in a quadrangular chamber. A reciprocating engine is the most
ordinary type, in which the piston moves back ordinary type, in which the piston moves back
and forth. A direct-connected engine is one that has the crank-shaft extended to form the main shaft of a dynamo. A multi-cylinder engine is one having several cylinders operating on the same shaft, as a 6- or 8-cylinder automohile engine. A self-contained engine is one in one framework. A screw or propeller engine is a marine cngine for driving a screwpropeller. A series-expansion engine is one having several cylinders in which the stcam or
motive fluid is successively motive fluid is successively expanded. A twin
cylinder engine is onc having two cylinders cylinder engine is one having two cylinders
formed in one casting or "cn bloc."

High-Speed Engine.-One in which the piston speed is rapid, according to some authorilies excceding 900 feet per minute. It pos-
sesses the advantages of small dimensions small weight for a given power, and on account of the frequency of its strokes is capable of meeting variations in load more quickly than a low-speed engine. Its disadvantages consist in the greater waste of steam, the greater wear, increased danger of heating and higher cost of
Low-Speed Engine -
piston speed is slow, according to some authorities, less than $600 \mathrm{fect} \mathrm{per} \mathrm{minute}$.
Single-Acting Engine.-One in which the pressure of the steam is exerted only on one
side of the piston, which is forced back again side of the piston, which is forced back again
by the pressure of the atmosphere on the other by the pressure of the atmosphere on the other
side against the vacuum produced by the condensation of the spent steam. They were formerly used chiefly for pumping purposes, and in connection with steam hammers, but are now practically out of date.
Double-Acting Engine.- One in which the steam in the cylinder is exhausted into the
piston, cither against the pressure of the air, piston, cither against the pressure of the air, nally, all engines were made single-acting, but nearly all modern steam engines are doubleacting.
Dire
Direct-Acting Engine.- One in which the action of the piston is transmitted directly to type.
Indirect-Acting Engine.- One in which the motion of the piston is communicated to the crank-shaft by means of intermediate levers.
In the bcam-engine, the connection between the piston and the connecting rods consists of a beam, the oscillating point of which is placed midway between the two rods. They are chiefly employed for pumping purposes and for driving paddle-whecl stcamers. Other than in this lim-
Expansive Working Engine.- An
Expansive Working Engine.- An eligine is worked expansively when the steam, instead of until the termination of the stroke, is cut off a some fractional part of the stroke and thus
caused to do work simply by its own expansion caused to do work simply by its own expansion.
The steam may be expanded in one or more cylinders. The amotunt of steam consumed is low as compared to the amount of work done It is universally used where circumstances will permit, on account of its greater economy as compared with the engines of the non-expansive working type.
Non-expansive Working Engine.- An en cylinder at boiler pressure and is maintained at that pressure behind the piston during the whole of the stroke. The amount of steam consumed is disproportionately high as compared to the work done
Condensing Engine (calicd also low-pres-
sure or vacuum engine) - One in which the sure or vacuum engine).- One in which the
spent steam in the cylinder is exhausted into a vacuum and condensed into water, thus obliterating the back pressure of the atmosphere and conserucently effecting a gain of pressure equivalent to 14.7 pounds per square inch in the Non working pressure of the steam.
pressure engine).-One in which the spent air at atmo cylinder is exhausted into the work of forcing the piston against a back pressure of 14.7 pounds per square inch, at the expense of the effective working pressurc of the steam. This disadvantage is offsct by using steam at higher pressures.
Simple Engine.- One in which the stcam stroke is exhausted into the air or into vachum or condenser.
Compound Engine.- An engine with two or more cylinders in which the steam after having expanded and performed its work in one cylin der passes into the next cylinder, of larger size The different types of compound engines are distinguished as "series-expansion" engines or by the number of cylinders employed for the expansive working of the steam, and are designated as the two-cylinder compound engine, th hrec-cylinder or triple-expansion engine and cngine Tour-cylinder or quadruplc-expansion side by side or parallel with each other. Some limes, as in the case of the "tandem-compound." they are placed in line one behind the other, and also vertically one above the other as in the case of the "stecple-compound." In a "crosscompound" the cylinders are placed side by side apart to allow space for a fly-wheel between them. Up to the present time the quadrupleexpansion engine appears to be the limit beyond Which the numbers of expansions have not been arried with success. The great practical ad in their Air (or Hot Air) Enaine
Air (or Hot Air) Engine.- An engine in It is only of experimental interest.
Horizontal Engine.- One in which the axi
of the cylinder and piston rod is horizontal. of the cylinder and piston rod is horizontal. Vertical Engine.-One in which the axis of the cylinder and piston rod is vertical. Vertica engines are made in a great variety of forms
and are usually arranged with the cylinders uppermost. Very few of them are constructed with the cylinders lowermost and those are only of the smallest sizes. The principal advantages of the vertical engine consist in the the space required for their foundations and the uniformity of wear on the cylinders, pistons
and rods. The type includes many forms of stcam hammers, launch engines, screw engines and inverted cylinder engines.
Inverted Cylinder Engine.- A vertical engine, in which the cylinder is inverted or placed above the piston rod, connecting rod and crankployed to drive screw propellers
Inclined Engine or Inclined Cylinder En-gine.- Λ form of marine engine in which the cylinders are inclined toward each other at an angle of about 120 degrees and make a triangle with the basc. They are connected by cranks Beam Encine - Anaft.
in which the piston - An indirect-acting congine necting rorls by means of a lever in the form of a beam. It is more fully described under the term Indirect-Acting Engine.

Oscillating Engine.-A marine engine of the dirct-acting type, in which the cylinders
are suspended upon hollow trunnions and oscil late thercon, thus allowing the motion of the piston rods to accommodate itself to that of the crank at all parts of the revolution. It occupies but little space and is pecuiiarly adapted for paddle-wheel steamers. It survives mainly in toy engines because of its simple constru
Trunk Engine.- An engine having a large hollow piston open at one end and called a
trunk. The connecting rod goes right into the open end of this trunk-piston and is attached directly to the piston-head, so that there is no piston rod. It is used in some forms of gas engines and toy engines

Corliss Engine. - A very economical type of matically from the governor and the steam supply proportioned to the requirements of the engine at cach moment during its working stroke. The valve forms a segment of a circle and turns through an are of a circle and alteris operated by a rod from a wrist plate, but is is operated by a rod from a wrist plate, but is the supply valve closed instantaneously by means of a dash-pot.
Cornish Engine.-A standard type of pumping engine, originally of the single-acting type. At the present time it appears in two forms -
the beam engine and the direct-acting engine. The valves of a Cornish engine are operated by a special device called a cataract, consisting of a weighted piston which works in a cylinder provided with a large inlet valve and a small discharge valve. The working stroke of the pump lifts the weighted piston and draws the water into the cylinder through the fortaer,
and the return stroke discharges it through the latter and at the same time actuates the valves of the steam cylinder of the pump so as to
cause another working stroke.
Marine Engine.- Any form of engine used for propelling a vessel. They are usually of the Stationary Enine an type.
Stationary Engine.- An engine on fixed
foundations, as distinguished from the locomotive, portable and marine engines.
Locomotive Engine. A high pressure steam engine and multitubular boiler complete, mounted on a carriage and provided with suitable whecls to enable it to draw loaded Sars Locomotive.
Portable Engine. - A small cngine of the locomotive type, mounted on a carriage which permits of its being moved from place to place for use in connection with work of a temporary character. Portable engines arc extensively used for agricultural purposes and for
traction purposes on ordinary highways.
Gas and Oil Engines.-These classes of heat engines are commonly designated as in-ternal-combustion engines. See Internal Combustion Engine and Dirsel Engine.
The Slide-Valve.- The introduction of the slide-valve for operating the ports of a steam
engine marked a distinct advance in economy, because it can be made at exactly the right time and also because it admits the hot steam to the cylinder through a port which has just been
cooled by the exhaust. As ordinarily con pructed the slide-valve is a sliding D-shape ver the three ports - the two end-ports of the cylinder and the exhaust port in the centreand permitting the steam to pass alternately to either end of the cylinder to push the piston and opening the exhaust for the release of th used stcam. There are "laps" at the end of the he ports shall begin to open. These laps ar nown as outside or stcam-lap, and inside o exhaust-lap. The slide-valve has also been de veloped for automobile use in the Knight typ of engine.
Superheating.-Oripinally, saturated steam was the only sort employcd in steam engines, ressures were carried in boilers the use o superheated or dry steam at as high as $500^{\circ} \mathrm{C}$ was tried, and it was demonstrated that the hotter the steam was the more it expanded and the greater the power to be got out of it nd was operated in connection with an economizer. This is a mechanism for utilizing the wastc heat and turning it into the feed-water so that hot water, close to the boiling point, can be supplied to the boiler. Engines using super as 1.3 pounds of coal per indicated hors as 1.3 pounds of coal
Steam Turbines comprise a class of hea engines in which the kinctic energy of expand ng steam is utilized to drive a wheel and thus convert the natural heat energy of steam di rotary motion. The principal forms are th Parsons, De Laval, Seger and Curtis turbines, and their first field of application and develop ment was in the marine service. Notcworth examples of their application are the Lusitanic of the modern "dreadnaught" type of battle hips. They are now coming into use in larg lighting stations and mammoth manufacturing plants. See Turbine.
Hydraulic Engines.- Mcchanical power is obtained from flowing water by its weight water wheels, turlines, hydraulic rams and water-pressure engines. In the water-pressure engine the pressure of the water only is util zed to drive a piston in a cylinder. In some forms the action of the piston is reciprocating and in others rotary. In all of them the actual is needed to impart motion to the fluid to folow the piston and escape from the cylinder and, therefore, the greatest efficiency is obtained by making the piston as small as practicable and using a large pressure. The majority of hem are of the reciprocating, low-speed type, and are particularly useful as secondary motors or operating the opening machinery of various
orms of swing, draw and lifting or rolling bridges, and in connection with cranes and varous forms of hydraulic lifts.
For futher detailed information relative to the construction, operation and application o cles under the titles Automorile; Aeroplane nternal. Combustion Engine; Locomotives Motor; Pumps and Pumping Machinery; Ro
tary Steam Engine; Traction Engines; Tul bine; Water Motor; Water Wheel.

Author of 'Modern Industrial Progress.
ENGINE, Testing of. Fngines are tested ENGINE, Testing of. Engines are tested they produce a given amount of power. The economy of steam engines, as usually deter mined, relates to the weight of steam con sumed, or to the quantity of coal used in mak ing the steam, or to the number of heat unit
supplied; while in the case of an internal combustion engine, it relates to the amount of gas, gasolinc, oil, alcohol or other fuel burned Also, if the latter operate on producer gas, th of ermination of economy involves the amoun of coal birnests are gas producer
actory tests are gencrally limited to the the set of the governor relative to the proper speed and to ascertain if the valves are set and operate properly. In the case of gas engines, rect timing of the igniter and to determine the correct compression
In its broadest sense, however, testing is a form of scientific investigation conducted for the purpose of securing practical results which are very important not only to the manufacturcr, put also to the owncr of the engine who has who require information showing the capabilities of the machines for the purpose of advertising and trade
As an engine test involves the determination of two elementary quantities - (1) the amount developed - it is necessary that these two factors should be represented by units of measurement which are susceptible of universal application. Standard Unit of Fuel. - The most satisfac tory unit for expressions of economy based on the amount of fuel consumed is the Britist
Thermal Unit (B.T.U.), which is the quantity of heat required to raise one pound of water $1^{\circ} \mathrm{F}$. at or about $39.1^{\circ} \mathrm{F}$. According to Joule, it is equivalent to 778 foot-pounds of mechanical energy.
A convenient and useful subsidiary standard is that based on a "standard coal" unit, the
term "standard coal" defining a coal which imparts to steam 10,000 B.T.U.'s for each pound of dry coal consumed. It is a coal which has a calorific value of 12,500 B.T.U.'s, equivalent to an efficiency of 80 per cent when used in a
Standard Ini

Standard Unit of Power.- The unit of mechanical power which most satisfactorily expresses the power developed by an engine the "horse power," which represents an energy of 33,000 foot-pounds per minute, cquivalent to 2,545 B.T.U.'s per hour
tandard of Engine Economy.- Employing the given standard units of fucl and power, best adapted to meet all conditions of service and for all classes of heat engine are those rep. resented by the "indicated" horse power bascd on the number of B.T.U.'s consumed per hollr.
Such an expression is commonly called a horse power hour and represents a heat cnergy of $1,980,000$ foot-pounds converted into mc^{-} chanical power or work by the consumption 2,545 B.T.U's per hour.

Rules for Conducting a Test.- All test of standard rules cearly defining the characte of the data to be obtained and the methods which should be employed for their determina hon. A set of such rules may be briefly defined follows:

1. Object of the test.-At the beginning, tained. It may relate to the determination highest economy obtainable; the economy under ordinary working conditions and the existing efects; the performance under special condi ions; the effect of changes in existing conantee; and the preparations for contract guar be made accordingly. These preparations wil necessarily depend largely upon the good sense udgment and ingenuity of the engineer making the test.
2. Co

Condition of the Engine.- The engine ondition carefully examined and its general construction or operation which bear upon the bject of the test. Special examination shoul made of all valves, by inspecting their seats and bearing surfaces and great care taken to piston rings work freely in their grooves and are perfectly gas-tight.
3. Dimensions.- The cylinder dimension hould be taken whether they are already known not, the measurements bcing made when they re hot and in working order. When practica of the cylinder should be measured by filling it with water previously measured, the proper correction being made for temperature.
4. Fuel.- When the test involves the comlete plant - in the case of a steam engine in ine including the gas producer plant - the class ame of coal mine sire moisturc, should b tated in the report - and the quality of the coal sed should be of some recognized standard his is desirable for purposes of comparison. In the case ol an internal combenstion engine efficiency, the gas, oil, or other fuel used, should be the best obtainable, or one that possesses the ighest calorific value
5. Measurement of Fuel.- The methods o etermining the amount of fuel consumed de be coal furnished to the of the fuel uscd. If it to a gas producer, the amount consumed during a period not less than 24 hours should be carefully measured by weight. If it be oil, gasoline, istillate, alcohol, etc., it can be drawn from the and of the test, and the amount raquired the end of the test, and the amount required mall engine, it can be drawn from a properly calibrated vertical pipc. When gas is used, it hould be measured by a suitable gas metre and gas bags should be placed between the metre and possible as and the barometric pressure and tempera ture of the air should be measured and in etermining the quantity of the gas supplied, a iven by the reading of the metre, the temperathe and pressure of the gas should be take into account
6. Measurement of Heat Units Consumed. - The number of heat units consumed by the of pounds of coal or oil, or the cubic fect of gas supplied, by the total heat of combustion of the fuel as determined by a calorimeter, or from the results of a chemical analysis. In determining the total heat of combustion, usually no vapor of water in the products of combustion, therefore, for purposes of comparison, care should be taken to state whether the higher or the lower value has been used in the deter-
The Mahler calorimeter is a type much used for determining the heat of combustion of solid for determining the heat of combustion of solid gases.
All Instruments and Their Calibration.All instruments and apparatus used in the tests fied by comparison with recognized standards. All such as are liable to undergo changes, or become broken during the progress of a test, especially gauges, indicator springs and thermometers, should be calibrated both before and after the test.
Gauges.- For measuring pressures above reliable standard is the dead-weight testing apparatus, consisting of a cylinder having a closefitting vertical piston working in oil or glycerine, by the medium of which the pressure is transmitted to the gauge. The piston is sur-
mounted by a circular stand on which weights may be placed so as to secure any desired pressure. The total weight, in pounds, on the piston,
divided by the area of the piston, in square inches, gives the pressure in pounds per square inch.
The mercury column is another reliable it is used care should be taken to see that it is properly graduated with reference to the ever varying zero point; that the mercury is pure and that the proper correction is made for any time of using and the temperature at which the instrument was graduated
For pressures below that of the atmosphere the use of an air pump or some other means of producing a vacum is required. The apparatus must be referred to a mercury gauge, which
may consist of a U-shaped tube about 30 inches in length, with both arms properly filled with mercury.

Thermometers.- Standard thermoneters are those which read $212^{\circ} \mathrm{F}$. in steam escaping from boiling water at the normal barometric pressure of the atmosphere (29.92 inches) when
the whole stem up to the 212° point is surrounded by the steam; and which read 32° F . in melting ice, when the stem is completely immersed to the 32° point; and which are calibrated for points between and beyond these two points of reference.
F., For the thermometers should be and 400° with the temperatures given in Regnault's Steam Tables, by placing it in a mercury well surrounded by saturated steam under sufficient pressure to give the desired temperature. For higher temperatures, such as those oc-
curring in gas-engine practice which
exceed $20000^{\circ} \quad \mathrm{F}$, some form of pyrometer or calorimeter should be used. That of L Chatelier, which makes use of the thermomeasuring temperatures over $2,500^{\circ} \mathrm{F}$
Indicator Springs.- For gas-engine indicating, the indicator springs used should be much tiffer and stronger than those used for steam engine work, so as to enable them to withstand he higher and more suddenly developed presthe temperature of the indicator should be as nearly as possible the same as that which exists during the test. An indicator may be convenently heated by subjecting it to steam pressur mork of calibration bealibration and the actua work of calibration then performed hy the use gas. The calibration may be made under a contant pressure, or more satisfactorily by cover ng the whole range of pressures through which he indicator acts, by gradually increasing th and then by gradually reducing it from the highest to the lowest point, and a mean of the results taken for at least five points - two for he pressures corresponding to the maximum and minimum pressures and three for equally istant intermediate points. These value conl be compared win a dead weight testin pparatus, a mercury column, or a steam gauge standards, and the correct scale of the spring sed for calculating the mean effective pressur from the indicator diagrams taken during the est, should be the average based on this
Gas M.
Gas Meters.- A meter used for measuring he gas supplied to a gas engine should be isplacement of a gasometer of known volume with a standard gas meter of known error or by passing air through the meter from a tank ase, the pressure and temperature of the air in he tank, both at the tank and the meter, should e ohserved at uniform intervals of time dur ng the work of calibration; and the amount o ir passing through the meter calculated from he volume of the tank and the observed tem eratures and pressures.
The volume of the gas thus ascertained hould be reduced to the equivalent volume at a given temperature and atmospheric pressure corrected for the effect of moisture in the gas, hich is usually at or near the point of saturaion. For gas-engine work, a convenient standaturated with moisture at normal atmospheri pressure at a temperature of $60^{\circ} \mathrm{F}$. A volme of moist gas at any other temperature may be reduced to this standard by being multi lied by the factor

$$
\frac{459 \cdot 4+60}{459 \cdot 4+t} \times \frac{b-\frac{(29.92-\mathrm{s})}{29.4},}{}
$$

in whicin b represents the reading of the baromeer in inches at $32^{\circ} F$. : t, the temperature o he vacuum in inches of mercury correspondin to the temperature of t given in the stean ables
8. Duration of a Test. - The length of time evoted to a test will depend largely upon it
character and the purpose for which it is made. For determining the working economy, the timc allowed should he equal to the number of hours
per day during which the engine is really operated. In the case of a gas engine using producer gas, the time should be sufficient to determine the amount of coal used in the gas producer. It should never be less than 24 hours,
and usually it should extend over several days. and usually it should extend over several days.
9. Commencement of a Test.- If the test is to determine the performance of an engine uncer working conditions, it shourd begin ations continued until it shats down for the day. If the test is for determining the maximum economy of the engine, at first it should be run a sufficient length of time to make all condi-
tions normal and constant, then the observations may be commenced and continued for the allotted time.
10. Measurement of Water.- In the case of a steam engine this relates to the feed water or steam consumption. The usual method is to ers, and deduct therefrom all the water discharged by separators and drips, and the water and steam lost by leakage from the boiler and its main and branch pipe connections with the engine. Where the engine exhausts into a surface condenser, the steam consumption can be discharged by the air pump and adding thereto the steam used by jackets, reheaters and auxiliarics as determined independently. In mcasuring the water, it should be carried through a tank resting on the platform of a suitably arranged wetghing scalcs, and the water subsewhich the pump is supplied.
For measuring small quantities of water, about 6,000 pounds per hour, the most convenient apparatus consists of a small hogshead connected to the suction pipe of the pump or
injector and an ordinary oil barrel placed on injector and an ordinary oil barrel placed on a platform sale. The barrel is filled by means supply. For pressure not less than 25 pounds per square inch, this pipe should have an inter-
tral diameter of one and one-half inches. The outlet valve of the barrel is attached to the side neare-half inches in diameter, so as to permit of quick emptying

Where larger quantities of water have to be measured, the barrel can be replaced by a hogshead and two hogsheads can be joined together for the lower reservoir. With this arrangement,
when the weighing hogshead is supplied through a two and onc-half inch valve under 25 pounds of pressure and emptied through a five-inch valve, the capacity attained is 15,000 pounds of water per hour.
For the measurement of very large quantities, or in some cases, very small quantities, the orifice method gives the most satisfactory results, and when applied, the average head of
water on the orifice must be ascertained and water on the orifice must be ascertained and
the discharge of the orifice should he calibrated under the conditions of use.
In the case of an internal combustion engine, the measurements of water relate to that supplied to the water-jacket provided for cooling
ments may be made liy the methods already described, but care should be taken, in cases
where the temperature excceds 212° F., first to cool the water by discharging it into tank of cold water previously weighed, or by passing it through a coil of pipe immersed in umining cold water, so as to prevent the loss o vaporation which takes place when hot wate discharged into the open air.

1. Detcrmination of Specd.- The speed of crank shaft per minute, can be determined by counting the number of revolutions in on of ute with the cye fixed on the second hand of a timepicce, or hy the use of some form of continuous recording engine register. The use of such instruments is imperative when the speed exceeds 250 revolutions per minute
In the case of internal combustion enginc overncd hy the hit-or-miss method, the numbe when the engine is running under nearly maxi mum load, by counting the number of times the action of the governor causes a miss in th xplosions
The determination of variation of speed dur ing a single revolution on the effect of fluctua made especially in the case of engines cmploye to drive electric generators used for lighting purposes.
2. In
3. Indicator Diagram.s.- From the indi cator diagrams taken during the test for the ample diagrams nearest to the mean should be appended to the report
The mean effective pressure (M.E.F.) is
obtained as follows: Measure the diagram with obtained as follows: Measure the diagram with a planimeter and divide the area, in square ram in inches to obtain the mean height mean ordinate of the diagram. Multiply the mean ordinate by the scale of the indicato pring and the product will he the mean effective ressure desired. In the absence of a planime and their mean length taken for that of the mean ordinate. If the indicator is specially designed for indicating internal combustio engines, the mean ordinate should he multiplic y twice the scale of the spring, unless the scal as been expressly In.
In the case of internal combustion engines when indicator diagrams are not obtainable and he compression pressure is known, the mean mately as follows: For example, in gas enginc he compression pressure ranges from 70 to ressure develoned by inch, and the is about 3 times the compression pressure. Therefor if represents the compression pressure, then for compressions of 100 pounds per square inch 70 less, M.E.P. $=2 p-0.01 p^{2}$; thus, if $p=$ $\Rightarrow 1$ pounds per square inch.
In the casc of a steam engine, the steam calculated by means of the formula
$\mathrm{M}=\frac{13750}{\text { M.E.P. }}$
. $((\mathrm{C}+\mathrm{E}) \times \mathrm{We}-(\mathrm{H}+\mathrm{E}) \times \mathrm{Wh})$.
which will give the weight in pounds per indi-
cated horse power per hour. M.E.P. represents the mean effective pressure, which in the case mean effective pressure referred to the cylinder in question. For example: In the case of a compound engine, the combined mean effective pressure for the high pressure cylinder consists of two items: (1) the mean effective pressure
of the high pressure cylinder, and (2) the mean effective pressure of the low pressure cylinder effective pressure of the low pressure cylinder
multiplied by the ratio of the piston displacement of the low pressure cylinder to that of the high pressure cylinder. The sum of these two items is the combined mean effective pressure for the high pressure cylinder.

Similarly the combined mean effective pressure for the low pressure cylinder consists of pressure cylinder, and (2) the mean effective pressure of the high pressure cylinder divided by the ratio already stated. The sum of the two items is the combined mean effective presylinder

On the given formula, C represents the proportion of the piston stroke completed at points
on the expansion line of the diagram near the on the expansion line of the diagram near the
actual cut-off or release; II the proportion of compression; and E the proportion of clearance all of which are determinable from the indicator cubic foot of steam at the cut-off of one pressure; and Wh the weight of one cubic foot of steam at the compression pressure.
13. Standards of Economy and Efficiency. as already stated, is the hourly consumption of as already stated, is the hourly consumption of
heat units divided by the indicated horse power or the brake horse power. The standard expression for efficiency is the thermal efficiency ratio, or the proportion which the heat equiva lent of the power developed bears to the total mined by test Onc horse-power-hour represent the consumption of 2,545 B.T.U's per hour therefore,

B.T.U.'s per horse power per hour

expresses the thermal efficiency ratio In comparing the standard for internal commust be noted that that for stcam engines, it must be noted that the former usually cover not, and therefore, ill order to make a direct comparison between the two classes of engine as complete horse-power plants, the losses in generating the working agent must be consid cred in both cases not only on the basis of the fuel used, but on the basis of equivalent fucl plant using producer gas, with a steam plant, the producer should be included in the former, and then the fuel consumption, represented by the weight of coal in both cases, may be directly compared.
14. Heat Analysis.- For scientific purposes a heat analysis of the indicator diagram, in the case of a steam engine, and a heat balance in be made, showing the manner in which the total heat of combustion is expended in working the engine.
In the casc of a steam engine, the analysis
cylinder walls, etc. For example: the amoun of heat supplied to the engine in a given time is epresented by the number of pounds of stean pound of steam. A portion of this heat is used in the jacket, if one be employed, and the remainder passes through the cylinder. The heat entering the jacket is lost partly by radia on from the outside surface, and the remainde enters the walls of it che cycle of absortion within the cylinder consists of the followin phases: (1) A portion of the entering heat is ransferred into a small portion of the thick hess of the cylinder walls, and heats them to the emperature of the entering steam. This transferce ofion and up to the point of cut-off than during any other part of the cycle. (2) Beyond the point of cut-off, the transference of hea continues until the lower pressure due to ex pansion causes the temperature of the steam cylinder last uncovered. At this point the inter change of heat is reversed, the metal giving up eat to the steam, and causing the re-evaporafon of the particles of water condensed on th urface of the cylinder walls and piston. The adiation of heat from the small thicknesses o he interior walls, which were hicated durig team, commences after cut-off or after th pressure begins to lower by expansion, and coninues to the end of the stroke.
A portion of the heat is also expended in the performance of work, and a loss of heat is sustained by radiation from those portions o mount of heat remaining after the steam has passed through these operations is that which is rejected by it through the exhaust valve to the atmosphere or to the condenscr.
In the case of an internal combustion engine, he total heat of combustion expended in the working of : (1) Heat converted into work and epresented by indicated or brake horse powe (2) Heat carried away by the cooling wate irculated through the water jacket. (3) Th heat lost in the exhaust gases, and through complete combustion and radiation.
15. Heat Converted into Indicated or pounds of work done by one pound or one cubic oot of fuel divided by 778, the mechanical quivalent of one British Thermal Unit, will give the number of heat units desired
16. Heat Carricd Away by the Jacke Water.-This is determined by measuring the water jacket equivalent to one pound or one cubic foot of fuel consumed, and calculating the amount of heat rejected by multiplying hat quantity by the difference of the tempera ure of the water entering and leaving the jacket.
17. Heat Rejected in :he Exhaust Gases or Total Heat Unused.- The sum of the heat converted into brake horse power and the hea carried away by the jacket water, subtracte from the total heat supplied, will give the tota heat rejected or unused
In order to determine the cost of each horse
power hour in thermal units, the gas consumed conditions of temperature and reduced to the sponding to some adopted standard. This may be done as stated under gas meters in rule 7 , or more conveniently by the formula

$$
\mathrm{v}=\frac{\mathrm{t}}{\mathrm{p}} \times \frac{\mathrm{v}^{\prime} \mathrm{p}^{1}}{\mathrm{t}^{1}},
$$

in which $v=$ volume of gas reduced to standard temperature : $p=2992$ inches of mercury; $\mathrm{v}^{2}=$ volume of gas registered by meter; $p^{2}=$ pressure of gas at meter measured by manometer in inches of water; $\mathrm{t}^{1}=$ absolute temperature of gas
ince t and p are constants

$$
v=18.00 \frac{\mathrm{v}^{\prime} \rho^{1}}{u^{1}},
$$

and as p^{1} and t^{1} are practically constant durand as p^{1} and t^{1} are practically con
ing a given test, $v \stackrel{\text { ev }}{ }{ }^{1}$, in which

$$
\mathrm{E}=18.00 \frac{\mathrm{p}^{1}}{\mathrm{t}^{\prime}}
$$

and $\mathrm{p}^{1}=$ height of barometer $+(0.073 \times$ reading of manometer) ; and $t^{1}=$ temperature of gas at meter +461 .

For example: Assume the heights of the manometer as 6 inches; the temperature of the gas $80^{\circ} \mathrm{F}$.; and the volume of the gas registercd by the meter 350 cubic fcet; then for determining (v) the equivalent volume of gas

$$
\begin{aligned}
& \mathrm{P}^{1}=29.40+(0.073 \times 6)=29.84 \\
& \mathrm{t}^{1}=80+461=541 ; \\
& \mathrm{E}=\frac{18.00 \times 29.84}{51}=0.976
\end{aligned}
$$

then $v=0.976 \times 350=341.6$ cubic feet
The air supplied should be entered and reduced to stand conditions in the same manner.
the amount of gas consumed theyed to ascertain cubic feet for a ten-minute interval may be found by dividing the number of cubic feet registered by one revolution of the small dial by the time in seconds elapsed at the completion of that revolution and multiplying the result by
18. Indicated Horse Power (I.FI.P.).- This factor is expressed by the formula -

$$
1 . H \cdot P=\frac{P \times L \times A \times N}{33,000},
$$

in which P is the mean effective pressure in pounds per square inch; L the length of the piston stroke in fect; A the area of the piston in square inches; and N
tions of the engine crank shaft per minute.

$\frac{\mathrm{A} \times \mathrm{L}}{33,000}$,

is constant for a given engine, and in the case of an internal combustion engine, N is the number of explosions per minute.
19. Brake Horse Power (B.H.P.).- When this factor is determined by the use of some
form of dynamometer, such as the Prony brake, it may be readily computed from the formula -
B.I. $\mathrm{F} .=\frac{\mathrm{W} \times \mathrm{N} \times \mathrm{L} \times \mathrm{C}}{33,000}$.
in which W is the net weight in pounds on the scales; N the number of revolutions per mintate; L the length of the lever arm from the centre
of the braked wheel to the knife-edge of the
brake, or the radius of the braked wheel i a rope brake is used; and C the circumference the braked whee

$\frac{\mathrm{C} \times \mathrm{L}}{33,000}$,

 is constant for a given Prony brake, thereforeif L be made five and one-quarter feet, this onstant becomes 0.001 , and gives the simple and very convenient expression-

$$
\text { B.H. } \mathrm{P}=\frac{\mathrm{N} \times \mathrm{W}}{1,000}
$$

20. Total B.T.U's Per. Hour- The total mount of gas consumed, in cubic feet, multiB.T.U.'s Per Brake Horse Power Hour.The total B.T.U.'s per hour dvided by the rake horse power.
B.T.U.'s Per Indicated Horse-power Hour - The total B.T.U.'s per hour divided by the

Friction Horse Power. - The difference be ween the indicated horse power and the brake horse power.
Thermal Efficiency;- The ratio of 2,54 B.T.U.'s to the B.T.U.'s per horse-power hour brake horse power to the indicated horse power. Consulting Civil and Mechanical Engineer, Nez ork.
ENGINE INDUSTRY. Notwithstanding the wonderfully rapid development of water power and of the internal combustion engine,
the steam engine holds its own in the industries of the world. The total steam engine horse power used in manufacturing in the United States, which was $8,139,574$ in 1900 , rose to $14,199,339$ in the 1910 census. Seven great idustries utilize 56 per cent of the horse ry, and 76 per cent of the power they use is ased on the steam engine. The industries meant are lumber, steel works and rolling mills, aper and pulp mills, cotton factories, hlas urnaces, fouldries and machine shops and gris puls. In only one of the seven - the paper and f water for dissolving pulp - is steam powe less used than water power. The fourtcen million horse power quoted does not by any neans represent the total employment of stean the power in the country, but only such a acturers. It does not cover steam engine powe used on vessels, nor used in mines and quarries, hor its vast employment in the locomotives tha most of the hatuage on the railways, nor . umber of minor uses. These are report ther ways, or escape cnumeration. The bes to note that $450,000,000$ long tons of coal are sed in the United States every year, and it stimated that at least $350,000,000$ tons of this consumed under hoilers to make steam. Evi dently while the coal holds out the stcam engin because it can be located anywhere and its cost s moderate. Even the electric railway line round New York city and the electric light and power companies there, hase their power en壁 y on the steam enginc.
industry because it is so completely interwoven
with other activities that it cannot be separated Thousands of machinery manufacturers build special industry, often being for their own use. The internal combustion engines alone are mixed up with 20 different industries from automobiles to blast furnaces and a vast number of engines are built direct-connected to
dynamos and credited to the electrical industries. See Internal Combustion Engine; Gas Engine; Steam and Steam Engines Locomotive; Locomotive Industry; Automo ile Engine; Aerorlane
ENGINE STARTERS, or "self-starters," auxiliary devices for the purpose of starting gasoline automobiles (or other) engines with-
out laborious method of turning the hand crank out laborious method of turning the hand crank eommonly provided. Serif-starters operate upon rotated by external mechanism, causing the pistons to charge the cylinders with gas to be exploded when the spark is turncd on; or the injection of gas into one or more cylinders withof a spark in all the cylinders simultancously so that the charged cylinder will come into action. Mechanical starters are operated by a heavy spring, by compressed air, or by electricity. They require a considerable addition to the machinery of the car as well as to its starter and add many sources of possible trouble in an already complicated machine.

The gas injector system adds simply a small hand pump at the driver's seat or on the dashboard, two strokes of which effects the chargswitch fires the cliarge. In automobiles which employ acetylene gas for lighting, an attachment is furnished by which this gas may be used in priming the cylinders for starting. The acetylene mixture is claimed to be more certain of explosion than an uncompressed charge of
gasoline vapor and air. Consult Cross, H. H. U., (Electric Lighting and Starting) (London 1915); Duryea, C. E. and Homans, J. E., 'The Automobilc Book) (New York 1916); Page, V. W., 'The Modern Gasoline Automobile'

(New York 1912)

ENGINEER CORPS, a branch of the those of other countries. The first step toward the organization of an engineer corps in the United States Navy was taken on 2 July 1836, when C. H. Haswell (q.v.) was appointed chicf engincer of the Fulton; it was not, however, until 31 Aug. 1842 that Congress passed an act providing for a regular corps, under which act ants "warranted." On 3 March 1845 Congress passed an act whereby tue power of appointing engineer officers was transferred from the Secretary of the Navy to the President "by and with the advice and consent of the Senate." With the growth of the Navy the corps gradu-
ally increased till at the time of the Civil War there were 474 regulars and 1,803 volunteers. A course of instruction for cadet engineers was established at the Naval Academy by act of Congress 4 July 1864 . The original two-year course was changed to four years in 1874 and Congress amalgamated the cadet engineers and
midshipmen and they are now known as naval cadets. The cadets then took the usual si pletion of the third year of the course wer divided into an Engineer Division and a Line Division in proportion to the vacancies that have occurred in the several corps during th preceding year. At the end of the six years course appointments to Cor vacancies in fhe the Line Division and to fill vacancies in the Engineer Corps from the Engincer Division If, after making assignments as alove, ther should still be vacancics in one branch and sur plus graduates in the other, the vacancics in the plus graduates from the latter. This arrange ment was in vogue until the Line and Engince Corps were amalgamated under the act of March 1899, at which time the Engineer Corp ceased to be a separate organization, the olde officers now being required to perform enginecr ing duties only, whereas the younger officer seamanship, ctc. A grade of warrant machinist to perform watch duties was also established be cause of the lack of commissioned officers fo his work. See Naval Academy, Unite

ENGINEERING is, in its strict sense, the art of designing, constructing, or using engine but the word is now applied in a more extencle sense, not only to that art, but to that of execut military architecture, in which engines or othe mechanical appliances are extensively employed Engineering is divided into many branches, the more important being civil, mechanical, electr al, mining, military, marine and sanitary eng eerin
. most notable of the eugineeting works belonging to very remote antiquity are the pyramids of Egypt. The rude stone monument of the north, as at Stonchenge and Carnac, als estify to some engincering skill. The harhors and temples of ancient Greece are very memotheatres, temples, baths and aqueducts, it roads, bridges and drainage-works - vie in ex tent and magnificence with the most celebrate works of modern times. From that perio down to the commencement of the 18 th centur the most extensive works executed were the
canals, embankments and other hydraulic construction used ly the Dutch for the purpose of inland navigation and to protect their low ands from the sea; the canals of North Italy and the cathedrals and fortifications of medizva Europe.
If the question were asked as to the char acteristic feature of the modern applicd scienc "The wholesale manner in which work is carrie on." It is not so very long ago that cverythin except the smallest articles and those required in great quantity were made singly, or at least in small lots; and even when standardizing and in were by no means used in a way which showed realization of their possibilities. The nresen endency, on the contrary, is toward the elimina ion altogether of things which cannot he made
wholesale; and methods which formerly applied
to firearms, sewing-machincs, typewriters and the like are now in gencral use in the manufacture of stcam engines, machine tools, elecproducts.
This has been brought about by a combination of two processes: (1) the standardization of methods of manufacture; and (2) the discouragement of the demand for special articles. what was wanted and the latter hastened to produce it. Or the plans and specifications for a certain structure were prepared by a consulting engineer and all bidders were required to conform to these documents in the minutest details; no two such specifications being alike. At the
present time the customer, knowing what he present time the customer, knowing what he
wishes to accomplish, secks to do so as best he may by means of the standard articles in the market; or if it be a great engincering structure, the enginecr specifies only the general requirements to be met, leaving each manufac-
turer to meet these with his own standardized product. The influence of these modifications in enginecring practice extends to the manlfacture and supply of materials.

The result of this concentration and standardization has been to reduce costs very materially and render possible undertakings While
would otherwise be prohibitory in price. While to a certain extent it has obliterated individuality in design, it has also removed much useless repetition and has prevented needless expense in the production of rival machines, differing hut slightly in design, yet requiring duplications
of drawings, patterns and tools. There is little of drawings, patterns and tools. There is little
doubt that it is to this wholesale development of various departments of enginecring work that the rapid extension of the share of the United States in the work of the world is largely due See Civil Enginefring; Electrical Engineering; Hydraulic Engineering; Mechanical cations; Mining Engineering; Naval Construction; Sanitary Engineering. Also Engineering Terms; Engineering Instrl ments Education, Engintering; Mechanics.

ENGINEERING, Electrical. See ElectriEngineering.
ENGINEERING, Hydraulic. See Hytraulic Enginerring.

ENGINEERING, Marine, is partly military and partly civil, embracing naval architecture, building and operating of ships and naval accessorics. In the military sense, it comprises
the construction of war vessels and the construction and placing of torpedoes, submarine mines, etc. Sec Navy; Naval Construction; Submarine Mines, ctc

ENGINEERING, Mechanical. Sce Mechanical Engineering

ENGINEERING, Mining. See Mining Enginerring.
ENGINEERING, Sanitary. See Sanitary Engineering.

ENGINEERING EDUCATION. See Education, Engineering,

ENGINEERING INSTRUMENTS. To attempt a definition of an encineering instri1 ment is hardly practicable, as the wide range of
departments into which the profession is now
divided demands so many special appliances for their requirements that no one description is missible within the limits of this article. The earliest known engincering instrument was the Diopter of Hero of Alexandria, 130 B.C., al though rude appliances must have been used ing before that time by the ancient engineers Chaldxa construction of the public works of Chaldæa and Egypt, the ruins of which even
now awaken our admiration and wonder. It Was not, however, until the heginning of the 19th century that the great impulse to the construction and use of engineers' instruments was
and lightness of construction combined with great strength and an adaptability of parts for the special service required. It is not the purpose of the various instruments used by engineers - this may be found in the article Surveying - but to give the reader a gencral idea of their construction.
The metals used in the construction of enginecrs' instruments are principally the alloys of
copper and tin with small quantities of silver, aluminum and German silver. Great care must be constantly exercised that these substances be free from iron or other materials which would

Engincer's Transit.
given by the advance of civilization and commerce incident to the application of steamas a motive power on sea and land. Since that
time great advances have been made not only in me great advances have been made not only in the design and accuracy of enginecring instruments but also in the invention of new in-
struments for the many purposes required by engineers in the construction of railroads, canals, bridges, harbors, ctc.
diffe characteristics of engineers' instruments differ in the various nations as the requirements gineers' instruments possess a distinct char acter of their own assess a distinct charother nations, having as a rule few parts
affect the magnetic needle. In the construction of an instrument such a distribution of the metals is aimed at that the greatest strength consistent with light weight may be obtained and bearing surface may be of such varying composition as to cause the least friction tion as to cause the least friction. n American transit, illustrated typical, as far as the construction is concerned, of nearly all enginecring instruments. The plate of the instrument on which the magnetic needle is mounted, or as it is termed, the compass
circle, is turned with great care so that the surface may be absolutely true and is gradu-
ated usuaily into 720 spaces, each representing ne-half of a degree. rants of a circle, that is, from 0 at the point marked "N" or "North" to 90 and back again, while the figuring of the limb varies with th custom of the maker or the requirements of the engincer.
In engineers' instruments, however, the angutlar measurements are made usually without the
use of the needle, by a telescope so mounted as to revolve in a vertical or a horizontal plane. The angular measurement of its movement is indicated on circles divided into fractional paces of a degree and read for convenience to ner spaces hy one or more verniers. Accurac especially of the limh, is cssential to the perfection of the instrument, and great pains are taken by manufacturers in perfecting and improving engines for graduating. Th best machines are automatic in action and
the spaces are so accurately laid off that there the spaces are so accurately laid off that there
is no apprecialle error in the finished work The instrument rests on the socket or bearing surface to which the compass plate and limb are
rays of light entering the object glass may be properly refracted and concentrated at a point The making requiring much skill ine lenses is an operation the accurate grinding of the curved surfaces depends the quality of the telescope.

At the focus of the object glass are placed the cross-wires, which are filaments of spider
wel or very fine platinum. In conjunction with web or very fine pled two more wires commonly called stadia wires, so placed that they intercept on a rod a space proportional to its distance from the instrument, thus furnishing an efficicnt method of ascertaining distances diof the instrument, having been prepared, are polished with some suitable material, a preparation of rouge being generally used for finishing the surface of the screws, and the larger surfaces being finished with fine emery paper.
The larger parts are usually colored dark to The larger parts are usually colored dark to
avoid reflection of the sun, while the smaller ones, such as screws, etc., are left hright in order that there may be a pleasing contrast between the different parts of the instrument. The

attached; the surfaces of the socket must be so accurately fitted together as to produce no error when the parts are moved on each other The socket is mounted on a levcling head, which is actuated ly three, or in the usual American
practice, by four levcling screws, as shown, by means of which the instrument can be accurately eveled. Upon the compass plate are placed the standards which support the telescope, the prep aration of the optical parts of which is next in mportance to raduation.
The tclescope consists of an eye piece and object glass mounted in a tube. The eye piece is
simply a magnifier of the image produced a the focus of the olject glass. Two kinds of eye pieces are used, one showing the imag rect, and the other showing the image inverted The object glass is composed of two plates of fractive index that it will magnify the image clearly without prismatic colors. To sccure achromatism the two parts of the object len are made the one of crown and the other o flint glass, the crown being a light glass of lass containing potash and lead. The surfaces of each are curved to such a degree that the
parts, prepared as above, are covered with a thin coat of lacquer, a preparation of shellac and alcohol, applied after heating. All the parts are assembled and fitted together, and the instrument is then ready for the final complete adjustment. This consists in fitting the sockets
so that they will move frecly on each other, placing the compass plate and limb in position on the sockets, making the limb truly concentric with the socket and placing the vernicrs in position. The telescope must be so adjusted that its parts may work freely, and having leen to the standards or supports previously placed in position on the compass circle. The whole instrument is then tested for accuracy and it found correct is packed in its case and is ready
for use. above description is only intended to give a general idea of the construction of a
typical instrument, but the same methods will typical instrument, but the same methods wineering instruments, such as levels, plane-tables, alidades, and the various kinds of compasses, ctc.

ENGINEERING SCHOOL. See EdUCA tion, Technical.

ENGINEERING TERMS. Engincering as spread into so many branches that it is more difficult to scparate the technical verbiag of the several divisions of the profession. The more common technical terms have therefor been gathered together here for the benefit of the lay reader.
Tesist anything that abuts or stands out as a support or hrace criov. - The active moving parts of a machine, as a piano-
action (the keys, levers and connections for strings). Also a single complete moverent or strok used mostly in the phrases single-action and double-a
tion, the latter heing an action performed on both stroke of a recinrocating part.
NYEALING:- The process of heating and slowly cooling, as of glass or steel. Also fixing an enamel or color on earthe ware or china by heating and conting. The annealing arch nf the glassmake
APEXLAR. Reing-shaped.
ApEX.- The top of a cone, pyramid, truss, outcropping of
ore, etc.; the vertex of an angle, either plane or solid. Aque, etc.; the vertex of an angle, either plane or
pecially the thing constructed nlates of a war-vestion or defense, especialy the stee liates of a war-vessel any protecting
devie, st steel wire wound around a aubmarine cahle, a
divert Axis.- - The theoretical line around which a thing turns;
one the rincipal lines drawn through the centre of a
geo such lines; in earily use, an axle.
Axir.-The central fixed nat
xir. - The central fixed part on which a wheel turns, especially a rod no bar on a vehicle having a snindile
Beach end for a wheel. Compare, Shaft in this list.
BLANCE. The condition when opposed forces ex
Balance.- The condition when opposed forces exactly
counterate each other equality of forces; equilitrium;
also counteract each other; equality of forces; equilibrium;
also any device or michanism that secures equiltrinum,
as a pair of scales; any weighing mechanism whose es as a pair of scales; any weighing mechanism whose es-
sentia
ments, ast is a salebeam. Any
sonc of similar instrut ments as a torsion-balance, electric balance (Wheat-
stone's bridge), the balance-wheel of a wath, etc.
BATM. STM, A tank or a solution in a tank, as for electroplating;

 a moving or
See BEARING.
Beet - A continuous band or strap, as of leather, for trans-
mitting power, as from one pulley to another, or for conveying. (See CoNvEYER). They are sometimes made of rubber. cotton or steel. Cotton is adopted as a cheap
s:hbstitute for leather; stel has to be made very thin, and if hent around small pulleys is liable to fracture.
The leather belt, having noderate elatictict, is generally
Phe leat The leather belt, having nioderate elasticity, is generally
preferred, as it adderes to pulleys by friction, and slips in case of accidental otompane.
Belting.- A system of belts, also belts collectively.
BENDNG MoMENT. The sum of the external
which which act upon each side of a given section of a beam
bending under a load. It is equal to the
moment of resistance ". of that scction, or the sum of the interna.
forces or stresses set up thcrein thy the hending action

 means of cranes, jacks, and hlocking or short lengths of
timber and nlanks. during erecting and constructing op-
erations. Also the elevation given to the outcr rall of erations. Also the eleyation given to the outcr rall of
thc curve of a railew track, or the purpose of counter-
acting the effect of the centrifugal force devcloped by a
rapidiy moving train.
Bortir.- The stee tank or container in which water is
boiled to make steam. (See Borlek). Also a hot-water Boiled to make steam. (See BorLer). Also a hot-water
cooking or salding dvice. BoLr.- A rod of metal for tightly securing together the parts
of a structure. having usually an enlarged end callid a of a structure, having usually an enlarged end called a
head, and at the other end a threaned portion for holding
a nitit, when threaded at both ends called oouble-nded;
when nit; when with a ringo oeye at one end called eye-bolt.
when made wit
Compare 'Rivet' in this list). Alsn the bar or main sliding Compare 'Rivet in this list, Also the bar or main slo cut
piece of a door-1ock; also a biok of wood s.atale for cut-
ting into shingles, stavcs, ctc. In flour milling, a rotating ting into shingles, staves, etc. In flour milling, a rotating
sifting cylinder.
Borivg. An operation not to be confused with drilling.
Sec Boring.
BRAKE.-A mechanism fer restraining or retarding some
motion or action It may be a simple shoe of metal or
 wood, with a lever for pressing it against a whee.; or an
encircling band of metal an drum, as on an automobili,
or a complex system of mechanism, as an air-hrake (q.v.). or a complex system of mechanism, as an air-brake (q.V.).
Brako horse power is the annunt of power delivered hy an engine or motor at the driving pulte
 electric balance used
Wheatstones brid
oden braces or struts placed between joists to secure them in position. amount of heat required to raise the temperature of water
one degree Fahrenheit, at or about $39.1{ }^{\circ} \mathrm{F}$. To convert values of energy expressed in foot-pounds to their equiv-
alents in British Thermal Units, divide the values by 778 . By-Pnss.-A pipe arranged to nass by or around a valve and permit a fluid to take another route.
CAsson.-A large water-tight box or casing
CAISSON.-A large water-tight box or casing, usually with
an open bottom and shatts through the top for carrying on workint operations under woter. Ahir-locks are carc placed
in the shatts and the men work under air pressure. It in the shats and the men work under air pressure.
is much aused in laying foundations for piers and doks.
is C.IIEDER - A pair of rolls, or more usually a machine in-
cluding several pairs of contacting iron cylinders, used chn surfacing paper, cloth, ett.
or structure in order
or or structure in orddr to compensate for the dorched bar curvature resulting from the application of the load. In
machinery, it is specifically applied to the arching of springs
 to the arching of bridge trusses like the stiffening trusses CaNar. An artificial waterway, as for transportation of
batges or for drainage. (See CANAL). Also a channel, barges or for d
groove or duct.
cinTu ver.-A
ANTILEVER.-A A. large counterbalanced truss-section, of a
bridge, that may be built out over the water, and susbridge, that may the balancing weight of an opposite part project-
tained by the
ing from the ther cide of the pier a balace truss ing from the other side of the pier; a balanced truss. Also
a bridge having such trusces. (See Bridgas). In archia bridge having such trusses.
tecture, a bracket for a cornice, etc.
ASTING. See FouNDRY PRACTICE,
Castinc, - See Foundry Practice.
CEMENT.-See Portiand CEMENT. In machine designing, that one of twor pousts special uses. crank
motion which marks the end of a piston-strnke - a dead motion which marks the end of a pistor-strike - a dead
centre; in lathe-work, one of the conical ponnts surporting
the work, the one at the driving end being termed the
 live centre. In geometry, the fixed point about which the
radius of a circle or a circular arc moves. the central
point of a closed curve. In architecture, the centring point of a closed curve. In architecture, the centring
support of an arch or dome. The cente of buovancy
of a vessel is the central point of compresion of the forces
俍 or a vessel is the central point of compression of the forces
of at buy her up. It must be above the centro of gravity
that the vessel will
or the or the vessel will capsize. The "centre of conipressinn
in the line in which the resultant of the compresssive forces
in the to in the lower part of a beam is located. The "centre e
gravity " is the point in a body about which the body wwil remain balanced when placed in any position. The The
rentre of gyation is the point in which the momentim
of a revolvint body is concentrated
 moments " is the point about which the enrces applied to
a rivid bory act. The centre of occilation in s. he
noint in the axis of a vibrating body, such as a pendulum point in the axis of a vibrating body such as a pendulum
in which if all the matter of the body were concenitated
the body In which in all the mater o the some time. The . centre
the hady would virate in the same
of tension "is the rine where the resultant of the tensile
 as distinguishch from a square incle. The number of cir-
cular inches in a given diameter is obtained by squaring the
CoEFFICIINTS.- Numenical values deduced from data ob-
tained by experinients and used as constant multiplet
 for friction, elasticity, tension, rupture, resistance, the
flow of water, ctici For example the amount of force
or weight that will elongate an elastic bar of any materin or weight that will clongate an elastic bar of any material
and of unifrmm section ot twice its original lengih is desig
and nated as the ""cocficient of elassicity" of that matecrial
niso tormed " modulus " as the " imodulus of elasticty," Also termed " modulus " as the " inodulus of elasticity,
the " modulus of resistance," etc. Che ission.- The condition of things that stick or cleave
tokether; the union of particles, especially smail particles. or the force that brings them together. Solind shave grea cohosion or tensile strength. liguids have little and gase
none. See Tension in this list.
 tapered, with a slight bulge at the centre of height. The
concrete structural column may be square or rectangular
The steel roluma is frequently formed of several bean rivcted or laced together. ing or portico.
intion
Combution.-
sombustion- - Burning; the continuous combination of a
substance with oxygen (or chlorine, etc.) with flame and
generation of heat. The best economic comblustion generation of heat. The best economic combustion of
coal has been the subect of exhaustive experiment. The
gases of combustion are the vaporous portions of gases of combustion are the vaporous portions of

Conpression- - The act or process of concentrating or con-
densing by pressure; the forcing of something into reduced space. Aif is compressed by a machine built like a steam pump, the piston packing and condensing the air in the
cylinder at each stroke. Air so compressed is used fo producing power, and for supplying workers in caisson tunnels, mines, ttc. In a gas-engine the mixture or ex
plosive charge is subected to pressure to heat it and in crease its explosive properties. The members of a trus
that are strained by longitudinal pressure are called that are strained by longitudinal pressure ar
compression members. See Truss in this list. ONCENTRATOR- Λ machine used in ore-concentration to
bring together the richer portions of mineral content; bring together
jigger or vanner.
CONDENSER-A Any one of various devices for condensing:
(1) a contrivance for suddenly cooling and thus conden
 (2) A mutual induction apparatus. (See CONDENSER
(3) A lens or combination of lenses in a microscope or
other optical instrument for other optical instrument, for concentrating light ray
(4) In cotton-ginning a device for compacting lint, etc
(5) A mechanism for sena (4) A cotton-isinning a device for compacting lint, etc.
(5) Amechanism for separating impurities by conden
sation from illuminating or fuel gas sation from illuminating or fuel gas.
Constant.-A number deduced from d
tual tests made upor the strengtho of data obtained by acticular material
and used in calculations relative to the strent and used in calculations relative to to strententh of struc
tures buil of that material. For example H having ascer tained by actual experiment the weight Tequired to rupture
a steel bar meansuring 3×2 inches that weight can bee
used to estimate the stresses in structures made of the a steel bar measuring $3 \times 2 \times 1$ inches, that weight can be
used to estimate the stresses in stuctures made of the
same material but diftering in length, treadth, and depth.
Conveyor. OUPFE.-I In
Coupbe. - In physics. two equal and opposite forces acting
upho a which is therefore in a state of equilibrium.
Also any two similar things joined together so pair, any two similar things joined together so as to be
piferent metals joined in a thermopile. easily foreseen, as the creeping of a railway conditions no
unusual heat and ene tomsion of the rails unusual heat and expansion of the rails. If a belt tend
to work slowly out of position, or a machine throug
vibration ouduly to work slowly out of position, or a machine through
vibatiton ravaually shifts its place on a floor or founda
tion tion, it is said to creep.
RUSHER. - See Crushin
ycle.- In mechanics, a series of motions Machunery YCLEE- - In mechanics, a series of motions that rencat.
YLINDER. A solid bearing two flat surfaces or ends,
nected by one continuous round surface when relatively nected by one continuous round surface; when relatively,
short called a dami when relatively ony a round rod
column, etc. Familiar examples of the cylinder ane found column, etc. Famminar examples of the cyinder are found
in the steamengin and the printing press.
DATLM OR DATUM LINE.-Any base line from which meas urements are made, or dimensions taken, either in actua
work, or in DALs. - Sawn timber which usually measures not less
than 3×9 inches, and not more than 3×12 inches in cross section.
DIFFERENTIAL.-A mechanical motion, in which the opera-
tion of some part is determined by the difference between the action of two other parts. For instance, if one pa is making 10 R.P.M. and another 40 R.P.M...the differentia
governed by them will make 25 R.P.M. called also Differ ential Motion. The most common illustration is the differential on the rear axle of an automobile. The term din
ferential is also used to describe a dotble screw, havin
two sets of threads of different pith two sets of threads of different pithe or or ome other mech DigEsTER R-A chemical apparatus for digesting or partially dissolving something by heat and moisture. a bory of watcr, to which vessels may tie up and load or discharg cargo. The term dock is more commonly used in Fnylan
than America to describe the enclosed basin where vessel. locate in a harbors. In the United States the tcrm pie is more common. representing one of a row on long whar ves
with slips between which the vesscls lie. In America the
word dock is used mainly for the dry dock, bcing a basi word dock is used mainly for the dry dock, bcing a basin
in which a vessel can be docked, and the water pumped
out so that repairs can be made to the hull. A floating in which a vessel can be docked, and the water pumped
out so that repairs can be made to the hull. A flaating
dock is an enormous structure, into which a vessel can dock is an enormous structure, into which a vessel can
he foated, and then by closing the gatco of the dock and
pumping out the water, the vessel is left dry resting or pamping out the water, the vessel
the ffoor of the floating structure.
DRIL.- See I)RILIS and Drikiva.
Driving.- The act or process of moving or directing the
motion of some other thing. especially that part of machine that imparts power or momentum to other parts, as a driving-pulley or driving-axie. A driving gear is the combination of parts in the pear or mechanism the
drives a machine; a driving-shaft is a power-shaft, usuall drives a machine; a driving-shat is a power-shate usuan
having fixe pulley for drivig belts. or gars or cutche
for communicating the power to the thing driven. Whe for communicating the power to the thing driven. Whe
two wheels are geared together the one that is neares two source of opwer and that imparts motion to the other
ts called the driver, while the wheel that reccives motion is a driven wheel. To calculate the mechanical efficienc of a train of gearing, multiply the radiii of all the driver
together, and likewise the radii of all the driven, and divide the latter by the former.
Dury.- The efficiency or useful work accomplished by an
engine or motor; also the amount of such work, usually
stated in footpounds. The duty of a steam engine is the
The stated in footpounds. The duty of a steam engine is the
number of tounds raised to the height of one font by the
burniug of a bushel of coal. In the case of purn ing engines. burniug of a bushel of coal. In the case of pumping engines.
the duty was formerly expressed ins millions of pound oi
water lifted to the height of one foot by the burning of
 pounds of dry steam, or by $1,000,000$ British Thermal
Units. Eynamics.- See Dynamics; Electric Machine, etc. so that its perinherer. gear, etc., mounted out of centre,
which may be used in a mannegur or eccentric criotion, tion. See MECHANLCAL MIOvEMENS.
EFICIENCY. - The efficiency of a machine or of a structure, or any portion thereot. is the re ratio of its or strength, power,
or capacity, to the that of some predef

 The efficiency of a machine is the ratio of its actual value
to its theoretical value, or the difference between the amount of work expended on the machine and the amount
given out by it or obtained from it. See EFFICENCY given out by it
NCASTRE.- The immovable fixing of the ends of a canti-
lever, or the ends of other forms of beams or girders in castre than when simply supper much stronger when en-ENERGY.- Inherent capacity or doing work, as distin-
guished from force, which is energy in action in a definite

 crual to the product of hation the mhe which int in the sereticale of the velocity. Potential encrgy is anplied to storded cnergy,
as in a pound of coal, which when consumed and used to as in a pound of coal, which when consumed and used
make steam appears as kinetic energy storage batery
when charged has potential energy, though it may iie when charged has potential energy, though it may il
idlo. Electic energy is defincd as molecular kinetic
Electic
 radiant heat, X rays or any form of encrgy transmitted
through the hypothetical ether. Erurn.-A theoretical medium. supposed to fill all space
and pervade all substances. heing that in which electricity. and pervade all substances, being that in which electricity,
liglth, radiant heeat, cathode rays and similar phenomet
arc promulgated are promulgated. According to this theory electric phe-
nomena are strains and pulsations in the ether. See
ETuER $\substack{\text { nomena } \\ \text { Expansion } \\ \text { Extink }}$ Expasisron.- Increase of volume, especially of steam, gas
or other motive fluid. Also the point in a piston-stroke at which such expansion becnmes available and the period during which expansion takes place in an engine cylinder. double cxpansion, and if if there amployed it in three or four termed
cylinders uscd in series it is termed triple, quadruple or cylinders used in series it is termed triple, quadruple of
series expansion. See STEAM; STEAM-EGIN. FACror or SAFETY.- When calculating-the ultimate strength
of a structure it is necessary to provide for contingencies of a structure it is ne nessary to provide for contingencies
arising from a lack of wniform, quality in materials. in
feriority of materials, wear and tear of feriority of materials, wear and tear of narts, the unex-
pctccd application of loads, etc. This provision is made
py the by the upe of nultipliers such as 4, 6, 8, and in sonne cases 10. which are applied to certain dimensions. For exgive a structure having for a timest the strength ncecessary
to carry the load it will be ordinarily required to sustain. to carry the load it will be ordinarily required to sustalne
FEFMr.e. The supnlying of materill to a machine or the
like, as feeding of coal hy a mechanical stoker. feeding oi like, as feeding of coal hy a macechanical stoker. feeding of
shets of paper to a printing press, feeding logs to a sawing
machine por FLuE.-A A channelton to a breasazeway. for smoke, waste gases, a tube carrying gases of combustion in a boilcr, or a hot air passage in a wall. It is distinguished from pipe and
tube. L-WHEEL.-A relatively heavy whel anded to a machine
for the purpose of maintaining uniform speed: called fyfor the purpuse of maintaining uniform speed: called fiys
whel because it it simply rotates or flies arcund. It resist
sudde sudden acceleration of speed by its inertia. and is usetu
in machines that do their work in a smali fraction of a cycle, to prevent slowing up or racing.
 uredi in pound or or units. Force always has direction,
while energy has not, being rather the static idea. Aid
 no force for lack of a conductor
and Horse Power, in this lis.
ass.- Matter in the aeriform state, usually invisible and GAs. - Matter in the aeriform state, usually invisible and
apparent to the senses only by its odor or motion. cool

and this frinciple is used in the internal combus
engine. See INTERNL CoMbustin ENGINE. EAR--S Se GEARING and MECHANCAL MOVEMENTS.
OVERNOR.- A device for speed-revulation as of an or morn.-A device for speed-regulation, as of an engine
or motor, the most common type being the ball-governo
 ascertaining the strains on structures, velocity ratios, etc.
Dy means of lincs drawn to a uniform scale and represent ing the direction and intensity of active forces,
Horse Power.-A theoretical unit of work, assumed to b
 engines and motors is frequently expressed in horse power
units. A.H.P. is actual horse power; B.H.P. is brake
hotse horse nower; I.H.P. is indicated horse power; and F.H.P.
is friction horse power. H Horse power is also the name of a is friction horse power. Horse power is also the name of a
for thersint treat-mill in which the traction power of horses
is u tilized in place of an engine or motor.
 weight rersistence in a given motion or state of rest.
ingor-A mass of cast metal from a mold. The more val
Nor cast in ingots; irn is cast in pizs.
ing machinary by which - each pat system or piece manufactur-
formed so exactly ing machincry by which each part or piece is so exactly
formed or machined that it may he replaced by any sim-
ilar part. It originated in America and has beconle ilar part. It originated in Ammerica and beconle
general.
See Interciancrable Pats. LAR, A part that extends beyond the bory of a thing
over some other part, specifcally, in steam-engineering over some other part, specifically, in steam-engineering,
the extension on a slide-valve that determines the instat
of of openimg or closing a steam-port. Also a piece of sof
 tains, distinguished as live load when moving, as of wagons
on a bridge, and dead load when tationary. Live load is
liable to create twice the stress of dead load, and must

 turning, minling, ectc., with cutters or smali tools; formerly
called engine-tool. Moron.-A machine for transmitting power, as of watcr
unter head, or by electricity, as distinguished from an under heand or hy electricity, as distinguished from an
engine whore the power is assumed to originate in the
maine
 merged explosive. Monulus. A number or, cooffcient for the measure
Morce or function. See Coefficients 'in this list. Molnivg- - See Foundry Practice.
Uscilation.-A swinging from side to side, or shntt regular reversal of ritation; also vibration, as of electric waves.

 hirst into the ground, as a support 1or a superstructure
commonly used in muddy paces or on the edde of a bod
of water for securing a foundation: formerly ralled a spile. of water for securing a found ation: formorly called a spile.
Now made also of concrete. Or stel and concrete. Some
time times metal plank arce used for the same purpose, or or ot
forma a breakwater or stout wall, and are termed sheet
piles. piles. A long hollow tube. either one piece or a series of
connected piccos. The distinction between pipe and tube
cole is usually arbitrary, but when the articlec is made of sof yielding materal, as rubber, the correct term is tube.
Power.- Mcehanical encrgy as viewed from the stand point of capacity; the measurable amount of antive en-
ergy; canability of performing a given amout of work
Compare ' Energy, Force ' and Horse Power' in this $\mathrm{P}_{\text {RESSU }}^{\text {list. }}$
contact. - Stress such as would tend to move a body ing force of a load. It is usually estic
mated by units of weight See I mated by units of weight. Sce 'Load ' and 'Stress ' in
this lis.
RlME Mo PRIME Mover.-An engine or the like from which a power
originates. The electric dymamo derends upon the steam-
engine
 denly released of its load. It is liable to burst a fly-whec
in ont checked. REAMNGG.-The enlarging of a hoie by inserting and turning
a tool termed a reamer; done to taper a hole or remove adges weakened by punching. Recipracation-- The act of moving back and forth sys.
tematically, as a piston. Compare Oscilation in this
Tole Redicing.- Drawing to a smaller scale; also tapering in
diameter; also the smelting or reduction of ore in a furnace alas the at of of withdrawing fluid under pressure, as by a
reducing-valve. Evolving.-. Turning around in an orbit, after the manner
of a planet, or a ball in a ball-bearing. Such a ball rotates of a planet, or a ball in a ball-bearing. Such a ball rotates
on its own centre, but revolves around the center of the
bearing. See 'Rotation in this list.

Anstance.- That which onposes a force or movement An clectric resistance is a poor conductor, as an iro
wire. placed in a circuit to impede the current,
EVERERATORY.- Reflecting or operating by feflection, REVERHERAATORY- ReAecting or operating by reflection,
a pudding furnace, where the flame and heat are reflected
from the vaulted roof to the top of the material to be Prom the
fused. Rivet.-A short metal connection for holding metal plates
together, resembling a boilt, but instead of having a threaded end and nut, the tail crd is designed to be unsset, that
is
is is battcred and spread, to keep it tight in its hole.
Ronlung.- Passing between heayy iron rolls to reduce and shape, as steel rails and beanss. Also calendering. Rotation.- The act of turning around its own centre
Compare ' Revolving' in this list. CHAPRE, A Alachine tool for cutting or machining small
metal parts, the work being stationary, and the cutting tool mounted to reciprocatc. pin, usually for some rotary purpose, as the central rod of a bobhin,
SpiNNIVG.- In metal working, the operation of drawin out and expanding into a cup or cone form, by pressure
and rotation. In textile manufacture. the drawing out
and and twisting of shiver to form thread. light metal articles
STanpric. The operation of forming lig the a
in the cold by a sudden blow of a die. Also the crushing STAMping. The operatio
in the cold by a sudden
of ore in a stamp-mill.
STATIC.-At rost or in equilibrium. See ELECTR1CITY.
Storivg-- The supplying of a furnace with fuel. Mechanical stokers are common for supplying coal under sta-
tionary hoilers, but are not adapted to marine use. STRNGGTH OF MATERIALS. The engineer is continually
confronted with this problem and elaborate tests are

 crishing it itermed strength of compressinn. There is also
torsional and bending strength. STRrss.-Any force or power that tends to deform, bend Stress. -Any torce or power that
or racture a thing; especially,
 STr-TFiNG.-In steam engineering, a packing of spiral stcel
rings for making a fluid-tight joint for a moving part, as
a piston-mod. a piston-rod.
Swrict.-A mechanism for side-tracking a thing. An elec-
tric switch is usually a jointed piece of copper with intric switch is usually a jointer p piece of copper with in-
sulated handle, by which conductrs can be connected
wrile swith is a pair of jointed or disconnected. A railway switch is a pair of jointed
and pointed fails for guiding car-wheels to an adjacent
and shuttle.
TEMPRERIN.- The process of bringing steel, etc., to a cer-
tain degree of hardness by heating and sudden cooling
in water or oil. Also the process of bringing clay to proper in water or oil. Also the process of bringing clay to proper
w rking condition by moistening and kncading.
 Also spelled templet. Also spelled temp.et.
TENSION.- The force or system of forces tending to draw
a body apart or lengthen it; pulling strcss as opposed to compression. A tension mernver of a truss is a rod
that is subjected to a pulling strain. Testric.- Thece operation of tosting materials. Sec © Strength
of Materials' in this list. A testing mackine pulls apart pieces of metal and measures the clongation and strain
of rupture, and also determines crushing or compression THREAD.-A spiral projection on a screw for enabling it to grip a softer substance, as wood, or to fit into a reverse Trall in a netics of parts acting together, as a train of TRANSMISSIOv. - The passage of something over or through some other thing, as heat through the air, or electricity
through a copper or aluminum wirc. Also the sending mechanism of a telephone. Also a mechanism that trans-
mits nower in a given way, as the transmission of an antitomobile. Truss.-A braced framework, calculated to resis
all directions, as used in bridges, roofs, etc.
Tunk.- See Pipe. to reccive the impant of rapidy moving water, steam,
etc., and deliver a 1 arge part of it as ower on a shaft.
s.e. Nee AYDRO-ELECTRIC Given minor quantity represented by 1 , for cal-
culating the quantities of things. The fundamental units are the metre and foot for lengeth, Thund and kilogram for
weight, scond for time. See M ETRIC SvsTEM; also ELEcTRICAL UNITS.
WORK.-The accomplishment of machinery or mechanical
or motion by the expenditure of energy. The wwork done
by lifting 10 pounds 10 feet is 100 fot-pounds. working model.

Charles H. Cochrane,
Author of 'Modern Industrial Progress.'

ENGINEERS, Corps of, a branch of the United States army which takes charge of the temporary and permanent, military reconnoitering and surveying, the selection and planning of camp sites, the construction and maintenance of roads, railroads, bridges, storehouses, etc., and divers other technical services which are of the army. It also superintends river and harbor improvements, the collection and preservation of documents relating to the Washington aqueduct and public buildings in the District of Columbia and the construction of bridges and roads in the Crater Lake and Yellowstone under engincer officers.
Engineer officers were authorized by Congress on 16 June 1775 and in the same year Col. R. Gridley became chicf engineer. Many French engineers served with the United States army during the Revolution. A corps of
artillerists and engineers was established by the act of 9 May 1784 . In 1802 the artillery and engineers were separated and the Corps of Engineers was established. This was gradually increased in size until the present establishment is 505 officers, one hand, seven regiments and were first made to the rank of topographical engineer. After various vicissitudes, the topographical service of the army was organized as the Corps of Topographical Engineers in 1838. In 1863 this corps was merged in the Corps of Engineer officers are appointed, in general, from West Point, although competitive exami-
nations are held which are open to civilian nations are held which are open to civilian
engineers. Commissions in the engincers are generally given to those West Point cadets with the highest academic standing. Officers the line when they are on service with engincer troops. Otherwise they are staff officers.
During the Great War the uses of engineer troops and the organizations which they form have undergone great diversification. Whereas
the engincer troops of the United States army the engincer troops of the
were formerly grouped into pioneer regiments, mounted pionecr battalions and pontoon battalions, there are now also labor regiments, railroad regiments, lumbering regiments and so on indefinitely, made up from men in the National Army or National Guard and under
engineer officers. The technical training of officers of the Corps of Engineers is divided beofficers of the Corps of Engineers is Civided be-
tween the United States Engineer School at Washington and the Army Field Engineer School at Fort Leavenworth. The Royal Engineers of the British Army, the "technische Truppen" of Germany and the Engineer Corps
of the French Army correspond very closely to the United States Corps of Engineers, but perthe United States Corps of Engineers, but per-
form work which belongs to the American Signal Corps as well. The foreign corps also differ from the American in that they draw in gencral from technically trained men, whereas in times of peace American engineers receive the greater
part of their training after enlistment. See Army Organization; Unitrd States, Army of.

ENGIS, öñ-zhē, Belgium, on the Meuse. which there are many caves. In these, in 1832,
there were discovered by Dr. P. C. Schmerling
a human skull and parts of a man's skeleton a human skull and parts of a maner with bones of the rhinoceros, mamtogether with bones of hene imbedded in dc-
moth, cave-bear and hyena
posits belonging to the Quaternary period. This posits belonging to the Quaternary period. This
discovery gave cause for much discussion among discovery gave cause for much discussion among as
anthropologists. The skull, usually known an is anthropologists. The skull, usually known
"the Engis Skull," though of uncertain age, is beyond any doubt very old. Similar discoveries were made in nearby caves, especially at Eng!were made it nearby caves, Times (7 th cd., London 1913); Doudon, E., 'Nouvelles explorations dans les cavernes
d'Engihoul' (in Soc. d'Anthrop. de Paris, d'Engihoul' (in Soc. d'Anthrop. de Paris,
Bull. et Mem., Ser. V, Vol. IV, p. 177, Paris
1903) ; Dupont. E. F., 'Les Temps Prehis 1903) ; Dupont, E. F., 'Les Temps Prehis ley, T. H., 'Man's Place in Nature) (New York 1899) ; Schmerling, P. C., 'Recherches sur les cavernes de la province de Liége) (Liége cavernes de la province de Liége' (Liége
1833); Spring, (Les Hommes d'Engis et de Chauvaux' (in Bulletins de I'Acadenie Royale de Bellqique, Ser. II, Vol. XVIII, pt. 2, No. 12, Bruxclles 1864).
ENGLAND, John, American Catholic prelate: b. Cork, Ireland, 23 Sept. 1786; d. Charleston, S. C., 11 April 1842. He was educated in the schools of Cork and studied law for two ycars, but in 1803 entered the theological col was so brilliant that after his second year he was solected to deliver public lectures on rc igious subjects. He also devoted much of the time given him for recreation to the instruction
of the militia stationed in the town. He also of the militia stationed in the town. He also which afterward suggested the plan of the Presentation convent and established free Presentation convent and established fre the education of poor boys. In 1808 he was recalled by his bishop and appointed president of the theological seminary at Cork.
Ho took a leading part in the agitation for Ho took a leading part in the agitation for
Catholic emancipation and, with the view of helping the cause of religious liberty, founded the Chronicle, which he continued to edit until his departure from Ireland. When the see o Charleston, embracing the States of North Car Dr. England was nominated its first bishop As he had determined to become an Americat citizen he refused to take the oath of allegiance exacted from Irish hishops on their consecra tion. After some difficulty he was consecrate in Cork in 1820 and arrived in Charleston the wame year. He hac many obstacles to cond two churches in the three States under his jurisdic tion and his flock was made up chiefly of poor Irish emigrants and refugees from Santo Do mingo. In order to provide priests for his diocese he opened a classical school in. Charfes ton, and the success that attended his effort of his ecclesiastical students. Not only did h succeed in training a body of educated mission aries for his church, hut contributed largely to the revival of classical learning in South Carolina. Several schools were reopened and the some time, resumed its studies. He infusec new life into the Philosophical Literary Asso ciation of Charleston as soon as he became a
member and did much to supfress dueling, not by intemperate denunciations but by forming the most influential gentlemen of the State into an anti-dueling association. He was invited by Congress to preach in the Hall of RepreSentatives at Washington and was the first Catholic clergyman on whom this honor was of ferred. To explain and defend the doctrines
his church he established the United States Catholic Miscellany at Charleston. It was through the columns of this periodical that most of his writings found their way to the public. His influence was felt in every part of the Cathence at Rome was decisive in affairs connected with the church in America. His courses of lectures, which he delivered in all the great cities of the Union, were attended by citizens of every creed. Nothing, however, endeared heroism during the frequent visitations of his yellow fever when he continued at his post night and day. In 1834 he visited Ireland and obtained the services of three nuns of the the Ue Order, by whose aid he established the Ursuline schools of Charleston. He also iree schools, which he placed in charge of the Sisters of Our Lady of Mercy. He conceived
Slaced in charge of the the plan of assembling the prelates in council ior mutual aid, and has been styled "the author of our provincial councils." He visited Europe sent times in the interests of his diocese, was was offered an Irish See, which he declined. On his return from Europe in 1841 malignant dysentery broke out among the steerage paswas incessant until he was attacked by the diseas incessant until he was attacked by the dis-
eamself. He finally died from its effects, ease himself. He finally dicd from its effects,
which were heightened by overwork. His principal works are 'Discourse before the 'Expnian Socicty of Savannah Furniture and Ornaments of a Church') ; 'Letters on Slavery"; and "Works," edited by Bishop

ENGLAND, including WALES, the southern and larger portion of the island of Great
Eritain, is situated between lat. 50° and 55° ${ }^{46^{\prime}} \mathrm{N}$. and long. $1^{\circ} 46^{\prime} \mathrm{E}$. and $5^{\circ} 42^{\prime} \mathrm{W}$. England covers 42 per cent, and Wales 6 per cent, Brither 48 per cent of the whole area of the and statistical ciuded with England, of which it forms a western peninsula, similar to the counties of Devon and Cornwall. Bounded on the East by the the Sea or German Occan, which separates and Berritory from Germany, Holland, Denmark Channel Bium; on the south by the English West hy the Saint George's Channel and the Irish Sea, its only land frontier is that irregular line of 110 miles facing Scotland on the forth. As the crow fics, that border line is eastern side measures 350 rough triangle, the line; the western 425 and the southern 325 iniles - a total of 1,170 miles. But the shores Within this triangle are so deeply indented by bays and estuaries that the actual coast line is less than twice that distance, estimated at not an 2,76 miles. The length of the coun-10-23
try, measured on a meridian from Berwick nearly to Saint Alban's Head, is 365 miles. Its tains its maximum between Saint David's Head, in South Wales, and the Naze, in Essex, where it amounts to 280 miles. The area of England without Wales is 50,873 square miles; that of
Wales, 7,366 ; together, 58,239 square miles The seas surrounding the British Isles are shallow. If the waters were to subside to the extent of 300 feel, the whole of the British Islands, including I Ireland, would once more be united to Continental Europe
Geographical History.-This great island doned by the Romans (A.D. 410) before the Teutonic settlements in it began. The invaders had therefore to struggle rather with native Britons than with Romans. Morcover they were invaders who came by sea, and from lands where little or nothing was known of the
Roman law or religion. They met with a degree of strictly national resistance such as no other Teutonic conquerors encountered, and therefore, in the end, they swept away all tracos of the earlier state of things in a radical way which took place nowhere elsc. As far as
such a process is possible, they slew or drove such a process is possible, they slew or drove
out the older inhabitants; they kept their heathen religion and Teutonic language, and were thus able to grow up as a new Teutonic nation in their new home without any impor tant intermixture with the earlier inhabitants, wrought or bris change were the forefathers of the present day English, - the low Dutch in habitants of the borderlands of Germany and Denmark. Among them three tribes, the Angles, the Saxons and the Jutes, had the chief share in the conquest of Britain. The Saxons 4th century and were conscquently the tribe first known to the Roman and Celtic inhabitit ants of the island. Hence it came that the Celts of Britain and Ireland have called all the Teutonic settlers Saxons to this day. But, as the Angles, or English, occupied in the end by far when the Teutonic tribes in Britain began to form one nation, gave their name to that nation and its land. That nation was the English and their land was England. While Britain thus remains the proper geographical name of the whole island, England is the political name of that part of Britain which was step by step
conquered by the English. Before the end of the 5th century several Teutonic kingdoms had been founded in Britain. The Jutes began the conquest by their settlement in Kent, and presently the Saxons began to settle on the south coast and on a small part of the east coast, in
Sussex, Wessex and Essex. Along a considerable portion of the eastern coast various Anglian settlements were also made, which gradually grew into the kingdoms of EastAnglia, Deira and Bernicia. By their ultimate union the last two formed the great kingdom century, however, the English had not got very far from the southern and eastern coasts. The Britons, whom the English called Welsh. or trangers, held out in the west, and the Picts and Scots in the north. The Scots were properly the people of Ireland; but a colony of them
had settled on the western coast of northern Britain-distant at one part only 13 miles from reland - and in the end gave the name of island.
The changes of boundary between England and W ales began with the great Welsh campaign of Harold in 1063. All the border shires, Cheshire, Shropshire, Herefordshire and Gloucestershire seem to have been enlarged at this period. The English border stretched to the
Conwy in the north and to the Usk in the sonth. But part of this territory appears to have been recovered by the Welsh princes, while part passed into the great march district of England and Wales, under the rule of the Lords Marchers. The gradual conquest of South Wales began under the Conqueror and was continued by his sons; but it was me the kings themselves. The lands of Morganwg, Breheiniog, Dyfed and Ceredigion, answering nearly to the modern South Wales, were gradually subdued. In some districts, especially in shire the land was settled by Flemish colonists, the latest of the Teutonic settlements in Britain. Elsewhere Norman lords, with Norman, English and Flemish followers, held the towns and the more level country, while the Welsh kept up a semi-independence in the western mountains. In still ruled as vassals of the English king till the war of Edward I. In 1277 the vassal prince was compelled to relinquish again the territory east of the Conwy to his overlord The final conquest followed in 1282 , but complete incorporation with England did not take place until the reign of Henry 1 later. During this long interim North and South Wales remained a separate dominion, giving the princely title to the eldest son of the English king, a dynastic custom that still exists to-day. Some shires were formed or remodeled, new towns founded, and the border disdiction of the Marchers till the ultimate ab sorption in 1535 . Thirteen new countics were sorption in formed and some districts added or restored to the border shires of England. One of the new counties, Monmouthshire, was added to an English circuit under Charles II, and has since been considered an English county cluded with Wales even in official publications at the present time.
With the exception of these new creations, all the existing shires of England were in being at the time of the Norman Conquest, save those of Lancaster, Cumberland, Westmoreland and actly the same as at present, but the differences are commonly slight and of mere local interest. As they stood at the Conquest the shires were of two classes: some were old kingaoms or principalities which still kept their names and boundaries as shires, while others seem to have been mapped out afresh when the land was the Welsh border stretched further west in 'Domesday' than they do now. On the Scottish border Westmoreland and Cumberland were formed
ut of the Cumbrian conquest of William II and enlarged by territory which appears in Domesday' as part of Yorkshire. Lancashite was made up of lands taken from Yorkshire and Cheshire, the river Ribble forming ther older boundary of those shires. The of the divisions are marked by the boundaries of o Chester, as they stood until the changes under Henry VIII. In central England the oniy change was the, formation of the smallest shir -Rutland-out of the Domesday district of Rutland, an appendage to Nottinghamshire, ell larged by a smal
Northamptonshire.
If one were to trace these changes over series of ancient and modern maps, they would reveal but very little alteration of boundaries in the island since the 11 th century. The land as a whole has not been mapped out arance since the 10th century. While a map of fin til or Germany in the 1 th century, or even
18 , would be useless for immediate practica purposes, a map of England in the days o Domesday (1085-86) hardly differs from the map of England as we know it to-day. only changes of any import-and they ar neither many nor great -are the shites on Conqueror put the finishing stroke to the wor of Egbert and made England forever one. By uniting that country under the same ruler a Normandy (namely, himself), he led her into the gencral current of continental affal we and gave her a European position sucs.
had never held under her native kings

Although there have been but slight changes the boundarics of Fngland itself within thousand years, the extra-territorial expansio of that country beyond the seas constitutes the most remarkable phenomenon 11 the world history. England alone is about the size Rumania, less than a fourth of France or of New York. England and Wales together are not equal in area to the State of Georgian nor a quarter the size of Texas. There are States or Territories in the Union each large than England, and several much larger than Whilst whole four hundredth part of the land surface of the globe, the colonies and dependencies which Ens land has acquired within about 300 years cove something like one-fifth of the earth, or esti356,751 square miles, with a population mated at $449,370,000$.
Topography.- The chief indentations are Thames estllary; on the west, the Solway Firth, Morecambe Bay, Cardigan Bay and the Bristo Channel; those on the south are less promine The though including some uscful harbors. greater part of the coast consists of clift some places clayey, in others rocky and somietimes jutting out into hold, lofty and precip Head on the cast, Beachy Head, the 1 sit Portland, the Lizard and Land's End on south and southwest, Saint David's Head and Saint Bees Head on the west. The most ex tensive stretches of

of Suffolk to $t^{2} e$ South Forcland in Kent, and in Sussex and Ha.ts on the south coast. The
chief islands are Holy Island, the Farne Ischief islands are Holy Island, the Farne Islands, Sheppy and Thanct on the east coast; Isles at the southwestern extremity; and Lundy Island, Anglescy, Holyhead and Walney on the west.

The lofticst heights of England and Wales are situated at no great distance from its west shores and consist of a succession of mountains and hills, stretching, with some interruptions, ous branches on both sides, but particularly to the west, where all the culminating summits are found. The northern portion of this range has received the name of the Pennine Chain and is commonly designated "the backbone of England." It is properly a continuation of the
Cheviot Hills, and, commencing at the Scottish border, proceeds south for about 270 miles, till, in the cotinties of Derby and Stafford, it assumes the form of an elevated moorland plateau. In Derbyshire The Pcak rises to the height of 2,082 feet. By far the most important of its offsets are those of the west, more espe-
cially if we include in them the lofty mountain masses in northwestern England, sometimes classed separately as the Cumbrian range. Amid these mountains lie the celebrated English lakes, of which the most important are Windermere, Derwent Water, Coniston Lake and Ullswater.
Here also is the highest summit of northern Here also is the highest summit of northern
England, Sca Fell (3,210 feet). The Pennine Chain, with its appended Cumbrian range is succeeded by one which surpasses both these in loftiness and extent, but has its great nucleus much farther to the west, where it covers the grcater part of Wales, deriving from this its name, the Cambrian range. Its principal ridge
stretches through Carnarvonshire from north and west, with Snowdon (3,560 feet) as the culminating point of south Great Britain; across the Bristol Channel from Wales is the Devonian range. It may be considered as commencing
in the Mendip Hills of Somersct and then in the Mendip Hills of Somersct and then connty and the counties of Devon and Cornwall to the Land's End, the wild and desolate tract of Dartmoor forming one of its most remarkable features (highest summit, High Willhayes, 2,039 feet). Other ranges are the Cotswold Hills, proceeding in a northeast direc-
tion from near the Mendip Hills; the Chiltern Hills taking a similar direction farther to the cast and the North and South Downs running east, the latter reaching the southern coast near Beachy Head, the former reaching the southeas coast at Folkestone.

A large part of the surface of England consists of wide vallcys and plains. Beginning in those of the Coquet. Tyne and Tces; on the west the beautiful valley of the Eden, which, at first hemmed in between the Cumbrian range and Pennine Chain, gradually widens out into a plain of about 470 square miles, with the
town of Carlisle in its centre. The most important of the northern plains is the Vale of York, which has an area of nearly 1,000 square miles. On the west side of the island, in south Lancashire and Cheshire, is the fertile Cheshire
plain. In Wales there are no extensive plains,
the valleys generally having a narrow, rugged form favorable to romantic bcauty, but not compatible with great fert.lity. Wales, however, by giving rise to the Scvern, can justly
claim part in the vale, or series of almost unrivaled vales, along which it pursues its romantic course through the counties of Montgomery Salop, Worcester and Gloucester. Southeast of the Cotswold Hills is Salisbury plain, a large elevated platcau, of an oval shape, with a thin, chalky soil only suitable for pasture. In the are those of Taunton in Somerset and Exete in Devon. A large portion of the southeast may be regarded as a continuous plain, conisting of the wealds of Sussex, Surrey and Kent, between the North and South Downs, miles. The southeast angle of this district is occupied by the Romney marsh, an extensive level tract composed for the most part of a rich marine deposit. Extensive tracts of a simila nature are situated on the eastern coast in by the Humber: and in the counties which ither border the Wash, or like Northampton Bedford, Huntingdon and Cambridge, send their drainage into it by the Nen and the Ouse. For the climate of England see Great Brif ain-Geograpiitcal Environment
Rivers.- England is well supplied with riv ers, many of them of great importance to in-
dustry and commerce. their waters to the North Sea. If we consider the drainage as a whole, four principal river basins may be distinguished, those of the Thames, Wash and Humber belonging to the Atlantic. The basin of the Thames has its greatest length from east to west, 130 miles, and its average breadth about 50 miles, area, including the Medway, 6,100 square miles. The river itself, which is the chief of English rivers, has a length of 210 miles. The basin of the Great Ouse, Nen, Welland and Witham, which all empty themselves into that estuary, and has an area computed at 5,850 square miles. The basin of the Severn consists of two distinct portions, that on the right bank, of an irregularly oval shape, and having for its principal tribu-
tarics the Teme and the Wyc; and that on the left, of which the Upper Avon is the principal tributary stream. The area of the whole basin is 8,580 square miles. The next basin, that of the Humber, the largest of all, consists of the three basins of the Humber proper, the Ouse being about one-sixth of the whole area of England and Wales. Other rivers unconnected with these systems are the Tyne, Wear and Tees, in the northeast; the Eden, Ribble, Mersey and Dee, in the northwest. The southern coast streams are very unimportant except for their estuarics. See Thames.
Areas and Population.- The total area of miles, and the population (1921 census) aquregated --England, 35,678,530; Wales, 2,206,712, making a total of $37,885,242$.' The official census of the year 1911 placed the total at $36,070,492$; while the National Register, taken in August,
1915, placed the civilian population at $35,360,000$.

In 1901 England and Wales contained 78 per in 1911 it rose to 79.8 per cent, or four-fifths of the whole British Isles. The density of the population in England is greater than in any other European country (disregarding Monaco)
except the Free State of Saxony (829 per except the Free square mile) ; 1921 it was 649 per square mile The first uniform census of the United Kingdom was taken in 1801. The growth of population in England and Wales from 1650

1650 (es	5.450,000
1750 (probabl)	6,400,000
1841 (England)	15,002,443
1851 (together)	16.921,888
1861 1871	- 181,495 ,331
1881	24,613,926
1891	- ${ }^{23,526,075}$
1911	36,070,492
1921	37,885,242

During the 100 years (1801-1901) the popu lation of the United Kinguom rose from 16, 000,000 to $41,000,000$. The 1921 census revealed 22,691,256 males and 24,616,345 females, an excess of $1,925,089$ females. Men serving in the not inclucled in this calculation. In 1914 there not inclucded in this, 879,096 births, 37,329 illegitimate births, 294,401 marriages and 516,742 deaths. The proportion of male to female births for that year was 1,036 male to $1,000 \mathrm{fmales}$, while of the total estimated population $17,877,052$ were males shows the areas and population of the English and Welsh administrative counties (1921)

and Welsh admini			Dualley...	10.1	62, 304
			Exast Ham	5.2 4.9	143,304
Unties	${ }_{\text {square }}$	Population	Gateshea	4.9	124.516
(Administrative)			Glouces		51,330 60,710
			Grimsby	4.5	82,3
Bedfords	466.4	206,478	Halifax	21.8	90.129
Berkshi	743.2	20, 23.303	lluddersfield	18.5	110,120
Cambridge	402. 5	129,594	Ipswich	12.7	787, 713
Cheshire	1.027.8	- $\begin{aligned} & 625,001 \\ & 320.550\end{aligned}$	Kingston-upon-Hulit City	${ }_{33}$	${ }^{2858,320}$
Cornwall	1,550.4	220,437	Leicester	13.4	234,190
Cumberlan	1,029,5	584;703	Lincoln, City	5.8	
Devonshi	2,604,9	440,023	Liverpool, City	${ }_{33.0}$	803,118
Dorsetsh	1.014.6	2283,670	Middlestroug	4.2	131,103
Durham	1,523.2	918,111	Newcastle-upon-Tyne, City		274,995
Gloucesters	1,243,3	329,277	Newport (Monmouth)	0	
Heref	839.6	113.118	Northampton	5.4	190.923
Hertfordshire	${ }^{634.6}$	333,236	Norwich, City of.		${ }^{120,0558}$
Huntingdonsh	360.0	73,748	Nottingham, City of	7.4	145,001
Isle of El	1,554.7	1,118,129	Oxford, City of	7.3	57,052
Lancashire	1,880.2	1,746,418	Plymouth.	3.5	209, 343
Leicesters	823.6	260,332	Portsmouth	6. 2	117,426
Lincolnshire	410.6		Read	9.2	
Kesteven	727.9	108,237	Rochdale	10.1	90,807
Lindse	1,501.7	200,294	Rotherham		68,045
ondon.	117.0	4,483,249	St. Helen	11.4	${ }_{234}^{102,150}$
Middlese	283.3	253, 164	Salford.		490, 324
Monmouthshire	534.0	-450,700	Smeth	3.0	
Nortolk	${ }_{1}^{2.004 .4}$	322,914		2	160,997
Stoke of P	83.5	46,954	Southend-on-Sea	1.5	106,021
Northumb	2,018.0	407, 307	Southport.	${ }_{3} 8$	116,067
Nottingha	755	132,506		8.5	123,315
Rutlandshire	152.0	18,368	Stokeon-Trent	17.4	250,440
S	1,343.0	242.950	Sunderland.	.	150, 100
Somersetsh	1,630.3	397,034	Tynemo	${ }_{6}^{6.8}$	52,892
Staffordshi	1,488,6	320,605	Wallasey.	5.2	90.721
	758.0	739,500	Walsall.	${ }^{1.7}$	76,511
	1,459,2	457,048	Warring	6.7	7,81

Counties (Administrative)	Area in square miles	Population
Warwickshire		342,449
Westmoreland.	786.2	65,740
Wight,	1,374.9	292,213
Worceste-shi	751.0	301,120
Yorkshire: East Riding		173,704
North Riding	2,124:5	325,209
West Riding.	2,264.2	1,508,610

Following are the 78 county boroughs, their | 2 |
| :--- |
| |
| |
| B |

$\frac{\text { areas and pupulations: }}{\text { County Borouchs }}$| Area |
| :---: |
| (square |
| miles) |\quad Population

Under the Representation of the People Act of 1918 parliamentary seats in Great Britain Were redistributed on the basis of one member
of the House of Commons for every 70,000 of the population. A separate act redistributed the Irish seats on the basis of one member for every 43,000 of the population. By these acts the established in 1885 , to 707 . This number was reduced to 615 in 1922 when separate parliament were established in Ireland, leaving only in Enistorical Summary.- The leading events elsewhere), may be briefly summarized her or ready reference
B. C. 55 - First Roman invasion under Julius Cæsar, le A. Doman conquest and civilization - Roman vevacuation: left Britain and her earlies 449 - English land in Britain; birth of feudalism and local 597 Rovernment. 787 - Berinning of Danish in invasions; inaugurated a perin of anarchy and warfare, arresting progress and preparing
825 Enland for conquest yy the Normans. 2.5. - Ellandune and suppemacy of Wessex; union of Englis Kingdoms under Egbert.
878. Ethandune and Treaty of Wedmore: England saved
from anarchy and devastation; inauguration of King Arom anarchy and devastation; inauguration or
Alfred's reforms.
106 - Battle of Hastings; Normans conquered Saxons introduction of Norman civilization; beginning of Eng land s speatness. book and Salisbury Oath; establishied
feudal system, and the power of the Crown; reformed
 1095 - Crusades began; undernined feudalism; aided the
rise of the middele classes; introduced Eastern; civilization
1100 -Charter of Liberties; basis of English liberty and ${ }_{1106}$ of Mana Carta. colonial empira and of Ene Engl ish power in France.
1170 - Invasion of Ireland inaugurated incessant misrule

 legislation.
${ }^{265}$ - De Montfort's Parliament; first representative par1295 Mint beginning of popular representation.
all classes completely represented.
1314- Battle of Bannockburn; established Scotland"s in-
dependence.

1322 - Cornmons gain a share in legislation; the middle
classes begin winning their way into first place in the 1346 - Battle of Crecy; definitely plunged England into a century's struggle with France; established the supremacy Revies The " Black Death;"- depopulated Europe; pro-
voked a life and death struggle between capital and labor, voked a life and death struggle betwe.
culminating in the Peasants
culminating in the Peasants' Revolt.
381 - Peasantst Revolt; revolution in the manorial system; emancipation of offit; newe era in the history of labor.
$399-$ Deposition of Richard II and accession of Henry IV. - Deposition of Richard 11 and accession of henty-
IV; overthrow of royal despotism establishment of con-
stitutional monarchy; its failure marked a century and a stitutional monarchy; its failure marked a cend
half of great misery
H29-Siege of orleans; turning point in the Hundred
Years' War; death-blow to English Continental Empire;
 caused
14isifranchising Act
of thewer midale classes deprived
their vote; no representative parliament for exactly of their vote; no represent of Mortimer's Cross; over-
four centuries.
461 - Battle of Towton and or throw of Lancastrian rule and of the constitutional experi-
ment; inauguration of the New Monarchy (the $*$ benev-
 Learnin \quad and the education of the masses.
1497 Cabots dicovery of the American mandind inau-
gurated trade with America; forerunner of British-American 497 - Cabot's discovery of the American mainland; inau-
gurated trade with America; forerunner of British-American empire.
1529 - Divorce of Catherine of Arragon; Reformation set.
in motion.
S34- Act of Supremacy; separation from Kome; King in motion. of Supremacy © separation from Rome; King
supreme head of English Church; establisliment of Anglican Chupem.
Church Accession of flizabeth; final victory of Protestantism;
15s8-ing An
begining of brilliant Elizabethan era and of England's supremacy in Europe,
1588 . Defeat of the Spanish Armada; Protestantism saved;
Eng hetween Crown and Parliamenitai" given to England. Scotland and Wales. 1607 - Cond French in America. first great victory of Parliament 1628 - Petition of Right; first of English liberties.
$1640-$ Meeting of the Long Parliament; overthrew stuart despotism. and Branch Bill and Grand Remonstrance:
164t Root and
plunged England into the great Civil War; victory of Puritanism over Episcopacy.
O45 - Batte of N Naseyp; victory of Puritan army over Roylists: ied to excution of Charles I.
1649 . Exection of the Constitution, Monarchy, Church and Parliament; establishment of republic.
1660 Restation; overthrow of Puritanism; restoration
of Monarchy, Church and Parliament; renewal of Stuart 1679 - Habeas Corpus Act; prevented arbitrary imprison1088 ment; graranteed to the accused a fair trial. 1688- The "Glorious Revolution; final overthrow of
royal despotism establishment of contitutional overn-
ment; Bill of Rights- the third great guarantee of ment; Biil of Rights - the third great guarantee of
English liberty.
$1693-$ National Debt began; revolution in British finance; Bank Gof England founded (1694); security of. invest${ }^{1704-\text { ment. }}$ Battle of Blenheim; saved England and Europe from French domination.
1707 Union with Scotland; completed the union of Great

 Empire 1759- "Annus Mirabilis "- the most wonderful year in
England's history; gave her Canadi overthrew French
supremacy: led to Treaty of Paris, and ertarisk Supremacy; led to treaty of Paris, and establishment of
her great Colonial Empire. 1783 - Treaty of Versailles; Pitt Prime Minister; independ
ence of New England colonics; overthrow of Georgc III' 1788 - Settlement in New South Wales; colonization Australia, and establishment of Australasian Empire. nental fendalism; inaugurated revolt of the oppressed
plunged Europe into great wars; produced Napoleon; plunged Europe into great wars; produced Napoleon
arrested reform in England for 40 years.
. 8 . 1801 - Union with Ireland; Pitt's failure to solve the Irish questin.
1805 - Trafalgar; frnally established Britain's naval suprem-
and acy, and saved
1815 -Watorloo.

1829 - Catholic. Emancipation Act: triumph of religious
toleration in England; put an end to rellsious hatred and

 $1846-$ Repeal of the Corrs
cheap tood for the masses.

 netemped conciliation
 Keviri end of the Anclo-Frenh condominium chise to the 1885 -Third Great Retorm Bill; , gave the franchise to the
1aboring classesf contleted popular representation,

Redistribution Recommendations for EngIand and Wales.-On 4 Oct. 1917 the repor of the boundary commission was published as blue book in three volumes. The commis sioners recommended the extinction of 27 Ens
lish boroughs and merging them in county conlish boroughs and merging them in count con
stituencics in order to remove the "confusion and inconvenience" caused by overlapping houridaries. It was not intended to create any new parliamentary boroughs with a population
of less than 70,000 , yet in several cases it would of less than 70,000 , yet in several cases it would
be necessary to do so owing to peculiar local be necessary to do so owing to peculiar local
conditions. According to the estimated populaconditions. According to the estimated popula
tion in 1914 (the last census was in 1911), the average population per member in the new con stituencies was given as 71,005 for England and 72,099 for Wales; the two countrics together, 71,078 . The eneral effect of the scheme will be to increase the number of members for
English constituencies from 461 to 485 ; of

GENEALOGICAL TABLE OF ENGLISH SOVEREIGNS, 975-
England
EadGAR, 975
Aethelred II, $1016=$ Emma.
Eadward the ${ }^{\text {Confelsor, }} 1066$

$$
\begin{aligned}
& \begin{array}{c}
\text { Normandy } \\
\text { RICAARD } 1.996
\end{array} \\
& \text { Richard II. } 1026
\end{aligned}
$$

Robrrt, 1035
Wiliam the Conqueror, $1081=$ Matllda
Willam II, 11(0. Ifemry I, 1135. Adela
Groffrey, Count of Anjou (Plantagenet) = Matilda
IIenry II. 1180
Richard I, 1199. John, 1216. Gonfrey, 1186. Matilda Henry III, 1272

Edward II, 1327
Edward III, 1377
Black Prince, 1376. Clartice, 1368. York, 1402 . Lancaster, 1400
Richard If, 1400 Phillippa
Ricma I, hoo Phelippa
Henry IV, 1413. Charles VI of France. Beaurort, 1410. Card. Bealfyit
Henry V, 1422 - Catharine $=0$. Tudor. John, 1444
Edmlind. 1424. Anne $=\overline{\text { Cambridge, 1415. York, 1415. Henry VI, 1471. Edmund }=\text { Margaret }}$
Edward IV, $1483 . \quad$ Richard III. $1485 . \quad$ Clarence, 1478
EdWard V. $1483 . \quad$ York, $1483 . \quad$ ELIZABETH $=$ Henry VII, 1509
James IV or Scotland, $1513=$ Margaret $=$ Douglass, 1557 . Henry Viti, 1547. Mary Jamps V, 1542 Marcaret Mary, 1558. Ellzabeth, 1603. Edward VI, 1557
Mary Stuart - Darnley, 1567. Charles, 1576
James I, 1625

Welsh constituencies from 34 to 35 ; total in- entitled 'Die natürlichen Pflanzenfamilien,' and rease for England and Wales, 25 members. of the species, 'Das Pflanzenreich.' With Some of the changes under the redistribution Drude he prepared a detailed plant geography 12 members instead of 7 ; Bradford, 4 instead of 3; Bristol, 5 instead of 4; Kingston-uponHull, 4 members instead of 3 ; Lceds, 6 , ormerly 5 ; Leicester, 3 members, formerly 2 ; bers fool, 11 , formerly 9 ; Manchester, 10 mem bers, formerly 6 ; Portsmouth, 3 , formerly 2 oughs created are Accrington, Barnsley, Blackpool, Bootle, Bromlcy, Kent, Ealing, East Ham, Eccles, Edmonton, Hornsey, Ilford, Kingston upon-Thames, Letgh, Leyton, Morley, Nelson, Rmethond, Surrey, Rossendale, Rotherhan, tenham Wallasey, Wallsend, Walthamstow, Willesden, Wimbledon.
${ }_{150}$ ENGLAND'S HELICON, an anthology of 150 poems by popular writers of the period, edited by John Bodenham in 1600 . It was republished in 1812.
ENGLEHEART, George, English miniature painter: b. Kew, 1752 ; d. 1829 . He was a pupil of George Barret and Sir Joshua ReyHe retired in 1813. He is reputed to have painted in all about 4,850 miniatures, mostly on ivory, but also on enamel. He was a good draughtsman and a skilful colorist. He was appointed miniature painter to George III in 1790, whom he painted 25 times. He was the court honors. Consult Williamson and Engleheart, 'George Englcheart' (London 1902).

ENGLER, Edmund Arthur, Amcrican eduCator: b. Saint Louis, Mo., 23 Dec. 1856 ; d. -. He was graduated at Washington University in
18% where he taught mathematics from 1831 1876, wherc he taught mathematics from
to 1901 . In $1901-11$. he was president of the Worcester Polytechnic Institute and in 1911 tary and treasurcr. He was a member of the Washington University eclipse party to Norman, Cal., in 1889 , served as chairman of the
jury of the department of manufactures at ury of the department of manuactures at
the Buffalo Exposition of 1901, and chairman of the international jury on instruments of precision at the Saint Louis Exposition of 1904 . He was Fellow of the American Association
for the Advancement of Science and member of for the Advancement of Science and member of
many other scientific societies, serving as presimany other scientific societies, serving as presilent in 1898-1901 and again in 1912-15 of the
Saint Louis Academy of Science. He was a frequent contributor to magazines on scientific subjects.
ENGLER, Heinrich Gustav Adolf, German botanist: b. Sagan 1844. He received his education at Breslau, held the chair of botany at Kiel in 1878-84, and at Breslau in 1884-89. In the latter year he was appointed to the chair of botany at Berlin, becoming also director of the
Botanical Gardens. His work has been more or less exclusively devoted to classification and plant geography. After 1881 he edited the leading journal in this field, the Botanische Jahrbiecher. His most remarkable publication is 'Syllabus der Pflanzenfamilien,' the classification of which has heen almost universally prescutation of the plant genera of the world.

Drude he prepared a detailed plant geography
of the different regions under the title, 'Die Vegetation der Erde.'

ENGLEWOOD, Colo., city of Arapahoe County, five miles south of Denver. It is the seat of the National Swedish Sanitarium and the Molkeray Sanitarium. The surrounding region is engaged in agriculture, dairying and
stock-raising, which represent the city principal interests. The city contains many beautifu homes, and is a favorite residential suburb of Denver, with which it is connected by trolley. Pop. (1920) 4,356
ENGLEWOOD, N. J., city, in Bergen County, near the Hudson River, on a branch of the Eric Railway, about 13 miles north of
Iersey City. It lies on the long slope toward the west from the crest of the Palisades of the Hudson. It is a beautiful residential city, contains two summer homes for working girls, a hospital and a library with over 10,000 volumes The township of Englewood was set off from was incorporated as a city in 1895, but becaus of crror under the constitution of the State it was reincorporated in 1899. While not im portant in manufactures the United States census for 1914 showed within the city limits 19 establishments of factory grade, employing annually a total of $\$ 51,000$ in wages. The capital invested aggregated $\$ 257,000$, and the year' output was valued at $\$ 321,000$: of this, $\$ 210,000$ was the value added by manufacture. Pop 11,617.

ENGLIS, John, American shipbuilder: b Brooklyn, 25 Nov. 1808 : d. Brooklyn, 25 Oct 1888. He was educated in the public schools o there. In 1837 he went to Lake Erie where he built his first steamships. A few years later he returned to New York, opened a shipyard o his own on the East River and devoted himsel to the building of steamships, a science then still To the solution of these he brought a keen scientific mind and a great capacity for hard work, which soon put him into the forerank of American shipbuilders. During his long business career he built a total of 89 boats, mostly side-wheelers. Amongst them were many a the steamboats Saint John, Dean Richmond, Daniel Drew, Grand Republic and especially the Long Island Sound liner Newport. The lastnamed boat was 340 feet long and made the trip from New York to Newport in eight hours, a record which stood or many years. In built for the United States government. Many improvements in shipbuilding were due to him. After his retirement his son and grandsons
continued his shipyard.

ENGLISCH, Joseph, Austrian surgeon: b. Freudenthal, Austrian Silesia, 1835 . He received his education at the University of Vienna and in 1871 was appointed one of the chief phy-
sicians at the Rudolfstiftung. In 1892 he was appointed to the chair of surgery at the University of Vienna. He was widely recognized as
an authority on genito-urinary diseases. His published works include 'Ueber Ovarial hernien' (1871); 'Zur Radikalbehandlung der
Eingeweidebrüche) (1878); 'Ueber abnorme Lagerung des Hodens ausserhalb der Bauchhöhle' (1885); 'Ueber angeborene Penisfisteln (1892).

ENGLISH, Thomas Dunn, American au hor: b. Philadelphia, Pa., 29 June 1819; d Newark, N. J., 1 April 1902. He was graduated in medicine at the University of Pennsylvania From 1844-52 and 1857-59 he engaged in ournalism in New York and Washington. From $852-57$ he practised medicine in what is now West Virginia. During the years 1859-79 he divided his time between New York city and
Fort Lee, N. J. In the latter year he removed Fort Lee, N. J. In the latter year he removed to Newark, N. ., where he resumed the prac New Jerscy State assembly in 1863-64, and o Congress in 1891-95. During all these years h was also very active in literary work. He wa he author of 'Ben Bolt,' an exccedingly popu-
ar ballad (1843), which after having long fal en into obscurity was revived by its employ ment in Du Mauricr's novel 'Trilby,' but which owed its popularity more to its sentimentality and its musical setting than to any inherent oetical merit. His published writings are Zephaniah Doolittle: a Poem. From the Manuscripts of Montmorency Sneerlip Snags,
Esq.) (Philadelphia 1838) ; 'Walter Woolfe' 842) ; ' 1844 ; or, the Power of the "S.F." A ale'; ' Developing the Sccret Action of Parties During the Presidential Campaign of 1844 (New York 1847) ; together with C. G. Foster delphia 1848): 'Ambrose Fecit, or, the Pce and the Printer) (New York 1867); 'American Ballads' (New York 1880); 'The Boy's Book Schuyler's Millions' (New York 1886) ; 'Th Rules of Order Governing Public Meetings,
etc.) (under the pseud. F. M. Payne, New etc.' (under the pseud. F. M. Paync, New 'Fairy Stories and Wonder Tales' (New York 1897): 'The Little Giant, the Big Dwarf anc Two Other Wonder Tales, etc.' (Chicago 1904). During the period of his New York residence he also wrote about '20 plays for Palmo's Opera street, New York, of which only one, 'The Mormons; or, Life at Salt Lake City, A Drama in Three Acts,' has been published (New York 1858). Consult Noll, A. H., 'Thomas Dunn English' (in Midland Monthly, Vol. VII, p. 3
ENGLISH, William Hayden, American capitalist: b. Lexington, Ind., 27 Alig. 1822 ; d
ndianapolis, Ind., 7 Feb. 1896 . He was edu cated at Hanover College, Indiana, and ad mitted to the bar in 1840. However, he soon became interested in politics, gave up the prac ice of law, and successively held various local lected to the Indiana State legislature wher elected to the Indiana State legislature where ge served as speaker. He was elected to Conconsecutive terms. As a member of the Committce on Territories, in opposition to his own pasty, he worked aganst the admission of Kan-
"Enitee of Conference what was known as the English bill," in which it was urged that the question of admission be referred back to the people of Kansas according to the provision of and the people voted against admission. He strongly opposed secession, and warned Southern Congressmen that the North would never countenance such a policy. He also served as
regent of the Smithsonian Institution for eight regent of the Smithsonian Institution for eight yomination for a fifth term in Congress and in 1863 removed to Indianapolis where he founded the First National Bank and soon made a reputation for himself as a banker. Though not taking an active part in the Civil War, he was an
ardent supporter of the Union. He continued ardent supporter of the Union. He continued
his interest in politics, and, in 1880, was unanimously nominated by the Democratic party for the office of Vice-President on the unsuccessful ticket with General Hancock against Garfield and Arthur. He was president of the Indiana Hions were financed by himer He also published 'Conquest of the Country Northwest of the River Ohio, $1778-83$, and Life of General G. R. Clark) (2 vols., (Indianapolis 1896). Consult
Forney, J. W., (Life and Military Career of Forney, J. W., 'Life and Military Carecr of
W. S. Hancock. etc.)' (Philadelphia 1880); Keyser, C. S., 'The Life of W. H. English' (Philadelphia 1880).

ENGLISH ARCHITECTURE. The earliest architecture of England (not including the etc., whose date and history are still in controversy and which can hardly be classed as architecture) dates from the Roman occupation, which has left many remains of walls, villas and baths (Bath, Silchester, etc.), but hardly
more than the foundations of these. Indecd, there is but little left of any architecture previous to the Norman Conquest (1066 a.D.), for
the active building of churches and monasteries the active building of churches and monasteries which followed involved the demolition of most few walls, crypts and fragments show that they wcre without exception rudely built, with little tion. The tower of Earl's Barton is the most noted of these remains.
Following the Conquest, there began under the Norman kings a remarkable activity in
building, especially of abbeys and castles. The building, especially of abbeys and castles. phase of the French Romanesque, was modified in English hands, developed into the AngloNorman, and applied in the building of great monastic churches, many of which surpassed in size those of France or Italy. This style was marked by its great massiveness; the huge piers sometimes round, sometimes clustered; square lantern-towers at the crossing of nave and transept; timber ceilings in preference to vaulting for the high central aisle; and re-
stricted but bold decoration in which the zigstricted but bold decoration in which the zig-
zag is the most frequent motivc. Interlaced arches frequently appear as a wall decoration. The original abbey-cathedral of Canterbury, St. Alban's abbey, Romsey abbey, Ely and Peterboro' cathedrals, Winchester, Southwell, Durdrals, the church of Christchurch, Saint Bar-
tholomew's at London, the Tower of London with its Saint John's chapel, and many feudal castles belong to this style, which lasted from
1070 to 1200 . Most of the above churches were in part, Canterbury alnost wholl, rebuilt in the following centuries.

The Anglo-Norman style passed away with style (see Gothic Architecture) in the rebuilding of the choir of Canterbury Cathedral destroyed by fire in 1174 . The pointed arch had been used occasionally before this date in England, but from about 1190 its use became the general rule, and with it the English
adopted the ribbed vault and traceried window and less universally the flying arch and buttress. The new style they developed on independent lines, retaining more of the early massiveness than did the French, with less display of the structural framework in stone. The English and narrower than the French, less ornate externally, more ornate internally, having often two transepts, square east ends in place of apses and apsidal chapels, and with west fronts often forming a screen of picturesque design that of a the church As there were many cathedrals which were abbey-churches as well, the practice became general of grouping with them cloisters, chapter-houses, libraries and residences for the clergy. Nearly all the cathedrals have grcat square towers at the crossing form of a superb octagon as wide as the three lorm of a superb octagon as wide as the buil continuously in one style from end to end, Salisbury (1220-58); Lichfield Cathedral and Westminster Abbcy present internally a fairly iniform style, although their building coverca drals were a ong period; most of the cathe part at different periods that they exhibi clearly the changes of style from one century to another. It is customary to distinguish hese different phases and periods by names derived from the window designs, e.g., the Dancet (or Early English), "gcometric" and "Curvilinear"), 1250-1375; and the Perpendicular, 1375-1500 or 1520 . During these 346 years the vaulting was developed by the multiplying of the main and subordinate ribs into the extremely ornate form seen in Henry
Chapel at Westminster and other late works, and known as fan-vaulting. The English were consummate workers in wood, and many of the larger parish and collegiate churches and secular halls have timber ceilings with "hammer eam" trusses of extraordinary beauty, instea churches are unequaled elscwhere except by the foreign cathedrals. Among the most im portant of the predominantly Gothic cathe rals are Canterbury, Lincoln, Salishury, Ely York, Winchester; of the second rank, Wells, named; among the parish churches Boston Saint Michael's (Coventry), Saint Mary-Red liffe at Bristol, and Pattington; and among abhey-churches Westminster, Sherborne and cverlcy.
During the 14 th and 15 th centuries secular
architecture was developed in new lines in the
great universities and schools, and in vas manorial residences and palaces; to this phase the name of Tudor architecture is often given. Under Henry VIII Italy, Germany, Holland and Flanders were im ported, by whase art were made known to the English; but the Renaissance taste made slow progress in architecture, even in the mano houses of the wealthy, which continued to dis play the square mullioned windows, battle mented parapets and irregular plans of the
Tudor Gothic period. Under Elizabeth (15581603) and James I (1603-25) the use of Renaissance forms steadily increased - round arches, the classic "orders," openwork balus rades and a peculiar fashion of flat relief ornament, called "strapwork" and derived from ("Elizabethan" and "Jacobcan") styles). This prepared the way for the introduction of a more purely Italian or classic style by Inigo Jones under James I and Charles I, and for its culmination in Saint Paul's Cathedral (q.v.) by 53 churches built after the Great Fire of 1666 and his works at Hampton Court, Greenwich Oxford and Cambridge firmly established the style. It continued to be used throughout the 18th century and was the parent style of our own "Colonial" or Gcorgian style (see Archir ecture - United Stats, partially successful, to was marke Greek and Gothic styles in modern work; but, except in church architecture, the tendency of English design has since 1880 been toward Renaissance forms very freely adopted. The most notable example of the Gothic Re-(1835-50) the Houses of Park of the present-day architects of England is in domestic architecture, in which, on the whole, they are unequaled or at least unsurpassed. In the design of rural buildings, of small cottages, of garden suburbs and of country churches they especially excel.

Bibliography.-The literature of English architecture is enormous in volume. Only a few leading works can be mentioned. On medackal architecture the works of Sir carlier works, now somewhat out of date, of Rickman, Pugin, Britton, Parker, etc.; also Moore, C., 'Mediæval Church Architecture of England.) On the Renaissance developments. Architecture in England'; Gotch and Brown, 'Architecture of the Renaissance in England'; Richardson, C. J., 'Monuments of Classic Architecture in Great Britain.) consult the architectural periodicals. There is no single work tectural periodicals.
A. D. F. Haminn,

Professor of Architecture Columbio Uni versity.
ENGLISH CHANNEL, or THE CHANNEL (Rom. Mare Britannicum, French La Manche), an arm of the Atlantic Ocean ex tending into the west coast of Europe to the Strait of Dover, by which it is connected with the North Sea. The Fngland and France. Its
length from the Strait of Dover to the Atlantic Ocean is about 350 miles; its greatest breadth from Saint Malo, in France, to Sidmouth, in called the Strait of Dover, is about 20 miles. At its juncture with the Atlantic Ocean it is about 100 miles wide. Its total area is abou 30,000 square miles. The average depth o the western half is about 300 feet, the maxi mum about 500 . In the eastern half the averdepth varies from 6 to 120 fect. The length of the north coastal line, from Land's End to Dover, is 390 miles; and of the south coasta ine from Calais to Ushant is 570 miles. Some of the largest indentations on the coast of Eng and are the bays of Falmouth, Plymouth, On the coast of France are Baie de la Seine Baie de Saint Brieuc and Baie de Mont Saint Michel. The principal islands in the Channe are: Isle of Wight, Channel Islands and sev eral other islands near the coast of France Scilly Isles and Ushant at the entrance. Th Falmouth, Plymouth, Southampton, Ports mouth, Brighton, Folkestone, Andover; on th Fench coast, Cherbourg, Le Havre, Dieppe Boulogne and Calais. Many of these and many other towns and villages on both coasts seaside resorts. The tides, coming both from he Atlantic Ocean and from the North Sca possess many peculiarities and make navigation ifficult at times. There are many lighthouse and light ships, the most famous of which, per aps, is the Eddystone Light off Plymouth The prevalent winds are most westerly. Gale anuary. Fog and thick weather are also frequent occurrences throughout the entire year The water, most of the time, is rough and makes travel in the Channel as a rule a mos factor in bringing forth many plans for a direc on-water connection between England and France, either by means of a bridge or a tunnel. Of the former the most important ha been a project put forward by the famou Le Crcusot, in conjunction with English and French engineers, which provided for a bridg 24 miles long with 120 piers and permitting the passage of ships beneath it. The tunnel projec was found feasible from an engineering point f view, and preliminary shafts and headway ere started on both coasts. On the Englis. 164 feet deep, and a driftway, 7 feet in dimeter at an inclination of 1 in 72 , extends astward under the Channel for 2,300 yards. During the borings valuable coal beds were dis he tunnel projects have been able to get the nal approval. Many historic naval engagement ave been fought in the Channel Consul Channel Bridge and Railway Co., 'Pont sur la Manche) (Paris 1890); Great Britain, Admiraity, Hydrographic Department, 'The Channe Pilot' (2 parts, London) ; Hawkshaw, J. C. The English Channel Tunnel and Its Early

Vol. LXXVIII, pp. 18 and 34, New York 1914) Hersent, H., and Sir John Fowler, and Ben Baker, 'Pont sur la Manche, Avant-Projets
MM. Schneider et Cie., etc.) (Paris 1889) Jukes-Brown, A. J.,' 'Geographical Evolution of the English Channel' (in Contemporar.) Review, Vol. LXI, p. 855, London 1892) Mackinder, H. J., Britain and the British Seas (New York 1902); McMullen, R. T., ‘Dow Channel' (London 1893) ; Perkins, W. T., ed French Engineers' (London 1907) ; Spethmalln H., 'Der Kanal mit seinen Küsten und Flottenstützpunkten' (in Kreigsge
bilder, Part 3, Leipzig 1915)

ENGLISH CHRONICLES. The writing of English chronicles begins with the 'Anglo written in the English language and the ca liest vernacular record of national events modern Europe. The 'Chronicle' opens wit the Christian era, combining in its carlier par records of Roman, Christian and British event It rapidly becomes strictly national, carrying crable period after the Norman Conquest. treats in general of the affairs of all the Eng lish-speaking peoples in Grcat Britain, and one of the first attempts at an expression coherent national ife and as a tustworng history and social manners and customs of the Anglo-Saxon period the importance of the 'Chronicle' can hardly be overestimated. Al though the work itself does not mention the name of its author, there is strong evidence show that in its original form it was under
taken at the suggestion of King Alfred an was in part actually written by him. From thi original form, now no longer extant, copic were made and carried to different sections England, where they served as foundations o what, from that time, became separate and in
dependent chronicles. Seven of these loca chronicles, with a fragment of an eighth, have come down to us. The date at which the original parent version was made was abont 89,
and the place was probably Winchester, the capand the place was probably Winchester, the cap
ital of the West-Saxon kingdom. The form in ital of the West-Saxon kingdom. The form
which the 'Chronicle' is written is that of a book of annals, the entry for each year containing usually the record of but a single occur rence. For the early years the records, derive chicfly from literary sources, are hrief an colorless, but in the later parts, particularly in the accounts of the Danish wars, when the na the time of the compilation of the work, they become more detailed and vigorous. At n time, however, is there an attempt to write philosophic history, to point out the causes or the trend of events. This is in accord with the main purpose of chronicle writing, which merely to keep. tering about these events being largely entrust to oral tradition. This annalistic purpose o the 'Chronicle' determined also its mechanic form. The scribe's method was to rule off number of pages as though preparing a journa in which the entries were to be made by year instead of days. Each year was thiss given
ally for only a few lines. The scribe then in serted whatever annals he had been able to col lect, leaving the spaces for which he had no materials to be filled in later when new mate rial should become available. This method o chronicle writing remained long in use in Eng
and, being followed by Capgrave as late as the 15 th century.
Although no single model or source for the 'Chronicle' is known, there were in existence in Alfred's time a number of Latio works which were of help in its first compilation. O Ecclesiastica Gentis Anglorum,' finished in 731 Bede's 'De temporum ratione,' a chronological essay containing a short epitome of the histor of the world from Adam to 729 A.D.; Orosius 'Universal History' ('Pauli Orosii Historiarum many records of national events preserved in local monastic libraries. But the 'Chronicle' was an original work in that it strove record the life of a nation. Just as the codes of laws systematized the customs and rules of for them the ever-receding events of their history.
From the period of its original composition to the middle of the 11th century, the 'AngloSaxon Chronicle' established the form for all historical writing in England. Although w eighth, versions of the 'Chronicle,' the number in the Anglo-Saxon period must have bee much greater, copies being probably kept a every important monastery and town. Towar the end of the Anglo-Saxon period, however, nations its character. In harmony with this change the language of chronicle writing changed also to Latin. The use of Anglo-Saxon as late a 1154, the date of the latest entry in that tongue, appears only in one version, and is plainly due
to reasons of respect for the traditional language of the 'Chronicle.' To take the place of the English annals of the 'Chronicle,' new histories began to be written in Latin. The earliest of these was that of Ethelwerd; others from the beginning of the 12 th to the 14 th
century were the histories of Symeon of Durham, Florence of Worcester, William of Malmesbury, Henry of Huntingdon, Roger of Hoveden, Matthew of Paris, Matthew of Westminster, Roger of Wendover, and Ralph Higden, of general history in the 14 th and 15 th centuries) (Babington, ed. of 'Higden' in the Rolls Series, p. xliii). All of these Latin histories derived much of their material either directly or indirectly from the 'Anglo-Saxon Chronicle.' In the Middle English period scveral metrical
histories were written in English, the (Brut) of Layamon, the chronicles of Robert of Gloucester and of Robert Manning of Brunne; but these are better characterized as historical romances than as attempts at veracious history. The writing of prose histories in English begins again with Trevisa's translation of Higden's
'Polychronicon,') made in 1387, and with John Capgrave's original chronicle, written about the middle of the following century. The tone of Capgrave's work, as compared with the 'Anglo-
Saxon Chronicle,' is extremely naive. The
writers of the 'Chronicle' had a most rigid sense of historical fact, but the work of Capgrave and his contemporaries is marked by an altogether uncritical and credulous mingling of legend and of the romantic spirit into historical writing, the older annalistic method gave way to one in which greater attention was paid to a consecutive narrative interest, after the manner of modern historical writing. The national awakening accompanying the reigns of Henry terest in the writing of these history-chronicles. In 1516 appeared Fabyan's 'New Chronicles of England and France'; in 1562 Grafton's 'Abridgment of the Chronicles of England'; in 1565 Stowe's 'Summarie of Englyshe Chronicles ' ; and in 1578, the most important of the of it by Shakespeare, 'The Chronicles of England, Scotland and Ireland,' written by Holinshed with the assistance of several others, The term chronicle continued to be used in the titles of historical works to the end of the 17th century, as in Sir Roger de Coverley's favorite land,' 1643; by this time, however, the naive annalistic chronicle had largely given way to the more philosophical treatment of events which is designated by the name of history. Bibliography.- For general bibliography,
consult Gross, 'Sources and Literature of English History from the Earliest Times to about 1485) (1900). Editions of most of the chronicles will be found in the Rolls Series; the best dition of the 'Anglo-Saxon Chronicle' is that of Earle and Plummer (Oxford 1892-99). The cussed by Schofield, 'English Literature from the Norman Conquest to Chaucer) (pp. 29-46) and by Schelling, 'English Chronicle Plays (Ncw York 1902). Consult also 'Cambridge 1907).

Professor of English, Columbia University
ENGLISH COLLEGE AT ROME, an institute in the papal city, erroncously supposed to have been founded, according to statements of medixval chroniclers, about 816 In reality it dates from the midde Thomas of Canterbury, - which owed its estab ishment to the jubilces - was founded and iberally endowed for the entertainment of Eng ishmen visiting the Holy See. In the time o Henry VIII refugees from England were har bored in the hostel. In the reign of Elizabeth the institution was transformed into a seminary who proposed to serve in the English mission which they entered with pretty fair assurance of the martyr's crown. This seminary wa placed under Jesuit control, the date of ap pointment of the first rector - the real birth day of the college-being 23 April 1579 . institution serving as missionary priests in Eng land, were executed for the high treason o exercising the Catholic ministry contrary to th laws of the realm; and when Saint Philip Neri, founder of the Congregation of the Oratorian
the streets of Rome, his invariable salutatio was Avete flores martyrum - "Hail flower o wrecked by the French republican army 1798 and its resources dissipated; it was resuscitated and its resources its president from 1831 to 1846 was Nicholas Wiseman, afterward first arclibishop of Westminster, and cardinal
ENGLISH CONSTITUTION. See Grean bith courts se Court
ENGLISH COURTS. See Court
ENGLISH FURNITURE. See FurniENGLISH
ENGLISH HARBOR, a harbor on the southern coast of Antigua (q.v.), one of the naval station, which from its location is one of the important British possessions in the West Indies. Consult Oliver, V. L., 'The History of the Island of Antigua' (3 vols., London

ENGLISH LACQUERWORK. See LACQUERS AND LACQUERWORK.

eUers and lacquerwork. See Pale, The.

ENGLISH LANGUAGE. The English language is a direct development of the AngloSaxon, a circumstance which makes it questionable whether the latter specch ought to be dis-
tinguished by a separate name. But although a tinguished by a separate name. But although a direct developnient of the Anglo-Saxon, it is not a development which has been allowed to take merely of internal causes. One important external influcnce was brought to bear on the original form of our language, which had the double effect, first, of producing a much more sudden and complete modification of the grammatical
structure than could have taken place if the language had grown up independently of foreign influences; and secondly, of giving a composite character to the vocabulary of the language by the introduction of a large number of foreign words. This external influence was
the Norman Conquest, in consequence of which the Norman Conquest, in consequence of which a new language, the Norman-French, came to
be spoken in England by those who had made themselves the masters of the country, and who formed, therefore, almost the only class that had leisure and opportunity for literary pursuits. (1066) was thus that the language of the Normans came to be the chief literary language of England (except where Latin was used), and that the Anglo-Saxon was reduced to a very subordinate place. When the latter language again comes into notice as a written language in it. Before the Conquest it was a very highly inflected, or what is called a synthetic language, that is, one in which the substantives, adjectives, verbs and articles are subject to numerous modifications, each of which expresses a modi-
fication of the root-meaning of the word, or fication of the root-meaning of the word, or
shows the relation of the word to the other words in the sentence. During the period when Anglo-Saxon ceased to a great extent to be a written language these inflections dropped off;
and when it re-cmerges as a written language and when it re-emerges as a written language about the end of the 12th century it is no longer
synthetic, but analytic, that is, prepositions and
auxiliaries are now used instead of inflectional prefixes and terminations to express the various
modifications of the idea contained in any word, and the relations of the words in a sentence to guage still continued to be essentially homogeneous in respect of its vocabulary: the Norman words that occur are so rare that they need not be taken into account. And it was natural that it should be so, for the Saxon language was
still confined to the Saxon inhabitants of the still confined to the Saxon inhabitants of the
country; and those who wrote in it addressed themselves only to that portion of the community, and accordingly had no occasion to use any word of Norman origin. This state of matters lasted till about the midule of the 13 th century, which is the period at which English proper is
usually regarded as having begun to be spoken and written. By this time the Normans began to experience the inconvenience of not being acquainted with the language of the people among whom they dwelt, and in learning to speak and write it they very naturally used a
large number of Norman words, and these large number of Norman words, and these
words were adopted by all such writers belonging to the subject race as wished to make themselves understood by Norman as well as by Saxon readers. A very rapid mixing of the two languages thus took place, and a second im-
portant change was wrought in the English language. It is no longer homogeneous in its vocabulary, but contains a large admixture of foreign words.
The whole of what precedes may be shortly summarized thus: From 450 to 1066 the lan-Anglo-Saxon, a dialcet of Low German, very highly inflected. From 1066 to 1250 two languages were spoken in England, Anglo-Saxon
and Norman-French, by two different sections and Norman-French, by two different sections
of the population occupying different political of the population occupying different political positions. During this period the grammatical
structure of the former language began to be broken up, chiefly owing to its being disused for literary purposes; and toward the end of the period we find a few works written in a language resembling the English of our day in grammar, but differing from it by the homo-
gencousness of its vocabulary. Finally, about 1250 the two languages begin to mingle and form one intelligible to the whole population, Normans as well as Saxons. This is what is usually called English proper. English is thus seen to be a composite language, deriving part
of its stock of words from a German source, and part from a Latin source, Norman-French being in the main merely a modified form of Latin.
The changes that have taken place in the English language subsequently to 1250 are by no means as striking as those which took place
in the transitional period between 1066 and 1250 . Some few inflections which the English of the 13th and 14th centuries still retained have now been dropped, but the chief change which the language has experienced consists in its gradual growth and expansion in obedience to the re-
quirements of advancing science, more complicated social relations, and increased subtlety of thought. This growth has been going on at all times, but there are some periods which may be pointed out as more remarkable than others
for the rapidity with which it proceeded. Such for the rapidity with which it proceeded. Such
a period was the end of the 16 th and the beginning of the 17th century, the period of the Reformation and following the revival of learn-
ng, when numerous words of Latin origin were introduced by scholars directly from that lannel ge, instead of through the French, the chanel through which most of the Latin words Another such period is the present, when the apid grow period is the present, when the the creation of new sciences, have callsed whole groups of
from the Greek.
It would scarcely be in place here to discuss the various excellencies and defects of the Eng lish as compared with other languages, but we may mention the following as among the quall-
ties which the English language is generally allowed to possess. 1. Strength and expressive hess, adapting it admirably for poetical com posit:on. 2. Copiousness, enhanced as shown under assimilation, by the extraordinary tivity of the language, that is, its capacity naturalizing them at once, so that they may be treated without any appearance of strangeness entirely as native English words. 3. Simplicity in form and construction. 4. Great fexibint, the drave and to all kinds of compositm, forcible and tender, sublime and ludicrous. 5. Power of assimilation, words being readily adapted from other languages, Italy, France, Spain, Holland and distinctive terms originating in the American continent, all contribluge of Engand full expressiveness. The influence of from India, South Africa and other colonies In connection with the subject of the English language, we may here further observe, that England and the United States offer the first instance in history of two great, independent but situated at a great distance from each other, and daily developing new and characteristic features. These relations must, sooner or later, exert a powerful influence upon the common undergo, fortinual changes if spoken by a people in the full vigor of social and political life. This state of things has already produced some effect on the English language. The most material difference, probably, has been in the pronunciation of the language, which, however important in our daily conversation, in of secondary importance in relation to the hitcrature
and written language of the two countries. It and written language of the two countries. and others that the pronunciation of the United States is far more uniform than that of England; and so nearly alike cverywhere, that the
people of any one town or district are perfectly understood in every other part of the country, which is not true of the lower ranks of Eng-
land. When considered more minutely, howland. When considered more minutely, however, there has for a long time existed a marked New England and Southern States. Only in New England States is there what may be termed a distinctive dialect. It is noted by visitors to the United States, especially to New
England, that many words and turns of expresEngland, that many words and and which in their country of origin have either become obsolete or degraded into provincialisms, are living a full and vigorous life on this side
of the Atlantic. The orthography of the Eng-
lish language has undergone no material change in America, it being the general inclination to follow that of the best English writers of the
age. Under the inspiration of the Simplified age. Under the inspiration of the Simplifed 1906 authorized the adoption by the public printer of about 300 amended spellings; but so great was the storm of criticism that the order was withdrawn except in so far as related to the correspondence of the White House.
The English language may be divided into five periods:

1. First Period 450-1100 A.D.
2. Second Period 1100-1250 A.D.
3. Fourth Period 1350-1460 A.D.
.
In the first period (called also Anglo-Saxon or Old English), the language was inflectional ; in the second it began to show a tendency to become analytic, the tendency increasing till in
the fourth period inflections had virtually disapthe fourth period inflections had Virtually disapwere two dialects in English, a southern and a northern, the former of which was the literary language. After the Conquest dialects became much more marked, so that we can distinguish
three great varieties, the northern, the midland, and the southern, distinguished from each other by various grammatical differences. The midland dialect- or rather the subdivision known as the east midland - was that most widcly spread, and it ultimately became the standard anguage, a result principally due to and Wyclif, Gower and cer, and in a less degrec of Wyclif, Gower and
ENGLISH LITERATURE. The Norman Conquest made a great change in the development of an English literature, as in all othe forms of English life. Conditions were at first most unfavorable: the English language
might be used by any who pleased, but the might be used by any who pleased, but the clergy naturally used Latin, and people as it is commonly called. For three centuries, therefore, we do not find in English any striking original work, anything to compare in interes with the Skaldic poetry and the Sagas in Ice-
land, with the French romances and fabliaux with the German epic and courtly poetry. Dur ing these centuries, however, we do find in Eng land what is in its way most interesting, namely a singularly rich representation of the differen phases of medireval thought. We may con-
veniently begin with the work connected with the older order of things. The 'Anglo-Saxon Chronicle) was still kept up at Worcester and at Peterborough. Of these the former is preserved only as far as 1079 ; the lattcr is a much late work; in 1121 then carricd on to 1154, being something more than a mere set of annals, with a distinc character of its own. After this, beginning indeed before, comes a stately series of Latin chronicles, though in English we find only chronicles in verse Layamon's (Brut) (c. itself is a paraphrase of Geoffrey of Monmouth) is most interesting as language, literature and legend, giving, among other things, the introduction of King Arthur to English readers. Much later are the chronicles of

Brunne (1330). Layamon is hardly as much history as romance. Of this latter almost everything is from French, Scandinavian or
Celtic sources: there is Iittle native English either in form or substance. 'King Horn' (c. 1250) and 'Havelock the Dane' (c. 1275) probably go back to Scandinavian originals, though they are still regarded by some as English legend material: more purely national are the stories of 'Bevis of Hampton' (c. 1275) and of sions prescrved are probably from Anglo-Norman originals. Renderings of Continental romances are numberless, beginning about 1250 with the Alexander story and going on with the Round Table and the Holy Grail, where the material is partly Celtic, giving even some of the legends of Charlcmagne, and many minor stories, as 'Floris and Blancheflor,' 'Amis and Amilon,' 'Sir Tristram.' Somewhat later (1300), and less fully, come versions of the
fabliaux, 'Dame Siriz,' (Reynard the Fox,' the 'Land of Cokayne,' the 'Lay of the Ash.') About this time appear the great mediæval col-
lections of stories, the 'Seven Sages' and the lections of stories, the 'Seven Sages' and the
'Gesta Romanorum,' which latter, though in Latin, was collected in England. Beside all smaller lyric element; oftenest anonymous, like 'Sumer is ycumen in' (c. 1250), 'Winter wakencth all my care,' and other love songs, as well as many political songs, among which are the patriotic poems of Lawrence Minot (c.
1325). But generally where it is not narrative, the Middle English poetry is didactic: the socalled Proverbs of Alfred, dating from the 12 th century and preserved in several versions, may have old material and certainly keep something of the old alliterative form, though there
is also the Norman element of verse. And as the Anglo-Saxon priestly writers used alliteration in their didactic prose, so now much of the religious literature is put into rhyme, a fashion
of the Norman. The 'Poema Morale') (1200) is a sermon in verse, though now and then with a personal element and there are many other
shorter homilies. A common form is the dialogue; the 'Debate of the Joody and the Soutl' is known in various forms (1200 and after), the
dialogue between 'Mary and the Cross.' and dialogue between 'Mary and the Cross,' and
others including, in lighter mood from a French others including, in lighter mood from a French
source, the ' $O w l$ a poem full of popular wisdom in which the gay and the gloomy views of life are chamthe dispute to Master Nicholas of Guilford, gencrally taken as the author. Less original in substance are the versions of Scripture of which the 'Ormulum,' a metrical paraphrase of the
Gospels by Orm of Lincolnshire (1220) is most important for linguistic reasons, preserved in an autograph copy (probably) with an individual system of phonetic spelling. Versions of Gencesis and Exodus (c. 1225) are also to be mentioned, while much later in the north (1320) 'Cursor Mundi' revicws the whole extent of ment. Lives of the saints there were also, especially of Saints Katherine, Margaret and Juliana, and much devotional poetry, some lyric, like the 'Wohung of oure Loverde' (c. 1225),
and others, some didactic, like 'Hali Meiden-
heid') (c. 1250). There are also certain larger
religious treatises: the 'Ancren Riwle) (1225), a prose work of considerable merit, giving the of the 14th century, ruree hooks on holy living the 'Prick of Conscience,' by Richard Rolle of Hampole; the 'Aycnbite of Inwit,' by Dan Michael of Northgate and 'Handlyng Synne,' by Robert of Brunne, the two latter from the French. Also to be noted is the very character-
istic 'Bestiary' (1225), a compilation of the medixval speculation on natural history. Such are the main elements of Middle English literature before 1350 , although the number of particular works is far greater. As is common in medizeval literature the language is dialectic: no one dialect gains entire primacy till much later,
although by this time the East Midland has become the most important. The second half of the 14 th century was a period of great literary activity. England had been long separate from Normandy, and the English language, like the English pcople, had digested its different cle-
ments into an organic combination. Literature now becomes more literary. The old forms were now only to some degree preserved: Trevisa translated the 'Polychronicon' of Higden
(c. 1387): Barbour in the north wrote a rhymed (c. 1387) ; Barbour in the north wrote a rhymed
chronicle of Bruce (c. 1375). There are numchronicle of Bruce (c. 1375). There are num-
bers of romances from the French. But didactic or allegoric poetry appears in forms which though not new have yet a certain original character. There are two great poets: one of name unknown, the author of the 'Pearl,')
(Gawain and the Green Knight, 'Cleanness, 'Gawain and the Green Knight,' 'Cleanness, is most commonly thought), the author of the 'Vision Concerning Piers the Ploughman.' Fine as is their work, it is outshone by the genius of Chaucer, who gathered up and summarized the spirit of the century and whose in-
fluence was carried through the century following by companions or followers of whom the most noteworthy were Gower, Hoccleve and Lydgate. The cpoch was also illuminated by Wiclif's great translation of the Bible (c. 1382).
Two more popular forms of literature must be Two more popular forms of literature must be-
mentioned, as beginning lines of literary development still important. The ballads of Robin Hood prohably go back to this pcriod, while many of the Scotch ballads are older. The four cycles of mystery plays, those of Coventry,
Chester, Wakefield (Towneley plays) and York, Chester, Wakefield (Towneley plays) and York,
belong to the carlicr part of the century. One remarkable book comes in no category, the 'Voiage and Travaile of Sir John Mandleville,' widely spread in England, and, though a translation, a monument of noteworthy prose. The 15 th century was a period of bloody civil strife, tle can be mentioned in a summary. Sir Thomas tle can be mentioned in a summary. Sir Thomas
Malory closed the period of the romances of chivalry by the 'Morte d'Arthur' (c. 1475), a collection to which he gave organic form and unity. The book was first printed (1585) at the Some prose treatises are noteworthy, in reliSome prose treatises are noteworthy, in reli-
gion Pecock's 'Repressor of Over-much Blaming of the Clergy' (c. 1450); in politics, lighter interest is the treatise on 'Hawking' by Dame Juliana Berners (c. 1425), and the everyday 'Paston Letters' which belong to literature because they are so interesting.
With the 16 th century new in
powerful. The revival of classic learning stimlated English scholars under the leadership of he Reformation Colet, Cheke. versy in which appear the great figures of Tynand Latimer, Coverdalc. The spirit of herce world is seen in Skelton and Barclay, the ormer in a number of pieces, the latter in a ranslation of Brant's 'Ship of Fools' (1508) The spirit of mationality was aroused and Mor Uspia (1515) and Elyot Governour, (1531) thought deeply on questions of politics reasons as for some particular purpose; late came the impulse of the Renaissance which rought forth in England a wonderful burs of literature, generally included in the age o , Most important was its manifesta succeeded miracle plays, and then moral interudes and imitations and translations from Seneca and Terence. By the latter half o the century appeared the first specimens of modern drama, 'Ralph Roistcr Doister,' by
Nicholas Udall (1550) and 'Gorbuduc,' later called 'Ferrex and Porrex,' by Sackville and Norton (1569). The theatre was built in 1579 the Curtain not long afterward, and in the last decade of the century the Rose, the Globe, the Fortune and others. The theatre of the day demanded a drama rich in poetry, rhetoric, declaatists, Lyly, Peele, Kyd, Grecne and greatest of them, Marlowe, were all of necessity experimentalists. They created the romantic drama with tragedy, comedy, history, into which Shakespeare poured his inexhaustille stores o
imagination observation and wisdom. His plays are typical of the Elizabcthan drama there is little in the other dramatists that yo cannot find in him. Yet there were others o great power. Ben Jonson is usnally accorde second place and Beaumont and Fletcher, Mars Ford and Shirley, besides others, had each spe cial powers. In time a decline occurred and in 1642 the theatres were closed by order of Par liament and a great dramatic tradition came to an end. One later form deserves special men vate theatrical and always remained distinc from the plays presented at the public theatres It was produced for some special grcat occa sion and employed all the possibilities of the day in scenery and costume, music and dancts great ability, notably by Ben Jonson. The most famous and beautiful masque was written a the end of the period, the 'Comus' of John Milton. In lyric poctry as well as in dramatic Was the age pre-eminent. In the reign of Wyatt and Surrey had led the way though Wyatt and Surrey appeared Tottel's (Miscellany,) an anthology which gathered up the verse of preceding years, While some ycars afterward came another, the
'Paradise of Dainty Delights.' Later collec'The are the 'Bower of Delights' (1591); Pilgrim,' (1509): 'England's Helicon,' (1600). Another characteristic production was the sonnct-sequence, of which Sidney's 'Astrophel
and Stella) (1591 , but written before), is one of
he best and earliest examples. Here belong th famous sonnets of Shakespeare, as well as Danicl's 'Delia' (1592), Dreyton's 'Idca (1593), Spenser (Amoretti) (1595), among a minent John Donne, whose poems, written in his earlier years, had immense influence. This form of the lyric is in the imitations fanciful and finespun, but in Donne himself it is aliv and wonderful. Last among the lyrics and as important an anyong elace in English ife, and where there was so much singing there had to be good songs. There appeared great numbers, some in the plays and others A song-books, of which many still exist A good many at Shakespearc's and Jonson's among the dramatists, and Campion's among the song-writers are worthy a high place in any anthology. In the 17th century, while the drama lost power, the lyric sustaince itself reThey are generally followers along well-known lines in the paths of Spenser, of Jonson, of Donne, but they often produced work quite equal to their masters. The carly poems of Milton, the exquisite Hesperides (1647) of Herrick, the courtly and amatory poctry passionate and almost sensuous in Crashaw, earnest and devoted in Herbert, these show no failure in power or in genius. One great name in Elizabethan poetry is still to be mentioned, that of Spenscr. The 'Amoretti)' is as beautiCalendar' (1579) was an immense influence for a long time but his great title to fame is the 'Facric Queenc' (1590-96), a work which in literary form stands a little apart from its time. It is a romantic epic, akin to the Italian, poetry in its high idealism, its pictorial quality and its mastery of poetic exprcssion. It had imitations and followers, but none of great merit. It is well-nigh impossible to bring the prose of this period under any scrics of heads. Poetry always comes first in lterary devopment. in the 16 ent practical purpose. It is true there was some growth of style; many men labored at improving the vocabilary and elaborating the sen-tence-structure and the resources in figure and ornament. Yet there werc hardly any well-(1580-90) of Sidncy, the 'Ecclesiastical Polity' (1592-97) of Hooker, the 'Essays' (1597) of Bacon, were each of some influence, especially the last named. Even Lyly's 'Euphues' (157879), which was extensively imitated for a decade produced no permanent form. The Elizabethan production in prose; its master was Tom Nash, who poured forth numbers of these ephemeral pieces, of wonderful vigor and spirit. Of the same sort of prose the succeeding century showed much. The reign of Elizabeth had been a time for Englishmen to get together and
establish their position against the world. Having made themselves a place, they turned to put in order their own house; the 17th century is a period of civil strife and contention. Liter ature could not avoid the cffect of politics; the
disturbance of opinion dragged with it into
political or religious controversy many who ature Even Milton for a dozen years wrot chiefly prose. We cannot, therefore, look fo a variced and definite literary development. Th great work of the century was in prose an he greatest and most influential single monu ment was the King James version of the Bible
(1611). The spirit of the Bible is everywhere to be felt in the great prose of the time, trans muted into varying substance in the clonuenc of Jeremy Taylor ('Holy Living,' 1650), th quaint richness of Fuller ('The Holy State, 1642), the stately roll of Sir Thomas Browne (Religio Medici, 1643), the powerful vigor of Milton's prose - written during the Civil
War, to answer in his own way the call of the country - and the intimate simplicity of Bunyan. A few other writers have little tincture of the struggle of the time, Overbury's 'Char acters) (1614), Burton's (Anatomy of Melancholy) (1621), Cowley's '(Essays' (1656), Wal
ton's 'Compleat Angler) (1653), works of a widely different nature, but showing the quiet contemplative side of the century that was so distracted by controversy. The Civil War occurred in the very middle of the century and makes a definite bar at least in the poctry of the time. Before it was the Elizabethan age; ftcr it the Restoration. The drama and the
yric before and after are different; even the external form of poetry shows a marked change. At the beginning of the century the verse was frce and fluent; at the end it had become concise and brilliant. To the blank
verse of Shakespcare succeeded the rhymed erse of Shakespeare succeede the Ryme couplets of Dryden, organic power giving place both, John Milton in reality belongs to neither More fully than anybody else he is the repreentative of Puritanism in literature; its zealous rages, its fanaticisms, its blemishes, its love of
liberty and of God give life to his prose tracts iberty and of God give lifc to his prose tracts of spech, on the acts of the people: its higher dreams and ideals and aspirations, its unat ained possibilities of beauty
(1667) and his later poems.
1667) and his later poems. With the restoration of Charles II began a most immediately noticeable in the drama. The ffluence of France in the direction of strictnes of classic art and looseness of moral life wa trong: added to it was a change in stage condions, which alowed he development of scenic ffect. A realistic, if not spectacular, char acter, was given to the thcatre and the Elizabethan plays, with all their poctry, fell out of
fashion, save in versions of the day. A new se of dramatists sprang up to fulfil the conditions. Dryden was a leader, equally strong in tragedy and comedy and what he called the heroic rama, after French models. Otway had the rreatest tragic genius ('Venice Preserved,'
682), but could not so well adapt himself to the taste of the age. Congreve, Wycherley, Farquar and many others wrote comedies depicing a brilliant social world, but of such gross mmorality that Jeremy Collice launched an atack on the whole theatre (1698) His words decent, but as it really seems to have been quite representative of the life of the time (not arti-
ficial as Charles Lamb loved to think of it), the succeeding drama lacked vitality, and for a hunis now remembered. Addison's 'Cato' (1713), Rowe's 'Jane Shore' (1714), Gay's 'Beggar's Opera' (1728), Johnson's 'Irene) (1749), Home's 'Douglas' (1756), are noteworthy for various reasons, but not as constituting a powerful drama. It was in other directions mediately in the periodical essay. The example of Bacon had given rise to the essay form, one particular kind called the "character" was especially cultivated. The character was like the essay, except that while the essay was usually
on some idea, the character was on some peron some idea, the character was on some per-
son or kind of person. There was a ber of character-books in the 17 th century among the most important ones being those of Overbury and Earle. In this century too come the earliest ncwspapers. These were generally usually from letters with account of new 'Coranto' of 1621 of Nathe eariest is Besides Corantos there were 'Mcrcurics,' 'Posts,'
(Gazettes,) '(ournals,' ('News.) By end of 'Gazettes,' 'Journals,' 'News.)' By the end of the century the newspaper was a common form. In 1709 Richard Stecle published a small paper every other day which he called the Tatler.
This was not preciscly a newspaper, sisted of a series of essays on all sorts of subjects, sometimes by Steele, sometimes by Addison, Swift, or a number of others, who lent occasional help to the enterprise. The Tatler was very popular, and was brought to a close
only to be continued in only to be continucd in the Spectator,
which Addison took the chicf part. He took up the idea of Stecle and found in it a form of expression exactly suited to his especial powers. His essays were popular in the best sense; the were read with delight by all sorts of people, but they dealt with subjects of intelligent inter
cst. Addison was a student of an observer of life and character, a genial philospher, and all these elements of his nature were exhibited in the little essays which he wrote for the Spectator. The success called
forth followers. Addison and Steele followed their joint productions with separate publicatheir joint productions with separate publica-
tions, which were sometimes political as well as literary. Among the many 18th centur periodicals should be mentioned the World (1752), by Lord Chesterfield and others; the Rambler (1750) and the Idler (1758), by Samucl Tohnson; the Bee (1758), by Gold abroad was also very great. it continued ever to the beginning of the 19th century, whel a number of clever young men of New York, Washington Irving among them, joined in the production of Salmagundi (1807). One dis tinguishing element in these periodical essays was that of personal character. Some imaginaty person was the means by which they were pu Isaac Bickerstaff, the Spectator by a club of the Spectator and others, including the famous Sir Roger de Coverley. This personal element was characteristic of the century, which was human nature. This interest in character for itself is paralleled by an interest in life in ac tion observable in the stories of Defoc. Defoe
was a man who lived by his pen (one of the heatre or the court), whose great gift, so fa as literature was concerned, was his power of fepresenting life. His famous Robinson Cruoe (1719) attained inordinate popularity, no only for its adventurous incident, but for it and Addison's (Sir Roger de Coverley) papers ar sketches of life and character without a story Robinson Crusoe' and the many other storie of Defoe have too much action, without atten ion to life and character, in spite of their real ardson and Fielding: 'Pamela' (1741), 'Clar ssa Harlowe) (1748), 'Sir Charles Grandison (1753), by the former, were extensively read and influenced all Europe; 'Joseph Andrews (1742), 'Tom Joncs' (1749), 'Amelia' (1751) what more modern in form. Smollett followed with 'Roderick Random' (1748), 'Peregrin Pickle) (1751), and some others which are slight variation (upon the first of Field
ing's. Goldsmith's 'Vicar of Wakefield' (1766) and Miss Burney's 'Evelina) (1778) give us, he one the life of the country and the othe of domestic life, a form of literature which for a hundred and fifty years has lost and gained but little in essential character. Th essay and the novel were new; such thing definite literary understanding, but never the stitute a true literary form. Meanwhile the older forms of literature were not neglected There had been no such histories in Englan before Clarendon's 'History of the Great Re bellion' (1702) and Burnet's 'History of My
Own Times' (cdited by his son, 1723). These men wrote of what they had seen; later writer learned to take a larger view and handle large material. Robertson ('Charles V,' 1769) Hume ('History of England,' 175461) an Gibbon ('Decline and Fall of the Roma Empire,' $1776-88$), gave example of the com Oratory also flourished in the exciting Parlia mentary struggles which now took the place o court faction. Chatham, Burke, Fox, and many others created a standard and form of elo speakers and a foundation for more. A special form of oratory becomes important in liter ture; sermons were widely read. Barrow, South, courses in the last half of the 17 th century and had many successors in the first half of the 18 th The interest in religion was a part of the genophy also became a part of literature. Locke 'Essay on the Human Understanding) (1690 was more widely read than any other hook o such a kind. Philosophy was discussed by was the former: his 'Principics of Huma Knowledge) (1710) has been of importanc in the development of metaphysical ideas Hume was the latter, so much of a skeptic 'nat his 'Essays' (1746) incited Kant, in Germany, to that profound examination o tion of modern philosophy. The 18th century
was a century of reason and of prose. Prose son, $n c$ vous in Defoe or everything in turn in the wonderful prose of Dean Swift, an unapproached master of satire as particularly in 'Gulliver's Travels' (1726). As the century
continued, style became more elaborate, of great dignity and statcliness at its highest points (Gibbon and Burke) and even for ordinary purposes admirably effective as in the best of Johnson. The time was intellectual and loved the things of the intellect; hence its poctry was not such as to satisfy the more emotional periods
that came after. It was too obviously didactic or satiric, for one thing. Dryden was the first great master in these directions with the 'Hind and the Panther (1687), and the 'Religio Laici) (1682). In Pope the classic poetry (as it is called) came to perfection; the 'Essay on
Criticism) (1711), and the 'Essay on Man' Criticism' (1711), and the 'Essay on Man'
(1732), the 'Dunciad' (1728) and the 'Rape of the Lock' (1712), have never becn equaled in English for their telling brilliancy. The followers of Pope caught something of his manner, but produced nothing great, save Goldsmith, other kind of literature. Dr. Johnson wrote two strong poems, but his chief power lay elsewherc. The minor exemplars of the characteristic 18th century poetry are of far less value. Addison as a poct, Garth, Prior in Solomon' (1742), Blair in 'The Grave)' (1743), even Akenside, the author of (Pleasures of the Imagination' (1744), did not all write the characteristic couplet, but they are all of the classic school and all wrote that intellectual poctry that now seems so strangely unpoctic. In lighter fitioners, Prior and Gay and Swift, but in didactic and satiric poctry, save in the work of the greatest, the 18 th century produced nothing permanent. But during the whole classic century there had existed, in its time had been growing, reason could put into brilliant and elegant form. It found expression in various ways, chiefly in love for the mediæval past, before the classic conventions had been, and in a fecling for the present wherever those conventions did not cxist, namely, in nature and in the heart of man.
The first feeling came to expression in various ways, often imperfect, as when Thomas Wharton wrote 'Runic Odes) (1748), when Gray wrote poems inspired by the Norse, 'The Fatal Sisters, The Descent of Odin (1761), when Sir fore walpole imitated Gothic architecture in his house at Strawberry Hill
In 1760 Macpherson published what purported to be translations of Ossian, also 'Fingal' (1762) ; 'Temora' (1763), and whether they were genuine or not, the fact that they were read shows the intcrest that was felt in the remote pain a public for his poetry by prctending that it had been written by a monk of the 15th century. In 1765 Percy published the 'Reliques of Ancient Poetry,' a collection of old hallads, a kind of literature full of the spirit of the past, of the day. There had been plenty of ballads printed before, even collcetions of of ballads Ramsay's (Tea-Table Miscellany,' 'Evergreen' (1724) ; and they had inspired a few, but now
hey became an immense influence. In the other direction, love of nature and human sym pathy existed. Thomson's 'Seasons' ($1726-30$) hough his use of blank verse and the Spenseran stanza was more in kecping with earlier imes. Gray produced very little poetry, but his lest, the famous 'Elegy' (1751), has none of he brilliancy and intellectuality which marked the century, and it is noteworthy that in stanza
15 , where he originally wrote the classic names of Cato, Tully, Cæsar, he afterward put the national names of Hampden, Milton, Cromwell Burns was too much of a man to be bound or curbed ly fashions, unless more congenial than hose of the 18 th century. He took inspiration and produced poetry which touched the heart once. Cowper, though by no means like him, nor apparently of the character of a eformer at all, wrote with a sincere dircctess that secms like that of an earlier or a late haracteristic works of the Romantic move ment: 'Tintern Abbey' (1798) and (Micliael' (1800), by Wordsworth, may represent the oetry inspired by love or nature and sympathy With man. (Coler) and Scott's 'I The Ancient Mariner' (1798), and Scott's 'Lay of the Las he Scottish Border' 1802) stand for the deight in ballads and mediævalism. With these ne poems and others only less fine, it is plain hat a now form of art had appeared qu te dif crent from the classic conventions of the 18 th was for strange adventure and the glowing life of the Middle Ages. Wordsworth was for the ime unread, while the poetry of Scott delighted al. Scott, however, was eclipsed in the popuar mind by Byron, who really was personally mired. They longed to hear of men of lofty pirit and recklessness and devotion. Byron was such a man; in 'Childc Harold' (1812) he ook England out of itsclf. In the 'Giaour, Bride of Abydos,' 'Corsair,' 'Lara,' 'Para-
ina' (1813-15), he presented figures full of the ina' (1813-15), he presented figures full of the ver, that spirit expressed itself in all sorts of different ways. Wordsworth presents the common delight in nature; Shelley, noble ideas for ee regeneration of mankind; Kcats, the powe of beauty. Succeeding poets go in much the ame the century in presenting to us in forms of great poetic beauty all the phases of the thought of the time, religious, scientific, patriotic, literary. Browning give s a vigorolls optimistic conception of hfe and matic figures. Morris, Rossetti, Swinburne (sometimes called Pre-Raphaelites) may be said o follow Keats in their love of heautv, which hey scek not only in medirevalism, but through out all history sacred and profane. Matthew Arnolds poetry has classic qualities of style and aw that his true field lay clsewhere. By the ast decade of the 10th century, however, the great poets of the Victorian age were dead or slent and it had for some time been felt tha hey had left no successors. At about this tim here was a strong fecling for realism in poetry Henley became noteworthy. Very different
was W. B. Yeats who expressed was W. B. Yeats who expressed the craving
for some world quite different from curren realism. Expressing both of these common feclings the poetry of Kipling ('Ballads' and (Barrack-room Ballads') met with immediate welcome. It was evidently realistic, but it wa
also clearly romantic. These two lines of poctic also clearly romantic. These two lines of poctic John Davidson and Stephen Phillips, and are represented at the beginning of the 20th century
by John Maseficld and Alfred Noyes. The cnd y John Masefield and Alfred Noyes. The en of the 19th century had many minor poets, bit
Francis Thompson by virtue of 'The Hound of Heaven,' will probably have a higher position in the mind of posterity. He had much o the 17th century in his makeup and much o the intense imagination that is generally fce In the earlicr yocars of the 20 th century ther was a great incrase of poctic feeling which gradually took more or less definite form the works of many writers, so that by the $2 d$ decade of the century the "new poetry" wa a common phrase. Besides Mascfield and rest) the chief names that have come to general knowledge are those of Rupert Brooke (d. 1915) ; James Elroy Flecker (d. 1915); Jame Walter Delamare, William Davies, Lascelle Abercrombie, James Stephens and D. H. Law rence. The drama has heen weak for the whoc the form. Only Browning and Tennyson ha cven temporary success on the stage, while the works of the professional play-writers hav without exception failed of a place in literature By 1890 a new spirit became active. The
comedies of Oscar Wilde made a great im pression on the popular mind, by their brilliant dialogue, but the work of Arthur Pinero an Henry Arthur Joncs was more representative o the moment in that their elfort was usually to ical with the idea of modern social life. The George Bernard Shaw, who though he began to write plays before 1890 and had some successe as early as 1895, did not seriously impres people till the beginning of the 20th century When, however, he did begin to gain consider which always presented not merely interestins or amusing dramatic situations, but some dis cussion of gencral social ideas. Other dram atists of importance have becen James M. Barri and Grenville Barker, as well as the novelist Bennett and Galsworthy. By 1800 the nova
had become a definite form of literature. In the early years of the century Miss Ansten, Miss Edgeworth, Miss Ferrier produced pic tures of life in England, Ireland and Scotland respectively, the first of surpassing excellence A great change was effected by Scott in th Waverley novels (1814-31). It has been poin de out that the lasting power of these novels deScottish life and character. Scott, at the be ginning, had some idea of doing for Scottis life what Miss Austen had done for English. But the real immediate effect of the Waverley he romance of adventure and scenery and cos-
tume, a romance which found its best expression in the historical novel. The Waverle course, some have little history in them, an they gave a conception and an inspiration whic was not wasted. In 1825 appeared the firs Works of importance of G. P. R. James and of century achieved a very considerable popularity though they added but little to the possibilitic of historical fiction. More powerful than eithe Was Bulwer, whose first work appeared in 1827 and who for 40 years produced not only his torical novels, but novels of every kind, works refuses them genius. At much the same tim two other writers somewhat extended the fiel cf the novel: Marryat, by sea-stories, whic remind one of Smollett; Charles Lever, b Stories of the army as well as of Irish lif the century: Thackeray's (Henry Esmond (1852), and 'The Virginians' (1857); Kings icy's 'Westward Ho' (1855), Dickens' 'A Tale
of Two Cities' (1859), Charles Reade's (The of Two Cities' (1859), Charles Reade's 'The (Roister and the Hearth) (1861). George Eliot's (1869), Shorthouse's 'John Inglesant' (1880) (ater's 'Marius the Epicurean' (1885), Matrice Hewlett's 'Richard Yea and Nay' (1900), constitute a series of remarkable value. But the ceat successes of fiction in the midde of the Charly were made in the long-familiar forms. istics, and so had Thackeray, but their novel as well as those of George Eliot, are novels o every-day life. In the main these three are realists, striving chicfly to depict the life that they knew and saw about them. So chicfly were Gcorge Meredith, Charles Reade, Anthony Trollope, William Black, Thomas Hardy, जreorge Gissing, these are realists also, thotigh in only the last two cases of the consistent type developed by their contemporaries in France ings the romance of character, like the Brontes; some could perceive the rich spirit of comedy, like Mercdith. But none felt the need more life of England. Toward the end of the century the craving for romance began again: it come to full expression till Stevenson and ipling. Both sought the romance of life and character and of the soull, hut both were masters aso of adventure and incident and striking cirHope Hewlett, have in gencral followed, and in some cases surpassed them. In the last decade of the century appeared several novelists who have since come to be the leading figures of current began. Arnold Bennct and fantastic work of an in different ways turned to something more realistic. Arnold Bennett's 'The Old Wives' Tale' and the hooks conceived and linked as a series, 'Clayare cr,' 'Hilda Lessways' and 'These Twain,' acter and manners, differing chiefly from the older concentions of the novel in their recognition of the ideas dominating modern life.

Wells about 1906 began a series of studies of
Wife of which 'The New Machiavelli') and 'Mr. Britling Sees it Through) have been the most widely read, in which the ideas of the present are emhodied in the carcer of the individual.
Besides these are Joseph Conrad, who gives a Besides these are Joseph Conrad, who gives a
strong realistic turn to his stories of the sea and strong realistic turn to his stories of the sea and chief novels are ironic presentations of the conservative character of life in England. There are also many others who follow not dissimilar colrses, of whom the best known are Hugh Walpole, Compton Mackenzie, Ethe May Sinclair and Oliver Onions. A third development of the century has been in the path of criticism, which at first found expression chicfly in the periodical. The magazine has been one of the most characteristic elements of in the 18 th century - the Monthly Review, the Critical Review, the Gentleman's Magazine but the chief periodical was the Addisonian essay. The Edinburgh Review (1802) and the Quarterly Revicu (1809) were the beginning of a new movement. Blackroood's Magazine
(1817), the London Magazine raser's Magazine (1830), together with many wecklies and dailics, were the beginning of a flood of literature that is now the form most amiliar to us. The influence was at first chicfly critical. Jeffrey, the first cditor of the Edinstygh, with Gifford of the Quarterly, set of a criticism, which though often unfairly
stylo slashing and ridiculously high and mighty in tone, had merit often in expressing sincere and definite opinions in literature and politics. A sort of gaicty and even charm was given by
Wilson, who wrote under the name of ChrisWilson, who wrote under the name of Chris-
topher North, by Sidncy Smith and Lockhart. But the most important development came in the field of the personal essay. The 'Essays of Elia' (1820) by Charles Lamb, go beyond the Addisonian essay in their unfettered expresion of a charming personality. 'The English is still farther away from the 18th century in form and spirit, and so is the 'Table Talk (1824) of Hazlitt. All these are sincere per sonal utterance, and in thcir sincerity and per sonality lies their strength. In the main we
may call the work of these men critical, fo they were all absorbed in letters, and their view of life was essentially a criticism of literature Something more in the way of estallished form were the famous 'Essays' (beginning 1825) o Macaulay, the most remarkahle works o their time in the power of focusing wide read treme brilliancy. A striking contrast is offered by Carlyle, who began by cssays of the accus omed character, though not ordinary in style, (1833), expressive of his own vigorous personality and thinking more extraordinary in form han any of his later work, but not more origina or powerful. Caryle had hy no means the im mediate fame of Macaulay, hut his influence on the thought of his time has heen vastly greater
Both were historians as well as critics, and by their interest in life and sympathy with man hey brought in a new and fascinatingly inter esting kind of historical writing, which the later
influence of Darwinism and of science in gen-
cral, has done much to deaden. Hallam before
them should also be mentioned and Green after them should also be mentioned and Green after with what seemed the impossible task of dethroning false masters of painting, and establishing an ethical foundation for art. About 1850, having succeeded in his earlier task, he began a struggle against a much wider range of
evii, which was not so fortunate. Matthew Arnold also understood the range of the critic as extending beyond the field of art: his views on politics and religion were an influence in the history of thought, but naturally will not last as long as his conceptions on literature. Walter
Pater took even a wider view of art, being at Pater took even a wider view of art, bcing at well as with literature. He represents the socalled "(xesthetic") position which developed from Preraphaclitism. The most noteworthy essayist of the opening century is Gilbert K. Chesterton,
whose ready paradoxes cover much sound whose ready paradoxes cover much sound
thought. In philosophy and science the century has been pre-cminent, and many great books have been produced. The last field hardly belongs to literature, although Darwin, Huxley and Tyndall were masters of style and could interesting. More might be said of philosophy and thcology, though here little has been produced that will last as literature, except perhaps John Stuart Mill's 'Logic' (1843), Cardi-
nal Newman's (Apologia pro Vita Sua) (1864), nal Newman's 'Apologia pro Vita Sua) (1864),
and parts of Spencer's 'Synthetic Philosophy) tive of important movements in the history of tive of

There are many historics of English literature. The most elaborate and authoritative is the 'Cambridge History of English Litcraturc,' the work of a great number of representative interesting general account, richly illustrated by extracts and reproductions of manuscripts
and prints. The three volumes on different and prints. The three volumes on different four centurics in a convenient form. The work of Taine (translated by Van Laun) expresscs his views of the development of literature from national life. That of Ten Brink (translated by Kenclay) is unfinishod, but covers the ground
where German scholarship is strongest, namely, where Gcrman scholarship is strongest, namely,
Anglo-Saxon and Middle English. Brandl in Paul's 'Grundriss der germ. Philologie,' gives a very full and convenient stimmary. Morley's
'English Writers' is a very full account in 10 volumes, but has not got beyond Shakespeare. The 'English Men of Letters' scrics provides Poets,' and Craik's 'English Prose,' are valuable, giving a summary of facts, a criticism ly
a writer of note, and a number of extracts in case of all distinguished poets and prose writers. Professor of English, Union College, Schenec-

ENGLISH LITERATURE, Middle Period. The term Middle English may conveniently he taken to include the period 1100 -
1500 . For more than a century after the Conquest, however, the majority of works produced French or Latin. Literature in the vernacular, which had sunk to a low level by the beginning of the 11 th century, did not revive materially
until the reign of John. The 'Anglo-Saxon religious continued to the year 1154, and a rew almost exhaust production in English during this era of transition. During the 13th centrity English began to compete with the othcr tongues for supremacy, and by the time of Chaucer its victory was assured, although
French and Latin continued to be widely used. At first, the progress of the vernacular was greatly hindered by dialectical differences in various parts of the country. The West-Saxoin and Kentish, the Mercian, and the Northumbrian of the earlier period had developed re-
spectively into the Southern, Midland and Northern, with some changes of boundary. Of these, East Midland was most important, as the dialect of London and Chaucer, and the parent of Modern English. The Llanguage as a whole shows very marked differences from Anglo-
Saxon, not only in the addition of many forcign words, chicfly French and Scandinavian, but in changes in the vowels and diphthongs, in the disappearance of inffcctional endings, and in a freer use of particles and connectives. The
dialectical peculiarities gradually became Iess marked, until at the end of the period there was practically only one literary dialect, with the ex^{-} ception of Scottish.
The influcnce of Anglo-French and AngloLatin upon Middle English was exceedingly important. The Normans took great interest
historical writing after their settlement in England, as the Latin chronicles of such men a Ordericus Vitalis, Henry of Huntingdon and William of Newburgh attest. About 1136 Gcoffrcy of Monmouth produced his fictitious
'Historia Regum Britannix,' a book condemned Historia Regum Britannix,' a book condemnce hy scrious historians, but of great significance in French rhymed versions by Gaimar and Wace. The Normans were fond of romantic stories, and even retold in their own tongue the deceds of various native English heroes. Morc
serious historical work was done in French verse by such men as Garnier de Pont Saint Maxence or Jordan Fantosme. Churchmen like Lanfranc and John of Salisbury wrote on heological matters, and there was carly mu activity in the new English universities. 'De Nugis Curialium) of Walter Map 'Speculum Stultorum' of Nigellus Wi The Normans were a people of practical mind and most of their literature consisted of utiiitarian or devotional prose. Scientific facts, They
supposed facts, interested them greatly. They supposed facts, interested them greatly. Tbliat
were clever tellers of tales, both of the fablatil ype and those pointing a moral. Especially noteworthy is the work (c. 1175-85) of the poetess Maric de France, who wrote a charmint collection of (Lais,' and a book of fables, the
(Ysopet) Ysopet.'
Earlicr Middle English literature is hetter studicd by types than by authors. Originality:
as a general thing, counted for little in medixvil days, and works in the vernacular during the 13th century werc based almost without excep ion upon French and Latin models. The nar ative literature is of far greater interest metrical romances, artistic poems dealing with ove and war, and chiefly intended for thic higher classes, were made accessible to

English after the middle of the 13 th century. The cycle of King Arthur and his knights was less most important and popular. A smaller and France,"- the deeds of Charlemagne and his warriors. A third group is based on native English and Germanic themes - King Horn, etc. Stories of Troy and Thebes form a fourth class. The Troy-story deserves attention because of versions of the Troilus-Cressida theme by Chaucer, Henryson, Lydgate and Shakespeare. Romances of castern origin, with a few By the time of Chaucer, the metrical romances were showing signs of degeneration, and in the 15 th century prose romances took their place. In strong contrast to these are the fabliaux, short, witty, rhymed tales, intended for the lowirankly indecorous. They were never as popular in England as in France, although stories of this type form the largest genre-division of the
'Canterbury Tales,' Pious tales, generally rep'Canterbury Tales.' Pious tales, generally representing supernatural occurrences in every-day
life, and beast stories, like the (Fox and the life, and beast stories, like the (Fox and the worthy, too, are the collections of stories, often, as in the case of the 'Gesta Romanorum,' used by preachers as exempla upon which to base homialtes. Many romantic narratives reappeared in song") differed widely from the romances, being short, stanzaic, allusive pieces of unknown aulthorship, perpetuated among the people by oral radition, and dealing with a great variety of material. The popular lyric - quite a different is ycumen in in,' or 'Blow, Northern Wind.' In the secular lyric the French influence was again predominent. Secular love-poetry was often applied to religious cnds, as in the 'Love-Runc) of the Franciscan monk, Thomas de Hales. In ime 14th century French lyrics were extensively shows. As for metrical chronicles, three deserve especial mention. Most important is the (Brut) of Layamon (c. 1205), so called because it traces British history from Brutus. Although dependent upon earlier French and Latin work, it shows imaginative power and patriotic inel-
ing. The same love of England appears in the chronicle of Robert of Gloucester (late 13th century), which may have been written by more than one man, and in the historical work of The devotional and didactic literature is omewhat difficult to classify since the various types were not always clearly differentiated, and borrowed much from secular writing. A favorte form of conveying wisdom was the proverb poetry. An early collection of this sort wa. into the to King Alfred, and another was pu" A similar purpose was served by the "dehates," the most noteworthy of which is the 'Debate o he Body and Soul) (12th century), in which sach speaker accuses the other of being responsible for the death of the dead man. The 'Owl
and Nightingale' (c. 1220) is the most important secular debate in English. There was much work on scientific subjects, and this wa of made to point a moral, as in the 'Bestiary of the early 13th century, which appends a
"significatio" to each description. A vast number of homilies and devotional treatises were sermon in verse,") dates from 1170 . The 'Ancren Riwle,' or Rule for Nuns, is an carly celebrated is the ('Ormulum) (1200), a set of pedestrian metrical homilies valuable to the philologist on account of a peculiar system of
pelling. In the 14th century Dan Michel of spelling. In the 14th century Dan Michel of Kent, the author of the 'Ayenbite of Inwit,' William of Shorcham, who wrote stiff didactic
poems, Robert Mannyng of Brunne, who versificd a French manual and gave it the title 'Handlyng Sinne,' and Richard Rolle of Hampole, are all noteworthy. Richard Rolle, the mystic, hermit and preacher, was more important as a personality than an author, yet his Works were much esteemed in their day version of Genesis and Exodus (c. 1250), in the Midland dialect, and the 'Cursor Mundi,' written in the north. Legends and lives of the saints were much in demand, and huge legend collections were made for homiletic work. Chau-
Tales of the Prioress and Second Nun in Chaucer illustrate this genre.
The most important figure in Middle Engish literature is Geoffrey Chaucer ($1340-1400$) A Londoner by birth, he was brought up in the atmosphere of the court, took part in the French sions, and held various public offices. His work may be somewhat arbitrarily divided as follows The first period, to about 1372-73, when he first visited Italy, reflects the influence of French poetry. Besides a number of shorter lyrica includes a translation of a part of the 'Tomance of the Rose,' and 'The Book of the Duchess,' a lament for the death of the wife of his patro ohn of Gaunt. The second period, which close particularly the work of Boccaccio. Here be long 'Troilus and Cressida,' 'Anelida and Arcite,' 'The House of Fame,' 'The Parliament of Birds' and some stories later utilized in the 'Canterbury Tales.'. This period shows a grea so-called Fnelish period in which he attained the summit of his powers, has been held to in clude the 'Legend of Good Women,' but recent research puts much of it earlier and makes plain the strong influence of French. The chief work of this period, and his masterpiece, is the 'Can
terbury Tales.' The storics were borrowed terbury troles. various sources; the plan of the whole resembles that of the 'Decameron,' but there is no evidence that Chaucer was acquainted with it. Besides two prose Tales, Chaucer translated Boethius and wrote a treatise on the
astrolabe. The chronology of his writings has not yet been determined with complete accuracy. Four important allitcrative poems of the atter half of the 14 th century, written in the West Midland dialect, may be referred to one author, whose name has not been prescrved.
'Sir Gawain and the Grreen Knight.) 'The Pearl,' (Purity) and (Patience) The first of these is generally considered the finest of the metrical romances, because of its elevation of tone, descriptive power and narrative skill. It is written in a highly artificial style of verse.
'The Pearl' describes the appearance of a beau-
tiful maiden in Heaven, seen in a dream. It is probably to be interpreted allegorically, although of a real bereavement. The other two poems, which are of minor value, exalt the virtucs indicated in their titles. Alliterative verse, without end-rhyme, was employed by William Langland, whose bitter satire contrasts with the
genial irony of Chaucer. 'The Vision of Piers the Plowman' attacks the evils of the day by means of various allegorical figures seen in dreams. A continuation of the same material appears in the pieces called 'Do. Wel,' 'Do
Bet' and (Do Best) realistic and sometimes mystic The 'Vision' appeared in three different versions in the latter part of the 14th century. It has been doubted that this is all the work of one man and too much weight has been attached to supposed antobiographical evidence in it. 'Richard the
Redeless' is generally assigned to Langland. The fame of John Gower (d. 1408) rests apart from a series of French ballades, and minor pieces, upon three works, the 'Speculum Meditantis,' a moral allegory in French verse, the 'Vox Clamantis' in Latin, dealing with the Amantis' in English, his best-known poem. The 'Confessio' consists of a series of tales, strung on a thrcad of story. The priest of Venus is sent to "confess" the lover, and gives him instruction by means of tales illustrating the vices and virtucs, with special applications to matters
of love. Many of these tales are well and simply told, but the artificial and highly finished octosyllabic couplet soon becomes monotonous. The poem is too long (nearly 34,000 lines), and is far inferior to the work of Chaucer. An enormously prolific poct, too, was John Lydgate.
His long poems, like 'The Troy-Book' or (The Falls of Princes,' are tedious versifying; his minor poems and 'Fables' show him at his best. As a disciple of Chaucer he stands with Thomas Occleve or Hoccleve, a more interesting personality, but less productive and accomplished than
Lydgate. Occleve's chief work is 'The Gouvernail of Princes.'
The prose work of John Wiclif was primarily utilitarian. He was greater as a personality than as a writer, but his translation of
the Bible (c. 1380) did much to fix the form the Bible (c. 1380) did much to fix the form
of the language, and his simple and direct sermons appealed strongly to the lower classes. He was assisted in translating the Old Testament by Nicholas of Hereford, and the whole was later revised by John Purvey. An undue importance has sometimes been attached to the fictitious (Travels' supposed to have been made by a Sir John Mandeville in the 14 th century.
The book was originally written in French, but the facts of its authorship are not yet fully known. Though purporting to be authentic, it is full of grotesque descrintions of the East, mostly borrowed from medixval travel-hooks. The 15th centu era. England was almost devoid of poetry distinction; the example of Chatucer inspired little in the south, and the Wars of the Roses had a most unfavorable effect upon literary pro-
duction in general. Some advance was made in prose writing, however, through the interes taken in historical, legal, controversial and re ligious subjects. Reginald Pecock, the great
opponent of the doctrines which had bect1 advocated by Wiclif, is remembered for his 'Repressor of Over-much Blaming of
Clergy.' Sir John Fortescue, the author of 'The Gouvernance of England,' and the chroniclers Capgrave and Fabyan also deserve mention. Perhaps the most distinguished work of
the century was Sir Thomas Malory's 'Morte the century was Sir Thomas Malory's 'Morte
d'Arthur.' This collection of romantic tales d'Arthur.) This collection of romantic tales in melodious prose with great skill and charm, was finished about 1470 , and printed 15 years later by Caxton. Malory drew most from French romances. Although he invented little, he was no mere compiler, but a great literay the
artist. The introduction of printing and publications of Caxton mark a new era in English letters. Much of the material which Caxton printed he translated from other languages himself. His activity exerted a strong
the development of English prosc. proper in the 15th century appears in the emergence of Scottish literature. The first noteworthy work in this dialect, with the exception of certain legends and romances, is the 'Bruce' the same dates as that of Chaucer. The poem partakes of the nature both of a rhymed chronicle and a romance, and though lacking in finish, is full of vigor and animated by patriotic spirit. It celebrates the deeds of Robert Bruce, w occasional lapses from historical accuracy. An-
drew of Wyntoun's 'Original Chronicle' - so called because he began from the very beginning - is an exceedingly monotonous piece of versifying. Ths exploits of William Wallace were celebrated by Henry the Minstrel, or Blind Harry, as he is often called, in a poem which
takes great libertics with history. Of Blind Harry little is known. A pronounced imitator of Chaucer, and not an unworthy one, was King James I of Scotland, who celebrated his love for Lady Jane Beaufort in 'The King's Quair' (1423). In structure, language and general litof grace atid poetic fecling. It derives additional interest from the romantic carcer and carly death of its author. In variety and excellence of work, Robert Henryson, who flourished
in the latter part of the 15th century, holds an in the latter, part of the 15 th century, holds ant
important place. He wrote the earliest extant English pastoral, 'Robene and Makyne,' and a notable collection of (Fables.) The influence of Chaucer is seen in 'The Testament of Cressida,' which describes Cressida's unhappy death with great dramatic power. In minor poems nc
was often felicitous. An elaborate thoult tedious and awkward bird-fable is the (Howlai) or 'Owlet' of Holland. The greatest poet of
the period was William Dunbar (1460 ?- 1520 ?), the period was William Dunbar (1460?-1520?,
who led a wandering life in his youth, was later attached to the court of James IV of Scotland, and entered holy orders. Most of his poems are
short and a large number of them are satirical. More ambitious are 'The Thistle and the Rose,' which commemorates the marriage of the king, and 'The Golden Targe,' an elahorate allegory. 'The Dance of the Seven Deadly Sins,' 'The Flyting with Kennedy,' a brother-poet, 'Thc 'Tidings from the Session' are all representative pieces. 'The Two Friars of Berwick,' ${ }^{3}$ piece of vigorous Chaucerian narrative, is as
cribed to him. 'The Lament for the Makers strikes the elegiac note, but Dunbar was, on the was a poet of great variety and originality using both the "aureate style" then in vogue, and the rude dialect of the people with equal skill. wrote rather stiff allegorical poems, 'The Palace of Honor' and (King Heart.) His most important work is his translation of Virgil. Doug las was the most learned of the Scottish poets, and his work was designed to appeal chiefly to the upper classes. Much of the work of Dunbar of this literary period, 1500 , yet in the general character of their poetry and especially in their imitation of medixval models they are properly to be considered with the earlier men. The same is hardly true of the work of Sir Davic pletes this group of Scottish pocts. The re formatory tone and national appeal in his writings place them in the era following.
In English literature proper a similar distinction is to be made. Alexander Barclay's
translation of the 'Narrenschiff) of Sebastian translation of the (Narrenschiff of Sebastian and 'The Pastime of Pleasure' of Stephen Hawes, a "belated Chaucerian," both produced in the first decade of the 16th century, belong ar more to the age that had passed than doe Skelton's early work suggests imitation of of older not fall within the bounds of Middle English Neither Hawes nor Barclay were even second ate pocts; their prominence is chicfly due to he fact that they lived in a time when littlo ood poetry was written
rom the miracle plays flourished in England from the early part of this period until the end
of the 16 th century. The morality play, a less important genre, arose in the second quarter o the 15 th century, and, with the interlude, for a For a discussion of the rise of the drama in the For a discussion of the rise of the drama in
Middle English Period, see Miracle PIays.

Bibliography.- There is a comprehensive and detailed discussion of the earlier Middle
English period by Schoficld, W. H., (English English period by Schoficld, W. H., 'English Chaucer) which contains bibliography and chronological talles. for individual author consult the 'Dictionary of National Biography' for hibliography and brie discussions. Wells, J. E., 'Manual of the Writings in Middle Eng lish'; for litcrary history in general, the 'CamI and II, Cambridge 1913), (Grundriss de germ. Philologie' ; Jusscrand, 'Literary History of the English Pcople) (2 vols.) ; Morlcy,
H., (English Writers) (Vol. III-VII); SaintsChy, 'A Short History of English Litcrature'; the French literature of the period, cf. Paris, G., (I.a litt. franc. an moyen age,) ' (Medixeval French Literature,' in Temple Primer Series. For the Scottish pocts, Henderson, T. F. 'Scottish Vernacular Literature, A History' ; and
chapters by Gregory Smith in the 'Cambridge chapters by Gregory Smith in the 'Cambridge
History of English Literature) (Vol. II, Cambridge 1913). Wher Professor of English, Columbia University.

ENGLISH LITERATURE, Elizabethan Period.
the drama.
At the beginning of the reign of Elizabeth the conflict between medirvalism and humanism was rife in the drama as in other forms of tury there had heen a confusion of types. miracle, morality, interlude, and farce existing side by side and exhibiting various differentiations and there had been a confusion of theatrical conditions, play-acting still remaining largely in assics were being succeeded by academic attempts in the vernacular (Ralph Roister Doister,' written by Nicholas Udall for the school performance, had alrcady in 1552 marked the appearance of comedy as a distinct form after the Plautian model, and 'Gorboduc,' by
Sackville and Norton, performed in 1562 before Sackville and Norton, persormed the Quecn, was the first vernacular tragedy. Two other extant plays written within the next few ycars and performed by amatcurs, 'Jocasta' and 'Tancred and Gismunda,' were, like 'Gorboduc,' attempts by Englishmen of culture to
imitate the tragedics of Seneca.in accord with the practice of Italian humanists. Meantime (Apius and Virginia' and 'Damon and Pithias,' mixtures of tragedy and comedy, exhibited the persistence of popular methods combined with classical borrowings, while 'Cambyses' and
(Horestes) were formiess chronicles of atroci'Horestes' were formless chronicles of atroci-
ties without any perceptible classical decorum. The building of the first London theatre in 1576 was the sign of a specdy triumph of the professional companies as the chicf purveyors of the drama. A dozen ycars later the advent of a group of gifted pocts prepared the way for
Shakespeare by determining the course of a popular drama that was to be literary though disregardful of classical restrictions.
Comedy, where the departure from medixval forms required by the humanists was far less than in tragedy, was the first to attract literary
talent to the public stage. The plays of Wilson revealed a satirical comedy of manners emerging from the morality, and the entertainments devised by Lyly for the children companies, combined lyrical and spectacular attractions with a refined wit and a certain graceful courtedy with its averted tragedy and its idealization of women. Such hasty summarizing, however, does scant justice to the variety and ingenuity of the experiments that preceded Shakespeare, drawing their matcrial from every field from classical myth to native folk lore, and cssaying from the Plautian to the pastoral. Most characteristic, perhaps, of all was romantic comedy, usually based on Italian novelle and offering a medley of fun, sentiment and adventure.

In tragedy Kyd adapted Seneca to the condi his structural scheme but retaining the story of revenge, the accompanying ghost, the horrors and the moralizing; and thiss in the 'Spanish Tragcdy'. (cir. 1587), creating a special type destined to a vigorous existence. Marlowe (1564 brought to the rambling and discordant struc brought to the rambling and discordant struc-
ture of the current popular history plays his splendid blank verse, and his soaring imagina

Malta,') and (Edward II,' the chief plays of his half dozen years of dramatic activity, delighted
he vulgar by thcir violence and spectacle, an at the same time made the public stage the abode of noble poetry and genuine passion. Hi ragedy and history, giving to the chronicle structure the unity of a protagonist, posscssed by cxtraordinary ambition and engaged in tragic
onflict with overpowering opposition.
In Marlowe, as in the other cariy Elizabethans, there is much that is fantastic, crude and was to present a story so as to delight a motley audience; hence the tendency was naturally toward stories of sensational crimes for tragedy and of romantic adventures for comedy, without much care for the isolation of either species. were pocts as well as playwrights, stimulated by that imaginative idealism so nolly characteristic of the national temper in the years of Elizabeth's greatness, and in their exuberant and somewhat over-fantastic verse reffecting ce audacity, adventurousness, emotional ex${ }_{\text {age }}$
Shakespeare's apprenticeship was served in
his period, and his early plays naturally follow this period, and his early plays naturally follow die lorms then current and exhibit the qualities (Comedy of Errors) is an dramatists. Thc tus; 'Love's Labour's Lost' follows Lyly; the 'Two Gentlemen of Verona' recalls the sentimental comedy of Greene; 'Titus Andronicus' is a melodrama of atrocities after the fashion of Kyd; 'Henry VI', is dominated by Marlowe, formula, surpasses the master in the vigorous delineation of the villain protagonist and in the stage effectiveness of his part. But Shakespeare soon left his fellows far behind. The 'Midsummer Night's Dream' and the 'Mer-
chant of Venice) transcended the romantic comedies that had made them possible on the London stage, and 'Romeo and Julict' as conpletely surpassed the prevailing tragedy of blood. By 1600 Shakespeare had crcated his plays had wrought a union of comedy and history such as the early chronicle plays had only dimly foreshadowed.
By 1600 new forces were manifest in the drama. A young poet, Marston, was ollowing his successful satires by a serics of plays, in part
and in pagedies
and to be searching studies of evil. In 1599 Ben Jonson's 'Every Man in His Humour,' acted by Shakespeare's company, was prefaced with a declaration of war on the absurdities of chronicle history and romantic plays, and with the
promise of the creation of a comedy dcaling prom contemporary manners. Jonson, indeed continued a powerful force in the drama for the next 25 years. His preaching was all directed toward the establishment of a more conscious and painstaking art, and its regularization by classical examples, while his practice resulted in a noteworthy series of satirical comedies,
presenting with powerful humor and realism the follies and vices of the day. Chapman and Middleton were also writing comedies of do-
mestic manners, and the whole trend of the
drama from 1600 to 1008 was away from romance and sentiment, resulting in a satirical and rcalistic treatment in comedy and a more searchcircumstances Shakespeare's great series of tragedies was produccd. This is not the place to speak of their lasting significance, but merely to note that his genius, now in the full maturity of its powers, was still engaged in transforming chronicle and novella, so often the sources of formlessness of structure, resulted in the splen did dramatic concentration of (Macbeth) an again through the efforts of Marston and others, became 'Hamlet' with its infinite sug gestiveness of human tragedy; the grotesque-
ness characteristic of medieval as well as Elizabethan drama had its final justification in 'Lcar.'
By 1607-08 the success of the heroic plays of Beaumont and Fletcher had brought the romantic and idyllic again into favor and perhaps. given the suggestion for Shakespeare's return to ter's Tale, and the 'Tempest.) Heroic ro mances, such as 'Philaster) and the 'Maid's Tragedy' succeeded not only because of their poetry and their sensational contrast of senti-
mental love and sensual passion, but even more mental love and selnsual passion, but even more
because of the telling theatrical effectiveness of because of the telling theatrical effectiveness of suspense and surprise with which their ingenious plots were complicated. The comedy of Bcaumont and Fletcher, especially in its later development by Fletcher, like their heroic plays, had a long continued influence on the drama Possessing ready wit, great poctic facility and
an abundant invention, luat without moral taste or any serious criticism of life, Fletcher marks a stage in the drama that may fairly be called decadent when we recall the sound moral sense and the artistic aspiration of the carly plays. Yet the last decade, masterpieces of Beaumont and Fletcher and of some of the best work of Chapman, Tourncur, W Wbster and Middleton.
The very existence of these masterpiecces was of itself a factor in the drama's decline. Web oobligations to his great contemporaries: and henceforth the increasing recognition of the greatness of the immediate past seemed to stiffe rather than to inspire innovation and experiment. Webster himself, borrowing frecly from
othcrs, carried the tragedy of blood to its final thcrs, carried the tragedy of blood to its fina
development in the powcrful and gloomy "Whitc development in the powcrifl and , gloomy (Whitc
Devil) and 'Duchess of Malf.)
Middleton in collaboration with Rowley created scenes of powerful tragic interest in 'A Fair Quarrel and the 'Changeling.' Massinger, collaborating often with Fletcher and to a considerable ex-
tent borrowing Fletcher's methods, produced body of tragedy and tragi-comedy, morally didactic, and rhetorically excellent, but in characterization and poetry somewhat deficient. These are only a few of the writcrs of tragedy during the reign of James I; in the development of comcdy, where less poetical excellence is de-
manded, the number of important contributors was much larger. Middleton's most characteristic work was a group of lively comedies that exposed contemporary manners with the frank-
est realism. Massinger, though on the whole defcient in humor, produced in 'A New Way ${ }^{10}$ ir Giles Overreach that has attracted many great actors, including Kean. Dekker and Heywood, writers without great literary pretensions, wrote a large number of successful plays. DekFortunatus) and the sentiment and merriment of the 'Shoemaker's Holiday') to the painful calism of the 'Honest Whore.' Heywood, always a skilful and inventive playwright, likewise wrote plays of every kind, achieving a real
masterpiece in his 'A Woman Killed with Kind hess.) This play may be classed as a sentimental tragic-comedy or as a domestic tragedy, a class which includes a number of plays depicting current crimes and goes back at least as far as Arden of Feversham' in Marlowe's day. One other dramatic form, extremely popular in the mask. For these scenic and musical entertainments many dramatists, and notably Jonson wrote libretti; and the spectacles and dances in urn had an important influcnce on the popula heatres. (he dramatic product of the reign o as that of the reign of Elizabeth and including as it did the last nine years of Shakespeare's career, vastly greater in value. But the enthusiasm and carnestrness of the days of the Armada were succeeded by a time on immorality, corwere turning more and more to Puritanism, but the drama, following the court, grew less serious, more licentious and gradually forgetfu of its high calling.
During the reign of Charles I the drama offered litile that remains notable, outside of plays of Ford and Shirley. Ford, a poet of
plated work of the older writer and the original and lofty genius, ranks with the great dramatists in the intensity of his tragic crises but he sought therics and motives, abnormal and decadent. The great dramatists of the
preceding generation stimulated Shirley, who preceding generation stimulated Shirley, who ccalls but never quite equals their best work f comic dramatists Brome, of "the tribe of Ben," and Davenant, who belongs to the But the grcat majosity of the many plays produced were mediocre The drama no longer epresented the nation; nor in the approach of the civil conflict could it longer command he interest and encrgy of great intellects or maginations. It had little ve. in left when th
Within a few years Chapman
onson, the last surviving dramatists of Eliza cth's time, had died. Their lives had spanned its entire course of the dramas development, well rapid rise and its splendid culmination a owe's first play to the death of Shakespear nclude, in fact, all that is great in this amazingly rapid development. Incomparable as this Shriod is because it contains the career of hausespeare, it is hardly less astonishing be cause of the variety and range of the work of
his fellows. Lacking, as even Shakespearc's plays lack, in the symmetry and unity of the Athenian drama; faulty, as his plays are ofter faulty, in the over-exuberance of language and
the violence and extravagance of scenes; suf fering, as his genius suffered, from the crudity of a bare stage and an immature dramaturgy these Elizabethan plays, taken as a whole, revcal in however inferior measure, his great excel lences, the untrammeled play of wit, sentiment and of dramatic treatment; a searching revelation of human character, and an abounding grace and power of poetic expression. Se Drama; English Literature; English Lit erature - Midde Period; Great Britain Trend of Thought and Literature in the
19 th Century, and consult works there re19Th Century, and consult works there re
ferred to.
A. H. Thorndike,

Professor of English, Columbia University
non-dramatic poetry.
Elizabethan poetry is the product of the Renaissance,- the flowering of the English European thought. English litcrature at Ell , points - in Alfred's time, in Elizabeth's, in the 18 th and 19 th centures, - has owed its great moments to forcign inspiration, of the Elizabcthan. The period is short, if it be measured strictly by Elizabeth's reign, 1558 1603; and even if the limits be broadened to include Wyatt and Surrey at the beginning and all of Shakespeare's work at the end, it is still but narrow room for the development of
the crude religious play into the drama of Shakespeare and Jonson, - of the clumsy sonnets of Wyatt into the great sequences of Sidney, Spenser and Shakespeare, - of the stiff Tudor music into the noble harmonies of the madrigals and the sweet melodics of the Perhaps because illustrates with unusual clearness the transference of life to books. Th rush of genius draws into its vortex most o the ' F experice 0 ueen') unchanged and in spite of the allegory undisguised; Sidney's passion takes over the incidents of his wooing with an immediateness that the occasional bookishness of his inspiration cannot smother; history, scarce made, is subject for a play; the gossip
of a shipwreck becomes the 'Tempest) perhaps most interesting of all - those first poets themselves, the type of the age, Surrey, Sidney, Greville, Raleigh, are caught up as they drop from, Shakespeare's young men- Biron, the mass and power of its literary inheritance and the directness of its foundation upon life, is the distinction of Elizabethan poctry, and perhaps the source of most of its problems. In this swift rath Enclish history and character, the age is set off by three great namcsSpenser Shakespeare and Milton - for though Milton stands well outside the Elizabcthan period, he is the last term in its development. The apparent remoteness of Spenscr, his unhe is ncarest to the great wave; he takes over a larger quantity of unnaturalized material; he represents the early school of wholesale colonizers of Italian thought on English soil. Yet he takes over into his writings quite as much
of English life, even of English incident, and quite as much of English character, as Shakes peare. The great dramatist, at first glance so
natural, so near to his race, so untouched by the tyranny of books, is indeed all these things, yet his imagination starts always in some foreign suggestion. Aside from the different scale of genius, he is as English as Spenser - no more so; but he represents a more complete mind of the foreign themes with the native learning of the Renaissance - to humanism, ye draws on the most English solurces of life English experience, English character, English landscape. These three pocts illustrate the Elizabethan age in that they are typically indren of the Renaissance mind
It is usual to take as the beginning of Elizabethan poetry the book in which the Elizabethans themselves saw the herald of their day - 'Tottel's Miscellany' (1557). This book, a eral courtly poets, notably of Sir Thomas Wyat (1503-42) and of Henry Howard, Earl of Surrey (1516-47). Though the selections were written before Elizabeth's reign, they un folded already the characteristics of the new age. The sonnets, modeled after Petrarch of
ranslated from him, foretold the later sonne fashion, with its heavy draughts upon the Ital an spring; the imitations of classical poetry showed that the English writers had found the feeding root of the Renaissance itsclf; and the translations as a whole pointed in the direction imagination to English, Golding's (1536?-1605 Ovid, 1567, and Chapman's (1559?-1634?) Iliad 1598, and Odysscy, 1616. So also the lighter lyrics, the best of them by Wyatt, foretold the song-books; Surrey's sonnet to Clare and his Elizabethan theme of friendship - the nearnes of the living incident in his verse; and Grimald (1519-61?). 'The Garden' prophesied at long range the love of English country life that wa o find noble expression in Marvell and Walton The fame of Tottel's hook made the misce lany a fashionablizabethan age, though the growing habit of general publishing tended to diminish its importance. 'The Paradise of Dainty Devices' (1576), is interesting for the work it preserves of Richard Edwards (1523?
66), of Edward de Vere, Earl of Oxford (1550-1604), and of Sidney's friend, Sir Edward Dyer (? ? 1607), whose fine "My mind to me a kingdom is," appears in this anthology A Gorgeous Gallery of Gallant Inventions' (1578), illustrates the fashion of translation, the poems, to the growing invasion of poctry by music. 'A Handful of Pleasant Delights' (1584), is a weaker anthology, of practically no merit, but ' The Phonix Nest') (1593), is noteworthy for the elegies on Sidney - one by Sir
Walter Raleigh (1552?-1618), and for other Walter Raleigh (1552?-1618), and for other poems by Ralcigh and Thomas Lodge (1558?-
1625). (England's Helicon' (1600) includes selections from Sidney, Spenser, Breton, Lodge, Peele and Barnfield the great writers of the first Elizabethan period, strongly marked by for one poem alone, Marlowe's "Come live
with me and be my love." 'England's Parnas sus' and 'Belvidere, or the Garden of the
Muses' (1600), are mere collections of Muses' (1600), are mere collections of quota-
tions; 'Davison's Poetical Rhapsody' (1602), is of little more importance, though its selections reflect the sonnet vogue. An carlier and more important book, (The Passionate Pilgrim, by William Shakespeare) (1599) is clearly a miscellany, as only part of its contents, some songs
from 'Love's Labour's Lost' and some sonnets, are by Shakespeare. In Sthbject matter the earlier part of the Elizabethan age was pastoral, following the tone
set by Sidney's 'Arcadia' (1590). This Elizabethan pastoral, literary and artificial as in press on the incidental songs in the prose romances. Sidney himself was the most zealous experimenter in classical metres, in the general attempt that Gabriel Harvey fostered, to bring English verse under the laws of Latin prosody. Green and Lodge, the great writers of pric in
romance after Sidney, were less pedantic their lyrics, yct their songs have the idylit method of the pastoral, the method of painting. The best representative of this pastoral period is Edmund Spenser (q.v.). His first
book, (The Shepherd's Calendar) (1579), was an imitation of the Virginian eclogue, with the same bookish flavor - here increased by Edward Kirke's commentary - and with the same alle. gorical treatment of contemporaries and events under the pastoral mask; but with an English setting and with English ideals that stamp ths book as native. In 'Th Faeric Queene)
96) and the (1590-
(1590 speaks also through the pastoral conventionthat subduing of all things to loveliness, which is the mark of the world of the Sicilian Muses. The 'Faerie Queene' especially, as might be ex-
pected from its ancestry in the Italian romantic epics, has the irresponsibility of pastoral romance - the arbitrary management of the facts of life as if those facts themsclves were a flexible language. The paradox of the Renaissance, of Elizabethan literature, is illustrated here on
the largest scale, in the gorgeous, archaic lanthe largest scale, in the gorgcous, archaic lan-
guage, the unreal, un-English world of the story on the one hand, and on the other the stern English fibre of the ground theme. This same Elending of Italian imagery and expression with English spirituality is seen in the 'Epithalathe 'Four Hymns) (1596)
The pastoral convention, molded by Spenser, remained popular, though less characteristic, in the succeeding decades. Michael Drayton (1563-1631), remembered now for his splen-
did (Battle of Agincourt' (1605) and for his did 'Battle of Agincourt' (1605), and for his wrote much in the Spenserian pastoral, as did William Browne (1591-1643). In another way also the pastoral habit of beauty was transferred to poems not strictly pastoral, such as ' Luakespeare's Lucrece) (1594), and Marlowe's 'Hero and
Leander' (before 1593), where the convention of old-world beauty blends with the Elizabethan zest for a story, evidenced more popularly in the broadside hallads. The tradition of narrative poetry was strong throughout the Tuder,
period, from the 'Mirror for Magistrates' period, from the 'Mirror for Magistrates
(1559) to Drayton's 'Barons' Wars' 1603). As the first period of Elizabethan poctry is
pastoral, so the sccond period, roughly from The to 1600 , is marked lian sonnet had been introduced in detached imitations and translations by Wyatt and urrey but the fashion of sonnet sequences was set by Sir Philip Sidney's (1554-86) 'Astrophel and Stella,' published in 1591, but known much earlier. Sidney here followed Petrarch, after the examplic of the innumerable French
sonneteers. His sonnets, however, derive vital and individual interest from the circumstances oi his own love for Penclope Devercux, a pas sion as famed among his contemporaries as Pc trarch's love for Laura. His poems have had merely literary in their inspiration, and it cannot be denied that his borrowings were probdide many; yet in the medieval way he considered himself sincerely original, and much in his work supports the claim. The amount of life is large, especially in the noble sonnets that deal with horsemanship and knightly exercise and his story in one point was radically differ ent from Petrarch's or Dante's. His love wa and himself was one of honor, since she wa married to another; this lofty sense of this kind of honor was Sidncy's characteristically English contribution to the world-theme of
In most cases the "love passionings" of Sid ney's imitators were of the head rather than o led heart. This undeniable note of artifice ha Ereater sequences - Sidney's, Spenscr's and
Shakespere's. With duc allowance for the unShakespeare's. With due allowance for the undoubted imitations in all threc pocts, it remains
true that othe that their sonnets, as distillguished from be an interesting question, though hard to answer, whether through the impress of simila in 1 of love and courtly behavior, the poet acquired acquired for the moment the same channels or are not frequently coincidences rather than borrowings.
Sidney's 'Astrophel and Stella) had been (1582) by Thomas Watson's 'Hekatompathi' (1582), a series of pedantic poems on which tation of his contemporarics. In 1502 appeared Samuel Daniel's (1650-1731) 'Delia,' in honor of the Countess of Pembroke, Sidney's sister a finely written series remembered for some charming lines and for the oft-1mitated "CareDortes. '(Parthenophil and Parthenophe) (1593) by Barnabe Barnes (1569-1609), though it contains in its enormous mass some poems of
charm, is clearly literary in inspiration. Lodge's 'Charm, is clearly literary in inspiration. Lodge's Phillis, ${ }^{\text {' }}$ in the same year, reverts to the pasloral background of the romances; the sonnets lyrics.
Spenser's 'Amoretti' (1595) record his own Ove story, and should be read with his, beansonnets exhibit almost in excess his sweetness there inguage and his idyllic, picture method; face is an all but fatal smoothness of sur-
fat makes the thought elusive. But the noble tone, the Platonic emphasis on beauty of
soul, indicates the true Spenser, and the sonnets rank third among Elizabethan series. Shakespeare's 'Sonnets,' printed in 1609 but written much earlier, mark the supreme reach of this kind of writing. Some of the attention's greater fame as a dramatist; some of it come from the mystery that still on many sides envelopes the sonnets; but the story itself, the conlove, is the most striking of the sonnet themes, and the powerful directness with which the sub ject for the most part of reated places Natural as the sonnets seem, however, and spontaneous as the themes appear, yet comparison with other sequences shows that Shakespear assimilated much of his predecessors; how much of his own life is in
In the years immediately following the son ${ }_{T}$ net-writing, the characteristic vehicle of Eliza bethan non-dramatic poctry was the song-book The manuscript miscellanies of had contained the notes as well as the words of songs, and the Elizabethan period was rich in musicians as well as pocts. In 1588 Nicholas Younge published his 'Musica Transalpina,' a collection of Italian madrigals with English words. The madigral was a strict musical form, a contrapuntal part song, buit up
on many repetitions of a musical theme, and so on many repetitions of a musical theme, and so of a longer one. With the development of the lute and the growing popularity of lute music, came the song built on a melod, with harmonized accompaniment - what the Elizabethans
called an Air. John Dowland, the greatest of called an Air. introduced this new kind of song in 1597, in his 'First Book of Songs or Airs,' and the form was perfected, in both words and music, by Thomas Campion (? - 1619) in several books of Airs. As the Air was but a short mords a short lyric of several stanzas. This for words a short lyric of severaged the composition of short, finely need encouraged the composition of short, fein, such as Campion himself wrote, and such as becamc a model for Herrick (q.v.)

Beginning with Wyatt, there had been a vein of satire in Elizabethan poetry. Gascoigne (1525-77) in his (Steel Glass' (1576), Lodge in his (Fig for Momus' (1595), Joseph Hall in his 'Virgidemiarum' (1597), and Marston in kept the tradition alive. One other minor strain, which was destined to flower later into larger expression, was religious verse - often crude and moralizing, as in the miscellanies, often fantastic, as foreshadowing Donne ($q . v$.), but often devout. In Robert Southwell (1561 95), this writing becomes passionate and o (1595) contains that one poem, "The Burning Babe," that Ben Jonson preferred to all his own work.
These are the main forms of Elizabcthan non-dramatic poetry. If we except the 'Faeric Quecne, the genius of the age is perhaps best
seen in the drama. But in these other form the Elizahethan mind preserved for us a broad and varicd record of its amazing power to absorb the literary past, and to feel deeply its own

Literature - Middle Period, and consult Adjunt Professor of English John Erskine, versity.

Elizabethan prose has neither the sig nificance nor the splendor of Elizabethan poetry. The greatest masters, Sidney, Lyly, Hooker, Bacon belongs in spirit to another age with other ideals and another ethos. But the shaping of English speech as an instrument for the cience and thought of the 17 th century was the result of the efforts of Elizabethan prosemen Before the period itself commences, the work
of More, Elyot and Latimer, of Coverdale, Tyndale and the editors of the English Prayerbook had already brought a simple and vigorous vernacular into being; but the ancestors of Augustan prose were the group of Cambridge scholars, Cheke, Wilson and Ascham, whose
writings, with the exception of the 'Scholewritings, with the exception of the 'ScholeThis group devoted considerable attention to the study of English rhctoric; they aimed at plainness and purity of speech and the formation of a literary vernacular in emulation of ffectations of all sorts, and Wilson's condemna tion of "ink-horn terms" is one of the signifi cant loci of English criticism. The introduc tion of classical studies as a result of the revival of learning had necessitated a complete revision of the medixval curriculum, and Ascham's Scholemaster,' published posthumously in 1570
follows the fashion set by the humanists of follows the fashion set by the humanists of umber of pedagogical treatises. Like these humanists, it was his purpose to indicate the ducation necessary to a cultivated gentleman. His own prose style is simple and direct, bor rowing the more inconspicuous excellences o
Latin prose. But his mood is in some respect hat of the Puritan; and in his suspicion o romance and of the growing Italian influence he is at odds with the whole spirit of Eliza bethan life and letters. Prose and poetry alik which he contemns.
Ascham is in some measure the father of hat whole school of Elizabethan stylists, whose model was "eloquence" in the classical and humanistic sense, and who disregarded the prose. The full-and rich notes of Continenta he final culmination of this manner. The first our books of the 'Ecclesiastical Polity' were published in 1594: several schools of Novella Elocutio had intervened since the composition of the 'Scholemaster,' but they have not affected the purity and directness, the calm and manner. In this great book, moderation and passion temper each other after the fashion of the best Latin prose; and Hooker realizes the ambitions of the earlier English humanists who and other ambitions could alone make it pos sible to arrive at a higher standard than that which Hooker achieves at his best. Much of the book is unreadable to-day, like the technical arguments of the Attic orators; but its soaring
passages, like theirs, are monuments of the race and religion whose ardor and conviction the Directness and vigor were also put to far different uses both in secular and in religious polemics. Of the latter, the Martin Marpre ate Controversy relating to the problem o church discipline, which raged between 158
and 1590 , gave opportunities which secula pamphleteers only too soon made use of. The significance of 'Hay any work for Cooper? and 'Pap with a Hatchet' has been greatly over rated; in them the instrument which the Cam bridge group had prepared for use was blunte said of the a cugel. Nor can much more Greene and Harvey, in which is illustrated the nearest Elizabethan approximation to moder journalism, but with manners and moral untempered by a wholesome or cultivated pubthese men, and of Dekker, Breton and others these men, and of Dekker, Breton and other their models include Aretino, Rabelais, Dedekind, as well as other Continental writers of wholly different type.
Literary criticism began in this period and employed for the most part the prose sty whose tradition goes back to Ascham. In con either directly or through the French; and its significance consists in the fact that it was th means of introducing literary ideals which ha been current in Italy for nearly a century The pletiade of the Areopagus, which paralles important respects, found its highest critical expression in the 'Dcfence of Pocsy' of S Philip Sidney, written about 1580 , and published posthumously in 1595 . Sidney's idcals o
prose style are not those of Ascham, but his prose style are not those of Ascham, but hid affectations which in the (Arcadie) furnisl the model for a whole school of imitators. His book is an impassioned apology for the poctic art against the onslaught of the Puritans; but the objections which it refutes are universal and its answers to these questions have in themselves, too, the temper of universality.
There are parallels for all its ideas in the al most contemporary works of Frenchmen and Italians. They, too, from the dawn of the Re naissance, as in Boccaccio's 'Genealogy of the Gods,' which Sidney doubtless knew, had writ lish book, and in its passion, unity and general spirit seems the native product of Elizabethan genius. Puttenham's 'Arte of English Poesie conforms more to the model of the forma treatises which the Italians devoted to the the ory and practice of poetry. Its purpose, like cism ; it deals with the history, dignity, forms metre and ornaments of poetry continually illustrating the theory both by example and by anecdote. The critical work of Jonson be ongs to the Jacobean age, and its ideals an its style indicate the great changes that ina impossible to date the 'Discoveries' with any degree of certainty, but no word it contains antedates the death of Elizabeth. Jonson, de-
spite the fame of this work, enunciates no single
original idea in regard to the art of literature but the luminous utterances of the later Latin Dutch critics, and the rational classicism of the prose, and become an influence on English crit ${ }^{1} \mathrm{Cl} \mathrm{Ism}_{\mathrm{m}}$ even after the Restoration.
The formal treatise or preface was the vehi cle of criticism in the Elizabethan Age; the
chief vehicle which it was to use in future wa introduced into England by Bacon at the wa end of the 16 th century. Montaigne is the father of the modern essay; and to him Baco owed the name and a number of definite ideas ciifer more thang theirs. The air of loquacity, the personal anecdote, the amused curiosity the vivid imagery of Montaigne are not to b sought for in the essays of Bacon. The states man utters his brooding thought in curt and Englisentences; Seneca and Pliny here spea speech, destined to saturate prose and verse and resulting after many changes in the pointed couplets of Pope. Each sentence is its own in his and has its own message. Bacon, even in his scientific work, has been called a mer phrase maker by a modern scientist whose dis in the essays this power is unrestrained by th heed of argument and experiment. Emerson is use great American example of this dogmatic use of the disjointed sentence, and like Bacon he, too, has fed deeply on the thought of Mon A. daining wholly different ideal of prose style, dis throughour the Elizabethan most natural expression in the novel. Fenton version of Bandello, adapted through th French, and the varied collection of Painter's novella into England. Their interest is almos Wholly in the story, and Herodotus and Boccaccio are made to speak the same language of
fiction. In Pettic's 'Petite Pallace of Pettie kis Pleasure,' which is modeled on the work of Pleasure,' which is modeled on the work the style which culminates in Lyly may be sai to have been inangurated. The sources of Eluphuism have been sought in individual work of Continental literature, notably in those o simply one manifestation of a disease which Was rife throughout Europe a this period as a result of the disintegration of Humanism The excesses of the Ciceronians find a paralle and the antithetical balance of Lyle's sentences and the absurd imagery was a natural resul and sought for originality in affectation of man ner. This explains the kindred writings on he Continent; and although English prose wa Oung, it could not fail to be affected by thes $i_{\text {ism }}$, The well-known marks of euphu "unnatural natural "parisonic antithesis," the all be explained on these grounds. (Euphues) itself is in some senses a novel of psycholog Chief character rather than of incident; but its sentleman after the manner of Castiglione' 'Courtien after the manner of Castiglione Ser's; and (Euphucs) may be considered as the Connecting link between the purely pedagogical
treatise like the 'Scholemaster' and the final poctic idealisation of Renaissance education in
the 'Faerie Queene.' The vogue of Euphuism the Faerie Queene.' The vogue of Euphuism it is unnecessary to consider the forms which Euphuistic romance assumed at the hands of
Lodge, Greene and others.
Sidney is credited by his contemporaries,
notably Drayton, with having notably Drayton, with having put an end to
this fashion; but if the 'Arcadia) is rcferred to, it can only be said that one affectation has succeeded another. The 'Arcadia,' which has come down to us as a large, posthumous fragment, is the chief representative in English of the pastoralized romance. It owes much to Herberay des Essarts's French version of the 'Diana' of Montemayor; in it the Renaissance transmutations of Greek romance find a climax. The mannerisms of Sidney's style are not those natural archaic or affect" word, nor of "unantithesis; but the exaggerated imagery, the pomp, the prettiness of the Spanish romances are mingled in the 'Arcadia' in an inextricable jungle of sentence and paragraph. Its vices are those of conceptismo rather than of the parallel Spanish vice of culteranismo. The mild and
modulated Ciceronianism of Hooker, and all of Latin eloquentia that Cheke and Ascham had hoped to introduce into English specch, are wholly absent. The 'Unfortunate Traveller' of Nash may be mentioned as an indication of a tendency antipodal to the chivalric pastoral-
ism of Sidncy; it introduces in a racier style a picaresque experiment in English fiction between the period of 'Guzman' and 'Lazarillo.' But the novelist and the preacher in general succumbed to the temptations of the ornate Style: the novel throughout the period of its origins was tainted with Euphuism or Arcadiannerism, which persisted until Eachard, Glanvill and other pamphleteers ridiculed it out of existence.
With

With the accession of James I Jacobean crudition and science superseded the creative
impulse of the Elizabethans. Bacon and Jonson represent the new sententious manner at its best; other writers lose themselves in a sea of detail; still others add a hectic fervor to thought or feeling. But these things do not properly belong to the Elizabethan spirit. The the inauguration of formal criticism and prose fiction; the passion for controversy; these are the main impulses of Elizabethan prose.

Bibliography.- Jusserand. 'Histoire littéraire du Peuple Anglais' (Vol. II) ; SaintsSmith, G. Gregory, 'Elizabethan Critical Essays) (Oxford 1004) ; Child, C. G.. 'John Lyly
and 'The English Novel in the Time of Shakespeare' (London 1890); 'The Cambridge History of Fnglish Literature) (Cambridge 1913): Raleigh,
'The English Novel to Waverley' (New York 1894) : Landmann, 'Shakespeare and Euphuism' (New Shakespeare Society Publications, 188085, Ser. I, No. 9) ; Spingarn, 'Critical Essays of the 17th Century' (Oxford 1908-09), and
(Literary Criticism in the Renaissance) (New York 1899): Einstcin, 'Italian Renaissance in York 1899) (New York 1902): The studies of

John Lyly by R. Warwick Bond, Feuillerat and
Croll; Lee, 'French Renaissance in England' New York 1910). Sce Englisif Litera ture; English Literature - Middle Period Literature, and consult works referred to
under those headings. - ior J. E. Spingarn, Major, Infantry, U. S. A., formerly Professor
of Comparative Literature, Columbia Uniof Com
ENGLISH LITERATURE, Victorian Period. The name "Victorian" is popularly given in honor of the late Queen Victoria by that adjective is roughly coincident to England. The death of Scott (1832) is commonly taken as the most con-
venient date for fixing the term to the brilliant venient date for fixing the term to the brilliant
literary movement of the last years of the 18 th century and the early decades of the 19th: and from this point of view, Victorian literature stands for the new literary impulses that suc ceeded the decline of the great work of Burns, Cowper, Wordsworth, Colcridge, Byron, Shel The literary movement of the Victorian perio may best be defincd by the main tendencies in poetry, prose and the drama.

Potry POETRY AND PROSE
Poetry.- The first, the most popular, and the Tennyson and Robert Browning. Three main interests may be observed in their work and that of their contemporaries and successors. The ideal interest in humanity, best represented in the preceding epoch by Shelley, found its work, at first written under the spell of the great lyric poct, early took on those traits of igorous interest in the experiences of manind which are the source of its originality and
popularity. Browning's poems are distinguished for their pervasive feeling for the moods and the experiences of many people of all ages and for the dramatic vigor of their expression. In hese respects he represents a very important novement of the century, and many of the wife, Elizabeth Barrett Browning.
In the second place, the serious moral poetry of Wordsworth, the poctry "of man, of nature and of human life," justly celebrated as one of the chicf glories of English literature, had a poctry of Matthew Arnold and Arthur Hugh Clough. They began writing a few years later han Tennyson and Browning. Like many of heir contemporaries, of whom they are the best mouthpicces, they were oppressed by the melancholy of life, and, to a greater derree that
their literary prototype, they deal with moral with duty, with the vanity of human effort and with "the eternal note of sadness." Their poetry, particularly that of Arnold, is brilliant n style and finely finished, and a high place is accorded to them as exponents of the graver
and more solemn side of the poctry of the cenand more solemn side of the poctry of the cen
tury. Their temper is expressed in a mor sentimental strain in such pocts as Arthur O'Shaughnessy.
Contempnraneous with the decline of thi impulse, which spent itself in the endeavor to
express some solution of the enigma of exist foregoing this quest, gave themselves up to the search for beauty of form and sentiment who busied themselves with the retelling of ol who strove were concerned with romance, an picturesque and ideal world. Three name stand out conspicuously; the painter-poe Dante Gabriel Rossetti; William Morris, poet story-teller, socialist and manufacturer; and
Algernon Charles Swinburne With them is to he named Christina Rossetti, with them is Rossetti
In some respects, Tennyson more than an other poct of the century is representative these three groups. Beginning, in his firs had within a decade produced much original work and by 1860 established his reputation a the best-beloved poct in England. In much of his earlier work, he treated subjects from human life not unlike those of Browning thous lively vigor calm and repression and found, as in Arnold and Clough, a current and lasting expression in many of his shorter lyric such as 'The Two Voices' and 'Locksley Hall, as well as in the longer 'In Mcmoriam' (1850) and as 'ayls of the King' (1858-). Through distinguished and careful workman, and in this respect he is akin to the poets who we spoken of in the third group, as, like them, is, in some respects, a reteller of tales. Unlik them, however, an ethical and not chiefly Besides these

Besides these chief poets, there should be homely life of Dorsetshire; two distinguishe writers of vers de sociéte, Frederick Locker Lamson and Charles Stuart Calverly; Tenny son's own less celebrated brothers, Frederick entry Patmore and many other poets who hav written in a touching way of simple thing and above all, Edward Fitzgerald, whose trans lation of the 'Rubaiyat' of Omar Khayyám ${ }^{1}$ not only classical in its finish but not only classical in its finish but also not un the poetry of the century. Of contemporary English pocts, the greatest amount of popula fame has fallen to Mr. Rudyard Kipling.
Prose.-Important as is the poetry of the cra, it is many ways surpassed by the amount
and richness of the prose. During the perio the great popular form of imaginative litera ture was the novel. Sir Walter Scott, in til preceding part of the century, did more tha any one else in the history of English literatur to establish the widespread vogue of fiction mains an ohject of the detracting enyy and real despair of his successors. The main develop ment of the novel in the Victorian period was, however, along a different line from that es tablished by Scott, whose more immediate suc cessor, Edward Bulwer-Lytton, a prolific write standard of the great master. Rather the nove. developed according to the principles laid down and exemplified by the great writers of the 18 th century, Richardson, Fielding and Smollett, and brilliantly carried on in the early 19 th century
by Maria Edgeworth and Jane Austen. Accordingly the great fiction of the Victorian eriod is largely realistic in tendency. The most brilliant and most popular, as well as the Dickens, who, in the tye period, was charles method of narrative, followed the school of LeSage and Smollett, but added to the English ovel, considered as a whole, a new kind of buoyant humor and a warm and polemic hatred of wrongdoing and oppression. Almost conearlier, was William Makepeace Thackeray, ften spoken of as the chief of English novel ists. Like that of Dickens, his material was largely drawn from contemporary life, but he world more as a panorama, calmlv and with ess personal intensity and less polemic sense Almost contemporary with the finest work of these masters, was represented a very different and highly original impulse in Charlotte Bronte whose 'Jane Eyre' (1847) is the prototype of in vogue.
Of the types of material furnished by these hovelists, that represented by the humanistic novels of Dickens was the most conspicuous in this group of slightly less great novelists of pirit found a very interesting expression in the religio-historical, and modern ethical, novels of Charles Kingsley, the gist of whose teaching is that no carthly happiness exists, save in
the surrender of self to the faith of Christianity (understood in an Anglican sense) : in Elizaeth Gaskell, whose classic and charming 'Cranord' (1865) is less representative of her inrest in social questions than such earlier hovels as (Mary Barton' (1848); and in the besides being vowriter of historical fiction, was also a vehement champion of the oppressed and challenger of injustice. These writers were many respects, akin to Dickens. The mos ic school, in many respects a follower Thackeray was Anthony Trollope, a writer o leasant stories of English life, and one of the ost consistent of the realists.
Charlotte Bronté and her sisters may be tensity specialists "specialist") may also be applied to several writers of the early Victorian period. Frederick Marryat was a specialist in he writing of sea-storics, and some of his deatical creations are famous. Charles Lever esting chicfly with the military hero. An inter peasants and gypsies is to be had in the works of George Borrow. A popular writer on schoo and college life was Thomas Hughes. Ther may be named also Benjamin Disraeli, G. P. R ames, Samuel Lover, and of a somewhat later rd Doddridge Blackmore and Margaret Rich phant.
Since the time of the great panoramic novel is of the early Victorian period, the nove described to specialization, such as has been writers belonging to the so-called later Victorian priod, stands out the name of the great special st in states of the human mind, in questions of
duty, in ethics, "George Eliot" (Marian Evan Cross). Though in one or two novels, as Middlemarch' (1871-72), she attains the paninterest was chiefly centred in the problems mentioned, which she illustrated, for the mos part, in the lives of people of humble and rura circumstance. Her artistic aim was to make in teresting the life of the lowly. Contemporary with her, but continuing his production dodith In a series of powerful novels, he exhibited various phases of human temperament, and ha tried to express what is most native and undamental to human action. He was th with the possible exception of Mr. Thomas Hardy, who is still with us; the latter however has, in a long series of brilitant novels, been les concerned with the problems of the individua soul and the expression of types of huma emperament, than winable chance and capric in human destiny, and in this respect, as in his beautiful pictures of rural life, Hardy also is a great specialist. With them, in a totally different ficld, that of the romance built on the tradition of Scott, but embodying more Louis Stevenson. The most brilliant and popuar work of Mr. Rudyard Kipling also belong o this period.
Quite as important and striking as either the poctry or the fiction of the Victorian period
is the large body of humanistic, critical and scientific prose that is regarded by Victorian writers as among the chicf glories of English iterature. During the period, the essay form owing largely to the growing prevalence o magazines and reviews, was, and still is, for olher than strictly literary purposes. Ther have been practically no important successors o such essayists as Lamb, Fazlitt and DeQuincey (who, like Landor, falls also within the early victorian period). The ancestry of the ditera in humanism, to Burke and the French Revoluion, with some diffusion and dispersion, in criticism, to Colcridge; in history, to Gibbon in economics, to Adam Smith and Bentham in science and philosophy, to tume and Benideas from Gcrmany.
This last was the initial source of inspira tion of one of the greatest humanists of th centary, Thomas Carlvic. Beginning with ranslations of German writers and essays an from the opening of the reign of Victoria, be came at once the prophet and the scourge of his countrymen. Moved by the same spectacl that had stirred Dickens and Kingsley, he pro to demonstrate the futility of contemporary institutions, to decry the impotence of the democracy, and to point out he one way salvation, the dominance of the "hero" whom h illustrated in several important works, a well' (1845) ; and 'The History of Friedrich I' (1858-65). It would be wrong to say tha he mantle of Elijah fell upon the Elisha of John Ruskin, for the carcers of the two overla
by many years. But Ruskin continued vehemently the task of upbraiding his countrymen
for their failure to observe what was of good for their failure to observe what was of good and trying to reform the taste and the æsthetic manners of the time and to lead his readers back to a true idca of the beautiful and the good, he, by the middle of his career, 'Unto This Last' (1860), broadened the scope of his interests so that they included economic and
social, as well as literary and artistic, questions Social, as weli as interary and artistic, questions. that of Carlyle, and their contemporary humanist, Emerson. A third great chastiser of the cevil which men do and think was Matthew Arnold, already mentioned as a poet. From
about 1870 to 1880 , his literary energies orimiabout 1870 to 1880 , his literary energies, origi-
nally devoted to poetry and next to literary criticism, were directed toward trying to make his stubborn island countrymen think rightly on political, literary and religious matters in accord with that formula
characterized as "culture."
With these spiritual guides is to be named the grcat humanist, the friend and contemporary of Carlyle, John Stuart Mill, who, besides being an admirable technical student and expounder of logic and political economy, attempted to
disseminate the principles of moderation, of justice, of right reason, and in all his works, as in his famous essays 'On Liberty' (1859) and 'The Subjection of Women' (1869), sowed the seed of righteousness. For a discussion of the general articles and the special article the general articles and the special article on
Mill should be consulted, since it is out of the province of the present article to touch on scientific studies of the century except in so far as they relate to literature.

The humanistic movement in its earlier phases is often regarded as an aspect of what romantic movement, the impulse that is, whi expressed the desire for individual expansion rather than the submission to the limits imposed by authority, and which implied th
manumission of the human spirit and intellect from current and traditional bonds. In the religious field, the so-called Oxford Movement of 1833-41 is sometimes called romantic in that it was the work of a few young men who revolted at the religious chistom of the time as they conccived it, a purer form of belief and worship. The Oxford Movement received at once its best exposition and severest criticism in the controversial autobiography of the originator of the movement, 'The Apologia Pro Vita Sua' of John Henry Newman, written Newman stands in English literature as one o the great masters of finished prose of a forma but winning cast and as a specialist in somewhat technical religious controversy. Th orthodox Anglican feeling of the time is bes
represented in the sermons and writings of Frederick Denison Manrice, Frederick Wil liam Robertson and Charles Kingsley, the novelist.
The more strictly critical movement, as re lated to literature, goes back to Coleridge an rermany. The dogmatic manner and air
finality which distinguished the pronouncement of the Edinburgh and Quarterly reviewers,
found its descendant chefly in the commonsense criticism of Macaulay. Most of the critics of the early decades of the century, Lamb, Hazlitt, De Quincey and others, were, in one way or another, frankly personal or de-
liberative rather than ex cathedra in their attitude, and in Coleridge criticism tended to the ascertaining and expounding of principles rather than the assertion of dogmas. The carly work of Carlyle, the next important critic
after the group just named, was largely critical, after the group just named, was largely critical,
and it busied itself with the exposition and interpretation of Schiller, Goethe, Richter and other contemporary German writers, for the benefit of his countrymen. Carlyle, however, "has too busy exploiting the doctrine of the to become a literary critic of lasting influence. The main stream of critical tendency, up to the time of the modern scientific and philological schools, had sprung from the stimulating power of the German-derived Coleridgeianism. The chief tenets of that influence were the casting
aside of authority in favor of appreciation: any work of art contained in itself the reason why it was good: and consequently an author's purpose, his range, his total production and his vogue were things to be taken into considera-
tion. This principle passed naturally in the later Victorian period to the criticism of types, wherein criticism tended to become characterization rather than censure or commendation. Two great critics are illustrative of the tendency: Walter Bagchot (1826-88), unex-
celled for the vigor and brilliancy of his charcelled for the vigor and brilliancy of his charWalter Pater ($1839-94$), the polished expounder of artistic personality. The same tendencies, with different material and different emphasis, are to be observed in the work of such distinguished modern critics as Leslie
Stephen, John Addington Symonds, Viscount Morley (1838-), and others. Matthew Arnold, poet and humanist, second to none in importance as a critic, represents a reaction in favor of a more abstract and ideal standard. Historically important as having done much to cil-
large the confines of English criticism and to rid it of insularity, he, nevertheless, was at variance with his contemporarics (as in matters of religion and politics) in asking for more authority and standardization of judgment,
which standard is largely a matter of his owr which stand
predilection
Much of the critical study of literature during the period was dominated by the histori-
cal and the scientific method. That aspect of cal and the scientific method. That aspect of criticism, except in such invaluable work as
Stephen's 'Dictionary of National Biography' and other excellent hiographical works, is, however, less important in the field of literature proper than that of history and science. Though these subjects do not properly enter into the present article, they are so important that mention of them cannot be wholly ignored. historics, and Svmonds, the historian of the 'Renaissance,' there were, in the Victorian period, since the time of Hallam, such distinguished names as Milman, Grote, Macaulay, Harriet Martineau, Kinglake, Froude, Buckle, Frecman, Gardiner, J. R. Green, Lecky and the names of Lyell and Spencer are eminent,
and the theory of natural selection as presented foundly Dan and expounded by Huxley has protury thought since the publication of (The Origin of Species' (1859)
Bibliography.- References are so numerous that it is impossible for the preceding and the ollowing section to make more than a genera reference to the lists contained under the articles on the writers specifically named, though
such books as Saintsbury's 'History of Nineeenth Century Literature) ; Stedman's 'Victoian Poets'; Stopford Brookc's 'English Literture); Palgrave's Golden Trasury (secon rature), and G. K. Chesterton's (Victorian Lit rature) may be cited.

Professor of English, Columbia University DRAMA
At the beginning of the Victorian period ne English stage was still contentedly supportThe objects and methods of both actors and plays were practically the same as they had been at the Restoration. In both, the rhetorical style prevailed. The two Patent theatres created by Charles II still had the sole privilege of playstriving to perpetuate the histrionic tradition which went hack through Edmund Kean and ohn Kcmble, to Garrick and to Betterton. The plays themselves still kept, with slight modifications, notahly in the direction of morality, to fived from Moliere with a slight infusion of Jonson; and of tragedy which was either Elizabethan simple or Elizabethan Restoratonized. Since Goldsmith and Sheridan, lit crature had showed a widening separation ham the stage which almost to their time heen mainly brought about by the great ex ension of journalism and, later, by the signa success of the novel in the hands of Scott These two forms of literary endeavor were offering larger and securer returns than playheatre men of mark and left only the adapters and the hacks. Such was the position at the utset of Victoria's reign. Dramatic history hring her reign is, until the very latter end o , one rather of movements than of men. The changes which were to take place during her
occupation were brought about by social, economic and physical, as well as literary forces or more than any other artistic activity, the stage is responsive to the conditions under which it exists. These changes embraced the ration of the old traditions, the even wider sepa new drama followed by a partial return of iterature to the stage, and finally the growth of a serious conception of the drama as a criticism
of life, a conception already achieved by other European nations.
Lourdon, during the first 40 years of the cen ury, had more than doubled its population ides encroached upon by minor theatres which in spite of their legal disabilities, proved for midahle rivals. When the Act of 1843 aholished
the privilege of the Patent theatres, an era of
vol. $10-25$
more active competition began. This compemeans of advertisement. and the insen its best means of advertisement; and the invention of ventions of great significance to the stage--confirmed the universal tendency toward the spectacular treatment of plays. Inevitably there set in the decline of the rhetorical drama, the was primatily to the ear and not to the eye. Meanwhile another cause was contributing not only to destroy the rhetorical tradition but to widen the gap between literary men and the theatre. What small demand there was for original work would doubtless have in time
recalled writers from the novel and the newspaper, but unfortunately the demand, just beginning to be felt in the early Victorian period, was checkmated by an outside influence. The Romantic revival in France had suddenly broken away from the frigid classicism, so unattractive in a kind of play which the English found more to their taste. These new plays proved casily imitalle and adaptable in London, but the hahit of importation did not become wholethe mechanics of story-telling in dramatic form, and in so doing largely deleted everything else from a play - witty dialogue, atmosphere. locality, and characterization. Thus his plays, being simply stories, conld be given anywere with them for nothing his output and that of his school became an inexhaustible storchouse for adaptation.
The result upon the home product was twofold. It reduced to a minimum the meagre band of English writers, and those that remained no
longer even attempted to represent English life and thought. Instead, they provided for the public an impossible melange of French ideas and emotions served up in British dishes. In the second place, the adaptation and imitation of Scribe's methods proved the finishing blow to
the moribund thetorical concention of comedy hy bringing in a French realism of mounting and stagc-setting. When a stage room had three sides, a cciling and real doors, many conventions of action and dialogue, unnoticed when an interior consisted only of wings and a hack-drop with painted chairs, became ride ideal was developed, by which the play was forced to move a little nearer to the life now in a material way presented with considerable reality. Internally, however, the plays remained as artificial as they had been before, their characters puppets impelled by theatrical and ab-
surd sentiments and exhibiting the crudest of psychologies. The main dramatists of the period which this development closes were Bulwer, Tom Taylor and Charles Reade, and Dion Boucicault. Bulwer, under the influence of the Romantic revival in France, produced 'The Lady (Mys Lens shared the distinction his comedy 'Money' shared the distinction of being with Boucicault's 'London Assurance' and 'Old Heads and Young Hearts,' with Taylor and Reade's 'Masks and Faces,' and with Taylor's 'Still Waters Run Deep.' Boucicault, the archadapter and plagiarist of the period, had the
good fortune to hit upon a type of his own in
his series of very successful Irish plays, but his series of very successful Irish plays, but they are no nearer real studies of life than the Scrile and his school had paralyzed native authorship.
Into this lifeless world came T. W. Robert-son-a dramatist whose pleasant work has no great intrinsic value, although he possessed a
strain of original genius - to create a new form of drama. It ignored not only the old rhetor ical tradition but the new French-English mongrel species. It was merely the comedy of manners, clothed in natural speech and realistic setting, but it scemed absolutely original and spontaneous. It viewed the commonplace soand humor which disguised to an unsophisticated public the insipidity of its characters and the shallowness of their sentiments. Though he brought new life to the drama, fortunately bery, did not long survive him, else the stage would have found itself in almost as lifeles a way as when he rescued it and with an artificiality different from, yet as great as, that gainst which he effectively protested.
Though W. S. Gilbert could not be called a follower of Robertson, he made the same pro
test against the fustian of the stage, and car test against the fustian of the stage, and car-
ried on the verbal flippancy which had vied with sentimentality in the latter's plays. So thoroughly original was he that only the adective Gilhertian can cover the precise blend of wit, delicate fancy, satire and extravaganza,
which achieved some hilliant successes on the legitimate stage and which finally secured the aid of musical accompaniment in a long series of comic operas that stand, like their author, a class apart.
In spite of Robertson and Gilbert, however, tion from France. But there, meanwhile, had sprung up a larger type of social drama than hat of Scribe,- a type of which 'Diplomacy' s an illustration, and imitation of this wider species was less deadening than the former
had been. When, however, international copyright was at last secured and French works could no longer be adapted for nothing, the effect of fair play for the English dramatist was seen almost immediately. A group of young writers arose who, beginning as imitators, were native purposes. Of this group, Mr. A. W Pinero and Mr. H. A. Jones were pre-eminent. They sought their material at home and, oberving carefully, reproduced sincerely. ther decade had to pass in experiment hefore hese men really undertook a drama which vinced anything like a serious psychology and did they dispense with elementary love-idylls and the kind of story which had been up to that time inevitable to every play, or set out definitely for a more thoughtful and virile drama covering a lowing their lead, Oscar sow and Mr. Bera more serious content. Wilde's pyrotechnic brilliance of dialogue and inverted epigram concealed at first his genuine dramatic quality and adroit constructiveness as a playwright

Mr. Shaw took up the stage as a lively form of presenting himself and his social propaganda, as drama there brilliant plays hardly succced success with the public no question of their success with the public and as literaturc.
These men with Mr. Pinero and Mr. Jones have once more elevated the English drama not only to the level of Continental drama but of the literature of their own land.
sented by Westland Marston, Talfourd, Browning and Tennyson. The formal dramas of the first two are long forgotten. Masterly as are some of Browning's plays, they seem remote from the purpose of the stage, and when some
of them got there it was discovered that they of them got there it was discovered that they could be only recited, not acted, at any rate,
they can be successful, if at all, only in the manner of the rhetorical tradition for which they were conceived. Tennyson's plays, al-
though loosely constructed in the loosest of Elizabethan formulas, the chronicle history, have beern acted with considerable success. This was due, no doubt, to the circumstances of their production, for his fine verse lacks vigor
and he has not scized upon the essential moand he has not scized upon the essential moments of his stories, the crucial parts of mons. In 'Queen Mary' and 'Harold,' however, he presented genuine dramatic material. If the taste for the poetic play can be revived in the future, it must be as drama first and poetry afterward, and drama conceived in a modern rather than Shakespearian type.

Lecturer in English, ALGERNON TASSIN,
ENGLISH MAIL COACH, The Thomas De Quincey's 'The English Mail Coach' consists of three sections, the first of which
appeared in Blackwood's Edinburgh Magaappeared in Blackrood's Edinburgh Maga-
zine in October 1849, with the added title, 'On the Glory of Motion,' and with no intimaappeared what the anthor subsequently, in the collective edition of his writings, called 'Section II, The Vision of Sudden Death,' and 'Section Theme of Sudden Founded on the Preceding Theme of Sudden Death.) It would seem that
the 'Dream-Fugue) was composed in 1844 (when De Quincey had virtually conquered the opium habit), and the two introductory sections five years later; these are, then, subordinate to the 'Dream-Fugue.' which is a specimen of De Quincey's rhythmical, "impassioned" prose -
the medium which, for his special purpose, he preferred to metre. (The English Mail Coach' peing a kind of sequel to 'The Confessions of an Fnglish Opium-Eater,' the 'Dream Fugue,' as the author wotld have us believe, constitutes one of the poetical dreams, full of beauty and
terror, which arose from his indulgerce in terror, which arose from his indulgence in
opium, though based upon actual occurrences in his life. Accordingly, in Scction I, his experiences while a student at Oxford, traveling to and fro by coach during the time of the Napoleonic war, are related, with much circumstance and digression, in a less impassioned style; in
Section II is recounted an accident on Section II is recounted an accident on the hig carriage narrowly escape destruction from the flying mail coach; and in Section III suggestions from these themes are elaborated in a highly ornate style, the "music" of which is is."
deed beautiful, though the value of the content is slight. The allusions to Waterloo, and to the way the news of the battle spread through
England, give the document an interest for the historian. Consult Hart's edition of 'The Engish Mail Coach) (New York 1893) ; and Cooper (Leipzig 1902).

Lane Cooper.
ENGLISH MERCURY. See ChenoPiUM.
ENGJISH PALE, the name formeriy applied to extraterritorial districts in Ireland poles from the surrounding country, marking definite boundaries, these districts being governed lyy special laws. The pale in Ireland was established in the reign of Henry II; its extime varied under different kings; from the
time of Henry VIII until the subjugation by Cromwell, it comprised most of the modern counties of Dublin, Louth, Mcath, and Kilare. In 1558 the "English" or "Calais Pale"
n France extended from Gravelines to Wissant in English Pale also existed in Scotland or a short period under the Tudors. See Pale. ENGLISH POETRY, Spasmodic School Carlyle, and and fubst applied to Byronic verse by liam Edmonstoune Aytoun to a grotespor of minor pocts of the midldle 19th century. The school was said to include Philip James Bailey, Sydhey Thompson Dobell, Alexander Smith, George Gilfillan, John Stanyan Bigg, and according to some critics, Gerald Massey and eve pain ar cosmic any spasmodic strivings afte unattainable idcals, discontent with life and it mysteries, sceptical disquietude, vain effort and esentment against unrewarded labors, charac rerized their writings, which, however, wer merit, and marked ay passages of considerable gling phase of contemporary thought. In 'Fir milian: A Spasmodic Tragedy, Professor Ayloun in 1854 allacked and parodicd the writridiculing their subjects and imitating thei ponderous style, especially the works of Bailcy articles of the writers mentioned and consul Martin, (Sir) T., 'Memoir of W. E. Aytoun' London 1867).
ENGLISH SNIPE, a name frequently used for the common American snipe or Wil how smpe (Galinago belicala). (Gallinao Gawever, an English snipe proper (Gallinago rom the former and has its habitat in the north of Europe. Sce Snipe.
ENGLISH SPARROW. Sce House ENGLISH TAPESTRIES. See Tapes tries.

ENGLISH VERSIONS. See Biere.

ENGLISHRY, or ENGLESCHERIE, an il Norman law term, which originated after lueror to designate the identity of a person ound slain, as a native. If the hody was un dentificd, the law presumed that the person
was a Norman, vindictively slain, and where
found, the community of 100 was fined. If the Englishry of the victim was established the fine was remitted.
ENGRAFTING. Sce Graftage
ENGRAILED, a heraldic term used to esignate a line made up of concave semi-cir ENGRAVINGS
ENGRAVINGS. For humanity's great ion it would be difficult to claim too much Next in importance to the art of printing, as an aid in the history of the advance of civilization, certainly comes that of illustrating. The growh ine is onc of great interest, as well as importance, and many books have been dedicated to an exposition of our best engraver and their productions, known to the comnois scur as "prints." And among connoisseurs o art their collections Etching.
opper plate havisg process is carried out on polished. This plate is heated. and then coated with an acid-resisting substance, usually a mix ure of burgundy-pitch, asphaltum and beeswax materials dissolved in oil of lavender or chlo foform are sometimes used. The plate next receives a coating of lamp-black. This prepared plate has the drawing scratched through the sur face coating by means of etching-needles. All work is drawn in reverse (negative) of the plate is next coated with varmish (the process is termed "stopping-out"). Now the plate is mmersed in an acid for the process of "biting in." Those lines which are to remain the finest are stopped out by varnish early, then the plate is returned to the acid bath to athain the dec
black lines. When the process has been car ried on till the artist is satisfied with the condition, the varnish and wax are cleaned off and the plate is ready for the press. Next the entire upper surface of the plate is coated with filled. then the ink on the upper surface is cleaned and a copper-plate press takes an impression (called a "print") on damp paper Dry-point Etching is done by engraving the design directly into the metal with a needle (using no acid). This scratching of a furrow metal) on cither side of the channel; the effect of this burt on the impression is characteristic of a clry-point print. Etching, unlike engraving with a "burin") (graver) is done as rapidly as the genius of the operator permits, and there-
fore is a process frequently used by painters. Among the carly painter-etchers were Albert Dürer, Lucas van Leyden, Vandyck, Rembrandt. Agostino, etc. Rembrandt was the first exponent of the art of etching (17th century) besides producing the grandest work
known. Among other well-known early etchers were Van Vlict, Ostade, Paul Potter etc were In England were Barlow, Gaywood, Hollar, Place; and in France, Callot, Bosse, etc. In he 18th century were Hogarth, Claude Gelée, Guido Reni, Canaletto, etc. In the 19th century were such masters as Ingres, Corot,

Whistler, Joseph Pennell. Most noted of etchings are, probably, those from the drawings of Claude, reproduced by Richard Earlom in the great 'Liber Veritatis' (1740-1822).
Wood Engraving.- Here the te
just the reverse of etching, inasmuch as parts to appear in black or color are left the parts to appear in black or color are left the
height of the surface, while the background (white) is cut away. Our earliest woodcuts
are German (middle 15th century) and the are German (middle 15 th century) and the
practice grew up with the sister art of printing practice grew up with the sister art of printing. aided the advancement. To the early school of wood engravers belong such names as Lucas Cranach, the Behams, Lucas van Leyden, Altdorfer, Burgkmair, Baldung, Ammon, etc. The 17 th century witnessed the decadence of
wood engraving, but in the 181 h century it was revived. The early workers had engraved on the plank or with the grain; in the revival a modern method of engraving across the grain 'on boxwood blocks was used. The of making cuts into the wood surfacc. Thomas of making cuts into the wood surfacc. Thomas
Bewick (1758-1828) was one of its earliest exponents. The prints of this period show clearly the merits of the changed system, allowing such delicate treatment. Among its exponents are Whymper, Baxter, Thompson, Lin-
ton, Harvey, etc., in England; Vogel, Ungelton, Harvey, etc., in England; Vogel, Ungelmany; the Pannemakers, Yoú, Pisan, Colin, Valloton, etc., in France; Veldhecr, Nieuen-
kampf, etc., in Holland. But another process of kampi, etc., in Holland. But another process of wood engraving was brought about by the fact
that wash drawings on the block permitted light that wash drawings on the block permitted light
and shade effect to be engraved through the painting. This soon put the original work in the hands of draughtsmen to be engraved by what soon became an artisan engraver class. Decadence set in and the first half of the 19 th century found its art work done in the metal
(steel). Periodicals (started by the Illustrated London Newos, in 1842) brought back work again to the engravers as wood engravers, because they could put wooden engravings on the press with the type, whereas the metal plate engraving had to be printed from separately. from illustrated volumes on India paper for which such artists as Rossetti, Millais, Hughes,
etc., did drawings on the block and "facsimile" work was done by such geniuses of interpretation as the Dalziel brothers and Swain. Birket Foster did fine drawings as did also North,
Lawless, Small, Boyd, Houghton, Sandys; even Burne-Jones and Whistler did. a few. Noted 19th century wood engravers were Roberts,
Thomas, Babbage, Comfort, Cooper, etc. FurThomas, Babbage, Comfort, Cooper, etc. Furnishing drawings from artists quickly led to
photographing the picture on the block and was not adapted to stand the heavy wear in producing prints on a large, popular scale, original (clichès they were termed). In America, Harper's Magazine and, later, the Century helped the calse of the wood engraver and they ing out the tones displayed in chalk or wash ing out the
drawing.

Line Engraving.- Here the engraving is done by a graver (burin) of prism form which
scoops out a strip of the metal nearly free from
"burr," and easily scraped. After cutting out all the lines that go to make up the picture, ink is applicd, filling up the lines. Then the surface is cleaned and an impression (called a print) is taken on damp paper on the press. tine engraving is a 15 th century invention of artists, and did fine line engravings. In Flor ence were Botticelli, Baldini, Fra Lippi, Robetta. Andrea Mantegna worked in Padua; Marc Antoni in Bologna; Francesco Francia in Venice; Raimondi in Rome, cte. Clever line engravers in Germany were Albrecht
Dürer, the van Mechens, Schōngatuer, Aldegrave, Altdorfer, the Behams, Pencz, etc.; and in Holland Rubens and Vandyck, with; their pupils. In England were Holl, Pclaram, Payne, Cecil, the Audrans, Nanteuil, Roullet, etc. Also numerous 18 th and 19 th cc
Stipple Engraving.- This process consists of producing a series of dots so related to one another as to size and distance that the combination produces the desired picture. The usual method is to produce the marks by etch-
ing, to be further manipulated with a specially ing, to be further manipulated with a specially
prepared graver. While a pure stipple cngraving consists of dots solely, the line engraver frequently used the stippling method to obtain softness in flesh shading. Crayon drawings were in vogue late in the isth century so that stipple engraving (best suited) was quite comof Fragonard Wattea11, etc The cer ponents of this style were Francisco Bartolozzi (1725-1815) and his school. Stippling never found much favor on the Continent. Wynne specialized largely on Angelica, Kaufmann on
drawings and portraits; other noted names are drawings and portraits; other noted names are
Bond, Bromley, Cheesman, Blake, Picart, Stodclart, the Holls, Heath, etc.
Steel Engraving. - The introduction of soft steel (1822) by Thomas Lupton for cngraving mezzotints brought with it two changes. Com mercially the plate was more profitable, pro-
ducing about three times as many impressions ducing about three times as many impressions
as the copper; and the harder metal permitted as the copper; and the harder metal permitted
much more minute and delicate work to be done. To the untrained eye the difference in ordinary line work is very slight. The incision of the tool is less deep in the harder metal forbidding the bold gradations of line that copper permits. In ctching the ink does not produce
from stecl as artistic an impression as from copper and is easily recognizable. In mezzotints the steel medium produces a "thinness" not seen in copper work. Most steel engravings
are done by ctching and later improved by the are done by ctching and later improved by the graver. The stages ("trial states") through
which a steel cngraving progresses to a finigh are so widely apart that the work was frequently divided among several engravers, each having his special part. This commercialization soon brought decadence, the work becoming mechanical. Work of good merit was done by the following, among others, engravers: Fittler,
Heath, Smith, Bromley, Danforth, Doo, Goodall, Raimbach, Holl, Le Keux, Finden, Greatbach, etc. The later invention of giving a steel coating to a finished copper plate engraving
made the old medium as commercially productive as the steel, and soon ended the career of tive as the
the latter.

Turner Prints. - The great engraving after Turner") are generally treated to a speMallord William Turner (1775-1851) did entrely finished engravings himself but in most cases confined himsclf to outlines of the repro uctions of his own drawings, and left the continuation (always under his close supervision,
however) to other engravers. "Turner prints" range from 1794 to 1856 (five years after his death. The most noted collection is a series o 7l, engraved for his great 'Liber Studiorum.' Assisting him were such engravers as Basire, mediunkarton, Chnt, Lupton, etc. Turner is his 'Southern Coast,' Whitaker's History of Richmondshire,' etc.
Mezzotints.- In this process the plate is given an immeasurable number of small "burrs" "r sharp projections. This work is termed "rocker") an instrument consisting of a curved blade similar to a cheese cutter. This is rocked from one side of the plate to the other and its lecth create a jagged line (termed "way") Starting at the top the "ways" are made in the plate. Next these rough lines are made from top to bottom, at right angles to the last ones, then others are done diagonally a every possible angle gradation. The picture is produced on this roughened surface by tooling way the burrs for the lights with a "scraper" the high lights being next brought out by polallows great delicacy in "tones" closely simila to those of a painting. The process was in-
vented by Ludwig von Siegen (1640). Noted vented by Ludwig von Siegen (1640). Noted
mezzotint engravers were Sherwin, Place Bezzotint engravers were Sherwin, Place, Lutterel, 'Simon, Pelham, Beard, McArdell, Houston, Miller, Spooner, Purcell, Frye, Green, Earlom, etc.
Aquatints.- In this process the surface of of plate is prepared with a "ground" of resin is done with the penetration of the etching needle exposing the plate to the acid. The beauty of the aquatint depends upon the various depths to which the acid bites into the metal Certain parts are "stopped out") with the resisting substance (where only shallow lines are
desired) early in the bath, the plate being again immersed for deeper lines, then other lines stopped out," and the plate returned to the acid. This process is continued for perhaps a dozen bitings, each application creating anothe one. When finished the work resembles a method were Le Prince, Malton, Stadler Lewis, Sutherland, Turner (C.), Metz, Havell, rout, F. Goya, Delacroix, ctc.
Bibliography.-Hayden, A.. ‘Chats on Old
Prints) (New York 1906); Hind, A. M., 'A (Boston 1908) ; Maberly, T., (The Print Col'ector) (New York 1880) ; Richter, E. H., (Prints) (Boston 1914); Wedmore, F., 'Fine
Prints) (New York 1897); Weitenkampf, F., Prints) (New York 1897) ; Weitenkampf, F.,
(Prints and Their Production: a List of Works 'Prints and Their Production: a List of Works
in the New York Library' (New York 1916).

Clement W. Coumbe,
Technical Art Expert.

ENGROSSING, in law, an act which, on tatute books, when the natural laws of trade were little understood, and political economy not even guessed at, was set down as a crime. adays is known as "cornering the market" by buying up the crops or the herds wholesalc (Fr en gros) before they were fit for use, in orde to retail them at a great profit when they maoffense was not available for consumption. Eng land, but a crime in common law, and from the time of Edward VI to that of Queen Anne laws were repeatedly passed for its repressiongrossing was witnessed in an English law court. In 1844 all English, Irish and Scottish statutes, in respect to the offenses known as forestalling, engrosing and regratig, or realing at a there has been a good deal of litigation in the United States, and much discussion all over the civilized world with regard to the legality of corporations formed for the express purpose of monopolizing the trade in certain necessities or luxuities of life. (See Combination; Monop-
oly; Restraint of Trade; Trusts). Consult Cunningham, W., 'The Growth of English Industry and Commerce (3 vols., Cambridge 1903-12) ; Girdler, J. S., 'Observations on the Pernicious Consequences of Forestalling, Regrating and Ingrossing, etc. (London 1800); Ancient and Modern Respecting Forestalling, Regrating and Ingrossing, etc.' (London 1800); Marwick. Sir J. D., 'On Forestalling, Regrating and Engrossing, etc.' (in Society of Antiquaries of Scotland, Proceedings, Scssion 190203 , Vol. XXXVII, pp. 145-159, Edinburgh 1903), The term is also used to denote the careful document in large hand; and is often applied in the United States, to the final and certified copy of a statute, which is rady to be signed by the President, or the governor of a State.

ENHARMONIC (from Gr. Evapuoviкoe in accord). In modern music a general term to though specifically there is a slight variation of pitch, which the same note takes according to its adjustment to a fundamental tonic. Thus C and D b are practically the same note on keycd instruments, yct strictly speaking, the
former should be produced by $15-16$ of the whole string sounded, the latter by $9-10$. An enharmonic change of key, that is shifting from one scale to another, as in transposing C.
to $D \quad b$, often enables a composer to write to D b, often enables a composer to write more easily by avoiding recurrent accidentals. tinguished by the use of small intervals or quarter tones, such as the tetrachord of which the first two steps were quarter steps and the third a major third. See Mode.

ENHUBER, ĕnhoo'bër, Karl von, German painter: b. Ho, Bavaria, 16 Dec. 1811 ; d. Munich, 6 July 1867. He studied at Munich, at first being known as an animal painter and later applying himself to romantic and humor-
ous themes, being especially felicitous in depicting the peasantry of Upper Bavaria. Among his works are 'The Dying Gunner'; 'Poachers') his works are 'The Dying Gunner'; 'Poachers' ;
(Smoking Boy'; 'Interrupted Game of Cards' ;
(Munich Burgher Guardsman'; 'Grandfather's Delight'; (wood Carver in His Shop'; and

ENID, the wife of Geraint in Tennyson's Idylls of the King' (q.v.). She is upheld as
a model of conjugal fidelity.
ENID, Okla., city and county-seat of Gar-
field County, $361 / 2$ miles north by east of Kingfield County, $361 / 2$ miles north by east of King-
fisher and 88 miles by rail west by north of Oklahoma City, on the Chicago, Rock Island and Pacific, the Atchison, Topeka and Santa Fe, and the Saint Louis, and San Francisco railroads. It is a banking city; owns its water-
works, and adopted in 1909 the commission works, and adopted in 1909 the commission
form of government. It contains a College of Fine Arts, Saint Francis Institute, Phillips University, a business college, a State institution
for the insanc, an excellent high school, a for the insane, an excellent high school, a Carnegie library, courthouse, two hospitals, Federal buildings, opera house, etc. Among the
industrial establishments are tile and iron works, sash and door factory, electric supplies, nursery, marble works, washing machine factory, metal silo factory, planing and flour mills, bottling works, manufactories of binders, candy, bricks, corn-seeders, steel posts, boilers and rugs. The
United States census of manufactures for 1914 dnited States census of manufactures for 1914 tablishments of factory grade, employing 383 persons; 276 being wage-earners receiving annually a total of $\$ 175,000$ in wages. The capital invested aggregated $\$ 1,667,000$ and the year's output was valued at $\$ 2,611,000:$ of this,
$\$ 563,000$ was the value added by manufacture. There are two parks. Enid is situated in a rich agricultural section and is one of the largest poultry centres west of the Mississippi, shipping in 1913 more than $\$ 3,000,000$ worth of poultry
and eggs. Underneath the city from 35 to 45 and eggs. Underneath the city from 35 to 45
feet flows a subterranean river, with an inexhaustible supply of pure soft water, which is pumped to the reservoirs at a cost of less than six cents per 1,000 gallons. I'op. (1920) 16,576.

ENIMAGAN, a linguistic stock of Indians
South America, inhabiting the northern half in South America, inhabiting the northern half of the Gran Chaco. It includes the Angaite, Enima, Guana, Sanapana, Sapuki, Sujen, works of Boggiani, Hawtrey, Kersten, Schuller and other anthropologists who have written on these tribes.

ENKHUIZEN ěnk'hoi-zĕn (I Iat. Enchusa), Holland, town on a projection in the Zuyder Zee, 29 miles northeast of Amsterdam. Its
most important public building is an elegant most important public building is an elegant
town house with a lofty tower, and mural town hoinse with a lofty tower, and mural
decorations by Johan van Neck. In the 17 th century it had a population of upward of 40,000 and sent a fleet of 400 vessels to the herring fisheries, hut the herring trade has died away.
Its chief industries now are ropemaking and Its chief indlustries now are ronemaking and
shiphuilding. The town is the birthplace of the painter Paul Totter. Pop. 7,748.
ENLIGHTENMENT, Philosophy of, the name popularly given to much of the nhilosophi-
cal thought of the 18th century, which cut loose from. s11perstition and attempted to establish reason as the foundation of all belief and of all rules of conduct. It included the empiricism
and deism of the English school, the sensualism of the French as well as the ultra-nationalism of Germany. Individualism was a strong figure
in its teachings. Locke, Bayle and Lcibnitz, Hume, Voltaire, Lessing, Tom Painc and of the school, if school it may be called. Consult Hibben, J. G., 'Philosophy of the Enlight-
enment' (New York 1910) and any standard enment' (New York 1910) and any
work on the history of philosophy.
ENLISTMENT, a contract between a government and an individual, in accordance with
which the latter voluntarily assumes the duties of a soldier in return for which the government assures him a soldier's rights, pay and allowances. It differs from ordinary contracts tor scrvices in that it involves a change of status, so that the contract cannot be broken with in punity at the will of the enlisted man. Enlist which those nations resort that do not favor conscription. Accordingly before the European War, it was hest exemplified by the armics and navies of the English-spcaking peoples. In the
United States army, recruits to be enlisted mist United States army, recruits to be enlisted must
be of good moral character, i.e., must never have been convicted of a felony nor imprisoned - and must be able-bodied, and between the ages of 18 and 35 , if it is their first enlistment. They must be citizens or have taken out thei first papers, and must be able to speak, read and
write the English language. The physica standards vary somewhat with the different branches of the army and the need for men, but in time of peace are very stringent. The enlistment of recruits is part of the duty o the adjutant-general's department. The period of enlistment is seven years, of which the fpent with the colors, and the remainder with the Army Reserve, which is only on duty in time of war. Extra pay is allowed for re-enlistments within three months.
be of sound physique, not subject to mist mist able to read or write; or otherwise of satisfactory general intelligence. In gencral, only
citizens of the United States and it possessions citizens of the United States and its possessiots
are accepted. They must be of good character are accepted. They must be of good character and must not have been convicted of a crime are made among those between the ages of 17 and 25 . The term of enlistment for those under 18 is until they become of age; for those over
18 , four years. For those under 18, the consent of the parent or guardian is necessary. All those enlisted after they are of age scrve for four years, but the term may be cxtcnded for from one to four years by the voluntary agreement of the enlisted man, if he is not undesirable. The upper limit of age for cnlistment is 35 , but not all ratings have the same
limit. Enlistments are made at naval rendezvous, on board recciving ships, on board cruising ships which are short of their complement at a port where there is no rendezvous or recciving ship, on board vessels of the Bureau the
Fisheries and at naval stations to fill up the Fisheries and at naval stations to fill up re taken at each enlistment. As in the army extra pay is given to those who re-enlist, but the period within which this re-enlistment may take place is four months.
In the British army, since the law of 1907 , the army consists of the regulars and the ter
ritorials. The regular army comprises the pimanent army, the army reserve and the specia
reserve. The period of enlistment is 12 years, of which thrce, five or nine years may be spen ted to good service men is 21 years, after which they are pensioned. On the average those men Who serve in the colonies or in India serve from 12 to 16 ycars. Enlistment in the special re-
serve is for six years, in the territorial army Serve is for six years, in the territorial army Ior four. majority of the enlistments are made between the ages of 15 and $161 / 2$. After two years of preparation, the term of service with the fleet is 12 years. Re-enlistment for 10 years is per-
mitted. See Army Organization.
ENNA, August, Danish composer: h. NakSkov, Laaland, $1860 . \mathrm{He}$ was entirely self eling troupe and in 1881 settled at Copenhagen where he cked out a living as a violinist and produced the operetta, 'A Village Tale.' Later he was made conductor of a provincial company. During this time he produced several of Gade. Through the latter's instrumentality Enna was enabled to spend one year in study (1888) in Germany. He produced (The Witch) in 1892, an opera which at once brought him success and fame. Other works since then have heen reccived more or less favorably but none 'Cléopatra' (1894); 'Aucassin and Nicolette (1896) ; 'Lamia' (1900) ; 'Ib and Little Christina' (1902) ; 'The Death of Antony' (1903); Golden Slipper of St. Cecilia' (1904) ; 'Gloria
Arsena' (1913): 'A Mother's Love,' a legend Arsena' (1913); 'A Moth
for chorus and orchestra.

ENNA, or HENNA, Sicily, the ancient name of the town now known as Castrogio island, was renowned in antiquity as one of the
principal seats of the worship of Demeter. See principal seats o
Castrogrovanni.

ENNEACRUNOS (Gr. "nine springs"), a famous fountain at Athens (q.v.).
ENNEKING, John Joseph, American painter: b. Minster, Ohio, 4 Oct. 1841 ; d. 17 Nov. 1916. He studied at Munich and Paris landscapes and figure paintings. Hc reccived honorable mention at the Paris Exposition of 1900 and among his works are (Moonlight on the Giudecca, Venice' (1876); 'Freshly Picked' ' 'Drove of Cattle on a November Scene in France'; (November Twilight' (1881); 'Summer Twilight' (1883); 'Indian 'Springtime'; and' (Autumn in New England' (Worcester Museum)
ENNEMOSER, ěn ẽ̌-mō-zĕr, Joseph, Austrian medico-philosophic writer: b. Raben-
stein, Tyrol, 15 Nov. 1787; d. Egern, Bavaria, 19 Sept. 1854. He fought in the rising of the Tyrolcse against the French in 1809, acting as Secretary to its famous leader, Andreas Hofcr.
Previotis to this he had begun the study of medicine at the University of Innshruck and at the universities of Erlangen and Vienna.
During 1813-14 he fought against Napoleon as an officer in the famous Litetzow Corps. After the Peace of Paris he went to Berlin, where he
finished his studies and in 1816 took his degree in medicinc. In 1819 he became professor
of medicine at the new University of Bonn. of medicine at the new University of Bonn.
From 1837-41 he practised medicine in Innsbruck. In 1841 he went to Munich, where he obtained great reputation by the application of magnetism as a curative power. He had become interested in this subject while studying
at Berlin and published a number of works reat Berlin and published a number of works re-
lating to it. The most important of these is lating to it. The most important of these is (Leipzig 1844), which has been translated by W. Howitt as 'The History of Magic' (2 vols., London 1854). Others of his writings are uber den Ursprung und das Wesen der menuber den Ursprung und das Wesen der men-
schlichen Scele) (Bonn 1824); 'Anthropologische Ansichten, oder Beiträge zur Besseren Kenntnis des Menschen' (Bonn 1828); 'Der Magnetismus im Vcrhältniss zur Natur und
 'Anleitung zur Mesmerischen Praxis) (Stuttgart 1852); 'Das Horoskop in der Weltgeschichte) (Munich 1860).

ENNERY, ĕn-nẻ-rê, Adolphe Philippe D. frequently called Dennery, French dramatist: b . Paris, 17 June 1811; d. there, 25 Jan. 1899. He began life as a clerk, but later turned to the drama; he studied scenic effects, the quick change from the tragic to
comic, and the contrast between the serious and ludicrous characters. He subscquently became the master of modern melodrama, producing alone and in collaboration some 200 plays. During the 50 years of his active life he accumulated a large fortunc. In 1896 he was made a
Commander of the Legion of Hono:. His most successful plays include 'The Grace of God' successful plays include 'The Grace of God
(1841); 'Mary Jane) (1845) ; 'If I Were King'
(1852) ' T the Taking of Peking) (1861); (1852) 'The Taking of Peking' (1861); 'Two Orphans' (1875); 'Martyrdom' (1887).
He also wrote, in collaboration with others, the He also wrote, in collaboration with others, the
librettos for Gounod's 'Faust) (1856); Gounod's ${ }^{(L e}$ Tribut le Zamora) (1881); and Massenct's 'Le Cid) (1885). During the latter ycars of his life he also wrote a number of novels, most of them based on plays of his, which were
published serially in Paris newspapers.
ENNES, ẽn'nâs, Antonio, Portuguese dramatist: b. Lisbon 1848; d. 1901. He was for 1886 was appointed chief librarian of the National Library and in 1890 Minister for Marine and the Colonies. His first play, 'Th Lazarists,' had extraordinary success in Por tugal and Brazil and long held the stage. It (1874) and be the come 'Eugenia Milton 'The Mountebank'; 'The Emigration') ' A Di vorce.' The last was translated into Italian and French.

ENNIS, Ireland, town in county Clare, on the Fergus, 25 miles northwest of Limerick by rail. It contains a Roman Catholic college and Ennis College, founded by Erasmus Smith. The ruins of a 13 th century Franciscan abbey is one of its attractions and a notable monument has able trade in grain, flour and agricultural produce is carried on and large fairs and markets are held. Pop. 5,472.

ENNIS, Tex., city of Ellis County, 35 mile outh of Dalla, has extensive agricultural and stock-raising interests and contains cotton compresses, gins, railroad repair shops, cottonseed-oil mill and four mill, etc. Since 1914 it has been unde the commission form of government. Th wNNIS are municipal property. Pop. 7,22
ENNISCORTHY, Ireland, town, in the county of Wexford, situated on the rive old castle erected by one of the early Norman conquerors, and in the neighborhood is Vinegar Hill, the scene of a skirmish in 1798, when the town was stormed by the rebels. The rive Slaney is navigable and there i
trade in provisions. Pop. 5,495 .

ENNISKILLEN, Ireland, a borough and market town of county Fermanagh, 37 mile northeast of Sligo, on an island in the narrowest part of Longh Erne. Suburbs are on the adjoining mainland. In its town hall are kept
the flags of the battle of the Boyne. The bat le of 1689 between the forces of James II and William III, in which William's forecs wer victorious, took place here. The noted reg:ment called Enniskillen Dragoons was firs formed from the defenders of the town at this battle. The manufacture of cutlery, straw hats shirts and collars and the tanning of leather are carried on here, and
sawmills. Pop. 4,847 .
ENNIUS, Quintus, Latin poet: b. Rudix, was 38 Cato the Censor brought him to Rom where he soon gained the friendship of the most distinguished men and instructed the young men of rank in Greek. With an extensive
knowledge of the Greek language and literature he united a thorough acquaintance with the Oscan and Latin tongues and exerted great in fuence on the last. He wrote an epic poem in hexameters, 'Annales,') describing the histor of Rome from the arrival of Æncas in Italy to
the poet's own times; tragedies and comedies, he poets own times; tragedies and comedies, now remains except fragments given as quotations in other ancient authors, many of them mere citations by grammarians and other insignificant extracts. A few larger fragments have been preserved, which give a favorable imday was great. His poems were for a lon period read aloud to admiring multitudes, and hey were often quoted and referred to by the great writers of antiquity Fragments of his works have been edited by Müler, L. (Saint Petersburg 1885); Ribbeck, O. in 'Scacnix and Vahlen, J., (Leipzig 1854 and 1903). Consult Duckett, E. S., 'Studies in Ennius' (in Bryn Mazur College Monographs, Monograph C. 'Vahlen's Ennius' (in American Journal of Philology, Vol. XXXII, p. 1, Baltimore 1911) Muller, L. 'Der Dichter Ennius' (in Sammhungen' Wissentschaftlicher Vortraege, edited by R. Virchow, N. F. Ser. VIII, Heft 185 , Ham burg 1893); 'Die Entstchung der Römischen Kunstdichtung) (ib. N. F. Scr. IV, Heft 92,
Hamburg 1889)
(Corpus Poetarum Latinorum' (Vol. VI, London 1894);

Ribbeck, O., 'Gcschichte der Römischen Dichtung' (2 vols., Stuttgart 1887-89) ; Vahlen, Bcmerkungen zum Ennius' (in Konigl. Preus,
Akad. der Wiss., Sitzungsberichte 1899, p. 266 , Berlin 1899) ; (Uber Ennius und Lucretius (ib. 1896, Part I, p. 717, Berlin 1896); (Uber die Annalen des Ennius' (in Königl.' Preuss. Akad. der Wiss. Philos.-Hist. Kl
lungen 1886, Part I, Berlin 1886).

ENNODIUS, Magnus Felix, a Latin Church father: b. at either Arles or Milan about 473 orphan. When the Visigoths invaded Italy he was sent to an aunt in Milan who educated him. After her death he married a wealthy woman and lived in lavish fashion. A severe illness made such a deep impression upon him that he nun. In 496 he went to Rome and soon became a noted man, He was the first to give the Bishop of Rome the name of Pope. In 511 he succeeded Maximus as Bishop of Pavia. Twice he was sent as a messenger to the Empero ern and Western Churches. His writings include a 'Life of Epiphanius' and several theological treatises. He is said to have written in favor of the frecdom of the will. His writings have becn published in Basel 1569, Tournay 1610, Latis ${ }^{1611, \text { and atia }}$ (Vatina'
ENNS, êns, river in Austria, has its rise in the Alps of Salzburg, flows east-northeast and then takes a northwesterly course, discharging into the Danube near Mauthausen. Length about 160 miles. Through part of its course it forms the bou
Lower Austria.

ENOCH, Hebrew patriarch. He became the father of Methuselah at the ace of 65 years; and we are told that he "walked with him" and at the age of 365 years "God took stood to the words quoted are generally understood to mean that Enoch did not die a natural hook of Hebrews (xi, 5) confirms this view. Fnoch is the name of three other persons in the Bible, one of them being the eldest son of Cain (Gen. iv, 17). Saint Enoch, associated with the city of Glasgow, is a corruption of
Saint Thenaw, the name given by Saint Serf to Saint Khenaw, the name g ,
ENOCH, Books of. According to Gen. vi with God and disappeared for God took him. He is supposed to be identical with the seventh of the 10 antediluvian kings in Berosus (Eucdorachus), the Enmeduranki of K 2486, 430 the seventh king in the Sumerian list discover
hy Poxbel (Babvlonian Publications of the University of Pennsylvania, VI, Philadelphia 1913) Enmeduranki, like Enoch, was called into com munion with the gods and initiated into the 365 indicates heaven and earth. If the numb 305 indicates the original solar character
Enoch, the story is likely to have been derived from a Babylonian or Amorite version in which the regnal years had not been brought into the chronological system found in Berosus. The opportunitics of this world-wanderer for ob-
serving celestial phenomena, reading the heavserving celestial phenomena, reading the heavinvited speculation. He became the inventor
of writing, mathematics and astronomy, and the Corerunner of Dante as an explorer of heave
and heli. Alexander Polyhistor in the time and hell. Alexander Polyhistor in the time of ing learned him referred to by a writer as havbins, 'Præparatio evangelica' ix, 17, 8). With the growth of angelology the interest cen tred on the fate of the "sons of God" who had married the "daughters of men" (Gen. vi, 1 ff.) while the concern about the future of sinner manded authoritative revelations. None wa better fitted to impart information on thes things than the translated patriarch.
to The writings ascribed to Enoch do not seem any time either by Jys or Christians. In som circles, however they have been regarded a authentic and cherished as sacred books. Fro references in the book of Jubilees and the earlier stratum of the Testaments of the Twelv of thems it may perhaps be inferred that some tioned in 4 Era xiv, 46 , which were not included in the finally adopted Palestinian canon. There is one direct quotation in the New Tcsta ment: The epistle of Jude (vs. 14) cites a pasmanner os to show books of enoch in such genuine utterance of the patriarch and an inspired prophecy. In the epistle of Barnabas a other passage is quoted as "Scripture. Tertul han defended the authenticity and sacred char that of the book known to prophetically to the Lord, having probably in mind the passage cited by Jude. Clement o Alexandria also quotes the book with conf dence. Origen charges Celsus with not having read the book of Enoch whence his statemen aware that the books ascribed to Enoch wer not universally accepted as divine in the churches. Anatolius of Laodicca quoted a pas sage simply to show the character of the Jewish hooks but "ancient and divine refers to the Jerome rejected the book of Enoch as apocry phal: Allgustine took the same position; and Is counted among the Apocrypha by the Apo tolic Constitutions (5th century), Psend or 4800 stichi) and the (Index LX librorum. The parts copied by George Syncellus (c. 700 may have been drawn from Pandorus of Alex andria; brit the manuscript found at Panopol seems to have been written later than the 8t century. Many writers, from 4 Ezra and who do not mention the name of Enoch, show an acquaintance either with the book itself or With its characteristic ideas, notably that of the rall and punishment of the angels.
tained Abyssinia the book of Enoch has mainof Job to the present time, not only among the Christians, but also, according to the testimony of Bruce, among the Jews whose Ethiopic text, however, has not yet been examined. To what served another book ascribed to Enoch, pre served in the Slavonic Church, was regarded as canonical cannot be determined. The HeJewish writers, does not scem to have been con-
sidered by them as a part of the canon. Venorable Bede (died 735) thought that the book sacred scriptures because of its authority, age and use, but especially because of the testimony of Jude. William Whiston defended the canonicity of the book known to him through Syncellus, and William Murray regarded the nucleus of the Ethiopic Enoch as genuine and in-
spired. The Roman Catholic Church reckons the books ascribed to Enoch among the Apocrypha of the Old Testament, while many Protestant scholars, who give this name to the deu-lero-canonical books of the Old Testament, designate them as Pseudepigrapha, a term first
used by Jerome in regard to the Wisdom of Solomon and the Epistle of Jeremiah. Unidentified quotations indicate that all the Enoch literature has not yet been discovered. The three extant works are generally called the of the languages in which they first became known in their full extent, to modern scholars. Ethiopic Enoch.- Whether Pico della Mirandola possessed a manuscript of this book is still uncertain. According to Fabricius, it was stated by many, on the testimony of Reuchin, sum of moncy. In Reuchlin's treatise, 'De arte cabalistica) (1517), Simon does not question the possible survival of some such books as that of Enoch, but declares that he cannot afford, like Mirandola, to buy at great expense the 70 books of Ezra. Mirandola himself
speaks of his purchase and indefatigable study of these books, both in his 'Apologia,' written of these books, both in his 'Apologia,' written p. 330 . A description of his cabalistic codices was given by Gaffarel in 1651 (reprinted in Wolf, (Bibliotheca hebraica,) I, 1715); in the first manuscript, ascribed to Recanati
century), there are some extracts from the $\mathrm{He}-$ century), there are some extracts from the this may have given rise to the rumor. But Reuchlin refers directly to the book of Enoch in 'De verbo mirifico,' written in 1494 (Lyon 1552, pp, 92f). Here Sidonitus titles in front of the volumes they offer, falsely declaring that one is the book of Enoch, an other the hook of Solomon. It would seem, therefore, that Reuchlin had heard of a separate hook of Enoch being offered for sale.
Since Ethiopic texts were published as "Chaldæan" by Potken already in 1513 and Reuchlin knew in 1515 that Benignus had studied the "Chaldic" letters used by Prester John, it is not altogether improbable that the book to which he referred 20 years earlier was the Ethiopic into Mirandola's library; but it may have been a Hehrew Enoch. There can be no question that Guillaume Postel before 1553 was shown a copy of the Ethiopic Enoch at Rome by an Abyssinian priest and had its contents explained to him, as he refers to the Noachic interpolations. spent seven years in Egypt, reported to Peirese that he had seen (c. 1630) this book in Ethiopic script and language, and gave the title correctly. Gassendi relates that Peirese purchased another manuscript. This was afterward found
by Ludolf not to he the book of Enoch and it by Ludolf not to he the book of Enoch and it the story of Enoch's birth. James Bruce se-
cured a copy of Ethiopic Enoch in Abyssinia n 1769 and brought to Europe three mannscripts. A brief account appeared in Michaelis (1774): a fuller account was given by Brica himself in 1790 . The text has been edited hy Laurence (1838) on the basis of one manuscript; by Dillmann (1851) who had five manuscripts; by Flemming (1902) who used 15; and Charles consulted 29 in his translation of 1912 None of these is carlier than the 16 th century even the oldest of them inspire no very grea confidence, and all have manifestly suffered much in transmission. Of the Greek text the 14: xv, \&-xvi, 1, and viii 4 -ix 4 in dunlicate were first published by Scaliger (1609), then by Goar in the editio princeps of the Chrono raphia (1652), by Fabricius (1713), Dindorf (1829) and recent editors of Enoch. A fragby Mai (1844) and Gildemeister (1855) A arger part, including i-xxxii, 6 and xix 3 -xxi, in duplicate, was discovered at Panopolis (mod ern Akhmim) in 1886-87 and published by Bouriant (1892-93), Lods (1892) with a French translation, Dillmann (1892), Charles (1893) Latin translation, cvi 1-18, was published by Charles (1893) and James (1893)
Already Grotius, familiar only with the Syncellus fragments, expressed the opinion that he book of Enoch originally was small, but rew gradually hy expansion. Laurence (1821) sections, and de Sacy (1822) suspected Chrisan interpolations. Murray (1836), who contended for a genuine nucleus, recognized mong the extensive later additions several dis inct books and assigned a scparate authorship tained that there were several authors and especially that xxxvii-lxxi formed a book inserted in the larger volume. Dillmann (1853) asumed a different authorship for cvi-cvii and viii and a number of interpolations. Sieffert Through the studies of Krieger (1845) Ewald 1854) and Hilgenfeld (1857) the marked diference between xxxvii-lxxi and the rest o he work became generally recognized; and through the analytic work of O . Holtzmann given to the view that the volume is made up of five distinct books by different authors, viz. 1, i-xxxvi; 2, xxxvii-lxxi; 3, 1xxii-lxxxii; 4, lxxxiii-xc; 5, xci-cv, and two shorter appendices, cvi-cvii and cviii. This division is indced largely suggested by sub-headings in the
text itsclf. But within each of these books a text itsclf. But within each of these books a
lack of unity has also heen felt by critics and it has heen explained either by accretion or by compilation. It is thought that an original work has been expanded in the course of transmission, or a compiler is supposed to have pieced it together from various sources. The earlier and more widely accepter theory is that
of accretion, hut in recent years several scholars have favored a documentary theory similar to that now in vogue in Pentateuchal criticism. It is therefore proper to consider the composition as well as the date and original language
of each book separately.

Book I unquestionably contains some dis parate elements. It is ikely to have begun originally in vi, 1 , since $i-v$ seems to be a genhowever, did not as yet include volume which, While xvii-xix and some other passages appear to be interpolations, the attempt to cxplain the seemingly identical roles of Scmyaza and Aza zel by the compilation of two documents is less convincing. The idea of a Greck original ha other part of Ethionic Enoch. Those who have made a special study of the subject are substantially agreed that Book I was written in Aramaic from which it was translated into Greck. As the descriptions of the fall of the angels, Enoch's mediation and his celestial journey give no ciear indications of date, what younger, must decide. Some scholars have thought of the period preceding the Maccabea uprising, the majority, on what would seem Hyrcanus ($135-104$ в.C.)
In Book II the outlines of a ground-plan are clearly discernible; inserted excerpts from hook of Noah are equally unmistakable in main, $7-1 \mathrm{v}, 2 ; 1$; and lxv-lxix, 25. That the re mainder is not a Joseph's coat without seams as it was once called, is now universaly ap
mitted. But while some recent critics, like Ap pel and Gry, assume a compilation of differen documents, one designating the celestial guid as "the angel who went with me," another a "the angcl of peace," and a third being particl1larly interested in wisdom, most scholars hav sive interpolations. Some have been satisfied with indicating as such xli, $3-8$; xliii; xliv; lix x; lxxp lxxi. Others, like Bruno Baue Böttcher, Drummond, Pfleiderer, De Faye and Boussct, have looked upon all the passages re-
ferring to the Messiah as Christian interpola tions. In the case of these Schmidt thinks o successive expansions, first by Jewish, and the by Christian hands. The idea of a Christian origin of the Parables, held by Hilgenfeld Vernes, Kuenen, Tideman, Stanton, König and
Cornill, is no longer advocated. As to the riginal language there is still a decided differ ence of opinion between the two scholars who have published the results of special investiga Hebrew this point; Charles thinks that it wa Hebrew, Schmid that it was Aramaic. The from a Greck version in which the New Testa ment term for the "Son of Man" formly used, by an Aramaic-speaking Jew who endered it in thrce different ways, correspond ng to three Aramaic expressions. The latte sign of acquaintance with this particular book in patristic literature throws doubt upon the existence of a Greek version, and in any case decms it probable that the translation was made by an Aramaic-speaking Jewish Christian who used two other terms besides the one uniforml found three expressions for "Son of man" in the Aramaic original before him. In regard to the date, the most widely accepted view at the
present time is that this book was written not present time is that this book was written no who are often mentioned as persecutors, are
upposed to be Alexander Jannæus and the they could he charged with putting their "faith n the could be charged with putting their "faith hands" (xlvi, 7) and many scholars have conciered it more natural to understand the hrase as referring to pagan rulers. If Roman nperors and governors are meant, the time of Gaius Caligula ($37-41$ A.D.) is more likely than the timerod is significant that those ideas and expressions Which have their closest counterparts in the Cospels and present the Messiah in a more ranscendent character than is found anywhere Jewish literature, fit very loosely in the conhe Gospels appears to be a translation, not of a Greck, but of a Christian Aramaic original.
Book III, dealing with astronomy, has no ouht a few interpolations. The endeavor to prove that it is a compilation of four documents called for by the facts. If Jubilees was written Hebrew, as is probable, this book may have een written in the same language. Like Jubies and Slavonic Enoch, it advocates a solar ar of 364 days; it is quoted in the former The author makes the longest day of the year 16 hours, which led Laurence and Murray to fer that his home was near the Caspian or the Black Sea; and Martin thinks that it may incate the use of a document written in the the writer reflected upon the lencth of the day in the region where he supposed the antediluhans to have lived. In Book IV there are some vious additions. The original language is upposed to be Aramaic. In the Gistoric vision ither shepherds are no longer conceived of as et it is admitted that the four periods of their omination represent the Chaldæan, Persian tolemaic and Seleucid kingdoms, and the great orn in xc, 9, is assumed to refer either to er is Maccabrus or John Hyranus. The lat c. 108 b.c. Dislocations and interpolations are so found in Book V. It may have heen writ en in Hebrew in the 1st century p.c. Not much ater the two anpendices scem to have been penned in the same language. The first of them Noachic stratum; others have surmised for it an independent Essene origin. Recent critics ave been inclined to ascribe to the 2 d century C. the hook of Noalh, from which excerpts ave hecn copied in the book of Enoch; this is ages may and some of the appropriated pasapocalypse.
Grecke influence of Babylonian, Persian and Treek speculation, mythical and scientific, upon
this literature is unmistakable, 1hough it has his literature is unmistakable, though it has growing conceptions of angels and demons, eaven and hell, the Messiah and his kingdom, he last judgment and the resurrection, in the Senerations immediately preceding the appearnce of Iesus. If the original of the Parahles with proach to the Christology of the New Testa-
ment might be detcrmined with greater assur ance than now is possible. The eschatologica There is nowhere a clear allusion to ating state ion of the body; immediately after death spirits pass to their destiny of joy or suffering and appear to be clothed with a spiritual body yet a final judgment is emphasized, and a cast in Book I a return to terrestrial life seems sents numerous problems that cannot be solved until the Semitic original is recovered
Slavonic Enoch.- This book was first pub lished by A. Popov in 1880 from a manuscrip written in (The Bo a In 1886 Sokolov found at Belgrade a Bulgarian manuscript of the 16th century representing the same reccnsion. Novakovic pul)ished in 188 Scrbian manuscript of the 10 h century, found at Belgrade, representing a diffcrent recension. of the same type are a manuscript in vienn Barsov in Moscow, and a number of frag ments, some as old as the 14 th century, pub ished by Tichonravov, Pypin, and Popov. It has become customary to designate the former ecension, which is longer, as A, the latter a
B. Of A an Enclish translation was made by Morfill (1896) ; Bonwetsch gave a German version of both A and B (1896); excerpts of A were rendered into Latin by Szekely (1913) and both A and B were translated into Eng ish by Forbes (1913). Charles, Bonwetsch upon A as a faithful translation of the Greck ext and B as an abbreviated cony of the Sla vonic translation, and have therefore concluded that the allthor was an Alexandrian Jew writng his work in Greek. Charles indeed main tains that some parts may originally have been
written in Hebrew, since he thinks they are quoted in the Testaments of the Twelve Patriarchs, but deems it impossible to scparate ther from their context. Unfortunately, none o the nine passages in that work in which Enoch is quoted can er regarded as having come from has pointed out that practically cvery passage cited to prove either familiarity with the Greek version of the Bible or acquaintance with Hel enistic thought is ahsent in B. He does no consider it possible that a Christian Slav, living
in the 10 ih or 11 th century, could have possessed such a marvelous knowledge of the tendencies of thought among the Alcxandrian Jews, or could have had any motive for exer cising his skill in the removal of every touch Alexandrian expansion of a Greek text still free from the peculiarities indicating a loca origin, the latter may well be a translation of a Hebrew or Aramaic hook written in Palestine at some time between 50 B.C. and 0 A.B. Othe books of Palcstinan messiah and a physical resur rection. The interest in a solar year of 364 days (xvi, 5 B) may point to a period not very long after Eth. Enoch 1xxi1-lxxxii and Tubilees; the later (rreek recension A has a year of $3655 / 4$ days (xiv, $1 ; \mathrm{xvi}, 5$). A few Chris-
tian interpolations have heen suggested, especally by Schiirer and Székely. Those worthy of consideration, such as the statement concern-
ing the pre-eminence of the eighth, i.e., the first day (xxxiii, 1, 2), the prohibition of oaths in very nearly the words of Jesus (xlix, 1, 2) and in the longer recension. The counsel not to requite cvil $(1,4)$ need not be Christian. But in the ethics of the original work there is an unmistakable approach to the teachings of Jesus. Origen knew this work as a part of his Greek hook of Enoch, and refers to the descriptions ance with Eth. Enoch xxxvii-lxxi.
Hebrew Enoch.- During the Middle Ages a book of Enoch written in Hebrew was quoted by many Jewish writers. It may have heen of this work that Pico della Mirandola and cerpts or some longer manuscript Drusius called attention to two quotations in the book of Zohar (13th century). A list of quotations in Menahicm Recanati, Hekaloth, Maase Bereshith, Pirke de Rabhi Eliezer, and Rasiel has been given by ellinek. This scholar pub-
lished in 1873 from a Munich codex the 'Sefer Hekaloth or Book of Enoch.' It was an incomplete edition, but could be supplementerl by the 'Sefer Hekaloth of R. Ishmael,' puhlished at Lemberg, in 1864. An unedited ford. A critical edition and a translation are needed. Brief descriptions have been given by Buttenwieser and Charles. The book tells of the ascent of Rabbi Ishmael to hcaven where he receives a serics of revelations from the angel Metatron (Lat. metator = guide), with of Ethiopic and Stavonic Enoch are used by the author, though there is no trace of the characteristic ideas of the Parables. An apocalyptic fragment, preserved in the 'Siddur) of R. Amram Gaon. (9th century), and apparently
written at the time of the Hadrianic persect1tion, seems to furnish a link connecting Slavonic Enoch with Hebrew Enoch, which is likely to be carlier than the 4th century, as it is quoted in Bahylonian Talmud, Berakoth 7a. What the language of any earlier Enoch book may have when Aramaic ceased to be the vernacular many books were translated into Hebrew, among them even the Aramaic parts of Daniel.
Bibliography.
Bibliography.- I. Translations, with commentary, in Latin, by Silvestre de Sacy, in
Magasin encyclopédique (Paris 1800 , Chaps, i xvi, xxii, xxxi) ; Gfrôrer, A. F., in (Prophetæ Veteres Pseudepigraphi' (Stuttgart 1840) ; and Stephan Szekely, in (Bibliotheca Apocrypha' (Freiburg 1913, extensive excerpts) ; in English, by Richard Laurence (Oxford 1821; later edidover 1882) ; Charles, R. H. (Oxford 1893. 2 d ed., 1912) ; in German, by Hoffmann, A. G. (Jena 1833-38); Clemens, Richard (Stuttgart
1850) ; Dillmann, A. (Leipzig 1853); Beer, G. 1850); Dillmann, A. (Leipzig 1853); Beer, G.
(Tubingen 1900); Flemming, J., and Rader(Tubingen (Leipzig 1901); in French, by Brumet, G., in Migne 'Dictionnaire des Apocryphes' (Paris 1856) ; Lods, A., of the Greek text (ib
1892) ; and Martin, Francois (ib. 1906) ; in Russian, by Smirnov, A. (Kasan 1888) ; and in Hehrew, by Goldschmidt, L. (Bcrlin 1892). ntroductions hy Zockler (1891) ; Konig (1893); Bertholet (1906) ; Stcuernagel (1912); Sellin
(1914) ; Mirandola, Pico della, 'Opera Omnia' (Basel 1572) ; Reuchlin, J, 'De arte cabalistica'
(Hagenau 1517; a De (Hagenau 1517; appended to Galatin, 'De arcanis catholicx veritatis,' Ortona 1518, and to
Mirandola, op. cit.) : Postel G, (De originibus' Mirandola, op. cit.); Postel, G., 'De originibus'
(Basel 1553): Scaliger (Thesaurus temporum' (Geneva 1609); Drusius, J., 'De patriarcha Henoch' (Frankfort 1615) ; Gassendi, P., (De vita Pcirescii) (Paris 1641)'; Ludolf,'J." 'Historia athiopica' (Frankfort 1681), Fabricius, menti) Collex pseuldepigraphus veteris Testasertation sur le livre (l'Hénoch) (Paris 1720); Whiston, W., 'A Collection of Authentick Records' (London 1727); Bruce, J., 'Travels Discover the Source of the Nile' (London 1790) ; Sacy, S. de, in Journal des Savals
(Paris 1822); Murray, E., 'Enoch Restitutus' (Paris 1822); Murray, E., 'Enoch Restitutu11'
(London 1836): Bauer, Bruno (Kritik der evangelischen Geschichte) (Leipzig 1841);
Krieger, E., 'Beiträge zur Kritik) (Nurnberg Krieger, E., 'Beiträge zur Kritik' (Nurnberg
1845) ; Lücke, F., 'Einleitung in die Offenharung 845) ; Lücke, F., 'Einleitung in die Offenharung Johannes' (2 d ed., Bonn 1852); Ewald, H., Henokh Entstehung) (Göttingen 1855). Hilgenfeld, A., 'Die jüdische Apokalyptik' (Jena 1857) ; Sieffert, F., (De apocryphi libri Henochi origine
Philippi,
F.,
argumento'
Das Buch Hönigsherg 1867) ;
Henoch) (Stuttgart Philippi, F., 'Das Buch Henoch) (Stuttgart 1868) ; Halevy, J., in Journal Asiatique (Paris sianiques' (Paris 1874) ; Tideman, A., in Theologisch Tijdschrift (Leiden 1875); Drummond, Deane, W. Jewish Messiah) (London 1877); Deane, W. J., 'The Pseudepigrapha' (London 1891); Bousset, W., 'Die Religion des Juden-
tums' (Berlin 1903) ; Appel, H., 'Die Komposition des athiopischen Henochbuches' (Gütersloh 1906) ; Burkitt, J. C., in Journal for Theological Studies. (Cambridge 1907): Schmidt, N., 'The Original Language of the Parables of Enoch' (Chicago 1908); Gry, L, (Ln Le Muséon (Louvain 1908-10); Lagrange, E., Ge messianisme' (Paris 1909); Schuirer, E.., Leipzig 1909) : Charles, R. H., in 'Old Testament Apocrypha and Pseudepigrapha) (Oxford ${ }^{1913)}$ (The Book Morfill, W. R., and Charles, R. H. 1896) ; Bonwetsch, N.. 'Das slavische Henochbuch') (Berlin 1896): 'Schürer. 'Geschichte des jüdischen Volkes' (Leipzig 1909) ; Forbes, N., and Charles, R. H., in 'Old Testament Apocrypha and Pscudepigrapha) (Oxford 1913): hurg 1913); ; Schmidt, N., 'The Two Recensions of Slavonic Enoch) (in Journal of American Oriental Society, New Haven 1918). III. Iellinek, A., 'Beth ha Midrasch) (Vienna 1853-' 78) ; Buttenwiescr, M., 'Apocalyptic Literature' (in 'Jewish Encyclopedia,' New York 1901), 1912).

Professor of Semitic Nathaniel Schmidt, Cornell University.
ENOCH ARDEN. Tenny:on's (Enoch Arden,' a narrative in 911 lines of blank verse, is one of the most popular pocms if modern times. Sixty thousand copies of and
were sold soon after its publication in 1864 and were sold soon after its publication in 1864 hanguages. The story itself was such as to make
a wide appeal, but the poet enhanced its power fishing village and a sailor's exile on a tropic island with elaborate, vivid detail and genuine feeling. He shows also the strength and purity of humble English folk, as he imagines them, of certain simple, universal, if restrictcd, ideal for his children and in his self-sacrifice when returning from long, absence to find that he has been thought lost at sca and his wife happily remarried, he refrains from disclosing himsel The story, as distinct from the sctting, is pre sented with studied, almost prim, simplicity, but
with narrative effectiveness, to be seen, for instance in Enoch's silent, self-effacement after beholding Annie at the hearth with Philip and her children. False sentiment appears, perhaps, in Enoch's. making sure that his wife shall
know of his return after his death and in the know of his return after his death and in the hero's funeral There is weight too in Bagehot' criticism that the poom is an example of ornat rather than pure art, concealing lack of truth o facts under beautiful but irrelevant details Nevertheless, 'Enoch Arden' holds its place as one of the loveliest descriptive and idylli

William Haller
ENOCK, C. Reginald, English mining exmany years in various countries in professional work and in the investigation of natural re sources, especially in North and South America, and of the British empire. He has carried out scientific work ior the governments of Peri fore the Royal Geographical Socicty, the Royal Society of Arts, ctc. He has taken an active interest in the work of economic reform. His publications include 'The Andes and the Ama2on' (4th ed., 1910); 'Mexico'; 'An Imperial ted States) (1910) : 'Pioneering and Map-mak ing) : The Republics of Central and South America' (1913) ; 'Human Geography and Industry Planning'; 'The ropics, their Re Sources, People and Future'; 'The Need for
a Constructive World Culture.'
ENOMOTO, Buio, boo'ō, Japanese states man: b. Tokio 1839; d. 1909. He was educate came the first president of a republic which he established in the island of Yego, but was ousted by the Japancse army in 1869. After imprisonment for two years he was appointed sece-admiral in the Japanese navy 1874. He and hecame a sember of council of State and Minister of Fducation 1888, Minister of Foreign Affairs 1891 and Minister of Agriculfor four year

ENOS, nōs, Greece, town on the nort coast of the Ægean, 70 miles south by west o Adrianople. Its harbor is commodious, hut messels neglected and too shallow for decp-sea vessels. The trade, formerly of importance, seded as an export centre by the adjacent sea Gret of Dedeagatch. The town is the see of Greek archbishop. Homer attests its antiquity
by alluding to it the 'Tliad' (IV, 519). Fop 000, principally Greeks.

ENRIQUEZ GOMEZ, ẻn-re keth gö meth, Antonio (properly Enriquez de Paz), Spanish poct; son of a converted baptized Portuguese
Jew: b. Segovia carly in the 17 th century. He entered the army in his 20th year and rose to the rank of captain; but in 1636 fled to Amsterdam, and, having there professed the Jewish faith, was in 1660 burned in effigy at a Scville auto-da-fé. The date of his death is not known. Besides 22 , comedies, some of number of other works, both in prose and verse: 'La Vida de Don Gregorio Guadaña (1644); 'La Culpa de Primer. Percgrino' 1647.) ; (El Samson Nazareno) (Roucn 1647) 'Las Academias Morales de las Musas' (Madrid 1660). The first of these, his lyric poems, and two or his dramas have ¿Biblioteca de Autores Españoles' (Vols.
XXXIII, XLII, XLVII, Madrid 1846-80). Consult Fitzmatricc-Kelly, J., 'A History of Spanish Literature) (London 1898) ; Ticknor, G., 'History of Spanish Literature)' (3 vols., Boston 1872).

ENROLMENT, an entry on a public register. In England this term denotes the registration of recognizances, decds of sale, courts, or by a clerk of the peace on the records of a court of Ouarter Sessions. The term in this sense dates from the enactment in 1536 of the Statute of Enrolments, designed to prevent the practice of secret conveyances and requiring as a condition of their validity that they be
enrolled or recorded, within six months of their date, in the manner prescribed by the act. See Conyeyance; Registration of Property Titles.

ENS. See Enns
ENSCHEDE, en-skâ-dă', Johannes, Dutch printer: b. Haarlem 1708; d. 1780 . He received his education at Leyden and in duc time father had edolished He introduced the type known as Holland Gothic and did much to further the art of printing. In 1768 his firm issucd the 'Proef van Lettern,' specimens of printing
types. His firm is still' in business in Haarlem.

ENSCHEDE, Holland, town in the province of Overysscl, 30 miles cast-northeast of Zutphen. Rebuilt since its destruction by fire in 1862, it has large yarn- and cotton-mills, iron products, print goods and electrical machinery.
ENSEMBLE, all the parts of a thing taken as a whole, or the general cffect produced ly general cffect of a drama, opera or picture.
ENSENADA, èn-sā̄-ıä'dā (Spanish, a creck, cove or bay). (1) Seaport of Argentina, in the La Plata and is about 40 miles southeast of Beicnos Aires. (2) Scaport of Mexico, in the norihern part of Lower California, on the Pa-
cific coast at the head of the Bay of Todos los cific coast, at the head of the Bay of Todos los
Santos, about 50 miles south of the horder and 70 milcs southeast of San Diego, Cal. It has some few local manufactorics and is the seat of a United States Consul. Pop. 2,170.

ENSIGN, Orville Hiram, American electrical and mechanical engineer: b. Ithaca, N Yiniversity. From 1882 to 1890 he served as University. From 1882 to 1890 he served as
machinist at Ithaca, Schenectady and New York, after which he was engaged as consulting engineer to several public service companies in Los Angeles and vicinity. In 1897 he became superintendent and chicf engineer of the Southern Calitornia Power Company, and in this capacity 30,000 -volt long-distance transmission in the world, and when this company was merged with the Edison Electric Company he became superintendent and chicf electrical and mechanical
enginecr until 1904, when he was appointed chief electrical and mechanical engineer of the United States Reclamation Service and of the Los Angeles Aqueduct.

ENSIGN, the flag or colors of a regiment, in England, consisting of a field of white, blue or red, with the union in the upper corner, near the staff. Of naval ensigns the white flag
is confined to the royal navy, the red to the merchant service, the blue to the naval reserves. In the American navy the ensign is the national flag, and it is also flown by the merchant service. In England, up to 1871, the lowest grade of commissioned officers in a regiment of in-
fantry, by the senior of whom the regimental ensigns or colors were carried. The corresponding rank in a cavalry regiment was cornet The name is now abolished, the title of 2 d lieutenant being substituted for it. Also the title of the lowest grade of commissioned offl-
cers in the United States navy, which they cers in the United States navy, which they
reccive on graduation from the Naval College. reccive on graduation from the Naval College.
In the 16 th century ensign was corrupted into ancient and is so used in Shakespeare, and was at that time applied in the two senses of a flag
and the bearer of a flag. Sce FIac and the bearer of a flag. Sce Flag.
ENSIGN STAL'S TALES (Fänrik Stâls Sāgner). The best known work of Johan
Ludvig Runelorg, the greatest Swedish poet of Ludvig Runeberg, the greatest Swedish poet of
Finland; appearcd in two parts, the first in Finland; appeared in two parts, the first in
1848 and the second in 1860 . Most of the pocms are narratives and relate incidents from the war of 1808-09, when the Finns tried in vain to stem the Russian invasion. The poems cele-
brate the heroes of this struggle and present brate the heroes of this struggle and present
scenes of great dramatic power. The first poem, entitled 'Vârt land' (Our Country), is highly lyrical and has become the national hymn of linland. The tales form a connected whole, even if the person of the ensign often steps behind the scenes. Although arranged rather refer to the war, and they all have the same general theme. This theme is love of country. Runeberg was inspired with a profound love
for his native land and for its history, and was for his native land and for its history, and was
charmed by its natural beauty. In his pocms charmed by its natural beauty. In his pooms he lauds the patriotism, the self-sachince and
devotion of the men and women who suffed and died for Finland. 'Ensign Stầ's Tales' are imbued with sound humor. While the background throughout is the decnly tragic
struggle in a hopeless cause, humorous tnuches, struggle in a hopeless caluse, humorous tnuthes,
artistically interwoven, relieve the strain. Consult Estlanderg, C. G., 'Runcleerg's Skaldskan'); Wrangel. Ewert, 'Om Fannik Statls sảgner'; sảgner.'
J. Alexis.

ENSILAGE, ěn'sǐ-lầj. Sce Silage
ENSTATITE, $\mathrm{Mg} \mathrm{Si} \mathrm{O}_{3}$ a silicatc, chictly of magnesium, but also containing more or les iron and aluminum. The mineral commonly oc
curs in massive or fibrous forms, but distinct crystals, prismatic in habit and belonging to the orthorhombic system, are also occasionally found. Its color varies; it may be white, grect ish or brown. Its hardness is 5.5 , and its specific gravity about 3.2. Erstatitc is a common
constituent of peridotites, crystalline schists and meteorites, and is also associated with certain serpentines. It belongs in the pyroxene group is insoluble in hydrochloric acid and before the blow-pipe it fuses only along its thin cdses. The name (Greck, "adversary") refers to these
refractory qualities. It is found in Putnam County, N. Y., Bavaria, the Harz Mountains Moravia and Tyrol.
ENTABLATURE, in architecture, the horizontal, continuous work which rests upon a row of columns and belongs especially to classica architccture. It consists of three principal di-
visions, the cpistyle or architrave immediately visions, the epistyle or architrave immediatcly
above the abacus of the column, next the fricze and then the cornice. In large buildings projections similar to and known also as entabla tures are often carried round the whole edifice K. along one front of it. Consult Boettichcr, 1874) : Hirt, A cktoni d Grundsatzen der Alten) (Berlin 1809); Kohte, J. Die Baukunst des Klassischen Altertums, etc. (Braunschwcig 1915); Marquand, A., 'Greek
Architecture)
(New York 1909): Uhle, C., Architecture' (New York 1909) ; Uhdle,
'The Architectural Forms of the Classic Ages, 'The Architcctural Forms of the Classic Ages
etc.' (edited by R. P. Spiers, Berlin 1909).

ENTADA, a gentis of leguminous plant ropical shrubs, remarkable for the great size o their pods. E. scandens has pods which meas ure from six to cight fect in length. The seed have a hard, woody and beautifully polished shell, and. are often made into snuff-boxes
ENTAIL, the
ENTAIL, the settlement of an estate so hat it shall pass according to a certain rulc o
descent. In England after the Nerman Con quest cstates were frequently granted to a man and the heirs of his body, but in time the law courts interpreted such grants as conferring tion, namcly, the begetting of an heir, was ful filled, the estate became a fee-simple absolute and could be alienated by the grantec. The statute "De Donis Conditionalibus," passed in 1285, declared that this interpretation was conltrary to the intention of the grantors, and cth-
acted that in all future grants of this nature the grantec should have no power to alienate the estate, and that on the failure of issuc the land should revert to the grantor. The effect of this statute was to prevent the free conveyance of land, hut gradually the lawyers created a serics, by means of which a tenant in possession cotld har the entail and convert his estate-tail into a fee-simple, that is, into his absolute property. (See Frir). These remie dies created by the courts were abolished hy the Fines and Recoveries Act,
passed in 1833 , and a direct means of harring passed in 1833 , and a direct means of harring every actual tenant-in-tail shall have full power
to dispose of, for an estate in fec-simple absolute, or for any less estate, the lands entailed an estate of frechold, cannot bar the entail though he may lar his own issue, without th consent of the "protector of the settlement," who is usually the tenant for life
ENTASIS, èn'tā-sis, in architecture, the delicate outward curve of a column, found in perfection in the Doric column, by which an and is described whose highest point is about midthe column is intended to counteract the optical error by which a rigidly straight perpendicular line has a tendency to appear concave. The entasis is also calculated to suggest life and mo weicht of the entablature Consult Goodycar, W. H., 'Greck Refinements) (New Haven 19i2), 'Penrose, F. C., 'An Investigation of the Principle
1851).

ENTELECHY, ẻn-tēl'č-kĭ, a Greek word meaning "the bringing to completion," in the tion or connecting action between what he calls Suvapus, potentially and epyov, actuality; that Which, among the schoomen, is conceived as intervening botwcen the posse and the esse, for example, between the infinite nossibilities of manifestation in creation and active providence.
ENTELLUS MONKEY, a hook-name for the langur (Scmmopithecus cntellus), the sacred monkey of Hindustan, representative of the god Hanaman. Sce Langur.

ENTELODONTS, a group of split-hoofed, swine-like animals of early Tertiary time, the giant pigs, represented in hoth the Old and New are found in rocks from Eocenc to Lower Miocene age from New Jersey to the Rocky Mountains. The head was very long, the neck short, the body compact, the long spines of the dorsal vertebre forming a decided hump on the shoulders, and in some the legs were very long and
slender giving a stilted appearance to the animal. The tecth were large and strong, especially the incisors and premolars (sharp cuttingtecth) and the canines were large hut not deern witd boars. The brain-casc was "absurdly small") says Scott: and "cvidently these great pigs were profoundly stupid." Beneath each eyc, was a long, descending, bony process, and the lower jaw had in its under side two pairs wereny protuherances, which Oshorn believes Were for the attachments of the great muscles to believe formed their principal food (Brackett). The genus Dinohyus, of the Upper Oligocene of Nebraska, contained species six fect or more in height, and others were scarcely less. Hemisphere)' (New York 1913).

ENTENTE CORDIALE (Fr., cordial the reconciliation, in 1904, between France and Great Britain after many years of enmity. In diplomatic language the phrase signifies a close friendship between two or more nations, though
them. See Alliances; Triple Alliance; Triple Entente.
ENTERALGIA, ěn-tê-rāll'jĭ-ac. See Enteritis.

Enteric fever. Sec Typhord Fever.
ENTERITIS, an inflammation of the small intestine, the most important symptom of which
is diarrhoca. Different varieties of enteritis are described as catarrhal enteritis, the acute enterocolitis of children, or cholera infantum, croupous enteritis, and enteritis due to tuberculosis, carcinoma, and other malignant diseases. In primary enteritis the symptoms may be acute or
chronic the most important single symptom being diarrhoca. The stools are thin and watery, and particles of undigested food may be found in them. There is usually colicky pain with gas, and occasional vomiting. Loss of appctite, thirst and dry tongue are usually present, but
fever is not common. The general canses of catarrhal enteritis are improper food, particularly in children, unripe fruit, toxic substances, changes in the weather, and nervous influences bringing about changes in the character of the secretions and in the muscular activities of the
walls of the intestines. Infectious discases may also be the cansc of acute enteritis. Rest in bed also be the canse of acute enteritis. as mild laxative such as calom or castor oil, together with milk diet, will usually be sufficient treatment for the simple cases.
Acutc enteritis of infants, known as cholera
infantum (q.v.), is a much nore serious discasc infantum (q.v.), is a munch nore serious discasc. the small intentine but the large intestine also is involved, and the most active cause of this dis case is a specific micro-organism called the bacil lus of Shiga. Treatment of acute cntcritis of infants requires trained medical advice. The
most important feature, however, in infants is most important feature, however, in infants nothing but water for at least 24 to 36 hours. Horses, cattle and shecp, too, are sulject to enteritis, and, unless properly and promptly treated, are apt to succumb to it. Sec Choler liscases of.

ENTEROCLYSIS, a form of intestina hydrotherapy of much importance. It consists in lavage of the intestines. The ordinary hot water enema is the simplest form of enterocly sis, but true enteroclysis consists in continluous irrigation with large quantities of solution,
either with a single or a double tube. The effect of the introduction of large amounts of hot salt solution (a dram of common table-salt to a pint of water at a temperature of from 110 to 118° F.) is very marked. There is much increase in the tension of the pulse, and pro-
nounced stimulation of the heart-action, both of prime importance in the treatment of hemor rhage, shock, asphyxiation from drowning or from coal-gas poisoning, and of many form of drug and industrial poisoning. Enteroclysis has also a marked effect in angmenting the secretion of the kidney, and proves of immens
importance in the treatment of chronic urxmic poisoning, such as is seen in Bright's disease and also in the treatment of diabetic coma. It is likewise of importance in bladder troubles in colitis, in peritonitis, septic endocarditis, and in ulcerative conditions of the large intestine

Enteroclysis is also an excellent mode of treat-
ing collapse in chronic alcoholism.
ENTERPRISE, The, the namc of a number famous of which was an American most schooner with such a brilliant carcer that she became known as the "Lucky Little Enterprise." Built 1799 to deal with the French privateers in the West Indies, she had an extraordinary Joline Shaw. in a six the command of Lieut. eight privateers, some of them much heavier than herself, and aggregating 47 guns, and also recaptured four American merchantmen. In 1801 she was sent under Lieut. Andrew Sterett with Captain Dale's squadron to the Mediterranean against the Barbary pirates, captured a ater was at the bombardment of Tripoli. In December 1801 she returned to the United States, but went back to the Mcditerranean in 1802 under Lieut. Isaac. Hull. In 1803 she was (q.v.), who in December of that year Decatur (q.v.), who in December of that ycar captured
with her the Tripolitan Mastico which later became famous in connection with Decatur's recapture of the Philadelphia. Between 1805 and 1809 the Enterprise was in home waters. From 1809-11 she was once more in the Meditermost memorable battle was during the War of 1812 and was fought with the English brig Boxer, Captain Blythe, on 5 Sept. 1813, off the Maine coast, toward Monhegan Island. By that time she had been converted into a brig, carried itrows; the Boxer had 14 guns. The crews were about 100 cach. The fight began at $3: 20$ P.M., and was ended at 4 by the surrender of the Boxer, literally cut to picces in hull, masts, rigging and spars, several of her guns dismounted, boats and quarters shattered; the shot in the hull and one in the main-mast. Both commanders were killed and were later buried side by side at Charleston. Burrows who had received his mortal wound during the progress of the fight was succecded by Lieutenprise, together with some other boats, cruised for some time in southern waters under LientJames Renshaw and there, even though she hat lost much of her former speed by the structural changes made upon her, escaped at
a number of occasions from English boats a number of occasions from English boats
which were attempting to capture her She then served until the end of the war as harbor guard at Charleston. From 1816-19 she was again attached to the Mediterranean squadron, this time under Licut. Laurence Kearncy. In
1821 she cruised in the West Indies and successfully broke up the pirates then swarming in those waters. In 1823 she was wrecked on Curaçoa, but all hands were saved. A famous English boat hearing the name Enterprise was one of three masts which, under the command of Capt., later Adm., Richard Collinson, ful searches for Sir John Franklin's ships in the Arctic. Consult Collinson, Sir R., 'Journal of H. M. S. Enterprise) (London 1889) ; Hill, F. S., 'Twenty-Six Historic Ships' (New York
1903); ' T, Romance of the American Navy)
(New York 1910) ; 'The "Lucky Little Enter prise"; ctc.' (Boston 1900); Maclay, E. S., 'A 1899): 'A History of the United States Navy (3 vols., New York 1902) ; Morris, C (Heroc of the Navy in America' '(Philadelphia 1907) Specrs, J. R., 'The History of Our Navy' (4
vols., New York 1807) ' A Charme Americar vols., New York 1897) ; 'A Charmed American
Warship' (in Harper's Magazine, Vol. CIV, pp New York 1902)
ENTFUHRUNG AUS DEM SERAIL ent-fitr'oong ous dảm sä-rī', Die (Il Scraglio) the first time at Vienna on 13 July 1782 and a New York in October 1862.
ENTHYMEME, in logic, the tcchnica name for a syllogism of which either one premise or the conclusion is not expressed. Fo
example, "The Lusitania must have been steaming under 20 knots for it was torpedocd"the unexpresscd premise being "A steamship steaming over 20 knots cannot be torpedoed.

ENTOMBMENT, The, a favorite subject of the painters of all the conturies has bee this representation of the placing of Christ's famed is that by Raphael (1507), now in the Palazzo Borghese, Rome. The finest is that in he Louvre by Titian (1523). The Madrid Gallery has another Titian but it is inferior in concep tions of this subiect are these ther representa Tintoretto, Ferrari (Turin), Carracci (Loulvre) Donatello (a sculpture group in the South Kens ington Museum, London), and Van Dyck (in ntwerp).
ENTOMIS, a genus of fossil ostracods. having a vertical furrow along their shell
valves. It is found in the Ordovician and Carboniferous and all intermediate sand cially the Devonian. Sce Ostracoda.
ENTOMOLOGICAL SOCIETIES. Half a century ago a single entomological society
was all that had been organized in the United was all that had been organized in the Unitcd States, hut at present there are probably up-
ward of a score of organizations devoted to ward of a score of organizations devotcd of
this science. The first entomological society of which we have record was formed in 1842. This was The Entomological Society of Pennsylvania, which has long been nut of existence. The American Entomological Socicty of Philadelphia, founded in 1859 under the name of
The Entomological Society of Philadelphia, and incorporated in 1862, published (Proceedings' until 1868, when the society name was changed and the publications became known as 'Transactions.' This, as well as some of the other societies that will be mentioned, is supported by a permanent cndowment fund, owns yery extensive and valuahle collections and a
library, which are deposited with the Academy of Natural Sciences of Philadelphia, of which institution its members are associate members of the entomological section. Under the combincd anspices of thesc organizations there is now pub-
lished Entomological Neze:s. The Entomological Society of Ontario publishes the Canadian Eutomologist which began publication in 1868, though the society had a previous existence under the name of The Entomological Socicty
of Canada. It is supported by an annual

Government grant and the salc of its pubety was organized in 1872 and in 1888, while the Brooklyn Institute, forming the depart ment of entomology of that institution. It published seven volumes of a 'Bulletin) and six Cambridge Entomological Club, founded at Cambridge, Mass., in 1874, publishes Psyche quarterly originally devoted largely to biblioraphical and biological entomology. The same year The Entomological Club of the American was formed In 1884 The Entomological SociPry of Washington was organized, publishing ntomecings. The Association of been mentoned, was established in 1889 . Its 'Proceed ngs are published in the general series of
bulletins of the Division of Entomology of the United States Department of Agriculture. In 881 The New York Entomological Club began ne publication of 'Papilio,' but at the end of yn Entomological Society. In 1892 , Brook yn Entomological Society. In 1892, however
another society was organized in New York as The New York Entomological Society. It wa ncorporated in 1899.
In addition to these principal publishing enmological associations there are several other ties in Canada and in the United States. There re also local clubs or societies in various sec ons, for example, in Newark, N. J.; at Wil amshurg, N. Y.; at Chicago, Pittsburgh and in amo omological Socicty
of the largest citics of Europe supporting and or more, usually holding titles significant of an ntire nation, for example, there are entomogical societies of Belgium, France, Switzer representing the cities of London, Berlin, Vi elina and Stockholm Sce also American En (omological Society and consult Skinner, H (ed.), 'Entomologists' Directory, containing the etc., of addresses, special departments of study etc., of those interested in the study of insect delphia 1904).
ENTOMOLOGY, the science which deals ee Insects
ENTOMOLOGY, Economic. Attacks by nsects upon useful plants doubtless began with until the end of the plants; but it was no means for mitigating their ravages were em ployed beyond hand methods and other purcly wercenical measures. A few crude effort iruit-raisers on the shores of the Mediterranean oward the suppression of insect pests and Pliny cven advised the use of white hellebore, one of the modern insecticides; but it was at abnut (q.v.) or insect poisons henan to be generally a.v.) or insect poisons hegan to be generally
auopted, and the migration of the Colorado potato bectle from its native home in the Rocky Eountain region to the potato fields of the Efst was the indirect means of the employment arsenical preparations as a means of destroy vol. $10-26$
ing insects; so that this insect, while an appar
nt curse, has proved, indirectly, of the great est value to the agricultural community at large Prior to the use of Paris green, which appears o have first been applied to this potato pes the infested plants into a pan of water was the only method of treatment and was used for many other insects as well. The discovery of the value of this poison as a remedy for the codling moth was made in 1878, by Prof. A. J, Cook, who used Paris green as a remedy for
canker-worms and found that the trees treated with it were free from codling moth. To Professor Cook also is probably due the first use of kerosene mixed whith soap, although the kerosene emulsion, which is now a standar remedy for all sucking insects, was the joint
product of Messrs. Barnard, Hubbard and product of Messrs. Barnard, Hubbard an was employed as an insecticide as carly as 1871 and London purple was put to practical use in the destruction of the cotton worm in 1878 London purple has since been displaced by ya
rious other insecticides, as it has proved inferior to Paris green, which, in turn, has been replaced by arsenate of lead, because the latte while poisoning the insects, does not scald o otherwise injure the plants. In the same man ner the discovery of Paris green as a remed through the migrations of this insect the rav ages of the cotton cushion scale (Icerya purchasi) of the orange orchards of California icd to experiments conducted by Mr. D. W. Co quillett, of the United States Department of Agriculture, in 1886, to the finding of hydrocyof scale insects (q.v.), and to its general use in fumigation for all insects which can be treate with it. In 1895 Messrs. A. F. Woods and P. H. Dorsett, also of the Department of Agri culture, began expcriments system of fumigation with the same gas of plants grown under glass and injured by scale and other insects.
Our best remedies for insects, then, arsenical mixtures and kerosene cmulsion and other preparations, and hydrocyanic-acid gas, are the of carbon as an insecticide, however, though the discovery of a foreigner, has doubtless received greater attention in our country than elsewhere. It was first employed by M. Doyere, as early as 1856 , as a remedy for weevils in
stored grain, which is still its principal use; but its cost when first employed was so excessive as to preclude its general employment on a large scale. Subsequently a high grade of this chemical, known as "fuma-hisulphide," was made for sale at 10 cents a pound. It supplements
the use of hydrocyanic-acid gas in that the former is used for the fumigation of plants above ground, while the latter destroys insects affecting the root-system. Both gases are used for the treatment of indoor insects in granaries And mills and in dwe main insecticides these are the Although these are the main insecticides, there covery and perfection to economic workers in America. They include pyrethrum, better known as Buhach, Persian and Dalmatian insect powders, the extensive use of which has
resulted in the establishment of a considerable
industry in the growing of the principal plants which produce these powders (Pyrethrmm cinerariafolium and Pyrethrum roseum); and against the hop aphis in 1886, and later against scales.

In more recent years lime-sulphur combina-
ons have been used as washes and sprays tions have been used as washes and sprays against scales and other sucking insects with ghate standardized at 40 per cent purity has come into general use as a contact insecticide for the same class of insects, and is now a standard remedy in combination with soap for the control of aphides or plant-lice, the onion and pear thrips and related species, leafhoppers,
plant-bugs and many others. Prior to this time tobacco preparations were used but with indifferent success except on a restricted number of insect pests.

Quassiin is the subject of investigation as a contact insecticide. Of arsenical poisons arse-
nite of zinc and arscnate of calcium are effective but not superior to arsenate of lead. Adhesives, such as whale-oil (fish-oil) and other soaps, are also in general use under the name of "stickers." Repellents, to prevent such insects as the parent flics of root-maggots from
depositing their eggs, are being successfully employed and in some cases odorous substances are being used to attract insects from their natural foods where they can be destroyed.

As fumigants, hydrocyanic-acid gas generated from sodium cyanid is in general use for the destruction of mill and granary insects,
greenhouse and household pests. Carbon tetrachloride and para-dichlorobenzene are excellent fumigants, but too costly for general use. Insects affecting stored products and pests in anseholds may also ise controlled by heat mills and warehouses where steam-heating plants are installed.
During the early years of work in spraying for various insects the principal dependence was placed in American insecticide machinery, but by M. Vermorel, of France, various other nozzles, pumps and other machinery were invented in America and have gone into general use.

An almost incredible number of spraying machincs and appliances are being manufactured and en to special puvements
Prevention of Insect Injuries by Farming Methods.- It would be difficult to detail step by step the wonderful progress that has been made in means of subcluing insects by simple farming methods which, as a rule, neceslay. Some of our principal pests, with which we cannot cope successfully by means of inwe cannot cope successfully by means of incontrolled by the judicious use of ordinary methods of tillage. The seed, nursery or other
stock for planting should be selected with a special view to securing immunity from attack by the insect most feared or most prevalent in the region where the crop is to be planted. By planting different immune varictics of wheat the ravages of the Hessian fly are reduced to a minimum. Certain forms of trees may be without danger of injury, because the insects
which elsewhere do greatest damage to them are not present. The selection of a suitable location on the farm for a crop should be made
with the same end in view. Where injury is with the same end in view. Where injury immunity can be secured by planting in that part of the farm where the insect is known not to exist. The prompt destruction of crop rem nants and the pulling up and burning over of weeds and other rubbish is a preventive apuse of "trap crops." Thus part of an old crop may be left to attract insects which usually remain in the field after the crop is made similar or more attractive plants may be grown for the protection of the main crop; or or
early varieties of the same plants, as lures for the insects until the main crop can obtain a good start. On the lure plants the congregated insects must be destroyed by poisons or by firc Trap crops are of considerable valuc in the cucumbers, melons, squashes and similar vines The stimulation of a plant by means of fertili zers and the maintenance of healthy, vigorous growth by cultivation, the suppression of eases and the prevention of injury by insect pests other than those which it is speciall rotation or the planting of alternate crops which are not injured by those insects which ravage the staples assists in the warfare: as also do fall and spring plowing, which, in prope combination, result in the destruction of nearly
all forms of the many insects which pass onc or more stages in the earth in hibernation. The use of water by irrigation or submersion, it practised at the right time, will result in the femporary extirpation of nearly all insects in the fields thus treated, particularly in cranberry subject to more or less complete submersion such as swampy tracts, river bottoms and the like, and the destruction of the weeds and othe plants and the insect life which remain by burning over, are of great value in suppressint lined, we add the strict obscrvance of timely harvesting of crops with a view to the preven tion of further attack and the destruction o insects which might reproduce the following year; the utilization of natural enemies, suc live stock, to destroy the insects in the fiel after the crop is off; the systematic inspectio of the farm for the first appearance of insec ttack, and, finally, the co-operation of neigh boring farmers having a community of interests in growing the same crops, there is con-
paratively little use for insecticides save in the case of insects such as grasshoppers and the caterpillars of moths and butterflies, which ar trong fliers and cannot be successfully con rolled by mechanical methods.
Economic Entomologists.- Dr. T. W. Har is is crcdited with having been the first ecO^{-} the honor is due to W. D. Peck, who beral writing on injurious insects late in the 18 in century (1795-1819). His writings, however are few, in comparison to those of Harris
whose labors hegan in 1831 and whose greatest work appearcd in 1841, his classic treatise or 'Insects Injurious to Vegetation.' In the year

1853 the New York State legislature appropriated $\$ 1,000$ for the study of economic entomology and Dr. Asa Fitch was appointed to pertinued until 1871 or 1872 , when his 14 th and last report was published. Afterward different States, Illinois in $1866-67$, and Missouri about a year later, appointcd State entomologists, the Riley, who obrote a series of nine of Dr. C. V. for originality, scientific accuracy and practical value, have received recognition the world over.
When Dr. Rilcy assumed the dutics of entomologist of the United States Department of Agriculture, economic entomology received a new impetus, his work and that of his assist-
ants marking a new era in practical entomological work. Upon his death in 1894 , he was succeeded by Dr. L. O. Howard, under whose direction the Bureau of Entomology continues to issue reports, bulletins and circulars of the
highest practical and scientific value. See Agriculture, Department or.
Prior to 1888 Massachusetts, New York, Illimois and Missouri were the only States which maintained officially appointed economic entomologist. During that year the State agricultural experiment stations (q.v.) were or-
ganized under the. Hatch Act and several official entomologists were appointed in connection with them. In 1889 was formed an Asociation of Economic Entomologists which held annual meetings in various cities subsequently and had in 1916 a total membership of
Bibliography.- Harris, ${ }^{\text {(Insects }}$ Injurious
to Vegctation) rious Insects of the Farm and Garden)' (InjuSaunders, (Insects Injurious to Fruits) (1883): Cooke, 'Injurious Insects of the Orchard, Vincyard, etc.) (Sacramento 1883) ; Smith, 'EcoInsecticides' (Hanover, N. W., 1891) : SanderSon, 'Insects Injurious to Staple Crops' (1902) ; Chittenden, 'Insects Injurious to Vegetables' (New York and London 1907); Sanderson, (New Yosts of Farm, Garden and Orchard \mathbf{Q}^{2} Crosby, 'Manual of Fruit Insects' (New York 1914) ; Essig, 'Injurious and Beneficial Insects of California) (2 d ed., Sacramento U1515). Also the scrial publications of the of the entomologists of the Agriculture and experiment stations and of State entomologists, including Fitch, Rilcy, Forbes, Lintner, Felt, J. B. Smith, Webster and others.

Entomologist, in Bureau F. H. Chirtenden, Entomologist, in Bureau of Entomology, United ton, D. C.
EN'TOMOPHTHORALES, en-tō-mōf" hốrā̃'lềs, group of parasitic fungi, which is the shly destructive of insects. In germination sect's spore emits a tube which penetrates the insect's body, which is thereupon filled with the ycelium of the fungus.
ENTOMOSTRACA, one of the two great traca), including minute forms; the "water fleas," having a horny shell of many pieces, Well-developed cephalo-thorax, mandible and hree pairs of maxillæ, five pairs of thoracic
feet but no abdominal feet and no gills, breathing instead by specialized organs. They have a great variety of shapes and of means of
locomotion. The young is a nauplius and developed by numerous molts. The group in cludes many thousands of species, divided into four orders, - Phyllopoda, Ostracoda, Copepoda and Cirripedia (barnacles). They abound in stagnant fresh waters and also in the sea, and furnish an immense quantity of subsistence for
fishes that are used for human food. They exist and increase in innumerable millions. The descendants of a single cyclops may in one year number over $4,000,000,000$. At one time they render the surface of the sea-water phosphorescent by their vast luminous congregations. At
another time the Atlantic Ocean is colored red over a space of hundreds of square miles by the assembly of these minute creatures, attract ing multitudes of fishes, even of whales, which feed upon them. On the other hand, some
forms are equally injurious as parasites. Those forms are equally injurious as parasites. Those belong chiefly to the copepod group - siphon-
ostomata, having mouths fitted for suction. Some are commensal, entering the gill-sac or digestive cavity and feeding upon the food, not upon the tissue, of the host. Some attach themselves long enough to suck the blood of their victim and then pass on, while others enter
the body as permanent residents and embed themselves in the tissue. Thus they are the pests of starfish, jellyfish, worms, ascidians, fishes and whales. See Barnacle; Copepoda; Crustacea; Fish-Lice; Ostracoda; Phyllopoda.
ENTOZOA, formerly employed as the name of a subdivision of radiate animals, has passed out of use as a term of systematic classiany ideas of structure and only hints at the habitat and occupation of great numbers of living creatures. Following the strict meaning of the word entozoa, denoting "animals within" (i.e., internal parasites) other animals, not only
brings together many genera that belong with brings together many genera that belong with
the different subdivisions of the same general division, but also imports those which are included under classes morphologically distinct. Even this use of the word is obsolescent. See Bot Fly; Distoma; Elephantiasis; Filariasis; Guinea-Worm; hook-Worm; Oxbot; Worms; Tapeworms; Trematoda.

ENTRE-DOURO-e-MINHO

tween the Douro and Minho), ên'trè dô'roo ē mên'yoo, a province of Portugal, more generally known by the shorter appellation of Minho. The surface is broken and partially occupied by high mountains, but the soil in the
valleys is well cultivated and the province the valleys is wcll cultivated and the province the
most densely populated in the country. Area most densely populated in the co

ENTRE MINHO e DOURO, name frequently employed by the Portuguese for the
province Entre Douro e Minho or Minho (qq.v.).

ENTRE RIOS, ën'trā rē’ōs, Argentine Republic, a province bounded on the north by
Corrientes, on the east by the republic of UruCorrientes, on the east by the republic of Uruof Buacnos Aires and Santa Fe. As its name indicates its territory lies "between the rivers" - Rio Paraná and Rio Uruguay. Area 29,241
square miles, Agriculture and immigration
were encouraged by the provincial government which sold land to settlers in portions of $82^{21 / 2}$ acres, to be paid for in three years, at prices ranging from $\$ 600$ to $\$ 2,000$, according to loca-
tion. A considerable amount of land has been taken up by the Jewish Colonization Association. province was the "poor sister" of the republic: but since then it has made very rapid strides It is second in the production of oats and grows large quantitics of wheat of excellent barley, flax, grapes, tobacco fruit and (ucerne, barley, flax, grapes, tobacco, fruit and (on a
very large scale) cattle, shecp and horses. Its capital, the city of Parana (pop. 65,000), was the capital of the republic from 1852 to
1861 ; it has a national college, a normal school 1861 ; it has a national college, a normal school park, tramway service, and is an important port
for the traffic on the,Paraná River. Pop. of the province estimated 423,100.
ENTRECASTEAUX, dŏntr-kās-tō, Joseph Antoine Bruni d', French navigator: b. Aix 1739 ; d. at sea, near the island of Java, 20
July 1793 . He entered the French naval service in 1754, gradually rose to the naval servIndies (1786), and in 1787 became governor of Mauritius and the Isle of Bourbon. In the same year he made a voyage to China. In
1791 he was sent by the French government in search of La Pérouse (q.v.), who had not been heard from since February 1788, For this purpose he was given the command of two ships,
the Recherche and L'Espérance. He failed in detecting any trace of the lost navigator, but ascertained with great exactness the outlines of New Caledonia, the west and southwest coast of New Holland, Tasmania and various other coasts. The D'Entrecasteaux Archipelago was named
in his honor. Other reminders of his visit to Tasmania are D'Entrecasteaux Channel, Bruni Island, Recherche Bay, Port Espérance, all names given by him to these various localities and still in use to-day. The journal of this voyage has been edited ly de Rossel, (Voyage de maps and other topographical drawings have maps and other topographical drawings have
been published as 'Atlas du Voyage de BrunyDentrecastcaux) (Paris 1807). Consult Cordier, H., 'La Mission de M. Le Chevalier d'Entrecasteaux à Canton en 1787) (Paris 1911); Gocpp, E., and Cordier, E. L., 'Les (Paris 1873) ; Labillardiêre, J. J. H. de, 'Rclation du Voyage à la Recherche de la Pérouse) $(2$ vols., Paris 1800), and its translation into
English, (Voyage in Search of la Pérouse) (2 vols., London 1800) ; Marriott, I. L., 'Commodore Sir John Hayes, His Voyage and Life)
(London 1012). ENTREMO
See L'Hopital ENTRENCHED MEANDERS. See Meanters.
ENTRESOL ở tr-sŏl or ěnt tes-sol (Fr "between the floors"), a low story between two of greater height, generally the ground and the first stories. It is of frequent occurrence in modern French architecture, especially in city
houses. It is called also the Mezzanine.

ENTROPION, or ENTROPIUM, inversion or turning in of the edge of the eyelids, in
consequence of which the lashes rub on the eyeconsequence of which the lashes
ball, causing annoyance and pain.

ENTRY, Right of, in the common law, the right of taking possession of lands or property by entering or setting foot on the same. This
may be done cither by the claimant personally, may be done either by the claimant personally, through his agent or attorney.
ENTRY, Writ of, a formal declaration made by one exercising the right of entry in
recovering property of which he has been disseized that he claims full possession of the said property. The common-law action of Writ of Entry has for some time been obsolete in Great Britain, but is still in use in a modified statutory
form and generally for special purposes in a form and generally for special purposes
few jurisdictions in the United States. ENTWISTLE, James, American naval
officer: b. Paterson, N. J., 1837 ; \&. 23 March $1910 . \mathrm{He}$ entered the engineering service,
United States navy 1861, became commander in 1888, and in 1899 was made captain and rearadmiral and placed upon the retired list. He
first served on the Aroostook under Farragut in the Western Gulf squadron, and on 21 other vessels; was inspector of machinery at the
Bath (Me.) Iron Works $1890-95$ while the Bath (Me.) Iron Works 1890-95 while the
ram Katadain and the gun-boats Machias and ram Katahain and the gun-boats Machias and
Castine were in process of construction, and Castine were in process of construction, and
assistant to the general inspector at Mare Island Navy Yard in 1895 . He joined the Asiatic squadron at Yokohama during that year, being appointed fleet enginecr 1897 and assigned
to the Olympia. He took part in the battle of to the Olympia. He took part in the batted in
Manila Bay, 1 May 1898, being advanced numbers for meritorious services upon that occasion.

ENTWISTLE, Joseph, English clergyman: caster, 6 Nov. 1841. In 1787 he was called into the Wesleyan ministry by John Wesley and spent 54 years of his life in preaching the Gos-
pel. He was twice president of the British pel. He was twice president of the British
Conference and was connceted with the TheoConference and was connccted with the Theo-
logical Institution at Hoxton $1833-38$. His last years werc spent at Tadcaster. Consult (Memoir of Rev. Joseph Entwistle) by his son (1st ed, 1845, 5th ed. 1861).

ENURESIS. See Urine, Incontinence of.
ENVELOPE, a paper case, sealable by means of an adhesive flap or other means, and
used for enclosing letters or other matter. It has not been established definitely by whom has not been established definitely by whom seem to have been used first in France, possibly as early as the middle of the 17th century, though in very limited quantities. They were not in general use in any country prior to
$1839-40$, when, after the passage of the penny postage bill, they became common in England. Until about 1845 nearly all letters in this country were folded so that an unwritten portion
came on the outside, and the address was placed came on the outside, and the address was placed
there, though even then there was a certain dethere, though even then there was a certain der,
mand for envelopes, all of which, however use of envelopes spread and by 1850 practically all letters were enclosed in them. The first maker of envelopes in New York is believed to have been a Mr. Pierson who, as carly as 1843, made envelopes by hand in his store on

Fulton street. In 1846 he sold his business to Englishman named Dangerfield who was soon succeeded, first by Jacob Berlin, and then could be West. At that time only 2,0 or or 3 , not yct used. The blanks were cut out by means of a sheet of metal, placed on top of a pile of knife was run. They were then folded and pasted by hand. Machines were invented in England, probably as carly as 1840 , though they were not patented until 1849, by Warren de la
Rue and Edwin Hill, the latter a brother of Sir Rowland Hill (q.v.), the father of the cenny post. These machines were one of the held in London in 1851. The first machine used in this country was a French model. It had in, son of Jab Berlin, who had gone into the envelope business with his father's sucessor, W. G. West. This machine, however was not very successful. The first patent for an envelope-folding machine was issued in the C. S Wited States 23 Jan. 1849 to J. K. Park and April 1853 to E. Coleman, Philadelphia. Neither of these was accompanied by commercial success. The third patent was issued to Dr. Russel 1853. This machine was quite successful, in was used exclusively by the concern founded by its inventor, which, after many changes in ownership, is still in existence as the W. H. Hill Envelope Company, Division of the United States Envelope Company. Not until just be ore the outbreak of the Civil war was a machine patented and placed on the open market. machine was for many ycars one of the most successful. It gave a tremendous impetus to he envelope industry. At this period many others invented envelope machines or attachbe purchased in the open market. From then on the development of envelope machincry made rapid strides. Improvements gradually provided for sclf-feeding, gumming, allomatic
counting, etc. The men chiefly responsible for hese improvements were J. M. D. Keating . Waymouth, H. D. and D. W. Swift, J. G hese carly inventors went into business for themselves and quite a number of these comparatively old concerns were included in the pansolidation of the 10 leading envelope comafter known as the United States Envelope Company, Inc. Modern machines have been mproved to a point where it is possible for ne machine to turn out as many as 55,000 en velopes a day. The varicty of envelopes, too, only to enclose letters, but a great deal of printed matter and for many other purposes Recent innovations are especially the so-called Window-envelope, with a transparent fron hrough which the address at the head of a addressing be read, saving thereby the separate special sealing devices, such as metal hooks and eycs, threads etc.; and the envelope with a wire or thread attached to its inner edge,
facilitating its opening. Since 1853 the govern ment supplies stamped envelopes, which are purchased in ever increasing quantities, to 2,364 , issue to postmasters in 1922 amounting to
372,708 of a gross selling value of $\$ 47,287,454$ About two-thirds of these are issued with printed return cards in the upper left hand corner. Practically every government, having remarkable growth of the envelope industry ca (The seen from the following figures, based on 1919) (Washington 1923): In 1849, the firs year for which figures are available, the total value of products in the envelope industry wa $\$ 4$ with 8129 inatines warelized estalishment with 8,129 operatives whed at $\$ 39,664000$. Thes figures indicate increases during the 10 -ycar period, 1909-19, of 14.4 per cent, 16 per cent, 50.8 per cent and 112.2 per cent, respectively. Envelope factories were located in 1914 in 15 States of the Union, especially in Massachusets vania, Missouri. Consult Logan, J., 'The Story of the Envelope' (in The Red Envelope, Hart ford 1915-17) ; House of Representatives, Committee on United States Post (Hearings during Roads, 'Stamped Envelopes' (Hald

ENVER PASHA, Turkish soldier and war minister: b. Constantinople about 1880 . Of army and saw his first active service in Maccdonia against the Serb and Bulgar komitadjis. He was one of the prime movers in the Young Turk revolution of 1908 . Stationed at the time in Salonica, his activities were known at Con-
stantinople. In a friendly letter he was invited to return to the capital and promised promotion. But Enver Bey - as he then was - knew better than to accept the invitation. He disguised himself as a peasant and fled to the mountains, traveling rapidly from place to
place, spreading the doctrine of revolt and putplace, spreacing the fing touches to the preparations. The speedy success of the revolution, the revival of the dormant constitution of 1876, and the subsequent fall of Abdul Hamid, raised Enver to the height of a popular national hero. He was "ionized" in Paris and London; at the of Parliament. Under the new régime he was sent as military attache to Berlin, where he learnt Gcrman, studied the Prussian military organization, and became a close friend of the
Kaiser. According to competent observers, the Kaiser. According to compctent observers, the
mighty emperor and the humble attache had much in common, especially dreams of houndless ambition. Fired with admiration for all things German, Enver returned to Constantinople an ardent apostle of Teutonism and
heartily threw himself into the work of assistheartily threw himself into the work of assist-
ing the German Generals von der Goitz and Liman von Sanders to build up the Turkish army. That army, however, failed of its purpose in the Tripolitan and Balkan wars, in hoth of which Enver played a prominent part. Of youthful, almost boyish, appearance, poetical
imagination and undoubted courage, though enitirely unscrupulous, he became the most picturesque figure in Turkish politics. Those who stood in his way he simply shot down. In Jan-
uary 1913 he shot the Commander-in-Chief, Husseit Nazim Pasha and two aides-de-camp who attempted to stop him from entering the
council chamber. (Prince Yussuf-ed-din, the council chamber. (Prince Yussuf-ed-din, the
heir to the thronc, was murdered in February heir to the thronc, was murdered in February 1916 by order of Enver Pasha). In January and created a pasha. At the beginning of the European War six months later, Turkey de-
clared her neutrality. Although, apparently, clared her neutrality. Although, apparenty,
most of the ministers opposed entering the War, they were overborne by Enver Pasha, who not
only had the whole Turkish army at his back, but had also adopted the German vicw that Turkey's salvation was bound up with the success of German arms. He was blamed for the Armenian massacres and at the close of the war was adjudged a war criminal and was con-
demned to death. Enver, however, escaped and many stories were current as to his fate. His last effort was to arouse the Moslems of midAsia and so recover the Ottoman Empire. He
failed in this as in other designs. On 25 failed in this as in other designs. On 25
July 1922 he met his end near Raljivan in Tuly 1922 he met his end near Ralivan in Turkestan where his forces were fighting a suWar, European: Turkisil Campatgn.
ENVIRONMENT, a modern scientific term applied to the modifying influences of an organism or surroundings. Neither plant nor animal can be understood as a rounded-off unity the whole life or function is made up of action
and reaction between the organism and its environment. Streams of matter and energy from without preserve the relative constancy of the organism, as of a special wave-crest in the sea; while changes in the streams have their corrc sponding changes within the organism. The
plant or animal has obviously a strong unity of its own, but even that is in part due to ancestral welding under the hammers of the environment. It may scem, too, to vary of itself like a fountain in the air, hut throughout all its rises and falls there
environment. The influence of outside conditions has been rccognized by most naturalists from the time of
Hippocrates, and is Hippocrates, and is taken for granted in our everyday speech and action. There is considerable cifference of opimion, however, as to the Buffon, Treviranus and Gcoffroy Saint Hilaire regarded the surroundings as directiy hammering changes on the organism; while to Erasmus Darwin and Lamarck internal changes arose as indircct functional results of new environment. both these positions, but emphasized the independent action of the organism itself in the direction of natural selection. These three positions are still held, some emphasizing one, others another, the majority combining the thrce.
Darwintan Theory; Evolution : Heredity
ENVOI, ôñ-vwä', the last stanza of a ballad (q.v.).

ENVOY, originally envoyé, the French person deputed by a sovereign or government to negotiate a treaty, or transact other husiness of a diplomatic nature with a foreign ruler or
government. In its gencral use we usually apply government. In its gencral use we usually apply
the word to a public minister sent on a special occasion or for one particular purpose; hence
an envoy is distinguished from an ambassador. Envoy extraordinary and minister plenipoten-
tiary is a permanent resident abroad, usually tiary is a permanent resident abroad, usually in one of the less important countries officially representing his government, but of inferior
rank to an ambassador. His ranking, next to rank to an ambassador. His ranking, next to the 18th century, though the term was in use as early as the 17 th century at which time envoys belonged to the second class of diplomatic agents together with agents, residents and
ablegati. Consult Foster, J. W., 'The Practice ablegati. Consult Foster, J. W., The Practice
of Diplomacy as Illustrated in the Forcign Relations of the United States' (Boston 1906) ; García de la Vcga, D., 'Guide Pratique dcs
Agents Politiques, etc.) (Bruxclles 1873) ; Agents Politiques, etc.) (Bruxclles 1873);
Krauske, O., (Entwickelung der Standigen Krauske,
Dinlomatie, etc.' Dinlomatie, etc.' (Leipzig 1885) ; Satow, sir E.,
(A Guide to Diplomatic Practice)' (2 vols. London 1917).

ENZINA, Juan de la. See Encina, Juan
ENZINAS, ĕn-thèrnạ. Francisco de (also known as Dryander), Spanish translator of
the New Testament: b. Burgos 1520; d. 1553 . the New Testament: b, Burgos $1520 ; \mathrm{d} .1553$.
He was educated at Louvain and at Wittenberg. He was educatcd at Louvain and at Wittenberg.
During his stay in the latter place he resided During his stay in the latter place he resided
at the house of Melanchthon. He translated at the house of Melanchthon. He translated
the New Testament from the Greck in 1543 and presented a cony to Charles V. His herctical views caused his imprisonment at Brussels; he escaped after a year's confinement and made his way to Wittenberg. Cramner made Enzinas
professor of Greek at Cambridge in 1548. professor of Greek at Cambridge in 1548. some accounts he died at Strassburg in 1553 of the pestilence, according to others he was last heard of at Geneva in 1570 . He wrote 'History of the State of the Netherlands and of the moires de Francisco de Enzinas) (3 vols., Brusssels 1863). Consult Menéndez y Pelayo, 'Historia de los Heterodoxos españoles.)

ENZIO, king of Sardinia: b. about 1220; d. 14 March 1272. He was a natural son of Frederick II, the German Emperor, with whom he fought at Cortenuova against the Lombards
in 1237 . In 1238 he married Adelasia, and was made King of Torres and Gallura and later King of Sardinia. In 1241 while in command of the flect Enzio inflicted a great defeat on the Gcnocse. In the years following he added renown to his name by his exploits in Lombardy:
He laid siege to Parma in 1248 but was comHe laid siege to Parma in 1248 but was com-
pelled to withdraw; he next besieged Colomna, pelled to withdraw; he next besieged Cole May
took the castle of Arola in 1248, but on 26 May of that ycar he was made prisoner at Fossalta liy troops of Bologna and sentenced to líe imprisonment. Consult Blasius, 'Kônig Enzio'
(Breslan 1884) and Jordan ('Les origines de (Breslan 1884) and Jordan, 'Les origines de
la domination angevine en Italie' (Paris 1909).
ENZOÖTIC, ěn-zō-ŏt'ik, a disease which ENZOOTIC, en-zō-ot'ik, a disease which
appears to have secured a permanent lodgement in the animals of a region. It is used of animals as the term endentic is used of discases which affect man in certain localities.

ENZYME (Gr. "leavened"), any of the unorganized ferments, such as diastase, cytase, trypsin, etc., which induce fermentive changes
in organic sulhstances. It was formerly thought in organic sulstances. It was formerly thought
that these "mnorganized" ferments might he essentially different in their action from the 5^{-}
called "organized" ferments, such as the yeasts, the fand bacteria; but it is now known that is fermentive action of the "organized class enzymes that they secrete. The chemistry of the enzymes is very imperfectly understood. According to some authorities they act merely by catalysis, being capable of effecting the fermentive change of indefinite quantities of the substances upon which they act, without being According to other authorities, they are gradually destroyed by their own activity, so that a only 1 mass of any given enzyme can produce only a definite (though surprisingly large) Famount of fermentive

$$
\begin{aligned}
& \text { ERMinctation. } \\
& \text { Chemical fe }
\end{aligned}
$$

of plants and animals and capable of bringing about a peculiar series of biochemical reactions, which are produced without the intervention of physical factors or mineral sub-
stances. Under some conditions they have the properties of facilitating chemical interchanges between certain bodies without entering into the Composition of the different products that result. thesc enzymes, or ferments, zymases, or diasportant role in the digestive processes, as well as being of vital importance in the general lifehistory of ncarly all plants. A knowledge of enzynnes dates back to very remote periods. In on beginning of the 16 th century obscrvations to the phenomena of digestion called attention brunfaut and Pastcur to place the science of fermentation on a stable basis. Enzymes are for oi most part soluble in water, being thrown out stances, such as alcohol, tannic acid, ctc. They usually, such as alcolol, tannic activity at a temperature above
100° peroxide Most of them decompose hydrogen their quantity. With reference to their chemical composition, it would appear that they belong to the proteid class. There is usually a large cium ohosphate in their composition. A few however, do not contain nitrogen. Although Closely related to proteids, they do not give prois color-reactions. As to their formation, it
is considered by some that they are oxidation iroducts of con by some that they are oxidation The transition of the zymogen into the ferment is termed zymogenesis. Destruction of enzymes is termed zymolysis. As to the manner of action of this interesting class of bodies, a vast varicty of phenomena may be obscrved. They may tiong about molecular changes cither by hydraposition of oxidation. They appear to occupy the theories are put forward in attempting to explain the action of enzymes; but as they preent many analogics to living protoplasm, is al anation of the phenomena of their activities of life the various enzymes, but any classification must be of a transitory character, since knowledge concerning this group of bodies is increasing Sugy. The classification of the soluble ferments ggested by Effront is shown below. mals in the course of their digestive processes,
such as invertin, which breaks up cane-sugar into a mixture of glucose and fructose, diastase, which has an analogous action on starch, ptyalin,
found in the saliva, which also acts on starch pepsin and trypsin, which decompose proteids in the acid medium of the stomach and the alkaline medium of the intestines, respectively, are not difficult of isolation, while almost none of the intracellular enzymes, which perform a animal or plant, have yet been isolated. The enzymes have many applications in the arts. Consult Effront, 'Enzymes and Their arts. Consult Effront, 'Enzymes and Their
Applications' (New York 1902); Greene, 'Sol-
uble Ferments.)

EOBANUS, Helius or Hessus (Eoban Koch), German philosopher: b. probably at
Halgehausen 1488; d. 1540 . He wandered about to different places in which he taught and lectured like so many teachers of the period. He espoused the Reformation, participated in the (Epistole Obscurorum Virorum,' and translated Ecclesiastes and the Psalms. Consult the life by Kranse (Gotha 1879)
EOBASILEUS, the latest-known species of the Uintathere (q.v.) fossil in the Bridger Stage
of the Middle Eocene in the western United States. It was an immense, rhinoceros-like animal with a remarkably long and narrow head, with very large, shovel-shaped nasal protuberances from the skull and long, backward-

EOCENE, è'ō-sēn, a subdivision of geoogical time. Lyell in 1833 first used the term Eocene (dawn of the recent) for the earliest of his three subdivisions of the Tertiary. The term found favor quickly since early Tertiary life differed greatly from late Cretaccous. Toward the close of Cretaccous time, the sea reby the end of Eocene time the continent had nearly its present form. The climate continued warm, Greenland and Alaska being temperate. Of Cretaccous animals the reptiles suffercd most, the ichthyosaurs, dinosaurs and plesiosaurs passing away as well as many peculiar
mollusks. Eocene fishes were mostly of modern character (teleosts), birds were more numerous and highly developed than in the Cretaceous Age; while mammals developed wonderfully. True carnivorons mammals appeared, as also the ancestors of the horse,
rhinoceros, tapir, pig and the ruminants, besides bats, primitive camels and monkeys. A study of organic types indicates that Asia North America and Europe were connected in Eocene timc; and, by the Antarctic continent, South America. and Australia; while South and and Africa and
northern Asia.

The Eocene rocks of the Altantic horder are nearly all loose sands and clays of marine origin and contain in New. Jersey beds of greensand once of some economic importance as
a source of phosphate of lime for agricultural a source of phosphate of lime for agricultural
use. The rocks of the Gulf horder were partly laid down in fresh or brackish water and partly in salt water. They comprise shales, sandstones and limestones. In Florida are valuable deposits of phosphate rock, and in Texas are ex tensive heds of lignite, of workable size, lut
poor quality. The interior province formations,
mostly clays and sands, were laid down as
alluvial fans and cones (q.v.), in brackish or alluvial fans and cones (q.v.), in brackish or
fresh water lakes which stretched, though not contemporancously, from Mexico to Alaska The largest of these lakes covered eastern Utah and western Colorado, and must have been 450
miles long and 250 miles wide. In Utah are miles long and 250 miles wide. In Utah are Pacific border province the Lower Eocene stages arc wanting and the epoch is represented by a single series, the Tejon shales and sandstones, partly marine and partly terrestrial,
with workable deposits of lignite in California with workable deposits of lignite in California Tertiary System.

EOHIPPUS, the earliest known progenitor of the horses, found fossil in the Lower Eocene (Uinta) formations of the West, four-toed and

EOLIAN DEPOSITS, accumulations of wind-blown matcrial. In some regions, particularly in deserts, such deposits may be of
considerable importance. Most conspicuous are sand dunes, which occupy large areas in many parts of the world. Sand dunes sometimes become buried and consolidated to form sandstones, often strongly cross-bedded. Loess, fine wind-blown dust, accumulates to great
thickness in some regions. Important deposits thickness in some regions. Important deposits
are known along the Mississippi and Missouri are knowil along the Mississippi and Missouri
rivers in the United States, but the most extensive locss heds known are in China. Buried loess deposits would ultimately form shales Eolian limestones are rare, hut are known in Bermuda, where great dunes have accumulated, from the beaches. These dunes are consolidated in places to form limestones. See Dune; Lorss; Rocrs.

EOLITH, one of the rudely chipped pebbles rcgarded as a relic of the earliest dawn of human industry. The adjective "Eolithic" is sometimes uscd to designate the period of of culture. See Stone Age.

EOLITHIC. Sce Paleolithic Period
EON, áon', or EUDO DE STELLA, also EON DE L'ETOILE, a religious fanatic of the 12 th century, horn in Brittany. He claimed to be the final judge of mankind and derives his narne from the pronoun eum, in the for-
mula "per eum qui venturus est judicare vivos mula "per eum qui venturus est judicare vivos
et mortuos." He was opposed to the hierarchy et mortuos." He was opposed to the hierarchy
and sent forth his followers to plunder ecclesiastical property. He showed the inconsistency of his opposition to a hierarchy by putting himself at the head of a church and ordaining
bishops and pricsts. The Legate Albcric and bishops and pricsts. The Legate Alberic and
Hugh, archbishop of Ronen, were his prinHugh, archbishop of Rouen, were his prin-
cipal opponcnts. He was captured in 1148 , was tried at Rheims and, being considered insane, prison for the remainder of his life; numbers of his followers perished at the stake and his sect soon disappeared. Consult Döllinger, 'Beiträge zur Sektengeschichte des Mittelalters' (Vol. I, Munich 1890), and Lea, H. C., (History of the Inquisition of the Middle Ages'
(New York 1888, and subsequent editions)

EON DE BEAUMONT, ă-ôñ dè hō-môñ, Timothée d' (called till 1777, Chevalier d'Eon),

French writer, military officer, diplomatist and publicist: 1 . Tonnerre, 5 Oct. 1728 ; d. London,
21 May 1810 . His brillint qualitios crabled him to act a conspicuous part inalities enabled hor he gained a greater notoriety by the mystery loll kept up in regard to his sex. In 1755, by som a difficult mission to the Russian court. Here he gained the favor of the Empress Elizabeth and for about five years was the medium of a secret correspondence between her and the King of France. In 1762 he went to London as sec retary of a special legation, under the Duke Nivernais, sent there for the purpose of arrang April 1763 he was made French Residen Minister and chargee d'affaires. From then on though soon officially superseded in his diplomatic office, he lived for ycars in London as In 1777 he returned to France, but Louis XV1, for what reason has never been satisfactorl explained, imposed on him the obligation o assuming female attire and he now styled him sclf I.a Chevaliere d'Eon. Even bcfore this
however, doubts and discussions as to his real however, doubts and discussions as to his rea
sex had arisen. He returned to England in 1785 After the French Revolution broke out, in styled himsclf Citoycnne Genevieve Deon. Hí now attempted to support himself ly giving lessons in fencing (still dressed as a woman),
but was not very successful and depended for but was not very successful and depended
subsistence mainly on his friends. He was voluminous writer and his works appeared in 1775 under the title 'Loisirs du Chevalie D'Eon' (13 vols., London). He also wrote th memoirs of his life, covering especially the years of his residence in England, script is in the archives of the French Ministry of Forcign Affairs in Versailles. Consull Broglie, J. V. A. de, 'Lc Sccret (lu1 Roi'
vols., 1 'aris 1878 ; translated into English a vols., Paris 1878 ; translated into English
(The King's Secret) London 1879). Christie R. C., 'Sclected Essays and Papers' (Londor Chevalicere d'Eon' (Paris 'The Chevalier d'Eon and Peter the Great' Will (in Gentleman's Magazine, n. s., Vo XVIII, p. 159, London 1877) ; Telfer, J. Bi The Strange Career of the Chevalier d'Eon XVI et Elizabeth de Russic' (Paris 1882) Vizetclly, E A., ¿The True Story
Chevalier D'Eon, etc.' (London 1895),

EOS, éos. Sce Aurora.
EOSCORPIUS, a fossil scorpion, known hy its slender form, hand and pincers. It in cluded about four separate species and abounde in the Carhoniferous period. Many Creek, Ill. See Scorpion
EOSIN. Sce Comal-Tar Products.
EOSINOPHILES, è-ō-sǐn'ō-fills, one oí EOSINOPHILES, e-o-sin o-sils, one the types of - ceucocytes or white blood-cero ized by its specific reactions to acid stains, sulch as cosine, whence its name - "a lover of cocinc Eosinophiles are present in the proportion o one-half to 2 per cent of the white bloo cells. Their increase above 2 per cent relationship to some forms of parasitism.

EOSINOPHILIA, a condition in which cells is an excess of eosinophile white blood of eosinc circulating blood. The exact causes but is seems to be an const contant accom paniment of certain diseases, notably of in ece don by intestinal parasites. So it is in trichini asis, in anchylostomiasis and in infection the ordinary tapeworm. Consult Ewing, ' Pa thology of Blood' (1902)
EOSTRA, the Teutonic goddess of spring given its name to our Easter
EOTHEN. Alexander William Kinglake Witer known as the historian of the Crimea War, made about 1835 , three years after hi graduation from Cambridge, a tour through alrkey, Egypt and the Holy Land. In 1844 he published a narrative of his Eastern experience under a narrative of his Eastern experisignifying "from the early dawn" or "from the East." In an interesting preface he explain that he has deliberately avoided the virtuls of
the ordinary book of travel. What he has soughtinary book of travel. What he ha graphical to impart is not statistical and geo and thrill of his own personal impressions amid those alien scenes and peoples which he dis of fer when he slipped out at the back doo ext Europe. As Kinglake's impressions wer as his style he added to the goiden treasury of travel liter ature an enchanting little volume which take 'th place with 'Child Harold's Pilgrimage, Denk Bible in Spain,' and 'Travels with Enteres.) In reading books of this sort one' traveler and the lands through which he travels ainglake as he presents himself is the typical Elf-contained, independent, resolute youn English gentleman, concealing his occasional inoments of poetical rapture beneath an im Derceive hew exterior and smiling inwardly to extort from Turk and Bedouin the deference Lue to a natural lord of creation - a modes incarnation, in short, of that spirit which ha yade it impossible for the sun to set on Britis English The most amusing illustration of th ter, in which Kinglake relates how he and Tussian officer forced a landing at Satalich in defiance of the quarantine officers, marched Pashgh the streets to the residence of the thems, entered his audience chamber, seate him through an interpreter into onen-armed "cospitality Another wonderful chapter "Cairo and the Plague," depends partly for its wait upon the stunning contrast between the chalang pestilence-stricken city and the nonand his Englishman going about his business terror of pleasure undeterred by the universal sentation of the traditional English reserve, is his account of his meeting in the desert with another solitary Englishman traveling westwith a rom India, whom he would have passed tion a silent nod but for the friendly interposiin 'Eothen,' however, which are unforgettable
and which raise the terse, brilliant, narrative almost to the level of poetry, are those comthe magic of the East broke through the traveler's guard and laid its spell upon him in some lonely bivouac by the Dcad Sca, or in the Sanctuary of Nazarcth, or on a dromedary s back in some sun-smitten wilderness of sand, or in a curions shen the wist on andoned English garden flashed into memory and mingled with the splash of fountains and the fragrance of Eastern roses in some old garden of Damascus. Consult Tuckwell, 'A. W. King
lake' (1902).

EÖTVÖS, ët'vèsh, Joseph, Baron von, Hungarian statesman and author: b. Ofen, 13 cated known Hungarian patriot and liberal Pruzsinsky who gained a powerful mental influence over him and was primarily responsible for the liblater in life. He completed his studies in philosophy and law at the Univesity of Pesth in 1831. Even before leaving the university he produced three plays - (Kritıkusok,' 'Häzasulok' and 'Boszu' - the last a tragedy, all of which were well received. From 1832 - ${ }^{\text {a }}$, traveled extensively in Europe and occupied a number of minor governmental offices. After 1838 he devoted himself exclusively to literature and politics, joining the Young-Hungarian Reform party. In the same year he published an important work on the reform of prisons (Pcsth 1838); he became a friend of Kossuth and dis-
tinguished himself as a journalist and as a speaker in the Diet. A collection of his early political writings was published in Leipzig in 1846. His literary work of this period resulted in a succession of novels giving vivid pictures of Hungarian life during his own times and in more remote epochs: 'The Carthusian' (Pcsth
1838-41): 'A Falı Jegyzöje) (Pesth $1844-46$ translated into English as 'The Village Notary' by O. Wenckstern, New York 1850) ; 'Hungary in 1514) (3 vols., Pcsth 1847-48). After the March revolution of 1848 he became Ministe of Public Instruction under Batthany, but the Sim lose hope in the cause of liberalism in his country and he retired to Munich, remaining in voluntary exile for three years. During this period he published several works, among which was 'The Influence of the Ruling Ideas of the 4) Century on the State (2 vols., Pesth 1851 work. About the middle of 1851 he again returned to Hungary and was made vice-president of the Hungarian Academy in 1856 and president in 1866. After his return he was a staunch supporter of Deák (q.v.) and of his efforts to sition (Ausgleich) of 1867 . In that year he rin (Ausgle Minister of Public Instruction the Andrassy cabinct. From then on until his death all his energies were devoted with con siderable success to the improvement and liberalization of the Hungarian school system
In 1879 a bronze statue by Huszar was erected in his memory at Pesth. A collection of his writings was published in Pesth in 14 volumes
(1870), and still another in 17 volumes (1891) His political speeches were collected in two A. v., 'Baron Josef Eötvōs als Kulturpolitiker) A. V., Baron Josef Eotvos als Kulturpolitiker Munich 1914); Ferenczi, Z., (Baron Jose Eotvōs ${ }^{2}$ (Budapest 1903); ; Ringwald, W. Beitrāge zu ciner Kritischen Würdigung der Staatslehre des Barons Josef von Eôtvös' Zurich 1908)
EÖTVÖS, Roland, Hungarian scientist and son of Joseph Eötvōs (q.v.). He studied a son of Joseplı Eotvos (q.v.). He studied a
Kōnigsberg and Heidelberg, receiving an ap pointment as lecturer at Budapest 1871 and as professor of experimental physics there 1875 emy made a member of the Hungarian Academy of Sciences 1873, and becoming its presi-
dent in 1893. Much of his attention has been given to the problems of gravitation and capillary attraction. He was made a life member of the Hungarian House of Magnates and was Minster of Public Worship and Education

EOZOIC ($\overline{\mathrm{e}}-\overline{0}-z$ ỡ'ik) $^{\prime}$) ERA (dawn of life), one of the carly names applicd to the Geologic which life first appcared on the carth. The eozoic rocks, though often showing traces of organic origin, have in general been greatly metamorphosed and contain few, if any, fossils. Stratigraphically they are scparated from the
Archæan (or Azoic) rocks below and the Cambrian (or carlicst Palæozoic) rocks above by unconformities. Sce Algonkian System; Geology; Huronian Series; Keweenawan Series.

EOZOÖN, ē-ō-zöőn. Sir J. W. Dawson (q.v.) in 1864 described certain curious aggregates of calcite and serpentine in the Lauren-
tian limestone of the lower Saint Lawrence tian limestone of the lower Saint Lawrence he called Eozoön Canadense. The so-called fossil was thought to represent the earliest known form of life on the globe. The evidence of organic origin is, however, not conBavaria. Moelius, who investigated Eozoön thoroughly, concluded that the serpentine in the calcite had infiltrated along a very regular system of fine fissure and most geologists now hclieve that Eozoon is of inorganic origin. An extensive literature has sprung up as a result portant papers, almost all published in scientific journals of Europe and this country may be found in the bibliography of Sir J. W. Dawson, attached to a memoir of his life by F. D. Adams and published in the Bulletin of the York 1899). Consult Dawson, Sir J. W., 'The Dawn of Life) (London 1875) ; 'Revicw of the Evidence for the Animal Nature of Eozoön Canadense) (in McGill University Paper, Department of Genlopy, Nos. 1-2, Montreal 1896); Leipzig 1885)

EPACRIDACEÆE, ëp-ạ-krī-dã’sẹ-ē, a small order of heath-like shinhs or small trees, usually reckoned as the Australian sub-order of Ericacea, from which they are chiefly distinguished by the epipetalous stamens destitute of or appendages. The flowers are red, white or
purple, generally in leafy spikes. Many species are cultivated in greenhouses along with th heaths proper. Among the most attractive o nearly an inch in length, of a brilliant reddish purple at the base and pure white at the apex A few species produce edible berries resembling the American huckleberry, and which are know as Australian cranberries.
EPACTS (Gr. "additions"), in ecclesiastical chronology, a set of 19 numbers used for fixing the date of Easter and other Church festivals, yinning of each age of the moon at the Ainning of each civil year in the lunar cycle it was found that the Golden Numbers could no longer by themselves serve the purpose o adjusting the double reckoning by lunation and by the tropical or true year; and thus,
instead of adopting the more rational computation, the Roman Church devised the artificial and involved method of epacts. The man point to determine is the age of the moon (in entire days) at the beginning of cach civil year or the number of days between the end of the ecclesiastical ycar in December and the firs (12 lunations) from 365, we should have 11 day for the first annual cpact, then 22 for the year following, then $3,14,25,6,17,28,9,20,1,12$ $23,4,15,26,7,18$ and 29 ; the series of 1 ing 11, and whon the sum excecds 30 , subtract ing that number. This illustration, however, is simpler than any actual case, by reason of the cap-years, which require 12 to be added for the following epact, and of the fact that no lunation is exactly 30 days long. When the lunar cycl in the same order. In the Anglican recur agoning as distinguished from the Roman, it is note worthy that the Gregorian. epact for any year
is the same as the Julian epact for the ycar is the same as the Julian epact for the yca preccding, owing to the coincidence that 11 before the English Tarliament adopted the re formed calendar (q.v.), is also the number o days between the lunar and the solar years. The epact determines by subtraction the date of he first new moon in anuary; then by adding throughout the year are assigned to their re spective dates. Consult Clavius, C., (Roman Calcndarii a Gregorio XIII P. M. Restituti EX plicatio ctc.' (Rome 1603) ; Butcher, J. G., and utcher, S. H., editors, 'The Ecclesiastica in 1877): De Morgan, A. 'The Book of Almanacs' (London 1871) : Seabury, S., 'The Theory and Use of the Church Calendar in the Mcasurcment and Distribution of Time (New York 1872) ; Kennedy, Thomas, (Epacts' in 'Catholic Encyclopedia,' Vol. V, p. 480 cw York 1909).
EPAMINONDAS, ḕ-pǎm"īn-ǒn'dăs, Thc han gencral and statesman: b. about 418 в.C. was distinguished for the friendship existing between him and Pclopidas, whose life he had aved in 385 at Mantincia. He was sent to parta 371 b.C. to represent Thebes in negotiat ing a peace with the Athcnian envoys. As the
represcntative of Bocotia, the Thebans were exbyded from the peace. Cleombrotus was sent feated Spartans to invade Breotia, but was de tactics of Epaminondas. Two years after Epaminondas and Pelopidas were made Bœotarchs. They detached several nations from the alliance of Lacedæmon, and delivered Epaminsenians, whose capital they rebuilt. Sparinondas then marched with his army to fully defended by Agesilaus that the Theban nero retreated. An accusation was brought against him on his arrival in Thebes, because yond Pelopidas had kept the Bocotarchate beyond the legal time; the accusation was literally tied by his services, and after having pleaded his own cause, he was acquitted. In 368 he compelled Sicyon and Pellene to relinquish the served innian alliance, and in the same year rescued in a Theban army sent into Thessaly to Phere. In the following ycar he commanded an expedition with the same object which was successful. In 362 he was compelled to make hcad against a formidable coalition of states, inneverg Athens and Sparta. His tactics were campaign, but in the battle of Mantineia he was killed at the moment of victory. Consult Colcroft, J. W., 'Epaminondas of Thebes' (in Dublin University Magazine, Vol. XL, p. 34, Dublin 1852) ; Cornelius Nepos, 'Vita Epaminondas) ' (Berlin 1870) ; North, Sir T., ed. and trans., 'The Lives of Epaminondas, Philip of Macedonia, etc.' (in 'Plutarch's Lives of the Noble Grecians and Romans,' London 1656); Yonge, C.
York 1882).

EPAPHOS, the son of Zcus and Io, who, according to Ovid caused Phaeton's destruction by denying his divine descent. Epaphos, according to Greck mythology, became the ancestor of the Egyptian race and the first lord of heir country whither his mother had fled be tore the jealous wrath of Hera and where he references to him in the Greck writers; only Pindar, Eschylus, Euripides, Herodotus, Ovid and a few less important writers of later date mention him. Herodotus claims that his name Was the Greck cquivalent to the Egyptian deity Apis. Consult Bercns, E. M., 'A Handbook of
'Mythology' (Ncw York, n. d.) ; Gruppe, O., Griechische Mythologie und Religionsgetertums wisscnschaften, etc.,' Vol. VII, Munich 1897-1903) ; Linforth, I. M., 'Epaphos and the Cgyptian Apis' $^{\prime}$ (in University of Californi No. 5, Berkeley 1910)
EPARCHY ($\varepsilon \pi a \rho \chi i a)$, originally the ampe of one of the divisions of the Roman Both of these terms were adopted by the Church. Ecclesiastical eparchics were under a (325) gave the power to appoint the other bishops in his eparchy. Later this term wa applied to mean the diocese of any bishop. It is now in common use only in the Russian

Church, where it still applies to all subdivisions of the Church corresponding to the western diocese. There were, before the Rhich three were
lution of 1917,86 eparchies of which administered by metropolitans (Kiev, Moscow and Petrograd), 14 by archbishops and the res by bishops.
EPAULEMENT, è-pål'měnt, in fortification, a term originally employed to denote a mound of earth, raised to protect a body troops at the extremity of their line; or a sampart erected, as a sort of shoulder, to defend the flank of a battery from enfilading fire, which would dismount its guns. In modcrn artillery, the word is applied to the whole mass of earth, stone or fascines raised to pro-
tect a battery both in front and at the flanks It is also used of the breastwork set up to shelIt is also used of the breastwork set up to
ier reserve artillery. See Fortifications.
EPAULE'T, ēp'â-lět, an ornamental badge consisting of a fringe hanging over the shoultill worn in the English navy by all rank above lieutenant. Epaulets were not partially when none but United States army ontinued to wear them. In the United States navy the paulet is worn by all officers above the rank of ensign. The French private soldiers wear epauts of worste
EPEE, àp-pả', Charles Michel, Abbé de l' French instructor of the deaf and dumb:b. Ver 1789. Taking orders, he became a preacher and canon at Troves, but later lived in retirement in Paris. In 1765 he first began to occupy him self with the education of two deaf and dumb sisters; and, as he asserted, without any prevous knowledge of Perciras efforts in the cause thus afficted might be enabled to hold inter course with their fellow-creatures. He determined to devote his life to the subject. At his own expense he founded an institution for the deaf and dumb, which was first publicly ex nual subsidy It was not however, converted into a public institution till two years after his death. He published 'Institution des Sourds et Muets, etc.' (Paris 1774); 'Instruction des Sourds et Muets par la Voie des Signes Meth d'instruire les Sourds et Mucts) (Paris 1784) Consult Arnold, Thomas, "Aures Surdis. The Education of the Deaf and Dumb) (London 1872): Arrowsmith, J. P.. 'The Art of Instructing the Infant
(London 1819) ; Berthier, F., 'L'Abbe de l'Epee, (London 1819); Berthier, F." L'Abbe de 'Epee,
sa Vie, etc.' (Paris 1852) ; Bouilly, J. N., 'The Deaf and Dumb; or, the Abbe de l'Epée. An Deaf and Dumb; or, the Abbe de (Papee. An
Historical Play in Five Acts) (Paris 1800; London 1801).

EPEIRA, ē-pīra, a genus of spiders, typical of the family of Epcirida, comprising some of the largest and best-known spiders, those building orb-webs. They occur in ase parts of the Sce Orb-weaver; Spider.

EPEIROGENIC MOVEMENTS. These are such geological movements as have to do with the uplift and depression of continents
and oceanic basins, as distinguished from oro-
genic movements, which form mountain ranges. Their causes are only imperfectly understood. played a part in inducing them are the expansion of strata in which the escape of heat has been blanketed by superincumbent deposits, the weight of these superincumbent deposits, the wrinkling of the earth's crust due to cooling and the tidal effect of the moon on the earth's ally measured from sea-level, but it is highly probable that they are all in the strictest sense movements of depression, as there is strong evidence that the radius of the earth's crust is steadily diminishing. See Earth; Geology.
EPENCEPHALON, a term used to designate that part of the embrionic brain from formed. In the fully developed brain the term is used for that part containing the cerebellum, pons Varolii and the medulla oblongata. See rain.
EPERÏES, à-pār'yěs (Slovak Pressova), Czechoslovakia, an old town on the Tarcza, 190 miles northeast of Budapest by rail. The city
was destroyed by fire in 1887. It is the seat of a Greek Catholic bishop, and has a Lutheran college. It manufactures earthen-ware, linens and woolens, and has some trade in corn and Tokay wine; in the vicinity are the Sovar saltworks. The Reformed Church made great headway here and the city played a considerable part in It is celcbrated as the scene of the "butchery of Eperies," when the Austrian general Caraffa in 1687 instituted a series of Protestant persecutions and martyrdoms. Pop. 16,323.
EPERNAY, à-pẽ̀r-nã, France, in the department of Marne, in the midst of a rich vinegrowing district, 19 miles northwest of Chalons, made in Epernay. It is an entrepot for Champagne wines, which are kept in vaults in the chalk rock on which the town is built. There are large railway workshops. Pop. 21,811. EPERNON, dâ-păr-nôñ', Jean Louis de Nogaret, Duc d, French courtier: b. 1554; d. Henry III, whose fortuncs he followed and whose chief favorite he became. In return the king enriched him, made him Duke of Epernon in 1581, and admiral of France. He was appointed governor of Normandy in 1587, but through the influence of the Catholic Leaguc he was exiled to Loches in 1588 . Henry IV
made him governor of Limousin in 1596 and he was transferred to Guienne in 1622. In the early period of his ascendancy Epernon was a defender of absolute monarchy, but later he urged the independlence of the nohility. His caused the latter to banish him to Loches in 1641. Consult the life by Montbrison (Paris 874).

EPERRVIER, The. See Peacock and epervier, Battle of.
EPHAH, e'fa, a dry measure of capacity among the ancient Hebrews, corresponding with
the liquid measure bath. The ephah contained about 37 litresure equal. the about 10 gallons of about 37 litres, equal to about 10 gallons of
the United States or 8 gallons British. There
were, however, two measures called ephah, of
which the above estimate applies to the smaller and this contained about one-tenth less than the other. The ephah had 18 cabs or 72 logs. Condon 1912). on 1912).
EPHARMONY. See Ecology
EPHEDRA, éf'è-dra, a genus of shrubs used for decorative purposes in landscape gar the horsetails. The flowers are small and incon spicnous. The species occur in all parts of the world, but are not hardy and need protection from frosts. They flourish best in dry or rock said to be mucilaginous slightly pungent. The branches and fowers of the Asiatic species were formerly sold as styptics
EPHEMERA, e-fem'e-rà, the typical genus
of the insect family Ephemeridee of the insect family Ephermeride (q.v.). EPHEMERIDÆE, ěf-è-měrrî-dē, a family of neuropterous insects characterized by the slenderness of their bodies; the delicacy of their
wings, which are erect and unequal, the anterior wings, which are erect and unequal, the anterio
being much the larger: the rudimentary condtion of the mouth, and the termination of the 0 -jointed abdomen in 3 -jointed filiform ap pendages. The adult May-flies, or day-flies, a hey are called, emerge from the chrysalis on the banks of the running streams in which the sunset, when they throng about strect-lamps, ighthouses (where sometimes they obscure the light) and the screens of lighted windows, are no less remarkable for their great activity than for their enormous numbers, and the bries shed in a mass, drop into the water The larvæ have elongated depressed bodies; setose antenne, and long caudal filaments; and lamellas or tufted gills, symmetrically disposed on either side of the abdomen. They remain in the wates change, lying beneath stones, andergoing furthe daceous life, for which their strong jaws fit them. The rudiments of wings mark the commencement of the nymph stage, at the close of Which they crawl out of the water and cast the prior the second Their sexual immaturity named, at this stand molt has led to their being The larve, which are very similar throughout the family, are largely used as bait. There are many species in various parts of the world, divided into various genera. Ephemera and
Canis have three caudal Canis have three caudal filaments; Palingerna The posterior wings are absent in Cloe and Ternis. Consult books mentioned under Insects.

EPHEMERIS, an astronomical almanac. The plural Ephemerides is applied to tables showing the places where the planets and hearis from these are found at noon of every day. It is from these tables that cclipses, conjunctions, etc., of the planets are determined. An espe-
cially exhaustive and very carefully compiled hibliography, covering some 280 columns, is to be found under the heading 'Ephemerides' in the 'Catalogue of Printed Books,' published by the British Museum (London 1887, 1902, Astronomy' (New York 1906).' See Almanac.

EPHESIACA, or EPHESIAN TALES, of Ephesus. It is from the pen of Xenophon of Ephesus. It is occupied with the loves of
Abrocomas and Anthia, and is the primary Abrocomas and Anthia, and is the primaty
source of the story of Romeo and Juliet.

EPHESIANS, Epistle to the. Addressed the "the saints that are at [Ephesus]" by Pad 1 ; iv, 1; vi, 20) linked in time and place of composition with" "Colossians" and "Philemon" "of the mention of the same bearers, Tychicus of Asia" (Acts xx, 4 ; Eph. vi, 20; Col. iv, 7)
and Onesimus of Colossæ (Col. iv, 9 ; Philem. and Onesimus of Colossæ (Col. iv, 9 ; Philem. $v, 12$) and the same five persons sending salu-
tations (Col. iv, $10-14$; Philem, 23-24). As the Words "at Ephesus" are wanting in our oldest MSS. (Sinaiticus and Vaticanus), a fact known to Origen (A.D. 186-254), Basil of Cæsarea (3295, 9), and probably to Marcion (150?) who named the epistle assent to another city of Asia,
Laodicea, the original may have borne the address: "to the saints that are in Asia" (1 Cor. xvi, 19 ; Acts xix, 10), like "the saints that are in the whole of Achaia" (2 Cor. i, 1) so as to include the province as well as the capital. That "the epistle" which Paul in Col. iv, 16 asks to have was our "Ephesians" is a common and plausible conjecture. Its suitability in form and contents to serve thus as a circular letter has been recoghized since the time of Beza (1589) and Archbishop Ussher (1673). Personal greetings and messages, like those in Col. iv, $10-17$ (to be given orally, Eph. vi, $21-22$), and controversial
matter like Col. ii, $8-23$, would necessarily be omitted. There would remain, however, a large tesidue of apostolic teachings, having vital and common significance to all "the churches of
Origin and Content.-Answering to their Simultaneous origin, the phenomenal paralthought and diction presents a psychological and literary problem of exceptional intercst, as no ewer than 78 of the 155 verses of the latter epistle contain phraseology which occurs in the century for literary dissection, however, has failed to produce, even with the critical acumen piic Holtzmann, anything better than a complicated and preposterously artificial theory of no patch imitation and compilation. Here is its patched garment, but a seamless robe. In intuition and in structural symmetry, Coletidge's eulogium is well-nigh justified: "the grinest composition of man." In the background of both epistles there looms the august person of the Cosmic Christ (Col. i, 14-16; (Col. $\mathrm{i}, \mathrm{i}, 16$; 16) : suph. $\mathrm{i}, 10-16$); vitally and creatively present everywhere in his Church (Col. i, $6,18-19,27$; Eph. i, 22-23) ; the living bond ${ }^{\text {of }}$ union between Jew and Gentile (Col. i, 20; Eph. i, 10; ii, 15f) ; the perennial source of transcendent spiritual knowledge (Col. i, 9 ;
$\mathrm{E}_{\mathrm{ph}}, \mathrm{i}, 17$), and ethical vigor (Col. iii, 12-13; Eph. i, 17, , and ethical vigor (Col. iii, 12-13;
that of discussion, the mood of Colossians is
that of Ephesians is meditation. Actual residence in Rome (Phil. iv,
22) 22) the ruling capital of "all the world" (Col. $\left(\mathrm{Eph}^{0}\right.$, vets "the kingdom of Christ and God"
pective. Calm meditation upon the cosmic implications of the Gospel message, unvexed by controversial stress, leaves its impress upon the vocabulary and style of one who could speak of having been "caught up into Paradise" (2 Cor xii, 4). Thus in i, 3 -1il, 21 the greater clabora-
tion of the conventional epistolary divisions of Address, Thanksgiving and Prayer, fore shadowed in passages like Rom. i, 1-15, flowers forth in full luxuriance, and in like manner the effort (manifest in Col. ii, 8-23) to gain greater fulness of expression by means of
lengthy sentences built up of many subordinate clauses, and the employment of an ampler vocabulary, has freer scope. The resulting superficial aspect of aimless discursiveness is apparent rather than real; for faith and love, the dominant elcments of all of Paul's Christo ogical teaching, form
Theme.- The subject of the epistle is: The Reincarnation of the Cosmic Christ in his Church through faith (chs. i-iii) and through love (chs. iv-vi). Following the characteristic opening salutation of "grace" and "peace" from (in place of the usual Thanksgiving) develops God's pre-mundane plan : the gift to Jewish and Gentile believers through Christ of salvation, spiritual wisdom, faith and love (i, 3-16a) The Prayer, which forms the subject of the remainder of the first three chapters, is fo redemptive purpose for the whole human race ($\mathrm{i}, 16 \mathrm{~b}-\mathrm{iii}, 21$). After the substance of the prayer is briefly introduced in $i, 16-19$, three facts are developed as stimulating to faith: God's power already exhibited in the Head of he Church by his resurrection and enthronemembers of his body, the Church ($\mathrm{i}, 21-\mathrm{ii}, 10$) in the spiritual union in his Church of the two mutually hostile divisions of the human rac (ii, 11-22), and in the revelations of divinc power and grace vouchsafed to the apostle in
is Gentile ministry (iii, 1-13). The way i his Gentile ministry (1i1, $1-13$). The way is
thus prepared for the triumphant da capo repe tition in iii, 14-19, with full organ tones, of tition in ini, $14-19$, with full organ tones, o
the initial motif of $\mathrm{i}, 16-19$. The exquisit summarizing cadence (iii, 20-21) in the form of a doxology, like the opening one in i, 3-14 is an appeal to faith such as appears in the plementary theme of chs. iv-vi is love, the organic principle of the life of God and Christ in his Church (iv, $1-16$) and a regenerating and unifying force in all of the believer's social cluding section (vi, 10-24) strikes once more the dominant notes of "faith" and "love." The ife of faith in Christ and God is shown to be the Church's sole defense against superhuman spiritual foes (vi, 10-18). The closing personal references, after bespeaking such a loving in writer has for them, and repeating the initial salutation (i, 2) of "grace" and "peace") from God and Christ, end on the two high notes of "faith" and "love," and with characteristi Pauline stress on the "greater" (1 Cor. xiii, 13) of these.
Bibliography-- Discussions of the prob-
lation to Colossians may be found in New Testament Introductions: T. Zahn (Eng. trans H. J. Holtzmann (1892) ; A. Juclicher (1904) A. S. Peake (1910) ; F. J. A. Hort (1895) and detailed exegesis in the commentaries of C. J.
Ellicott (4th ed., 1868) ; H. A. W. Meyer (Eng Ellicott (4th ed., 1868); H. A. W. Meyer (Eng.
trans., 1880) ; J. A. Robinson (1904) ; H. von trans., 1880$) ; \mathrm{J}. \mathrm{A} .\mathrm{Robinson} \mathrm{(1904);} \mathrm{H}$.von
Soden (Handcommentar, 2d ed., 1893); ${ }^{\text {E. }}$. Haupt (8th ed., 1902).

Marcus D. Buell,
Professor of New Testament Greek and Exe-
gesis, Boston University School of Theology.
EPHESUS, ěf'è-sūs, Asia Minor, a Greck city of Lydia; one of the 12 Ionian cities; near Kutshuk Mendre. Ephesus is now represented by the village of Ayasoluk, about 36 miles from Smyrna, on the railroad to Aidin. After belonging to the Ionians, it fell successively under the dominion of the Lydian and Persian kings. Its importance as a commercial city dates chiefly was the starting point of one of the great trade routes into Asia Minor. The apostle Paul lived for two years at Ephesus and established a
Christian Church there, to which he addressed Christian Church there, to which he addressed
one of his epistles. Timothy succeeded Saint one of his epistles. Timothy succeeded Saint of the Church after Timothy, and to have dicd at Ephesus. Its bishop was the first of the seven to whom the Apocalypse was addressed. It was long famous for its temple of Artemis
(Diana), called Artemision, reckoned one of (Diana), called Artemision, reckoned one of
the seven wonders of the world. The temple the seven wonders of the world. The temple
was of the Ionic order, and was adorned with many pillars, each 60 feet high, and with numerous statues and paintings by the most celebrated Grecian masters. It had been destroyed seven
or eight times before Pliny wrote, particularly or eight times before Pliny wrote, particularly
by the notorious Herostratus, 356 B.C. The temby the notorious Herostratus, 356 B.C. The trmmore magnificence than ever, raised for this purpose. There were also many other temples here, a theatre, a stadium or racecourse, gymnasia, odeum; etc. The sitc of the
temple had become lost when it was discovered by Mr. Wood in $1867-69$. In his extavations he found that the building measured about 343 feet by 164 , and stood on a raised platform measuring 418 feet by 239 . Important excava-
tions have since heen carried out here by the tions have since been carried out here by the
Austrian. Archæological Institute and the Austrian Archxological Institute and the gymnasium, and a splendid semicircular marble portico round the east side of the harhor have thus been disclosed. In the douhle church of
Saint Mary the Virgin the Council of Ephesus Saint Mary the Virgin the Council of Ephests was held in 431. The Great Mosque or Church and other interesting objects are to be seen here. Consult Wood, 'Discoveries in Ancient Ephesus' (1877).
EPHESUS, Council of, the third general council of the Roman Catholic Church, held at
Ephesus in June 431, principally to oppose the Ephesus in June 431, principally to oppose the
heresy of Nestorius, patriarch of Constantinople. It was convoked hy the Emperor Theorlosius II at the instance of Pope Celestine I and many Catholic hishops. Cyril, bishon of Alexandria, presided on hehalf of Pope Celestine I. The
number of bishops in the Council was about 200.

Nestorius, adopting the teaching of Theodorus of Mopsuctia, denicd the Church's doctrine o Word being made man, he (the Word) simply Word being made man, he (the Word) simply and that hence Mary the Virgin was not deorbos God-bearing, mother of God, but only xpeloto kos, mother of the Christ. The Council de-
clared that Mary is θ Oiotoros, Jesus Christ is God and man. (See Communt catio). Nestorius was deposed and excommunicated. It was not, however, until some years afterward that his supporters acquiesced in this finding. Nestorius himself was ordere by the emperor to retire to his monastery near
Antioch. Another Council was held at Ephesn! - the "robber synod," as it is called-in August 449 convoked by the same emperor to deal with questions of faith connected with the teachings of Theodorus and Nestorius. Th presiding bishop, Dioscurus of Alexandria, hack ed by a rahble of monks, soldiers and scrvants
overawed the 135 bishops, compelling them to sign blank papers on which he wrote what decrees he pleased. Consult liright, W., 'The Canons of the First Four General Councils tic.' (Oxford 1892); Christal, J., 'Anthorita W. P., 'The Ecumenical Conncis)' (in 'Ter Epochs of Church History,' Vol. III, New York 1896) ; Ficker, G., 'Eutherius von Tyana, etc.' (Leipzig 1908); Hammond, W. A., 'Th Definitions of Faith, and Canons of Discipline 18844) : Hefele, K . I Councils' (New Yor Councils of the Church) (Vol. III, translated by C. W. Buch, Edinburgh 1883) ; Nau, F. and others, translators, 'Nestorius. Le Livre d'Heraclide de Damas' (Paris 1910) ; Percival,
H. R., 'The Seven Ecumenical H. R., 'The Seven Ecumenical Councils of the of Nicene and Post-Nicene Fathers,' 2 d Scries, Vol. XIV, New York 1900); Perry, S. G. F.; d., 'The Second Synod of Ephesus, etc.' (Dartford 1881); Rivington, L.,' 'The Council of Ephesus and Anglican Writers) (in Dublit Supremacy at the Council of Ephesus' (Ibid., Vol. CXVI, London 1895)
EPHIALTES. (1) The Malian who coll ducted the Persians over a mountain path and enabled them to surprise Leonidas and his Spartans at Thermopylx with a rear
(2) The son of Poseidon and Iphimedia.
EPHOD, commonly believed to have been a species of vestment woven of cold bue purple, scarlet, and fine twined linen, worn by the Jewish high-priest. According to Exodus xxviii, 6 ff . and xxxix, 2 ff . it consisted of wo main pieces, one covering the back, the other the breast and unper part of the body, straps. On cach shoulder was an onyx stone set in gold, on which were engraved the names set in gold, on which were engraved the names
of six tribes according to their order. A girdle or band, of one piece with the ephod, fastened it to the body. Just above the girdle, in the middle of the ephod, and joined to it hy little gold with the Urim and Thummim. The ephod was originally intended to be worn by the h:ghpricst exclusively, but a similar vestment made of linen was worn in later times by priests of

Wewer rank. In more recent times considerabl discussion has been carried on in regard to the rue nature and appearance of the ephod. Some investigators claim that it was a shrine, some of a was just a pouch somewhat on the order instrument of divination. However, inasmuch as all the evidence on which these investigation arc based is more or less circumstantial an indefinite the question is still unanswered and ${ }^{\prime}$ ' D lis Ely to remain so Consult Elhorst, H. J Das Ephod' (in Zeitschrift für die alt-testa-
mentliche Wissenschaft, Vol. XXX, p. 259 Giessen 1910) : Foote, T. C., 'The Ephod
(in (in Journal of Biblical Literature, Vol. XXI P. 1, Boston 1902) ; Macklenburg, A.: (Uber den chhod in Israel' (in Zeitschrift für Wissent
schaftliche Theologie, Vol. XLIX, n. F. Vol Thaftliche Theologie, Vol
XIV, p. 433, Leipzig 1906)

EPHORS, èf'örs, or EPHOROI, magis trates common to many ancient Greek com minites. The most colebrated were the phoroi of Sparta. The origin of the office is incertain and it is very doubtful that they wer ber tuted by Lycurgus. They were five in num people annally people annually, their authority being designe cii. They superintended the morals and domes co economy of the community; scrutinized th Conduct of all officials, and even summoned the ings before their tribunal. The judicial au almost and executive power eventually fell autocratic entirely into their hands; they becam pivileges, and arousing the antagonism of the in gs and people, were suppressed by Cleomene A the latter murdering the Ephors 225 B.C AIter his fall in 221 B.C. the office was revived very extensive literature on the subject, almost entirely in German. Besides articles in the varius 'Histories of Greece' (q.v.), there is a ver Szantistive, but rather technical article by der Kan Pauly-Wissowa 'Real-Encyklopadi V, Stuttgart 1907) Consult Dum, (Vo Entstehung und Entwickelung des Spartan schen Ephorats) (Innshruck 1878) ; Kuchtner des 'Entstehung und Ursprungliche Bedeutung Stein Spartanischen Ephorates) (Munich 1897) auf Ch, H. K., '(V)as Spartanische Ephorat bi 'Zur Eheilon' (Paderborn 1870); Stern, E. von, ${ }^{\text {tung des Ephorats in Sparta) (Berlin 1894). }}$
EPHORUS, Greek historian, flourishing in
the 4 th century b.c., from about 400 to $330 \mathrm{B.C}$. is knorn at Cyme, in Aeblis, Asia Minor. Little that he knowneerning his life, but it is related atter, studied under Isocrates and that th hitm to abandon orntory for history and that was upon his suggestion that he prepared his Voiversal history. This work Iotopia, in 30 in Gres, was the first history cver writte of Grecec and was remarkable for its wealt Comaterial and also for the fact that each book With an introduction, was complete in itself the history deals with the Greeks (outside of cle mythical age) from the return of the Heraering to the siege of Perinthus (340 B.C.), cov ing a period of over 700 years. His style of
writing was loose and feeble, well meriting the alleged remark of Isocrates, that he needed the spur, as Theopompus the bit. The history was
used and praised, however, by Polybius, Diodorus and Strabo. The main portions of the manuscripts have perished, only a few fragments remaining, which were published in Mragmenta Historicorum Grecorum' (C. Paris 1841). An older collection, (Ephori Cumxi Fragmenta, (Karlsruhe 1815) was Ancient Greek Historians' (New York 1909). Schwartz, E., 'Ephorus' (in Pauly-Wissowa 'Real Encyklopadic der Klassischen Altertumswissenschayt,' Vol. VI, p. 1, Stuttgart 1907); id., 'Die Zeit des Ephoros', (in Hermes, Vol.
XLIV, p. 481, Berlin 1909).

EPHRAEM SYRUS, èfra-èm sīrǔs, SAINT EPHREM, or EPHRAM (the Syrian), Syrian theologian : b. Nisibis, Mesopo-
tamia, about 306 ; d. Edessa, Mcsopotamia, 373 . He lived in Nisibis till 363 and played an important part in defending his native city against the various sieges to which the Persians submitted it. When the Emperor Jovian gave up the town to the Persians in 363, he, together
with its other Christian inhabitants, Ieft. He finally settled in Edessa where he continued to reside till he died, except for intervals which he spent in prayer and meditation in the desert and except for a journey to. Egypt and a visit 10 Saint Rasil, Archbishop of Cxsarca in Cappadocia. He held humble rank in the hierarchy,
that of deacon, but as a preacher attained high that of deacon, but as a preacher attained high celcbrity. He thought himself unworthy. His writings were very numerous, and many are extant. He used a poetic form in his homilies and harangues; and Saint Jerome tells us that
his homilies (translated into Greek, for he his homilies. (translated into Greck, for he of the churches of Greece immediately after the Scripture lesson. He was a valiant defender of Catholic orthodoxy against the heretics of his time - Bardesanes, the Gnostic, the Arians, and the Sabellians, the Manichæans and the Novatheir simplicity and genuine poetic spirit. Even his homilies are of a poetic cast and form. His works have been collected and translated into Latin, Greek, German and English. There are also Armenian, Arabic, Coptic and Ethiopic portant translations and collections, many of which are preceded by accounts of his life, are: (Omnia Opera S. Ephrami Syri) (G. Vossius, ed., 3 vols., Rome 1589-98) ; '(rreek Text of 156 Writings of Saint Ephrem) (E. Thwaits, ed. Oxford 1709) : 'S. P. M. Ephreem Syri Opera (J. S. Assemanus and S. E. Asscmanus, ed., 6 vois., Rome 1732-46) ; (Ausgewaihlte Schriften des Heiligen Kirchenvaters Ephram) (F. Zingerle, ed., 6 vols., Innsbruck 1831-46); 'Saint Ephrem's Commentaries on the Fpistles of Saint Paul) (Latin text, Aucher, ed., 4 vols., Venice 1836) ; 'Select Works of Saint Enhrem 1847): '(Repentance of Nineveh') (H., Burgess, transl., Lendon 1853): 'Select Metrical Hymns and Homilies. etc..) (H. Burgess, transl., London 1853) ; (S. Ephræmi Syri, Rabulæ Epis-
copi Edesseni, Batæi, Aliorumque Opera Selecta) (Syriac text, J, J. Overbeck, ed., Oxford, etc.) '(Syriac) phremi Syri Carmina Nisibena, Leipzig 1866) ; 'Commentaries on the Concord ance of the Gospels' (Latin text, Moesinger, Sermones' (Syriac and Latin texts, T. J. Lamy ed., Malines 1882) ; 'S. Ephræm Syri Commentarii in Epistolas D. Pauli, etc.' (Venice 1893) ; 'Fragments of the Commentary of Ephrem Syrus Upon the Diatessaron' (J. R. lated into English from the Hymns and Homilies of Ephraim the Syrian' (J. Gwynn, ed. and ransl., in 'A Sclect Library of Nicene an Post-Nicene Fathers,' 2d ser., Vol. XIII, pt. 2, (Das Leben des H. Ephrem) (Berlin 1853):
 Review, 3 d ser., Vol. XIV, p. 20, London 1885).

EPHRAIM, éfrâ-ím, according to Gen $\mathrm{xli}, 50-52$, the younger son of Joscph and of
Asenath and the founder of one of the 12 tribes Asenath and the founder of one of the 12 tribes
of Israel. The tribe occupied one of the finest of Israel. The tribe occupied one of the finest and most fruittul territories of Palestine; in most of what was afterward called Samaria Its approximate boundaries were: on the cast the river Jordan, on the west the Mediterrancen Sca and the tribe of Dan, on the south the tribe of Benjamin, and on the north that of Manas seh. The Ephraimites, when they left Egypt,
are said to have numbered 40,500 , and, being numerous and influential, often appear as the representatives of the 10 tribes, both in historical and prophetical passages of the scriptures. For a long time the ark and the tabernacle were situated at Shiloh in the heart of Ephraim. The
tribe was the most warlike of all the Israclites tribe was the most warlike of all the 1sracites (Judges viii, 1) and against Jephthah (Judges xii, 1-7) because they did not ask their aid in war. Joshua, who conquered the Holy Land, and Samuel, the prophet, were members of the in conjunction with all the other tribes except Judah, took part in the revolt of Saul's son Eshbaal (Ishbosheth), and recognized him as lcgitimate king in opposition to David (2 Sam.
ii, $8-9$), but upon his murder, submitted to the ii, 8-9), but upon his murder, submitted to the hegemony of Judah under David. Later, about 975 B.C., after the death of Solomon, the tribe
revolted under Jeroboam against Rehoboam, the son of Solomon (1 Kings xii, 1-20), and with all the tribes except Judah, Simeon, part of Benjamin, and the Levites, merged into the northern kingdom of which they constitutcd the most important part. There are, of course, nu-
merous references to Ephraim in many parts of the Old Testament. A list of these may be found in the article by H. W. Hogg in Vol. II of Encyclopadia Biblica (London 1901). Consult also English Commentaries on Bible, Old Testament, Fxodus.
EPHRAIM, town of Palestine, mentioned in John xi, 54, as a place where Jesus took mentioned twice in the Old Testament and by Josephus, and is probably the same place. tempts to identify it with Et-Taiyibeh, four
miles northeast of Beitin, the ancient Bethel, do not rest on any secure foundation beyond the
fact that it best corresponds to the New Tesfact that it best corresponds to the New
tament description as "near the wilderness."

EPHRAIM CODEX. Sec Bible.
EPHRATA, Pa., township and borough in Lancaster County; on the Philadelphia a Reading Railroad, about 50 miles northwest o region with forests nearby. It is a health reregion with forests nearby. It is a health silk, underwear and hosicry. The borough owns its waterworks and electric-light plant. Ephrata was founded by Johann Conrad Beissel (q.v.) and his followers in 1735 . The community $\mathrm{e}^{\mathrm{s}-}$
tablished by Beissel was called "Order of the Solitary," and it resembled somewhat the Seventh-Day Adventists. Ephrata contains several very ancient and singular buildings, particularly the brother and sister house. These houses are large four-story structures, cach cortments so that six dormitorics, larely large enough to contain a cot, a closct, and hour glass, surround a common room, in which each mess have their meals. The dress of the brethren and sisters was that of the Eranciscans or White
Friars. They were remarkable for their rigid Friars. They were remarkable for their rig of the New Testament; they insisted upon washing of the feet before administering sacrament; and were very obscrvant of Sabbath. They were peaceful and temper and distinguished for their music, which
composed and arranged by thenselves. Pri to the Revolution they seemed to flourish, b now only a few of the order remain. Many of the members were well cducated; Peter Miller, second prior of the monastery, translated the Declaration of Independence into seven lanpress was set up, and a number of works, in both English and German, some of them very beautifully made and now highly prized, were
published. Pon. of townships, 2,565 ; borpublished. Pon. of townships, 2,565; borough, 3,735. Consult Gibbons, (Pennsylvani Dutch and Other Essays' (1872) ; Kuhns, ' vania'; Sachse, 'The German Sectarians of Pennsylvania' (2 vols., 1900).

EPHYDRA, a genus of flics, of the Ephydridæ, the eggs and larve of which were cors sidered a dainty by the aborigines of Americ Sec Fly

EPIBLAST, one of the layers in the de veloping embryo from which the structure veloped; also called ectoderm. See EM BRYOLOGY.

EPIC. See Narrative Poetry
epicardium. See Heart.
EPICHARMUS, Greek philosopher and comic poet: b. Cos, about 540 в.C.; d. $450 \mathrm{BlC}$.
He lived at Syracuse, and there wrote his cel brated comedies, now lost. Their number is reckoned at 52 , and the titles of 35 of thert have been preserved. Very little is known
initely about his life. But it is said that, fore commencing his career as a comic poth, which apparently he did somewhat late in life,
he lived at Megara, engaged in the study of philosophy, both physical and metaphysical. Tho

Iragments of his writings which are preserved speculative discourses. His maxims, and with
genius was highly esteemed among the ancients by such judges as lato and Cicero. The Sicilian comedy of Epicharmus, prior to the Attic, grew out of the mimes, which were peculiar to this island, making a sort of popular poetry. He arranged the
separate unconnected scenes, exhibited in the mimes, into continued plots, as in tragedy. His comedies were long regarded as models in this species of composition, and were as much distinguished by their knowledge of human nature
as by their wit and lively dialogue. The Sicilas by thcir wit and lively dialogue. The Sicilalso designated as the Doric comedy and is written without chorus. As their subject matter Epicharmus chose mythological incidents Which he travesticd or characters from cverytetrame. He wrote in trochaic and anapaestic tion of his fragments is contained in (Poetarum Grecorum Fragmenta) (G. Kaibel, ed., Vol. Vi, Berlin 1899). Consult Koerte, A., 'Die Griechische Komödic) (Leipzig 1914)
EPICEENE, or THE SILENT WOMAN, old medy by Ben Jonson, produced in 1609 . An Epicocne because of her good reputation as a good listener and also with the aim of disinheriting a nephew. Immediately after marriage - piccene displays an exceedingly shrewish disposition. Morose, in order to be rid of her, promises the services of his nephew by gifts and Epiccese of reward. The nephew then discloses duced to play this trick upon Morose.
EPICONTINENTAL SEAS, those shal(q.w.) and which cover the contincental shelf red most parts of this and other continents in the geologic past. The term is in contrast to he deep seas which have been more persistent
EPICTETUS, Stoic philosopher: b. HieraEPICTETUS, Stoic philosopher: b. Hiera-
Dolis, I'hrygia, abont 60 A.D. He lived at Rome, Where hrygia, abolut 60 A.D. He lived at Rome, brutal freedman of Nero, whose abuse and maltreatment he bore with fortitude. He was later nanumitted. Epictetus himself did not leave
any writtcn account of his doctrines, which appear to have been of the most elevated kind. I_{n} his discourses he aimed to impress his hearers with the love of practical goodness. The foundation of philosophy he held to be the percepwhat is needfown weakness and inability to do nearly to Christianity than those of any of the nearly to Christianity than those of any of the
earlier Stoics, and although there is no trace in What is recorded of them of his having been irectly acquainted with Christianity, it is at Cast probable that the ideas diffused by Chris-
tian teachers may have indirectly influenced them teachers may have indirectly influenced versally acknowledged. Banished from Rome by. Domitian who hated him on account of his principles, Epictetus settled in Epirus, and alis hugh he possessed the favor of Hadrian, there Do no evidence that he returned to Rome. His ${ }^{\text {Dupplet, Arrian, the historian of Alexander the }}$ Care, in the work entitled 'Enchiridion' ('Handbook) and in eight books of 'Commenvol. $10-27$
taries, four of which are lost. These reveal
the simple and noble earnestness of the philosopher's character, as well as that real heart-
felt love of pood and hatred of evil which is ften assumed to be an exclusively Christia fecling. (See Discourses). Consult the complete edition of his works by Schenkl (Leipzig 1758), Higginson (2 vols., Boston 1890) and Long (London 1897). Consult also Arnold Roman Stoicism (Cambridge 1911); Melcher (De Sermone Epictetes' (Halle 1906); Ritter ath Preller, 'Historia Philosophix Graeca'

EPICUREANISM. Epicureanism as philosophical doctrine has its rise in the teach ngs of its founder Epicurus, who was borne in son of Neocles and Chærestrata. His father's name being the same as that of the great states man Themistocles, suggested to the poet Menander a verse n whe he conasts the so of Neocles, who freed his country from slavery
with him who freed it from foolishness. In his early life, Epicurus taught in several school in Asia Minor and in the year 306 came to Athens, where he founded a school of his own By the subtle charm of his personality he at tracted to himself a group of admiring friend and followers who were not only devoted to zeal for his teaching. They were his companions and friends rather than his pupils. Their meeting place was the famous garden o the master which has become so closely asso ciated with the very name of the school. Afte he death of Epick and maintained the teaching and traditions of their leader with unabate carnestness and loyalty. Among the successor of Epicurus, the most conspicuous perhaps ar Hermarchus, Dionysius, Apollodorus, Zeno and
Phædrus. But no one of his followers achieved Phærdrus. But no one of his followers achieved of T. Lucretius Carus, the interpreter and chief apostle of Epicureanism. Though a Roman, he had caught that Greck spirit which had been so rilliantly illustrated in the garden of Athens. Epicureanism as a distinct school flourished with varying fortunes until a period as late as
the 4th century A.D. With the decay and disappearance of the school, its influences how ever did not cease, but lived on, and will live or Epicureanism represents an attitude of mind which will ever appeal most strongly to certain in a strict sense way the all natures. Iystem not philosophy. It is rather a theory of life. It is essentially practical in its purposes, methods and results. So far, however, as Epicureanismr may be called a system of philosophy, it falls into hree parts - 2 system of canonics, of nature and or mality. By canonics is meant a system With Epicurus the supreme test of truth was to be found in the sensations. It is the sam hought as that which is contained in the old adage - seeing is believing. He held that only the actual facts of a sensory experience can furnish a scientific basis upon which to construct a body of knowledge. The notions ar and all opinions are infercnces which at th
last analysis must rest upon simple sensations. The sensation as such, therefore, is the court nature, Epicurus taught that there were only natural causes. Any belief in supernaturalism he regarded as a superstition which only a weak intellect could possibly entertain. As regards the constitution of matter, he followed Democ-
ritus in the essential features of his atomic ritus in the essential features of his atomic
theory of the universe. He did not follow, however, with complete rigor the logic of his materialistic conceptions, for he allowed that there must be a distinction between the irrational, or more sensory part of the soul on the one hand, and on the other, the rational part
which he regarded as the superior and controlling power of man's nature. Morcover, while denying the existence of the gods, as gods of providence sustaining the forces of nature, and ruling the destinies of man, he nevertheless believed in their existence as beings apart and
wholly separate from mundane affairs. From the standpoint of his ethical system, the gods were of very necessity beings supremely happy, and such they could not be, were they supposed to be in any way cognizant of the darker side of nature and the manifold ills of human life. According to Epicurus the great end to be attained
through the study of nature was to disabuse the mind of any lurking superstition concerning the possibility of the supernatural.
It is, however, the ethical system of Epicurus which is the heart of his teaching, and it is this system that the term Epicureanism usually
suggests to one's mind. With Epicurus man's suggests to one's mind. With Epicurus man's the sense, however, that life is a heedless pursuit of pleasure here, there and everywhere. The end is pleasure, not pleasures. The supreme pleasure, the constant source of all other pleas-
ures, is the tranquil and happy mind. In placures, is the tranquil and happy mind. In plachere differs from the earlier Cyrenaic who regarded man's happiness as consisting in the full round of delights, the sum total of all his actual enjoyments. Epicurus taught that mere bodily pleasures were not an end in themselves, but
only as they minister to peace of mind. Violent excesses disturb, extreme asceticism torments the inner spirit of man. Therefore be not too indulgent, nor too rigorous with self. Study to attain the maximum of enjoyment with the minimum of distress. Let a wise
prudence transmute both the good and the evil of life into a tranquillity of soul. In this conception of conduct, virtue is never an end in itself. It is always a means to an end. The end is happiness and so far as a life of virtue contributes to well-being, so far only is it to be
wemmed.
e find in Epicureanism and in Stoicism alike, the common endeavor to free man from an inner world of mind wholly independent of the outer world of chance events, of untoward influences, of hostile forces and fleeting delights. The Stoic, howcver, urged the repression of all its wise regulation. As Epicurus himself puts it, "It is not an unbroken succession of drinking it, It is not an unbroken succession of drinking sexural love, nor the enjoyment of the fish and other delicacies of a splendid table, which pro-
duce a pleasant life, it is sober reasoning,
carching out the reasons for every choice and voidance, and banishing those beliefs through soul. Of all this, the beginning and the great est good is prudence. Whercfore prudence is a more precious thing even than philosophy: from it grow all the other virtues,- for, it which is not also a life of prudence, ponor and ustice, nor lead a life of prudence, honor and justice which is not also a life of pleasure. For the virtues have grown into one with a pleasan life, and a pleasant life is inseparable from Epicurus proved that the dissolution of the body Epicurus proved that the dissolution of the bod is nothing to us, because when we are, death is not; and when death is, we are not.
Bibliography.-Asener, (Epicurea) (Leip, zig 1887); Cassel, 'Epikur der Philosoph' Verhaltnis zu Demokrit in der Naturphilosophic' (Strassburg 1897); Gizycki, 'Ueber das Lcben nnd die Moralphilosophie des Epicurus' (Hall 879) ; Gomperz, 'Herculanische Studien (Leipzig 1866) ; Guyan, 'La Morale d'Epicure (3d ed., Prisis 1886); Joyau, 'Epicure' (1886); Lange, 'History of Materialism' (Boston 1886), Pater, W. 'Marius the Epicurean' (latest ed vols., New York 1913) ; Santayana, (1910)
Philosophical Poets) Philosophical Poets'
Taylor, (Eambridge, Mass.,
(Epicurus)
(London 1911) ; 'Trcza) 'Epicuro e l'Epicurcismo' (Florence 1877) Wallace, (Epicureanism)' (London 1880), W on, 'Hedonistic Theories' (Glasgow 1895)

President of Princeton University. EPICURUS, èp-i-kūrus, Greck philoso pher: b. Samos 341 B.C.; d. Athens 270 b.c. Have enjoyed the instructions of Xenocrates, then at the head of the Academy, but this he himsel does not admit. Epicurus generally denicd n obligations to other philosophers. Althoug some parts of his system are evidently borrowe from his predecessors, he claimed to be sestility and contempt. His stay at Athens, how ever, was brief; and on leaving it he went to Colophon, where his father was engaged teaching, and began himself to give lessons in grammar. It was here, according to some ac
counts, that his attention was first turned to ounts, that He himself says he began his philosophical studies at the age of 14 , but they may have subsequently taken a more distinct development. The inability of the grammarians to explain a passage about Chaos and the acc dental possession of a copy of the works of this new or more decided direction of in mind. From Colophon he went to Mytilene and Lampsacus, where he engaged in teaching phir
losophy. He returned to Athens in 306 and purlosophy. He returned to Athens in 306 and p ur chased a garden in a favorable situation, where stablished a philosophical school. Here he spe to Asia Minor. His mode of life appears to have been simple and temperate. He abstained as a principle, from politics, and took no paf in public affairs. During the latter part of his life he was amlicted with severe physical su

Epicurus was a very voluminous writer. He Wrote some 300 scparate treatises. His works, and quotations. In ancient times his philosophy appears to have been more popular in Greec than in Rome, although his disciples wer numerous in both. This is easily comprehended as it was in fact a system engendered by the deest stoical philosophy was better adapted to the till active public spirit of Rome. Little is lef of his numerous writings. Some fragments o 'Treatise on Nature,' which is known to hav consisted of 37 parts, were found at Hercula neum and published by J. C. Orellius (Leipzig lished by H . Usener in his 'Epicurea' (Leipzig 188). The chief account of his philosophy is ontained in the great poem of Lucretius, 'De Rerum Natura,' one of the masterpieces o soman literature. A good edition of the latter There is also a translation by H. A. Munro (London 1908). Consult 'Epicurus and 'is Sayings' (in Quarterly Review, Vol CLXXXV, p. 68, London 1897) ; (Epicurus and LXI, p. 299, London 1882): Du Rondel, J. Vol Vie d'E. 299, London 1882) ; Du Rondel, J., 'La De Vita et Moribus Epicuri) (1647); Girard , 'Etudes sur la Poésie Grecque,' etc. (Paris 1884) ; Gomperz, T., 'Greek Thinkers' (4 vols, d'Epicure) (Paris ' 1881); Hicks, R. D., 'Stoic End Epicurean' (New York 1910) ; Kreibig, J. Ercolanese di Archeologia, 'Herculanensium voluminum Que Supersunt) (11 vols., Naples 1793-1857); Taylor, A. E., (Epicurus') (New York 1911);
(London 1880)

EPICYCLE, in ancient astronomy, a small cle supposed to move round the circumfer ence of a larger, a hypothetical mode of repre which were supposed to have such a motion ound the circumference of a large circle, called he deferent, having the earth in its centre. Se

Ronomy.

EPICYCLOID, in geometry, is a curve

 enerated by a point in one circle, which rolls ther convexity of the circumference of an The circle the curve generated is a hypocycloid circle that rolls along a right line. The latter has sometimes been assimilated with the former y considering the right line as the circumfer nce of a circle whose diameter is infinite. The he Dan of epicycloids is ascribed to RoemerEPICYCLOIDAL WHEEL, a whecl or ide fixed to a framework, toothed on its inner heel of having in gear with it another toothed A as to revolve about the centre of the latter As the inner wheel revolves a point later eriphery will oscillate in a straight line. It is ased for converting circular into alternate mo-
, or alternate into circular
EPIDAMNUS. See Durazzo

EPIDAURUS, ép ǐ Cā'rı̂s, one of the most important towns and commercial seaports of coast of the Peloponnesus, particularly celcbrated for its magnificent temple of Æsculapius, which stood on an eminence eight miles west of the town. An inscription over the entrance declared it to be open only to pure souls. hopes of divinity, in whose honor festivals were celebrated yearly. It received its name from Epidaurus, a son of Argus and Evadne. Excavations made by the Greek Archæological Society have proughty that of parts of Tholos; a temby 43 feet wide; the theatre, which is the most perfect example of Greek theatre in existence; stadia, baths, gymnasia and hospital. Epidaurus is now called Pidavro, or Edidairo, and is the place where in 1821 the first Greek Congress 100 inhahitants Consult Caton, (Epidaurus) (1900): Diehl, Excursions in Greece) (1893) Delfrasse and Lichat, 'Epidaure) (1895); Gardner, 'New Chapter in Greek History' (1892).

EPIDEMIC. See Epidemiology.

EPIDEMIC CEREBROSPINAL MEN-

 INGITIS. See Meningiris,EPIDEMIOLOGY, the study of epidemics or the science that treats the same time or in close succession. The essential feature is that epidemic diseases belong to a group of infective or microparasitic maladies which have the common property of spreading from time to time in a community. It character have their favorite haunts. In such places they are always present and there they are said to be endemic. It is only when they appear in large numbers of people in their favorite habitats that they assume epidemic pro-
portions. Thus there is little distinction between portions. Thus two classes of diseasc, since the same disease may be at one time both endemic and cpidemic. When an epidemic disease, for instance, influenza, spreads the entire world over, the word pandemic is applied. The essential feature in an epidemic disease is that it must have a
definite contagium. The contagla may be either of bacterial or protozoan character. Thus cholera, dysentery, the plague are caused, as is known, by bacteria which, being carried in the ordinary paths of commerce, or by bodies of a moving population, are spread about the world.
Occasionally epidemic disease is due to an animal parasite. This is presumed to be the case in yellow fever, and is known to be true of malaria. In malaria, as is now positively demonstrated, the agent that is all-important in the spreading of the disease is one genus of mosin the human hody and is conveyed by means of the blood into the mosquito, where it undergoes a special cycle of development, until it is inoculated into another human being, who develops the disease.

The importation of epidemic and parasitic disease from Africa and Asia is now urged as of whites with alien races. The importation of
such diseases from Africa is now considered to have contributed materially to the downfall
of the Roman Empire. The negroes, according to recent investigation, The negroes, according introduction into the Southern States of malarial fever, which they brought in their blood from Africa, and to which, themselves immune, the whites fell victims. Similarly the American negroes, according to a discovery made by Dr.
Stiles in 1902, carry in their intestines the virus Stiles in 1902, carry in their intestines the virus
of hookworm with relatively slight discomfort; hut not so the white population; and to this cause is set down the physical inefficiency and mental inertia which afflict so many of the Southern whites. Cholera, bubonic plague, typhus
n Asia.
Further, it may be said that the essential ditions arc (1) A virus; (2) a susceptible population; (3) free intcrcommunication between the sick and the susceptible. In the group in be (1) A virus; (2) a breeding-place outside of man; (3) a means of transport from place to place, either naturally or artificially; (4) a vehicle for the diffusion of the disease, such as the mosquito, for instance, or a contaminated water-supply, or a person suffering from the a susceptible population It is well known that variation in the susceptibility of populations is a very important element in the consideration of epidemics. Thus measles, whooping-cough, diphtheria and similar affections ravaged Hawaiian (formerly Sandwich) Islands with a fierceness and mortality unknown to modern times. Seasonal movements, sectional nuctuateresting features in the study of cpidemics. By some writers the word epidemic is very loosely used to indicate certain waves of mental excitation which have caused and still cause mental storms throughout the community, as the dancnot be spoken of as epidemics in the true sense "unless one wishes to use the broad term of "emotional contagion." Some of the most interesting epidemics of modern years have been the the world in from three to four years, and the the world in from threc to four years, and the plague epidemic that was raging from 190 , traveling over the habitable globe. There have been no severe cxtensive epidemics in the United States, save the epidemic of influenza, for a great many years, and in civilized spreading of more severe epidemics are greatly spreading of more severe epidemics are greatly modern hygiene as well as by procedures arising rom the newly acquired knowledge concerning immunity. The time does not seem far distant when immunity from many forms of infectious disease may be conferred by proper serum Epidemics in Great Britain from 664 A.D, to the Extinction of the 「'lague' (2 vols., Cambridge 1891-94) ; Hecker, 'Epidemics of the Middle Ages' (trans. hy' Bahington, 2 vols., London 1835) ; Hirsch, 'The Geographical Distribution of Disease' (1893); Wechselbaum, 'Epi'Encyclopedia Medica,' 1900).

EPIDENDRUM, a large genus of tropical merican orchids, most of the species of whipare epiphytic, growing on trees. There are up-
ward of 500 species in South America alone. The stems develop pseudo-bulbs, the leaves are strap-shaped and leathery and the flowers are single or in spikes, panicles or racemes. The flowers of some species are very handsome and a large number of the species are in cultivation.
Two of the finest cultivated species are the Mexican plants E. nemorale and E. vitellinum, the former with rose-colored and the latter with crange-colored flowers. The plants are much used in hybridization, as they are hardy and rigorous, and are valuable for crossing with the
less hardy species of other genera, the result less hardy species of other genera, the result
being in many cases long-stemmed flowers of fine appearance. See Skin.

EPIDIDYMIS, an organ lying beside the testicle and transmitting the semen to the vas deferens. See Testicle
EPIDIDYMITIS, inflammation of the epididymis, resulting in pain, redness, heat and
swelling of the testicle, with general constitutional malaise. Treatment consists in rest in bed and soothing applications.
EPIDOTE, a common mineral, usually yel-lowish-grecn in color, and crystallizing in prismatic forms lelonging to the monoclinic system. It is a silicate of calcium, iron and alumi-
num, with the general formula $\mathrm{HCa}_{2}(\mathrm{Al}, \mathrm{Fe})_{3} \mathrm{~S}_{\mathrm{s}}$ O_{13}, the ratio of the aluminum to the iron varyO_{13}, the rafio of the aluminum to the iron var
ing, in different specimens, from $6: 1$ to $3: 2$. Its hardness is from 6 to 7 and its specific gravity is about 3.4. Epidote occurs throughout the world. Fine crystals are found in France, the
Tyrol, Haddam, Conn., Calumet, Colo., and Tyrol, Haddam, Conn., Calumet, Colo,, and dition to epidote proper, the minerals, picdmontite and allanite, which resemble it in genera nature but contain manganese and cerium respectively; and also the calcium epidote, zoisite,
EPIGÆA, čp-ĭ-jḗa. See Arbutus, Trailing.
EPIG\&A, cp-i-je a. See Arbutus, Tralling.
EPIGASTRIUM, the upper fore part of the abdomen, reaching from the pit of the stomach to an imaginary line above the umbilicus (navel) supposed to be drawn from the on extremity of the last false rib, on one side, the corresponding point on the other.
EPIGENE, a term applied to those geothe superficial portions of the carth's crust, a the supericial portions of the carth simere, water, plants and animals.
EPIGENESIS, èp- $\check{-1}$-jēn ${ }^{\prime \prime}$ en-siss, in biology. the development of the animal from the simple protoplasm of the egg. This term therciore expresses the theory and process of embryology
as now understood, and is opposed to the pre as now understood, and is opposed to the pre vailing theory, previous to the rescarches of
Harvey, and especially of Wolff and Von Baer, which was then known as the emboitment the ory, an account of which is given under P formation. Sce also Emiryology
ln physiology the supposed production in organized beings of or additional formations by means of new vital influcnces, as opposed to the
idea that new parts are simply the result of de velopments or changes in pre-existing struc tures.

EPIGENETIC. See Syngenftic.
EPIGLOTTIS, the cartilage at the root of he tongue forming a valve which partly close the aperture of the larynx (q.v.). during the process of swallowing. When respiration takes place the cpiglottis is vertical but falls back and portion of food, however minute, entering the sensitive larynx, canses distress and is antomatically ejected by a spasm of coughing.
EPIGONI, a name given in Greek legend to ne sons of the seven Greck chiefs who conducted the expedition against Thebes in the War between Eteocles and Polynices. The name literally means descendants, successors of the sons to avenge the first disastrous defea was thus called the "war of the epigoni." The name is also applicd to students who attempt to develop the ideas of the great masters of a pre-

EPIGRAM. The Greek noun from whic he word epigram comes was originally use o denote a prose inscription on a temple, tomb Concisencss and brevity were therefore, essen tial qualities. To give pleasure to the ear and help the memory, the Grecks next chose som poetic form for them, preferably the elegia istich. Their use for practical purposes even tually suggested their composition as a form o imaginary. These pocms now often embrace several distichs, and appeared in other metres, but continued to be ordinarily of a simple, ex pository or descriptive nature. In the Alexan drine period, however, when poets affected al poems, exclusively short but highly elaborat taining its highest popularity among the Greeks Its composition had become the pastime, and even the serious ambition, of authors of firs rank, and its recitation and improvisation one of the favorite entertainments at symposia and graphical cpigrams were made. Melcager Gadara followed these early in the 1st century RC. with his "Garland" of literary epigrams, th prototype of our Greck Anthology or "Bourine of Flowers." This numbers about 4,500 poem by over 300 writers in two collections, the Pala (early 10th A.D.), and that which Planude made four centuries later, supplying important additions. These collections with countles poetical inscriptions folnd in modern times conStitute for us Greck epigrammatic literature ligh Greck Anthology not only throws valuab siant on human life from the time of the Per uit throngh widespread translation and imita ion has deeply affected modern languages an thought. For the names of the prominent writ crs and a characterization of their work see th pecial article "Anthology." As a literary genre mported from the Greeks, epigram enters Lati poem much carlier. Latin is peculiarly aclapter to a lapidary epigrammatic style, and certai racial characteristics, in particular their devo ton to the practical, made the Romans natu-
ralize this species of poetry at once. At first they modeled after the Grecks, and we have a andrines wrote it. By Cicero's time most of the literary men of importance were writing epigram, and its value as a political weapon was fully appreciated. Catullus is, however, the only writer from whom we have any consider-
able collection. Althongh we find in him lyric qualities as fine as in the poems of the Anthology, it is still clear that the national aptitucle for satire has already turned epigram strongly in that direction. It is the Latin satiric cpigram and not the more lyrical Greek that he-
comes the model for modern writers. In the Augustan Age, Domitius Marsus and Pedo Albinovanus were, according to Martial, the greatest epigrammatists, but we have not enough of their work to judge it. Martial himsclf brought this branch of poetry to its acme. None of the eminent poets whons, Apulenius and Claudian, have equalled him in epigram. In the 6th century Luxorius maintains the tradition, but at a low level. Ahout this time the Salmasian collection was made which forms the nuclens of the modern compilations which we call the epigran enjoyed a veritable renaissance, taking epigranm enjoyed a veritable renaissance, taking glories of Christianity as well as to sing the praiscs of the, dignitaries of the Church. Then the humanists, to whom Latin was almost a second mother tonguc, revived this form once
more. But the Latin scholars who have written epigrams are too numerous to name here. One John Owen of Oxford, should not perhaps be passed by, since he devoted himself wholly to this field and with marked success. In English literature the composition of epigram has long been out of with literary men. Notable achievements in this line are to be found in the works of Herrick, Johnson, Dryden, Swift, Prior, Addison, Jonson, Goldsmith, Congreve, Hood, Hook, Byron and Burns. Pope's poems might he reckoned a conglomeration of epigrams. dor, who cutting loose from the Latin type, at times becomes a Greek in spirit. Epigram has enjoyed wide favor in other modern tongues In Italy, it long played an important part in politics, as both the Pasquino and Marforio in has gradually given way to the madrigal and sonnet. In France from the time of Clement Marot, who introduced it from the Latin, the satiric sort has enjoyed a wonderful popularity Boileau, J. B. Rousseau, Piron, Lebrun and Chenicr have show:1 its possibilities in many lines. The poctic Priamcl of the 141 h century Germany, where indeed it has always inclined more to the moral and didactic than in the Latin countrics. Among her more cminent cpigrammatists are Opitz, Fricdrich von Logau Klonstock Lessing, Herder Schiller Gopstock, Lessing, Ferder, Schiller, and gether in 1797. Hang, and in more recent times Bodenstedt, Vischer and Fulda. We pass from the history to the theory of epigram. Since it is unlimited in its choice of subject, the form
and not the contents must determine whether poem is an epigram or not. Lessing ha ments of the epigram in its modern conception to the primitive type, the inscription. Just as monument arouses in a spectator a curiosity about the author and purpose of its construc tion, which the inscription then satisfies, so th
first part of a literary epigram, whether dealing with some material object, or not, is intended to excite an interest which the close of the poem must duly satisfy. The suspense may be ncreased by making the prefatory portion o some length. The more remotely separated an apparently contradictory the ideas that ar expected the commentary or explanation at the end, the more successful we deem the poem. This point or conclusion becomes in the satiric epi gram a sting. Hence the frequent comparison of an epigram to a bee or wasp. While the day, no definition is quite satisfactory with to erence to much that the ancients included unde the term. Consult Adam, 'Book of Epigrams' (London 1890) ; Booth, Epigrams Ancient and Modern' (2d ed., ib. 1865); Dodd, 'Epigram matists of Mediæval and Modern Times' (2d
ed., ib. 1875) ; Watson, 'Epigrams of Art, Life and Nature) ' (Liverpool 1884).
Assistant Professor of Classical Philology, Uni versity of Pennsylvania.
EPIGYNY, ep-ij'ī-ni, in flowers, the con ition arising when the petals, stamens an epals appear as coming from the top of the ovary, the latter showing just below the flower

EPIHIPPUS, a diminutive horse of the pper Eocene of Wyoming, in which only the號

EPILEPSY. Epilepsy is no longer used a dic olic term under which are grouped a grea variety of conditions presenting a general re-
emblance. These are sudden and relatively ransient attacks accompanied usually by disurbances of consciousness called variously "faints," "absences," "hlanks" and amnesias and convulsive seizures which involve the voluntary involuntary muscular apparatus.
ess." points to the most evident symptom, the falling due to this loss of muscular contro The strictly ctymological origin of the word Iso denotes the Greek word "to seize upon, lso denotes the antiquity of the recognition of mistic character of the hypotheses which sought o explain it, and which has long clung about ts mysterious and often violent manifestations. t was recognized in its pure type by the most ancient obscrvers. Hippocrates described it, and evidences are found in the carliest Indian known.
The most modern belief concerning it is
undergoing a process of modification. There is tendency to speak of "the epilepsies" rathe than to consider a discase entity, which fails to
cover the wide range of conditions of which the attacks are but the outward manifestation into medicine draws attention to the attack as the result of a faulty distribution of energy which may be brought about in various ways and from a variety of far-reaching causes in the constitution and experience of the individual. The dynamic, energetic concept of the
nervous and psychic functioning establishes a working basis by dividing nervous activity into three levels of opcration which have been progressively developed according to functional biological needs. Thus the nervous apparatus of man presents the capability of reaction to environment on the physicochemical or purely
vegetative level, the sensori-motor and the level which must express itself symbolically as in all the higher psychic forms of reaction. Any one of these levels offers itself as an outlet for the epileptic discharge. The unity of the nervous organism permits the view of it as a
mass of interrelated reflexes redistributing the energy bound up with the individual in order to effect his adaptations and his reactions toward his environment, which may thus take place at any one of the three levels. The epileptic inefficiency to so distribute the encrgy as to bring
about a series of harmoniously adjusted activities may in turn emphasize itself in any one of these spheres of discharge.
This accounts for the wide range of manifestations in attacks of the equally extensive underlying conditions. The attacks comprise psychic forms, paresest the more pronounced psychoses, also toxcmic states, many organic psychoses, also toxcmic states, many organd
brain diseases and the grosser defects of development, even idiocy. The toxic states may be transitory with removable catse or may be due to defcetive metabolic functioning which
cannot be remedied or to other cannot be remedied or to other obscure factor
working at the physicochemical level. None of these causes in themselves can any longer be regarded as sufficient explanation of the epileptic form of reaction. The more fundamental conception of a faulty energy distris paths of outlet cither structurally or by psychic inhibition and so accumulation of the discharge within relatively narrow confines. This view point applies thus equally well to the psychic manifestations, the physiological and localized attacks (Jack
More accurate and pathological and clinical knowledge tends to separate off from the grea epileptic group certain varieties of conditions
which can be more definitely identified with which can be more definitely identified with
other disease groups. There remains, however, other disease groups. There remains, howeve fll-defined "genuine or classical epilepsy" in which the typical reactions are evident for description. The classical major epileptic attack (grand mal) is sudden in onset though preceded often by a warning aura. This may be sensory, motor or purely psychic. At the sud
den onset of the attack the patient falls and immediately develops a tonic spasm with unconsciousness. The direction of the patient's fall depends upon the muscles first involved, but in a few moments all the voluntary muscles are

The respiratory muscles and biting of th tonic convulsion is succeeded in a few. As the by clonic spasms frothy, bloody saliva issue rom the mouth and the cyanosis gradually isappears through the return of respiration rine is often passed during the attack and les cloquic spasms is. The gradual subsidence of th automatic activity after which the pationt re arns gradually to full consciousness or sink once into a deep sleep from which h wakens with lameness and wcakness in th luscles which are
rache.

The minor attacks (petit mal) exhibit an nless procession of variations. The disturb ance of consciousness is shorter in duration and profound and the convulsive phenomena ar Uccasionally they may even escape observation nvoluntary contraction and extension of some f the muscles without loss of consciousnes nd the patient resumes his regular course of work or play. In cases of a slight loss of conhe midst of play or work or conversation hade passes over his face and in a moment he himself again. Sometimes there is a momenlary confusion, faltering or fumbling about the othing in a dazed tashion, which quickl passes over and leaves the paticnt occupied a leepy, lies down for a second and then get up perfectly well. These attacks may also be preceded by an aura.
Psychic disturbances many and varied may precede or follow the attack or may even redisturbance in many subjects there is a marked eding the convulsion, which serves as a warning o those associated with the patient. The maniations may be increased irstability, com alming, depression or dullness and oerhap hypochondriacal complaints and hallucinations, all of which conditions are significantly reeved by the convulsion. A condition of active xcitement may, however, occur just after the actual sometimes hefore, which may reach an patient is frey, epileptic furor. In this state the ortunatcly the attack is usually brief and horeover the patient's efforts are diffuse and ack coherence.
The so-called epileptic equivalent is an at tack in which the convulsion is replaced by a ack is frequently that of the epileptic automtism or epileptic dream state. Almost any at may be committed in these conditions with batiutely no recollection on the part of the itiont when he comes to himself. The recog rom a medicolegal standpoint for crimes are ometimes committed and these, if crimes of iolence, are often marked by their ferocity and fury. Moreover, the seizure associated
with these acts may have been so slight as not to have been noticed. Usually, however, th acts are rather simple and the attacks of shor of uration. There are also transitory conditions ind depression, excitement, confusion, delirium
stuper and peculiarly characteristic one of
ecstasy with hallucinations, particularly of eligious character. There are also transitory equivalents. These are frequently associated with drinking.

The etiology as well as the prognosis of epilepsy are so involved in the broader conand unsubstantial formulations that these are best considered also from the energic standpoint. The genuine epileptic usually comes from a badly tainted ancestral stock, manifesting perhaps not epilepsy in the ancestors or collatedals. There is evidently a defect of the germ plasm and hence epilepsy and feeble-mindedness are often found associated. This accords with what has been said about the inadequate distribution of cnergy discharge. There is actual higher avenues of discharge and constitutional nadequacy to adapt to the demands of environment. The epileptic type of character is apt to be morose, irritable, suspicious and shallow aggressive religiosity He is marked by an extreme egocentricity and hypersensitiveness. This, it has been well said, "is not to be taken in any narrow or moralistic sense, but is to be considered . in a broad biologic view, a personality-defect which makes its possessor incapable of social adaplation in which, if it remain uncorrect, renders the individual entirely inadequate to make a normal adult life. The seizure phenomenon is essential epilepsy i. constitutes a reaction away from the difficulties in a loss of consciousness."

All the patient's interests centre about the ego. His interests are variable but shallow his egotism or as they for to contribute to which calls for a greater effort without a sufficient egotistic premium. There is always a
tendency to turn conversation or any external stimulus to the ego centre. In this as in all his reactions the epileptic manifests the infantile character to a marked degree. His sexuality like his religiosity is of a superficial, infantile, expansive type. The impulses are prominent to seck outlet in a number of ways which belong to the infantile polymorphus components of sexuality not yet converged into the adult sexual aim (Freud).
The epileptic state leads in a certain proportion of cases, if it has begun in early life,
to conditions of feeble-mindedness, imbecility and idiocy or it has originally been associated with these conditions. It produces in many cases a very profound general mental deterioration. The progress toward this condition as well as the ultimate clinical picture present an infantile and egocentric character of the epileptic character and reaction. It is associated in a close inter-relation with the superficiality and ready loss of interest. As has been said: This process. . consists of a proure of mentation in respect to normal stimuli in which interest is lost. Both loss of interest and intellectual decay proceed from the barely perceptible carly stages to total loss of speech
and other acquired functions, when a condition is reached equivalent to the lowest grade fant." The dementia does not manifest itself in a withdrawal into an hallucinatory world or in the further symbolic activities of other types of dementia. It consists rather in this gradual until a stage of complete infantilism is reached when the individual is merely a biological egocentric entity in the state of supreme infantile dependence and security which characterize the earliest post-embryonic, al most the fetal period This is also the psychic goal attained tem-
porarily by the attacks which produce profound unconsciousness. Such a conception of the meaning of the tendency and ultimate end of the psychic reaction has been made possible through the psychoanalytic understanding of
controlling impulses belonging to the unconscious and determining such reactions. The application of psychoanalytic knowledge and methods to individual cases has led to and confirmed these conclusions and throws a light upon the obscure problems of epilepsy which
have so far baffled the neuropathologist and the psychiatrist of older schools. This psychological approach to the problem does not exclude further research along anatomical and pathological lines. On the contrary it awaits accurate and conclusive knowledge which can
only come through such exact research and which must form the physiological basis for complete psychological understanding and enlarge the possibility of prophylactic and therapeutic control.
Meanwhile a psychic therapy is proving its
efficacy in a more rational understanding of efficacy in a more rational understanding of the the demands of life. This brings an explanation of its yielding at points of particular difficulty and yutilizing the characteristic modes of energy discharge. It thus affords a prophylactic teract the essential egocentricity and superficiality of interest and in further treatment, whether able to effect a cure or merely to alleviate existing conditions and retard or prevent the ultimate dementia, it stimulates to a sympathetic and watchful interest in the patient
in order to meet him at the points of least in ordcr to meet him at the points of least utilize his very tendencies for counteracting his self-centring. The epileptic colony provides the ideal environment for this course of treatment. The patients are there under the conwho has this necessary understanding. The variety of occupations provided furnish means for the essential change of interest and the patients are not subjected to a competition which they are constitutionally unable to with-
The question of the use of drugs is an important one because of a widespread belief
heir cfficacy. Bromide is the only one, however, which deserves consideration, heing in fact the hasis of most of the other remedies offered for this condition. The larger concep-
tion of the clinical picture which rccognizes the convulsion as not the disease, nor even the cause nor the first expression of it, but only one form of its ontward manifestation, an outlet for the accumulated and unutilizable energy, seriously
questions the rationality of bromide medication oxperience scems to show that the convulsion only postponed, that sooner or later the energ
discharge will take place and the drug may indeed in the end produce a summation of at tacks which will lead up to that final stage o which the epilcptic stands in danger, the cond tion known as status epilepticus, a terminal
stage which consists of repeated and continued convulsive attacks associated with high feve and usually ending in death. It cannot be denied that the bromides have a function in regulating the convulsions when such a danger is imminent but they must be employed withe
the utmost caution and consideration on the part of the physician. The gencral observance of hygicnic measures is of course of great im portance. An outdoor life with a mild, health ful occupation, plain, digestible food, the absence of tobacco, alcohol and other stimulants, a fre with the mental capacity of the patient are very desirable features. Treatment during a con vulsion is merely protection to prevent injur to the patient. Beyond these measures, how ever, lies the more comprehensive understand epileptic and the very practical aid which this must bring to him in directing and adapting his capacity to the demands of his environ ment. Consult Jelliffe and White, 'Diseases o the Nervous System' (2d ed., 1917)
mith Ely Jelliffe.

EPILEPTIC CHILDREN. See Chil

 dren, Defective.EPILEPTIC COLONIES. The treatment and care of epileptics in special institutions may be said to be one of the developments o By the founding of of distinctly recent origan the setting apart of distinct tracts of ground for buildings and for the exclusive care and training of epileptics. The position of the Letchworth society is altogether anomalous. A ect of solicitude to his parents and guardians, The strects to him are full of dangers, and ent to school he is apt to have seizures on
he way or in the class-room. His attacks shock his classmates and create confusion. He cannot attend church or public entertainments, not participate in social gatherings with those of his own age and station. In consequence of his infirmity the epileptic grows up in idlencss and gnorance, bereft of companionship outside of ver his isolated and helpless condition." The recognition of these truths has caused philanthropists to found such colonies. In continental countries more has been done for epileptics that elsewhere, but in the last 20 years the movemen socicty has grown to large proportions and, as expressed by Peterson in his presidential ad d^{-} dress to the National Association for the Treatment and Care of Epileptics 1902, "there 15 hardly a community in the civilized world that is not now thoroughly aroused to the necessity for the treatment of this class of defectives. has continued to the present time. The first distinct attempt to provide for epileptics was inaugurated by a to provide for epileptics worl

Bodelschwingh, who founded at Bielefeld, in estphalia, Germany, the Bethel Colony, which,
rom small beginnings, has grown up to a vil age inhabited solely by epileptics. Here everyhing has been provided to meet their special ecas, to make up for their deprivations in the utside world. They are supplied with school o improve their minds, industrial teachers to physicians to study and treat their cases. Out loor occupations are provided, special diet is ar anged for, recreations, amusements, religious instruction, in fact all of the devices that go to make up a home, have been provided under 4,000 prople, not less than half of whom are pileptics, are being taken care of in Bethel. The success of the Bielefeld Colony prompted movements elsewhere. Other colonies were ounded in Germany and other European counepileptics in the United States, although this was built on the hospital rather than the colony plan. New York has Craig Colony at Sonyea, one of the most elaborate and beautiful institu ons of this class, closcly modeled on the Biele eld plan, and accommodating a population of Palmer; Pennsylvania a colony farm at Oak urn; and there is a New Jersey State village or epileptics at Skillman. A colony for epieptics was established in 1902 at Abilene, Tex. ticut, Indiana, Illinois, Kansas, North Corolina Misut, Indiana, Illinois, Kansas, North Caroli, Minnesota and California. In Eng land the first colony founded was at Chalfon in 1893 and another at Warford in 1900. There is also a colony, the Waghull Home, near Liv erpool; another at Godalming; a large colony completed 1003 - 04 for the city of far from Croydon. Other colonies have been founded in Brazil, Belgium, Switzerland Sweden, Russia, Italy, Turkey, India, Japan and Australia.
The Craig Colony, of Sonyea, N. Y., being ne of the most modern and ideal, is selecte worth. 'Care and Treatment of Epileptics' (1900).

EPILEPTIC CONSTITUTION. The epileptic constitution, or makeup, has long heen recognized as the mental stigma of essen disclosed that the main tenets of such a char acter are present years before the nervou disorder of epilepsy, as such, is shown in fits. Indeed, most frequently defects of personality may be detected in earliest child ood. The chief instinctive defects are ego poverty. The potential enileptic is intensivel self-centred and fails to project his life inter ests into his environment in a normal and healthful manner. Partly because of this char cter-fault, and still more because of his innat sitized mands. He ither extraverts his supersensitive ness by exhibitions of rage and tantrums of ype more severe than those occasionally see in passionate children, or he introverts this fecling and represses his environmental con-
ficts, catsing him to develop a very unstable rritable and sullen emotional life, which paves the way for larger and more difficult adaptahen which he cannot meet; outspokecentric an supersensitive makeup, the potential epileptic fails to make the degrec of environmental conlact which would lead him into a broad and rich experience with life, hence sooner or later he fails to acquire a well-rounded emotional dethe individual's purely intellectual equipment in later life. Previously endowed with the in stinctive defects noted, the demands of adole cence and adult life increase the difficulties poin individuals until they reach the breaking phe handicap of defective endowment occurs a disintegration of habits and character, known as deterioration, which often precedes actual accounts for the fact that an essential epileptic from the very nature of his makeup is usually doomed to mental failure in its broadest sense if proper measures to check or controvert his innate faults are not taken at the earliest possi-
ble moment. Any effective plan of treatment must essentially take strict and early account of the makeup of epileptics before all else.

EPILEPTIC PSYCHOSIS. In the older descriptive neurological concepts, this indicated a mental complex accompanying epilepsy. It was characterized by a certain degree of menof intellect and memory, by impulsiveness, mental irritability, loss of moral sense and partial or complete loss of productiveness. It is also accompanied by periodic disturbances, transitory attacks of anger, dream-states or automatic tacks do not develop such severe psychoses as to require certification and sequestration, but the mental deterioration may appear at almost any period following the onset of the epilepsy. In many chronic epileptic states there is pronounced weakness, mentally, morally and emotionally. One's sense of one's surroundings is usually during the dream-states or automatic periods. Comprehension is usually not markedly impaired, but the feld of attention is diminished and easily diverted. Hallucinations are infreor following a grand mal seizure, and delusions are transitory, being found usually only in the dream-states. Morbid and sudden impulses are quite frequent, sometimes approaching distinct nerve-storms, during which suicidal and homicidal attacks may occur. The conduct otherof propriety are observed There is greatly diminished capacity for work in practically all epileptics. The subject of a severe epileptic psychosis is one deserving wide recognition as there are unquestionably a number of phenomena termed "psychical" epilepsy that need recogthe patients are confused. They move in a mechanical or automatic manner. They wander aimlessly about, recognizing no one, although sometimes answering incoherently when addressed. Occasionally they exhibit symptoms
of excitement, at other times depression, and not infrequently they may set fire to their beds or furmiture, commit theft, assaults, homicides,
expose their persons and otherwise conduct themselves in an irrelevant and insane manner Treatment is extremely difficult in advanced
stages. While younger psychoanalysis and careful endocrinopathic study offer the best chances for modifying the conditions which tend to bring about the epileptic deterioration. The patient should be kept in a sanatorium or asylum. See Epilepsy

EPILOBIUM, ep-ĭ-10̄bẽ-ūm, the willowherbs, a genus of herbaceous plants belonging to the evening primrose family (Onagracee)
The species arc herbs or under-shrubs with pink or purple, rarely yellow, flowers, single in the axils of the leaves, or having terminal leafy spikes. The seeds are tipped with a pencil of silky hairs, and are contained in a long fourcelled capsule. There are about 65 species scatthe world, 40 of them being found in the western and northwestern portions of North America. E. hirsutum, or codlins-and-creams, a great hairy willow-herb, is a common and conspicuous plant of waste places in New England and rather large, and the whole plant is very downy. Some species are cultivated in America, but these plants are more common in English cottage gardens than in America.
EPILOGUE (from the Greek epi, upon, and logos, word, speech), the closing address to the aundicnce at ine end of a play. The epilogue is the opposite of the prologue, or open-
ing address. Many of Shakespeare's plays have an cpilogue as well as prologue, in which the poet sometimes craves the indulgence of the spectators for the faults of his piece and the performance, and sometimes intimates in what light his work is to be considercd. The epitell us something of a composition, which cannot be gathered from the composition itself. In rhetoric an cpilogue, when fully developed, repeats the principal points already presented in the composition, and offers an appeal to the
feelings of the reader or the audience.

EPIMENIDES
EPIMENIDES, ep-i-mernidez, Cretan philosopher and poet : h. Crete, in the 7 th century
B.c. By some he is reckoned among the seven wise men, instead of Periander. When the Athenians were visited with war and pestilence, and the oracle declared that they had drawn on themselves the divine anger by the profana-
tion of the temple in which the foll Cylon had been put to death, and must expiate their offense, they sent for Epimenides, who was renowned for his wisdom and piety, from Crete, to purify the temple. On his departure he refuscd to accept any presents, and only asked the friendship of the Athenians on
behalf of Cnossus, his home. There is a legend of his having, when a hoy, slept in a cavern for 57 ycars. On awakening, he found, to his astonishment, cverything changed in his nativtown. This story is the ground-work of Coethe's poem, the 'Waking of Epimenides,' for the anniversary of the battle of Leipzig. Acfor upward of 150 according to have lived nearly 300, years. He is supposed to be the
prophet quoted by Saint Paul in Titus i, 12 a saying "The Cretans are always liars, evil
EPIMETHEUS, ẽp-ǐ-mēthūs, in Greek mythology, a son of Iapetus and Clymene and the brother of Prometheus. Against the latter advice he married Pandora, who opened the box in which the foresight of Promethcus hat be afflicted. All kinds of diseases and torments issued out of the box and hope alone remained behind. According to other accounts it was Epimetheus himself who opened the box. (See Pandora). It is to be remarked that, in the
Greek tradition, curiosity and disobedicnce are Greek tradition, curiosity and disobedicnce are
made the origin of evil, as in the Mosaic account
of the fall.
EPINAL, ā-pê-nā 1^{1}, France, town, capital of the department of the Vosges, in a narrow valley on the Moselle 1,070 feet above sea-lcelel, 190 miles (264 by rail) cast-southcast of Paris. It has a communal collcge, a public library of
30,000 volumes, a museum of antiquitics and hospital and is surmounted by the ruins of an old castle. The manufactures consist of articles in iron and brass, leather, embroidery print and cotton goods, hats, paper and pottery; vicinity. vicinity. The town was founded in the 10 ch
century. With Belfort, Dijon and Bescancon it forms one of the line of forts along the Moselle. Pop. of commune, 30,042 .
EPINAL GLOSSARY, a glossary of Old Saxon and Anglo-Saxon, said to date from the 7 th century and preserved at Epinal, France Consult the facsimile published by Swee
(London 1883)
EPINASTY, in botany, the rapid growth of a dorsiventral organ on its upper side, which causes it
EPINAY, â-pề-nā', Madame de la Live d (Louise Florence Petronille Tardieu d'Es clavelles), French writer: b. Valenciennes 11 March 1726: d. Paris, 17 April 1783. She
was the daughter of M. Tardieu Desclavelles, an officer of high rank, governor of Valenciennes and married her cousin d'Epinay. But his extravagance soon compelled her to scparate from him. During the earlier part of her life she formed an acquaintance with Rousseau, who, quick and susceptible in all his feclings,
devoted himself to the fascinating and accomplished woman with an ardor, the depth and strength of which he describes himself in his 'Confessions.) She was not insensible to the homage of her "bear," as she used to call him, on account of his eccentricities, and did all that was in her power to place him in a situation corresponding to his wishes. She gave him in
cottage (the Hermitage, since so famous) it her park of Chevrette, in the vale of Montmorency. Here the author of the 'Nouvelle Héloisc' passed many days, rendered happy by his romantic attachment to Madame d'Epinay, he had himself introduced to her- and in consequence of this feeling, which he took no pains to conceal, a coolness and finally an aversion took place between him and the lady, which is but too plainly expressed in his 'Confessions.' d'Epinay toward Rousseau may be found in

Grimm's 'Correspondence,' where an accoun is also given of some works written by her, of d'Emilie. In this the authoress, in a cold but neat style sets forth the principles o moral instruction for children, with equal clegance and depth of thought. It obtained, in 1783 , the prize offered by Monthion (the chan cellor to the Count d'Artois) for useful work of this kind, in preference to the 'Adele et wrote 'Lettres à mon fils,' and 'Mes moment heureux) An abridgment of her memoirs an correspondence, showing her relations with Uuclos, Rousseau, Grimm, Holbach, Lambert etc., appeared in 1818 . They give a true picture of the refined but corrupt manners which preing the government of Louis XV.
Bibliography.-Beaune, H., 'Scènes de la vie privée au XVIII e Siecle' (1903); Cam pardon, E., 'Les Prodigalités d' un fermie genéral' (1882) ; Fallue, L., 'La Marquise © Epinay et ses relations dans la vallée de (1766):Garliani, L'abbé, 'Correspondance (1881) ; Musset-Pathay, 'Anecdotes inedile pour faire suite aux mémoires de Mde ${ }^{\text {d'Epinay' }}$ (1818) ; Perey, L., and Maugras, G 'La Jeunesse de Madame d' R 'pinay') (1883) ${ }^{\text {Rousscau, I. J., 'Causcrie du }}$ 'Confessions'; Sainte-Beuve a littérature contemporaine'; Streckeisen Moulton, J. J.,' 'Rousseau, ses amis et ses ennemis' (1865)
EPIORNIS, or AIPYORNIS, an extinct ratite bird of Madagascar (Expyornis max its), interesting not only for iself, but because the Arabic tale of the gigantic roc. It much like an ostrich in size and structure except for the massiveness of its limbs and the extraordinary size of its eggs. These have bee found in considerable numbers in muck-swamp or sometimes floating in the river-mouths, ofte strongest eggs known, measuring about 13 inches by $91 / 2$. These dimensions are twic hose of an ostrich's cgg , and an egg of the ciornis would hold the contents of six ostrich Figss, yct the epiornis was little if any large many made known to sceen found that abou 12 species have been indicated, and a secon senus (Mullerormis), which has been joine with Apyornis into the family Epyornithida radition and the evidences of some bones in licate that these birds were exterminated since Mos occupa
EPIPHANIUS, ěp-ī-fă'ni-ŭs, Saint, Greek ather of the Church: b. of Jewish parent hear Eicutheropolis, Palestine, about 315; d. at sea near Cyprus 403 . In his youth he went to Egypt where at first he came under the in Hence of teachers of Gnosticism; but after ward he embraced monasticism, and returnin community of monks. In Palcstinc he made the acquaintance of the two western churchme Jerome and his associate, Rufinus; the friend ship of the three men was cordial and intimat
angered Epiphanius, whose special mission secmed to be to obliterate every line written by
Origen. He was made bishop of Constantia (the older name Salamis) in Cyprus 367 , and held that see till his death. On one occasion, 394, he visited Jerusalem to denounce Origenism. He must have been more than 80 years old, perhaps near 90 , when he went to Constantinople to charge the patriarch of that see, Saint Origenists, but a few words from Chrysostom opened his eyes. His numerous writings are now of little account, his theological polemics being distinguished by fervor rather than by

penetration

EPIPHANY, è-pif'-ă nî, (Latin epiphania, appearance or evidence), festival of the Catholic, Anglican and Eastern churches held on 6 Jesus Christ as son of God: (1) to the Wise men of the East (Magi) at Bethlehem; (2) at his baptism by John in the Jordan, when the voice from heaven proclaimed, "Thou art my beloved son in whom I am well pleased"; (3) at the marriage feast at Cana in Galilee, where
Jesus wrought his first miracle. The observance of this festival can be traced to an earlier period in the Easterin Church than in the Western. In the Greek Church it was observed as early as the 2 d century, but the event commemorated by the Greeks was not the visit of the Magi to Jordan as the Messiah. Not till the 4th century does the Epiphany appear to have been observed in the Latin Church. In the Greek and Oriental churches it is customary to administer baptism on the eve of this festival, with unwonted solemnity. This is said to be because of the relation of the festival to the baptism too, the Epiphany (Epiphancia, Theophaneia) was the festival commemorative of the birth of Jesus; for it was believed that the haptism in the Jordan took place precisely on the 30 th anniversary of the birth. A popular name for
this festival in English is "Twelfth Day," that is, twelfth day from Christmas. It is also called "Little Christmas." In various other languages it is known as "Three Kings' Day," or "Day of the Kings." In the Western Church special attention was paid to the celebration of by the celebration of baptism and the miracle of Cana, the latter being held on the succeeding Sunday. In England special holiday celebrations were held on the 12 th day and the 12 th night when the Christmas festivities closed. Nicra, the date of Easter has long been an nounced with great solemnity on the 12 th night Connected with the celebration of Epiphany, it was the custom in the Middle Ages and even later, to have sorts of miracle plays in the churches in order thus to visualize to the people the events commemorated on the occasion These were frequently given during the mass popular character were given by the people themselves in their own homes. Performances of this nature, though now generated into popular entertainment, are still to be met with in parts of Germany, Tirol, the mountain dis

Clristianized Indians and mestizos of Latin America. This dramatic representation generally presented the oblation of the wise men, natural part of the mass. In the traditions of the church the wise men were venerated as the "Three Holy Kings" after which the festival was itself frequently called, being variously
designated as festum trium regum festum designated as festum trium regum, festum magorum, festum stellae. It has long been the Rome for young men belonging to various forcign nations to represent, by speeches in their native languages, the appearance of Jesus the Christ unto all nations:

There was a tendency in the early days of spring festival, and more especially with the sacrifices and offerings made to the gods of the running waters, in the rivers, the streams and the clouds. Some Christian communities even water, the rivers and lakes. This same pagan custom is noticeable in the attempts of certain sections of the Christian Church to make of the Epiphany a special day of baptism, or as it before their conversion to Christianity, who before their conversion to Christianity, had
held special spring ceremonies in honor of the gods of growth and fertility, seem to have been strong supporters of the custom of Epiphany Baptisms. This custom probably corresponded to a spring purification ceremony
(by water) common among the Franks and (by water) common among the Franks and making Epiphany a day of baptism was also strongly clung to in the African Christian Church. The consecrating of the water survived the baptismal and other semi-papan rites Russia. The Church connected this baptismal custom with that of the baptism of Christ by John; but it seems not to have become customary until the spread of Christianity into the Frankish and Sclave countries where the sacrifices and other ceremonics connected with
the deities of growth and fertility were also offered to the gods of water. In explaining this cusious blending of pagan religious ceremonies and celchrations with Christian traditionary history, Christian writers have asserted that the first baptism of Christ was, in a sense, tion to man. So it was common, in early Christian centuries, to include the ceremony of the commemoration of the birth of Christ in that of Epiphany; and it was only considerably later that the Christian celchration came into vogue. Thus the ancient pagan celebration of the "appurification by water and the celebrations in honor of the occasion, split into separate parts, became two of the greatest festivals in the Christian Church, and have continued to maintain their position as such to the present day. from the wise men to the infant Jesus arose out of the practice of presenting offerings to the gods of nature and growth at the spring fcstival, and also of a similar custom in vogue among the Roman people who made presents to one another on this occasion. The fact in the Christian Church, having already been
established hy the time of Clement of Alexan-
dria, who lived in the latter half of the 2 d dria, who lived in the latter half of the 2 d
and the carly part of the 3 d centuries, would and the carly part of the 3d centuries, would
seem to indicate that it was the survival of earlier customs and ceremonies; since, even at cariner colstoms and ceremonies; since, even
this early date, there was some considerable speculation as to its origin. See Magr.
Bibliography.- Bingham, R., 'Antiquities' (London 1834); Blumenbach, H. 'Antiquitates Epephamorum' (Leipzig 1773); Chambers
Book of Dates' (London 1864); Herzog, 'RealEncyklopädie'; Jacoby, A., 'Bericht ueber die Taufe Jesus) (Strassburg 1902); Kellner,
K . A. J., 'Heortologic) (Freiburg 1906) Nazianz, G., 'Heortologie) (Freiburg 1906); Schutze, J. L. 'T., 'Desaurus' (Antwerp num' (Leipzig 1841).

Editorial Staff of The Americana
EPIPHYLLUM, ēp-ĭ-fil'ũm, a genus of plants of the natural order Cactacea. The few species seem to be confined to Brazil, where they
arc epiphytic upon trees. They have flat-jointed stems with blunt ends, from which the new branches and flowers are produced. These are borne in great abundance, on which account, and because of their brilliant red tints, this group o cacti is exceptionally popular in greenhouses They probably the most useful of all cacti. or by grafting, particularly by means of cutting species of other genera, and are generally used as hanging-basket plants, for which purpose their drooping habit specially recommends them. They need a porous, poor, fibrous soil and litule water. The species most widely grown are E. truncatum, the crab or Christmas cactu1s,
with numerous horticultural hybrids between it and related species, and C. Gartneri, the Easter cactus.

EPIPHYSIS. See Bone

EPIPHYTE, ép'î-fit, or AIR-PLANT, a plant attached to a tree or other support, or ganic or inorganic, living or dead, but from which it obtains no nutriment. The term air-
plant has been popularly applied because these plants are typically neither parasitic, saprophytic nor terrestrial, but depend upon the dust which lodges around them and upon the water of dew and rain. Strictly speaking, they are not airplants, bccause this term implies no other source
of life than air. Besides the typical cpiphytes, which have representatives in many plant families, particularly the tropical orchids, bromelias and ferns, there are many forms which arc only partially epiphytic. In structure many of then exhibit adaptations for checking transpiration and for securing even minute quantitics of water
from the air or from objects to which they are attached. (Sce Pitcher-plants). Others (certain orchids) have storage organs which are usually specialized stems. Some have roots which serve only to anchor the plants to their support. In these, which are the most typical, and other green parts. Others are only epiphytic at first, since they later develop true roots whicin obtain food from the soil. The home of the largest number of epiphytes is in the moist region covered hy tropical forests, the trees of which are often so covered with thesc plants
that their branches are wholly concealed by a very miscellaneous growth. In the temperate
and colder climates the epiphytal forms are con-
fned almost wholly to lower orders of plant life such as liverworts, mosses, alga and lichens These are also represented in the tropics, some of them even becoming attached to leaves of higher plants. Many of the flowering epiphyte are cultivated in greenhouses for ornament Nepenthes (q.v.) orchids and bromelias. On of the best-known American species, common in the southern United States, is the so-calle Florida or Spanish moss (Tillandsia usneoides) of the natural order Bromeliacea.
EPIRUS, ê-pi'sǔs (meaning the mainland Greek), an ancient part of northern Gree Amich stretched from the lonian Sca to the Ambracian Gulf and was bounded by Myria tainous, esrecially so in the east, and this fact undoubtedly helped to shape the character o the inhabitants, who were of a bold and hard nature and great lovers of their country, whit was divided into numerous independent tribe ossi and Thesproti The Greeks began early to settle along the coast of Epirus, and later, a some interior points. This led the way to Gree domination of the country at a later date. The hiefs of the Molossians, the most powerful direct descendants of Pyrrhus, the son of Achilles, whom legend credited with settling the country after the fall of Troy, and who consequently prided themselves on a long line of princely ancestors, jealously maintained their over the whole country Arymbas I of this line, who was educated in Athens, introduced Greek culture among his people during the second quarter of the 5 th century B.c.; Arymbas, a century and a half later, followed in the and sedulously famous ancestor and naterture One of his nieces, educated carefully by him and married to Philip II of Macedonia, was the mother of Alexander the Great. A period of wars followed the death of Arymbas 11, in-
terrupted from time to time. Pyrrhus, who terrupted from time to time. Pyrrhus, whe
succeeded to the throne in 295 b.c., carried the succeeded to the throne in 295 B.C... carried the
war to the Romans in Sicily and Italy for six years, and brought the name of Epirus prominently to the attention of the Greek and Roman
world. Finally Epirus became a sort of republic world. Finally Epirus became a sort of republic governed by a magistrate elected annually by unwisely sided with Perseus in his war against unwisely sided with Perseus in hems (168 b.c.). The latter exacted a terrible retribution, making slaves of 150,000 inhabitants of Epirus after having destroyed 70 towns and villages; and 22 years later the whole country became a political part of Macedonia of Constantinople (1204) it was seized by Michel Angclus Comnenus. Later, after passing through several hands, it became the property of the Turks (1430); and it later formed part of the Turkish Vilayet of Janina. Greece obtained the part east of the river Arta in 1881 At the close of the Balkan War (1912-13) on her northwest, and to this she gave the name of Epirus. This province is hordered on the north by Albania, on the east by the provinces
of Macedonia and Thessaly, and on the south of Macedcnia and Thessaly, and on the south Sca. The population of this newly-acquired
territory is between 600,000 and 700,000 and its capital is Janina, a city of 25,000 . It is largely an agricultural country and among its chicf pruits, vegetables and tobacco.

Bibliography--Bowen, 'Mount Athos, Thessaly and Epirus' (London 1852); Dumon, 'Souvenirs de l'Adriatique et de l'Epire' (in Revue des deux Mondes, Paris 1872); Hobhouse, 'A Journey through Albania, etc.' (Lon-
don 1813) : Karapanos, 'Dodone et ses Ruincs) (Paris 1878); Leake, 'Travels in Northern Greece) (London 1835); Merleker, 'Darstellung des Landes und der Bewohner von Epeiros' (Königsberg 1841); Skene, 'Remarkable Localities on the Coast of Epirus) (in Journal
Royal Geographical Socicty 1848): Stuart, Society 1848); Stuart Enysical Geography and Natural Resources of
Epirus' (1869) Von Hahn, 'Albanesische
Studien' (Iena 1854): Wolfe, 'Observations on Studicn' (Jena 1854); Wolfe, 'Observations on the Gulf of Arta) (in Journal Royal Geographical Society 1834); Zompolides, Berlin 1880).

EPISCOPACY, that form of Church gov EPISCOPACY, that form of Church gov-
ernment in which one order of the clergy is ernment in which one order of the clergy is deacons. Much discussion has taken place on the subject of episcopacy. Nothing conclusive can be gathered concerning it in the New Testa ment; butt there can be no doubt that it existed toric ages down to the time of the Reformation, and it is inferred, as no change can be shown to have taken place, that the same constitution existed from the time of the apostles. Presbyterians and others argue, on the other hand that, as there is nothing definite concerming it in power of modeling the government of their Church in such a manner as may seem to them most meet; and that evcry Christian society ha a right to make laws for itself, provided these aws are consistent with charity and peace an Christianity. The power vested in the bishop or higher clergy differs very much among the different episcopal bodies. The Roman Catholic and the Greek Churches, as also the Church of England and sections of the Methodist Church The Church of England; Greek Church; Methodist Episcopal Church; Catholic Church, Roman.
EPISCOPAL CHURCH. See Great Britain - The Churchi of Engand; Metho dist Episcopal Church; Protestant Episcopal hurch; Reformed Etiscopal Church.
EPISCOPAL CHURCH, Reformed. See erormed Episcopal Churcti
EPISCOPAL RING, The. See Costume Ecclesiastical.
EPISCOPALTHEOLOGICAL Mass. It was established in 1867 hy Benjamin Tyler Reed, as a college for candidates studying for the ministry for the Episcopal Church Students holding bachelors' degrees may obtain the degree of B.D., hut those not holding such
buildings include the chapel, the deanery, the library and Reed, Burnham, Lawrence and Winthrop halls. The students number about 60

EPISCOPIUS (a translation of Bisschop his Dutch name), Simon, Dutch theologian: b. Amsterdam, 1 Jan. 1583; d. there, 4 April 1643. The religious movement known as Arminianism
was fostered by him, and he was its leader after the death of Arminius (q.v.). He was educated at Leyden, where in 1606 he reccived his degree of M.A. In 1610 he was ordained pastor at the village of Bleyswyck near Rotterdam. In 1611 the States-Gencral, with the intention of putting an end to the agitations created by the istic party and the Arminians or Remonstrants, ordered a conference to be held in their presence at The Hague between six ministers of each party. Episcopius was one of the six charged
with the advocacy of Arminianism, and highly with the advocacy of Arminianism, and highly
distinguished himself by good temper, ability and learning. In 1612 the curators of the University of Leyden appointed him professor of theology in place of Gomar, who had gone to Sccland. This enraged the leaders of the orthodox party, who accused Episcopius of Socinian-
ism and of having entered into an alliance with the Roman Catholics for the destruction of Protestantism. By this the fanaticism of the populace was roused; he was insulted and abused in the street, and on one occasion narrowly escaped being stoned to death. The house of his brother in Amsterdam was sacked, under the pretext that it was a rendezvous of the
Remonstrants. In 1618 occurred the famous Synod of Dort. Episcopius was present, with several other Arminians. The Calvinists, who were in an overwhelming majority, would not synod was met not to discuss, but to judge, ane synod was met not to discuss, but to judge; and
all the proceedings exhibited much bigotry and tyranny. Expelled from the Church and banished from the country, Episcopius betook himself first to Antwerp, afterward to Rouen and Paris, but 1626 returned to Rotterdam, where
the odium theologicum against his party had the odium theologicum against his party had
become less virulent. Here he married in 1630 , and four years later was made primarius professor of divinity in the newly established college of the Remonstrants. Episcopius held enlightened principles in regard to religious
toleration. Not placing a high value on merely doctrinal views, but trusting rather to the efficacy of the Christian spirit to elevate and purify the character, and seeing, morcover, the presence of this spirit in men holding the most conflicting opinions (when not inflamed with controversial hates), he was desirous of a Christians than the opinionative creeds of his day permitted. He wrote 'Institutes of Theology'; 'Apology'; 'Confession.' (See GomArus, Arminius)' Consult Calder, 'Memoirs of Simon Episcopius' (London 1838).
EPISODE (Lat. episodium, from the Gr. recorrov, epeisodion, something adventitious) a separate incident, story or action introduced into the general narrative, to give variety or of the whole. This term is employed by Aristotle in two significations. Sometimes it denotes those parts of a play which are between the
choruses and sometimes an incidental narraive, or digression in a poem, which the poct ha connected with the main plot, but which is no used in the latter sense only. With the bes poets the episode is not an unnecessary append age, serving merely to swell the size of the
work, but is closely connected with the subject, points out important conscquences or develop hidden causes. Of this kind is the narrative of the destruction of Troy, in Virgil's Æncid This was the cause of the hero's leaving his country; but the poct does not commence with narrower space course of the story, but so skilfully that we expect it in this very place; and it not only serves as a key to what has gone before, but prepares us for what is to come, namely, the passion of essential part of the whole, as it must necessarily be, if it is of any importance to preserve he unity of the poem. So with the tale in Wieland's 'Oberon'; it appears incidental, but explains to us the reason of Oberon's singular interest in much more room for the episode than in dramatic, where the poem is confined to a present action. An excellent instance of the skilful use of the episode in the modern novel is given in Manzoni's 'I promessi sposi,' in the has also been transferred to The term episode has also been transferred to painting, especially which it has in poetry. The term episode is also employed in music to designate an intermediate section of a composition. The term is also applied to a digressive section, especially contrapuntal work, like a fugue.
EPISTATES, in ancient Greece, the name generally applied to an officer in charge of officers of the Ekklesia and the Boule or Senate.

EPISTAXIS. See Nosebleed.

EPISTEMOLOGY ($i \pi i \sigma t \phi \mu \eta$, knowledge

 or science, and 2.6% s theory or knowledge, or theory of knowledge, is an account of the and laws of development its of its origin relation to human experience as a whole. Investigations of this character fall within the field of general philosophy and have usually physics. The under the heading of meta have been first used by J. F. Ferrier in his Institutes of Metaphysics' (1854). Since itsgeneral adoption it has sometimes general adoption it has sometimes been taken
to denote a field of inquiry co-ordinate with, and largely independent of co-ordinate with, has been proposed to keep the investigation of the nature of knowledge distinct from the problems regarding the nature of being, and to call the former epistemology, and the latter metaphysics. The hest usage of the presen
time, however, scems to retain sense of the term metaphysics as the name for the more general field of philosophical inquiry which cmbraces hoth epistemology and ontol ogy. (See also articles on Prilosopily and Metapiysics) Morcover, a logical justi-
fication for this usage is furnished by the fact fieation for this usage is furnished by the fac branches of inquiry in isolation. It must un-
doubtedly be granted that for an ultimate Ontology, or final view of the world, it is aspect of experience and include in our syn thesis judgments based on other orders of value than the merely logical. But it is at nce obvious that we cannot take one signifiwith step in investigating the nature of reality some some criterion of knowledge, i.e., reality is known and of what constitutes tuth. It is perhaps not so evident that the ature of knowledge cannot be made the sub ect of inquiry without any reference to meta hysical theory. Indecd, it is not uncommon to spcak of epistemology, as Locke does, as is to be completed before any more ultimate netaphysical inquiries are to be undertaken, , indecd, these are to be undertaken at all but this way of conceiving the matter is quite misleading. The figures which compare the must first be understood are here quite inap plicable. For knowledge has no existence by itself, or apart from and external to its objects What we want, as Hegel has observed, "is to of the in our process of inquiry the actio them. The forms of thought must be studied n their essential nature and complete development; they are at once the object of research and the action of that object. Hence they ex minse themselves; in their own action the mist determine their limits and point out their mere series of ideas or mental representations that can be investigated apart from its elation to objects. In so far as it is knowledge tsefers to and implies reality. To investigate its nature, then, is at the same time to test its jects with which it deals. But even if one reulises to take this standpoint, one must still dmit the close connection of epistemology of metaphysics. For all theories of the nature of knowledge are based implicitly or explicitly both the mind which knows and its relation o the objects known. Epistemology, then, annot take one step without involving the ntological problems which some of its repre atives seek to avoid
It is likewise impossible to distinguish lems from logic. If a division can be made at the present time it is only in degree of ultimateness. It is possible, though perhaps no advisable, to limit the term "logic" to the Somewhat narrow and abstract treatment hich takes as its object the discovery of cer which are of practical value in testing arguments. When, however, logic breaks away rom this narrow program, as has been and by the more important recent writer sirit it carries on its inquiries in a philosophica Cpistemology, logic, and metaphysics may thit be said to denote certain main points of view differing. somewhat in the treatment of variou Writers in emphasis and inclusiveness, rathe three independent and isolated sciences.
occupies a different field, and has quite a differcnt problem from epistemology. It is true
that attempts have frequently been made to explain knowledge by beginning with cognitive mental states viewed as psychological proccsses. But the characteristics of the mental states and functions with which psychology deals have no immediate bearing on the prob cerned only with the mode in which ideas exist: it investi etc., as well as their various modes of combination, viewing them as particular forms of psychical reality. Epistemology, on the other of ideas, but in their significance, in the universal and objective validity of experience as a body of truth. It thus secks to bring to light the forms and functions of intelligence, noting the conditions and presuppositions under which it works, and the laws by which
knowledge develops from its simpler and knowledge develops from its simpler and more
fragmentary stages to the more complicate and cohorent structure of science. It is a philosophy of experience rather than a description of individual states of consciousness.
Reflection on the nature of knowledge does
not arise until a somewhat late stage in the not arise untit a somewhat late stage in the and the race. Thought first announces its conclusions confidently and fearlessly. It is not until this naive confidence fails and scepticism arises that it is forced to reflect upon the nature of knowledge and its grounds of both of ancient and of modern philosophy. The early Greek philosophers, as Hegel remarked, thought away fearlessly regarding the nature of reality. It was the collapse of those early systems and the scepticism of the up the epistemological problem In the same way the Stoic and Epicurean discussions regarding the canon of truth arose in response to the more outspoken and thorough-going scepticism of later times. In modern times the epistemological intercst did not come into
the foreground until Locke's 'Essay.) Locke's account of the origin of this work brings out very clearly the way in which problems of this character naturally arise: "Five or six friends meeting at my chamber, and discoursing on a sulves quickly at a stand by the difficulties that rose on cvery side. After we had awhile puzzled ourselves, without coming any nearer a resolution of those dotubs which perplexed us, it came into my thoughts that we took a wrong course, and that before we sct our-
selves upon inquiries of that nature, it was necessary to examine our own abilities and see what objects our understandings were, or were not fitted to deal with . . . Some hasty and undigested thoughts on a subject I had never before considered, which set down against our next mecting, gave the first enlast it was brought into that order thou now seest it."
Kant's 'Kritik of Pure Rcason' was the work which placed epistemology in the foreground of continental philosophy. In the Preface to that work, he showed that the motives
to those which influenced Locke. The scepticism of his time, he says, "is clearly the result, not of the carelessness, but of the malonger rest satisficd with the mere appearance of knowledge. It is, at the same time, a powerful appeal to reason to undertake anew the most difficult of its duties, namely, self-knowledge, and to institute a court of ap-
peal which should protect the just rights of peason, but dismiss all groundless claims, and should do this not by means of irresponsible decrees, hut according to the eternal and unaltcrable laws of, reason." Kant has a poor opimion of Locke's account of knowledge, and
characterizes it as "a certain physiology of characterizes it as "a certain physiology of
the human understanding." He himself proposed to inaugurate a method of Criticism which should give a new direction to philosophical inquiry, and at the same time furnish to it a sure foundation for further advance. Since Kant's time epistemological problems
have largely dominated modern philosophy; and indeed, it has been maintained by many thinkers that the criticism of knowledge is the sole function which philosophy is able to per-
form, and that ontological speculation is vain form, and that
and fruitless,
and fruitless, In the Pre-Kantian philosophy Rationalism (q.v.) and Empiricism (q.v.) were the main types of epistemological theory. The basis of the former was laid by Descartes (q.v.), who sought to universalize the method of mathematics, and by this means to secure the cerAs mathematics start from axioms and principles which are intuitively certain, and proceeds by means of reasoning to deduce all its other propositions from these as necessary consequences, so all science must derive its sonclusions from frincles. These principles exist in the mind as a priori truths, and are universal and necessary in character. All science is thus built up by reasoning from general principles. Sense-perception and observation of held to be impossible to arrive in this way the universal and necessary form of truth which science demands. It is cvident that this theory of knowledge could more readily he applied to the general features of reality than to a determination of its particular details.
As in the hands of Wolf $(q . v$.$) and other$ continental rationalists it was occupied mainly in furnishing formal proofs of the existence of God, the nature of the soul, and the external features of the physical universc. Empiricism (q.v.), on the other hand, emphasizes senseperience is described as a series of particular sensations and ideas in consciousness which are given to the mind from some externa source. The mind itself is regarded as merely receptive, without any store of innate idcas,
or of organizing principles. It was not or of organizing principles. It was no
strange, then, that in the hands of a genius strange, then, that in the hands of a genius
like David Hume (q.v.), who carried this point of view to its logical outcome empiricism should issue in scepticism. For if experience is nothing hut a series of conscious states
each of which is "loose and separate" from all each of which is "loose and separate" from all except these particular states in their isola-
tion; impossible, therefore, to reach any universal propositions such as science demands. Again, if knowledge is limited to states
consciousness, it follows at once that there consciousness, it follows at once that there
can be nothing known either of the nature of objects or of the sulject or soul.
Kant (q.v.) did much to overcome the onesidedness of these theories, and to give a more adequate account of the nature of knowledge. For, while he insists that knowledge must perience itself is a compound, implying both a given sense material and forms and principles of organization on the part of the mind. By his doctrine that "thoughts without perceptions are empty, while perceptions without
thoughts are blind," he passed beyond the onesided vicws of both Rationalism and Empirisided views of both Rationalism and Empirihe seeks to show what are the fundamental forms and categories which the mind cmploys in building up a coherent and universaly valid system of experience. But, in spite of not
great reform which he effected, he did not wholly succeed in reaching an organic view of experience. This was partly the result of presupposition which he inherited from the past, and partly due to his own tendency to make
hard and fast divisions and distinctions There always remained for him an unresolved dualism within experience between the datum of sense and the forms of thought. Again, thought, as he conceives it, does not pass beyond subjectivity and include in itself the nature of its
object, but is occupied with bringing order object, but is occupied with bringing order
and unity into sensations and mental representations. Although these states of consciousness, when thus acted upon by thought become objective in the sense that they are parts of a universal and necessary system, revertheless they are still only "phenomena,
objects in the mind, while the world of real being (the things in themselves) remain inaccessible to knowledge. The spirit of Kant's
thilosophy undoubtedly leads beyond any such Fhilosophy undoubtedly leads beyond any such
absolute dualism. But from Kant's day to the absolute dualism. But from Kant's day to the
present time this distinction has appeared the final word of plilosophy to many thinkers who continue to accept the presuppositions and catcgories of the past century, and who fail to apply
to this problem the organic and evolutionary to this problem the organic and evolutional
conceptions which are now within their reach. Modern epistemological investigation may be described as seeking to exhibit the organic
unity of experience. To reach this result, new theories regarding the nature of the mind and its relation to objects are necessary. In the first place, the conception of the mind as made up of a number of distinct faculties must give
place to the idea of the mind as a unitary sysplace to the idea of the mind as a unitary sys-
tem of functions which mutually co-operate and determine each other in the progressive and detcrmine each other in the progressive mind can no longer he regarded as a system of merely subjective functions related only in
an external and accidental way to the real worid an external and accidental way to the real worid
of objects. The course of philosophical disof objects. The course of philosophical dis-
cussion has rendered it evident that if we begin by defining experience in terms of mental processes there is no way of deriving from these the world of ohjects. If our epistemological theory is to be adequate to experience as we
know it, objectivity must be included within it. Thought, that is, is real only as a relation
to objects; by itself, and apart from the world thus real objects, it has no reality. It is only by tial relation of sulject and object that it is possible to cxhibit the real organic unity of experience as a system of knowledge. It was ant's successors in Germany, and preeminently Hegel ($\mathrm{q} . \mathrm{v}$.), who first developed on account of the form in which these systems were expressed, and partly as a result of the decline of philosophical interest, their most valuable and characteristic ideas failed for a long time to be appreciated. The credit of Irecing these fruitful ideas from the somewhat
ohscure and mninviting form in which they were presented in the German systems of a century ago, belongs in the main to the English neo-Hegelians and their co-laborers in Amer ica, among the latter of whom a place of honor late United States Commissioner of Education. The fundamental doctrine of these writers is that what is real is rational, i.e., knowable in terms of reason, and therefore that all form of cognitive experience can be exhibited a tional ideas or meanings. Conscious experience is from the first regarded, not as a serie of psychological states, but as taking the form of a judging activity whose function is to inerpret and reveal the nature of the objective develo. Moreover, knowledge proceeds in it ration in accordance with the fundamenta aws of logical evolution. Its later and mor highly developed forms are then to be under ood as the differentiation and systematization The its more elementary forms and functions. real world must accordingly the ideal of completely developed and perectly rationalized experience. As representaives of this general type of objective Idealism Caird may mention the late T. H. Green, Edward fattison, B D. G. Ritchie, A. S. PringleWatson and Josiah Royce. There are, however, prominent philosophical Writers of the present day who employ to
some extent Hegelian methods and principles some extent Hegelian methods and principles tain that the account of knowledge in terms of reason requires to he modified and supplemented in various ways. Two main points of lew may be here mentioned, which have much common, and which are both of ten empha sized by the same writers. On the one hand with claimed that logical thinking operate never do justice to the individual aspects of eal objects. Thought, in other words, is conerned only with universal relations, and is unable to apprehend the uniqueness and pardescriptions of things in general terms and has to receive as a datum from another form of knowing the particular facts which form its subject-matter. This latter aspect of realin y, it is maintained, can be apprehended only
in some form of immediate experience. In fact, it is often maintained that logical experience must both start from In its beginning
vor. 10-28
logical thinking presupposes the awareness o objects in sense-perception; for it is claimed
it is only in this way that thonght comes into contact with individual things and gets a foothold in reality. Again, since the total system of things must exist in individual form, the final synthesis of knowledge must transcen. logical relations and be realized, if it can b of cognition that may perhaps be described a analogous to æsthetic contemplation. Althoug the neo-Hegelian writers have not been back ward in meeting these arguments, and hav successfully shown the difficulties involved in
their opponents' antithesis of universal and in dividual, of thought and immediate knowing yet the discussion cannot be regarded as closed at the present time.
In a similar spirit the function of will and purpose as a fundamental element in experience is at present emphasized in many quarters
The intellectual or rationalistic account cognitive experience is maintained to be in adequate, since it abstracts from the volitional element which alone gives to knowledge it function and significance. Concrete experienc in the realization of purposes. So much may In the realization of purposes. So much may a telcological process and must be interpreted in terms of purpose. But purposes are only defined and realized through thought. Pragmatism (q.v.) (as the popular theory of the present day is called) goes further, ano action Knowledge is the instrument which the will employs to discover the means whereby practical purposes may be realized. It is thus never an end in itself, nor does its function consist in revealing the nature of a reality
beyond experience. The function of thought is to effect the practical control of experience, and the only realities which it can define are terms within experience itselt. Its problems are set hy the particular situations and concrete demands which the developing process
of experience presents. There is no intelligible problem regarding the nature of reality in general, or reality that does not exist as a particular functional element in concrete experience. Against this position various obthe chief of which are (1) that it does not reach a real organic unity of experience; (2) that it overlooks the fact that krowledge is an end in itself; (3) that it is subjective, and fails to recognize the objective and rational
ends without which no real experience can
At the present time perhaps the most important function of Epistemology consists in a criticism and evaluation of the fundamental conceptions and principles which underlic the procedure of the special sciences. These tions regarding the nature of the phenomena which they investigate, and with certain demands which their method of investigation has to fulfill. It is the function of Epistemology to make explicit the nature of these initial assumptions, and to show that the accounts mined by the character of these assumptions Instead of assuming that the results of the.
special sciences are to be accepted at their
face value as direct nature of reality, both philosophical epistemologists and workers in these sciences who have reflected on the problems of method (as e.g., E. Mach and Karl Pearson) now agree that the view of the world given by natural science itself a logical construction, based on certain assumptions which are necessary to carry out the purpose of the scientific co-ordination and explanation of facts. This construction must not be read apart from the purpose for which it was designed. Indeed, the prevailing tend-
ency is to emphasize the merely methodological character of scientific results to such an extent as to make them appear alnost arbitrary and devoid of any ontological significance. This is undoubtedly an extreme position. It must, of course, be admitted that the hypothetical and possess only relative truth But they are never mere logical constructions in the sense that they are entirely divorced from reality. The ultimate purpose of science, as of all thinking, is to exhibit the structure of the real world, and the assumptions and
hypotheses of the special sciences derive hyeir significance and justification solely from their employment as means for the accomplishment of that end. In its task of criticizing the assumptions of the special sciences, then Epistemology cannot escape the consideration of the external world and its relation to the of the externa
human mind.
Bibliography.- The bibliography of this subject is coextensive with that of general philosophy A few works may be mentioned
which deal with the more recent development which deal with the more recent development Methodological Principles) (in Philosophical Review, Vol. XV, 1906) ; Bergson, Henri, 'Creative Evolution' (Eng. trans., New York 1911) ; Creighton, James E., (Methodology and Truth) (in Philosophical Reviere, Vol. X, (Chicago 1902); ; id., 'The Influence of Darwin on Philosophy' (New York 1910) ; James,
'Pragmatism)' (ib. 1907) : id., 'The Meaning 'Pragmatism' (ib. 1907) ; id., 'The Meaning of Truth' (ib. 1909) i id, 'Essays in Radical Empiricism' (ib. 1912) ' 'The Will to Believe'
(ib. 1909): Ladd 'Philosophy of Knowl edge': Marvin, 'The New Realism) (New York 1912): Münsterberg, (Psychology and Life'; id., 'Grundzüge der Psychologie' Ormond, 'Foundations of Knowledge' (1894) Rickert, 'Die Grenzen der Naturwissenschaftmology and Metaphysics': id., 'Problem (EpisteEpistemology' (in Philosophical' Revier, Vol. I, 1892); Ward, 'Naturalism and Agnosticism.)

Professor of Logic and Metaphysics, Cornell
ersity.
EPISTLE TO ARBUTHNOT. Pope's 'Epistle to Arbuthnot' (1734-35), known also as 'The Prologue to the Satires,' is quite the of the writer in its invective, its brilliant wit its epigrams and apothegms, and its incisive and compressed style, it is far more than any other
himself. Indeed, it presents an entire autobiography in little more than 400 lines. It 15
Pope's apologia, in which he disproves the state ment that he was of lowly birth, tells how and when he entered upon his profession as poet relates his persecution by literary pretenders and bores; dwells especially upon the slanderous attacks by his enemies; and draws portraits of
his enemies and his friends. The whole is a mélange of personal confession and of satire to which unity is given only by the personality of the poet and by his interest in himself. So highly autobiographical and allusive is the 'Epistle' that a commentator is needed to point out its full significance. Quite apart from any sically great among its kind, and even to the reader who knows little of Pope's character and disregards the contemporary allusions, is still mmensely entertaining. As Sir Leslie Stephen has remarked, Pope is at his hest when he when he is autobiographic, and when he points his morality by personal and concrete instances. He was a curious mixture of honesty and hypoc risy, though often honestly self-deceived, and certain passages of the 'Epistle' must "be read
by the rule of contraries." Yet there is no more reason to doubt the sincerity of his tender tributes to his mother and to his friend Arbuthnot than his vitriolic lines on Lord Hervey (Sporus). Though of various tones, the 'Epistle' is in the main bitterly satirical. The original cause of the entire series of Popes
apologetic satires was his (Dunciad, which provoked violent counter attacks. The immediate cause for the composition of the 'Epistle, however, was the publication in 1733 of 'Verses to the Imitator of Horace,' which attacked the family, the person, the manners and the morals Montague and Lord Hervey were implicated. Characteristically, Pope pretended to be indifferent to the attack, and in his "advertisement" asserts that the 'Epistle) was composed long before the appearance of the Montague-Hervcy volume. The statement is disingenuous, since Bufo; 406-419, on Arbuthnot) were old matter These disconnected passages were pieced together and over 300 lines added to form the brilliant and scathing rejoinder to 'Verses to the Dr Johnson traces .
to Boileau's address 'A son esprit,' but, though Boileau's poem is admirable, Pope far excels it "The sustained dramatic power, the variety of the detail, the richness of the imagery, the elevation of the sentiment, the force of the invecrepose of the conclusion, combine to place the (Epistle) beyond reach of rivalry in this kind of writing" (Elwin and Courthope). For a full discussion of the date of composition, consult Pope's 'Works,') (Vol. III (Poetry), ed. Elwin
and Courthope, 1881). Sir Leslie Stephen in his life of Pope in the 'English Men of Letters' series makes interesting comments on the satires.

Marton Tucker.
EPISTLE TO AUGUSTUS. Pope's (Epistle to Augustus) (1737) is a literary satire in imitation of the cpistle which Horace ad-
dressed to the Emperor Augustus (Book II,
p. I). In his choice of topics and their order of course that he substitutes English literature ior Latin, London for Rome, and George II for Augustus. There is also a change of tone, in terly Horave's eulogy of Augustus becomes bitterly ironical when applied to George II. Pope ern English writers, the theatre, the London judgment of woets and poetry, the progress of poetic art and the poet's power to confer disis action upon his patrons. In effect, the whole a satire upon George II, upon unworthy there occur upassages full of sound scuse and excellent literary criticism, expressed with Pope's characteristic terseness and point (for example, lines 213-20, on Dryden and Addison). He most celebrated passage in the 'Epistle' is perhaps the one on the progress of English
poetic art (11. $267-81$), which states that

" Dryden taught to join The varying verse, the full-resounding line, The long, majestic march, and energy divine

Though less frequently quoted than some Others of Pope's poems, the 'Epistle) contains Tines which have passed into the common use,
such as "The last and greatest art - the art to blot." "The last and greatest art - the ar

EPISTLE SIDE OF THE ALTAR, the right side of the altar, looking toward it, so named because the epistle of the day is read at sat sidc. It is secondary to the gospel or left
siue, and on fete days is occupied by the lesser ecclesiastical fête days is

EPISTLES, Spurious. See Apocrypha.

epistles of horace. See Horace. RUMISTOLE OBSCURORUM VIRO"Letters of obscure men") a collection of satiries of obscure men"), a collection of Germany in $1515-19$ and ared in Hagenau, composition of certain ecclesiastics to be the fessors in Cologne and other German towns. They were addressed to Ortunius Gatius at Deventer, who had gained the ill will of the They are account of his open hostility to them. sarcasms in the history of literature, and their importance is enhanced by the effect they had in promoting the cause of the Reformation through their attacks upon scholastics and monks. The urst issue consisted of 41 letters; but others sere subsequently added. The authorship of this but the major portion has been attributed to Reuchlin, Ulrich von Hutten and Erasmus, and also to Crotius Rubianus, the great humanist, letters said to have originated the idea of the of B.ers and the title. The best edition is that works of von Hupplementing his edition of the

EPISTOLER, or EPISTLER, the clergy-
man in the English Church who assists the Celebrant in administering Holy Communion and who reads the epistlc. The office corresponds
that of subdeacon in the Catholic Church.
EPISTUL2E EX PONTO, four books of etters, written by Ovid during his exile. They
are made up for the most part of appeals to
his friends at Rome for intercession with the mperor. They are in elegiac metre.
EPISTYLIUM, or EPISTYLE, a beam of stone or wood, used to span the space between columns architrave
EPITAPH (Gr. Ėlta申los, epitaphios funeral, from $\dot{\varepsilon} \pi i$, epi, upon, and raфos, taphos, omb), an inscription upon a tomb. The carlies Enown are those upon Egyptian sarcophagi Epitaphs are common among many pcople, and commemorate the dead. They were in us among both the Greeks and Romans. Many of the later Greek epitaphs were of considerable length, while those of the Romans commonly ecorded only brief particulars regarding the placed near the highways, and their cpitaplis generally commenced with Sta viator! (Stop, traveler!). On Christian tombstones epitaph frequently express the pious hopes of survivor in reference to the doctrines of the Christian aith. In the catacombs of Rome, which wer ians under the pagan emperors, are many remarkable epitaphs of this description. Among memorable epitaphs, one of the happicst, is that f Sir Christopher Wren, in Saint Pauls, Lon on of which he was the architect

Si monumentum quar is circumstice
"If you seek for his monument, look about you."
The following is the epitaph of a Roman matron:

Domum servanit, Lanam fecit.

"She kept the house and span the wool."
Sta, ziator: heroem calcas,--
Traveier, pause: thou treadest upon a hero,
has been ascribed both to Montecuculi and to has been as
Gen. Merci.
Sufficit huic tumulus, cui non suffecerat orbis,-
"This tomb suffices hor him for, whom the world did
not suffice,"
was the epitaph of Alexander the Great.
Count Tessin, a governor under Gustavus II of Sweden, ordered the words

Tander felix,
Happy at last
to be inscribed on his tomb. The following is Sir Isaac Newton's epitaph:

Tsacum Newton,
Ouem immortalens,
Testantur Tempus, Natura,
Mortalem hoc Marmor,
-This marbie acknowledges IT. Isace Newton mortal, to
Saint Anne's Church, at Cracow, has the fol owing suggestive epitaph, dedicated by Coun Sierakowski to Copernicus:

$$
\begin{aligned}
& \text { Sat, sol, ne moveare. } \\
& \text { " Stand, O sun! move not.' }
\end{aligned}
$$

Many so-called epitaphs are merely epigrams ever intended Among such may be cited thenta Piron on Marshal de Belle-Isle, who was buried next to Turenne:

$$
\begin{aligned}
& \text { Ci-gll le goricux a cote de la gloire } \\
& \text { Here beside glory lies the vainglorious. }
\end{aligned}
$$

Bibliography.-Andrews, 'Curious Eni-
ographic Elements in Latin Inscriptions) (New York 1910) ; Blommaert, etc., 'Inscriptions funeraires et monumentales de la prov. de
Flandre Oricnt') (Ghent 1857-60) ; Brown, J. 'Epitaphs' (Edinburgh 1867); Bücheler and Riese, (Antologia Latina) (Vol. II, Leipzig 1869); Chwolson, (Achtzehn hebraische Grabschriften atts der Krim' (1850) ; Hacket, 'Select ${ }^{(E p i g r a m m a t a}$ Greca ex Lapidibus 'Collecta') (Berlin 1878) ; Kippax, 'Churchyard Literature' (Chicago 1876); Labbe, 'Tesaurus Epitaphiorum' (Paris 1666); Le Blant, 'Inscriptions chretiènnes, etc.' ($1856-65$); Lewysohn, 'Scchzig Epitaphicn von Grabsteinen) ((1855) ; Loar(1872): Pettigrew, 'Chronicles of the Tombs' (1857) ; Preger, 'Inscriptiones Græece Metricæ ex Scriptorihus præter Antologiam Collectæ' (Leipzig 1891) ; Pulleyn, 'Churchyard Gleanings' (1830), Reinach,' 'Traité d'épigraphie grecque' (Paris 1885); ; Robinson, 'Epitaphs
from Cemeteries' (1859); Thompson, 'Tædium vitæ in Roman Sepulchral Inscriptions) (Saint Louis 1911); Tolman, (A Study of the Sepulchral Inscriptions in Bücheler's Carmina Epigraphica Latina' (Chicago 1910); Weever, 'Ancient Funeral Monuments'
EPITHALAMIUM, èp" ī-thả-lā'mī-ūm epitholamios, nuptial from $\overline{\varepsilon \pi i}$, epi upon, and ò̀ $\lambda a \mu o s$, thalamos, a chamber), a nuptial song, a poem in honor of a newly married couple or one of the pair. Among the Greeks and Romans it was sung by young men and maids at the door or the bridal chamber of a newly-margroom and bride, with wishes for their happiness. Examples may be seen in Theocritus' epithalamium of Helen, and the three epithalamia of Catullus, in which the Greek form is
much modificd. Some Roman epithalamia were much modified. Some Roman epithalamia were collectcd by Wernsdorf in Vol. IV of
(Poetæ Latinæ Minores' (Helmstedt 1789).

EPITHELIOMA, a species of cancer in which the disease attacks the surfaces covered

EPITHELIUM ěp-ĭthéllǐùm, one of the simplest forms of tissue derived chiefly but not alone from the outer embryonic layers and characterized by its non-vascularity. It consists of flattened or columnar cells united into continuous membranes by an intercellular ce-
ment substance. Epithelium serves for the most part to protect exposed surfaces of the body, and performs the functions of absorption, secretion and excretion. The epithelial tissues are developed from all three layers of the developing embryo. They themselves secrete their own cement substance. This cells, gluing them together. Occasionally the epithelial cells develop short lateral projections (prickles), forming with similar structures of neighboring cells intercellular bridges, between which are intercellular spaces filled with lymph for the nollishment of the cells. Inasmuch posed surface and one surface lying in contact with tissues underneath, the upper and lower surfaces show certain variations of structure.

Occasionally the free surface develops fine hairs or cilia. These are found in various
localities. The outer surface of the cell, be ing exposed, develops more truly the cell, tions, the inner more vegetative. Blood vessels and lymph vessels do not penetrate, as a rule, into epithelial tissues, but they are richly supplicd with nerve-end organs.
According to their shape and relation, the epithelial cells are divided into these varieties
(1) Simple epithelial cells, with or without cilia, comprising (a) squamous epithelium; (b) cublical epithelium; (c) columnar epithelium (d) pscudostratified columnar epithelium. (2 Stratified epithelium, comprising (a) stratifice colls without cilia: b bith superficial flatten cells without cilia; (b) transitional epithelium
(c) stratified columnar epithelium. (3) Glan (c) stratified columnar epithelium. (3)

1. Simple Epithelium.- This is that type in which the cells lie in a single continuous layer This form is found lining almost the entir alimentary tract, the smaller air-passages, the majority of the gland-ducts, the ovarian cord and the ventricles of the brain. In (a) simple squamous epithelium the cells are flattened, forming a mosaic with the nuclei lying in the middle of the cell. It is found in the alveol
of the lungs. In (b) simple cubical epithelium the appearance is that of short polygona prisms. It occurs in the smaller bronchioles of the lung, in certain portions of the urinifer ous tubules, the liver, pancreas, salivary and mucous glands. In (c) simple columnar cpiThis type is found in the intestinal tract from the cardiac end of the stomach to the anus, an in certain portions of the kidncy. Ciliated columnar is found in the ovarian duct and uterus, in the central canal of the spinal cor and in some of the smaller bronchi. (d) 2. Stratified Epithelium.- When the cells of
simple epithelium increase to such extent that layer upon layer is developed, the epithe ium no longer remains simple, but become stratified. The lower layers are richly sup plied with blood vessels, and multiply very rapidly, pushing out the upper layers that are
constantly dying and being cast off. The constantly dying and being cast off. epithelium, with superficial flattened cells, forming the outcr covering of the body, the epidermis and its continuations inside of the body, as, for instance, the walls of the cesophagus, the epithelium of the conjunctiva, the ex follicles, the walls of the rectum, the anus and the vagina. The deeper cells are usually cu^{-} hic-cylindrical, and are followed, as a rule by one or more layers of slightly flattened cells, until finally the outmost layers become
very much flattened and horny, or they may be very much flattened and horny, or they may be
developed into distinct horn-like substance uch as that found in the nails. (b) Transi fional cpithelium, a type of stratified epithe lium found in the kidney, uterus, urethra and hadder. It is somewhat similar to the stratific columnar epithelium, hut does not show the characteristic deep papillæ in the hasal mem Stratified columnar epithelium, consisting of a superficial layer of columnar cells and deeper
layers of irregular, triangular, cubical o pindle-shaped cells. This type is found in brane of the nose, portions of the male urethra and in parts of the larynx. Many of this typ of cells have cilia, particularly those found in the back of the nose, larynx, respiratory trac arger bronchi, Eustachian tube, epididym 3. Glandular Epithel:um. This
pithelium occasionally found scattered among other epithelial cells, and which shows the char
teristic of gland-structures. See Glands.
2. Neuro-epithelium.- Neuro-epithelial cell herve-end specialized cells in which specia sense nearly all epithelium is neuro-epithelium ince many nervous receptors are located in lat, stratified epithelium and also both receptor and effectors are found in the epithelium o mucous membranes. Consult Bailey, 'Histol-

EPITHEM, in botany, a gland which ex thode (quv), or, the internal tissue of a hyda
EPITOME, ě-pittō-mê, a summary or abstract of any book or writing a compendium Containing the substance or principal matters of book. Such digests or abstracts were common the Middle Ages and have not been unommon even in modern times, for instance, the Ousse
EPIZOA, in a general sense, external parasites, as contrasted with Entozoa, or in crnal parasites. These are not exact terms in lentific classification. Among them are the "eas, lice, ticks, itch-mites and
vermin" infesting man or beast.
In a more restricted sense the term is ap plied to the degraded, distorted copepod crus aceans parasitic upon the skin, gills and othe FISfi-LICE
EPOCH, or ERA (Gr. हाox力, epoche poch, pause). In history, a fixed point of time, commonly selected on account of some remarkand which by which has been distinguished, point of a particular year from which all othe ears, whether preceding or ensuing, are comuted. Some writers distinguish between th erms epoch and era. According to them, both ark important events, but an era is an epoc is not marked in this way. The birth of Christ kas thus both an epoch and an cra from thi point of view.
The more important historical epochs are hore enumerated. For further
mode of reckoning see Calendar.
The Creation. - The biblical
The Creation.- The biblical record of the Ous chronologies. Of course the authoritic (Jewish and Christian) on these various mode reckoning do not agree as to the time signified lyy the common authority for the even epoch from. The more important of thes varicties, of which there are about 10 diter by Bossuct, are (1) The epoch adopted by Protestant divines, which places the creation in

4004 B.C. (2) The Era of Constantinople (adopted by Russia), 5508 B.C. . The civil year the end of March. (3) The Era of Antioch used till 284 A.D., placed the creation 5502 B.C. It was merged in the following year in (4) The Era of Alexandria, which made the creatio 5492 b.c. This is also the Abyssinian Era. (5) places the creation in 3760 b.C. Their year is lunar-solar, that is, lunar with intercalary months, forming a cycle of 19 years, of whic 12 have 12 months and seven 13 months. The year thus varies from 353 to 385 days. The the autumn equinox. The eras dating from the creation are distinguished by the initials A. M Const., Abyss., etc., are sometimes added to distinguish the particular epochs.

Julian Period.- This begins 4713 b.c. It is an arbitrary epoch, fixed for the purpose of
computing all dates forward, as in the case of the creation epochs
The Olympiads.-The Greeks computed their time by periods of four years, calle Olympiads. Their year was lunar, with inter calary months. The first Olympiad, being the pic games, was in the year 776 b.c. The period of the commencement of the year, which was variable, was about July. The contraction used for the Olympic epoch is Olymph
The Roman Era (Ab Urbe Condita). - The Romans dated from the supposed era of the
foundation of their city, 21 April, in the third year of the sixth Olympiad, or 753 b.c. (according to some authorities 752 b.c.). This epoch is designated by the initials A. U. C. The Roman mode of computation was the foundation of our modern chronology.
Era of the Seleucides.- Begins 1 Oct. 312 n.C., the edoch when Seleucus I (Nicator) took 365 days, with a leap year every fourth year. This era is used in the book of Maccabees.

Spanish Era.- This dates from 1 Jan. 38 B.C. The months and days were the same as
those of the Julian calendar. It was disused in those of the Julian calendar. It was disused
Aragon in 1350; in Valencia, 1358; in Castile, 1383 ; in Portugal, about 1415.

Christian Era.- Our mode of computing from supposed data of the bitth of Christ was first introduced in the 6th century, and had not Since the first year of the 1 st century was 1 A.D., the last year of the same century was 100 A.D. Similarly the ycar 1900 A.D. was the last year of the 19th century. The same holds good in reckoning backward. For particulars of the mode of reckoning the years of the Christian era and the c
undergonc, see Calendar.

Armenian Era.- This hegan 7 July 552, and was superseded by the Julian era ab
The year consisted of only 365 days. Mohammedan Era, or Hegira.- This begins on 16 July 622 . The conversion of the Mohammedan into Christian chronology causes more difficulty and confusion than arises with any of the other is purely lunar. It consists of 12 months, and each month commences with the appearance of the new moon. Hence their
years have no correspondence with the recurrence of the seasons, and to know the period weckoned from the beginning of the cra. In chronology, history, etc., they use months of 29 and 30 days alternately, making the year consist of 354 days. Eleven times in 30 years one day is added to the last month, making 355 days in the year. The mean length of the year is thus
$35411 / 30$ days, of the month $29191 / 360$, differing from the true lunation by little more than three seconds, or less than a day in 2,260 years. As 33 Mohammedan years amount to only six days (including intercalary days and leap years) more than 32 of our years, by deducting one
year from each 33 Mohammedan years, and add year from each 33 Mohammedan years, and addapproximately be found. The Hegira is distinguished by the initials A. H.
Persian Era.- The cra of Yezdegird IIl began 16 July 632 . The year consisted of 365 days. It was reformed in 1075 by the addition of a day whenever it was necessary to make the
commencement of the year occur on the day of the sun's passing the same degree of the ecliptic The months have each 30 days, with five or six days intercalated. This era is still used by the Parsees in India.

Indian Chronology. - The best-known eras computed by solar time are the Kaliyuga, which
dates from 3,101 years before Christ and the dates from 3,101 years before Christ and the
Salivahana from 77 A.D. Both are computed astronomically, losing one day in 60 years by our computation. The era of Vikramaditya, beginning 57 years B.C., is computed by lunar
months, with intercalations made according to astronomical observation, and bringing the year up to 365 or 366 days. The Bengali year was formerly identified with the Hegira, but is now reckoned by solar computation.
Chinese Chronology.- The Chinese, like all the nations of northeast Asia, reckon their time
by cycles of 60 years. Instead of numbering them as we do, they give a different name to
every year in the cycle. The Chinese months every year in the cycle. The Chinese months
are lunar, of 29 and 30 days each. Their years are lunar, of 29 and 30 days each. Their years
have ordinarily 12 months, but a 13 th is added have ordinarily 12 months, but a sun is in one of the zodiac. This will occur seven times in 19 years. The boasted knowledgc
of the Chinese in astronomy has not been sufficient to enable them to compute their time correctly. The first cycle, according to Roman Catholic missionaries, began February 2397 B.C. elapsed cycle by 60 and add the odd years; then if the time be before Christ subtract the sum from 2,398; but if after Christ, subtract 2,397 from it; the remainder will be the year required.
tives of America, previous to its discovery by tives of America, previous to its discovery by
Europeans, particularly the Peruvians and Mexicans, appear to have had a considerable acquaintance with astronomy and to have reckoned their time with great care. The Mexican year consisted of 365 days, composed of 18 months of end of a cycle of 52 years 12 and 13 days were added alternately, making the mean year very near the truth.
In geology, according to United States Geo-
logical Survey usage, a subdivision logical Survey usage, a subdivision of a period
subdivision of an era, the largest time unit in use. The rocks laid down during a: epoch arc usually known as a series, this term being use as a subdivision of a system, the latter being
rocks laid down during a period. The Cambrian (q.v.) period is usually divided into three epochs, Georgian, Acadian and Saratogan, and the Cambrian system into three corresponding series of rocks known by the same names.
Other periods are also divided into epochs. The Other periods are also divided into epochs.
Eocene, Oligocene, Miocene and Pliocene are sometimes given the rank of periods, but are now generally considered to be epochs of tile Tertiary period. While periods are divisions the nomenclature of which is fairly well standardized the world over, epochs are not so constant,
and go by various names in various lands. See Cambrian ; Ordovician ; Eocene, etc.
In astronomy, epoch is the longitude which a planet has at any given moment of time. To predict this for any future period the longitude at a certain instant in the past must be known
PPODE (
EPODE (Lat. epodus, Gr. epodus, an after term is used of an ode succeeding a strophe and antistrophe, or a scrics of strophes and ant strophes. The name was also given by gram-
marians to any poem the material unit of which is a distich consisting of a long, followed by short verse. In this sense it was especially use by the rambic irimeter followed by the camber in
dimeter, as in Epodes $1-10$ of Horace. In music the term epode is used to signify a bur den or refrain.
EPOMEO, ā-pōmã-ō, a volcano, on the island of Ischia, Italy, 15 miles south by west o Naples. It has an elevation of 2,588 feet and commands a fine panoramic view of the coas tions have marked its history; one in 474 B.C. caused most of the inhabitants to flce from the island. In 1302 occurred the last great up heaval. The mountain is sometimes known a Mount San Nicola, from the San Nicola Her mitage near in Virgil's ' summeid.) The mount 716

EPONA, the goddess of stables, asses, mule shipped in Gaul but the cult spread to Rom in the 1st century of our era. Inscriptions to her have been uncovered in France, Germany, the Dobrudja and Italy. Consult Wissowa, 'Religion
1912).

EPONYM, ěp'ō-nim, a mythical personage created to account for the name of a tribe or peo Ite: thus was assumed eponymous hero of Troy Romulus of the Romans. It is also more generally used in the sense of names of people places and periods derived from those of perHearn, in his 'Aryan Household,' declares that "wherever there was a clan there was an eponym or founder, whether real or legendary of that clan." By extension the term is also applied to the name of something, as a part o organ of the body derived from a person, as
ssure of Sylvius.
EPONYMOUS, an adjective of Greek ori-
gin and meaning usually the giving of a name to

Some person or thing. In ancient Greece it as especially applied to the ephor, from whom raced their origin to some eponymous ancestor enerally a national hero. Thus Tros is the eponymous hero of Troy, Italus of the Italians

eporedia. See Ivrea

epos. See Narrative Poetry.
EPPES, John Wayles, American states20 m: b. Virginia 1773 ; d. hear Richmond, Va. tion, and after studying law was admitted to the bar and began practice in Richmond. In House of Representatives at Washington, and with successive re-elections served continuously rom 17 Oct. 1803 to 3 March 1811. Later he was elected to the 13th Congress and served
Tom 24 May 1813 to 3 March 1815 . He was chosen United States Senator in 1817, but reigned the office two years afterward on ac ount of failing health and retired to his es Maria, in Chesterfield County. He married died at Monticello in April 1804.
EPPING, England, market town, in Essex, miles from London and in the midst of the forest to which it gives name. This ancien yol forest, once a part of Waltham forest and all much larger than at present, has an and of 6,000 acres and presents some fine wood and scenery. It was securcd to the nation by Victoria in 1882 as a public recreation ground The town consists of a single broad street on

\section*{epping . Pop. 4,253 .

epping . Pop. 4,253 .
 EPPING FOREST. See Epping.

EPSOM, England, market town in the cunty of Surrey, 14 miles southwest of the heart of London. Epsom was formerly celewhich for a mineral spring, from the water of actured. A number of the sons of medical men are educated at the Royal Medical Colge, and adjoining the school is a home for aged physicians or their widows. The prinfrand race-meeting held on the Downs, which is attended by hundreds of thousands of perons. The races begin on Tuesday and continue to the end of the week preceding Whitsuntide ine Derhy stakes are run for on Wednesday Frich is the principal day, and the Oaks on earlier in the season; the town being otherwise characterized as "a dull little place for 50 weeks in the year." Epsom gives name to one Pop the parliamentary divisions of the county.

EPSOM SALT, a hydrous sulphate of mag esium, having the formula $\mathrm{MgSO}_{4}+7 \mathrm{H}_{3} \mathrm{O}$ name from its occurrence, in dissolved form, in a mineral spring at Epsom, England. It may prepared also from dolomite, by decomposing the mineral by the addition of sulphuric acid ist salt, proper, is known to the mineraloalt as epsomite, and more popularly as hair posits in the delicate fibrous efflorescent denines, quarries and caves. Epsomite crystal-
lizes in the orthorhombic system, and large
quantities of it are found in the limestone caves of Kentucky, Tennessec and Indiana, mingled with earthy matter. In the Manimoth Cave adhering to the roof and walls. An allied mineral known as kieserite, which has the composiion $\mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}$, and occurs abundantly帾sfurt, is largely used as a source of cpso as a Magnesium sulphate is used as a sulphates of sodium and potassium and in siz ing and dyeing cotton goods. The epsom salt cine.
EPSOMITE, natural magnesium sulphate of the same composition as Epsom salt and is found in fibrous crusts in white botryoidal lumps.
EPSTEIN, Jacob, English sculptor: b. New York, 1880. He is of Polish-Prussian descen tled in London. He was commissioned to exe cute 18 figures to decorate the new building of the British Medical Association in 1907-08. The work when finished was attacked by newspapers and various religious bodies, but was defende Conway and others. Epstein was also com missioned to execute the tomb of Oscar Wild in Pere Lachaise Cemetery, Paris, which h completed in 1909. He also decorated Church Square, facing the government buildings, stic and is a protest against the conventional istic and is a protest a
imitation of the Greek.
EPULIS. See Mouth.
EPWORTH LEAGUE, a society of young people of the 1889 in Cleveland, Ohio, by th union of five societies affiliated with the Meth odist Church. It adopted as its motto: "Loo mote mote intelligent and loyal piety in the young them in the attainment of purity of heart and constant growth in grace, and to train them in works of mercy and help." The following pledge is required of its members: "I wil earnestly seek for myself, and do what I celp others to attain, the highest New Testa help others to attain, the highest New Testa abstain from all forms of worldly amusemen forbidden by the discipline of the Methodis Episcopal Church, and I will attend, as far as and the Church and take some active part in them." The league exists in both the Norther and Southern branches of the Methodist Epis copal denomination and also in the Methodis Church of Canada. The leaguc is governed by a board of control, partly appointed by the ference districts, one member for each district: represented by an executive cabinet, consistin of a president, four vice-presidents, general secretary, general treasurer and an assistant treasurer. The league has grown rapidly, extending to foreign lands, and there are Norway Sweden Denmark Finland, China Japan and Hawaii. There are in the league
about 30,000 chapters and over $2,000,000 \mathrm{mem}-$ bers. Its official organ is the Epzoorth Herald of over 100,000 . Consult Bacon and Northrop 'Young People's Societies) (New York 1900) 'The Methodist Year Book'; Brummett, 'E
worth League Methods' (New York 1906)
EQUAL RIGHTS PARTY, in 1835. See Locofocos
EQUAL RIGHTS PARTY, in 1884. Belva Lockwood nominated herself for the presidency, on a platform of Woman Suffrage; and gave
her voters this title.
EQUALITY BEFORE THE LAW, a fundamental of civil liberty, in which the equality of all men to receive the protection afforded
by law is assumed. The guaranty of liberty and equal privilege to all freemen was embodied in Magna Charta (q.v.) in 1215, and in the Declaration of Independence the equality of all men with unalienable rights was emphasized. The equal protection of the laws excludes any dis-
tinction between individuals, invidious discrimination, and class legislation not founded on legal or reasonable distinctive grounds. See Due Process of Law; Common Law.

EQUATION, a term based on the idea of equality, in general use throughout the variou branches of calculus. (1) In mathematics it is the statement in algehraic expressions of th identity of two or other mathematical expres-
sions. The assertion of equality is made by sions. The assertion of equality is made by
writing the sign $=$ (read "is equal to" or "equals") between the expressions. Thus $5 x+7=32$, and $a x^{2}+b x+c=0$, are equa tions, each of which indicates the equality o the quantity written on the left of the sign $(=)$ to that written on the right of the sign. equation is to express in symbols known relations between given and unknown quantities, so that by algelraic processes the latter may be determined in terms of the former. Such equa tions are designated conditional, whit chat are true for all values of the variables they involve or which involve no variables, are called identitics. (See Algerra, Definitions and Fundamental Concepts), (2) In astronomy, is the correction by addition to or subtraction from the mean motion of any place at any given time. The angular motion o a planet around the sun will not be uniform if its orbit is not circular, regardless of any per hurbations. Furthermore, the mutual attraction mong the planets renders each one capable of producing a perturbation in the orbits of all
the others. An equation is required for every such perturbation before it is possible to calcu late accurately the course of the planet. Thu

we have the equation of the centre, a quantity to be added to or subtracted from the anomaly, in order to determine the true position of a E C F represent the earth's orbit (which is an
ellipse), er for line of the aspides, and a position of the sun. When the earth is in a to the planet is the radius vector, then will the angle C A F be the anomaly, or the angular distance from the perihelion. Were the earth's angular motion uniform the increase or de crease of this angle would be equal in equal
times, and the mean anomaly would be the true anomaly; but the earth's motion is retarded as it advances from r to c, is slowest at $ז$, and is accelerated from that point, the aphelion, through the other half of its orbit till it arrives at F , the perihelion. The quantity to be added
to the mean angular motion during one porto the mean angular motion, during one in the
tion of the orbit, or subtracted from it in the other, in order to find that true anomaly, called the equation of the centre. (3) If chemistry, is a collection of symbols to denotc that two or more definite bodies - simple compound -have been brought within has taken place, and that new bodies are produced. It is called an equation because the total wcight of the substances concerned remains the same. Equations may also involve the energy conISTRY.

EQUATION, Personal, an important correction that must be considered in connection with refined measurements in astronomy an no stant at which a phenomenoisely as to orers, nor to the setting of a micrometer-wire so as to bisect a division mark on a scale. Differences of this sort are exceedingly irregular among incxper! enced observers, but among the more expert enced ones the regularity, while not absolute, is strongly marked. In some kinds of work the personal equation of the observer can be eliminated by the method in which the observa of differences of longitude by telegraphic meth ods, it is usual to eliminate the effect of per sonal error from the final result by having the olservers change places when the work is hal done; so that if the difference of longitude a too large half will be too small by an equal amount, and the effect of personal equation will disappea from the final mean. In other cases it is impossible to eliminate the effects of personal crror in any such way, and in these cases thiattempt is often made to determine the mage proper correction to the results as directly served. Thus Otto Strive, in connection with his measurements on double stars, had artificial double stars constructed, upon which he made regular observations for the purrose of strd ing his personal equation in such work, and applicd to his results for the genuine stars, a applied to his results for the genuine stars,
series of corrections deduced in this way, When the thing to be measured is an interval of some kind, the personal equation can usualiy he neglected, provided the same observer makes all the measures. For example, in determining the length of a bar, the reading of the miv crometers will be in error (so far as the per
sonal equation is concerned) by the same amount at hoth ends of the bar, and hence the
difference of these readings; or, in other words he observed length of the bar will be independ
EQUATIONS, Differential. 1. Introduc nece-- The invention of the calculus, made was followed the demands of natural science aplications. The names of Newton, Leibnitz the principal Liange and Laplace are attached to mportance from discoveries of this period, whose point of view can hardly be overestimated A simple example will suffice to explain the uling idea of this epoch. From the observhe laws of Tycho Brahe, Kepler had obtained is name. Newton had shown that Kepler's aws were but a consequence of the laws of niversal gravitation, which assumes that every article in the universe acts upon every other ccording to a definite law. The effect o can be formulated a system of moving bodie without any difficulty This formulation give ise to a system of equations involving the co ordinates of the moving bodics and their ccelerations, i.e., the second derivatives of The co-ordinates with respect to the time. unctions of the time, i.c., the problem of integrating this system of differential equations, as solved by Newton for the case of tw mutually attracting bodies, and its solution is elf and precisely by Kepicr's laws. Newton him cif and his successors, especially Laplace and he law of gravitation as applicd to the sola ystem. The accord between the theory and obervation became closer and closer, so that it as reasonable to suppose that the true law of ature had been found. Gradually other imines of physical science were treated in a aws being assumed, the mathematical formula on of the problems led to the question of ittegrating differential equations. It shonld be hoted that, although in some cases this method arriving at the formulation of the physical
problems has now heen abandoned, differential quations are now, more than ever, used as he expressions for the fundamental phenomna in physical science. For the applications mathematics there is no field so importan he whole wory of differential equations. Tha tas the point of view gained by I place, an insight gained in a different way also by Leiband Spinoza. But the mathematician is orld specific; we learn from him that thi World-prolitem belongs to the domain of the etails of che picture cquations. Even if the ation of the picture have changed, the formuive achievements of the philosophical thought
the 18th century
Ordinary Differential Equations; Elemen ary Theory.- Let y be determined as a unction of x by means of an equation,
hich iuvolves $\phi(x, y, a)=0$,
and y involves an arbitrary constant a. If x pint ine interpreted as the co-ordinates of fimily of curves, one curve for each value of on

By differentiation we find, from (1),
(2) $\quad \frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0$

Between these two cquations a may be elim nated; the result will be an equation of th form

$$
\text { (3) } \quad f\left(x, y, \frac{d y}{d x}\right)=0
$$

free from a. Equation (3) is a differential equation. Since it docs not contain the con stant a it gives the expression of a property family of differential The main object of the theory ess which ar equations is to invert the proc equation (3) being given, the equation (1) equation (3) being given, the equation which (3) may be derived by differentiation, is to be found. This process is known as the integra tion of the diffcrential equation.
In general let there be given an equation of the form

$$
f\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \cdots, \frac{d n y}{d x^{n}}\right)=0,
$$

between x, the function y of x and its derivatives up to the nth order; it is called an ordinary differential equation of the nth order. The function of only one indtat y is considered as a function of only one independent variable x. Onder certain restrictions as to the continuity
of the function f (a question to which we shall recur later), it may be shown which we shall a function y of x and of n arbitrary constants which satisfies the differential equation; it is known as the general integral of the differential cquation; the determination of this function is the object of the theory of differential equations. The equation grated.

The simplest case of such a differential equathe area included in the problem of inndig x-axis, and two ordinates erected for $x=a$ and $x=x$. The differential equation satisfied by the area z considered as function of x is

$$
\frac{d z}{d x}=f(x)
$$

and the area itself become

$$
z=\int_{a}^{x} f(x) d x .
$$

This simple case served as a model for the carlier investigators in this field. Confining ourselves for the moment to equations of the first order, it may be possibi an cquation to the form

$$
\frac{d x}{R(x)}+\frac{d y}{S(y)}=0,
$$

where $R(x)$ is a function of x, and $S(y)$ a function of y alone. and we may write

$$
\int \frac{d x}{R(x)}+\int \frac{d y}{R(y)}=c,
$$

wherc c is an arbitrary constant. Owing to the fact, which has just been mentioned, that putation of an integral of the form $\int^{x} f(x) d x$,
such an integration is known as a quadrature ontial equation can be separae therefore, be integrated by quadratures.
The earlier analysts believed that any differ ential equation could be integrated by the ratures. This we now know use, and by quad ust as we know, since the days of Abel, that all algebraic equations cannot be solved by the nere extraction of roots. (Sce Al.gebra Theory of Equations; Galois' Theory) Moreover, even if the reduction to quadratures peaking, the beginning and not the end of the investigation. For it does not suffice to give a formal indication of the relation between x and y; this relation must be thoroughly under stood in its essential properties before the in Nevertheless the consideration of the simpler cases, in which integration by means of elementary functions or by quadratures is possible constitutes a first important chapter of the heory of differential equations. We may char of differential equations.
Elementary Theory of Differential Equa tions.-- We have already referred to the case in which the variables are separated. In many cases a simple transformation will accomplish the separation. Consider, for example, the equation (4) $\quad \frac{d y}{d x}+P y=0$,
where P is a function of x only. We may write

$$
\frac{d y}{y}+P d x=0
$$

whence

$$
\log y+\int P d x=\log c
$$

$\begin{aligned} & \text { or } \\ & \text { (5) }\end{aligned} \quad y=c e-\int P d x$,
This example will be useful in enabling us to treat, at once, a more general equation; we method frequently method frequently employed, and especially astronomy, the method of variation of constants. We consider the equation
(6) $\frac{d y}{d x}+P y=Q$.
where P and Q are functions of x only. This equation is the most gencral linear differential equation of the first order, a linear cquation being one which contains y and its derivatives in tho higher than the first power. Equation
(6) differs from (4) only in having 0 in the (b) differs from (4) only in having Q in the
right member in place of zero. The expression (5) will certainly not satisfy (6) since it satisfies (4). Clearly, however, it must be possible to satisfy (6) by an expression of the form analogous to (5), viz.,
(7)

$$
y=u e^{-\int^{P d x}}
$$

where u is a properly chosen function of x instead of heing a constant. Morcover, as we ion u by quadratures. In fact, we find from (7) $\frac{d y}{d x}=\left(\frac{d u}{d x}-P u\right) e^{-\int P d x}$,
which gives, on substitution into (6)

$$
\frac{d u}{d x}=Q e^{f P d x}
$$

so that we shall have
(8) $\quad y=e^{-\int P d x}\left[C+\int Q e^{\int^{P d x}} d x\right]$
as the general integral of (6). This formula was found by Jacob Bernoulli, who also showe that the equation
(9) $\quad \frac{d y}{d x}+P y=Q y^{-m+1}$
could be reduced to (6) by putting $u=y^{m}$
The homogeneous equations of the form (10) $\quad \frac{d y}{d x}=\phi\left(\frac{y}{x}\right)$,
where $\phi\binom{y}{x}$ depends only upon the ratio of y to x, may be solved by quadratures. In fact, if we put $y=v x$, the equation becomes

$$
\frac{d x}{x}+\frac{d v}{v-\phi(v)}=0,
$$

whence
(11) $\quad \log x+\int \frac{d v}{v-\phi(v)}=c$

Eulcr's method of the integrating factor is sometimes useful. It rests upon the following considerations. Let $\phi(x, y)=$ const. be the equation of any integral curve of the equation (12) $P(x, y) d x+Q(x, y) d y=0$.
$\phi(x, y)=$ const., h

$$
\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0,
$$

an equation which must have the same significance as (12). We must, therefore, have (13) $\mu P(x, y)=\frac{\partial \phi}{\partial x}, \quad \mu Q(x, y)=\frac{\partial \phi}{\partial y}$,
if μ is a properly chosen function of x and y. If μ is known, the determination of ϕ by quad ratures can be immediately accomplished on easount of the two equations (13). For thia rions (13) show that μ must satisfy the partial differential equation
(14) $\quad \frac{\partial(\mu P)}{\partial y}-\frac{\partial(\mu Q)}{\partial x}=0$

In general, the determination of an integrating factor is just as difficult as the integration of the equation. But Euler succeeded in finding a number of equations with known integrating factors. Hercin lies the value of the method
By means of these various methods there as obtained in the course of time a consider grated by quadratures. Lie showed that this rather scrappy theory could be understood as the consequence of a single principle. This we shall now proceed to explain, making use of gcometric images for the sake of clearness as

The equations

$$
x_{1}=\psi(x, y), y_{1}=\psi(x, y),
$$

are said to constitute a transformation of the point (x, y) into the po
be solved for x_{1} and y_{1}.

These equations may contain a certain numhen said to constitute an r-parameter family of transformations. Let us consider the simples case of a one-parameter family which we may (15)
$x_{1}-\phi(x, y ; a), \quad y_{1}=\psi(x, y ; a)$. transformationer a has a definite value, this definite converts every point (x, y) into this new other point (x_{1}, y_{1}). Let us transform orm, but with a differ equations of the same hird point $\left(x_{2}, y_{2}\right)$, so that we shall have (16) $\quad x_{2}=\phi\left(x_{1}, y_{1} ; b\right), \quad y_{2}=\psi\left(x_{1}, y_{1} ; b\right)$.

In general, if we eliminate x_{1}, y_{1} between (15) x_{1} (16) we shall find x_{2} and y_{2} as functions of y, a and b. It may happen that these func(17)
(17) $x_{2}=\phi(x, y ; c), \quad y_{3}=\psi(x, y ; c)$
where c is a function of a and b, and where the (16). If ϕ and ψ are the same as in (15) and (15) are said to form a, he transformations The one said to form a one-parameter group. (15) then has the property that the transformaon, obtained by combining any two of its ansformations, is itself a member of the hen called a for this reason that the family is It is obvious how (See Groups, Theory of). ended to cover r-parameter groups
The one-parameter group (15) will contain, general, the identical transformation; i.e., x_{1} a certain value a_{0} of a (15) will reduce to tesimal $x, y_{1}=y$ If now we denote by δt an infinifind a and put in (15) $a=a_{0}+c o t$, we shal into a point $\left(x_{1}, y_{1}\right)$ such that the differences $x_{1}-x=\delta_{x}$ and $y_{1}-y=\delta y$ will be infinitesimals the order of δ. This will be true unless cerain exceptional cases arise which we need not, present, discuss. From every one-parameter mai transformation, and Lie has shown that onversely every infinitesimal transformation imimines a one-parameter group. There is a roup connection between an r-parameter oup and a corresponding set of r infinitesima tions must then be satisfied.
variant: i.e. one-parameter group always has an inuch that for all transformations (15) of the Said to $\Omega\left(x_{1}, y_{1}\right)=\Omega(x, y)$. Such a function is formations the one-parameter group of transfirmations. It admits, in particular, the inarly, a differential equation may admit one or ore infinitesimal transformations. Lie has hown that in the cases in which the variables guad be separated, i.e., in which integration by down infinites is possible, it is possible to write the equations invariant. He has developed a seneral theory showing what advantage is ained for the integration of a differential equaon the knowledge that it admits onc or ore infinitesimal transformations. Let us refincle cxplicitly, that this theory is not conordinary differential equations
Before passing to the consideration of the ele-
mentary theory of equations of higher order, we proceed to explain the important notion of sinthe first order $\frac{d y}{d x}=\phi(x, y)$ dctermines the tangent of an integral curve at every point of the plane. If we start from any point P, the tangent of the integral curve passing through that point is completcly determined. We follow the direction this indicated for an infinitesimal dis point the tangent is again given by the differential equation, etc. We obtain in this way, synthetically, the family of integral curves, say $F(x, y, c)=0$. Any one of these curves is ohtained by giving a definite value to the consystem of curves, however, will also be a solu system of curves, however, will also be a solualso be a curve whose tangent satisfies the requirements of the equation. But, in gencral, the envelope will not be itself a member of the famd its of curtion hy , piving a special value to The envelope is then said to give a singula solution of the equation. If it exists, it may be found without any integration, that is to say without a knowledge of the gencral integral of he differential equation
The most important case of a differentia by elementary methods, is that of the linea homogencous differential cquation of the nth order with constant coefficients. A linear homo geneous differential equation of the nth orde as the form
(18) $\quad \frac{d^{n y}}{d x^{n}}+p_{1} \frac{d^{n-1}}{d x^{n-1}}+\ldots+p_{n} y=0$.

If $y_{1}, y_{2}, \ldots, y_{n}$ are particular solutions of the quation, $y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$, where c_{1}, over, if $y_{1, \ldots} \ldots y_{n}$ are linearly independent, i.e. if they satisfy no relation of the form $\gamma_{1} y_{1}+\gamma_{2} y_{2}+\ldots+\gamma_{n} y_{n}=0$, wherc $\gamma_{1} \ldots \gamma_{n}$ are constants, the above expression for y is the general solution. y_{1}, \ldots, y_{n} are then said to
constitute a fundamental system of solutions In the case that $p_{1}, \ldots p_{n}$ arc constants a fundamental system may be easily obtained. In fact we find that $y=e^{p x}$ is a solution of (18) if ρ is a root
$\rho^{n}+p_{1} \rho n-1 \ldots+p_{n-1} \rho+p_{n}=0$.
Moreover, if $\rho_{1}, \ldots \rho_{n}$ are the roots, supposed istinct, of this cquation, $e^{\rho_{1} x}, e^{\rho_{2} x}, \cdots e^{\rho_{n} x}$ actually form a fundamental system. If λ roots, say $\rho_{1}, \rho_{2}, \ldots \rho \lambda$, coincide, the λ identical functions $e^{\rho_{1} x}, \ldots e^{\rho^{x}} \lambda^{\text {are }}$ replaced by $e^{\rho_{1} x}$, xe $e^{\rho_{1} x}$, $x^{2} e^{\rho_{1} x}, \ldots x^{\lambda-1} e^{\rho_{1} x}$.

Total Differential Equations.- In the cas of an cquation between two variables which we have considered so far, one important distinction, which we shall now have to make, has no oen necessary. If $P(x, y) d x+Q(x, y) d y=0$ is such an equation, (x, y) such that $\phi(x, y)=$ const. shall represent the general integral. Eithe the expression Pdx+Qdy is the complete differential of $\phi(x, y)$ so that $P=\frac{\partial \phi}{\partial x}$ and $Q=\frac{\partial \phi}{\partial y}$ or else upon multiplication with Euler's in-
tegrating factor $\mu(P d x+Q d y)$ becomes such a complete differential. This is not the case when such an more than two variables. Consider (19) $\quad P d x+Q d y+R d z=0$
where P, Q, R are functions of x, y, and z. For the sake of symmetry assume that x, y, z are
regarded as functions of a fourth variable t. The problem before us is to find all sets of functions x, y, z of t which will satisfy (19). It may happen that the left member of (19) becomes a complete differential upon mult

$$
\mu P=\frac{\partial \phi}{\partial x}, \mu Q=\frac{\partial \phi}{\partial y}, \mu R=\frac{\partial \phi}{\partial z} .
$$

The climination of μ from these three equations satisfy the so-called integrability condition:
(20) $P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)$

$$
+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=0 .
$$ Moreover it may be shown that if P, Q, R satisfy and an integrating factor $\mu(x, y, z)$ such that $\mu(P d x+Q d y+R d z)=d \phi$

so that integration of (19) will give the result $\phi(x, y, z)=$ const. But if (20) is not satisfied no integration of (19) in this sense is possible The reason for this distinction as well as the discussion of the non-integrable case will be metric interpretation. Let x, y, z be Cartesian co-ordinates of a point in space. If x, y, z are known as functions of t, there will be determine certain space-curve. It is our problem to de ermine such space-curves

$$
\begin{aligned}
& \text { such space-curves } \\
& x=f(t), \quad y=g(t), \quad z=h(t)
\end{aligned}
$$

as satisfy (19). Through every point (x_{0}, y_{0}, z_{0}) of space there may be drawn an infinity of such which pass through the point $\left(x_{0}, y_{0}, z_{0}\right)$ form plane pencil with (x_{0}, y_{0}, z_{0}) as vertex and the
$\begin{aligned} P\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right) & +Q\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \\ & +R\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0\end{aligned}$ as plane. Thus there is for every point P a plane p containing P, to which all of the integral curves of (19) which pass throllgh P integral curve of (19) constructed as follows: Start from a given point P and construct the corresponding plane p. We go from P to a point Q infinitesimally close to P but otherwise arbi rarily situated in the plane p. At Q we construct the plane q corresponding to it, and in close to Q. Proceeding in this way we gradually build up an integral curve. happen that all of the integral curves of (19) which pass through the point P are situated lopon a certain surface S. If this is the case atisfied there exists a single infinity of sur aces $\phi(x, y, z)=c$, such that an arbitrary curve upon each of these surfaces satisfies the differential equation. In general, however, such family of surfaces does not exist. We may Irary surface of $(x, y, z)=0$.
upon it. Let p be the plane of the pencil of direc${ }_{P}$ tions which the differential equation assigns to P, and let p^{\prime} be the plane tangent to the surface $\phi(x, y, z)=0$ at P. The intersection t of p and tegral curve of (19) and tangent to the surface $\psi=0$. From P we go along t to a point Q infinitesimally close to P and there repeat this process. We may build up in this way all of he integral curves of (19) which are situated upon an arbitrary surface. Upon every arbi-
trary surface there will be a single infinity of such curves. Analytically this process may ive carried out as follows: From $\psi=0$ we find

$$
\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{d z} d z=0 .
$$

From this equation and $\psi=0, d z$ and z may be expressed in terms of $x, y, d x$ and y. Substitution of these values into (19) gives rise to an equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

which may be integrated, in the form $\phi(x, y)$ $\overline{\bar{z})}=0$. This latter equation together with $\psi(x, y)$ $z)=0$ gives the required solution. By giving al possinle forms to the fut
solutions will be obtained.

Similar considerations are necessary in the general case of n variables. The first considerable contribution to this theory is due to Pfani. For this reason such an cquation is known as a
Pfaffian equation, and the problem of its integration as Pfaff's problem. The problem leads to a system of no more than n integral equations when the number of variables is $2 n$ or $2 n-1$. If the equations are of higher than the first degree in the differentials, Lie speaks of them as Monge equations. Many problems of the theory of complexes, are connected with Pfaffian and Monge equations.

Partial Differential Equations. Frequently functions of several variables are defined by relations hetwecn those functions and their partial differential equations. For the sake of simplicity we will confine ourselves to the case of a single unknown function, and for the most part to the case of two independent variables. As in the case of ordinary differential equations, it will he instructive to see first how such cqua-
tions may arise as the result of elimination of arhitrary elements from equations which do not involve the derivatives. Let z be given as a function of x, y and of the two arbitrary constants a, b by the equation
(21)

Let p, q represent $\frac{\partial z}{\partial x}$ and $\frac{d s}{\partial y}$ respectively, Then differentiation will give
(22) $\frac{\partial f}{\partial z} p+\frac{\partial f}{\partial x}=0 . \frac{\partial f}{\partial z} q+\frac{\partial f}{\partial y}=0$.

Between the three equations (21) and (22) and b may be eliminated. Let
(23) $\quad F(p, q ; x, y, z)=0$
be the result of this elimination. It is the partial differential equation which correspond to (21); (21) is called the complete integral o (23). a and b in (21) may be functions of x. y and still the result of the elimination may
be the same equation (23). In fact we find of r (21), assuming that a and b are function

$$
\begin{aligned}
& \frac{\partial f}{\partial z} j+\frac{\partial f}{\partial x}+\frac{\partial f}{\partial a} \frac{\partial a}{\partial x}+\frac{\partial f}{\partial b} \frac{\partial b}{\partial x}=0 \\
& \frac{\partial f}{\partial z} q+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial a} \frac{\partial a}{\partial y}+\frac{\partial f}{\partial b} \frac{\partial b}{\partial y}=0
\end{aligned}
$$

Which equations will reduce to (22), and there
re give rise to the same cquation (23), if
(24) $\frac{\partial f}{\partial a} \frac{\partial a}{\partial x}+\frac{\partial f}{\partial b} \frac{\partial b}{\partial x}=0, \frac{\partial f}{\partial a} \frac{\partial a}{\partial y}+\frac{\partial f}{\partial b} \frac{\partial b}{\partial y}=0$.

Let the determinant of these equations be denoted by 4 , so that

$$
\frac{\partial a}{\partial x} \frac{\partial b}{\partial y}-\frac{\partial a}{\partial y} \frac{\partial b}{\partial x}=
$$

then we may write, in place of (24), the equivaequations
(24a) $\quad \Delta \frac{\partial f}{\partial a}=0, \quad \triangleleft \frac{\partial f}{\partial b}=0$.
If $1 \neq 0$, we must therefore have

$$
\frac{\partial f}{\partial a}=0, \frac{\partial f}{\partial b}=0
$$

From these equations a ahd b may be obtained as functions of x and y; if these values are substituted in (21), a function z of x and y is obtained, independent of any arlitrary conStants, but still a solution of the partial differ singular integral of (23). Th it may or may not a special case of the complete integral.
Equations (24a) are also satisfied if $v \Delta=0$ (25)
$b=\phi(a)$,
Where $\phi(a)$ denotes an arbitrary function of a If we multiply the left members of (24) by $d x$ and $d y$ respectively, and add, we find

$$
\frac{\partial f}{\partial a} d a+\frac{\partial f}{\partial b} d b=0,
$$

whence, since $d b=\phi^{\prime}(a) d a$,
(26) $\frac{\partial f}{\partial a}+\frac{\partial f}{\partial b} \phi^{\prime}(a)=0$.
(21) we eliminate a and b from the equations x and (25) and (26), we find $z a$ a a function of the arbitrary function ϕ. Morcover this func tion z will again be a solution of (23). It is known as the general integral and involves an arbitrary function. It may be shown that every integral of such a partial differential equation belongs to one of these three classes.
the Geometrical interpretation will again render the matter perfectly clear. Let x, y, z be coordinates of a point in space; (21) will represent a two-parameter family of surfaces, or, as equation of the plane tangent to one of these Surfaces at a point (x, y, z) will be
$\zeta-z=p(\xi-x)+q(\eta-y)$.
For a fixed value of x, y, z, (23) gives therefore an infinity of plancs through that point (enveloping a cone); any integral surface of (21), Which passes through that point must have Other words, the differential equation determines a certain cone corresponding to every point of space, and with this point as vertex;
an integral surface must be tangent at each of its points to the corresponding cone. Now let a complete solution of the equation be given,
so that we know a family of ∞^{2} surfaces each of which fulfils the requirements of the problem. If we put $b=\phi(a)$, where $\phi(a)$ is any function of a, we obtain a one-parameter family of surfaces included among the ∞^{2} surfaces just
mentioned. The envelope of this one-parameter family is given by the general integral. The singular integral is the envelope of all of the ∞^{2} surfaces of the complete integrals, provided that such an envelope exists.
Since the surface represented by the general
integral is the envelope of a single infinity of surfaces represented by the complete integral, each of these latter surfaces will touch the former along a certain curve; such a curve is known as a characteristic. In the in $\frac{\partial z}{\partial z}$ and $\frac{\partial z}{\partial z}$ there are ∞_{∞}^{8} characteristics. A linear equation there are ∞^{∞} characteristics. The integral surfaces may be looked upon as generated by grating the partial differential equation consists in setting up a system of ordinary differential equations which determines the characteristics.

The points of view in the higher theory.In speaking of ordinary differential equations, point of view of the elementary theory is inadequate even in those cases in which the reduction to quadratures is possible. Given for example, the equation

$$
\begin{aligned}
& \qquad\left(\frac{d y}{d x}\right)^{2}=\left(1-y^{2}\right)\left(1-k^{2} y^{2}\right), \\
& \text { which may be reduced to a quadrature, } \\
& x=\int \frac{d y}{\sqrt{\left(1-y^{2}\right)\left(1-k^{2} y^{2}\right)}} .
\end{aligned}
$$ The reduction of the equation to this form is a mothing. We shall have to ask oursclves the following questions: to what extent does a given differential equation define a function y of x ? what are the characteristic properties volving known functions, infinite scries, prod ucts, etc., will serve for the computation of the values of the function for all of the values of its argument? In the case of the above differential equations these questions have hecn completely answered oy the Abel and Jacolis. In genof elliptic functions by Abel and it is to be expected that every differential equation defines a transcendental function; it is the theory of these transccndentals which constitutes properly the most important portion of the theory of differential cquations.

fu order functions it has been found necessary to look upon the variable as being capable of assuming upot only all real but also all complex values In the hands of Cauchy, Riemann, Weierstras there has grown up in this way the theory of functions of a complex for our further discus theory serves as a base for our further discus
sions. We shall, however, confine ourselves to a few of the simplest cases, merely indicating the general point of view.

$$
\frac{d y}{d x}=f(x, y)
$$

be the given differential equation: Let $f(x, y)$ be analytic in the vicinity of (x_{0}, y_{0}) i.e., let
it be possible to develop $f(x, y)$ into a series proceeding according to positive integral powers of $x-x_{0}$ and $y-y_{0}$. Then, as was first proved by Cauchy, there exists a function y of x which may be developed according to positive integral powers of $x-x_{0}$, which reduces to $y=y_{0}$ for $x=x_{0}$, and which satisfies the differential equa-
tion. This theorem, which may be easily generalized to apply to equations of higher order, or to systems of equations of the first order, is generally known as the fundamental theorem of the theory of differential equations. It proves the existence of analytic functions which
are uniquely defined as solutions of analytic differential equations and which satisfy the subsidiary condition of reducing to given values for a given valuc of the argument. The theorem may be proved by the method of dominating functions. This consists in finding a series which
formally satisfies the differential equation and reduces to y_{0} for $x=x_{0}$; its convergence is then demonstrated by comparing it term for term with a corresponding series, which is formed in the same way from another differential equation, and which is known to be convergent. be generally stated. A great many papers have been written on questions which easily suggest themselves in connection with this theorem. If the function $f(x, y)$ is not developable in the given form; if, for example, its development contains negative or fractional exponents, how form of their developments? Besides the analytic solutions whose existence Cauchy has demonstrated, are there other non-analytic solutions? The first investigations of these questions are due to Briot and Boquet. They have since b
Cauchy's existence theorem can he made more precise in the case of limear differential equations. Let
(27) $\quad \frac{d^{n} y}{d x^{n}}+p_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+p_{n} y=0$
be a homogencous, linear differential equation of the nth order. In the vicinity of $x=x_{0}$ let the coefficients $p k$ be expressible as power-series, proceeding according to positive integral powers of $x-x_{0}$, and convergent for all valucs of x for which $\left|x-x_{0}\right|<r$, where r is a real positive complex variable which are within a circle of radius r and of center x_{0}. Then there exists a unction y of x, expressible as a power series convergent in the same domain, which satisfies the differential equation, and which, together with its first $n \cdots-1$ derivatives, ass
trarily prescribed values for $x=x_{0}$.
The proof of this theorem, due to Fuchs, is also based on the method of dominating funcions. The important point is the fact that the true radius of convergence of the series is determined by inspection from the of a fundamental system of existence expressible by power-series follows at once.

Let $y_{1}, \ldots y_{n}$ be tho members of such a funda mental system. Let $a_{1}, \ldots a_{m}$ be the singula points (poles) of the coefficients p_{l}, fortions
which we shall assume to be rational functions of x. Let $y_{1}, \ldots y_{n}$ be continued analytically along a path passing, in the positive direction around one of these singular points a, and let functions $y_{1}, \ldots y_{n}$ be the new branches of the functions y_{1}, . . y_{n} which are thus defined by power-series in the vicinit
process. We must have
(28) y wh mave
where $a_{k k} a_{1}+a_{k 2} y_{2}+\ldots+a_{k n} y_{n},(\kappa=1,2, \ldots n)$ where $\alpha_{k i}$ are constants, since $\bar{y}_{1} \ldots \bar{y}_{n}$ must
constitute again a system of solutions (moreover a fundamental system). A new funda mental system may be chosen in the following manner. Put
where c_{1}... c_{1} are where $c_{1}, \ldots c_{n}$ are constant coefficients. After
the continuation around a, z will be changed into $z=c_{1}\left(a_{11} y_{1}+\ldots+a_{1 n} y_{n}\right)+$
This will be equal to $+c_{n}\left(a_{n} y_{1}+\ldots+a_{n n} y_{n}\right)$

$$
\begin{aligned}
& c_{1}\left(a_{11}-\omega\right)+c_{2} a_{21}+\ldots+c_{n} a_{n 1}=0 \\
& c_{1} a_{12}+c_{2}\left(a_{11}-\omega\right)+\ldots+c_{n} a_{n 2} \equiv 0
\end{aligned}
$$

(29)

$c_{1} a_{1 n}+c_{2} a_{2 n}+\ldots+c_{n}\left(a_{n n}-\omega\right)=0$

whence
(30) $F(\omega)=\left|\begin{array}{cccc}a_{12}-\omega_{1}, & a_{21} & \ldots & a_{n 1} \\ a_{12}, & a_{21} & \omega, & \ldots \\ a_{n 3} \\ a_{n n}, \dot{a}_{2 n} & \cdots & a_{n n} & ,\end{array}\right|=0$.

If ω_{1} is a root of (30) and the ratios of $c_{1}, \ldots c_{n}$ are determined from (29) after ${ }^{\omega}$ find a solution z_{1} of (27) which chate into $\omega_{1} z_{1}$ when the variable x describes a closed path around the singular point considered. If the equation $F(\omega)=0$ has n distinct roote, shall find n such solutions, and we may write (31) $\quad \bar{z}_{i}=\omega_{i} z_{i}, \quad(i=1,2, \ldots n)$ in place of (28). Moreover, these n solutions $\begin{array}{ll}z_{1}, \ldots & z_{n} \text { will constitute a fundamental system. } \\ \text { We shall not attempt to discuss }\end{array}$ incident roots of the equation (30), which is known as the fundamental or characteristic equation.
Now the function

$$
(x-a) r_{i}=e r_{i} \log (x-a), r_{i}=\frac{1}{2 \pi i} \log \omega_{i}
$$

has preciscly the same property. Therefore the quotient $\frac{\pi i}{(x-a)^{r} i}$ is a function uniform in the vicinity of $x=a$, and therefore expressible by a so-called Laurent series proceeding according to positive and negative but integral powers of (32) $z_{i}=(x-)^{\prime} ; p^{\prime}(x), i_{i}, 1$, we have (32) $z_{i}=(x-a) r_{i} \phi_{i}(x),(i=1,2, \ldots n)$. The Laurent scries will be convergent for all points, excepting a itself, of the circle which has singular point of the differential equation. The main questions to solve are: 1st. Determine the exponents $r_{i} ; 2 \mathrm{~d}$. Find the cocfficients of the Laurent series ϕ_{i}. These questions are capable of a direct and general solution in the special case in which the Laurent series contains only
powers of $x-a$. In that case the differential
(33) $\frac{d n y}{d x^{n}}+\frac{P_{1}(x)}{x-a} \frac{d^{n-1} y}{d x^{n-1}}+\frac{P_{2}(x)}{(x-a)^{2}} \frac{d_{n}-1}{d x_{n}-2}+$
$+\frac{P_{n}(x)}{(x-a)^{n}} y=0$,
Where $P_{1}, P_{2,} \ldots P_{n}$ are expressible as power series procceding according to positive, integra roots of x - a. The exponents r_{i} are thention ${ }^{\text {If }}$ the nth degree 34) $r(r-1)$ degree
$.(r-n+1)+P_{1}(a) r(r-1) \cdots+P_{n}(a)=0$ ter r_{i} has been obtained from this equation one method of indeterminate coefficients enables Ine to find the coefficients of the power-series In the case of equal roots some of the solutions $\{\log (x-a)\}^{2}$, etc.; the general discussion of the various cases which may arise is rather comThe case in which the equation may be Written in the form (33) is usually described a $x=2$, If they are regular in the vicinity of ach singular point, including $x=\infty$, the equa tion is said to be of the Fuchsian type, and may
written as follows:
(35) $y(n)+\frac{G \rho-1}{\psi} y(n-1)+\frac{G_{2}(\mu-1)}{\psi^{2}} y(n-2)+\ldots$
$+\frac{G_{n}(\mu-1)}{\psi^{m}} y=0$,
Where $y^{\prime}, y^{\prime \prime}$, etc., denote the derivatives of y of the first, second order, etc., where
(35a) $\psi=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{m}\right)$,
where a_{m} and ∞ being the singular points, and Where \dot{G}_{h} denotes a polynominal in x of degre o higher than λ. The most important special ase of such an equation is that of the hyper Weometric series, the so-called Gauss equation, Which is of the second order and has three theory of the Gauss equation, as treated by Lemann, was the origin of the general theory of linear differential equations. A large num ber of the most important conceptions of the this equation. The question of finding the cases in which the general solution is algebraic ed Schwarz, Fuchs and Klein to the remark able algelraic functions which are connected tith the five regular solids. This equation also cads to the general theory of automorphic special case.
If, in the vicinity of a singular point, th the manner regular, they may be developed in the manner indicated. The problem of finding of developments of the solution in the vicinity more difficult and still awaits a satisfactory general solution. A solution, not regular a $x=a$, may have the special form.
${ }_{e} \Omega(x-a)^{\rho} \psi(x)$,
Where ρ is a constant, where $\psi(x)$ is an ordinary

$$
\Omega=\frac{a_{1}}{(x-a)^{s}}+\frac{a_{3}}{(x-a)^{s-1}}+\ldots+\frac{a^{s}}{x-a}
$$

so that it differs from a regular integral only
by the presence of the factor $e^{2 \lambda}$. Such an in tegral, if it exists, is called a normal integral. There may also be integrals of a similar form
in which, however, $(x-a) 1 / k$ appears in place of $x-a$, where k is a positive integer. They are called subnormal. The conditions for the existence of normal and subnormal integrals have been investigated, but none of these investigations is as yet in a final form. Considerable progress in the theory of non-regular integrals
has been made in recent years by Birkhoff. It is possible however to change the method of attack. The general theory shows that, in the vicinity of the singular point $x=a$, a solution exists of the form $(x-a)^{\rho} \phi(x)$, where $\phi(x)$ is, in general, a Laurent series. The question is this: how to determine the regular case, when $\phi(x)$ is an ordinary powerseries, substitution of this expression into the differential equation, and comparison of powers of $x-a$, solves the problem. One may do the same thing in general. But then one equations infinite in number and with an infinity of unknown quantities. This leads to the notion of infinite determinants, due primarily to G. W. Hill. Hill applied infmite determinants just as though they were finite, paying no attention to convergence or rigorous defithe whole theory placed upon a solid basis by Poincaré and Koch.

The theory of linear differential equations has served as a basis for practically all that is known about non-linear equations. There are two fundamental properties of the linear equa-
tions which render them peculiarly accessible. In the first place it is known, a priori, how the arbitrary constants enter into the expression of its general integral; in the second place the singular points of its solutions are fixed, i.e. independent of of integration, defined which have one or both of these properties. The first-mentioned point of view leads to the differential equations with fundamental solutions. These may be defined in various ways and have been investigated by Guldberg,
Vessiot, Lie and Wilczynski. The idea of investigating the differential equations with fixed branch-points is due to Fuchs. For equations of the first order he succeeded in formulating the conditions in a very simple theorem. Poincare then showed that all such equations can be transformed into a
(36)

$$
\frac{d y}{d x}=a_{0}+a_{1} y+a_{*} y^{2}
$$

wherc a_{e}, a_{1}, a_{2} are functions of x, or else are integrable by quadratures or algebraic functions.
Differential equations of the first order with fixed branch-points do not, therefore, as was at first expected, lead to new transcendental functions. For, the Riccati equation may, by the transformation $y=-\frac{1}{a_{\Sigma} z} \frac{d z}{d x}$, be converted into a linear differential equation of the second order. It may be noted, incidentally, that this remark enables us to prove, in a simple manner, the theorem that the anharmonic ratio of any four
solutions of a Riccati equation is constant. Thi is important in geometric applications.
The most important recent investigations in the theory of differential equations, from the standpoint of the theory of functions of a complex variable, are due to Painleve. A brief ac count of some of them will indicate their fundamental nature. Let
(37) $\quad \frac{d y}{d x}=f(x, y)$
be an algebraic differential equation of the first of x and u, u geing the constant of integration We may, instead, consider u as a function of x and y defined by the partial differential equation
(38) $\quad \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} f(x, y)=0$.

The general integral of (37) is said to be reducible if other equations, algebraic in x, y, u $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u u}{\partial x^{2}}$, etc., may be adjoined to (38) compatible with it without being deducible therefrom. All of the equations of the first order which have been studied are reducible in this sense; for instance, the Riccati equation, the
linear equation, etc. In the case of a linear equation the condition $\frac{\partial^{2} u}{\partial y^{2}}=0$ may be thus ad joined; if the equation admits an algebraic integrating factor λ, we may adjoin the condition $\frac{\partial u}{\partial y}=\lambda$; etc. This definition of reducibility may be extended to equations, or systems of Applied to equations.
er the first order, the following theorem results. If an equation of the first order is reducible, only four cases are possible: 1st, the equation is algebraically integrable; 2 d , it has an algebraic integrating
factor; 3d, the logarithm of the integrating factor has algebraic first derivatives; 4th, a first integral is given by a system of differentia equations whose general solution is of the form $u=\frac{a u_{\mathrm{I}}+b}{c u_{1}+d} \cdot(a, b, c, d$ being arbitrary constants, $)$ and which may be reduced to a Riccati equation.
Irreducible equations of the first order lead to known results, if we confine ourselves to the case that y shall be a uniform function of x. This is not the case, however, for equations of second order, the simplest case is that of the equation
(39) $y^{\prime \prime}=6 y^{2}+x$.

Its general integral is a uniform function of x, which may be represented as a quotient of two integral transcendental functions in the form $y=\frac{d^{2} \log u}{d m^{2}}$, where u is an integral transcendental function which satisfies the equation (40) $\quad \frac{1}{2}\left(z^{\prime \prime}\right)^{2}+2\left(z^{\prime}\right)^{3}+x z^{\prime}-z=0$,
where $z=\frac{u^{\prime}}{u}$, and which may, therefore, be represented by an ordinary power-series convergent for all values of x.
Although great progress has been made in
his dircetion and although greater progress is to be expected as the cfforts of mathematician
are being gradually rewarded, the results ar meager from the point of view of the mathe matical physicist, who would like to refer to the mathematician the questions connected with the integration of a differential equation whic may have appeared in some of his investiga an cquation belongs to one of the classes wit which the mathematician is prepared to It remains necessary to study such equation directly by methods of successive approximatio especially adapted to them, usually upon the be confined to real values. The restriction to real variables in such cases, the systematic ald rigorous application of the method of successiv approximations, has been productive of man the hands of Picard and Hilbert. The theor of partial differential equations primarily, ha made rapid progress through their efforts and many mathematicians are following their example. It may, however, he predicted that, evCl
in the theory of partial differential equations, in the theory of partial differential equatiolls pass away For in the case of analytic func tions, and these after all are the most import ant, the characteristic properties are veiled by such a restriction. But a necessary prerequisit for a theory of partial differential equations with complex variables is the theory of func
tions of several complex arguments; this theory, however, is still in its infancy.
Bibliography.-A. R. Forsyth, 'A Treatisc on Differential Equations' (3d ed., Londo 1903). This contains an account of the mort elementary parts of the theory. A. R. Forsyth Cambridge 1890). In this work the main stress is laid upon the functiontherretic point of view. S. Lic, 'Vorlesungen ikher Dif ferentialgleichungen mit bekannten infinitesimalen Transformationen,' bearbeitet und in rausgegehen von G., Scheffers (Leipzig 181
E. Picard, 'Traite d'analyse) (Vols. 2 and Paris 1893-95). Important principally for thi modern theory of partial differential equation P. Painleve, 'Leçons sur la theoric analytiquic des équations differentielles, professées a Stock holm,' Sept., Oct., Nov., 1895. Lithographce, points of view. L. Schlesinger, 'Handbuch der Theoric der linearen Differentialgleichnugen (Leipzig 1895-98). For further bibliograpinica indications and for a brief account of the whole subject from the point of view of the exper mathematician, see the various articles on (ilic matischen Wissenschaften mit Einschluss ihrer Anwendungen,' which is now being published in Leiprig. A French edition, much more ex ensive than the German edition, of this montit mental work is also being published

Ernest J. Wilczynski, Profes
EQUATIONS, Galois' Theory of.-In the 16th century the Italian mathematicians suc equations. Their brilliant achievements mus have made it seem probable that the solution
of the equations of fifth and higher degrees would soon be found. Such, however, was not mathematicians of the day essayed in vain to Solve the quintic. Tschirnhausen, Euler, Van dermonde, Malfatti and Lagrange embodied close researches in valuable memoirs, but at the equation of the fifth degree seems farther away than ever.
In their apparent defeat, however, lay the germs of ultimate victory. As a result of all solution investigations it became manifest that the groups of substitutions of their roots were inti inately related. In the case of the general equations of degrees three and four this relaregard to the clear indleed; it was less clear in still tions which hazy in regard to the special equa time. It was reserved to Evareste Galois to put these loose ends together and to develop neory of the solution of algehraic equations at of Gimple and far-reaching. Indced, the idea aigebraic are not only fundamental in mos extended by Lie and others with great effect to the theory of differential equations. But even uere they do not stop. It is in Galois' theory hat the notion of a group first came prominently before the mathematical public; a notion Which to-day pervades a good part of the whol Galois mathematics
he presented memoirs to 22 (1832). Twice emy, containing an account of his theory. The irst was lost, the second was returned to its youthful author by Poisson as unintelligible. Galois theory was first made pullic to the
mathematical world in 1846 when Liouville publishat this latter memoir withont comments, In 1858 Betti published an exposition of Galois' extery with complete proofs and some valuable extensions.
Leverange in his great memoir of 1770-71 Sons and which is in fact the origin of Galoi Theory of Equations. This new calcul was further deyeloped in a number of papers by Ruffini, beginning 1799, who tried to demonstrate Beneral equation of the algebraic solution of the his means; by Gauss (1801) and Lagrange (1808) in the solution of the equations on whic who roots of unity depend; and finally by Abe Who, besides being the first to rigorously demonstrate the insolvability of the quintic by radi-
cals (1826), discovered a new class of algebraic cals (1826), discovered a new class of algebraic
olvable equations which occur in the division of the elliptic functions (1829).

basal notions

Domain of Rationality.- One of the most inndamental notions in Galois' theory is that of a domain of rationality which was first clearly ormulated by Abel. When an equation
$f(x)=a_{0} x^{n}+a_{1} x^{n}-1+\ldots+a_{n}-1 x+a_{n}=0$ (1) offers itself for solution, its coefficients are sup-
posed known It often happens that other Suantities are known, or are assumed as known. Suppose $\lambda, \mu, \ldots \omega$ are such quantics, finite in number. The totality of rational functions of vol. $10-29$
these letters with rational numbers as coefficients constitutes a domain of rationality which we denote by,

Thus any element of this domain may be obtained by a finite number of additions, subtractions, multiplications and divisions performed on the letters $\lambda, \mu, \ldots \omega$. The domain given algebraic investigation is to some degree a matter of choice. In any case, however, the coefficients of the equations we start with should lic in it.
Every domain must contain the domain $R(1)$, called the absolute domain, and which is simply the dotan $R(\hat{\lambda}$ ment $\lambda / \lambda=1$. It is often desirable to add certain elements η, ζ, \ldots to a domain $R(\lambda, \mu, \ldots)$
 Rational Functions in R.-In elementary algebra and in the function thcory a rational function of x, y, z, \ldots is an expression of the form

$\frac{A x^{m 1} y^{m} m^{2} m^{3}}{B x^{n 1} y^{2} n^{2}}+\ldots+\ldots$

(2)
where the exponents m, n are non-negative integers and the coefficients are merely independent of the variables x, y, z, \ldots In Galois narrower one. In fact the term rational has no meaning unless in connection with a specific domain of rationality. Thus the expression (2) is a rational function of $x, y, \dot{y}, \dot{\text { in }}$ Galois only when the coefficients A, B, \ldots lie in R. Thus such a function as (2) may be rationa with respect to one domain and not with respect to another. For example

$$
x+\sqrt{-3} y
$$

is a rational function of x, y with respect to the domain $R(\rho), \rho=\frac{2 \pi i}{3}$ domain $R(\rho), \rho=e^{3}$; but it is not rational with respect to $R(1)$ or $R(\sqrt{ }-5)$. When the denominator in (2) reduces to a constant, it becomes a rational integral function.
An equation as (1) is rational with respect
R when its coefficients $a_{0}, a_{1}, \ldots a_{n}$ lie in R.
when its coeffients $a_{n}, a_{1}, \ldots a_{n}$ lie in R Reducibility and Irreducibility is another
basal notion of Galois' theory. The rational integral function of $x, y, z \ldots$
$F(x, y, z, \ldots)=A x^{m 1} y^{m^{2}} z^{m 3} \ldots+\ldots+L x^{1} y^{r^{2} z^{3}} \ldots$, (3) with respect to the domain R is reducible in R when it is the product of two or more rational integral functions of $x, y \ldots$ with coefficients in R, viz., $F=G \cdot H \cdot I \ldots$ In this casc we say F is divisible by G, H, , which are factors
or divisors of F in the domain R. If the expression (3) cannot be split up into two such practors, it is irreducible with respect to R. An equation as (1) is reducible or irreducible in R according as its left side is reducible or irre-
ducible in R.

An cquation as (1) may be irr domain and reducible in another. Thus
is irreducible in $R(1)$, but is reducible in $R(\sqrt{-3})$. In fact,

If $\xi_{1}, \ldots \xi_{n}$ are the roots of (1), it is obviously reducible in $R\left(\xi_{1}, \ldots . \xi_{n}\right)$. In fact
splits up into rational lineal factors,
$f(x)=a_{0}\left(x-\xi_{1}\right) \ldots\left(x-\xi_{n}\right)$.
A theorem of utmost importance in Galois'
theory is the following:
Let $f(x)=0, g(x)=0$ be rational equations for the domain R, and let $f(x)=0$ be irreducible in R. If $g(x)=0$ admits a root of $f(x)=$ 0 , it admits all the r
is divisible by $f(x)$.
Equality.-As a third pillar on which Galois' theory rests is the distinction between formal and numerical equality, as we may designate it for lack of better terms. It is only by such a Lagrange's methods so as to apply to any type of algebraic equation. As long as we are dealing with constants, equality and inequality are of course the same as in arithmetic - they are numerical. What do we mean, however, by the equation

$$
\phi(p, q, \ldots)=\psi(p, q, \ldots),
$$

ϕ, ψ being rational functions of the variables p, q, \ldots for a domain R ? In general R will contain variable elements which then may enter
the coefficients of ϕ, ψ. Let us write the above equation
$\phi\left(v_{1}, v_{2}, \ldots c_{1}, c_{2}, \ldots\right)=\psi\left(v_{1}, v_{1}, \ldots c_{1}, c_{2}, \ldots\right)$,
where v_{1}, v_{2} represent now all the variable where v_{1}, v_{2} represent now all the variable while c_{1}, c_{2}, \ldots, represent constants. By an equation of the above type we mean: that for each and every set of numerical values v_{1}, v_{2}, the can take on consistent weith their definition, the resulting numerical value of. ϕ is identical
With that of ψ.
are equal we shall call them distinct or unequal
the galoisian resolvent and group.
Construction of $\mathrm{n}!$-valued Functions; In-
eterminants.- Let
$f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$
be an equation whose solution is to be effected. rationality R. As already remarked, the nature of R depends partly upon (1) and partly upon our own pleasure. In any case it must contain the coefficients.
Without loss of generality we may suppose its roots unequal. For by means of the greatest tain by rational operations an equation whose roots are the distinct roots of (1).
Let us now adjoin n new variables $u_{1}, \ldots u_{n}$ to R, forming a
$V_{1}=u_{1} x_{1}+u_{2} x_{2}+\ldots+u_{n} x_{n} . \quad$ (4)
If we permute the $x_{1}, x_{2}, \ldots x_{n}$ in all possible ways, or, as we say, apply the n ! substitu tion

$$
\left(\begin{array}{lllll}
x_{2} & x_{2} & \ldots & x_{n} \\
x_{i_{1}} & x_{i_{2}} & \ldots & x_{i_{n}}
\end{array}\right)
$$

of the symmetric group, we get the $n!$ functions $V_{1}, V_{3}, \ldots V_{n}!$. (5) With these we form the equation
$F\left(t ; u_{2}, \ldots u_{n}\right)=\left(t-V_{1}\right)\left(t-V_{0}\right) \ldots\left(t-V_{n}!\right)=0$ (6) $F\left(t ; u_{1}, \ldots u_{n}\right)=\left(t-V_{1}\right)$ in R^{\prime} In the discriminant of $(6), D\left(u_{1}, \ldots u_{n}\right)$, we may give to u_{1},
even, if we choose, in an infinity of ways so that even, if we choose, in an infinity of ways so diat
$D \pm 0$. In that case the quantics (5) are distinct and the roots of (6) thus unequal. The
function (4) has thus n ! values under the symmetric group. A special case of this function (4) was used by Lagrange; in its gencral form it was first employed by Abel. Its fundamental
importance in the solution of algebraic cquaimportance in the solution of algebraic cqua reason the function V in (4) is called the Galoisian resolvent function. Besides the function (4) there are obviously an infinity of other $n!-v a l u e d ~ f u n c t i o n s . ~ T h e ~ f u n c t i o n ~$
ployed on account of its simplicity
ployed on account of its simplicity. disappear. Their introduction was to show the existence of n !-valued rational functions of the roots $x_{1}, \ldots x_{n}$. Such auxiliary variables which we introduce into our reasoning, and which at
any moment can be made to disappear by giving them appropriate special values, are called indeternininates. In a primitive way they are used by all mathematicians. Kronccker has shown that they are an implement of immense power in algebraic investigations. Since in the end we can always replace the indeterminates by
values lying in our domain, we shall suppose values lying in our domain, we shall suppose
that our domain contains in advance as many of these auxiliary variables as we care to use. Galoisian Resolvent and Group.-In general the equation (6) is reducible in R, so that
$F(t)=G_{0}\left(t, u_{1}, \ldots u_{n}\right) G_{1}\left(t, u_{t}, \ldots u_{n}\right)$.
Let us take now any one of these irreducible factors, say that one which admits V_{1} as root, to form the equation

$$
G_{0}\left(t, u_{\mathrm{i}}, \ldots u_{n}\right)=0 .
$$

(1)

This is called the Galoisian Resolvent of (1) for the domain R. Let its degree in t be m. (1) and (7) are equivalent problems. In fact every rational function of the roots of (1), and in particular the roots themselves and hence also the roots $V_{22}, V_{3}, \cdots V_{m}$ of (7), are rational functions of V_{1}. We have therefore for any rational function of the x s
$\phi\left(x_{1}, \ldots x_{n}\right)=r_{0}+r_{1} V_{1}+r_{2} V_{1}^{2}+\ldots+r_{m}-V_{1}^{m}$.
The advance that is made by considering the equation (7) instead of the original equation in any one of them. Let the roots of (7) bc

$$
V_{1}, V_{2}, \ldots V_{m}
$$

These are obtaincd from the expression (4) by effecting certain substitutions,
$s_{1}=1, s_{2}, \ldots s m, \quad$ (G)
on the roots $x_{1}, \ldots x_{n}$. These m substitu
G enjoy now three remarkable properties
G enjoy now three remarkable properties: 1° Every rational function $\phi\left(x_{1}, \ldots x_{n}\right)$ of roots of (1) which remains unaltered by G lies in R, or, as we say, is rationally knozun. $\phi\left(x_{2}, \ldots x_{n}\right)$ is rationally known, it remains un. $\phi\left(x_{2}, \ldots x_{n}\right)$ is rationally known
altered for the substitutions G.
3° The substitutions G form a group, and there is no other group of substitutions having the properties $1^{\circ}, 2^{\circ}$.
This group is called the Galoisian group of the equation (1) for the domain R. For the groups see Groups, Theory of. The index of a sub-group H of a group G with respect to G is the ratio between the number of terms in H
and the number of terms in G. We say for the the domain being $R(1)$, is not S_{c} but a smaller domain R, because by changing R the irreand therefore of (6) will in general change, eral change. The importance of the Galoisian group, or, as we shall say more shortly, the Group, of an cquation $f(x)=0$ lies in the fact that an investigation of its structure reveals aigebraic irrationalities defined by this equation In particular it affords a rational and uniform scheme for effecting the solution of any algebraic equation. Before entering on this topic let us consider
some properties of the galoisian group G Since the groun G of an equation
$a_{1} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0 \quad$ (1)
follows: 1° that the group is independent of
the particular $n!$-valued function we take; 2°
hat we get the same group whichever of the
treducible factors $G_{0}(t), G_{1}(t), \ldots$ of (6) we
G_{1},
4°. In ane all of the same degree
$\phi\left(x_{1}, \ldots x_{n}\right)=\psi\left(x_{1}, \ldots x_{n}\right)$
between the roots of (1) the substitutions of G
may be applied, and the result is a true equation. examis is not true for all substitutions. For
$f(x)=x^{3}-1=0$,
whose roots are

$$
c_{m}=e^{\frac{2 \pi_{i m}}{3}}
$$

$m=0,1,2$.
tion Take as domain $R(1)$, and as rational rela-
$O_{1} \quad x_{1} x_{2}=1$.
O_{n} applying the substitution

$$
\binom{x_{1} x_{1} x_{2}}{x_{1} x_{2} x_{0}}=(0,1,2)
$$

this relation becomes,
which is false.

$$
x_{0} x_{2}=1,
$$

Of the Roup Belonging to a Rational Function
of the Roots and Rational Functions Belonging to a Group.-Le

$$
\phi\left(x_{1}, \ldots x_{n}\right)
$$

the rational function of the roots of (1). Since titution, group G of (1) contains the identical subsulbstitution of G and may remain unaltered y others. These substitutions form a subgroup $0 f G$ called the group belonging to ϕ. On the other hand, let H be a subgroup of G. Any rational function $\phi\left(x_{1}, \ldots x_{n}\right)$ which remains unaltered by the substitutions of H but is telong to H. It is important to note that while the substitutions of the Galoisian group which icave a rational function $\phi\left(x_{1}, \ldots x_{n}\right)$ unaltered lorm a group, this property does not hold for thestitutions which lic outside G. For example, whe substitutions of the symmetric group S. which leave
$\phi=x_{1} x_{s}, \quad x_{m}=e^{\frac{2 \pi i m}{6}}, \quad m=0,1,2,3,4,5$, do not form a group. This is due to the fact
the domain being $R(1)$, is not S, but a smaller
group.
If $\phi\left(x_{1}, \ldots x_{n}\right), \psi\left(x_{1}, \ldots x_{n}\right)$ belong to the same If $\phi\left(x_{1}, \ldots x_{n}\right), \psi\left(x_{1}, \ldots x_{n}\right)$ belong to the same be expressed rationally in terms of the other.

> RATIONAL RESOLVENTS.

Let $\phi\left(x_{1}, \ldots x_{n}\right)$ be a rational function of the
$a_{0} x^{n}+a_{1} x^{n} 1+\ldots+a_{n}=0, \quad$ (1) whose group for the domain R is G. Let φ belong to a subgroup H of G of index r. Then on applying the substitutions of G to ϕ it will take on r distinct values,

$$
\phi_{y} \phi_{1}, \ldots \phi_{r}-\mathbf{l},
$$

(8)
which are called conjugate functions. They are
$\Phi(y)=(y-\phi)\left(y-\phi_{1}\right) \ldots\left(y-\phi_{r}-1\right), \quad$ (9) whose coefficients lie in R. It is thus a rational equation. Suppose one of its roots, say ${ }^{\phi}$
can be found. If we adjoin it to R, forming a domain R^{\prime}, the group of (1) is no longer G, but H.
Suppose not only ϕ but all the roots of (9) can be found. Their adjunction to R forms a domain greatest invariant subgroup of G contained in greatest invariant subgroup of H . In any case the adjunction of one or more roots of (9) produces a reduction of the group of the given equation (1). But in reducing the group of this cquation we have made a step in its solution. For when the domain of rationality has been enlarged to such an extent that the identical substitution, the roots of (1) are rationally known, that is, can be expressed rationally in terms of quantities lying in that domain of rationality. The equation (9) is called a resolvent equation, or more specifically a rational resolvent, since its roots $\phi_{1} \phi_{1}, \ldots$ ar equation (1).
The group of the resolvent equation (9) is of importance sometimes. In the functions (8) considered as functions of the x 's. let us effec the substitutions of the group G. This, gives this group is the group of the resolvent equation (9), the domain of rationality being that of G, viz., R. The groups G and Γ are what is called meroedrically isomorphic. To the identical substitution of Γ corresponds the group I above mentioncd, viz., the subgroup of
G, which leaves all the roots (8) unaltered To which leaves all the roots will correspond subgroup G_{1} of G, and conversely. In particular if Γ_{1} is an invariant subgroup, G_{1} is also invariant.
galors' solution of an equation.
Let G be the group of the equation $a_{0} x^{n}+a_{1} x^{n}-^{1}+\ldots+a_{n}=0$ for the domain R. Let H_{1} be a subgroup of G of index r_{1}. Let $\phi_{1}\left(x_{1}, \ldots x_{n}\right)$ be any one of the infinity of rational functions helonging to H_{1}. Then ϕ_{1} is root of a rational resolven $\Phi_{1}(y)=0$ of degree γ_{1}. On solving $\Phi_{1}=0$ and adjoining one or more of its roots to form a new domain R_{1}, the group of (1) is now a sub of index r_{2}, to which helongs the rational function $\phi_{2}\left(x_{1}, \ldots x_{n}\right)$. This is the root of a re
solvent $\Phi_{2}(y)=0$ of degree r_{2}. On solving $\Phi_{2}=0$ and adjoining one or more of its roots to form subgroup G_{2} of G_{1}. As the order of the groups G, G_{1}, G_{2}, decreases, we must eventually arrive at the identical group whet the roots of (1) are rationally known. Since the group G usually admits quite a varicty of subgroups, and group are infinite in number, Galois' theory shows that the number of ways for solving given equation is endless. At the same time it clearly shows that the number of distinct ways is usually quite limited, depending on the sub Among the
which Galois' theory offers, one class is particularly interesting, depending on a
Series of Composition. This is defined as follows: Let G_{1} be an invariant sungroup of G, containing G_{1}. It is then a maximum invariant subgroup of G. If G has no maximum invariant subgroup besides the identical group, it is simple. The series of groups

$$
G, G_{1} G_{2}, \ldots G_{\lambda}=1
$$

(10)
such that cach is a maximum invariant suhgroup of the preceding group, is called a series of composition of G. If the index of $G m$ under $G_{m}-1$ is r_{m}, the numbers $\gamma_{1}, r_{2}, \ldots r \lambda$ are called
the factors of composition. It may be possible the factors of composition. It may be possible position in more than one way. Thus the cyclic group C_{6},
$1, s, s^{2}, s^{3}, s^{4}, s^{5}$,
where $s=\binom{x_{1} x_{2} x_{0} x_{2} x_{i} x_{i}}{x_{2} x_{3} x_{1} x_{5} x_{0} x_{1}}=(1,2,3,4,5,6)$ ad
mits the series
and

$C_{8,}, A$

where

$C_{0}, B, 1$,

$A=\left\{1, s^{2}, s^{4}\right\}, \quad B=\left\{1, s^{3}\right\}$
The factors of composition of the first series are 2,3 , while those of the second series are 3, 2. They are thus the same aside from their
order. A theorem of Jordan states that however a group be decomposed in a serics of composition, the factors of composition are the same aside from their order.
What makes the solution of an equation by means of a series of composition so remarkabic $\Phi_{\lambda}=0$ corresponding to the subgroups \dot{G}_{1}, $G_{2} \ldots G_{\lambda}-1$ of (10) have groups $\Gamma_{1}, \Gamma_{2}, \ldots \Gamma_{\lambda}$ for their respective domains which are simple. Their orders are the factors of composition. is a rational function of any root of that equation. Thus on adjoining one of its roots the same effect is produced as adjoining all. Finally, the resolvent equations $\phi=0$ are the

Cyclic Equatio
Cyclic Equation of Prime Degree. - When group of prime order p its solution is readily effected, as Abel showed. Let the roots of $F=0$ be $x_{0}, x_{1}, \ldots x_{p-1}$, and let $\gamma=(0,1, \ldots p-1)$. Then

$$
G=\left\{1, \gamma, \gamma^{2}, \ldots \gamma^{p-1}\right\}
$$

For the case in hand we may suppose the
pth roots of unity ρ, ρ^{2}, \ldots lie in the origi nal domain of rationality. Consider the rational $\theta_{h}=x_{0}+\rho^{h} x_{t}$
$h=x_{0}+\rho^{h} x_{1}+\ldots+p^{h(p-1)} x_{p-1} ; h=1,2, \ldots p-1$. On applying γ they go over into $\rho^{-h} \theta$. Hence $\theta_{h}^{p}=\theta_{h}$ are unaltered by γ and hence by G. They are therefore rationally known. On extracting a pth root we get

$$
x_{0}+p^{h} x_{1}+\ldots+\rho^{h}(p-1) x_{p}-1=\sqrt[p]{\theta_{h}}
$$

This system of $p-1$ equations together with

$$
x_{0}+x_{1}+\ldots+x_{p^{-1}}=\sqrt{\theta_{0}}
$$

sives

$$
\frac{1}{p} \sum_{h=0}^{p-1} p^{-h s} \sqrt[p]{o_{h}}, \quad s=0,1, \ldots p-1 .
$$

The p th roots which enter here must be deter mined uniquely in terms of one of them, sa $\sqrt[p]{O_{1 .}^{-}}$The others are rational in this one, for $\left(x_{0}+\rho h x_{1}+\ldots+p^{(p-1)} h_{x_{p-1}}\right)$
$\left(x_{0}+\rho x_{1}+\ldots+\rho n-1 x_{p-1}\right)^{p-h}=1 h$ remains unchanged for γ and hence for G. Hence these A_{h} are rationally known. We have now

$$
x_{s}=\frac{1}{p \theta_{1}} \sum_{h}^{\Sigma} \rho^{-h s}\left(\sqrt[p]{\theta_{1}}\right)^{h} A h .
$$

This result gives the theorem: Cyclic equations of prime degrees can be solved algebraically, i.e.,

Algebraic Solution of an Equation.- Lc the equation
$a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ have a group G for a certain domain R, whose factors of composition
(1) can be solycd alge are all primes. Then (1) can be solved alge-
braically. For the corresponding chain of rcsolvents

$$
\Phi_{1}=0, \Phi_{2}==0,
$$

have groups of prime orders r_{1}, r_{2}, \ldots; they are therefore cyclic equations, whose solution has just been cffected. Since, as will be set
forth later at more length, it is never necessary to employ other than rational resolvents, the above results leads to Galois' Criterion for the Solution of an Equation by Radicals. In order that (1) admit an algobraic solution it is neces sary and sufficient that the factors of composionly. Application to the Solution of the Biquadratic
$x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{2} x+a_{4}=0$ For simplicity lct us suppose its coefficients arc independent variables. Let the original domain of rationality R embrace besides the coefficients a cube root of unity ρ. Then the group of (11) S_{4} we note the alternate group A_{4}, which conS_{4} we note the alternate group A_{4}, which con-
sists of all the substitutions of S_{4} which can be obtained by an even number of exchanges of the roots of our equation, the axial group G a $\{1,(12)(34),(13)(24),(14)(23)\}$, and the
groups
sition
S_{4},
$A_{4}, G_{4}, G_{2}, 1$ form a series of composition whose factors are obviously
$2,3,2,2$.
As they are primes, the cquation (11) admits proceed with solution. To solve (11) let us our first resolvent let us use the subgroup A and take as function belonging to this group
$\phi=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)$

$$
\begin{equation*}
\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{3}-x_{4}\right) \tag{12}
\end{equation*}
$$

The corresponding resolvent is

$$
\begin{equation*}
\phi=\phi^{2}-\Delta=0 \tag{13}
\end{equation*}
$$

where \boldsymbol{A} is the discriminant of (11)
On adjoining $\phi=V \overline{4}$ our domain is $R_{1}(R, \sqrt{\Delta})$,
which the group of (11) is A_{4}.
A subgroup of A_{1} is G_{4} A rational function. A subgroup of

This gives the resolvent

$$
\psi=x_{1} x_{2}+x_{8} x_{4}
$$

$\Psi=\psi^{3}-a_{2} \psi^{2}+\left(a_{1} a_{3}-4 a_{i}\right)$

$$
-\left\{a_{6}\left(a_{1}^{2}-4 a_{3}\right)+a_{3}^{2}\right\}=0
$$

The solution of this cubic, which is a cyclic quation, gives ψ as a known explicit function
 (11) is R_{2}. The next subgroup we take is G_{2} to which belongs
This give $x=x_{1}+x_{2}-\left(x_{3}+x_{4}\right)$

$$
X=x^{2}-\left(4 \psi+a_{1}{ }^{2}-4 a_{2}\right)=0
$$

Whe extraction of a square root gives X, $\left(R, \sqrt{4}\right.$ adjunction produces the domain R_{3} of (11) is G, for which the corresponding group icentical group, to which belongs x_{1}. The corresponding resolvent is
$x^{3}+\frac{1}{2}\left(a_{1}-x\right) x+\left(\psi+\frac{2 a_{-}-a_{1} \psi}{x}\right)=0$.
The solution of this quadratic gives x_{1}. Its ad unction gives the domain $R_{1}\left(R, \sqrt{4}, \psi, \chi, x_{1}\right)$ tor which the group consists only of the iden(ical substitution. Hence all the other roots of
(i1), viz., x_{2}, x_{3}, x_{4}, must lic in R_{4}. This is indeced so, for x_{3}, x_{4}, must lic in
$x_{2}=x_{1}-\frac{1}{2} a_{1}+\frac{1}{2} \chi$.
To get x_{3}, x_{4}, we note that if $\psi^{\prime}, \psi^{\prime \prime}$ denote the
ivo other roots of (14),
$a=\psi^{\prime}-\psi^{\prime \prime}-\frac{\left(\psi-\psi^{\prime}\right)\left(\psi-\psi^{\prime \prime}\right)\left(\psi^{\prime}-\psi^{\prime \prime}\right)}{\left(\psi-\psi^{\prime}\right)\left(\psi-\psi^{\prime \prime}\right)}$.
Here the numerator is the square root of the is the same of (14), which, as is well known, denominator is obviously $\frac{d \psi}{d \psi}$. Thus

$$
\alpha=\frac{\sqrt{4}}{\psi^{\prime}}=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{1}\right) .
$$

${ }^{2}$ quantity lying in $R_{\text {t }}$
and Morcover, x_{1}, x_{2} being alrcady found, $x_{1}-x_{2}=\beta$ $\gamma+x_{1}+x_{2}=\gamma$ are known; also $x_{1}+x_{2}+x_{3}+x_{4}=$ $\left.{ }_{\left(x_{1}\right.}-x_{1}\right)=a$ gives x_{3} and x_{1}
series Lagrange's Solution instead of employing a series of composition uses the following sub-
groups, $A_{4}, O, G_{2}, 1$, where
$O=\{1,(1324),(13)(24),(1423),(12),(34)$,
As rational function , range uses the function belonging to A_{4} La to the resolvent (13) (12), which gives rise belonging to O, Lagrange takes

$$
\theta=\left\{x_{1}+x_{2}-\left(x_{3}+x_{1}\right)\right\}^{2} .
$$

whose conjugate values are

$\theta_{1}=\left\{x_{1}+x_{3}-\left(x_{2}+x_{1}\right)\right\}^{2} \theta_{2}=\left\{x_{1}+x_{1}-\left(x_{3}+x_{2}\right)\right\}^{2}$.
The corresponding resolvent is
$\left.\theta=93-\left(3 a_{1}{ }^{2}-8 a_{2}\right)\right)^{12}+\left(3 a_{1}{ }^{4}-16 a_{1}{ }^{2} a_{2}+16 a_{2} a^{2}\right.$
$\left.+16 a_{1} a_{3}-64 a_{4}\right) \theta-\left(a_{1}^{3}-4 a_{1} a_{2}+8 c_{3}\right)^{2}=0$
For the subgroup G_{2} he takes

$$
\eta=x_{1}+x_{3}-\left(x_{2}+x_{1}\right),
$$

which gives the resolvent

$$
H=\eta^{2}-\theta_{1}=0 .
$$

For the identical group 1, Lagrange uses $\omega=x_{1}+x_{2}-\left(x_{3}+x_{1}\right)$
which gives the resolven

$$
\Omega=\omega^{2}-\theta=0
$$

For the domain $R^{\prime}\left(R, \sqrt{\bar{s}}, \theta, \theta_{1}, \theta_{2}, \eta, \omega\right)$, the group of the hiquadratic is (1), and its root therefore lie in R^{\prime}. In fact we have

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}-x_{4}=\sqrt{ } \theta_{1} \\
& x_{1}+x_{3}-x_{2}-x_{i}=\sqrt{\overline{\theta_{1}},} \\
& x_{1}+x_{1}-x_{3}-x_{2}=\sqrt{\theta_{2}}, \\
& x_{1}+x_{2}+x_{3}+x_{1}=-a_{1 .}
\end{aligned}
$$

From which we get
$x_{8}=\frac{1}{4}\left(-a_{1}+\sqrt{ } \bar{\theta}+\sqrt{ } \overline{\theta_{1}}+\sqrt{ } \overline{\theta_{2}}\right), s=1,2,3,4$. Here we choose at will the signs of $V \frac{1}{A}, \sqrt{\theta_{1}}$. The sign of $\sqrt{\theta_{2}}$ is then determined, for

$$
\sqrt{\bar{\theta}} \sqrt{\overline{\theta_{1}}} \vee \overline{\theta_{2}}=4 a_{1} a_{2}-a_{1}{ }^{3}-8 a_{3}
$$

Abelian Equations.- Let G be the group of an equation $f(x)=0$ for a certain domain. is $s_{l} s_{k}=s_{k} s_{l}$ for any two substitutions s_{l}, s_{k} o G, the cquation $f=0$ is callcd Abelian in honor of Abel, who first studied them. We may show and that its factors of composition are al primes. Hence all Abelian equations can be solved algebraically. The most important equa tions of this type are the equations of degree $\phi(n)$ on which

$$
n\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
$$

where p, q, \ldots are the different prime factors of n. The domain of rationality is $R(1)$. Equation of Degree >4.- The group o on the coefficients, i.e., when they are inde pendent variables, and when the domain of pationality contains not only the coefficients hut any constants, is the symmetric group. When $n=2,3,4$, its factors of composition are primes Not so when $n>4$. In this case its only in variant subgroup besides the identical group is
the alternate group whose order is $\frac{1}{2} n$!. Thus the factors of composition are 2 , $\frac{1}{2} n$!. The latter is not a prime. We have this Abel' Theorem: Equations of degree >4, zehose group is the symmetric grout, cannot be solved
algebraically; i.e., their roots cannot be found by extracting roots from known quantities. cients of an equation of degree >4 are coefficients of an equation of degree >4 are inde-
pendent variables, it cannot be solved algebraically. From that we cannot, however, deny that every equation of degrec >4 with constant coefficients may admit an algebraic solution. This important question was finally settled by Hilbert, who showed that there are an infinity of coefficients whose group in $R(1)$ is the symmetric group.
irrational resolvents.
Up to the present we have considered the adjoining roots of rational resolvents to the current domain of rationality. In many investigations it is important to consider the adjunction of roots of equations which may not be rational functions of the roots of the given equation. of the roots of the given equation are called irrational resolvents when used in the solution of the given equation. A theorem which lies at the foundation of this subject is due to Kronecker. Let $f(x)=0, g(y)=0$ be trwo ra-
tional irreducible equations for the domain R of tional irreducible equations for the domain R of
degrees m, n respectively. If on adjoining a root x_{1}, of $f=0, g(y)$ becomes reducible, the adjunction of a root y_{1} of $g=0$, wrill make $f(x)$ reducible. If $\phi(x), \psi(x)$ of degrees a, β, respectively, be the irreducible factors for the new domains that $x_{1} y_{i}$ satisfy, then

$$
\frac{m}{\alpha}=\frac{n}{\beta} .
$$

As an important corollary of Kronecker's theorem we have: Let the adjunction of y_{1} reduce the group G of $f(x)=0$ to an invariant
subgroup of index i. Then n is a multiple of i and hence never less than i. When $n=i$ (and this is always the case if n is a prime) $g(y)=0$ is a rational resolvent.
Another theorem of great importance in this connection is due to Jordan. If the adjunction
of all the roots of $g(y)=0$ reduces G to a subof all the roots of $g(y)=0$ reduces G to a sub-
group G_{1} of index i, the adjunction of all the roots of $f(x)$ reduces the group H of $g(y)$ to a subgroup H_{1} of index k. The two groups G_{1}, H_{1} are invariant and $i=k$. Finally, when H is simple $g(y)=0$ is a rational resolvent. - The Delian Problem or duplication of the cube requires the solution of
by rule and compass. The construction of the by rule and compass. The construction of the
regular polygons by rule and compass is another famous problem of antiquity. Its solution depends upon the irreducible equation of
degree $\phi(n)$ already referred to. That the degree $\phi(n)$ already referred to. That the
Delian Problem is impossible, follows at once Delian Problem is impossible, follows at once
from the theorcm: In order that a root, real or imaginary, of an irreducible equation $f(x)=0$ can be constructed geometrically it is necessary that the degree of be a power of
two. From this theorem. we also conclude: The necessary and sufficient condition that a regular polygon of n sides can be constracted a power of two.
Another famous question is the Casus Irre-
ducibilis of cubic equations. The theory of irrational resolvents enables us to prove readily
the following general theorem: An irreducible the following general theorem: An irreducible
equation of degree n whose roots are all real equation of degree n whose roots are all if n
can never be solved by real radicals alone in contains other factors than two.
That the casus irreducibilis is indeed such That the casus irreducibilis is indeed suc ollows as corollary of this theorem.
Holder's Theorem. One of the most imHolder's Theorem.- One of the most
portant and fundamental contributions to Ga Hois' theory in recent years is a theorem ow ever the solution of a given equation $f(x)=0$ be conducted, sometime in the course of th solution certain simple equations whose group are uniquely determined and known in advanc $f(x)=0$ is simple (in which case we say $f(x)$ is simple) it can be solved by no other simpie equation $g(y)=0$ essentially different from $=0$. The solution of any given equation herefore depends upon a chain of simple equa-
tions. But of all simple equations belonging to a given group certain ones will enjoy peculiar groperties which will recommend their selection as normal equations. The reduction of the given equation to these normal equations is problem by itself

THE SOLUTION OF THE QUINTIC.
We have seen that the equation of fifth degree $Q=0$ whose group is the symmetric groul cannot be solved by means of radicals, i.c., by resolvents of the type $x^{m}-a=0$. On adjoin ing $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{1}-x_{6}\right)\left(x_{2}-x_{3}\right.$ $\left(x_{2}-x_{4}\right)\left(x_{5}-x_{5}\right)\left(x_{5}-x_{4}\right)\left(x_{8}-x_{8}\right)\left(x_{5}-x_{5}\right)$ the
square root of its discriminant 4 , the group of $Q=0$ reduces to the alternate group A_{5} of 0 substitutions. But A_{6} is simple. Thus $Q=7$ is a simple equation for the domain $R(V)$ Other algebraic equations having this group arise in the theory of linear differential equa tions, and also in the theory of elliptic func
$F(a, \beta, \gamma, x)=1+\frac{a \cdot \beta}{1 \cdot \gamma} x+\frac{a \cdot \alpha+1 \cdot \beta \cdot \beta+1}{1 \cdot 2 \cdot \gamma \cdot \gamma+1} x_{2}+\ldots$
is a solution of a very simple differential equation of the second order $G=0$. For variable for certain values of these parameters it reduces to the elementary functions; c.g., it may become algebraic. In secking for these latter cases Schwarz was led to introduce a new vant abre s, the quotient of two fundamental $G=0$. This variable for certain values of a, β, γ satisfies the equation
$J(s)=1728 x f^{6}(s)+H^{3}(s)=0$,
where

$$
\begin{aligned}
& f(s)=s\left(s^{10}+11 s^{5}-1\right), \\
& H(s)=s^{20}-288 c^{16}+40
\end{aligned}
$$

.
The equation $=0$ stands in intimate reation with the icosahedron that it is called the icosahedral equation. Indeed if we project stereo graphically the icosahedron, on the s-plane, the centre being at the origin, the 12 vertices and the middle points of the 20 faces will be pre cisely the roots of f and H respectively.
From this it is easy to conclude that the group of $J=0$ is formed of the 60 rotation which leave the icosanedron unchanged. Whose
roots are very simple known functions of The equation $J=0$ may thus be considered as The equation $J=0$ may thus be considered a normal resolvent of the quintic.
A normal resolvent which springs from the nometry one of the problems is to express sin $\frac{x}{n}$ in terms of $\sin x, n$ a prime number. This may be done algebraically, as is readily shown In the elliptic functions the same problem arises. Here the algebraic relation between $p\left(\begin{array}{l}u \\ n\end{array}, \omega_{1}, \omega_{2}\right)$ and $p\left(u, \omega_{1}, \omega_{2}\right)$ is of degree $n^{2}-1$
The solution of this equation depends upon a equation of degree $n+1$ called an equation of $\Delta^{2} y^{0}+10 \Delta y^{3}-12 g_{2} y+5=0$, whose group is the above A_{s} and whose roots ar

$$
\begin{equation*}
\left(p \frac{2 \omega_{1}}{5}-p \frac{4 \omega_{1}}{5}\right)^{-1} \tag{15}
\end{equation*}
$$

and
$\left(p \frac{2 \omega_{2}+48 r \omega_{2}}{5}-p \frac{4 \omega_{2}+96 \gamma \omega_{2}}{5}\right)$,
$r=0,1,2,3,4$.
Here Δ is the discriminant $g_{2}{ }^{\prime}-27 g_{2}^{2}$. How equations of this type could be set in relation in 1858 quintic was first shown by Hermit pert. It forms a very convenient normal re olvent of the quintic
Having found in the elliptic functions conenient normal resolvents for this quintic, wo might hope to employ the equations of transfor mation of higher orders to solve the gencral equations of higher degrees. The considerahat this is not possible. To find suitabl quations we must pass from the elliptic to th yperelliptic functions. By their aid the gen eral equation of every degrec can be solved. Bibliography- - Bolza, O. 'Theory of Sub
stitution Groups and its Application to Algebra (American Journal Math. V. 13); Cajori, F 'Theory of Equations' (New York 1904); Hil bert, article in Crelle's Journal (V. cx) ; Höl der, article in Mathematische Annalen (V
xxxiv) ; Jordan (ibid., V. I, 1869) 'Traite des xxxiv); Jordan (ibid., V.I, 1869) 'Traite des
stubstitutions' (1870); Netto, 'Substitutionentheorie' (tr. by Cole, F. N.); Pierpont, 'Galoi Theory of Algebraic Equations' (Amals of Mathematics, V. I, II, 1899-1900); Serret 'Algehre) (1866); Weber, 'Algebra') (2d ed. 898-99).

JAmes Pierpont,
Professor of Mathematics, EQUATIONS, General Theory of. Th heory of cquations finds its origin in efforts to cations of algebra to problems in pure geometry or in applied mathematics. In the exposition of this theory a rational integral algebraic func tion of x arises which may be defined a ollows:
t is $a_{1}+a_{2} x^{n-2}+\cdots+a_{n} \neg x+a_{n}$ It is assumed here that the exponent n is a posi tive integer and that the coefficients a_{0}, a_{1} $a_{2,}, a_{n}^{a_{n}}$ are algebraic numbers independent

We have an equation of the nth degree. Any value of the variable x which makes the value of the polynomial zero is said to "satisfy the
cquation" $f(x)=0$ and is called a "root" of equation" $f(x)=0$ and is called a "root" of
the equation. Thus, -1 is a root of the equathe equation. Thus, -1 is a root of the equa-
tion $x^{3}+x+2=0$, because $(-1)^{s}+(-1)$ tion x^{3}
$+2=0$.

Fundamental Theorems about Roots.That at least one root of the equation $f(x)$ $=0$ always exists is a fundamental theorem which it is somewhat difficult to establish rigortexts lack rigor Among the most satisfactory demonstrations are the four given by C. F. Gauss and the one based on the theory of functions, given by A. L. Cauchy. Granted that cvery equation of the nth degree has at least one root, it is easy to show that it has n roots
and no more. An equation of the second degree (a "quadratic equation") has two roots, one of the third degree (a "cubic equation") has three (roots, one of the fourth degree (a "quartic" or "biquadratic equation") has four roots, and so on. The proof of this theorem may be outlined
as follows: If r_{1} is a root of $f(x)=0$, then $f(x)$ is divisible by x - r_{1} without a remainder, so that $f(x)=\left(x-r_{1}\right) f_{2}(x)$, where $f_{1}(x)$, the quotient, is of the $\left(r_{1}-1\right)$ th degree. If r_{2} is a root of $f_{1}(x)=0$, then in the same way $f_{1}(x)$ $=\left(x-r_{2}\right) f_{1}(x)$, and $f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)$ of the successive quotients diminish by degrees every step, until finally a binomial quotient of the first degree of the form $a_{0}\left(x-r_{n}\right)$ is obtained. We then have $f(x)=a_{0}\left(x-r_{1}\right)$ $\left(x-r_{3}\right) \ldots\left(x-r_{n}\right)=0$. There are here n binomial factors and no more, each of which, when equated to zero, yields a root. In special other. Such roots are called "cqual" or "multiple" roots.
There are important relations existing between the roots and the cocfficients of an equa-
$\left(x-r_{1}\right)\left(x-r_{2}\right)-x^{2}-\left(r_{1}+r_{2}\right) x+r_{1} r_{2}=0 ;$
$+\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) x-r_{1} r_{2} r_{3}=0$

$$
\begin{aligned}
& \left.x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)=x^{n} \\
& +\left(r_{1} r_{2}+r_{1} r_{2}+\ldots+r_{n-1} r_{n}\right) x^{n-2}
\end{aligned}
$$

we see that in the equation $f(x)=0$, when $i_{n}=1$, the coefficient a_{1} of the second term is equal to minus the sum of the roots; the coof the products of the roots, taken two by two: the coefficient a_{3} of the fourth term is equal to minus the sum of the products of the roots, taken three by three; and so on, until finally we arrive at the last cocfficient, a_{n}, which is equal to $\begin{aligned} & \text { T- }-1)^{n} \text { times the product of all the roots } \\ & \text { The coefficients of the equation are said to be }\end{aligned}$ symmetric functions of the roots, that is, functions in which any two roots may be interchanged without altering the value of the function. As an illustration take $2 x^{3}+4 x^{2}+6 x$ $-5=0$. To make $a_{0}=1$, divide through by 2 . Then the sum of the three roots is -2 , the sum of their products, taken two by two, is 3 , the
product of all three roots is ${ }^{\frac{5}{2}}$.
(i.e., imaginary) quantities. (See Algebra).
Thus the cquation $x^{2}+x+1=0$ has the two Thus the equation $x^{2}+x+1=0$ has the two complex roots $\frac{1}{2}(-1+i \sqrt{3})$ and $\frac{1}{2}(-1-i \sqrt{3})$, where $i \equiv \sqrt{-1}$. If the cocfficients of the cquation $f(x)=0$ are all real, then it can be shown that, if complex roots occur at all, they occur in conjugate pairs; that is, if $a+i b$ is a root,
then $a-i b$ is likewise a root. From this it follows at once that no cubic or other equation of odd degree and with real cocfficients can have all its roots complex. Considerable information on the character of the roots can usually be secured from "Descartes' Rule of Signs,"
which may be stated as follows: An equation with real coefficients has as many positive roots as it has variations in sign, or fewer by an even number. A variation is said to exist whenever two successive terms have opposite signs. Thus there are two variations in + -- + . The theorem may be proved from the consideration
that every time that a new positive root is introduced into an equation, by multiplying $f(x)$ by $(x-r)$, the number of variations is increased by an odd number. Applying Descartes' Theorem to the equation $x^{6}-x^{6}+x^{4}+2 x^{2}$. $5=0$, observe that the sequence of signs is +-++ There are three variations; roots or one. To apply the theorem to negative roots, we first transform the given equation into a new one whose roots are the same as those of the given equation, excepting in sign. This can be done by writing - x in place of x. The above sextic then becomes $x^{6}+x^{5}+x^{4}+2 x^{2}$ $-5=0$. This transformed equation has one has one positive root, and the given cquation has one negative root. As the total number of roots is six and the number of real roots is four or two, it follows that either two or four of the roots are complex. By the same reasoning we can show that $x^{2}-1=0$ has one posi$+1=0$ has all its roots complex. In some cases, as in $x^{4}+x^{3}-x^{2}+5=0$, Descartes' Rule gives but little information.
Strentuous efforts have been put forth by
mathematicians to discover theorems by which mathematicians to discover theorems by which
the exact number of real and of complex roots of equations with real coefficients can always of equations with real coefficients can always
he determined. The most noted result of these cfforts is the theorem of J. C. F. Sturm, discovered in 1829. Sturm's theorem tclls ihe number of complex roots, and the number of real roots within a given interval, with unfailing
certainty; but it labors under the disadvantage of being laborious in its application. Hence it is commonly used only when the simpler methods fail to give the wanted information. We state the theorem for the special case when $f(x)=0$ has no equal roots. Let $f^{\prime}(x)$ he the Then proceed with the process of finding, by division, the highest common factor of $f(x)$ and $f^{\prime}(x)$, with this modification, that the sign of each remainder be changed before it is used as a divisor. Continue the process until a re-
mainder is reached which does not contain x mainder is reached which does not contain x, $f(x), f^{\prime}(x)$, together with the several remainders with their signs changed, viz., $f_{2}(x), f_{3}(x)$ $\ldots, f(x)$, are called "Sturm's functions."

Sturm's theorem is as follows: If $f(x)=0$ has no equal roots, let any two real quantitie tions, then substituted for x in Sturm's funl of variations of sign in the series when a is substituted for x and the number when b i substituted for x expresses the number of real roots of $f(x)=0$ between a and b. To make this clearer, take $f(x)=x^{3}-x^{2}-10 x+1$,
 the signs of the Sturmian functions are as follows:

x	$f(x)$	$f^{\prime}(x)$	$f_{2}(x)$	$f_{3}(x)$
∞	+	+	+	
4	+	+	+	+
3	-	+	+	+
1	-	-	+	+
0	+	+	+	+
-3	+	+	-	+
$-\infty$	-	+	-	+

Since $x=\infty$ gives no variations and $x=-\infty$ gives three variations, there are three rea oots between ∞ and - ∞. Hence there ar no complex roots. The real roots lie betwect
3 and 4,0 and $1,-2$ and -3 .
Transformations of Equations.- The study of the properties of an equation is frequently facilitated by the transformation of the give equation into a new one whose roots (cocffi cients) bear a given relation to the roots (coefficicnts) of the original equation. Thus, in applying Descartes Kule to negative roots we roots were numerically the same, but differed in sign. If the roots of the new equation ar to be m times those of the one given, we place $y=m x$ and substitute y / m for x. For instance, the 10 th of the y / m formed
$x^{3}-x^{2}-2 x+5=0$, we get $\frac{y^{2}}{1000}-\frac{y^{2}}{100}-\frac{2 y}{10}+5=0$ or $y^{3}-10 y^{2}-200 y+5000=0$. The result is ob ained more casily by the rule: Mulliply the If the roots of the new enuation are to lie the reciprocals of the roots of the old we write $x=\frac{1}{y}$. A more important transformation is the one of diminishing the roots by a given number h. We have here $y=x-h_{1}$. Substituting $y+h$
for x in $a_{0} x^{n}+a_{1} x^{n}-2+a_{2} x^{n-2}+\ldots+a_{n}=0$, we for x in $a_{0} x^{n}+a_{1} x^{n-2}+a_{2} x^{n-2}+\ldots+a_{n}=0$, we obtain

$$
\begin{aligned}
& a_{0}(y+h)^{n}+a_{1}(y+h) n^{2} \\
&+a_{2}(y+h) n^{2}+\ldots+a_{n}=0
\end{aligned}
$$

Expanding the binomials and collecting like terms, we obtain, let us suppose
$A_{0} y^{n}+A_{1} y^{n^{1}}+A_{2} y^{n}{ }^{2}+\ldots+A_{n}=0$.

Writing $x-h$ for y we get

$A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}$
$(x-h)+A_{n}=0$, which differs from the original equation merely in form. This new form suggests an easy way for carrying out the actual computation. mainder obtained is seen to be A_{n}, the the relute term. Dividing the quotient thus obtained
by $x-h$, the remainder is A_{n-1}. By repeating tequired procs the remaining coefficients of the called "synthetic division" is very convenient n this transformation. Suppose we desire to ransform $x_{4}+8 x_{8}-\mathrm{x}+6=0$ into another in which the second term is wanting. The sum o he roots is - 8 hence, to cause x to disappear ish my -2). Dividing successively by $r+2$ w obtain the coefficients 40 . $63,-24,0, x+2$ and the required equation is $x^{6}-24 x^{2}+63 x-40=0$ The transformations thus far considered are or projective transformation in which $y=$ $a_{x}+b$ projective transformation in which if $a=d=1$ and $c=0$, we have the preceding trans ormation. The homographic transfor ation graphic ranges of points. rational algcbraic transformation of the root of an equation $f(x)=0$ of the nth degree can always be reduced to an integral transformatio of a degree not higher than the ($n-1$) th, an can, therefore, be represented by the relation

$$
y=d_{1}+d_{2} x+d_{3} x^{2}
$$

This last is known as the "Tschirnhausen trans hoped to be able to reduce the rencral equation of the nth degree to the binomial form $x^{n}-a=0$, which is always solvable. But this ransformation to the binomial form can bc ffected only for general equations that ar Solution fogree.
Solution of Equations. - This subject re
olves itself into two quite distinct parts: The solution of numerical equations (i.e. equations whose coefficients are given numbers) by some method of approximation to the exac value of the roots; (2) the solution of equa bers, whose coefficients are either given num
betters, by operations which will give the accurate values of the roots, expressed in terms of the coefficients, - such expressions to nvolve no other processes than addition, sub traction, multiplication, division and the ex traction of roots. The former is called a solu-
tion by approximation, the second is called the algebraic solution of equations. In the forme each root may be found separately, in the lat er a general expression is obtained which rep resents all of the roots indifferently. The for mer is of importance to the practical computor mathemater is of special interest to the pure can be effected for equations of any degree; the algebraic solution is impossible for genera ergations of the fifth or of higher degrees See Equations, Galois' Theory of:
algebraic solution of the quadratic $a x^{2}+b x+c=0$ is well known. (See ALGEBRA) The algebraic solution of the cubic, due to cipio Ferro and Tartaglia, and first publishe by H. Cardan in 1545, is known as "Cardan oral shall be wanting This done, we hecond $x^{8}+a x+$ $b=0$. Putting $x=y+z$ we obtain
$y^{3}+3 y z(y+z)+z^{8}+a(y+z)+b=0$
or $y^{8}+z^{8}+(3 y z+a)(y+z)+b=0$.

We may subject y and z to any second condition which is not inconsistent with $x=y+z$.
It will be convenient to assume $3 y z+a=0$ It will be convenient to assume $3 y z+a=0$.
Then $y^{3}+z^{3}+b=0$, or, substituting for z its value $-a / 3 y$, we obtain $y^{9}+b y^{3}=\frac{a^{3}}{27}$ and

$$
\begin{aligned}
& y^{3}=-\frac{b}{2} \pm \sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}} \\
& z^{3}=-y^{3}-b=\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}
\end{aligned}
$$

Since $x=y+z$, we have

Since y^{3} and z^{3} have Since y^{s} and z^{a} have each threc cube roots, it
might seem as if $y+z$ or x had altogether nine values. As the cubic has only three roots, this cannot be. Of the nine values, six are excluded by the relation $3 y z+a=0$, which y and z must satisfy. Eliminating z between $x=y+z$ and $3 y z+a=0$, we get $x=y-\frac{a}{3 y}$ where y has the three values obtained from the expression for y^{8} given above. This last expression for x pression. If the numerical values of the coefficients a and b are given, the numerical values of the roots may be obtained by substituting the values of a and b in the above expression for x. In any case, this mode of computing x is more laborious than Horner's method of approximation (explained below), but when
all three roots of the cubic are real and distinct, an unexpected difficulty is encountered. In this case $\frac{b^{2}}{4}+\frac{a^{3}}{27}$ represents a negative number. As the square root of a negative number is a complex (imaginary) number, we are required to find the cube root of a complex num ber. But there exists no convenient arithmet ical process for doing this. Nor is there any expressing the values of the real roots by real radicals. This is the famous "irreducible case" in the solution of the cubic. Its interest is purcly theoretical. The practical computor experiences no dificulty, for he can always find the values of x by the methods of approxima

Since Cardan's time a great many different algebraic solutions of the cubic and also of the quartic have been given. They are brought together for convenient reference in L. Mat thicssen's 'Grundzüge dcr Antiken und Modernen Algebra,' Leipzig 1878. We proceed to quartic. By transforming it, bring it to the form $x^{4}+a x^{2}+b x+c=0$. Assume the general expression for a root to be $x=\sqrt{u}+\sqrt{v}+\sqrt{ } w$. Squaring,
$x^{2}-u-v-w=2 \sqrt{u} \sqrt{v}+2 V u \sqrt{v}+2 V \bar{v} V \bar{w}$ Squaring again and simplifying,
$x^{u}-2 x^{2}(u+v+w)-8 x \sqrt{u} \vee v \vee w$
$+(u+v+w)^{2}-4(u v+u w+v w)=0$. quartic we have $\quad b=-8 \sqrt{v} \sqrt{v} \sqrt{w}$ $a=-2(u+v+w), \quad b=-8 \sqrt{ } \bar{u} \sqrt{v} \sqrt{ } w$ $c=(u+v+w)^{2}-4(u v+u w+v w)$

But $-(u+v+w)$. $(u v+u z v+v w),-u v w$ are the coefficients of a cubic whose roots are u, v
w. This cubic, called "Euler's cubic»" is

$$
y^{3}+\frac{a}{2} y^{n}+\frac{a^{2}-4 c}{16} y-\frac{b^{2}}{64}=0
$$

Solving it, we have the values of u, v and $z v$ and, therefore, the values of x. Of the eight
apparent values of x, four are excluded by the elation $b=-8 \sqrt{ } u \sqrt{ } v \sqrt{ }$. To solve the quartic by the present method we mulst, therefore, firs solve "Euler's cubic," called the resolvent When this resolvent has a rational root, then its other two roots can be expressed in terms
of square roots and the quartic can be solved algebraically without the extraction of cubc roots. All methods of solving algebraically the general quartic depend upon the solution of Bino resolvent cubic.
Binomial equations of the form $x^{n}-1=0$, or known as cyclotomic equations, and can always be solved algebraically. They possess also many interesting properties. We shall give a trigonometric solution and mention a few of these properties. Let $x^{n}=a=r \mid \cos (2 k \pi+\theta)$ quantity, where k may be any integer, and where r and θ are known from the value of a. (See Trigonometry). By De Moivre's heorem we obtain
$x={ }_{v r}^{n}\left\{\cos \frac{2 k \pi+\theta}{n}+i \sin \frac{2 k \pi+\theta}{n}\right\}$. By assigning to k any n consecutive integral values we obtain n distinct values for x and no
more than n, since the n values recur in periods These values are the roots required.
Among the properties of $x^{n}-1=0$ are the following: It has no multiple roots; if r is a root, then any positive integral power of r is a root; if m and n are relatively prime, then $x^{m}-1=0$ and $x^{n}-1=0$ have no roots in common, except $1 ;$ if h is the highest common
factor of m and n, then the roots of $x^{h-1}=0$ factor of m and n, then the roots of $x^{n-1}=0$ is a complex root of $x-1=0, n$ being a prime number, the of $r m$ are the roots the roots of $x^{m-1}=0$ and $x^{n}-1=0$ satisfy
the equation $x^{m n}-1=0 ; x^{n}-1=0$ has always primitive roots, i.e., roots which are not also roots of unity of a lower degree than n. For the proofs consult Burnside and Panton, 'Theory of Equations,' Vol. I. The theory of roots of unity is closely allied with the problem otheory of the "division of the circle") Consult P. Bachmann, 'Kreistheilung,' Leipzig 1872. Solution by Approximation.- Of the various methods which have been given for the solution of numerical cquations, the most satisfactory, all things considercd, is the one known finding incommensurable roots (i.e., such as involve an interminable decimal which is not a repeating decimal), but it may be used also for finding commensurable roots (i.e., such as are integers or rational fractions, It is desirable here to begin with the theorem that a rational frac-
tion cannot be a root of an equation of the nth degree with integral coefficients, the coefficient of x^{n} being unity. To prove this, let, if possible, $\frac{h}{k}$ be a root of $f(x)=0$, where h and k are in-
tegers and $\frac{h}{k}$ a fraction reduced to its lowest terms, and where $a_{0}=1$. Substitute $\frac{h}{k}$ for x, then multiply both members of the equation by $k^{n}-{ }^{1}$, and we obtain, after transposing, $\frac{h^{n}}{k}=$ $-a_{1} h_{n}{ }^{1}-a_{2} h^{n}-2 k-\quad$ - $a_{n} k n$-1. This equation is impossible, since a fraction in it lowest terms cannot equal an integer. Hence $\frac{h}{k}$ cannot be a root. This being the case, it fol lows that all commensurable roots are exac divisors of a_{n}, for a_{n} is numerically the produc of all the roots. We know that if $(f x)$ is d visible by $x-r$, without a remainder, r is
root. Hence we are enabled to find all commensurable roots of numerical cquations of the type now under consideration by testing in suc cession each factor of a_{n}. For instance, in th equation $x^{3}+8 x^{2}+13 x+2=0$ the factors o we find that $f(x)$ is exactly divisible fy $x+2$ The test for each of the three other factor yields a remainder. Hence - 2 is the only com mensurable root.
Before we can apply Horner's method we must know the first significant figure of the root to be found. In other words, we must
"locate" the root. This can always be done by Sturm's thcoren, but usually the followin hoorem is more convenient. If two real num bers a and b, when substituted for x in $f(x)$ give to $f(x)$ contrary signs, an odd number o and b. Thus, to locate the betrece o $x^{3}-3 x^{2}-46 x-71=0$, substitute for x, in succession, the values $-6,-5,-4,-3,-2$, $1,0,1,2,3,4,5,6,7,8,9,10$. It is foun that $f(-5)$ and $f(-4), f(-2)$ and $f(-1)$ $f(8)$ and $f(9)$ are pairs of values of $f(x)$ in all, we conclude that there is just one roo between each of the pairs of values - 5 and $-4,-2$ and $-1,8$ and 9 . To reduce the number of trials in more difficult examples, there are theorems on the upper and
limits of roots which may be applied.
Horner's method consists of successive ransformations of an equation. Each transfor mation diminishes the root by a certain amount If the required root is 1.955 , then the root is diminished successively by $1, .9, .05, .005$. Synhetic division is employed. Suppose we desir
to find, to three decimals, the root between and -2 in the above example. It is convenient first to transform the equation so that the root becomes positive. We get $x^{3}+3 x^{2}-46$ $+71=0$. The first significant figure in the root s 1 . To diminish the roots by 1 we perform

$$
1+3-46+71 \mid 1
$$

$$
\begin{aligned}
& \frac{1+4-42}{4-42+29} \\
& \frac{1+5}{5-37} \\
& \frac{1}{6}
\end{aligned}
$$

The transformed equation, whose root under

The broken lines indicate the conclusion of the successive transformations. For advanced consult Mc Mclintock, E., in Am. Jour. Ma1hs.,' Vol. XVII, pp. 89-110; Carvallo, M. E. Résolution numérique complete d. Equations algebriques ou transcendantes) (Paris 1896) (Paris 1909). 'Approximations numériques' Multiple
here are m multiple roots; that is, m roots are equal to each other. Then $f(x)=(x-r)^{m} \phi(x)$ and the first derivative is $f^{\prime}(x)=(x-r)^{m \phi^{\prime}}(x)$ $f^{\prime} m(x-r)^{m-1} p(x)$. The fact that $f(x)$ and suggests the following rule for the discovery of multiple roats: Find the highest common factor of $f(x)$ and $f^{\prime}(x)$. If that factor is $(x$ - $r)$ s, then r occurs as a root $s+1$ times. $(x-r)^{s}\left(x-r_{1}\right)^{t}$, then r occurs as a root $s t^{1}$ times and r_{1}, occurs $t+1$ times. If $f(x) \equiv 8 x^{3}-20 x^{2}+6 x+9$, then $f^{\prime}(x) \equiv 24 x^{2}$
$-40 x+6$. and the H.C.F. is $2 x-3$. Hence is a double root.
Elimination.-Take the equations

$$
\begin{aligned}
& f(x) \equiv x^{2}+b_{1} x+b_{2}=0, \\
& F(x)=x^{2}+a_{1} x+a_{2}=0
\end{aligned}
$$

and let r_{1} and r_{2} be the roots of the second equation. The necessary and sufficient conin common is that $f\left(r_{1}\right)$ or $f\left(r_{2}\right)$ shall vanish;
that is, that the product $f\left(r_{1}\right) \cdot f\left(r_{2}\right)$ shall be
zero. Multiply together

$$
\begin{aligned}
& f\left(r_{1}\right) \equiv r_{1}^{2}+a_{1} r_{1}+a_{2}, \\
& f\left(r_{2}\right)=r_{2}^{2}+a_{1} r_{2}+a_{2}
\end{aligned}
$$

we ge

$\begin{aligned} r_{1}^{2} r_{2}^{2}+a_{1}\left(r_{1} r_{2}^{2}+r_{1}^{2} r_{2}\right) & +a_{2}\left(r_{1}^{2}+r_{2}^{2}\right) \\ & +a_{1}^{2} r_{1} r_{2}+a_{2} a_{2}\left(r_{1}+r_{2}\right)+a_{2}^{2} .\end{aligned}$
Expressing the symmetric functions of r_{1} and r_{3} in terms of the coefficients of the second
of the given equations, we get $r_{1}^{2} r_{2}^{2}=b_{2}^{2}$, $r_{1} r_{2}{ }^{2}+r_{1}{ }^{2} \gamma_{2}=-b_{1} b_{2}, \quad r_{1}{ }^{2}+r_{2}{ }^{2}=b_{1}{ }^{2}-2 b_{2}, \quad r_{1} \gamma_{2}=b^{2}$, $r_{1} r_{2}+r_{1}^{2} r_{2}=-b_{1} b_{2}, r_{1}+\gamma_{2}=b_{1}^{2}-2 b_{2}, r_{1} r_{2}=b^{2}$,
$r_{1}+r_{2}=-b_{1}$. Substituting these values, we have $r_{1}^{2}-a_{2}=-b_{1} b_{2}+a_{2} b_{1}^{2}-2 a_{2} b_{2}+a_{1}^{2} b_{2}-a_{1} a_{2} b_{1}+a_{2}^{2}$.
This expression, involving the coefficients of he two given equations, is called the eliminant or resultant. Its vanishing is the condition that these equations have a root in common. More
generally, if from n cquations with bles we eliminate the variables and obtain an equation $R=0$, involving only the cocfficients, the expression R is called the eliminant or resultant of the given equations.
In the above example the elimination was performed with the aid of symmetric functions. Of other methods of elimination the best known outline the last, known as Sylvester's Dialytic Method. To eliminate x between
$f(x) \equiv a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$,
$F(x) \equiv b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{n}-0$,
multiply the first successively by $x^{0}, x^{1}, x^{2}, \ldots$,
$x^{m}-1$ x^{m-1}, and the second successively by x^{0}, x^{1}, The highest power of x is $m+n-1$. If $f(x)$
$=0$ and $F(x)=0$ have a common root, it will satisfy all the $m+n$ equations. If the different powers of x, viz., $x, x^{2}, \ldots, x^{m}+n-1$, be taken as $m+n-1$ unknown quantities, satisfying $n+n$ linear equations, a relation will exist between the coefficients. This condition of consistency is the vanishing of the resultant. This of a determinant. See Determinants.
Discriminants. It has been shown that a multiple root of $f(x)=0$ is also a root of $f^{\prime}(x)=0$. But the condition that these two equations have a common root is expressed by he vanishing of the resultant.
called the discriminant of $f(x)=0$ and $f^{\prime}(x)=0$ is otherwise defined as the simplest function of the coefficients, or of the roots, whose vanishing signifies that the equation has equal roots.
To the references already given we add the Wissenschaften,' Band I; Cajori, Florian '(Introduction to the Modern Theory of Equations' (New York 1904); Netto E., (Vorlesungen über Algebra) (Leipzig, Vol. I', 1896, Vol. II, 1900) ; Serret, J. A., 'Cours d'Algèbre Supéricure' (Paris, 2 vols.); Todhunter, 'Theory of Equations' (London 1880) ; Weber, H., 'Lehrbuch der Algebra' ¿Braunschweig, Vol. I, 1898, und Analysis' (Leipzig 1903).

Florian Cajort,
Professor of History of Mathematics, Univer-
sity of California.
EQUATIONS, Integral. See Integral

EQUATOR, an imaginary great circle of the celestial vault or on the surface of the earth As used in astronomy the term significs a great xis and dividing it into a northern and southern hemisphere. It is constituted by the plane of the earth's equator, produced in every irection till it reaches the imaginary celestial shere. The sun is twice a ycar in the celestial equator - namely, at the equinoxes, whence the imply the equinoctial (sce Eouinox). The point in the equator which touches the meridian raised above the true horizon by an are which s the complement of the latitude. The sun and planets all have equators. They rotate around incir several axes and the plane at right angle body. In gcography, the equator is a great cir le on the surface of the earth equidistant from is poles, and dividing it into two hemispheres ts latitude is zero; it is therefore marked on maps as 0 . Other parallels of latitude are designation as their distance from it north o outh increases, the poles being 90 degrees. The ane of the terrestrial equator is a plane perpenicular to the earth's axis and passing through its centre. The magnetic equator is a somewhat rregular line, nearly but not quite a great circle netic needle. It is hence called also the aclinit ine. It is not far from the geographical cquaor, but its situation slowly alters year by year here being a slow oscillation of the magnetic poles, while the geographical equator and pole

EQUATORIAL ("of the equator"), a gcoaphical and astronomical term. In astronomy it is usually applied to a telescope so nation of the point in the heavens at which it is irected can be read off from two scales ont to give the motion in right asccusion, ind rent to give the motion in right ascension, and of the instrument. See Astronomy; Tele-

EQUATORIAL COUDE ("Elbow Equaorial"), a form of equatorial telescope invented by Loewy, of the Paris Observatory. The obposition, with a desk table built around the eye piece end, and can have all this part enclosed piece end, and, can have all this part enclosed same time commanding the whole heavens without rising from his chair. See Astronomy; Telescope

EQUATORIAL CURRENT. See Octan Currents.

EQUERRY, ē ${ }^{\prime}$ 'wĕ rĭ, an official of the royal household of Great Britain in the department crown equerry, equerries in ordinary and extra equerries, 7 of the former and 15 of the latter all army or navy officers, one or more of whom is attached to the suite of each member of the royal family.
EQUESTRIAN ORDER, or EQUITES, the order of knights in ancient Rome (Latin ordo equester). The equites or knights orig-
are said by Livy to have been instituted by Romulus, who selected 300 of them from the three principal tribes, naming them "celeres. centuries, and later there were 1800 equite Soon after the first Punic War the couites be came a distinct order in the state and the jurles and the farmers of the revenue were selecte from their ranks. They held their position virtue of a certain property qualification, 400, o the republic they,00, and toward the end the state. The body of equites was of mixe patrician and plebeian rank, a fact that helpe to increase their political power. They had particular seats assigned to them in the circu addition to a horse, were a gold ring and a adulic with two narrow purple stripes. At first the equites received two horses from the state, one for the knight and the other for his ser vant, and the wherewithal to maintain the aut, at alater B.C.) wealthy citizens began to enter it; an hese furnished their own horses and mainlaine them at their own expense. This was becaus from the equites the higher officers of the army wad selected, only after the cauch of for ontris had passed successively through the equest posed to fit him for the performance of the duties of the higher post in the army or of that of certain magistrate offices to which the equil tes might be appointed. Their privileges were curtailed by Sulla and under the later emperor ife.
Bibliography.- Bouché-Leclercq, A., 'Mantuel des antiquites romaincs' ; Bury, J. B., 'The
Student's Roman Empire' (1893); Cagnat, R Student's Roman Empire) ('1893); Cagnat, R (Equites) (in 'Dictionnaire des Antiquités' by Darcmberg and Saglis); Friedlānder, A. H . H., 'History of Rome' (1904); Herzog, E Geschichte und System der Romischen Staats (Dic Verfassung (Leipzig 1891); Madvig, J. N Dic Mommsen, T., 'Hermes' (1881); Taylor,
M., (Political and Constitutional History Rome', (1899); Wilkens, A. S., 'Equites' (i Smith's 'Dictionary of Roman Antiquities (3d ed. 1801).
EQUIDAE, êk'wī-dê, the horse family, the most highly specialized of the perissodactyl tu1gulates, characterized by the fact that only on oc (the third) in each foot is now functiona, traces ("the splint bones") remaining of the "splint bones" hidden beneath the flesh on eac side of the shank of the foot. (For the rela ionships of this family to the titanotheres apirs and rhinoceroses, see Ungulata; and or the evolition of the characteristic foo ly contains hut a single extant renus (Eques), structural distinctions not being of sufficien mportance to separate generically the moder horses from several extinct species, or from the asses or zebras, or these from each othe Apart from the dependence upon a single toe orbit is completely surrounded by bone; the in-
cisor teeth are chisel-shaped; the canines o tushes" are ruclimentary (when oresent), an the premolars (except the first or "wolf tooth") the members of this family are robust with Comparatively slender limbs, the feet "booted" in a single horny hoof, encasing the terminal phalanx; the body thickly clothed with sho close hair, which, however, becomes longer, an the some species profuse, forming a mane, on posed in dark stripes on a yellow or brownish ground, most strikingly in the zebras, but trace able in most others. There are never any horn mies whech is depended on to escape from ene
me beaten off by kicking mies which cannot be beaten off by kickin, With the hind feet, while struggles between riva are carricd on mainly by biting and strikin with the fore fect. The fore-limbs, or both pairs, have a callous pad upon the inside "which," says Beddard, "is possibly to be looke upon as an aborted gland, probably originally calculated to enable strayed members of the herd to regain their companions." The whole structure of the equide has been developed in adaptation to a life upon open dry planns, wher rass to traver win rapidey and to live upo deass and herbage has been perfected to a hig arrangement for the assimilation of this comparatively innutritious diet as has been acquire by the ruminants (q.v.). The alimentary canal s of great length (about eight times the length of the body): and the stomach, simple in form sharply distinguished by the dense epithelia lining of the former. The cæcum is twice arge as the stomach and there is no gall-blad der. The teats are two in number and sittate in the groin. One or two foals are produced a the species are gregarious and polygamous and like most such animals are readily tamable though the zebra has proved somewhat intractable and useless to mankind.

The family in the course of its history has occupied all the larger land-areas of the glob ahounded in both Americas in the past and modern horses run wild have multiplied an flourished exceedingly upon their grassy plains In living species is native to the New Worla
In old World the horse or horses and sev In the Old World the horse or horses and sev sccond species of ass and the various zebra were wholly African. Sce Ass; Horse; Quac ria; Zebra.

EQUILIBRIUM, a state of halance as to the forces acting upon any hody. The condition is generally considered in respect to the action of gravity, and especially as to the centr of gravity of the body under olservation. In centre of gravity tends always to occupy the lowest possible position - that is, the positio in which it is nearest to the centre of the carth - equilibrium appears in three forms: (1) stahle equilihrium, when the centre of gravity equilow the point of support; (2) unstable the point of stpport; (3) neutral equilibrium,
when the centre of gravity and the point of support coincide. An illustration may be found in a wheel supported free of the ground on its of its parts it will be in neutral equilibrium, remaining at rest in any position to which it may be revolved on the axle. If, however, a weight be attached to the rim of the wheel at its lowest point, when the wheel is moved so as to raise the weight ever so little the wheel will
swing back until the weight is again at the lowest point, in which position it is in stable equilibrium. If the wheel is then revolved so that the weight is directly above the axle, and carefully balanced in that position, the whee will be in unstable equilibrium, for when disthe weight to the lowest point argain, and come to rest in stable equilibrium. Sce Applied Mechanics; Mechanics.
In physiology, the ability to maintain the body by proper muscular force under nervous control, so that it can perform co-ordinated movements or resist the force of gravity. By
cquilibrium is here meant the control of the body in the upright position, apart from the localized processes of co-ordination. Loss of equilibrium shows itself particularly in walk ing and running. Here the centre of gravity of of the individual to hold himself erect depends upon a number of features. The eyc, the tactile scuse of the fect, the joint-senses, the muscular sense that weighs the various muscular move ments and the higher cerebral centres are all involved, and loss of equilibrium or inco-ordination may result from disease or injury to any of necessarily involve any loss of equilibrium, but loss of tactile sense of the feet, such as is seen in locomotor ataxia or in people who have had their feet frozen, almost invariably produces a motor ataxia) and in forms of neuritis the loss of muscular sense and joint-sense produce of muscular sense and joint-sense produces centres of control there is good reason to believe that the semi-circular canals in the internal ear constitute a special sense-organ for
the determination of the direction of the movements of the head which are so essential in the preservation of general equilibrium. Discascs of the semi-circular canals are frequently ac companied with dizziness and vertigo. It has been suggested that the sacculus and utriculus while at rest. It also scems probable that certain areas in the cerchellum are closely associated with the equilibriun. See Cerebellum; Incoordination ; Locomotor Ataxia.

EQUILIBRIUM, Chemical. In mechanics a system is said to be in equilibrium when the forces that act upon it are preciscly balanced, so system or mass is similarly said to be in chemi cal cquilibrium when its state is such that ther is no tendency toward a sensible chemica change in any of its parts. As set forth b Berthollet, chemical equilinrinm is not a cond tion of rest, but one in which the velocity o incaction in one direction is equal to the velocit cal action may be absolute, or merely apparent.

In other words, there may be no chemica hanges going on at all, or there may be opposite changes going on simultancously in such way that no resultant modification can be ob he part selected for observation may be. In he latter case the existence of the simultaneous and opposite reactions can only be indirectly ferred from a study of the system when it is ot in equilibrium
According to the theory of chemical affinity that was held before the importance of mass-
action was understood, iwo substances either would combine or would not, according as their affinities" were more or less completely satisfied in the combined state, or in the uncombined state. That this view is entircly inadequate to by the following simple example: When steam passed over red-hot iron filings it is decomposed into oxygen and hydrogen, the iron absorbing the oxygen with the formation of oxide tate; but if hydrogen is passed over red-hot state; but if hydrogen is passed over red-hot
oxide of iron the oxide is reduced to the metalic state, its oxygen combining with the hydroen to produce steam, which passes on in the hydrogen current. This apparent contradiction may be best explained by assuming that when a ith a red-hot mixture of iron is in contac allic iron, both of the foregoing reactions tak lace simultaneously. If the metallic irou and he steam are present in excessive amounts, the esultant action will be, on the whole, the oxidaion of the iron and the decomposition of the re present in excess, the resultant action will be the reduction of the oxide to the metallic tate and the simultancous formation of steam t is therefore apparent that in some reactions at any rate, the relative masses in which the sidered with much care before any prediction of the chemical deportment of the mixture can bc madc. Attention was first directed to this fact by Clande Louis Berthollet (Essai de statique chimique' 1803). In the example cited above, were left in contact in a closed vessel, a state of apparent equilibrium would be finally attained in which the formation and decomposition of the steam would occur with equal rapidity, so that no visible change would take place thereafter. When this state of "chemica equilibr:am" is attained the abstraction of hy-
drogen or of iron oxide, or the addition of stcam or of metallic iron, will destroy the equilibrium, and more iron will be oxidized until a new state of equilibrium is established. Similarly, the abstraction of steam or of mctallic iron or the addition of hydrogen or of will be followed the system is in equilibrium of the iron oxide and the establishment of a new state of equilibrium. According to Berthollet, all reactions are fundamentally of this kind. When sodium chloride is added to a solution of silver nitrate we know that the silver is
all thrown down in the form of an insoluble chloride. In this case, Berthollet would consider that the sodium chloride, sodium nitrate, sidver chloride and silver nitrate tend toward a state of chemical equilibrium; but that since the
ilver chloride is continually removed from the solution by reason of its insolubility, it is in possible for the state of equilibrium ever to be state to be attained in our previous illustraion, if one of the constituents (say the iro oxide) were removed, or rendered inactive i any way, as fast as it were formed.
The ideas of Berthollet have been found to be sound in their essentials, and they have
served as the foundation for the modern theory of chemical action, though their full develop ment cannot be explained without the use of th differential calculus. The basis of the theory o mass-action, so far as solutions are concerned all events, appears to be substantially as fol
lows: Two substances in solution cannot lows: Two substances in solution cannot come
bine with each other, except when a molecule or ion (see Solutions) of the one, in its wan dering through the solution, chances to encounter a molecule or ion of the other. Now while we do not know the actual number of encoun ters that take place in a given time betwee
molecules of different kinds, we do know that in a homeogencous solution the chance that an one given molecule of the first kind will encoun ter some molecule of the second kind within (say) the next second, is strictly proportional to the number of molecules of the second kind that are present in the solution; and conversely, kind will encounter some molecule of the first kind within the next second is strictly propor tional to the number of molecules of the firs kind that are present. Since the number of molectules of each kind that are present in amounts to saying that the actual number o encounters between molecules of differen kinds, in one sccond, is proportional to the product of the number of molecules of the firs and second kinds that are present. As an illus mation of the uscrulness this principle, acetic acid and ethyl alcohol. Some of the aci combines with some of the alcohol to form water and cthyl-acetic ester (sce Esters), but the reaction is never complete, since a state o the inverse combination takes place just as fas as the direct one. The molecular weight o acetic acid $\left(\mathrm{CH}_{3} \mathrm{COO} . \mathrm{H}\right)$ is 60 , that of ethy alcohol ($\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}$) is 46 , that of ethyl-acetic ester or ethyl acctate $\left(\mathrm{CH}_{3} \mathrm{COO} . \mathrm{C}_{2} \mathrm{H}_{5}\right)$ is 88 and that of water ($\mathrm{H}_{2} \mathrm{O}$) is 18 . A mass of ans there are units in the molecular weight of the substance is known as a "gram-molecule" o the substance. This name is rather unhappily
chosen, but the idea itsclf is a uscful onc, and s commonly employed in modern writings upo heoretical chemistry Let us suppose that on gram-molecule of acctic acid (60 grams) is riginally mixed with M gram-molecilles of alcohol (46 M grams), and with N gram molectules (18 M grams) of water, and let will be when the composition of eque hrium has been atteined The advantage of aking the gram-molecule as a unit of mass is grams of acetic acid alcohol and water that are originally present will he proportional to 1
M and N , and we may speak of M and N and
write them in our equations precisely as thongh hey were really the number of actual molecule present. The acctic acid and alcohol act upo $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{3} \mathrm{OH}=\mathrm{CH} \mathrm{COOCH}+\mathrm{H}$ Now let us assume that when the state of equihbrium has been attained, X gram-molecules the alcohol have been decomposed. This implie that X gram-molecules of the acetic acid hav aiso been decomposed, and that X gram-mole cules, each of water and of ethyl acetate have cules of the various substances that are prese when the final state of equilibrium is attaine are therefore as follows: Acetic acid, $1-\mathrm{X}$ The number of molecular collisions per second n which a molecule of acetic acid encounters state) proportional to (1-X) (M-X) ; an since the chemical action is itself proportional to the number of such collisions, we ma assume that the number of gram-molectiles ethyl acetate formed per second, in the slate equilibrium, is $A(1-X)(M-X)$, where A is same line of reasoning shows that the number of gram-molecules of ethyl acetate that a lost from the solution in the same time, throug combining with water to reproduce acetic aci and alcohol, is $\mathrm{B}(\mathrm{N}+\mathrm{X}) \mathrm{X}$, where B is anoth constant, whose valuc is also unknown. Sinc
the existence of cquilibrium requires that the quantity of ethyl acetate present shall be con tant, we have $\mathrm{A}(1-\mathrm{X})(\mathrm{M}-\mathrm{X})=\mathrm{B}(\mathrm{N}+\mathrm{X}) \mathrm{X}$ Now it is known by experiment that when the original mixture is free from water, and contains chemically equivalent amounts of aceet state of and $X=3 / 3$. If these values of M and X are sub stituted in the foregoing equation, we find that A and B are connected by the necessary relation $A=4 B$. If we replace A by $4 B$ and then divide through by B, the foregoing equation reduces to
$4(1-X)(M-X)=(N+X) X$ or $3 X^{2}-(4+4 M$ $+(1-\mathrm{X})(\mathrm{M}=\mathrm{X})(\mathrm{N}+\mathrm{X}) \mathrm{X}$, or $3 \mathrm{X}-(4+4 \mathrm{M}$ which the value of X (that is, the number of sram-molecules of acetic acid decomposed) ma be inferred, in the final state of equilibrium, for any desired initial mixture of acctic acid, alco hol and water. This example has been given a the principles of chemical equilibrium and th law of mass-action, and because reactions of this very kind, in which esters are formed b the direct action of an acid upon an alcohol have a special historic interest, since their stud has contributed in no small measure towar placing the modern theory of
librium upon a firm foundation

When it is desired to determine the state of a chemical system after the lapse of a definit interval from an initial instant for which it state is given, we must form a differential
equation in which the condition is expressed that the chemical change, per unit of time, i number of (as above) to the product of the stances that are present at the instant consid ered; and having formed this equation and inte grated it, we ohtain an expression in which th composition of the system is expressed as a
function of the time. When several substances that may react upon one another are present, form as might be expected. but for details of this sort reference must be made to works on theoretical chemistry. When the system contains several acids and one or more bases, the distribution of the bases among the various acids may be investigated in accordance with similar principles, and by comparing the nufacts of observation estimates of the true relative "affinities" of the acids may be had.
When, as is often the case, the course of a reaction depends upon the temperature, the principles of mass-action apply as before, but regard must also be had for the laws of thermodynamics (q.v.), which usuatly impose certheory of chemical changes in which thermodynamical considerations play an important par was given by J. Willard Gibbs, in a paper of great power and originality, entitled 'On the Equilibrium of Heterogeneous Substances,' pubAcademy of Arts and Sciences) for 1875 Gibbs' basic phase law, or "phase rule" as it is commonly called, is as follows:
either diferent bodies (chemical substances either simple or compound) can form $n+2$ phases, and these can co-cxist at one single point only;

The great importance of a full understand ing of the laws of chemical equilibrium rests in the fact that by far the larger part of all chemi cal processes, both in nature and in the indus rrial arts, result not in complete reactions, but in a condition of chemical equilibrium, with meascompound.

Bibliography.-Arrhenius, S. C., 'Theories of Chemistry) (London 1907) : Bigelow, S. L. 'Theoretical and Physical Chemistry' (New York 1912) ; Comey, A. M., 'Dictionary of
Chemical Solubilities' (London 1896); Findlay A., 'The Phase Rule' (London 1911) ; Hoff J. H. van't, (Lectures on Theoretical and Physical Chemistry' (London 1899) ; Nernst, Physical Chemistry' (Theoretical Chemistry' (London 1895).
equimultiple. See Multiple Series
EQUINE ANTELOPE. Sce Blaubok.
EQUINOCTIAL, in astronomy, synony mous with equator. When the sun is on the over all the carth: hence the name equinoctial See Equator; Equinox

EQUINOCTIAL GALE, a gale popularly supposed to occur at the timc of the spring or autumn equinox. Sec Equinox.

EQUINOCTIAL POINTS are the two points wherein the equator and ecliptic intersec cach other; the one, being the first point o Arics, is called the vernal point; and the other Sce Ecliptic: Equinox. Eouinoxes, Preces Sce ECliptic
SION of the.

EQUINOX, in astronomy, is that time of the year when the day and night are equal
the length of the day is then 12 hours; the
sun is ascending six hours, and descending the same time. This is the case twice a year, in spring and in autumn, when the sun is on
the equator. When the sun is in this situation the horizon of every place is divided into two equal parts by the circle bounding light and darkness, gencrally. The vernal equinox is on 21 March, and marks the beginning of spring; the autumnal is generally on 23 September tumn; at all other times the length of the day and of the night are unequal, and their difference is the greater the more we approach either pole, and in the same latitude it is everywhere the same. On the equator this inequality en equal to the night, the sun always ascends six hours and descends six hours. In the opposite hemisphere of our earth the inequality of the ays increases in proportion to the latitude: the ays increase there while they diminish with s, and vice versa. The points where the noctial points. The vernal equinoctial point was formerly at the entrance of the constella tion of Arics; hence the next 30 degrees of the ecliptic, reckoned eastward, have been he constellation this point long ago deserted Pisces; for it is found by observation that the equinoctial points, and all the other points of the ecliptic, are continually moving backward or westward; which retrograde motion of the equinoctial points is what is called the precession of the equinoxes. This retrograde
motion is quite analogous to the rcvolution of a gyroscope weighted at one end and balanced in the middle. It is duc to the gravitationa pull exerted by the sun and moon on the equaorial protuberances of the earth, which is a esult of calculations that It appears from the of the equator is nearly a circle, the poles o which coincide with those of the celiptic, and that the pole will move along that circle so slowly as to accomplish the whole revolution in about 25,800 years. The diameter of this ecliptic to the equator, or about 47°. Now, as the ecliptic is a fixed circle in the heavens, but the equator, which must be equidistant from the poles, moves with the poles, therefore the equator must be constantly changing its inter-
section with the ecliptic. And from the best observations it appears and from the best the ecliptic cvery ycar $50.25^{\prime \prime}$ more to the westward than it did the year before; hence the sun's arrival at the cquinoctial point precedes its arrival at the same fixed point of the heavens every year by 20 minutes 23 seconds of time,
or by an arc of $50.25^{\prime \prime}$. Thus, by little and little, these equinactial points will cut the ecliptic more and more to the westward, till, after 25,800 ycars, they return to the same point. The precession of the equinoxes is not absolutely uniform, for the forces inducing the precession dereference to the earth. Thus at the vernal and autumnal equinoxes the sun is in the plane of the equator, and can cause no precession. Another important factor in causing the precession to vary is the fact that the planc of the tic. Besides causing the component of the
moon's attraction in the plane of the ecliptic to vary, this inclination introduces a component perpendicular thereto. This is an important factor in causing the path of the pole of the
equator to be a wavy curve rather than a preequator to be a wavy curve rather than a pre
cise circle. This wavy motion is known as nutation. See Day; Ecliptic; Equator;

Gyroscore.

EQUINOXES, Precession of the, the motion of the cquinoxes along the ecliptic due to the change in the direction of the carth's
axis of rotation, causcd by the attraction of the moon and sun on the protuberant equatorial ring of the earth. See Equinox.
EQUISETUM. Sce Equisetales under Ferns and Fern Aliises. EQUITES, èk'wǐ-tēz. See EQUestrian

EQUITY. The name equity was given to that supplemental law which was formerly administered exclusively in the Chancery
Courts of England, and which was designed to work eut substantial which was desigher that could not be obtained normally in the common law courts. The common law became very strict and narrow at a very early period,
and if a suitor could not bring his case in sucl and if a suitor could not bring his case in such
a form as to fall within one of the recognized a form as to all within one of the recognizple,
writs, he was without a remedy. For example, writs, he was without a remedy. For examplen the preventing of wrongs, however imminent they might be. Here the Chancery Court could step in, and by injunction against the person threatening a wrong, cover this contingency. A body of law subsidiary to the
common law therefore arose, whose administration was in the hands of the Chancellor (q.v.). Hence arose the curiosity presented for an extended period in English legal history, in which a suitor's chances of success depended largely upon the particular court in which he
brought his action. The existence of this body of law led ultimately to scandals and vexatious delays; the rules of equity varied at different periods, depending a good deal upon the per
sonal idiosyncrasies of the Lord Chancellor sonal idiosyncrasies of the Lord Chancello for the time being, and justifying Seldeni equity the Chancellor's foot." Retween the 17th century and the beginning of the 19 th century, however, equity hecame almost as fixed as the common law, but the systems wer always kept distinct until the passing of the Judicature Acts of 1873 and 1875 , under which
they were consolidated. Since 1875 law and equity have been administered equally to all the divisions of the High Court of Justice, and if there is any conflict between the rules of law and equity, those of equity are to prevail. Alter the Revolution, the States of the American Union continued the English system
but while some of them have kept strictly to that system and have distinct courts of law and of equity, other States have law and equity administered by the same judges and courts, at one time sitting as courts of law and at another time as courts of equity.
are: "Equity considers that as of equity ought to be donc.". "Equity acts in personam." "He who comes. into equity must do so with clean hands." "Between equal equities priority of time will prevail." "Between equal equities
he law will prevail." "No right without a emedy." "When a court of cquity has once to act jurisdiction of a callse it will continue Equity is divided into thrce great classes or and equitable remedies. Equitable titles are hose which are recognized only by a court of quity, as where, when a person gave a value a chose in action which was assigned to as it would violate the rules against champerty and maintenance, but equity allows the assignce bring suit in the name of the assignor quitable rights arise where a guardian enter to a transaction with his former ward a very majority. If within a reasonable time the ward returns what he received from the guardian he guardian will, in equity, be compelled to eturn the property to the ward. Equitable emedies arise in those cases in which the law where a a right but cannot enforce it, a picce of property, if the seller refuses to convey, the purchascr's remedy at law is fo damages for breach of the contract; but in equity the court will decree specific perform because if it is personal property after the amage are recovered other personal propert f the same kind can be purchased; but if the ersonal property is of such nature that annot be duplicated, such as a painting by articular artist, equity will affirm relief in th ay of specific performance.
Sctition. The bill may be amended, or, if the rocceding lave gone too far for that, a sup plemental bill may be filed. The defense is by demurrer, plea or answer. The judgment o court is called a decree, and the relie sonted is such as to affect all the parties, an Hat particular case. The general rules of evidence are the same as in a proceeding at law
but the answer to the bill, if made under oath but the answer to the bill, if made under oath, evidence for the de Consive to the bil
of the Equity Jurisdiction of the Court Chancery) (London 1890); Pomeroy, J. N Equity Jurisprudence as Administered in the United States) (3d ed. San Francisco 1905) ; Spence, G., 'Equity Jurisdiction of the Court
of Chancery) (2 vols, London $1846-49$.

EQUITY Courts of Sce Court

EQUITY OF REDEMPTION. The right, deem the mortgared property, even after for citure, by paying the debt with interest and costs. This right is barred only by strict oreclosure procecdings or by one of the vari-隹 statutory procedures provided for the pur he prope ater fof citure and holding property after forfeiture and holding it
or the period reguired thy the statute of limitations. The term is also applied to the interest or estate remaining in the mortgagor in property he has mortgaged. See Chancrry;
Equity; Forveiture; Mortgage; Redemption. EQUIVALENT, having equal value
Dower, arca or volume. In chemistry, (1)
atomic weight. (2) The equivalent of a base is the number of grams of it which will neuThe equivalent of an acid is the number grams of it which will neutralize one grammolecule of caustic potash or soda. See Chemistry.
EQUULEUS, ě-kwoo'1ê-ŭs, in astronomy ("the Colt" or "Little Horse"), one of the 48 original constellations of the Almagest, situated just between the head of Pegasus and Delis a very inconspicuous constellation, its brichtest star being of the fourth magnitude. Also a name given to the rack, or instrument of torture.
ERA, the largest unit of geologic time. According to United States Gcological Survey usage, all geologic time is divided into the fol-
lowing eras, beginning with the oldest: Proterozoic, Palrozoic, Mesozoic, and Cenozoic By some authorities one and sometimes two other cras are recognized. The carlier part of the Protcrozoic is split off under the name Archeozoic or Azoic, and to its latter divisions latter part of the Cenozoic is also sometimes split off to form the Psychozoic. But these names are not generally recognized, and the official classification is into the four cras first given. These divisions are in part based on fossil form, and in part on structural considerations. With few exceptions there is unconformity (q.v.) between the Proterozoic and the Palrozoic. The close of the Palæozoic is marked by the folding of the Appalachian Mountains and the close of the Mesozoic by
he Rocky Mountain uplift. Sce ChronoLocy. Epoci ; Proterozoic; Palieozoic, etc.
ERA OF GOOD FEELING, 1817-24. In American political history, Monroc's two administrations, up to the canvass for his suc-
cessor. There were practically no issues, and cessor. There were practically no issues, and but one party. The issue on which the Ficd-
eralist party was founded had long since been appropriated by the Democrats, and it had foolishly taken theirs in exchange. The embargo and the war had created a sectional issue; but peace cnded that and left no pretext for division. The Hartiord Convention (q.v.) ones had joined the Democrats, because the embargo and the war had driven New England capital from commerce into manufactures, and it wished to demand tariff favors from the administration. But it was a decade before the tariff and internal improvements, the next divi-
sion lines, assumed theorctic consistency. Monroc issued an inaugural in 1817 especially to placate the Fedcralist; and followed it by a tour through New England where he was reccived with immense ovations from both parties. He was unanimously re-elected in
1820 , save for the whim of one elector. The personal factions which contested the field in 1824 , the coalition (q.v.) which decided the result, and the Jacksonians fury over it, efresult, and the Jacksonians fusy
ERAGROSTIS, a large genus of the grasses, belonging to the festucece. There are over 00 spes the Eragrosts, of which
or naturalized. The species are from a few inches to several feet in height, and are found in nearly all parts of the United States. None are of commercial importance, and such as are cultivated grasscs. The strong scented Era grostis (E. major), is an ill-smelling gras but tall, erect and rather handsome, owing to the shape and size of its leaves. It is found in almost cvery part of the United States and On-
,
ERAN, Eranian. Sec Iran, Iranian
ERARD, â-rar, Sébastien, French musical instrument maker: b. Strassburg 5 April 1752; Paris at 18, and wasy, 5 Aug. 1831. He went to tiste, produced pianofortes so superior to any previously made in France that his fame quickly spread, and orders flowed in upon him from all quarters. During the Revolution he went to England and established a manufactory in London, and when peace was restored his life was
passed between that city and Paris. His improvements upon the harp, more especially tha of the double movement, the principle of which he afterwards communicated to the piano, en led him to high merit as an inventor.
ERAS, ä'răs, Wolfgang, German econo mist : b. Schonfeld, 1843; d. 1892. He received his education at the universities of Leipzig ena and Berlin. In 1866-70 he served as secre sociation and from 1871 to 1886 was recorder of the Chamber of Commerce at Breslau. After 1886 he was secretary of records of the Silesian Textile Manufacturers' Association. He pul) tungen fur die Binnenschiffaht (1883); 'Einrich tungen fur die Binnenschiffahrt an
und hollatindischen Handelsplàtzen
(1885) 'Unser Handel mit den Balkanländern' (1891) He edited
$1868-69$

ERASISTRATUS, physician. He lived in the 3 d century before he Christian era, was the court physician to Seleucus Nicator, king of Syria, and rendere iscovercd the malady of Antiochus the hing son. He subsequently went to Alcxandria, where he devoted himself to the study of anatomy. He was the first who systematically dis sected the human body, and his description of the brain and nerves is much more exact than he nerves into nerves of sensation and ocomotion, and it is said had almost stumble upon the discovery of the circulation of th blood, for he explained that the veins and th rteries had their origin in the motion of th letting and the giving of purgatives, relying etting and the giving of purgatives, relying friction and the most simple articles of the vegetable kingdom, for the restoration and reservation of health. His professional folowers, a body of physicians of note, were known as Erasistrateans. He wrote several pharmacy, of which only the titles remain, toether with a great number of short fragments reserved by Galen and other ancient medica rriters. Consult Fuchs, 'De Erasistrato Capila

Selecta) (in 'Hermes,' Vol. XXIX, Berlin 1894) ; Hieronymus, 'Erasistrati et Erastitratschichte der griachischen (Jena) ; Susemihl, 'Ge Leipzig 1892).
ERASMUS, ê-răz'mŭ́s, Saint, Syrian bishop and martyr. He is said to have been put to cath under Diocletian by disemboweling, and his martyrdom is frequently represented in art. As he was counted as one of the 14 Succorets
of the Distressed, so was his aid especially invoked in affections of the stomach. The remaining 13 Stuccorers are Saints Acasius, Blasius, Christopher, Cyriacus, Dionysius the Areopagite, Egidius, Eustathius, George the and Margaret. June 2 is the saint's day of Erasmus. On the capture of Formix (the reputed scene of the martyrdom of Erasmus in the 3 d century), by the Saracens in 842 , the body of the saint, or what was popular
lieved to be his, was removed to Cajeta.

ERASMUS, Desiderius, Dutch scholar: h. Rotterdam, probably 28 Oct. 1467 ; . Base illegitimate son of one Gerhard of Gouda. The name by which he is known is merely the Latin and Greek rendering of Gerhard, Desiderius, the Latin, and Erasmus, or, more correctly, Erasboy in the cathedral of Utrecht till his ninih year, then entered the school at Deventer, where he displayed such brilliant powers that it was predicted that he would be the most learncd man of his time. At the agc of , he assumed the monastic habit near Gouda, but
the bishop of Cambrai delivered him from this constraint by taking him as a Latin secretary. In 1492 he was ordained, and went to Paris to perfect himself in theology and polite litcrature, and there became the instructor of several rich Englishmen, from one of whom-Lord Montjoy - he received a pension for life. He acwas graciously received by the king. He returned soon after to Paris, and then traveled into Italy to increase his stock of knowledge. He now asked a dispensation from the vows of his order, which the Pope granted him. He Louvain 1502-04; but brilliant as were the offers here made him, he preferred the invitation of his friends in England. When he visited the lord-chancellor, Sir Thomas More (1506), without making himself known to him, versation that he exclaimed, "You are either Erasmus or the devil." He made his third visit to England in 1509. He was offered a bencfice, but was unwilling to fetter himsclf by an office of this kind. He was for a slort time professor of divinity and Greek at Oxford. Netherlands, and went to Basel, where he had his works printed by Froben and acted as gencral adviser of Froben's presses, which raised to be the most important in Europe. To profound and extensive learning Erasmus joined a refined taste and a delicate wit. he preferred the pleasure of literary case and retirement to the pomp of high life. All
through life he suffered from a bad stomach;
he could not eat nor bear the smell of fish; he humorously put it, "his heart was Cathoman his stomach was Lutheran. For a han of a detached and inquiring mind like his, ee the power of the clergy broken as the main bstacle to the spread of liberal idcas. But he recoiled from the fanaticism which accompaned the Reformation, and had no sympathy ith the evangelicism to which it gave birth Indced theological disputation had no attracthans for him, although it has been said of him Luther spoke for the low-born; Erasmus fo he more cultured class. He implies that the revelation of religion has added nothing to life that makes it worth living. The incisive way n which he handled the religious abuses of work, and he was also free and outspoken in his criticism of the treatment meted out by kings to their subjects. The great service he endered was in fighting the battle of sound learning and plain common sense against obeign place of reason as the ultimate guide in il questions, religious and political not exepted. Besides his editions of various classics, he first edition of the Greck Testament from MSS. (with Latin translation), and his other philological and theological writings, may bo nly mentioned his well-known book in praise
folly, 'Encomium Morix,' and his 'Colloquies) (1519). His letters are very valuable in eference to the history of that period. (See Colloquies of Erasmus; Praise of Folly lit). Consult 'Lives' by Knight (1726);
Ortin (1748); Burigny (1752) ; Durand de Ortin (1748); Burigny (1752);
Laur (1874) Feurand de (1873) ; Froude (1894).

ERASMUS MONTANUS, comedy in five acts by Holberg; translated by O. J. Campbel atts by Holberg; translated by O. . Campbel ut not produced till 1747. It did not at once score such a success as many of his other omedies. Now, however, it is considered no ut it has its value for all times as showing he contrast in life between appearance and cality and also the demand, strong then as now that the individual seek the truth for its own ake.

Erasmus, the son of a well-to-do peasant is studied at the university and now is on 2 Hill." As he has tasted of the tree of knowl edge, he wants to show off his great learning claiming to be able to "prove" in a logical way any assertion, however foolish, he makes. His arrogant ways and hair-splitting methods Lieutenant," who is Holberg's mouthpicec in he comedy, Erasmus is properly punished, and he is finally compelled to renounce the only true assertion he has made, viz., that the earth round.
In the leading character, Erasmus Montanus, quired at the university, Hollerg attacks th methods and aims of this seat of learning tidicules the academic pedantry, the formalism Of logic and the Latin disputations as prac-
tised at the time Holberg knew that among
the peasants, ignorant though they were and often so sadly neglected, there was a good brother Holmerg has presented in a most humorous manner, the contrast to the vain and empty "learning" of the hero. In Peter the deacon, Jesper the bailiff, Jeronimus whose conservatism shrinks in terror from anything that s new, Holberg shows his mastery in drawing character, and in the scenes in which they fayings in this comedy are commont. Many in the current specch of the Scandinavian countries even to-day., Consult Campbell, 'The countries even to-day.,
Comedies of Holberg.

Gisle Bothne.
ERASTIANS, in England, a name applied to a party that arose in the 17 th century, denying the right of autonomy to the church - a
right neither maintained nor denied by Erastus (q.v.). The Erastian controversy broke out at the time of the Westminster Assembly. The leading Erastians in that assembly were Lightfoot and Coleman, who were supported by Selden, Saint John and Whitelocke, three noted tians in Encland would subordinate the government of the Church to the authority of the State, both as regards doctrine and discipline. Since the time of the Reformation the conChurch in Sers conined chiefly to the has been applied to those denying the power of the Church to nullify the operation of lay patronage. Consult Cumningham, 'Historical Theology' (Vol. II, Edinburgh 1862) ; Henson, 'English Religion in the Seventeenth 'Century) London 1903)
ERASTUS, Thomas (a Latin translation of his name Liebler or Lueber), German theolo-
gian and physician : b. Auggen, near Mühlheim, gian and physician : b. Auggen, near Mühlheim,
1524 ; d. Basel, Switzerland, 1583. He studied theology at Basel (where he Grecized his name, , and philosophy and medicine at Bologna and Padua. After nine years in Italy, he was In 1558 he received an invitation to go to the court of the Elector Palatine, and accepted it. There he became first physician and Privy Councilor and professor of medicine at Heidelberg. He removed from Heidelberg to fill the chair of medicine at Basel in 1580 . Shortly sor of ethics. Erastus was a skilful physician and a man of upright character, an equally vigorous writer against "the new medicine of Philip Paracelsus" (1572) holding that the only true road to knowledge is to be found in experimental investigation, and not in astrology, he was a follower of Zwingli, and his fame now rests on his strenuous opposition to Calvinist discipline and Presbyterian order. In 1564 he maintained the Zwinglian doctrine of the Lord's Supper at the conference of Maulbronn, and it was in defense of it inat "Das ist Mein Lcib") (1565). Erastus was excommmicated on a false suspicion of heresy, founded on a correspondence with Unitarians of Transylvania, but was restored in 1575. His chief work is a treatise on excommunication entitled (Ex-
municatio mandato nitatur divino, an excogitata it ab hominivus. This was answered by Beza his De vera Excommunicatione et Christithat no member of the church should be excluded from her communion as a punishment for sin. Punishment is "the special duty and office" of the civil magistratc. Consult Bonnard, 'Thomas Eraste et la discipline ecclésistique' (1894); L.ce, 'The Theses of Erastus See Erastians.
ERATO, čr'a-tō (Gr erā̄ I love), one of he nine Muses, whose name signifies loving, or lovely. She presides over lyric and especially matory poctry, the songs of lovers, and ouches, as Ovid, in his 'Art of Love,' inform us, the hearts of the coldest maidens by her ith roses and myyrte, in the act of playing the plectrum in her right hand and the lyre in her left

In zoology crato is a genus of cowries beOnging to the family of cypraidr. (Sce Muses.) Erat
ERATOSTHENES, ēr-a-tōs'thē-nēz, Greek
ERATOSTHENES, ęr-a-tós thè-nezz, Gree Cyrene, Africa, 276 в.C.; d. about 196 в.С. Hc studied in his native town and Alexandria and hen went to Athens. He became librarian at Alexandria, and improved the science of mathe em . but he pained his greatest renown to sys nvestigations of the size of the earth, his estimate of the circumference of which was sur prisingly near the truth. He wrote also on hronology, grammar, philosophy, literature, mean poct. He rendered much service to as ronomy and first observed the obliquity of the cliptic. He is said to have starved himself to death after becoming blind. The extant frag ments of his writings werc collected by Beriardy in his Eratosthenica' (1822); his geo 11 1880.
His commentary on 'Timxus' (of Plato) seems to have becn highly valued in his day, and his philosophical dialogues became, as they vere intended, popular. His 'On the Old
Comedy,' which treated of the foremost comic Coets in 12 or more books, was looked upon really great work. In it he dealt with the works of the pocts and the general life and management of the theatre. He may be said o have been the father of exact chronology ince he endeavored to ascertain the dates of rature from the fall of Troy to his own day In his (Katasterismoi) he deals, in an interesting manner, with the relation existing between he popular Greck mythology and the constellaions. In his 'Geography,' issued in three ooks, he made the first known attempt to treat he subject scientifically, historically and ex-
perimentally. He wrote two hooks on mathematics, which have not survived him, and he worked out a "sieve" to discover all prime umbers
Bibliography.--Berger, 'Die geographischen Fragmente des Eratosthenis' (Leipzig 1870)

Christ-Schmidl, 'Geschichte der griechische Litteratur' (Munich 1911); Hillier, 'Eratosthe nis Carminum Reliquæ) (Leipzig 1872) ; Maass,
(Eratosthenica) (Berlin 1883); Olivieri, ' P seutosthe-Eratosthenis Catasterismi) ' (in Mythographi Graeci' III, Leipzig 1897); Robert, 'Eratosthenis Casastcrismorum Reliquix (Ber Seidel (Gcorraphical Fragments of Eratosthenes' (1799); Stiehle, 'Zu den Fragmente des Eratosthenes' (in Philologus, supplement ary, Vol. 2, Göttingen 1863); Suscmihl, 'Ges' Alexandrinerzeit) (Leipzig 1892)

ERAUZO, ạ-row'thō, Catalina de, Spanish American heroine: b. San Sebastian, Viscay 10 Feb. 1585 ; d. Cuitaxtla, near Orizaba, Mexico, 1650 . The daughter of a good family of Biscay, she was placed at an early age view to entering on a religious state. view to entering on a religious state. So
she attracted attention by her originality
character and her passionate loye of liberty. character and her passionate love of liberty. in consequence of a dispute with one of ho
superiors, Catalina, on 18 May 1607 being then superiors, Catalina, on 18 May 1607, being the
a novice, she scaled the walls and escaped to a novice, she scaled the walls and escaped
the woods, where, subsisting on herbs and roots, she remained three days and in that time transformed her garb into that of a man. Proceeding to Vittoria she found employment as amanuensis. Thereafter she wandered over great part of Spain, being employed many time male sex. After some years she embarked on a Spanish vessel bound for America as a member of the crew. On arrival in the New Worl she deserted and secured employment with of his affairs. woter mader adminsthich of his aftairs. After many adventures in whic cnlisted as a soldier and won distinction fignt ing. against the natives, winning the grade ensign. Her disposition led her into many scrapes, principally duels, in which she was not
always victorious. More than once she slew her always victorious. More than once she slew he she was repricved after sentence of death ha been imposed on her. Being gravely wounded
in a quarrel at Cuzco, Catalima belicved hersel in a quarrel at Cuzco, Catalma belicved hersel to be dying and longed to reveal her sex She revealed the secret to the priest who visited Carvajal to whom she related the story of her life, telling him she was willing to submit to examination by a committce of matrons, adding that she still preserved her purity. It wa proved by the matrons that she had spoken the then traveled to New Granada and sailed for Spain, arriving in Cadiz, 1 No 1624 HC fame had preceded her and she was enth11s astically received. In Madrid she was received by Philip IV, who granted her a life pensio of 800 crowns. She journeyed to Rome, wher SIII, wharrated her eventful history to Pope Urlal VIII, who gave her permission to dress in male
attire for the rest of her life. Returning to Spain she resided in Seville until 1630, when she set out for Mexico, where she served in th army for some years and afterward with string of pack-mules began trade betwec Mexico City and Vera Cruz. She was buricd
by herself, was published in Mexico. This Tobiography under the editorship of Joaqui the Fer was issued at Pais Alférez, scrita por lla misma con notas y piezas justi-
cativas.
ERB, Wilhelm Heinrich, German neuro eceived his education at the universities of Heidelberg, Erlangen and Munich. From 188 to 1883 he was professor of special pathology and therapy at Leipzig, thereafter removing in berg where he was appointed clinical director. Ie has made extended investigations on electro herapy and neuropathology. His publishe vorks include 'Tandbuch der Krankheiten de peripheren cerebro-spinalen Nerven' $(21 \mathrm{ed}$, marks 'Hand des verlangerten Marks' (2d ed 1878). 'Handluch der Elektrotherapic) (Eng ish trans. by Putzel, 1883) ; 'Ueber die neuer Entwicklung der Nervenpathologie' (1880) 'Dystrophia Muscularis Progressiva'
'Gesammelte Abhandlungen' (1910).

ERBEN, Henry, American naval officer New York, Sentember 1832; d. 1909. He wa in 1854 at the United States Naval Academ admiral in 1894, and was retired in the latte year. During the Civil War he served with Admiral Farragut in the Gulf of Mexico an on the Mississippi River with Admiral Dupont Amerin 1806-69 he was on duty in South he made deep-sea soundings in the Pacific afterward commanded the Pensacola in a trip ound the world, and in 1891-92 was command ant of the New York Navy Yard and of th cturean squadron in 183 -9 . He volutaily War
ERBEN, Karl Jaromir, Czech poet: Wion at the University of Prague was a leading figure in the Czech troubles of 1848 and two years later was appointed secretary of the 1851 . 1 inselim at Prague and archivist of the town in . In Prs he published ine intant orical work 'Regesta Diplomatica nec no spread through his volume of ballads, 'Kytice, and his collections of folksongs and popula melodies. In 1863-65 his 100 Slavic folk tale earnce him a reputation similar to that of th Grimm Brothers. He also edited the vernacula 'Cechische I.itteratur der Gegenwart' (Leipzig .
EREIUM, a rare metallic element occurrin in the form of a tantalate or silicate in the mincrals gadolinite, fergusonite and cuxenite, It as a phosphate in the mineral xenotime has the chemical symbol Er, or E, and an Thium $\mathrm{E} O$, has a pale rose color is infusibe and when strongly heated glows with a bril liant green light. It is not affected by wate but dissolves slowly in hot acids with the for mation of the corresponding erbium salts. Most of the salts are rose-colored and the haloid compounds are also deliquescent. The name
erbium is derived from Yterny, Sweden, where the mineral gadolinite is found. The recognition of erbium as a new element is atributed not yet been isolated

ERBT, Wilhelm, German biblical scholar: b. Berlin 1876. He was educated at Halle, Greifswald, Leipzig and Wittent)erg. He has held several pastorates and taught in various
seminaries. His works on Hebrew religion and semistary history has brought him an international repuBation) (1900); Jeremia und seine Zeit' (1902): 'Sicherstellung des Monothcismus' (1903) ; 'Isracl und Juda' (1903); 'Dic Urgeschichte (ler Bibel (1904) ; Dic Hebrāer) (1906); 'Elia, Elisa, Jona) (1907) ' (Handbuch zum Alten Testament) (1909); (Kirchen-
geschichte) (5th cd., 1913); (Das Marcusevangelium' (1911); 'Von Jerusalem nach Rom' (1912) ; Geschichte der Religion in der Alten Welt' ' (1913).
ERCILDOUNE, Thomas of. See Rhymer, Thomas.

ERCILLA Y ZUNIGA, âr-thêl'yà é thoonyè'gä, Alonzo de, Spanish soldier and epic poct: 29 . Madrid, 1594 . He was of noble family and was a close friend of the prince who afterward became Philip XI of Spain. His father died when the boy was less than a year old, and his mother, who had charge of the family estates and who was related to the royal families of several of the European countries, made
visits to Germany, Austria, Hungary and other visits io Germany, Austria, Hungary and other also succeeded in getting him appointed page at the court of Spain. Before he had reached man's estate he had seen much of the court and was one of the most traveled persons in
Spain. At the age of 22 Ercilla sailed for South America on the Spanish squadron sent out at the king's command. In 1557 he ac ont at the king s command. Hurtado e Mendoza from Panama to Lima An insurrection breaking out among the Arallcanian Indians of Chile, Ercilla joincd an expe
dition sent against them. The difficulties the Spaniards had to encounter, the heroic resist ance of the natives, and the multitude of gallant deeds by which the war was signalized, inspired the young and brave Ercilla with the idca of making it the subject of an epic pocm, to which
he gave the name (La Araucana.) While he gave the name 'La Araucana.' While Pineda, werc arrested ly the commanding officer and condemned to death. They spent the night in the death chapel; and in the morning their sentence was commuted to imprisoninent while the expedition lasted and final banishment from a short time and frequently distinguished himsclf for bravery in the remaining part of the campaign. Returning to Spain in 1562, during a two years' journcy, he visited Germany for the third time, Hungary, France and Austria
He was knighted and made Duke of Lernia oil his return to Spain. In 1575 he went to Italy his return to Spain. the Pope. Later he acain visited Germany, became a friend of the Emperor Maximilian and attended his coronation as King of Bavaria. Later he was sent on diplo
to have lost many of his friends and much of his property in his old age. He returned 10
Spain after having finished the first part of his epic. In 1570 he had marricd Maria Bazan a brated by him in various passages of his poem In 1569 the first 15 cantos of his poem appeared in 1578 a second part, and in 1590 a third par were added, making in all 37 cantos. The 'Araucana' is an historical epic in the octave measure exception of some episodes and a few fictions o the exact historical course of events. Hence he poem often assumes almost the character of a chronicle. In addition to its poetic merits, which are not few, 'La Araucana) is very valutons in the Spanish colonies of America. Ercilla is impartial even to his Indian enemies whom he admires. His literary work is good and his descriptions of times, manners and personages re vivid and bear the stamp of truth. His Barros Arana, 'Historia General de Chili) (Santiago 1884). Lope de Vega has taken from he epic of Ercilla the materials for his piece 'Araucana Conquered.'. The best editions arc hose published at Madrid in 1776 and 1876 and rice into French See Araucana La: Araut canians.

ERCKMANN-CHATRIAN, ěrk'män-shả-rê-äñ', the combined surnames of two Frenchmen, natives of Alsace, who collaborated in writing romances. Emile Erckmann: b. Phals899. Having completed his studies in the comhunal college of his native town, he went to ourg it 1847 because of a serious illness, he egan to turn his attention to romance writin during his convalescence. It was about thi ime (1848) that he met his collaborateur, Lour Gratien Ciiarles Alexandre Chatrian, 1890. Chatrian was a member of an old family f glass-work owners, and it was intended that he should follow the same craft. Instead of oing so, however, he left his native village nd became a teacher in Phalsbourg, where h madc the acquaintance of Erckmann. For severship were published in obscure newspapers oth in Strassburg and Paris, but about 1860 heir graphic romances of Alsace in the time of Napoleon I gained a rapid popularity. Their stories, though not possessing any particularly high literary value, were distinguished especially nd their clever characterizations.' Their pub shed works include 'L'Illustre Dr. Mathés' (1859) ; 'Contes de tat Montagne') (1860) ; 'Contes Fantastiques) (1860) ; 'Maitre Danicl' Rock' (1861) ; 'Les Contes des Bords du Rhin' Joucur de Clarinette' (1863) ; 'L'Ami Fritz' 1864) ; 'Histoire d'un Conscrit de 1813' 1864) : 'Madame Théresc) (1864); 'Waterloo' (1865); 'Histoire d'un Homme du Peuple) (1865); 'La Guerre) (1866); (La Maison Foresticre' (1866); 'Le Blocus' (1867); 'HisPolonais' (1869) ; 'Histon d'un Sous-Maitre)
(1869) : 'Histoire du Plebiscite) (1872) ; 'Le Deux Frères) (1873); (Une Campagne en Kaby (Hic) (1874); (Le Brigadier Frédéric) (1874) Fix' (1876) ; 'Souvenirs d'un Ancien Chef de Chantier' (1876); 'Contes Vosgiens' (1877) 'Le Grand-Pére 'Lebigre' (1880); 'Quelque Mots sur L'Esprit Humain' (1880); ' 'Les Vicu de la Vieille' (1881); 'Le Banni' (1882). Some of these have been collected into groups,
in accordance with their contents: (Roman Nationaux' (1867) ; 'Contes et Romans Fopuaires' (1867) ; 'Contes et Romans Alsaciens' (1876). They also dramatised successfully som of their novels: 'L'Ami Fritz' (1867); 'Le Uif Polonais' (1869, known in its English ada dation by L. Lewis as 'The Bells' and considerable success by Sir Henr rving) : 'Madamc Thérèse' (1882); 'Les Deu (reres) (1884, known in its dramatised form a 'Les Rantzau'). English translations are available of practically all these publications. The and of some of these a collection was made (12 vols., Stuttgart 1882). After Chatrian death Erckmann wrote a few books alone, non of which, however, achieved much success. I regard to their methods of collaboration it be
came known that when the two friends met they came known that when the two friends met the scheme of a work; then Erck mann wrote it. Chatrian corrected it, and somc times put it in the fire. Sometimes Erckman would even be required by his friend to writ his story over three times. Chatrian also acte as business manager, made all contracts and a break occurred hetween the two old friend which led to a law suit, but was finally com promised. (Sce L'A mi Fritz). Consult Acke .' (Erckmann-Chatrian' (in La Revue de Par (Frel. XIX, No. 6, p. 347, Paris 1912); Anon, XL, p. 494, New York 1915) ; Claretie, J., 'Erck mann-Chatrian' (in 'Celebrités Contemporaines, Paris 1883) : Hinzelin, E., 'La Verité sur Erck mann-Chatrian) (in La Revue, Ser. VI, M. S
LXXXIX, p. 310 , Paris 1911); Velde, M. LXXXIX, p. 310, Paris 1911); Velde, M. M. London 1891)

ERDELYI, čr'dâl-yể, János, Hungaria poet: b. Kapos 1814; d. 1868. In 1848 he be came director of the national theatre at PC and in the following ycar was appointed to th chair of philosophy at Sarospatak. He publishe a collection of popular songs of Hungary 'Nepdalok és mondak' (3 vols., 1848). In 185 he published a collcetion of Hungarian proverls His smaller works have been issued in Ger man under the titles 'Bahnen und Palmen
ERDMAN ACT. See Arattration, IN UUSTR1AR
ERDMANN, David, German theologian: b Guistebiese, Brandenburg, 1821 ; d. 1905. Ber in and in 1850 was appointed assistant preache at the caticedral there. Six years later he wa appointed to the chair of theology at Königsber in 1864 he was made superintendent-general consistorial counselor In 1900 he retired. Hi published works include 'Lieben und Leide
der ersten Christen' (1854); 'Die Reformation und ihre Märtyrer in Italien' (1855); 'Luther Commentary onzollern' (Samuel' in Lange, 'Bibelwerk' (i873). Consult Eberlein, 'Aus einem reichen eben: Blătter der Erinnerung an David Erdmann' (Berlin 1907).
ERDMANN, Johann Eduard, German phi opher: b. Wolmar, in Livonia, 13 June 1805 . Halle, 12 June 1892. He studied theology the universities of Dorpat and Berlin, com-
ng there under the influence of Hegel (q.v.) In 1829 he became a clergyman in his native wil. In 1832 be returned to Berlin, became a ember of the philosophic faculty of the university in 1832 , and in 1836 professor extraordibing appointed ordinary professor in of Halle, was one of its best-known and most successful eachers and lecturers. His numerous philosophiwritings, characterized for the most part their Hegelian tendencies, were widely read, some of them in his attempt to combine a rictly scientific attitude toward his subject ith easy style and clear presentation. His ritings include (Versuch einer Wissenschaft ichen Darstellung der Geschichte der Neueren ungen üler Glauben und Wissen etc); (Berlin 1837) : 'Leib und Seele' (Halle 1837) ; 'Natur nd Schöpfung.' (Leipzig 1840); 'Grundriss der Logychologie' (Leipzig 1840); 'Grundriss der Locik und Metaphysik) (Halle 1841) (${ }^{\text {(Ver- }}$
mischte Aufsatze) (Halle 1846); (Philosomischte Aufsätze) (Halle 1846); 'Philoso851) : (Psychologische Briefe) (Leipzig 1851) Vorlesungen über Akademisches Leben und tudium' (Leipzig 1858); 'Grundriss der Gcchichte der Philosophie) (2 vols., Berlin $1865-$ of The last has been translated as 'A History don 1890). There is also a translation of anther one of his works by B. C. Burt, 'Outlines of Logic and Metaphysics) (London 1896). Erdmann also edited the works of G. W. von lecturiz (2 vols., Berlin 1840). Some of his ectures have been collected under the title
'Ernste Spicle) (Berlin 1855): many others have been printed separately as pamphlets. His sermons, given between $1846-67$, were collected
in two volumes (Halle 1850 and 1867), while in two volumes (Halle 1850 and
ERDMANN, Otto Linné, German chemist b. Dresden, 11 April 1804; d. Lcipzig, 9 Oct. and Leipzig, first medicine and then chemistry, and was oraduated from the latter institution in 1824. In 1825 he began the teaching of Chemistry at his alina mater, a profession to hich he devoted his entire life and in which brilliant lecturers of his day. In of the most ame an extraordinary professor and in 1830 was given the chair of technical chemistry hich he occupied until his death. He also acted as rector of the university at various
times, notably so in $1848-49$ when he managed mes, notably so in $1848-49$ when he managed harmed grcat through the trouhlous times of the German revolution. With the exception o few years devoted to travel he spent practially his entire life in Leipzig, taking a deep
interest in art and its public affairs. As carly as 1835 he was elected a director of the Leip man railway, for the development of which he did much and in whose affairs he was activel interested throughout his life. His chief claim to fame, however, rests on his chemical re searches which embraced a wide range of sub jects. He examined minutely the technology o
nickel, and described some of its compounds analyzed a number of minerals and slags, and experimented on several other points of inor ganic chemistry. In inorganic chemistry his hief research is upon indigo, in the course of direction formed the principal found in this most of the wonderful later discoveries in con hection with indigo. The most important wor in which he engaged was the exact determinaion of atomic weights. In company with Marchand ($\ddagger . v$. . he made determinations copper, mercury and some others, and his num hers have been fully confirmed by subsequent experimenters. In 1828 he founded and from then on conducted the Journal fur Technische were published o Journal fiur Prabtische Chemie After his death it was continued by others and still one of the most important scientific pubjcations of its kind; the name Erdmann con inues to be used in connection with the pub (Lelirbuch der Chemie) which has since then gone through a number of editions. Of his Grundriss der Allgemeinen Waarenkunde, etc.,' the 15 th revised edition was edited by E. Renuenovsky (Leipzig 1915). Of note is also 'Uber das Studium der Chemie' (Leipzi
1861). Consult Berichte der Deutschen Chem ischen Gesellschaft (Vol. III, p. 374, Berli 1870) , Journal of the Chemical Society of London (Vol. XXIII, p. 306, London 1870).
EREBUS, in Greek mythology, the son o Chaos and Darkness. He married his sister Night, and was the father of the Light and Day The Moirx, or Fates, by some are called his and plunged into Tartarus, because he aided the Titans. From him the name Erebus wa siven to the infernal regions, particularly that part of it designated as the abode of virtuous hades, whence they pass over immediately to Schoemann ed., Berlin 1868).
EREBUS, Mount, an active volcano on the cast coast of South Victoria Land, in lat. 78 S., rising over 13,000 feet above the sea. fter one of his vessels. His progress furthe south was barred by a wall of ice. In mor recent times its vicinity has served as winte quarters to the Antarctic expeditions of Cap R. F. Scott (1901-04) and of Sir E. H. Shackle one of the and as a result it has beconinvestigated regions of the Antarctic. Durin Shackleton's expedition an ascent was made in of the Discovery) Shackleton, E. H., 'The Heart of the Ant arctic) (2 vols. London 1909); Zimmermann,
M., 'La Terre Antarctique de Victoria' (in
Annales de Geographie, Vol. XVIII, No. 98, Annales de Geograt
F 97, Paris 1909).
EREC AND ENID, a metrical romance dealing with the adventures and love of one of the knights of Kin
is Chresticn de Troyes.
ERECH, ërèk, an ancient city of Babylonia, on the site of the modern Warka. It was of great extent and of high commercial
importance in the Parthian period. Recent ex cavations have brought much to light regarding its shrincs and ruling dynastics. It appears to
have been the scat of at least two principal have been the seat of at least two principal
dynasties. Marduk is said to have been its founder according to Assyrian and Babylonian records where the city is often mentioned. Documents dating from the period 721-710 B.C have recently been discovered. The city conBabylonia). Consult Loftus, 'Travels and Rescarches in Chaldea and Susiana, with an Account of the Excavations at Warka' (Lon-
don 1857), and Meyer, E., 'Geschichte des don 1857), and Meyer, E. 'Ges
Altertums' (3d ed., Berlin 1913).

ERECHTHEUM, è-rēk-thè üm, the temple of Ercchtheus (q.v.) on the north side of the
Acropolis (q.v.) at Athens. It was built in Acropolis (q.v.) at Athens. It was built in
honor of Athena, Poseidon and Zeus. The name of Erechtheus is associated, as a local hero or demigod, with that of Athena. In this temple was preserved the oldcst existing statue of Athena, which was supposed to have fallen
from heaven and the sacred olive-tree created by Athena as a gift to the city, of which she is worshipped at Athena Polias, the protector of the town and state. The building is one of the finest remaining examples of Greek architecture, having been rebuilt after the Peloponnesian War in pure Ionic style after the origina
building had been destroyed. Its ground plan s unusual, resulting from the union under one roof of three separate chapels, or halls of wor ship. The porch of the caryatides is one of its distinguishing features. In this porch the place of columns is taken by colossal figures of women whose heads support the capitals on was described in considerable detail by Pausanias. It is one of the best preserved build ings on the Acropolis, in spite of the hard usage to which it was put by the Turks and other
invaders. In comparatively recent times it has been restored to some extent, not entirely with pleasing results. Consult Carroll, M., ed., 'The Attica of Pausanias' (New York 1907); Fergusson, J., 'The Erechtheum' (in Transactions of the Royal Institute of British Architects,
London 1875-76) ; Fowler, H. N., 'The Eondon 1875-76) ; Fowler, H. N., 'Thi ological Institute of America, American School of Classical Studics at Athens, Vol. I, 1882-83, Pausanias's Description of Greece) (6 vols, London 1898); Frickenhaus, A., and Washburn, Erechtheum' (in American Journal Archeology, Scr. II, Vol. X, p. 1, Norwood
1906) ; Gale, E., 'The Erchtheum)' (in Architectural Record, Vol. XII, p. 498, New York 1902) ; Gardner, E. A., 'Ancient Athens' (New at Athens' ' (London 1827); Kolbe, W., 'Dic

Bauurkunde des Erechthcion vom Jahre 408^{1} (in Kaiscrlich-Dentsches Archeologisches Institut, Mittheilungen, Athcnische Abtheilung, vol. XXVI, p. 223, Athens 1901) ; L, copold, J., 'A. A.
das Erechtheion' (Munich 1878); Quacst, das Erechtheion' (Munich 1878); Quacst, A. Schultz, A. W., and Gardner, E. A., 'The North Doorway of the Erechtheum' (in Journal of Hellenic Studies, Vol, XlI, p. 1, London 1891) ; Stevens, G. P., 'The Restoration of the Frechthcum' (in Putnam's Monthly, Vol. I, p. N.
New York 1906) ; Stuart, J., and Revelt, N. 'The Antiquities of Athens' (London 1837); Thiersch, F., 'Uber das Erechtheum, etc.') (in Königlich-Bayerische Akademie der Wissenschafter, Abhandlungen, Philosophisch-1
lologische Klasse, Vols. V-VI, Munich 1849-52),
Weller, C. H., (Athens and its Monuments (New York 1913)
ERECHTHEUS, ē-rèk'thūs, or ERICHTHONIUS, Attic hero or demigod, worshipped in the earliest period of Athenian history. He was brought up by Athena, who placed him while yet a babe in a chest, which was en-
trusted to Agraulo., Pandrosos and Herse, the daughters of Cecrops, with the strict charge that it vas not to be opened. Unable to restrain their curiosity, they opened the clest and discovering a child entwined with serpents, were punished with frenzy and threw them-
selves down the most precipitous part of the Acropolis. Afterward Erechthcus was the chief means of establishing the worship of Athena in Attica, where he instituted the Panathenæa in her honor. He was a god of agriculture and had a joint temple with Athena on the Acropolis. His connection with the serpent is.
probably that common to the culture gods; Consult Farnell, 'Cults of the Greck States' (Oxford 1896); Frazer, 'Pausanias' (London 1913). See Erechtheum.

EREGLI, ā-rā̀glê, Turkey (the ancient Heracleia Pontica), a scaport town of the Kastamuni vilayet, 125 miles east of Constan-
tinople, on the Black Sca. Coal is mined in the neighborhood and shipped at this point, about 750,000 tons being the annual output. The harbor is known as Zoungundalk. Pre
vious to the war of 1914 French capitalists vious to the war of 1914 French capitalists held a controlling interest in the coal mines of
the district. Pop. 6,500 . PREMACAUSIS,
EREMACAUSIS, čr'č-ma-kâ'sis, slow combustion (from Greek erêma, gently, and kausis,
burning), a tcrm cmployed by Liebig to denote the gradual combination of the constituents of a combustible substance with the oxygen of the air.

EREMIT VON GAUTING, àrě̀-mèt forn gowting. See Hallierg-Broich, Theodol
eremita, Johannes. See Cassianus.
EREMITES (eßr'e-mīts) OF SAINI FRANCIS, and EREMITES OF SAIN Catholic Church. The order of the Eremites of Saint Francis de Paula was founded by Francis. a native of Paula, in Calabria, 1436, and had
there its first housc It received the approval of there its first house. It received the approval of the Holy See 1474; it is properly styled Order
of Minim Hermits of Saint Francis de Pall of Minim Hermits of Saint Francis de Paull ${ }^{\text {(Ordo }}$ de Paula). Their founder chose the name

Minims" (minimi, least, smallest to keep the Drethren ever in mind of the Christian humility
io which they were vowed. The order of
Eremites mites, con isted originally of hermits, but they adopted the cenobite rule of Saint Austin with ine approval of Gregory XI, 1373. This order was confined to the Spanish P'eninsula.
ERETRIA, Greece, an ancient Ionic trading Eub colonizing town on the southwest coast of in 490 , which was destroyed by the Persians recent c.c., and reavaitions and explorations made by the American School at Athens ($1890-95$) and The Greck Archæological Society have resulted In finding the theatre and old temple and many Persibuildings, together with remains of prePersian times. Eretria was the home of the tory of ancient Greece; 'Papers of the American School at Athens.
ERFURT, èr'foort, Germany, (1) town in the Prussian province of Saxony, formerly the Capital of Thuringia, and a lortress till 18z3, wituated on the river Gera, about 13 miles turies Erfurt was a flourishing and 16th cenmanufacturing place, but its university made it one of the most famous of German cities. The university, established in 1378 , was suppressed 1816. Its trade and manufactures have its populationsed in recent times along with is that of Hower-growing, plants and seed being exported in cnormous quantities to almost all parts of the world. The most important edifice the cathedral. The large bell called Maria weiosiosa, made of the finest bell-metal and the towers. The cell in which Luther lived While an Augustinian monk, from 1505 to 1512, Containing his Bible, portrait, etc., was in the Martinsstift or orphan-house into which the old ugustinian convent had heen converted, but Las destroyed by fire, along with the relics of was founded as early as the 6th century, by a Certain Erpes. It was not a frec Imperial city, Sut always maintained a sort of independence. aint Boniface established here an episcopal see. Which 1483 it concluded a treaty with Saxony, by tection. It agreed to pay an annual sum for pro-
I7th contury the Elector of Mainz obtained possession of it. The Congress of Erfurt (Scptemler-Octoher 1808) was atmad by Napolcon, Alexander of Russia, and taken German sovereigns. In 1813 the town was bardment in 1814 it was arter a severc bomthe Congress of Vienna. Pon. 111,403. (2) The hovernment of Erfurt of which it is the capital has an
530,775

Its operation is based on the fac. that the atigue of a set of muscles, it accurately meas ured, will show the extent of the genera weariness. The physical deterioration of many both physicians and instructors; if by means of this instrument the exact power of endurance of each pupil can be demonstrated, the cours of study can be so arranged as to suit different Also a machine for registering the exact effor made in any feat of strength, testing the com parative and relative strength of various set of muscles.

ERGOT, êrgôt, according to the United States Pharmacopecia, "is the sclerotium of the
fungus Claviceps purpurea replacing the seed of the rye." Thus the Pharmacopocia calls for certain definite kind of ergot for medicinal use sitic fungi that infest not only the rye, but number of other grasses; other species of the same genus (Claziceps), and other genera Both the botanical and physiological relation ships of these forms are close. Turplish grain ike masses, onc-half to threc-quarters of an inch long and one-eighth to one-quarter of an inch wide, and somewhat resembling large grains of ryc. Microscopically the ergot is made up of the closely matted mycedum of the fungus, which
seed.
The fungus is propagated by means of minute spores. These are blown about by the wind, or carried about by insects and lodg upon rye or other grasses. They there ger mass filled with spores of nother typo th conidia. These in turn may be carried by insects to other grasses. As the fungus grows and, little by little, replaces the tissue in the grain, there results a brownish to blackish ent shapes. These are collected with the differ ent grasses and may be the cause of various types of poisoning in cattle. The fungus grow ing on rye constitutes the ergot of commerce wars. The many ycars. The principal sources of ergot at the
prescnt time are Spain and Russia.

Chemically considered armot is
mplex body and it cannot be said extremely at the present time a full knowledge of its composition has been gained. It contans large quantities of an incrt fixed oil, a resin and carliest chemical investigation to the present have been called by no less than 50 or 60 different names, among these being ergotine, ectboline, crgotin, comutinc, sphacelic acid, ergotic acid, etc. The unsatisfactory condition of organic drug analysis accounts for these varying re-
sults and confusions. The investigations of Kobert (1890) and his students are the first of real merit, and Kobert isolated a body cornutine to which he ascribed the chief activity of ergot. More recently, however, Jacobi, a student of Schmiedeberg, has isolated two he claims, the active principles. Taken internally, ergot has the singular
causing it to contract. In this manner it produces a number of reactions on those organs which are rich in this type of muscular fibre.
Acting on the heart and blood vessels it conActing on the heart and blood vessels, it contracts the cardiac muscle and the arterial walls, contraction and a marked rise in the bloodpressure. It also stimulates the unstriped muscular tissue of the stomach and intestines, occasionally causing purging with violent peristalsis. The organ in the body containing the
greatest amount of unstriped muscular tissue is greatest amount of unstriped muscular tissue is
the iterus and naturally the action of crgot would be most forcibly manifested in this organ. It here causes contractions, the uterus becoming hard and pale and forces the blood out of the uterine blood vessels. During pregnancy the
action is much more pronounced, since the action is much more pronounced, since the
uterus is so much more dilated. Ergot has many applications in medicine, but its chicf uses are to control blood-pressure and to treat uterine disorders. Ergot is usually given as a fuays, as wine of ergot, etc.
ERGOTISM. In the articl
ERGOTISM. In the article on ergot it has been shown that there are a great many closely varieties of grasses. A number of these infected grasses belonging to the ergot family produce, when eaten by cattle, forms of acute and chronic poisoning. These are characterized by changes, particularly in the blood veswith gangrene of the skin and at times sympoms of paralysis of the extremities. In years in which unusual humid conditions have per mitted the wide and abundant growth of thes parasitic fungi, large areas of pasture land have ing of cattle, almost resembling epidemics.
In Europe, where the eating of rye bread is wich more common than in this country, par icularly in Russia and Italy, cases of chronic oisoning by ergot occur in man from eating smptoms here are those referable to change in the blood vessels of different parts of the body, with secondary consequences. Thus, in some, there is a loss of touch-scnsation in the to formation af ulcers and may go on to the formation of ulcers and gangrene. This
is the result of the cutting off of the blood supply to the periphery of the body by the contracting influence of the poison on the walls of the blood vessels. In some cases disease of the the artificially induced anemia with be due to the artificially induced anxmia with secondary degenerations in the columns of the cord. This
disease, called pellagra, closely resembles a toxic neuritis or locomotor ataxia. Treatment consists usually in a change of food, local antiseptics, tannin used internally to neutralize the alkaloids of the ergot and castor oil. Hot
water is often applied locally to dilate the hlood water is often applied locally to dilate the hlood
vessels and chloral hydrate has been found serviceable when taken internally. See Ergot; Pellagra.

ERIC, ê'rik or â'rik, the name of several Danish and Swedish kings. Eric VII, king of
Denmark: b. 1382; d. Rügenwald 1459: the Denmark: h. 1382; d. Rügenwald 1459; the son of Juke Wratisiaw of Pomerania, he was of Denmark, and in 1412 molnted the throne of

Denmark, Norway and Sweden, united by the Treaty of Calmar. Cruel and cowardly in character, he lost Sweden in 1437 through a revolt of the peasants of Dalecarlia, and in 1439 was
deposed also in Denmark. ERIC VIII, "THI deposed also in Denmark. Eric VIII, "THE
Saint," became king of Sweden in 1155, did much to extend Christianity in his dominions and to improve the laws, and fell in battle with the Danes in 1160 . Eric XIV, the last of the name who reigned in Sweden, succeeded in 1500 to the throne of his father, the great Gustavus Vasa, and at once began to exhibit the folly that peasant girl, who acquired an influence over him which was ascribed by the superstitious to witchcraft; she alone was able to control him in the violent paraxysms of blind fury to which he was subject. His capricious crueltics and
the disastrous wars that followed on his follics at length alienated his subjects, who threw on their allegiance in 1568 and elected his brothcr John to the throne. In 1577 he ended his miserable life half voluntarily by a cup of poison, He had a genuine love of letters, and solacion
his captivity with music and the composition his captivity with music and the composition-
of psalms. His story has been worked into dramatic form by Swedish poets; in German by matuc form by Swedish poets; in German ${ }^{\text {Kin }}$,

ERIC THE RED, the colonizer of Greenland: b. Norway about 950 . After committing sceking asylum as a murderer, he reached, agecnsceking asylum as a murderer, he reached Grect
land (which from the 11 th century belonged to Norway). Here he built a chief town, called Gardar, which he settled with Norwegiars. His son, Leif Ericson (q.v.), introduced Christianity, but after flourishing for about four centuries the colony was wiped out, probably by some such
plague as black death, although recent autlorities attribute its disappearance to faminc. Consult Nansen's, 'In Northern Mists: Arctic E plorers in Early Times) (New York 1911).

ERICACEEE, èr-ī-kā'sē-ē, the hcaths, à family of dicotyledonous, sympetalous shrubs or under-shrubs with small leaves, evergrecn some of the genera, rigid whorled or opponged
and without stipules. The flowers are arrange in various styles of inflorescence, and are generally very beautiful, the heath probably excelling all other families in the universal bcauty of its blossoms. Different writers number the genera from 40 to 70 , and the species from 1 , disto upward of 1,300 . They are of very wide dibut
tribution. In North American flora, at least 20 genera are represented, among them such plants as the azaleas, rhododendrons, kalmias, trailing arbutus and the heaths, and they are specially abundant in western Europe. They love the are found in the tropics they are generally confined to the mountainous, upland regions where the climate resembles that of the temper where the

ERICHSEN, SIR John Eric, English silrgeon: b. Copenhagen, Denmark, 19 July 1818 , d. Folkestone, England, 23 Sept. 1896. He bccame a member of the Royal College of Sur at University College. In 1866 he succecded Quain as professor of clinical surgery in the same collcge, a post which he held till his retirement in 1875. He was appointed president of

JOHN ERICSSON

Collereath; in 1880 was president of the Royal College or Surgeons, and was created a barone ' I 1895. His most important work was hi ard publication editions, and has been translated into several anguages and a pirated copy of which was pre ented to every medical officer in the Federal rmy during the American Civil War. H Spine) (1875) pine (1875)
ERICHT, ër'iHt, Loch, a lake in the Grambetween the counties of Perth the boundary it is 60 miles northwest of Perth. It is $143 / 8$ cigh long, from one-quarter to one and onecighth miles wide, with a maximum depth o feet, and 1,153 feet above sea-level (the wo outlets one flows into brtain) It ha one into Loch Rannoch. A cave at the south end near the mouth of the Alder, afforded refuge to Prince Charlie after the battle of
ERICHTHONIUS, in Greek mythology, the son of Dardanus and Batea, and grandson of Zeus. He obtained the kingdom of Troy by
ihe death of his brother Ilus without children He married Astyoche, the daughter of Simos y whom (or according to some by Callirrhoe, the daughter of Scamander) he became the honius Tros. The myth or tradition of Erich hat of Erectheus

or

ERICSON, Leif, lif ěr'ik-son, Icelandic disof Eric According to Sagas he was the son he 11th century discovered a transatlantic counwhich which he called Vinland, from the vines tlement was established, but whether the coast was Labrador, Newfoundland or some region arther south has not been decided. A much dealized statue of Leif Ericson adorns ComAonwealth Avenue, Boston, the work of Mis sh Reditney, the sul Cornization of America (London 1891).
ERICSSON, John, American engineer and inventor: b. Wermland, Sweden, 31 July 1803 ;
d. New York, 8 March 1889 . He entered the wedish army in 1820, but resigned in 1826 an oon became known as an inventor. In 1828 he made the first application to navigation of the water to the boiler; later he brought out a elf-acting gunlock by means of which naval cannon could be automatically discharged a ny elevation without regard to the rolling of and in 1836 invented designed a caloric engine was unable to prove the priority of this vention, however, and received but one-fift f the $\$ 100,000$ which the British Admiralty paid for it. In 1839 he supplied engines and screw At the first steam vessel that crossed the ome interested in bish Admiralty did not beo the United States in 1839 and two years ater built the screw-propelling warship Princeon for the government, the first ship to have engines and boilers below waterline. Thi was the pioncer of modern naval construction
and the foundation of the steam marine of the world. The achievement, however, which made him most famous in the United States was which was built under a patent granted by the United States government to Theodore Ruggles Timby (q.v.), the inventor of the revolving turret, etc; it was launched 100 days after its keel was laid, and arrived in Hampton Roads just in time to defeat, on 9 March 1862, the Confederate ironclad Merrimac, which had destroyed was soon built and did important service during the remainder of the war. In his later life Ericsson became interested in torpedoes and in the development of an engine taken to Sweden on the cruiser Baltimore, and interred with imposing ceremonies. The centenary of his birth, 31 July 1903, was obscrved in New York by the unveiling of a bronze statue of the inventor in Battery Park and in Worcester, Mass. A magnificent memorial was erected sult his 'Life) by William Conant Church (New York 1890).
ERICSSON, Nils, Swedish engineer: b. Stockholm, 31 Jan. 1802; d. there, 8 Sept. 1870. He was a brother of John Ericsson (q.v.). He received the appointment as colonel of the Naval government railroad construction 1858. Among his engineering achievements were the construction of the Stockholm docks, the canal between Lake Saima and the Gulf of Finland and the tan Canal sluices.
ERIDANUS, e-rid'a-nus, a river famous in mythology, mentioned in the return of the Argo-
nauts. It is located in northern Europe and by some said to mean the Rhone, by others the Rhine, but generally thought to refer to the Po, in Italy. When Phæthon was struck by the thunderbolts of Zcus he fell into this riverand his three sisters, the Heliades, lamented did not cease to weep for him even in this condition; and their tears falling into the water of the river became transparent amber. The ancient southern constellation of the "River," "Eridanus."
ridanus.
ERIE (Ind., wild cat), an American Indian tribe which formerly held the east and southeast shores of the lake known by their name, and now included in the States of New York, Pennsylvallia and Ohio. They were of Iroquoian tock, but in 1656 were nearly anniniace the after incorporated with the Senecas.

ERIE Kan city coun
County, 120 miles cast by south of Ncosho on the Atchison, Topeka and Santa Fe and the Missouri, Kansas and Texas railroads. It is surrounded by a good farming country; and contains a large oil refinery, an ice factory, a min-eral-water plant, Hour-mills, grain elevators and fields nearby. The water works and electriclight plant are owned by the city. Pop. 1,300.

ERIE, Pa., city, port of entry, county-seat Erie County, on Lake Erie, and on the Lake Shore, the Pe 85 mia, the Erie and

Buffalo, 100 miles northeast of Clevcland. Erie is on a bluff having a good view of the lake, is one another, and has several large and attractive parks. It is lighted with electricity, and has a bountiful supply of water from the lake. The peculiarly advantageous location of Erie has given it high rank as a shipping and mannfacturing point. It has the largest land-locked harbor on Lake Eric. The harbor has been greatly improved, and is now five miles long by
one mile wide, depth 9 to 25 feet. Presque one mile wide, ample protection; three lighthouses stand at the entrance to the harbor, and substantial wharves, where merchandise is transferred directly from The principal industries are manufactures of iron, steam cngines, machinery, car-wheels, carwork and stoves; flour and grist mill products, brick, leather, organ, pump, furniture and various kinds of woodwork factories, petrolcum re-
fineries, electrical supplies, and paper. All told, there are 464 manufacturing plants, representing in the aggregate over $\$ 40,000,000$ capital, employing over 16,000 people who receive upwards of $\$ 6,500,000$ annually in wages, and producing an annual output valued at $\$ 30,000,000$; the value added by manufacture being about $\$ 13,000,000$. bituminous and scmi-hituminous coal, iron ore, petroleum and manufacturing products and these are conveyed by railroads, steamboats and sailing vessels that ply regularly between Eric
and other ports on the Great Lakes. Over 1,400 and other ports on the Great Lakes. Over 1,400
vessels enter and clear annually. Erie ships more than $1,500,000$ tons of coal and receives over $1,000,000$ tons of ore every year. Among the notable buildings are the city hall, union depot, government building (including postoffre, custom-honse and other departments),
State Soldiers' and Sailors' Home on Garrison State Soldiers and Sailors Home on (rarrison1
Hill, Hamot Hospital, Saint Vincent Hospital. Protestant Home for the Friendless, United States Marine Hospital and Academy High School. Near the city is a memorial in the form of a blockhouse, erected by the State, in
honor of Anthony Waync. The city is said to ship more freshwater fish than any other port in the world, and to be the leading city in the United States in the output of engines and boilers, has excellent public and private schools, a public library, daily and weekly newspapers,
three national and scveral savings banks banking institutions have a total capital and surplus of $\$ 3,700,000$ and deposits aggregating over $\$ 16,400,000$. Erie occupics the site of the old French fort, Presque Isle, built in 1749 ; was laid out as a town in 1795; had a portion incor porated as a borough in 1805 ; and the whole
was given a city charter in 1851. It was the headquarters of Commodore Perry in the War of 1812; the flect with which he defeated the British in the lattle of Put-in-Bay (10 Sept. 1813) was built and cquipped here. Natural gas was discovered in 1889. Pop. (1910) 66,525;

ERIE Fort Sce Fort Erie
ERIE, Lake, the most southern of the Great akes of North America; situated between lat. $83^{\circ} 25^{\prime} \mathrm{W}$. It lies hetween lakes Huron and Ontario and is bordered on the north by Can-
ada, on the east and south by New York, Pennsylvania and Ohio, on the west by Ohio and Michigan. Its greatest extent is northeast and
southwest; it is about 245 miles long, 50 miles wide (from 28 to 58) and has an area of about 9,600 square miles; is 573 feet above sea-level, 8 fect below Lake Huron; has a maximum o 210 feet and an average depth of 100 feet. It receives, through the strait, Detroit River, the waters from all the other Great Lakes except
Ontario; and the chief streams cxclusive of the waters from the Great Lakes which flow into it are the Grand from the north, the Maumee from the west, Sandusky, Huron and Cuyahoga from the south. Its outlet is Niagara
River, which flows into Lake Ontario at an clevation 326 feet lower than that of Lakc clevation 326 feet lower than that of Lake
Erie. Some of the indentations are the bays of Sandusky and Malumee, on the south coast, and Long Point Bay on the north. In the western part is a group of islands, some of which are Point Pelce, Kclly's, North, Middle and the Great Lakes and dangers to navigation arc increased by the heavy ground-swell. The destruction of lakes is largely due to filling from deposits brought by inlets or tributaries; every particle of sediment brought into a lake tends changes in outlets. Where the Niagara Rives emerges from Lake Eric there has been but little change for centuries. It flows through a plain, and the channel is to-day apparently what it was hundreds of ycars ago; 1 "Niagara is wearing back its falls toward Lake Erie; and in given time, as a result of this work, Lake Erie." The importance of Lake Erie for commercial purpose has been greatly enhanced by its canal connections which are important links in the watcrway from East to West. The ohstacles to direct navigation from the Atlantic; ohstacles to direct navigation from the Atlantic,
the Barge Canal connects the lake by a short route with the Hudson River; canals crossing Ohio connect the lake with the Ohio River. There are many excellent harbors, not all of of the principal ports arc Buffalo, Eric, Clev of the principal ports are Buffalo, Eric, Clevenear Sandusky on 10 Sept. 1813 took place the Battle of Lake Erie (q.v.). The Americans were successful and the result was most int portant to the United States; it had much to
do with the regaining of the territory of Michigan, which at the time was in possession of the British. Consult. Russell, 'Lakes of North America): Smithsonian Annual Report, 'Modification of Great Lakes by Earth Move-
ment' (1898). See Great Lakes.

ERIE, Lake, Battle of, 10 Scpt . 1813: a naval battle which annihilated the British fleet on that lake and gave the Americans thei
northwest at the Treaty of Ghent. In 1813 it northwest at the Traty of Ghent. In northwest from the British, who had captured Detroit and were building a fleet at Maldert, nearby, to control the lake, depended on wread ing the control from them; and Oliver Hazald Perry spent from 27 March till September buid ing a rival fleet at Presque Islc, now Eric, Pa guns; the Niagara, Capt. J. D. Elliott, 20 guns;
the Caledonia, three-gun brig; five two-gun Schooners and a one-gun sloop; in all 54 guns
with 714 pounds metal at a broadside. The British had six vessels averaging much heavicr with 63 guns averaging much lighter - about 30 pounds to a broadside; but most of them who far longer range than the American, hose policy therefore was close action. The Crews were about equal, some 500 each. The lay, a veteran of Nelson's; two of the cap tains were veterans also. The fleets engaged off he islands north of Sandusky Bay, ncar noon 10 September. Perry in the Lazerence, with Wo gunboats, came to close quarters shortly British would the whole feet had followed, ut for some reason (hotly disputed and a sore oint for many years) the other vessels kept off nd played away at long range, while for two durs the British vessels concentrated their fire cver known on the occan; of 103 officers and men, but 20 were unhurt; the vessel was literally shot to pieces, and the very wounded were killed on the surgcon's board by the crashing balls. Seeing that no more could be done with tenantry turned over the command to a licuthe Niagara, now tardily drawn nearer, brought that and the rest into close action, and in 15 minutes (about 3 P.M.) forced the entire British fiect to surrender. The latter was in a dreadful Condition, too; the English had fought wilh disabled or dead. The a third of its force was 27 killed and 96 wounded; British, 41 killed and 94 wounded. The battle raised Perry to the summit of naval fame, justly, for no victory was ever more due to the genius and energy
of one man, and few naval battles have had of one man, and few naval battles have had slain officers were buried at Put-in-Bay Island in 1858. Maclay's 'History of the Navy' (Vol. (1, 1894); Spears' 'History of Our Navy' (1899) ; Roosevelt's 'History of the Naval War ${ }^{0}$ I 1812 ' (1882); Adams, Henry, 'History of

ERIE CANAL. See Canals.
ERIE RAILROAD. Chartered 24 April Construct a railroad from Lake Eric to the kadson River, the New York and Lake Erie of $\$ 3,000,000$, the credit of the State being exended to a like amount. The charter provided any the road shonld make no connection with any railroad in New Jersey or Pennsylvania vided that it should run through the southern tier counties of New York. This plan was in Recordance with the idea advanced by W. C. Redfield in 1830 when he proposed a railroad fom the Atlantic to the Mississippi River. His toln was that it should be a great national road by follow the so-called "Appian Way" advocatcd urther the development of what then constituted the United States.
In 1841, the railroad was opened from PierYont, at the extreme southern point of New Cork State on the Hudson River, inland to

Opposed as it was by the canal counties and their representatives in both the State and na existence from its birth through a serics legislative obstructions and financial manipulations that developed even in its early days. Before its completion to Dunkirk, which was the objective point on Lake Erie, and as a consehad to be placed in the hands progress, the road 1845 , the State released its claim for the money advanced for construction and throngh the ener getic efforts of the Erie's friends, it was finally opened by President Fillmore, Daniel Webster, his Secretary of State, and other governmen and State officials, from Piermont to Dunkirk, From Piermont, passengers were conveye to New York by stcamer. This operated so much to the disadvantage of the road tha its chartcr was amended in 1852 permitting it o pass through New Jersey to its present termi as a terminal in May 1861. Previous to that abandonment, the road was again-in 1859 In the hands of a receiver and was sold to the Eric Railway Company in 1861. This ncw comCany also bought the Buffalo and New York trance into Buffalo, which was made its principal lake terminal in place of Dunkirk. It has so remained up to this time.
In accordance with English ideas, the road was built with a six-foot gauge, a mistake in construction that for ycars acted as a detcrren that contents of cars had to be transferred a connecting points. Another mistake of it carly managers was a refusal of the Eric to ac cent entrance into New York city over the New York and Harlem lines, then being constructe New York Central. But this management di see the value of the coal traffic and in 18 á entered the anthracite coal fields of Pennsyl vania and later through its Bradford branch reached the bituminous fields. But in the mean street parily throush a desire to combine with the Atlantic and Great Western, then building through Ohio, for the purpose of making route to Saint Louis on the Mississippi River A connection to the Ohio River at Cincinnat was ultimately effected through a combination operating connection with the C., H. and D completed 33 years after the first work on the Eric was begun.
In 1867, Jay Gould and Col. Tames Fisk came into possession of the Erie and from 1868 filt, Fisk, James McFenry and Danjel Drew for the possession of the property, resulting in its spectactular wreckage after one of the bitterest and most vindictive railway wars in his-
tory. The contest for the possession of the lory. The contest for the possession of the duloperty and the financial manipulations in copting the actual owners of the road and these it impoverished as it did the road itself. At the conclusion of this historic fight, Hugh T. Jewett came in as president in 1874 and a ycar later was made recelver, the propery aving been pur-
complete wreckage. It was reorganized in 1878 as the New York, Lake Erie and Western. It
then owned 525 miles of road and leased 400 more. The road was converted into a standard gauge road at a cost of $\$ 25,000,000$ and was double tracked from Jersey City to Buffalo.
Attempts to enter Chicago, first over what is now known as the "Pandhandle Route," and later over the Pittsburgh, Fort Waync and Chiwas not until 1883 that it secured an entrance into the western metropolis over the Chicago and Atlantic Railway. Under succeeding managements, the road, in spite of the enormous
financial obligations which hampered it, was operated as a paying and successful property until the panic of 1883 -84. The obligations accruing because of its purchase of the Chicago and Atlantic and Pennsylvania coal properties led the road to still further embarrassment and finally to another receivership in 1893 . Two Erie Railroad Company and assumed possession of the property on 1 Dec. 1895, which it has since operated.
The Eric Railroad is to-day a great modern highway, its main line extending from Jersey
City, N. ., to Chicago, Ill., a distance of 999 miles. Within the last few years this main line has been double-tracked and it is now known as a "low-grade linc," for example, between Jersey City and Salamanca, N. Y., a distance of 414 , miles, the ruling grade has been brought down grade is said to be lower than that of any other grade is said to be lower than that of any other
railroad running from Pittsburgh, Buffalo or the Ohio State line to New York city. Between Marion, Ohio, and Hammond, Ind., the ruling grade of the Chicago and Erie has been reduced from 0.55 per cent west hound and 0.5 The following is the official statement gross operating revenues and operating expenses and taxes for five recent years - operating revenues $1911, \$ 56,649,908 ; 1912, \$ 56,492,369$;
$1913, \$ 62,647,359 ; 1914, \$ 60,983,574 ; 1915, \$ 66,-$ 436,710. the operating expenses for the $\$ 00$, 436,719 ; the operating expenses for the same
period were $1911, \$ 40,245,301 ; 1912, \$ 42,508,253$; period were $1911, \$ 40,245,301 ; 1912, \$ 42,508,253$;
$1913, \$ 46,146,760 ; 1914, \$ 48,224,007 ; 1915, \$ 45,-$ 670,748.
A pionecr as a trunk line, it was also the first railroad to adopt what are now universal
methods-among these the running of trains by telegraph, the usc of a printed time table, by telegraph, the usc of a printed trime tabic, and special service for suhurban passengers, the use of parlor cars, the establishment of dining rooms along the line, the establishment of special milk trains, the running of a newspaper
special train (this being done in 1842). It was also the first road to run an excursion train of the modern type with a brass band and a reduced round trip fare, the first road to use a bell cord to signal from the conductor to the engineer, the first to build up local industrics use of switching and terminal tracks, a custom now so universal, and in more modern days, the first road to adopt all-stecl haggage, express and postal cars, and is the only railroad in the world perating a triplex or "centipede" locomotive.
ERIGENA, è̀-rij'ẽ-na, Johannes. See Scotus, Joilannes Erigena.

ERIGERON, a genus of plants of the famis Combositc, having a strong odor. Terpene canadensis, a widely diffused species, and used as an irritant and stimulant in medicine.

ERIN, an old name for Ireland. It is now used only in poetry. ERINITE, a basic copper arsenate having green crystalline coating of fibrous structure in Cornwall, England, and the Tintic district, Utah. The name is also applied to an aluminum ate from the Giant's Causeway, Ireland
ERINNA, Greek poetess: b. Rhodes or Tcos; about 600 b.C.; d. at age of 19 . Accordfriend of Sappho. Others aver that she was born at Teos, Rhodes or Telos, and that she lived in the age of Demosthenes; while others again assert that there were two poctesses of the same name. She left behind her a few
poems which were thought equal to those of Homer in point of merit. The chief of them was a work of about 300 lines, called 'Elakatê' (The Distaff), of which nothing has come down to us.

ERINYES, ê-rinn'i-èz, The Furies (q.v.)
ERIOCAULON, èr-i-iō-kả'lon, the typical genus of the pipewort family (Eriocaulonacea). Sce Pipewort.
ERIODENDRON, a genus of tropical trees of the natural order Malvaceac. Therc are about a dozen species, which are characterized by digitate leaves, medium to large, white or
reddish, solitary or clustered flowers, and thick, woody seed-capsules containing a cotton-like fibre which suggested the name silk cotton-tree. Some of the species excced 100 feet in height, and furnish wood used in making boats. The seeds of several species are used for food to
some extent. But the principal economic value for which these trees are noted is in the fibre which surrounds the seeds. This is too short to be successfully woven like cotton, hut is highly valued in upholstery for stuffing cushions, lounges, etc., for making floss and, it is said, for hats. The chicf source of supply is Java. It is known in various countries as kapok, rimi, bentang, etc. Various South American specics of Bombax, a related genus, also furnish a similar fibre. Like many other species of the
natural order Malvacea, the species of these two genera also furnish a valuable bast fibre which is used for rope and cordage-making. One specics, E. occidentale, is grown in California to a small extent as an ornamental tree un-

ERIOMETER, an optical instrument for measuring the diameters of minute particles and fibres from the size of the colored rings nro-
duced by the diffraction of the light in which the objects are viewed

eriophorum. Sce Cotton Grass.

ERIPHYLE, in the Greek mythology, the datghter of Talaus, and wife of Ampharauts, her ly Polynices. The necklace was made hv Hephrestus (Vulcan), and had the power of rendering whoever wore it unlucky.

ERIS, èrris or ěrriss, in Greck mythology the sister of Nemesis, and the Parce or Fates. Not being invited to the marriage of Peleus, she revenged herself by means of the apple of discord. See Paris.
ERITH, England, town in Kent, on the Thames, about 14 miles cast of London, contains the Maxim-Nordenfeldt gun-factory, engieral yacht clubs have their headquarters here. Pop. 27,750.
ERITREA, ā-rḕ-trā'a, or ERYTH'RÆA (irom Greek erythros, red, referring to the nial Sea), the official name of an Italian colomial possession stretching along the African
shore of the Red Sca from Cape Kasar in lat. Bab-el-Mandeb the sultanate of Raheita on coast-line is between 500 and 600 miles in length, and the area of the colony is about 94,800 square miles. The chief town is Massowah. Population of the colony is about 400,000 , the
majority of whom are Arabs. ority of whom are Arabs.
ERIVAN, èr-ĭ-vān', Armenia, (1) a fortined city, capital of the district of the same an elevation of 3,000 feet, 33 miles northeast from Mount Ararat. The manufactures consist of cottons, earthenware and leather; and the stuation of the town, on the caravan route betransit trade. Pop. 32,505. (2) The government of Erivan has an area of 10,745 square Milies, and a diversified population totaling (1912) 971,200 , of which Armenians and Tartars Kurds chief components, but including also urds, Greeks, Russians and Jews.
ERJISH DAGH, er'jish' dāg (the ancient Argeus), an extinct volcano in the vilayet of 12,000 fect. The last eruption occurred in the 4 th century of the Christian cra.

ERK, Ludwig Christian, German musician : b. Wetzlar 1807 d . 1883 . He studicd at Offenvach under A. André, hecame conductor in the Resangirche at Berlin, founded the Erk MännerCrk Gesangverein. He was eminently successful as a conductor and trained many fine sing${ }^{\text {trs. }}$. His library including many unpublished the Kuscripts after his death was acquired by the Königliche Hochschulc für Musik. Berlin.
His published songbooks include 'SingvōgeHis published songbooks include 'Singvōge-
(in) 'Tin) (1896) ; 'Liederkranz) (1839 et seq.) ;
(Turnecher Licderschatz) (5 th ed., 1893) ;
ERLACH, an ancient family of Bern Switzerland, several of whose members earned uistinction in various fields. The first was tury and took his name from Erlach, a village tury and took his name from Erlach, a village (i . 1360) four Brienz. Runolf von Eriach Equestrian statught to his Laupen. There is an Rubwig (h. 1595 ; d. 1650) commanded on the Cater he entered the French service and beGarne a marshal of France
12 ERLANGEN, Bavaria, town on the Regnitz,

10th century, it owes its prosperity to the set tlement here of French Huguenots after the
revocation of the Edict of Nantes (1685) and to its university. The chicf manufactures are articles made from wood, ivory and horn, electric instruments and some cotton goods. It has
arge breweries. Pop. 24,874.
ERLANGEN, University of, a Lutheran institution founded in 1742 in Baireuth, but the following year moved to Erlangen (q.v.). In
1769 Alexander, the then Margrave of Baireuth gave valuable assistance to the university and the name was changed to its present legal title "Friedrich-Alexander University." Owing to the changes of government of the country the growth of the institution was retarded until
1880 . Since that time new buildings have been added, and the institution has increased in at tendance and influence. In 1913 the number of students enrolled was about 1,350. Its library ontains about 260,000 volumes, some 300,000 pamphlets and a considerable number o manuscripts.
ERLANGER, Camille, French composer: Paris Conservatoire and studied piano there under Mathias, and composition under Bazille and Delibes. His cantata 'Velléda' secured him the Roman prize in 1888., A dramatic legend 'Saint Julicn l'Hospitalier,' was very successful in 1894. Erlanger's first opera 'Kermavia' appeared in 1897 and scored a great success. It polonais.' Others from his hand are 'Le fils de l'étoile) (1904); 'Aphrodite' (1906): 'Han nele) (1908); 'Noel'' (1911; produced at Chicago in 1913) ; 'La Sorcière) (1912); 'Gio-

ERLANGER, Joseph, American physiol gist: b. San Francisco, Cal., 5 Jan. 1874 . He in 1895 and from Johns Hopkins as M D in 1899. Later he was house officer at the Johns Hopkins Hospital and from 1900 to 1906 was successively fellow in pathology, assistant, instructor, associate and associate professor of
physiology at Johns Hopkins. In $1906-10$ he physiology at Johns Hopkins. In 1906-10 he Wisconsin and since the latter year has held a similar chair at Washington University.

ERLAU, ër'low, or EGER, ä'ger, Hungary, town, capital of the county Heves, on the Eger, 75 miles east-northeast of Budapest. The manufactures consist chiefly of woolen and linen cloth, hats, combs, leather, shoes and harness.
The finest red wines of Hungary are made from The finest red wines of Hungary are made from
grapes grown in the neighborhood. There are grapes grown in the neighborhood. sidere are
two thermal springs, one on cach side of the river. Erlau was in possession of the Turks river. Erlau was in possession
from 1596 to 1687 . Pod. $28,052$.

ERLKING (Ger. Erlkōnig), a mythical personage first introduced into German poetry, through Herder's translation of a Danish ballad, 'The Erlking's Daughter,' and made familkonig,' or translations of it. This goblit is represented as cxercising a malignant and fatal represented as exercising a malignant and fatal alluring promises or visions which lead to their destruction. The word is of Danish origin
(Ellerkonge, or Elverkonge, king of the elves).

ERLON, Jean Baptiste Druuet, Comte de. See Drouet.
ERMAN, (Johann Peter) Adolf, German Egyptologist: b. Berlin, 31 Oct. 1854. He received his education at the universities of Leipzig and Berlin. In 1883 he was made associate professor of Egyptology at the last named in-
stitution, where his father and grandfather had both held the chair of physics. Two years later he was appointed director of the Egyptian department of the Berlin Royal Museum. In 1892 he became full professor of Egyptology. His work on Egyptian grammar has been of inestimable value to students and he may be
said to be the first to put this branch on a really scientific basis. His published works inrealy scientific basis. His published works in-
clude 'Die Plurabildung des Aegyptischen)' (1878); 'Neuägyptische Grammatik') (1880) ;
(Die Sprache des Papyrus Westcar) (1889) ; (Die Sprache des Papyrus Westcar) (1889) ;
(Die Märchen des Papyrus Westcar) (1890); 'Altāgyptische Grammatik') (1894; Eng. trans. Lebensmüden mit scincr Seele) (1896); (Die Flexion des Agyptischen Verbums' (1900); 'Zaubersprüche fur Mutter und Kind' (1901) ; 'Aegyptische Religion' (1909); 'Aegyptische Grammatik' (1911); 'Aegypten und Aegyp-
tisches Leben im Altertum) (1885; Eng. trans., (Lisches in Ancient Egypt) 1896), the best work on the subject.
ERMINE, any weasel (q.v.) which turns white in winter, as is a fur. The animal's coat becomes completely yellowish white, except the tip of the tail, which remains black. When this fur is made up into tippets, coat trimmings or garments, the black gives the regularly spotted effect characteristic
give of ermine furs, and imitated in heraldry, under of ermine "urs, and imitated "erminois," expressive of furs as a bearing. In medizval times the use of this kind of fur was restricted to royalty, and later it became a part of the insignia of the majesty of the law; whence the expression "the ermine" as a metonym for the judiciary office. Ermine is mainly derived from northern Russia and Siberia, where it is the fur of the stoat (Patorius erminea); but a great amount is supplied by northern Canada, fro
two or three American specics of weasels.
ERMINE MOTH, any of several white moths marked with black spots as in ermine bombycids, but was originally applled to a European zygænid (Ypomoneuta pellida).

ERMINE, or ERMYNE, STREET, one of the four great roads constructed in England by the Romans. It led from Bishopsgate, ter), Lindum (Lincoln), Danim (Doncaster) to Eboracum (York), whence it continued northward past Hadrian's wall into Scotland. At Lincoln it formed a junction with the Foss Way, a branch from London. Ted through Essex, Suffolk and Norfolk to Venta Icenorim (Caistor near Norwich) and connected with the main road at Durolipons by a branch from Camulo-dunum (Colchester).

ERMINIE, a comic opera in two acts by Comedy Theatre, London, 9 Noov 1885 , and it New York at the Casino 10 March 1886. Bascd upon the well-known melodrama 'Robert Macaire,' the plot is lightened by the substitution of the vagabonds Ravenmes and Cadeaux for the two murderers of the original play. Erminic was one of the most conspicuous successes in the realm of light opera and to Amer
ican audiences it is associated with the name of Francis Wilson and Pauline Hall, who took part in the first Ncw York production. The music is light and graccful, if not strikingly original. The principal numbers are Erminie song "Ah, when love is young," "Dull is the lite
of the soldier in peace," the fetching lullaby "Dear mother in dreams I see her," the whist ling chorus, "What does the Dicky Bird say," he gavotte, "Join in pleasure, dance a measure, and the "Goodnight") chorus at the close.

ERMLAND, or ERMELAND, a diocese o ast Prussia, situated in the District of Königs berg. It was crected as a see in 1230 under the practically independent of the metropolitan o Riga. This independence was acknowledged when in 1742 the pallium was conferred on it prelate by Benedict XIV. Many of the earlie hishops were also temporal sovereigns of this district and as such after 1354 were acknowl edged princes of the Empire. In 1466 the
came under the king of Poland and with difit culty prevented the Polish sovereigns from in vading their right of free election. Pope Pius I as Aeneas Sylvius Piccolomini was onc ishon of Ermland. At the period of the Rct ormation the diocese was ruled by Stanislatu o the older faith. In 1772, on the partition of Poland Ermland passed to Prussia. It is stil a hishop's see, with the cathedral at Brannsherg Consult Hipler, 'Analecta Warmiensia Braunsberg 1872) and Zeitschrift fuir Ge 1858 et seq.)

ERN, or ERNE, earn, a name in poetic of the san comis. or scientic use for an white-tailed cagle of which the American bald eagle (Haliactus leucocephalus) is a near rel ative. It is the original English name for the eagle, the modern
French. See EAGle

ERNANI, an opera in four acts by Giusepp Verdi (libretto by F. M. Piave, founded o Victor Hugo's drama), first produced at Venice 9 March 1844. Its success was immediate and a little by the interference of the police, who objected in particular to the conspiracy scen in the third act. The chorus "Si ridesti il Leon i Castiglia," which ends this scene, aroused the Venetians to such a pitch of political enth1tsiasm that at one time the theatre was closed music that found its way easily into the heart of Verdi's countrymen. But its popularity was not confined to Italy. With (Trnani) Verdi be came an important European figure. When the

Strenuously to the utilization of his drama as an peratic libretto that the book was altered, the i (I) Phanged to Italians and the new titl 'In Proscritto' given to it. Verdi travele Ernani) now seems very old-fashioned Nevertheless the dramatic power of some of the concerted numbers is undeniable and it aria in the first act "Ernani, involami."

Lewis M. Isa

 ERNE, the name of a lake and a river ofreland. The river Erne takes its rise in Lough Gowna, flows north into Lough Oughter, thenc through Upper Lough Erne to the Lowe ough Erne, from which it flows into Donega miles and is navigable for light-drat of about 60 or about two-thirds of that distance Lough Ine, including Upper and Lower, has a length of about 40 miles and has a width varying rom 4 to 12 miles. Many islets dot its surface hich is 150 feet above sea-level. The lake is ream, perch, pike, abounding in its waters The lake possesses remarkable scenic beauty and the archæological remains on some of the slets and on its shores form an added attrac ton to the tourist. Consult Devenish, 'Lough Erne: Its Histories, Antiquities and Traditions

ERNEST MALTRAVERS, a novel by Bul Wer-Lytton, published 1837. Its sequel is entitled Alice, or The Mysteries) (1838) In the pref de the first-named novel, the author state hat he is indebted for the leading idea of the whik - that of a moral education or apprentice pprent Goche' Ermest Maltravers is Th ver less to art than to life 'Ernest Maltra is written in the Byronic strain, and is a air example of the English romantic and senti-

ERNESTI, êran scholar: b. Tennstädt, Thuringia, 4 Aug Witi d. Leipzig, 11 Sept. 1781. He studied at Wittenberg and Leipzig, and, devoting himself To classical studies, became rector of the he held till 1759 . He became professor of theoiogy in the University in 1759. He prepared ditions of Homer, Callimachus, Polybius, 'uetonius and Tacitus, and of Xenophon's an excellent edition of Cicero (3 d ed $1776-77$) to which he added a valuable (Key to Cicero,' often re-cedited. Regarded as the first Latinis and biblical study and was the founder of a nd biblical study and was the founder of a tue excgesis of Scripture by the laws of gramossessions. His ' L atin Specches) gaincd pre the name of the "German Cicero")
ERNST, ärnst, I (surnamed "The Pious") ound of Saxe-Gotha and Altenburg, and Altenhurg 24 Dec 160 Gotha: b. Castle of son of John, Duke of Wcimar, and brother of he famous Bernard of Saxe-Weimar. He under with distinction as colone of horse uremberg tiutzen and Nordlingen during of
vol. $10-31$

Thirty Years' War, and was one of the signatories to the Peace of Prague in 1635. He frugality of his administration, for the reforms that he instituted and for the progress his principality made during his reign. He was the founder of the Gotha line which became extinct by the death of Frederick IV in 1825. gen; Ernst that of Hildburghausen, and Johan Ernst that of Saalfeld. Consult Beck's 'Ernst der Fromme' (1865).

ERNST II, Duke of Saxe-Gotha and Altenburg: b. 1745; d. 1804 . On succeeding his father in the dukedom he set about to reform the government and ameliorate the condition of send levies to join the forces of his near rela tive George III in fighting against the American colonies, although large sums were offered as an inducement. He was a patron of science; instituted for the first time a measurement of an an of the mervatory near Gotha and established astronomy, and among his works are (Astronomische Tafeln) (1799). A biography by Beck was published at Gotha in 1854.
ERNST II, Augustus Charles John Leopold Alexander Edward, Duke of Saxe-Co-burg-Gotha: b. Coburg, 1818; d. 1893. He was Victoria of England, and seems to have rescmbled him in tastes and character. He was instrumental in winning the battle of Eckernforde in the war against Denmark in 1849, fought on the side of Prussia in the AustroPrussian and Franco-Prussian wars. Alone among the German princes he was liberal and
worked for the reform of the constitution as well as for the unification of Germany. His liberalism caused his little duchy to become an asylum for political refugecs from the other tates. He was succeeded by his nephew, Alfred, duke of Edinburgh. He wrote some
ERNST, August, King of Hanover and Duke of Cumberland: b. Kew, 5 June 1771 ; d. 18 Nov. 1851. He was the fifth son of George 1794 , engld a command in the campaign in Hanover in 1813-14 and was present at the battle of Leipzig. He took up his abode at Berlin but
 Catholic emancipation were going on, and endeavored by every means in his power to prereactionary also opposed the Reform Bill of 1832. On the accession of Qucen Victoria in
1837 he ascended the throne of Hanover, in consequence of the - succession to the sovercignty of that country being limited to male heirs. After 150 years of absentec rulers, Hanover again had a resident sovereign. His arbitrary and tyrannical disposition, which had hitherto shown itself in opposing every step in
the way of political reform and progress, was now manifested by his abrogating the constitution which had been granted in 1833 . In 1848, however, he was compelled to accede to popular demands and accord the nation a more liberal form of government. He was succeeded by his son, George V, the last of the Hanover-
ian kings. The unpopularity of the Duke of

Cumberland in Britain was extreme and the
contingency of his succeeding to the throne, was regarded as one of the greatest misfortunes that could befall the nation. Thus was
the Duke's ambition, balked by the marriage of Queen Victoria, against which he loudly protested, and refused to attend the ceremony. Emsut of Hanover' (1880).
ERNST, Harold Clarence, American hacteriologist: b. Cincinnati, Ohio, 31 July 1856. 1876 and at its medical school in 1880, and became professor of bacteriology there. From
1898 to 1908 he served as president of the Bos1898 to 1908 he served as president of the Bos-
ton Society of Medical Sciences, and in 1909 was president of the American Bacteriologists, was president of the American Bacteriologists' of the Journal of Medical Research after 1896, and contributes to scientific, medical and other
periodicals. His published works include 'Infectiousness of Milk' (1896). 'Infection and 'Animal Experimentation) (1902): 'Modern' Theorics of Bacterial Immunity' (1902).

ERNST, Oswald Herbert, American military officer: b. near Cincinnati, Ohio, 27 June 1842 . He was graduated at the United States Military Academy and was commissioned
a brigadier-general of volunteers 1898 . He was engineer in charge of western river improvements in 1878-86; had charge of harbor improvements in Texas in 1886-89; and while on
the latter service hegan the great work which resulted in the deepening of the channel at the entrance of Galveston harbor from 12 to 35 fect. In $1893-98$ he was superintendent of the United States Military Academy. In the war with Spain he went with General Miles to Porto troops in the action at Coamo. He was a member of the Isthmian Canal Commission $1899-$ 1901, which selected the Panama ronte, and of the Commission of $1905-06$ which determined the type of canal should be with locks. He was president of the Mississippi River Commis-
sion $1903-06$ and chairman of the American section of the International Waterways Commission 1905-15. He has been a dircctor of the Panama Railroad since 1905. He retired (Mrom the army 27 June 1906. He has published (Manual of Practical Military Engincering) under the Chicago River.

ERNST LUDWIG, Grand Duke of Hesse: . Darmstadt, 25 Nov. 1888. He succeeded to the thant-general. In 1894 he married Princess Victoria Melita of Saxe-Coburg-Gotha. He divorced her in 1901 and in 1905 he marricd Princess Eleonorc of Solms-Hohensohms-Lich. In 1909 the Duke's play 'Bonifatius' was pro-
duced at Darmstadt in the Court Theatre.
duced at Darmstad in the Court Theatre.
ERNULF, êr'ntılf, or ARNULF, English
prelate: b. France, 1040; d. 15 March 1124 . He prelate: b. France, 1040; d. 15 March 1124. He
was appointed prior of Canterbury by Anselm was appointed prior of Canterbury by Anselm
and was subsequently abbot of Petcrhorough (1107) and hishop of Rochester (1114). He was equally remarkable for skill in canon law and personal saintliness, and compilcd a great
collection of documents about his own Church,

EROICA SYMPHONY, The, a famous symphony ly Beethoven, first given at Vienna
in 1805 , under the title of (Bonaparte.) It was in 1805 , under the title of 'Bonaparte.) It was afterwar
THOVEN.
THOVEN.
EROS, the Greck god of love, from which the Romans derive their Cupid (cupido, desire). In this sense Eros is a fiction of later-
day poets. Hesiod is the first to mention Eros, day poets. Hesiod is the first to mention Eros, who rules over the minds and the councils of gods and men. It was he who brought order and harmony out of chaos. In this cosmogonic sense he is used by many of the early writers
In Orphic poetry and in Plato he is conceived In Orphic poetry and in Plato he is concelved of as the oldest and most powerful of all the
gods. In some instances he is described as the son of Kronos and Ge, and in others he is of independent origin. The Eros of the later pocts, which is familiar to us, is conceived as a son of Aphrodite (Venus) and Hermes; or
of Venus and Zeus; or of Zephyrus and Iris; of Venus and Zeus; or of Zephyrus and is de-
or of Aphrodite and Ares (Mars). He is picted as a wanton mischievous boy, no longer the god of harmony, but of sensual love. He is represented with wings, bows and arrows, etc
Sce Cupid. Sce Cupid

A creature called Anteros was generally and fighting against him, and later as the aveng ing Eros who punished those who did not rc^{-} turn the love of others.
Among the places distinguished for the wor-
ship of Eros, Thespix in Bootia stands foreship of Eros, Thespix in Bœotia stands fore-
most, where his worship was very ancient. most, where his worship was very ancient. god. At Sparta, Samos, Parion and at Athens, where he had an altar at the entrance of the Academy, the god was also worshipped. At
Mezora he stood with Himeros and Pothos in the temple of Aphrodite. His statue was repthe temple of Aphrodite. His statue was rep-
resented at first by a crude stone, which developed into the perfect bcauty of the boy-figure by Praxiteles, now in the Capitoline Muscum, and undoubtedly the source of all the later representation of Eros as a chubby boy. Among
the things sacred to Eros and accompanying the things sacred to Eros and accompanying
him are the rose, wild beasts, the hare, the him are the rose, wild beasts,
cock and the ram. See Psyche.

EROS, in astronomy, one of the minor planets, discovered photographically by Witt in
1898 , at the Urania Observatory, Berlin. The orbits of most of the other known asteroids lic wholly beyond that of Mars; but Eros apit may be within $13,500,000$ miles of the earth. It is this fact which gives the planetoid its great astronomical interest. The relative dimensions of the solar system are known with high
precision, and if any dimension can be acc1precision, and if any dimension can be accul
rately measured in miles, all the other dimen rions become known at once, in terms of the same unit. It is apparently possible to determine the parallax of Eros (and hence its distance from the earth in miles) with relatively higis precision and a correspondingly accurate deter-
mination of the absolute dimensions of the solat mination of the absolute dimensions of the solar
system in general will result. As Eros ap system in general will result. As Eros ap-
proaches the earth more closely than any other heavcnly body cxccpt the moon, its parallax is heavenly boty except the moon, its paralax
relatively large; and the fact that its diameter
does not exceed 20 miles, so that it appears in
the telescope as a mere point of light without a sensible disk, indicates that extremely precise micrometric mcasures of its position on the
heavens may be had. Astronomers are keenly heavens may be had. Astronomers are keenly ingly in the nossibilities offered by this seemfavorable opposition Eros will be studied with exceeding care.
The planet itself is known to be a little world, nearly round, which revolves about the sun in a period of 643 days. A very remarkperiodically in brightness; when brightest it is more than three times as bright as when faintest, the period of a complete variation being Somewhat more than five hours. It was sug-
gested that the apparently single planet is, in gested that the apparently single planet is, in pear to us as one, the time of their revolution about their common centre of gravity being twice the period of the apparent variation in however, renders it certain that the planet is single, having one side much brighter than the other, and that its variation in brightness is due to its axial rotation.
An asteroid very similar to Eros was discovered by Wolf on 4 Feb . 1918, and although
the orbit of this new body is far larger than that of Eros, the eecentricity is so great (0.553), more when nearest to the earth it is but little this asteroid and Eros come nearer to us than any other planets of the solar system. It happens that the time of nearest approach for both of these bodies is toward the beginning of the year 1931. It is probable that from ohserva-
tions made at this time the distance of the sun will be ascertained with an accuracy far transcending that available at present.

EROSION, or DENUDATION, the procproducts of rock decay whereby the surface features of the earth are obliterated. It includes the destructive work of winds, of various aspects may be considered under two heads: (1) subaērial; (2) marine.

1. Under subaerial crosion comes the action of air and water on all land surfaces above Sca-level, first in making rock material fine, weathering, and second, in its removal, transportation. Chemical processes, due to moisture Changes of temperature crack off flakes from rock-ledges and reduce them to smaller flakes. Water, freczing in cracks, forccs apart large
blocks of rock. In a climate wilh dry seasons thecks of rock. In a climate wilh dry seasons the dust may be swept away ly the winds (de-
1lation), leaving the larger pebbles. Stony deserts have thus been formed in Arizona and other parts of the world. The dust-charged Winds can carve and wear down rock surfaces. instances are common in the arid regions of the
$W_{\text {cst }}$ and in the desert of Sahara. Glaciers West and in the desert of Sahara. Glaciers
scour out their valleys powerfully and carry Scour out their valleys powerfully and carry
away much material. way much material
taindrop. If a picce of soft ground with small stones lying about be examined closely after a shower, it will be found that soil has been beaten down and washed away from the areas
not protected by stoncs. This action sometimes takes place on a larger scale in semi-arid cli
mates when rock-decay is slow and curious pillars of earth or soft rock capped by pro tecting boulders are formed. Examples may be found in the Garden of the Gods, Colorado. When the raindrops unite to form tiny rivulets
the process of river-erosion has begun. In fact, a patch of soft ground on a hillside during a a patch of soft ground on a hillside during a
shower shows many of the phenomena of stream-formation, as likewise does even a dustcoverod street. The work of surface water is continnous. Some rock-constituents are dis-
solved and borne away in solution; other particles are carried away in suspension and, by abrasion on rocks below, help the stream carve its channel deeper. When the current slacken some of the waste from the higher lands may be deposited, the coarser materials first. Thus mountains are worn down and plains formed.
The higher the mountains, the deeper the valleys can be carved; but even the highest mountains are ultimately deeply dissected, and finally worn down so that the current of the river may not be strong enough to transport the detritus. The carving of the Grand Canyon of the Colorado
a stupendous piece of work as it is, is but a be ning in the complete levcling of the region. A country thus worn down is said to have reached a base-lcuel of erosion, and its nearly leve surface forms a peneplain. If such a region be uplifted the streams will start work again vigor A region reduced to cycle of erosion will begin vated nor depressed, can remain unchanged through millions of years.
Tivers is amount of waste brought down by some rivers is enormous. Thus the Po in flood car ries one part sediment to every 300 parts of
water; the Ganges one part sedinent to 835 parts of water. These may seem small ratios of sediment, but the total amount of materia discharged annually by the Ganges is calculated to be $378,100,000$ tons, while the Nile annually brings down $150,000,000$ tons. The Mississippi
annually brings to the Gulf of Mexico 406,250 ,000 tons of material in suspension, enough to lower its whole basin one inch in 300 years. It is calculated that the avcrage amount of materia removed as sediment annually by streams ove the whole land surface is 600 tons per square mile.
\quad 2.
away Marine crosion is continually wearing away the continents. Waves undermine cliffs, grind up sand and boulders, and working with them in the occan. Some geologists even hold that marine planation is more important than river work in the destruction of continents.

EROSTRATUS, Ephesian incendiary. To perpetuate his name as the destroyer of one o the seven wonders of the world he set fire to the magnificent temple of Artemis (Diana), at Ephesus, on the night Alexander the Great was
born (356 B.C.). The indignant Ephesians de creed that whoever pronounced his name would be put to death, a sure means of insuring his

EROTIC (Greck erōs, love) POETS, the name applicd to certain modern French fiction ists, and in Greck literature, particularly to a class of romance writers, and to the author of
the 'Milesian Tales.' These writers belong to
the later periods of Greek literature, and aboun in sophistical subtleties and ornaments. Th Longus, Xenophon of Ephesus and Chariton The word erotic is used in two closely related senses, (1) amorous, treating of love or in
pired by love, (2) a love poem or composition.
EROTOMANIA, a kind of paranoia in which there is present a morbid ideation towar a real or imaginary object of love. Se aranola.
ERPENIUS, èr-pēnī-üs (Latinized from Van Erpe), Thomas, Dutch Orientalist: b Gorkum, Holland, 11 Sept. 1584; d. Leyden, 13 acquaintance with the Oriental languages. To extend his knowledge of them he visited England, France, Italy and Germany, and became acquainted with the most eminent scholars. H learned at the same time the Persian, Turkish
and Ethiopian languages. He returned, in 1612 and Ethiopian languages. He returned, in 1612 and other Oriental languages. He established press, at great expense, for the printing o works of Oriental literature. In 1619 a second Hebrew professorship was founded at Leyden ceived the office of Oriental interpreter to the states-general. The most learned Arabs ad mired the elegance with which he expressed himself in their language, so rich in delicate peculiarities. His reputation as a perfect master of the Arabic became universal, and he was repeatedly invited by the king of Spain to explain ments. The works of Erpenius (some of which were published after his death), are held in the highest estimation. Besides his 'Grammatica Arabica,' his 'Grammatica Hebraica,' and othe grammatical works, his most valuable and cele(1625).

ERRANTE, Vincenzo, vễn-chẻnd'sō èrran'tê, Italian poet and statesman: b. Palermo, 16 July 1813 ; d. Rome, 29 April 1891 . He was many years an exile for his share in Sicilian 'Tragedies and Lyrics' (1874); the dramas Great') the poems 'The Ideal' and 'Liberty. He wrote also a 'History of the Osmanli Em pire from Osman to the Peace of Carlowitz (1882-83)
ERRANTIA, ěr-ản'shĭ-a, an order of anne ds of the sub-class Polychæta, characterized by heir not dwelling in fixed tubes, but wandering about frecly, secking animal food. They have a well-developed head, with protrusible pharynx omoty organs A typical genus is Nereis, with many familiar species.

ERRARD, ār-rā̆, Charles, French painter and architect: b. Nantes, 1606; d. Rome, 15 May 1689. He was instructed in painting by his perfected his knowledge at Rome. On his return to France he gradually rose to eminence 1 his profession. In 1648 he became one of the vas engaged in the decoration of the Palai Royal, Louvre and other palaces. His chief
claim to notice rests, however, upon his connection with the foundation of the French and carried into effect in 1666 , with 12 pupils, and of which he was the first director.

ERRATA, ě-rä'ta (Latin, the plural form of erratum, an error), the list of errors and corrections placed at the end or at the beginning of a book. Before the invention of printing, and for a short time after, the errata were cor-
rected on the page where they occurred, but rected on the page where they occurred, but art became a little more developed. The first known example occurs in an annotated edition
of 'Juvenal,') published at Venice in 1478, which of 'Juvenal,' published at Venice in 1478, which contains a list occupying two pages. 'The Vul-
gate,' published in 1590 , at Rome, by Sixtus V, gate, pubished in 1590, at Rome, by Sixtus and of which the proofs were revised by that Pope himself, contains, instead of a table of errata, a bull which excommunicated those who would dare to make any alterations in the text. The book, however, was found to contain so
many blunders that it was afterward suppressed, many blunders that it was afterward suppresthan that of amusing the learned and creating a demand for the copies still existing, some of which have been sold for about $\$ 200$

Bull; Mistake

ERRATICS, or ERRATIC BLOCKS, in geology, boulders or large masses of angular or a distance from their action of ice during the Glacial Period. Thus on the slopes of the Jura Mountains, in France, immense blocks of granite are found which have traveled 60 miles from their original situation and in northern United States, boulders be over 200 miles distant from the present location. See Geology; Glacier; Glacial Pertod.

ERRERA, ěr-rā'rä Alberto, Italian political ERRERA, er-rä ra Alberto, Italian political educated at Padua and has held the professorship of political economy and statistics in the schools of scveral Italian cities, including
Venice, Milan and Naples, and also at the University of Nand Naples, and also at the (Storia c statistica delle industric Venete) (1870); 'Storia della economia politica nei secoli XVII, e XVIII negli stati della republica Veneta'
(1877): 'Demographia) (1892); and (Lezione (1877); 'Demographia' (1892.
di economia politica)

ERRETT, Isaac, American clergyman: i. New York, 2 Jan. 1820 ; d. near Cincinnati, Ohio, 19 Dec. 1888 . In 1840 he entered the
ministry of the "Christian Church," a sect founded by Alexander Campbell, and held pastorates in Pennsylvania, Ohio, Michigan and Chicago, Ill. For a time he assisted Campbeli in the editorship of the Millennial Harbinger, in 1866 he established the Christian Standard, and published it until his death. He was presi
dent of Alliance College 1868-69; filled many offices in his Church, and wrote 'Brief View of Christian Missions) (1857) ; 'First Principles, or the Elements of the Gospel' (1867); 'Jerusalem' (1872); 'Talks to Bereans' (1875) ; 'Letters to a Young Christian' (187): Evenings with the Bible' (1884-87): Kown as Disciples of Christ') (1885). Consult Lamar, 'Isaac Errett' (Cincinnati 1894).

ERRHINES, er'rinz, medicines adminisfred locally to produce sneezing, and so relie rom catarrh by a discharge from the nostrils.
he term is not gencrally used at present.
ERROR, (Latin errare, to wander) (1) In and observations, to correct which recourse is had to a system of reduction known as th method of least squares. To correct errors of instrument measurement is of the greatest im portance in all scientific work, and great care (2) pains are taken to secure these corrections. of the pen. (3) Joiner in error, in law; the taking of issue on the suggestion of error. (4) writ of error, in law, a process issued by a curt of review, to an inferior court, suggesting that error has been committed and requiring he record to be sent up for examination; now rror a court exercising appellate jurisdiction by means of writs of error. (6) Assignment ferror, in law, specification of the error sug ested or objected to ee Bull; Mistake
ERROR, Personal. See Equaition, Per-
ERSCH, ersh, Johann Samuel, German bibliographer: b. Grossglogau, 23 June 1766; d and professor of gcography and statistics at Halle, and is credited with being the founder modern German bibliography. Among his publications are a 'Dictionary of French and, in connection with Gruber the 'Universal Encyclopredia of Arts and Sciences) (1818). This latter is a work of great merit.
ERSE, etrs, a corruption of the word Irish a name applied to Irish Grlic pcople, and also anguages; Celtic Literature.
ERSKINE, David Stewart, 11th EARL of Buchan, Scottish author and antiquarian: b 42; d. 1829. He received his education at the niversity of Glasgow and in 1780 founded the An Account of the Life, Writings and Inventions of Napicr of Merchiston' (1787); 'Essays on the Lives of Fletcher of Saltoun and the oet Thomson' (1792) ; 'Anonymous and Fugi ve Essays' (1812)
ERSKINE, Ebenezer, Scottish clergyman founder of the Secession Church in Scot d: b. Dryburgh, Berwickshire, 22 June 1630 he tirling, 2 June 1754 . He was ordained to n which charge he remained 28 years, when he was translated to Stirling (1731). His attitude during the "Marrow" controversy as well as is opposition to the system of patronage in the Curch, led to a sentence equal to depositim ollowing year: in 1733 he with a few other made a formal act of secession; in 1737 he was joined by his brother, Ralph (q.v.) ; but it was not till 1740 that he was finally deposed from the ministry and his church closed to him. The Secession Church was split in twain in 1747 thene question of surgesses of Edinburgh, Glas-
gow and Perth, those who maintained its lawBurghers, and their opponents Anti-Burghers. So keen did feeling rise, that Erskine was iorBurghers. The breach in the ranks the Anticeders was not healed until 1820 . Erskine was the author of several volumes of sermons. His 'Life and Diary' were published in 1845. Consult his 'Life' by Ker, J., (1881) ; and Mac-
Ewen, 'The Erskines) Ewen, 'The Erskines' (1900)
ERSKINE, Henry, Scottish barrister: b. Edinburgh, 1 Nov. 18 . He twice held the West of lord-advocate, was for long the leader of the Scottish bar and had a high reputation as a wit.
ERSKINE, John (of Dun), Scottish reformer: b. 1509; d. 1591 . He came of a noble family of which several members perished at he battle of Flodden Freld. His early education was gained at Kings College, Aberdeen. sent him abroad to complete his education. On his return he introduced the study of Greek into Scotland. That he was one of the earliest supporters of John Knox is gathered from the fact that he was one of the signers of the first tended the marriage of Queen Mary in France as one of the special commissioners appointed for this purpose. Later Erskine assumed the role of mediator between Knox and the Qucen. He was one of the compilers of 'The Second Book of Discipline) (1578).
ERSKINE, John, of Carnock, afterward of Cardross, Scottish jurist: b. 1695 ; d. near Sumbath bar in 1719, was professor of Scots law Scotch bar in 1719, was professor of Scots law
in the University of Edinburgh, $1737-65$, and was author of 'Principles of the Law of Scotland' (1754), and the 'Institutes of the Law of cotland' (1773), both authorities
ERSKINE, John, Scottish theologian: b . Edinburgh, 2 June 1721 ; d. there, 19 Jan. 1803. burgh and at 22 received his license to preach. In 1744 he was ordained minister of Kirkintilloch, where he remained nine years, when he removed to Culross parish in Dunfermline presbytery. Five years later he removed to New Greyfriars, Edinburgh, and in 1767 to Old Greyfriars. He was for many years the leader mons and pamphlets of Consult Wellwood, 'Life of John Erskine' (Edinburgh 1818).
ERSKINE, John, American educator: b. New York, 5 Oct. 1879 . He was graduated
at Columbia University in 1900 , and in 1909 beat Columbia University in 1900, and in 1909 became associate professor of English there. In 1903-09 he was instructor and associate pro-
fessor of English at Amherst College. After 1909 he was adjunct professor, and after 1916 arofessor of English at Columbia. He has published 'Actreon and Other Poems' (1907); 'Leading American Novelists' (1910); 'Written English,)' with Helen Erskine (1910,
rev. ed., 1913): 'Selections from the Idylls of rev. ed., 1913) ; (Selections from the Idylls of the King (helley and Keats.' with W. P. Trent (1914).

He has edited 'Contemporary War Pocms' 1914) ; The Moral Obligation to be Intelliions of Literature by Lafcadio Hearn' (1915) He contributed also to magazines and to the anclopedia Americana.
ERSKINE, Ralph, Scottish seceder: b. . was arot d Ebenezer Erskine (q v. He was ordained to the collegiate charge of Dunfermline in 1711, and in 1737 joined his brother, who had seceded from the Established Church. His 'Gospel Sonnets' and

ERSKINE Thomas

ERSKINE, Thomas, Baron Erskine Scottish jurist: b. Edinburgh, Kovan. 1823 . Firs in the navy and then in the army, he finally decided on a legal carcer at the suggestion of Lord Mansfield. He became a noted forensi orator and jurist, attaining early renown as uption made against Lord Sandwich; later he added to his success by his defense of Stock dale, Lord George Gordon, Hardy, Thoma Paine, Horne Tooke and others. Some of hi greatest successes were obtaince in combating he doctrine of constructive treason, by which effecting a change in the sovereign's constituional character and position guilty of the captal offense of."compassing the king's death. His acceptance of a brief for Tom Paine restulted in his dismissal from the office of attor meybeneral of the House of Commons in $1790-$ 1806, but achieved no success there. He was created Baron Erskine of Restormel, on becomng lord chancellor in 1806, holding office till he following year.
ERSKINE, Thomas, Scottish theologica writer: b. Edinhurgh, 1788 ; d. 1870 . He practised this profession from 1810 to 1816 when he abandoncd it for the literary field Many of his views in matters of theology were unorthodox, such was especially the case with his theorics of the atonement and universa
restoration. He propounded his views so skil fully, however, that they impressed a great num ber very favorably. He was expelled from the Kirk in 1831 because of his heterodoxy. His writings include 'Remarks on the Internal Evi dence of the Truth of Revealed Religion' (10th Gospe)' (1828). (The Doctrine of Election (1837; 2d cd., 1878) ; 'Spiritual Order and Othe Papers' (1871). Const1t his 'Letters,' edited by William Hanna (1877).

ERTEL, är'têl, Jean Paul, German composcr: b. Posen, 1865. He studied composition under F. Tauwitz and piano under Liszt and servatory, Berlin, and musical critic of a Berlin newspaper. He collaborated on various publications and edited the Deutsche Musikerzeitung 1897-1905. His compositions include the symhonies 'Harald,' (Maria Stuart,' 'Der Mensch,' 'Belsazar,) 'Pompeii) ; besides several
PRUPTION
disturbance in the skin characterized by the for-
mation of redness or scaliness, blistering of pustulation. In one class of affections, know as the eruptive fevers, a characteristic form skin-eruption is diagnostic. bluish red rash of measles, the irregular rash of chickenpox and the pustulate rash of smallpox are readily recog nized. The popular notion that an eruption an indication of something evil within the boay finding its way out belongs to the mediaval was regarded as an evil spirit to be exorcised, and gave notice of its evacuation by means on eruption on the skin. At the present time wh know that most cruptions are either of pure as local occurrence, in the case of pimples, boils, etc., or thecentres, whose end-filaments are distributed to the epte theiial structures of the body. Thus in measles, not only the skin, but also the mucous mem branes of the respiratory tract are affected, tinc poison affecting the nerve-structures beriphery of the body. The popular idea that it is necessary to bring an eruption out in acute infectious diseases such as measles and scarlet fever is trustworthy, but an interpretation is frequentiy given to it that is not sound. The presence of anfections is an indication of the protective energies of the human organism in its fight with the infection and poisoning. The inability of the body to counteract the poison of the diseasc may prevent the development of the er of the body's ability successfully to cope with the poison, is the warrant for the popular idca of the efficiency of the eruption. Many drugs locally applied, or taken internally, cause the formation of cruptions. These eruptions may be due to purely nervous influences, or following the use of the iodides and bromides are of this latter character. As the drug is eliminated through the skin, its passage there causes local irritation and the formation of an eruption. Sce Eases.

ERUPTIVE ROCKS. See Igneous Rocks ERWIN VON STEINBACH, fō stin'bah, German architect: 17 . dral of Strasshurg had been completed in the 7 th century. It was partly built of wood and was reduced to ruins by lightning and successive fires. The nave, begun in 1015, was only completed in 1275 . Erwin was then requested interior of the church and for the construction of two new towers and a façade upon the site of the ruins of the old tower. The foundation stone of the new structure was laid 25 May 1271. The architect died when the work was only half finished. It was continued by his soln
Johannes (d. 18 March 1339), and subsequently continued chicfly after his designs, stiil preserved at Strassburg. His daughter Sabina assisted him in the decoration of the interior of the church; and another of his sons, Winhing (d. 1330), was also an architect of some
distinction. The remains of this family of architects are interred within the cathedral.

ERXLEBEN, ārks'lâ-ben, Johann Christian, German naturalist: b. Quedlinburg, 1744; rottingen and in 1771 was appointed professo of natural philosophy there. He published Aufangsgründe der Naturgeschichte) (4th ed., (Oth ed., 1794). Erxleben's mother, Dorothea tain the degree of M.D. in Germany.

ERYMANTHUS, in ancient geography, a river (now called Douana) and mountain (now Cording of Arcadia, in Greece. The river, acording to some the modern Dimitzana, rises into the Alpheus. The mountain, situated to the east of the river, formed the western point covere northern barrier of Arcadia, and was that Hercules chased and killed the famous wild

ERYNGIUM, ê-rin'ji-ul̃m, a genus of plants name parslcy family (Apiacea). The generic appearancc There arc about 220 species in the genus, of which about 22 are found in America Rattelesnake-master, or button-snakeroot (E. batuaticum) grows in wet soil and in the pinebarrens, from New Jersey south to Florida and
West of Texas, Missouri and Minnesota. Its hest of Texas, Missouri and Minnesota. Its supposed efficacy as an antidote to the venom of snakes. A number of species are cultivated, both on account of the stecl-blue color of the stem growth branches, and of the unusual manner of a nrowth. Eryngo (E. maritimum), sea holly, is and is distinguished by its rigid spiny gloucous, veined leaves and its dense heads of blue lowers. The roots are sometimes candied, and are reputed to be stimulating and restorative.
Falstaff speaks of its use as a confection and its alaff speaks of its use as a confection and are mentioned by dramatists from Jonson to
.
ERYON, a fossil crustacean found in the rocks of the Mesozoic period in Europe. Six pinquus is the best known. Consult Crustacea;
Fossins.
ERYOPS, a genus of fossil amphibians o ine Pemican rocks of Texas, which is of grea of labyrintheodonts, according to the latest scheral opinion. Several species have been decribecd, of which the best known (E. megaIt colulus) was six to eight feet in total length. in form som, a water-and-shore living animal, toad and crept about on a Califormian horne to lift its belly off the mud. Its skull was enliostrils and cyes, and showed no sutures. The feet were broad and spreading and the tail short Ind contracted into a terminal pointed coccy "prohably swallowed air like a frog," "This animal," says Osborn, may be regarded as collateral ancestor of the labyrinthodonts; it aclongs to a type that spread all over Europe Mind North America, and persisted into the

Origin and Evolution of Life) (New York 1917) ; Gadow, 'Amphibia and Reptiles' (NewReptiles) (in the British Museum, London 1905).

ERYSICHTHON, ér-1̌-sik'thōn, son o King Triopas, and himself a legendary king of Thessaly. He cut down trees in a sacred grove and he was cursed by Demeter with such unsatisfiable hunger that he devoured his own own daughter; but each time she returned to him. She had received from Poseidon the power of self-transformation.
ERYSIMUM, é-ris'í-mũm, a genus of plants of the family Brassicacece, chiefly bien nials, with narrow entire leaves, and yellow species, natives of northern, temperate and 8. countries. E. cheiranthoides, a native o Europe, with small yellow flowers, is found in waste places, along streams, and in fields from southern New England to Newfoundland, and rd to the Paci
ERYSIPELAS, an acute infectious discase by a streptococcus. Whether the Streptococcus erysipelatis of Fehleisen, or the Streptococcus pyogenes is considered the causative factor or not, the fact remains that bacteriologically it is probable that these two forms of bacteria are identical. The reaction of the tissues to the streptococcus and its poisons causes the acute
inflammation with redness, puffiness and sometimes gangrene. This local swelling is attended with fever, headache, general constitutional symptoms, nausea, vomiting, and at times with oxic delirium. Occasionally the streptococcus senticemia or pyemia results. At and general a streptococcic invasion of the joints produces an acite rheumatism with secondary heart com plications. Erysipclas may affect any part of the hody, but is very frequently over the face and head. It is extremely contagious, the
organism finding entrance through minute wounds. Patients who have had recent ery sipelas shotuld on no account be allowed to come anywhere near women in childbirth, as puerperal fever may result. The treatment of erysipelas is by means of tonic - iron and quinine heing favorites-nutritious and easily assimilable diet, milk, cod-liver oil and some form of almation occurs, prompt surgical evacuation is imperative. Local treatment by ichthyol and similar antiseptics is widely employed with

some benefit

ERYSIPHACEÆ. See Mildew

erythema. Sce Dermatitis,
erythia. See Hesperides.
ERYTHRÆAN (ěr'íthrḕan) SEA, in ancient geography a name given to what is now
called the Indian Ocean, but including the Persian and Arabian gulfs. The name was lat-
terly restricted to the Arabian Gulf.

ERYTHRIC ACID, a white, crystalline, tasteless and odorless powder, readily soluble
kalis and alcohol obained from lichens
erythrina. See Coral-tree.

ERYTHRITE, or "cobalt bloom," a native peach-blossom red color, whence its name from the Greek, erythros, red. It occurs in monoclinic crystals, but more commonly in globular or stellate masses or earthy. It occurs at Schneeberg, Saxony; in Cornwall, England; in
Chile, and in some parts of the United States. , States
ERYTHRONIUM, a genus of small plants of the lily family, common in damp, shady
woods, of which a well-known and widespread species (.E. americanım) in the United States, is the "dog-tooth violet" or "adder's tongue"both unfortunate names. It is among the earliest of spring flowers, appearing as two radical leaves, usually handsomely mottled, between to four inches high, bearing a single bell-shaped flower of six distinct lanceolate segments, pale yellow, often spotted near the base. About a dozen other species are known in the United States, some bearing several flowers on the scape, and of var
or pinkish white.

ERYTHROPLGEUM, ě-rîth-rō-plēum, a genus of tropical trees, of the pea family, containing five species, found in Africa, Asia and
Australia. E. quineonse of Africa has a Australia. E. guinecuse of Africa has a
poisonous red juice, which is used by the natives poisonous red juice, which is used by the natives
as a test of innoccuce or guilt, and hence the name ordeal-tree. The natives of Guinea aind the points of their arrows. ERYTHROSIN.

ERYTHROSIN. See Coal-Tar Pronucts. the family Erythroxylacea. The genus son the family Erythroxylacca. The genus con-
tains about 90 species, composed almost exclutains about 90 species, composed almost exclit-
sively of trees and shrubs growing in tropical regions. The flowers are small and lack color; the fruit is a drupe. The red dycwood of Brazil is $E_{\text {. }}$ suberosum, and the oil-wood of
Mauritius is E. hypericifolitm. The chief member of the genus and family is E. coca. See Coca.

ERYX, ériks, ancient name of a city and mountain in the west of Sicily, about six miles
from Drepanum and two from the seacoast from Drepanum and two from the seacoast
The mountain, now Monte San Giuliano, riscs The mountain, now Monte San Giuliano, rises
direct from the plain, unconnected with any direct from the plain, unconnected with any
other range. and hence possesses a much greater other range, and hence nossesses a much greater being only 2,184 fect. It was anciently believed to be the highest mountain in the island after
Etna, and is frequently alluded to by Virgil and Etna, and is frequently alluded to by Virgil and
other poets. On the summit stood a celebrated other poets. On the summit stood a celcbrated
temple of Venus, from which the goddess retemple of Venus, from which the goddess re-
ceived the epithet of Venus Erycina. All traces of the ancient town of Eryx have now disappeared, and its site is occupied by the modern
town of San Giuliano; but some remains of the temple still exist in part of the substructure of he castle.
ERZBERG, ärts-berg, a mountain in Styria, Austria, near the town of Eisenerz. It rises able deposits of iron ore, reaching as high as 40 per cent metal, which is taken out annually to the amount of over $1,000,000$ tons. Aragonite is also found in considerable quantity.
ERZERUM, ĕrz'room, ERZEROUM, or
ERZEROOM, Armenia, a large city of, and,
after the annexation of Kars by Russia, the chief place of resistance by Old Turkey
to a Russian advance, about 100 miles south to a Russian advance, about 100 miles south repaired and much improved since 1864 . Th inhabitants consist of Turks, Armenians and Persians and are very industrious; and, in addiper and impontant manufacture, especially in cop per and iron, carry on a very extensive trade town, standing at the junction of scveral important roads leading from Transcaucasia by way of Trcbizond, and communicating with dif ferent parts of Asia Minor, with Persia, Kur
distan, Mesopotamia, ctc. Erzerum is a plac of great antiquity. Anatolius, commander of the Emperor Theodosius II, here built the cit adel of Theodosiopolis, northwest of the open Syro-Armenian trading town of Arsen. On the destruction of this town by the Scljuks, lis, which received from them the name of Arsen-er-Rum, that is, Arsen of the Romans. Hence the modern name Erzerum. In 1241 it fell into the hands of the Mongols, and in 1517 into those of the Turks, notwithstanding whose mismanagement it continued to be the most nian plateatt, and had a population of 100,000 . In 1829 it was taken by the Russians, but wa restored to Turkey by the Peace of Adrianople Many of the inhabitants, howcver, quitted the town and settled in the Russian territory In the winter of 1877 it was besieged by the Rus-
sians, who reduced the defenders by famine, until in February 1878 it was surrendered, and held by the Russians for scveral months. It was again, however, restored to the Turks. In the European War Erzcrum fell a prize to th armies of the Grand Duke Nicolas, on 16 Feh ish prisoners to the number of 13,000 whe taken and 323 pieces of cannon, See WAR, European.
ERZGEBIRGE, ārts'gê-hêr-gề (German, Ore Mountains), a range of low mountains
ahout 100 miles long on the boundary betweer ahout 100 miles long on the boundary betwect
Saxony and Bohemia. It is about 25 miles wide, and has an average elevation of 2,500 fect and a maximum of 4,060 (Mount Kcilberg). On its sides are extensive forcsts, among which are many summer resorts. Like
the Blue Ridge Mountains in the United States the Blue Ridge Mountains in the United State
and the Highlands of Scotland, they are an and the Highlands of Scotland, they are an ancient range, worn down and again uplitted. valuable deposits of minerals and form an old mining region. Silver ores were mined there as long ago as 1150 and mines of lead, copper, tin, cobalt, nickel and iron ore have also been sunk there.
ERZINGAN, čr'zing-an, Armenia, town and canital of a district in the province of Erzerum, 85 miles south of Erzerum. It is and is of importance as a garrison town. It has a military hospital, large barracks, government huildings, a mosque, a bazaar, an Armenian normal school, and oher Armenian schools. It has manufactures of cotton, canvas, silk, copper and clothing. The government maintains
several tanneries in the neighborhood. In 1784 most of the place was destroyed by an earth-

Quake. In ancient times it was called Arsinga ap. 18,000 about equally divided betwee Armenian Christians and Mohammedans.
ESARHADDON, king of Assyria and son When his father was slain by his brother Esarhaddon proclaimed himself governor o, Babylonia and set about avenging his father' himself acknowledged king of Assyria. He conducted several campaigns against foreign Sidmies, first against the Chaldæans, capturin Sidon and razing that city. In 6/3-670 B.c. h made two campaigns in which he brought Egyp repress an insurrection in Egypt in 668 b.c. He designated Assurbanipal as king of Assyria. He did much for the rebuilding of Babylon and planned many great building enterprises. His of the most beneficent kings of Assyria. the most beneficent kings of Assyri
ESAU, the eldest son of Isaac, and twin
Hither of Jacob (Gen. xxv, 24-26). His name (which signifies rough, hairy) was due to his singular appearance at birih, being "red, and al over like a hairy garment." The struggle fo srecedence between the hrothers was fore in the world. Esau, the father's favorite, became a cunning hunter; Jacob, the favorite of he mother, became a peaceful shepherd. One day, as Esau returned famished from the chase he found his brother preparing some lentil potadge, and asked for a share of it. Jacob, taking he pottage if he would give up his birthright Although this meant yielding up the headshi of the tribe and the greater share of the family property, Esau nevcrthcless consented. He wa color Edom (red) in consequence, from the to the land he settled in. The next episode in his history is when Jacob, instigated by hi mother, personated Esau, and succeeded in getdignation of Esau at the base trick was natural and Rebekah sent Jacob out of the way for time, to escape his brother's vengeance. On his in mollifying protracted stay Jacob succeeded After a subsequent by presents and flattery. the death of their father, we hear no more of M

Many biblical scholars are inclined to look upon this story of Esau and Jacob as symbolica Israelites and the Edomites. The between the of the former are well represented by Jacob and older of the latter by Esan. Edom, which was
Israel, was subjected by David. Sce
ESBJERG, ës'byērg, Denmark, scaport, miles west of Fredericia with a large trade in cattle and dairy products, mostly to England. Its harbor, the only one of importance on the west coast of Jutland, was constructed 1087 the state at great expense in $1868-74$; and in ment for steam communication with Great Britain. A submarine cable connects with Calais. Pop. 18,208.
ESCALADE, ess-kâ-lã̌ld', in war, a furiou attack of a wall or a rampart, carried on with
ladders, to pass the ditch or mount the rampart, without proceeding in form, breaking ground, or carrying on regular works to secure the men.

ESCALANTE, ās-ka-lan'tã, Juan, Spanish soldier and explorer: d. 1519. He accompanied Cortes to Mexico and by the latter was made high constabie of Villa Rica de Vera Cruz. He had brought the Spaniards irom Spain and with 150 men, remained on the coast while Cortes marched against Mexico City. When two of his company were assassinated by the Indians Escalante set out with 50 whites and thousands of Indian allies to make reprisals on the hostile
tribes. In the ensuing battle his forces were successful but he and seven of his white followers were slain.
ESCALATOR, the name applied to a continuous carrier designed for conveying passengers from one level to another within a limited time. The various units making up the cscalator are so arranged that on the incline they present the familiar zigzag appearance of
an ordinary stairway, and may be used as such. The escalator consists of an cndless series of steps connected together by a heavy sprocket chain which, at the proper place, engages with the driving sprocket wheel. Each step is essentially a four-wheel truck, bolted to a shaft, driving chain. There are two wheels at each end of the truck traveling on separate tracks, so placed that the steps remain horizontal at all points of the ascent. At the landing, at the top and trac bottom of the escalator, the trucks travel in the same plane so that the steps there
become a moving platform. Ample opportunity is thus given, even to the infirm, to board the device before the ascent begins and at the top to step off again. A traveling hand-rail moving at the same speed as the steps further simplifies step of at the upper landing, a device called a shunt removes him from it. This consists of a box-like affair, triangular in plan, placed about 10 feet from the top of the escalator with the apex pointing against the direction of the moving platform. In the lower part, set in a verfrom the apex. Anything coming in contact with these belts is gently brushed to one side. Every part of the escalator is made to micrometer measurements of one thousandth of an inch by special machinery designed for the purparious a a result orether so niccly that a piece of paper cannot be forced between them. To secure practically noiseless operation, the wheels on which the trucks move are deadened, rawhide pinions are used in driving gear The links of the sprocket chain are made of two 18 -inch cast steel shrouds, with $11 / 2$-inch steel pins between them at 3 inches between centres. The ends of the links are bushed with phosphor-bronze in which graphite is inlaid, thus providing lubrication of the bearing sura constant lubrication of graphite. The escalator is driven by an electric motor located within the structure of the upper landing and suitably
geared to the large driving sprocket wheel by a
combination of worm and spur gcaring. All parts of the running gear are made of crucible
cast steel, the axles and link pins being of cold drawn steel. Each casting is subjected to a test of many times the working-strain to come upon it. While there are no mechanical limitations to the rate of speed with which the escalator
may be driven, it has been found that a speed of about 100 fect per minute is satisfactory to the public. At this rate of driving, 4,000 steps per hour arrive at the landing and the maximum capacity of the machine depends upon the width of the steps used. The escalators which have
been installed for railroad stations, large department stores and other localities where a large capacity is necessary, have been a little over five feet in width and as each step readily accommodates three people the maximum capacity of such a construction is 12,000 people per hour. in railroad stations where the traffic is not heavy the escalator is made of such width as to accommodate one person on cach step, and the capacity is therefore 4,000 per hour. It should be noted that the escalator is a perfectly re-
versible machine, operating equally well in either direction. In the "duplex" type, the steps during the descent are again guided into the fanniliar zigzag position by suitably placed tracks and thus the same machine serves to carry passengers both up and down. In a third modification of the device designed especially for the
London underground railroad, where the difLondon underground railroad, where the dif-
ference between levels is considerable, the steps ascend in one spiral and descend in another ascind below one first.

ESCALOP, or SHELL, an heraldic symbol used to signify that the bearer has voyaged much on the sea. See Heraldry.

ESCANABA, Mich., city and county-scat of Delta County, on Little Bay de Nouquette, an inlet of Green Bay; on the Chicago and Saint Paul railroads; 52 miles northeast of Marinctte. Owing to its excellent and picturesque situation, it enjoys considerable repu-eight-mile frontage and there is steamboat connection with several lake ports. Much of the Lake Superior iron ore is shipped from here. It contains eight ore docks, in which are handled over $4,000,000$ tons annually, and there is, moreover, a large trade in coal, fish and lum-
her. There are manufactories of flooring, furniture and wooden ware, a plant for crushing iron ore, and large railroad repair shops. The United States census of manufactures for 1914 showed within the city limits 45 indus921 persons; 777 being wage-earners receiving $\$ 469,000$ annually in wages. The capital invested aggregated $\$ 1,354,000$ and the year's ontput was valued at $\$ 1,507,000$: of this, $\$ 771,000$ was the value added by manufacture. The
buildings of note are the public library, hospital, buildings of note are the public library, hospital, was settled in 1863, and was incorporated in 1883 and received its city charter in the same year. Pop. (1920) 13,103 .
ESCANDON, Guillermo de Landa y, Mexican statesman: b. Mexico City. He was educated in Stonymurst
epresenting the states of Chihuahua and Morand from 1900-02 he was mayor of Mexico City 1903. Under his administration many very im^{2} portant reforms have been introduced and carried to successful results, among them the rcstriction or practical discontinuance of gam service; the enactment of rules restricting the peed of automobiles; the protection of the peon or Indian class; the improvement of the prisons of the capital city and its suburbs, an also of the public buildings and military ba the correctional schools, the theatres and other places of amusement, and of the entire city the adoption of a system of street sweeping and prinkling; the placing of proper restrictions on he sale of alcoholic beverages, etc.
ESCAPE, the liberation of a person from accomplished by the prisoner it is known a prison breach, but if accomplished by other and with force, it is known as rescue. Priso brcach with force is a felony, but, if withou orce, merely a misdemeanor. In most moder urisdictions a prisoner who effects his escap him in any manner whatsocver. His aids it the escape, or even attempt to escape, are guilty of the same grade of crime as the prisoner an are liable to the same punishment. Officers wh aids and punished as such. When guilty aids and punished as such. When gink misdemeanor. See Criminal Law.

ESCAPEMENT, a part of the machinery in watch or clock. See Clock; Watchmakinc
ESCARP, or SCARP, the slope of a dith next the parapet. In permanent fortification
the escarp is usually faced with mason work uehind which are erected casemates. Se
ification
ESCARPMENT, the abrupt descent, which may or may not be a cliff, from a plateall
lower land. Particularly famous are the Hel^{-} derberg escarpment near Albany, and the Niag ara escarpment, the latter responsible to Niagara Falls. The Allegheny Front is ant ther well-known escarpment See Mountains liff.

ESCARS See Eskers
ESCAUT, ès-kō, the French name for the

ESCHALOT Sce SHallot

ESCHAR, ěs'kär, a portion of dcad tissue also the artificial slough produced by the use o caustics.

ESCHATOLOGY. The teaching in re gard to the last things (Greck ta eschata). th deals with man's condition after death, the destiny of nations, and the end of the wordi-
Speculation concerning the fate of the individual appears to have started in a very early period of man's career. Archæological remain ndicate the presence of certain customs a cady in the palcolithic age which secm to death. The disposal of the lifeless body so a to provide it with a shelter, the pictorial repre sentation of men disguised by the heads of
permit any other interpretation. Sepulture, even in its simplest form, apparently implies the porarily absent but still man that may be temporarily absent but still demands a measure of
Sustenance and protection for the body. According to primitive notions among peoples surtolday in stone age conditions me of those that once lived in a neighborhood things may return in the guise of totems for the increase and strengthening of the tribe The desire to have the double within, whose existence had been suggested ly many an exwhose, united with the element of fire, for struge permanent possession man had so likely to have given rise to the incineration of the body. In the neolithic age spec ally constructed tombs, offerings of solid testify to the growing belief in a survival dependent upon such ministrations. It is probable that the satisfaction of immediate needs, impuises, and passions precluded, in these remote ages, any serious concern about the future allowed only a loose attachment to any partic ular place tended to prevent a local catastrophe from conjuring up the thought of an impending destruction of the whole world.
veloped various centres the earlv civilizations decerning the future. The Egyptians continued through the futurends of years the practices of the neolithic age, though with some modifications. Iombs were differently constructed, bodies were embalmed, painted food was substituted for real, the mortuary ritual was enriched, but the
linderlying conception remained the samc. Even when the Osirian theology gave a larger measure of independence to the soul, which had to appear before the judges in the nether world, the connection with the entombed body was never lost in popular thought. In periods of
foreign invasion and social disorder the need was felt of some guarantees of a better future. While the Prophecies of an Egyptian Sage in a papyrus of the Middle Kingdom do not con-
tain at least the suggestion of eschatological thought in the desire for a "sliepherd of all the people, the has no evil in his heart." The frecdom of catastrophes was not conducive to ideas of an approaching end of the world. Our knowledge Concerning the Ægean and Hittite civilizations is still too scanty to allow any definite conciusions on these points except such as may be
inferred from the archæological remains. The belief in a survival through protection and care of the body is clearly cvidenced by tombs and cultic performances. Whatever ideas the
Greeks may have brought with them into their Greeks may have brought with them into their
new home, they are likely to have been much new home, they are likely to have been mulch
influenced at the outset by their predecessors. In the Homeric Age it was thought that all souls pass at death to a shadowy and undesirable existence in Hades, unless for special rea-
sons a hero is translated to dwell with the Sons a hero is translated to dwell with the
gods. This subterranean realm may be visited Rods. This subterrancan realm may be visited
by an Odysseus still in the fiesh. Speculation oy an Odyssecus still in the fesh. Speculation
upon successive ages, symbolized by gold, silver, copper and iron appears in Hesiod, together with the suggestion that the process of de-
generacy will end in destruction of the last
race. As the thought of a moral retribution beyond the grave asserted itself, the Orphic assurance of mysteries offered to the initiated vation from future punishments adjusted to the crimes committed. Among the Pythagoreans the idea of transmigration, probably conceptions. The primitive notion seems to have been that at death the soul is carried hither and thither by the wind until it enters another body. Plato developed this eschatological thought
in various dircctions. He based immortality upon the essential nature of the soul as an ctcrnal "idea" existing before birth and sulbsisting after death. While accepting the Orphic scheme of retribution, he emplasized the positive value and moral significance of life. He mic year, thus anticipating the end of the present world; and he sought the realization by practical efforts of a society patterned upon the ideal, always limited, however, by the Greek conception of the city-state. Aristotle's attinegative or agnostic. In Babylonia, the Sumerians thought of the dead as going to a land below the earth whence there was no return, though some semi-divine eroes, like Engidu and Enmeduranki, migh be spared the common lot and translated to be way thither. Their mythical lore and astronomical observations furnished Akkadians, Amorites, Aramæans and Chaldæans with material for later speculation. But even these peoples do not seem to have developed any new individual. While the growth of a peculiar astrological system, perhaps already in the Kassite period, may here and there have sugggested the idea of the soul rising to life again, and apparently led to the conception of the takable evidence either that the inhahitants of Babylonia, Assyria and Mesopotamia befor the Persian period became decply concerned about existence after death, or considered intensely the future of the nation beyond some immediate emergency, or transferred the mythof the world. This was sulsequently done in Syria But even there the Hebrew done in reveal for long periods substantially the same ideas. The soul passes at death to a subterranean Sheol where there is no moral distinc-
tion. Only exceptionally an Enoch or Elijah tion. Only exceptionally an Enoch or Elijah But the ethical fervor and insight of the grea prophets, men like Amos and Hosea, Isaiah, Micah and Jcremiah, brought to the fore a conception of the nation as having a spiritua function, independent of the maintenance of
the popular religious cult and the changing he popular religious cult and the changing
fortunes of the state. The extraordinary longevity of the Davidic dynasty tended to raise the expectation of a return of politica independence and power under a scion of the old line. In some circles the thought, so touch ingly expressed in the book of Job, that, from
a longing for the work of his hands, the Creator might bring man back again from Sheol seems to have been entertained, though the author o that great poem resolutely brushes aside this
"hope of man." But the way was prepared for a new growth of esc
with Persian thought.
The Aryans of the Iranian plateau and India followed primitive tendencies into different directions. A religious practice of promptly returning the body to the various elements, rather ing demand for future retribution, seems to have led the former to the view that the body would ultimately be restored by the elements. Although the duty of exposing the dead and the doctrine of a physical resurrection, so strongly luded to in the Gathas, and the Achaemenian kings were buried, it is probable that they had long been maintained in certain Mazdayasnian circles, and they appear to have been known to Herodotus in the 5 th and Theopompus in the 4th century B.c. That the world will pass
through a final ordeal by fire is taught in the through a final ordeal by fire is taught in the
Gathas. The later Avesta divides the worldyear, not according to the precession of the
equinoxes into 25,868 years, but into 12 millenequinoxes into 25,868 years, but into 12 millennia, placing the advent of Zarathushtra at the end of the 9th, that of the Saoshyant, or the 12 th. In India, on the other hand, the doctrine of transmigration became strongly entrenched, while a tendency toward pantheism
excluded the idea of a creation and precluded excluded the idea of a creation and precluded
the growth of eschatology. There are no last the growth of eschatology. There are no last
things in a pantheistic philosophy, though the things in a pantheistic philosophy, infation may be divided into kalpas, yugas, or epochs. The doctrine of metempsychosis renders it possible
do introduce in the future life of the individual the nicest moral adjustments, implying both rewards and punishments in terms of character, and the possibility of rising and sinking in the scale of being according to present conduct.
But this never-ending series of births and deaths may come to be felt as an intolcrablc evil, and Buddhism offered deliverance from the infinite wheel of existence in Nirvana. It is interesting to observe that the Aryanized people of Northern Europe not only believed in the assembly of all souls, except those trans-
lated to be with the gods, in Hel's subterranean realm, but also in punishments for the wicked, a destruction by fire of earth's crust, a new earth people by the descendants of the pure children Lif and Lifthraser, and a new dynasty of gods. The practical character of with its conservative influence, and worship, with its conservative influence, and given an osophical thought, discouraging speculation about the future. How similar ideas may grow up, apparently without historical contact, from the natural operation of the human mind, is Strikingly shown by the fact that the ancient destruction of the world, analogous to its dedestruction of the world, analogous to its deand also, it would seem, to a future restoration of the body.
The blending of Greek thought and Oriental speculation that followed the conquests of AlexPlato's idea of immortality, involving pre-exstence as well as post-cxistence, and emphasizing deliverance from the prison-house of mat-
ter, spread in the East, while the Persian doctrine of a resurrection found its way to Syria, and in some Hellenistic circles a spiritual ac cepted as a compromise. The colorless existence in Sheol was reduced to an intermediate
state between death and the final assize, while state between death and the final assize, while
the Orphic pictures of heaven and hell helped to give a distinctive character to man's ultimate fate in the other world. Stoic philosophers set forth a theory of cycles according to which cach cosmic year ends with a universal conflagration, leaving only the elements out of
which a new world rises to pursue its course in exact repetition of its predecessor. Jewish apocalypses described a succession of worldempires and laid down a definite program of the last things with many features ultimately borrowed from Babylonian mythology. Somethought of as ruled directly by God; some times a theocratic ruler on earth was expected, either a high-priest "of Aaron and Israel," as in the Zadokite Documents, or a king of the family of David and the tribe of Judah, as in the Psalter logical expectations of a heaven-sent ruler and savior of the world are found in the Fourth Eclogue of Virgil, the Priene inscription to Augustus, Sibylline oracles, probably of pagan rigin, and elsewhere. In this atmosphere Christianity grew up. Jesus himself appears to mediately after in a spiritual resurrection imof it, cherished no ambition to become a king or in other ways to exercise lordship, and looked for the kingdom of heaven essentially as a reign of righteousness in the life of man. But the belief that He had been raised from the
dead according to the Scriptures and would dead according to the Scriptures and would
return upon the clouds of heaven as the Messiah to take vengenance upon His enemies, raise the dead, and establish His kingdom on earth affected profoundly the thought of the early the interest gradually shifted from the idea of the interest gradually shifted from the idea of
a righteous kingdom on earth to the perfected a purgatory might be assisted in attaining, but from which the denizens of hell are forever excluded. Yet in the greatest of all apocalypses Dante gives a glimpse of the final order of
things on earth at the top of the mountain of purgatory in which all external authority has at last ceased. The poet realized, however, that before this stage can be reached when a citizen of the world may be left in freedom, righteousness and sanity to "crown and mitre" human race under the same law would be necessary, and in 'De monarchia' suggested the need of an expansion of the empire to all parts in order to guarantee a general security and growth. When the Lutheran, Anglican and Reformed churches rejected the doctrine of a purgatory, they considered man's destiny to the closing scenes of the last judgment and the resurrection of less practical importance, to eliminate the premillennial coming of Christ, long development of Christian life. Among long development of Christian life. Among
Baptists and other radicals there was a reaction against this toward universalism or millen-
nianism. A great crisis in the history of na- and religious, that are likely to follow the tions naturally produces a certain eschatological
mood which leads some minds to seek new interpretations of old prophecies, and others to make forecasts of the future.
The Jewish and Christian doctrines of a final judgment, a resurrection of the dead, and everby Islam, and the eschatology wase adopted after the prophet's time, by contact with Persian thought. The idea of a reincarnation of some great representative of Allah in the past has exerted a particularly strong influence, and the the truth more fully ar tions of life on earth has from time condistirred profoundly the Mohammedan world. In later Judaism the denial by Maimonides of a physical resurrection found support at the time hope for an more recently to a wide-spread resuscitation of the body. The disillusionment that has followed every Messianic movement has, no doubt, had something to do with the less prominent place held to-day even among orthodox Jews by speculation as to the advent liberals who are interested in the establishment of a Jewish state in Palestine seem to contemplate a monarchical constitution; and the fundamental difference between Jewish cosmopolitans and nationalists does not even affect tion conviction that israel has a particular funcrace to fulfil in the regeneration of the human Modern thought, freeing itself from the authority of tradition, has earnestly endeavored to test the foundations and appraise
the value of the various eschatological conceptions, and to find out how far, and on what
cent ceptions, and to find out how far, and on what
grounds, it is possible to formulate any views concerning the future that shall be in harmony With scientifically ascertainable facts. There is a disposition to examine objectively and impartially any evidence that is adduced, whether
from the correspondence of the phenomena of consciousness to the operations of special parts the the brain or the alleged communications with man and animal or the intrinsic worth of human helf-consciousness, the potentiality in all or the inquiry degree of realization in some. Scientific not find any ground for vetoing the assumption of an idealistic philosophy that the inmost self in man may be an indispensable unit in a spirit-
tal universe. But there can be no question that Lal universe. But there can be no question that
tie characteristic modern attitude, affected by me characteristic modern attitude, affected by
science, is one of unwillingness to dogmatize, reance, is one of unwillingness to dogmatize,
readiness to hold the judgment in suspense, and
disinelination disinclination to regard knowledge in this field as essential. That the individual continues to inve in the race is capable of demonstration, and to the consciousness of this fact a strong
moral appeal is possible. An intelligent patriotMoral appeal is possible. An intelligent patriot-
ism is to-day obliged to consider the future of
the nation in comnection with the whole system of sovereign and independent states. The political integration of these states into an all embracing league of nations is felt to be indispensable to the general security and looked thought to with connidence. Eschatological changes, political, industrial, economic, social
and religious, that are likely to follow the
world war. It attaches itself again to the
destiny of the earth. Barring an accident, destiny of the earth. Barring an accident, bility, our planet may be expected to run its course through long ages before it passes away or ceases to be inhabitable. A new glacia period, however, probably lies in a much more meen two such perioning in an interval be to the development of civilization, we are threatened by the exhaustion of some supplies on which that civilization particularly seems to depend. A careful husbanding of all our men and nations according to their needs, and a just regard for the necessities of comin generations will be called for. In the efforts to realize the eschatological ideals a moral energy nay be recious spiritual harvest of the life of mos on earth. Bibliography.-Déchelette, J., 'Manue Morgan, (Les ${ }^{(L)}$ (1909) ; Osborn, H. Fremieres civilisations Stone Age) (1916); Meyer, Eduard, (Ge rich, A., 'Nekyia' (1893); Cumont, F., 'Les réligions orientales dans le paganisme romain' (2d ed., 1909); Moore, G. F., 'History of Religions' (1914); Jastrow, M., 'Hebrew and 'Das Alte Tradition' (1914); Jeremias, A., Orients' (1906) ; Tiele, C. P., 'Geschiedenis van den Godsdienst in de Oudheit) (1893 1902) ; Söderblom, N., 'La vie future d'après e mazdésme' (1901)'; Marti, K., 'Geschichte der israelitischen Religion' (1897)'; Charles, R.
H ., 'Critical History of the Doctrine of H., 'Critical
Future Life) sprung der israelitisch-jüdischen Eschatologie (1905) ; Guy, L., 'Le millenarisme dans ses rigines et son developpement' (1904); Bous set, W., 'Religion des Judentums' (2d ed.
1906) : Atzberger tologie) (1890); Salmond, G (The Che Escha Doctrine of Immortality', (1897) : Böklen A Die Verwandtschaft der jüdisch-christlichen mit der parsischen Eschatologie) (1902) ; Dobchütz, A., 'Eschatology of the Gospels' (1910) Mac Culloch, J., Early Christian Visions o Ethics of Dante' (1910); Schmidt, N, 'Th Human Personality: its Survival . W. H Death' (1903); Ward, James, 'The Realm of Ends' (1911) ; Duncan, W. B., 'Immortality and Modern Thought', (1912) ; Adler, Felix An Ethical Philosophy of Life' (1918).
Nathaniel Schmidt, Professor of Semitic Languages and Literature Cornell University.
ESCHEAT, ès-chēt' (old French eschet, poil, rent, that which falls to a person), th eversion of property to the sovereign. The aw considers that all property must have an ssue, the property, in England, escheats to the king, and in America to the state as sovereign. In some jurisdictions, before the sovereign receives title there is a certain kind of proceeding to detcrmine whether or not there are any gets the title on the death of the owner: but
even in these cases the sovereign's title is defeasible until therc are proceedings to determinc that the deceased had no heirs. When the sovthe rights and privileges of the last owner, an the statutory requirements must be strictly followed, both as to the disposal of the property and as to the use of the fund derived from the sale, in case a sale is necessary. In the Unite States the powers and duties of the sovereign in
relation to escheated property are controlled by statute in the different States. Formerly an escheat might arise through the failure of heir or forfeiture for treason. In England the wor escheat also signifies the district within which ho king or lord is entited to escheats; a wr of the state or lord; hence, generally, a retur or reversion; and, more generally, that which falls to a person

ESCHENBACH, ēshẽn-bä, Wolfram von, German mediæval poet: b. Eschenhach, near Ansbach, Bavaria, about 1165; d. ahout 1220. He was one of the most prominent min Thels at the court of Hermann, Landgraf other part being spent in Wildenberg (Wehlen berg). He was a contemporary of another ver famous poct with whom he came into frequen contact at court. This was Walther von de Vogelweide (q.v.). According to his ow he had a very tenacious memory which enabled him to treasure up all the learning that came his way so that he soon became a marked characte and finally was invited to the court and ultimately acquired all the cducation of the layman His epics rank work shows chivalry at its bes maginative works. Besides several love song he wrote '(Parzival); 'Wilhelm von Orange, and 'Titurel, or the Guardian of the Graal.'
ESCHENBURG, ėsh'ẽn-boorg, Johann Joachim, German scholar: b. Hamburg, 1743 1820. He received his education at the uni versities of Leipzig and Gottingen and in 1767
began his lifelong connection with the Collegium Carolinum in Brunswick, of which he wa director after 1814. He published the first Splete German translation of Shakespeare Shakespeares theatralische Werke) (13 vols. ish anthors. He other translations from Eng -lassischen Litteratur) (1783) ; 'Entwurf einer Theorie und Litteratur der schonen Wissen schaften' (1783); 'Biespiclsammlung zur The(8 vols., 1788-95); (Lehrbuch der Wissentskunde' (1792) ; 'Denkmăler altdeutsche Dichtkunst' (1799), and the hymns 'Tch wid Gott, und wanke nicht.'
ESCHENMAYER, ěsh'ên-mi-èr, Adam arl August von, German philosopher: b Neuenburg, July 1768; d. 1852. He was edu cated at the Caroline Academy, Stuttgart, and the University of Tübingen. He was for many years engaged in the practice of medicine ointed extraordinary professor of medicine and philosophy at Tubingen and in 1818 became
ordinary professor of practical philosophy. He resigned in 1836, removed to Kirchheim and
thereafter devoted himself to philosophical thereafter devoted himself to philosophical
study. He was inclined to study. He was inclined to a belief in mysti-
cism as an aid to philosophy and took a decp interest in animal magnetism. In his later years his beliefs degenerated into a lower form of supernaturalism. He wrote 'Die Philosophie in ihrcm Ubergange zur Nichtphilosophic' (1803) ' 'Versuch die scheinbare Magie des und physischen Gesetzen zu Erklăren) (1816); 'System der Moralphilosophic) (1818) ; 'Psychologie in drei Theilen, als empirische, rcine, angewandte' (2 d ed., 1822) ; 'Religionsphilosophie) (3 vols., 1818-24) ; 'Die Hegelsche Religionsphilosonhie verglichen mit dem christlichen
Princip' (1834): 'Der Ischariotismus unserer Tage) (1835): 'Konflikt zwischen Himmel und Hölle, an dem Dāmon eines bessessenen Mädchens beobachtet' (1837); 'Grundriss der Naturphilosophic' (1832); 'Grundzuge dungen über physischen Welthau') (1852).

ESCHER, esh'ér, Johann Heinrich Alfred, Dec 1882 He studied law at Zurich, Bonn, Paris and Berlin and in 1844 became a member of the Cantonal Council of Zürich. In the following year he issued a summons for a general convcntion to be held at Unterstrass and having
in view the expulsion of the Jesuits. As memin view the expulsion of the Jesuits. As memwas elected in 1846 he did much to place the educational system of the canton of Zürich on a truly modern basis. In 1847 Escher was madc president of the Grand Council and in
1848 was elected to the Federal Diet. In 1849 he became president of the National Council he became president of the National Counce-
and in $1856-57$ and $1861-62$ he served as vicepresident and was later president of the Confcderation for several terms. A bronze statue to his memory was erected by the citizens of Zürich. Consult
(1883)

ESCHER VON DER LINTH, Arnold, Swiss geologist: b. Zürich, 8 June $1807 ;$ d. 12 Escher (q.v.). He was appointed professor of geology at the Zürich Polytechnic School in 1856. He made extensive researches which have caused him to be considered one of the forcmost of the founders of Swiss geology. Tublished the first detailed geological map of Switzerland. He wrote 'Geologische Bemerkungen uber das nördliche Vorarlberg und einige angrenzenden Gegenden' (1853).

ESCHER VON DER LINTH, Hans Conrad, Swiss statesman: b. Zurich, 1767 ; d. 1823. He studied at the University of Göttingen in 1786-88 and from 1798 to 1802 was a
member of the Legislative Assembly of Switzerland and at about the same period was editor zcriand and at about the same period was edito
of the Schweizerischer Republikaner. He retired from politics in 1802. In 1807-22 he scrved as president of the board of inspection of the canalization of the upper Iimmat, known dreds of acres of fertile arable lands. Escher's popularity was at its height and his family re-
ceived the surname of Von der Linth in 182^{3}
as a recompense and recognition of his services to the republic. Consult Holtinger, 'Life of ESCHERICH ěsh'er-iн Karl Leopol German entomologist: b. Schwandorf, 1871. H received his education at the universities Munich, Würzburg, Leipzig and Heidelberg ing Tung in 1892) he made several 185) Alse (1898), Abyssinia (1906), Ceylon (1910), and North America (1911). At Strassburg 1901-06 he served as privatdozent and in the latter year was appointed professor at Tharand Forestry Academy. He has published 'System (1906): 'Ferienrcise nach Erythrea' (1908) 'Die Termiten oder weisscn Ameisen' (1909) Termitenleben anf Ceylon' (1910) ; 'Dic ange wandte Entomologie in den Vereinigten Staaten)
(1913): (Die Forstinsekten Mitteleuropas) (Vol. İ, 1913)
ESCHRICHT, ěsh'rint, Daniel Frederik He studied medicine in his native city practise his profession for about three years, after which he studied physiology and comparative anatomy in France and Germany. After 1836 he held a chair at the University of Copenhagen. He 'Folkelige Foredrag' (1859). He left a valuahle collection which now rests in the Zoological Muscum.
ESCHSCHOLTZ, ěsh'ōlts, Johann Friedrich, Russian naturalist : b. Dorpat, governme of Riga, 12 Nov. 1793; d. there, 10 May 183 1819 hecame medicine in his native city, and in of the Dorpat. In 1815-18 and 1823-26 he accom panied Otto von Kotzebue in the latter's explo ing tours around the world, collected a larg number of natural history specimens and made ismable scientific studies on the lower organ
isms of deep-sea life. The results of his studie Were published in Kotzebue's account of the ex pedition (1821), and he presented his collection to the University of Dorpat 1826. His catalogue of over 2,000 animals was published in Kotzcbue's 'Neue Reise um die Welt' (Vol member of these expeditions, named a honical species Eschscholtzia in his honor, and Esch scholtz Bay, on the Alaskan coast, is also named after him. He published (Ideen zur Aneinan (Sycihung der ruckgratigen Tiere (1819) System der Akalephen) (1829); 'Zoologisch aistributions of ncw species of animals.

ESCHSCHOLTZIA, ě-shōlt'sǐ-a, or CAL perennial herbs of veracea, natives of the natural order papa United States. The species, of which there ar ahout a dozen, are distinguished by much dissected alternate leaves, yellow or white, show hood) (the sepals united to form a deciduous silique. The best-known species is probalily E. californica, a perennial which is widely cultivated as an annual in flower gardens, and is a
beautiful orange-colored flower, one of the most showy in the whole floral kingdom. It is gre-
garious in habit, and in California it covers large areas with an almost unbroken orangeyellow bloom of striking beauty when seen on the gray-green slope of a trecless hillsidc. It is easily raised, especially if the seed be sown
soon after gathering in the fall, and the young soon after gathering in the fall, a
plants protected in cold climates.

ESCHWEGE, ěsh'vã-gě, Germany, a town of the Prussian province of Hesse-Nassati, on
the Werra, 26 miles east-southeast of Cassel It is a walled and well-built town, with a castle dating back to 1386, and long the residence of the landgraves of Hessen-Rotenberg, but now used as a public building. It is an important woolen and linen cloth, several large tanneries woolen and inen cloth, several large tanneries meal, fruit, lard, ham and satisages. Pop. about 13,000.
ESCHWEILER, esh'vī-lēr, Germany, town in the Prussian Rhine province, nine miles eastnortheast of Aix-la-Chapelle, at the confluence
of the Inde and Dente. It has manufactures of articles in iron and tin-plate, zinc and copper machinery, boilers, railway plant, needles, wire rolling-mills, smelting furnaces, belting and other leather goods, beer and birches. Calamine and lead, as well as productive coal-mines, are orked in the vicinity. Pop. 25,000 .

SCHYNITE. Sce Æschynite
ESCOBAR Y MENDOZA, Antonio an-tờne-ō es-kō-bar e men-dö tha, Spanish casu-
ist: b. Valladolid, 1589; d. 4 July 1669 . Entering the order of Jesuits in 1604, he became celebrated as a preacher and writer. At his death he left more than 40 volumes in folio, mostly in theology and morality, the principal being the casuistical 'Liber Theologix Moralis' (1646) 'Summula Casuum Moralis' (1626). He seems to have been a man of excmplary moral character, but his writings unfortunately drew to themselves the ridicule of La Fontaine Moliere, Boileau, Pascal and other witty French writers, who represented him as a person of
extreme moral laxity, of which the French word "escobarderie" became a strong and appealing symbol. They represented him as advancing the doctrine that the moral value of an action is to e found in the intention lying behind it, and that purity of purpose, may justify others conHis writings were censured by the papal authority.

ESCOBEDO, Mariano, mä-rê-ā'nō ěs-kō hă-dō, Mexican soldier, popularly known a "orejones," big lugs, on account of his enor motss ears: b. Dos Arroyos, New Lcon, 12 Jan war between Mexico and the United State broke out he was a muleteer in charge of string of pack mules belonging. to his father He converted his muleteers into a band of guerrillas, attacked small detachments of the Ameri can troops wherever he found them and too part in the battles of Palo Alto and Resaca 861 upon the establishment of Juatrez' govern ment in the City of Mexico, Escobedo was mad a brigadier-general and sent in pursuit of the Clerical forces under Márquez and Mejia, but was surprised, taken prisoner after an heroic
defense, sentenced to be shot, but escaped and in the war against the French which followed the intervention of Napoleon III in Mexican affairs. He repulsed them at Puebla, 5 May 1862, took part in the long siege of that place and when it was captured by the French, 17
May 1863, was taken prisoner, but succeeded in escaping. When Maximilian's empire was esescaping. Escon Maximilians empire was esTexas, secretly purchased arms and ammunition in New Orleans, 1865 , organized and equipped a force of Mexican refugees, American negroes and ex-Confederate soldiers, led them into terey, November 1865, and swept everything before him. Juarez appointed him commander-in chief of the Army of the North; he continued his victorious course until all the chief cities vere in the hands of the republicans and finally besieged and defeated the Emperor it Queretaro
15 May 1866 . It is said that Maximilian offered his word of honor to Escobedo, on surrender ing his sword, to leave the country at once if corducted to the nearest port; but Escobedo efused, probably on orders from Juarrez, who ordered a court-martial, and the Emperor was
condemned and executed. In 1874 Escobedo quelled an uprising against the government of Juarez, but was unsuccessful in putting down the revolution started by General Porfirio Diaz. He fled to Texas, issucd a manifesto against Díaz, of whom he became a close friend and strong
supporter later, and, later during his administration, president of the supreme military court of justice $1882-83$. He also held other important offices of trust under Diaz.

ESCOIQUIZ, es'kō-ê-keth', Juan, Spanish ecclesiastic and politician: b. Navarre, 1762; d. Ronda, 27 Nov. 1820. He began life as a page at court in the reign of Charles III. He took
holy orders and held a prebend at Saragossa. holy orders and held a prebend at Saragossa. position of tutor to Ferdinand, the heirapparent. His efforts in literature at this time consisted of a translation of Young's 'Night Thoughts) (1797) and a worthless epic on the ascendancy over his pupil, afterward Ferdinand VII, and he Ied the opposition to Godoy's plans for a French alliance. He was banished from court but maintained correspondence with Ferdinand. In 1807 he was implicated in the conspiracy of the Escorial, was imprisoned but later
released with the other conspirators released with the other conspirators. After
1808 he became the trusted adviscr of Ferdinand and prevailed on the latter to meet Napoleon at Bayonne, of which mecting he gives a vivid account in 'Idea Sencilla de las razones que motivaron cl viage del Rey Fer-
nando VII à Bayona) (1814). When the nando VII a Bayona' (1814). When the poleon, Escoiquiz accompanied Ferdinand. At the Restoration he was minister for a short period, but Ferdinand had tired of him, he soon fell into disgrace, was imprisoned in Murcia, eSCO a time and later exiled to Ronda. ESCORIAL or ESCURIAL, a royal palmiles (by rail 32 miles) in a northwesterly direction and situated on the acclivity of the Sierra de Guadarrama, the range of mountains which divide New from Old Castile. The

Escorial combines a monastery, a church and a mausoleum with a royal palace. Everythin poses - bears ment and unpractical mind of its originato Philip II. Not the least remarkable of its peculiarities is its site. Away from citics, amid the seclusion of mountain scenery, it stand It was built in commenoration of the battle o Saint Quentin, which was fought on Saint Law rence's Day (10 August) 1557 and to whom is dedicated. The buiiding is a rectangula parallelogram measuring 744 feet in length by
580 in breadth. The interior is divided into courts, the plan supposedly in outline of the gridiron on which Saint Lawrence was broiled while a projection 460 feet in length contain the chapel and the royal palace. The building which is in the Greco-Roman style, was be gun in 1563 by Juan Bautista de Toledo, a pupil, Juan de Herrera. It is in 1584 by his proportions and thus loses much of the effect which, from its great magnitude, it ought to have. The innumerable windows (said to be 11,000 in honor of the Cologne virgins) give it the aspect of a large mill or barrack. The door ing is gray granite found in the neighborhood, which preserves its fresh and clean appearance The church, which dominates the entire design fronts on a central court, which was formerly opened only to admit the king on his first visit burial. The characteristic is majestic simplicity. It is 340 feet long by 234 wide. the cen ral dome, 70 feet in diameter, is 320 feet high externally. Under the high altar is the Pan theon or burying-place of the kings of Spain fully veined One of the dark marble beautiof the building is the cell of Philip II, from which the king in his last illness was enabled to witness the celebration of mass. The mon asterial part of the building contains a valuable library, especially rich in Greek and Arabic manuscripts, and there was formerly a super
collection of pictures scattered through various parts of the building. During the French occupation the books, 30,000 in number, were re moved to Madrid, but were sent back by Ferdinand minus 10,000 volumes. The Escorial was partly burned in 1671, when many MSS. wcre 1808 (when the books were by the French in 813. It was restored by Ferdinand VII, but he monks, with their revenues which supported t , have long since disappeared, and the building, which from its situation requires to be kept in repair at considerable expense, has fallen into time to time. On 2 Oct. 1872 it was struck by ightning and was in consequence serionsly njured by fire. The monastery portion of it is now a seminary in which youths receive a secular education. Consult Calvert, A. F., 'The Escorial; a Historical and Descriptive Account')
(New York 1907); Hay, John, 'Castilian Days' (New York 1907)
ESCORT (French escorte), a guard, a baggage, provisions or munitions, conveyed by
land from place to place to protect them. This word is sometimes used for naval protectors; but the proper word in this case is two kinds, funeral escorts and escorts of hono The troops assigned for escort duty may consist of infantry, cavalry or artillery or all of unem. The army regulations fix the character and size of escorts according to the military
prominence or title of the individual. According to the United States Army Regulations of 1913, the funcral escort of a general of the a regiment of infantry, a squadron of cavalry and one battalion of field artillery; that of War inant-general or the assistant Secretary o cavalry and a battery of field artillery; that of a major-gencral, a regiment of infantry, two troops of cavalry and a battery of field artillery; that of a brigadier-general, a regiment of infantry, a troop of cavalry and a platoon of
field artillery; that of a colonel, a regiment; a lieutenant-colonel or major, a battalion or Squadron; a captain, one company ; a subaltern, a platoon.

ESCOSURA, ès-kō-soo'rā, Patricio de la, SDanish novelist and poet: b. Madrid, 5 Nov. litical and military ups and downs and being twice exiled, in 1855 he was sent as a special envoy to the Portuguese court, became Under-
Secretary of State, Minister of the Interior and afterward Ambassador to Germany, 1872. He Wrote the historical novels 'The Count de Candespina' (1832) ; 'Neither King nor Pawn'
(1835); and 'The Patriarch of the Valley'; nan Copics 'The Bust in Black Cloak' and 'Hermost successful of which was 'Hernan Cortes' Dehaucheries' ; and several historical works, among them a 'Constitutional History of England ${ }^{\prime}$ (1859). ESCROW, in law, a written document
sealed and delivered to the keeping of a third party to be held hy him pending the fulfilment of certain conditions. Such an instrument is not a perfect deed and usually docs not take tions to the general rule are made when justice requires, or when the rights of outside parties are in need of protection. See Deed; Delivery.

ESCUAGE, ěs'kû-āj. Sce Scutage.
ESCUERZO, a Spanish term for toad, specifically applied in the valley of La Plata to nata) noted for its varicd colors, laid on like those of a Persian carpet. This patchwork thorOitghly conceals the toads as they lie half-buried in the ground. "If there is not enough green vegetation," says Gadow, "they throw, with the skin of which of emes at the same time more wrinkled and assumes duller tones. There the creature lies, perfectly conccaled, betrayed only by the metallic, glittering cyes, waiting for some unfortunate creature to pass into the trap represented by the enormous mouth, which
opens and shuts with lightning rapidity and an atudible snap." These frogs are of the Cystignathine group (see Frog) and closely allied to voL. $10-32$
he monstrous "horned toads" of Brazil. They ive chiefly on frogs and are sometimes can nibals
ESCUINTLA, ěs-kên'tlä, Guatemala, one of the southern departments of that republic; chic products, sugar cane cacao and coffee. It altitude of 1,269 fect above the level of the sea altitude of 1,269 fect above the level of the sea on the line of the Central Railroad 30 miles
southwest of Guatemala, has good hotels and apartment houses, and, owing to its baths, is a favorite winter resort. Pop. of Escuintla city favorit.
18,000 .
ESCULAPIANS, a Catholic order, founded at Rome in 1614 and devoted to the education of poor and neglected children. At present it 150 schools. See OrDers, Religious.
esculent swallow. See Salan gane.

ESCULIN, ESCULINE. See 灰Sculin
ESCURIAL. See Escorial.
ESCUTCHEON, és-Kutch'on, in heraldry, is derived from the Old French escusson French écusson, and that from the Latin scutum, a shield. It signifies the shield whereon
ESDRAELON, ẻs-drā-ēlṑn or ēs-drā-ę-lŏn (Merdj-1bn-Amer), the famous and beautifu plain in Palestine, situated between the moun-
tains forming the western watershed of the Jordan and the Mediterrancan Sea. In the Old Testament it is called Jezreel, valley of Megiddo, the Great Plain; in the New Testament, Armageddon. It is triangular in form, 36 miles On its boundary are: on the northeast Mount Tabor, the southeast Mount Gilboa, and on the southwest Mount Carmel. The principal streams are Nahr-el-Djalood, which flows into the Jordan, and the Kishon (Nahr-cl-Moukataa) which flows into the Bay of Acre just north o plain, but are chiefly branches of the two strcams mentioned. The soil is fertile and when cultivated with care yields good crops When Esdraelon was traversed by caravans crossing Palestine from the rich countries eas and west, grains, vegetables and fruits
raised in abundance. Agriculture is again re ceiving attention. Some of the noted places on this plain are Djeneen (probably the old town of Engannin), at the entrance to the plain and 984 feet above the sea. Tradition says this is where the 10 lepers were cured (Luke xvii) called by the Crusaders Petit-Guérin, is now a large village. Near it is the fountain, Ain Maecteh, supposed to be where Saul camped when at war with the Philistines (1 Sam. xxxi) Ain-Dialood, said to be the place where Gideon selected the 300 men who fought and defeated the Midianites (Judges vii). On the south side
of the Kishon are the villages of Afooleh, ElFooleh and Zerin. Afooleh is the old town of Aphec, one of the places where the Assyrians and Egyptians met in battle. At El-Fooleh was once a fortress built by the Templars, but de stroycd by Saladin in 1187 . Here in 1799 a hat 4,000 in number, and the Mohammedans, 35,000
in number, left the French the victory. Ruins of the fort exist. For the ancient hismany of the important places mentioned in the New Testament are in a good state of preser-
vation. Nazarcth, Nain and all the surrounding vation. Nazareth, Nain and all the surrounding
section west of Mount Tabor are usually included in the plain, and must be so considered if Mount Tabor is accepted as on the northeast
boundary. Consult Costello, 'The Gospel Story'; Thomas, 'Two Years in Palestine'; Sayce, 'Patriarchal Palestine'; Smith, 'Historical Geography of the Holy Land. See Armageddon.

ESDRAS, Books of, two apocryphal books, which, in the Vulgate and other editions, are incorporated with the canonical books of Scripturc. In the Vulgate the canonical books of Erra and Nchemiah are called the first and second, and the apocryphal books the third and
fourth books of Esdras. The Geneva Bible (1560) first adopted the present nomenclature, calling the two apocryphal books first and second Esdras. The subject of the first book of
Esdras is the same as that of Ezra and NcheEsdras is the same as that of Ezra and Nche-
miah, and in general it appears to be copied miah, and in general it appears to be copied
from the canonical Scriptures. The second book of Esdras is supposed to have been either of much later date, or to have been interpolated by Christian writers. This book takes its name from the supposed writer, a priest and doctor
of the law, called Ezra by the Hebrews.
ESERINE, or PHYSOSTIGMIN, a drug obtained from Calabar-bean, the active principle of this plant, used as a remedy in cases of tetanus (lockjaw). A solution of eserine pupil, and hence its use in some eye ailments, as, for instance, glaucoma.

ESHER, Reginald Baliol Brett, 2n VIScount, English writer: b. London, 30 June 1852
He was educated at Eton and Cambridge, and was private secretary to the Marquis of Hartington 1878-85. He was member of Parliament for Falmouth $1880-85$; from 1895 to 1902 was secretary to H. M. Office of Works; and was
chairman of the Territorial Forces Association, county of London, 1909-13. He succeeded his Hather as viscount in 1899. He has written
(Footprints of Statesmen' (1892); 'The Cor(Footprints of Statesmen' (1892); 'The Cor-
respondence of Queen Victoria' (1907) ; 'Torespondence of Queen Victoria' (1907); Today and To-morrow' (1910) 'The Girmoodin Queen Victoria' (
Edward: Essays' (1912);

ESHER, William Baliol Brett, 1 st Viscount, English jurist: b. Chelsca, 13 Aug.
1817. d. London, 24 May 1809. He received his 1817; d. London, 24 May 1899. He received his education at Westminster and at Caius College,
Cambridge, and was called to the har in 1840 . He entered Parliament in 1866 as a Conservative and two years later was made solicitor-general and within a few months was appointed justice of the Court of Common Pleas. He was made lord justice in 1876 and in 1883 succceded Jesscl
as master of the rolls. In 1885 he entered the House of Lords as Baron Esher. In 1897 he House of Lords as baron Esher. In 1897 he bestowed on him. Several of his decisions were severely criticized and while an alle lawyer he helong to an earlier and more conservative age.

ESHER, England, village in Surrey, 15 miles southwest of London. Claremont Park, where the Princess Charlotte resided and distin century, are in the neighborhood. Pop, of parish centu
2,609 .
ESK (Celtic for water), the name of two small rivers in England, one in Cumberland and one in Yorkshire; and of several in Scotland, the chief being the Esk in Dumfricsshirc; the
North Esk and South Esk in Forfarshire; and the North Esk and South Esk in Edinburghthe shire.
ESKER, a narrow winding ridge of stratified glacio-fluvial sand and gravel, frequently extending across the country for miles with believed to have been formed by deposition from bubglacial streams in tunnels under the ice. They are also known as osars or sometimes as Serpentine kames.
ESKI-SAGRA, ě̀'kǐ-sä’grā, or EZKI ZAGHRA, Bulgaria, a town in castern Rumelia, on the south slope of the Balkans, about 100 miles northwest of Adrianople. It is near the advantageous location is favorable to its tradc. The mineral springs and extensive rose gardens nearby are sources of wealth for the town. Some of the manufactures are carpets, coarse linen, leather and rose oil. It was one of the South Balkan strongholds of the Turks w.
repelled the Russians in 1877. Pop. 22,003.
ESKI-SHEHR, ěs'kǐ-shềhr' (ancient DorYLeUM), Turkey, town 90 miles southeast of the sea of Marmora. It has warm mineral springs, and manufactures of meerschaum pipes from the deposits of meerschaum in the neighborhood The surrounding region is noted for the quantity and quality of the meerschaum Meposinmedans and the remainder are Christians. Pop. 20,000 .
eski-Zagra. See Stara-Zagora.
ESKILSTUNA, ésk'il-stoo-nā, Sweden, city 57 miles west of Stockholm, on the river of Eskilstuna, connecting Lake Maelar with Lake Hjelmar. It has daily communication with Stockholm, both by steamer and rail. On an
island in the river is a large gun factory, and its manufactures of iron and steel products are so great that it is called the "Sheffield of
Sweden." The place takes its name from Saint Sweden." The place takes its name from Saint Eskill, an English missionary of the 11 th century, who, it is
here. Pop. 28,485 .

ESKIMO DOG, sledge dog, the draught animal of the Arctic regions. It is a wolfishlooking dog, largely or sometimes wholly de-
rived from the wolf, tinged with yellow or with rived from the wolf, tinged with yellow or with a grayish color, having an outcr coat of long hair, and an undercoat of soft wool. Its short pricked ears and bushy tail add to its wolt like appearance. Its cry is not a bark, but a
long melancholy wail. This dog is trained to hunt the polar bear and to drag the Eskimo's burdens over the rough ice, when harnessed in trains to sledges, and is highly prized in the rozen North
ESKIMO, ESKIMOS (Abnaki, Eskimantsic: Oiibwav, Askkimey, eaters of raw flesh),
or ESQUIMAUX, es'ki-mō, the name of the
inhahitants of the northern coast of the American continent down to lat. $60^{\circ} \mathrm{N}$. on the west,
and 55° on the cast, and of the Arctic islands, Greenland, and about 400 miles of the nearest Asiatic coast. They prefer the vicinity of the seashore, from which they rarely withdraw more than from 20 to 80 miles. Their number scarcely amounts to 40,000 . Nevertheless they regions stredtching 3,200 miles in a straight line cast and west, to travel between the extreme points of which would necessitate journey of no less than 5,000 miles. This discance, taken in connection with their homogeneous nature and manners, makes their small globe. The most thinly seattered people of the taining their language and habits must be due to the difficulties they have had to face in procuring subsistence. They call themselves Innuit Yuit, You-Kouk (the people).
tions of the Mongolian considered Mongolian stock; but now they are Their height is from five feet two inches to five feet six inches. They appear comparatively taller sitting than standing. Their hands and feet are small, their faces oval, but rather broad in the lower part; their skin is only slightly little beard. The skull is high
Hahits - The Fskimos get

Habits. The Estimos get
mostly from hunting by sca, their subsistence pose skin boats where the sea is for this pursledges on the ice. From the skin, blubber, and Hesh of the seal and the cetaccous animals, they procure clothes, fuel, light and food. Their
most interesting as well as important invention for hunting is the well-known small skin boat for one man, called the kayak. It is formed of a iramework covered with skin, and, together With his waterproof jacket, it completely protects the man against the waves, so that he is even should he capsize. In winter the Eskimos are stationary. But, during the summer, when sufficient open water is found, they roam about in their large skin boats. Their winter dwellings vary with regard to the materials of In the farthest west they are as in their form. of the farthest sod; in Greenland the walls consist of stones and sod; in the central regions the houses are formed merely out of snow. In Alaska the interior is a square room, surrounded by the sleeping places, with the entrance on one side, middle of the floor. The number of inhabitants at an Eskimo station or village is generally under 40 , but in rare cascs more than 200 are
found. A funnel-shaped, half-underground passage forms the entrance of the narrow elings
Dress.- The dress of the Eskimos is almost the same for the women as for the men,
consisting of trousers or breeches and a tunic or coat fitting close to the body, and covering also the head by a prolongation that forms the hood. For women with children to carry, this crad is widened so as to make it an excellent among all the tribes. The ordinary materials
of which clothes are made are the skins of Language.
Language. - The language is characterized by the power of expressing in one word a whole
sentence in which are cmbodied a number of ideas which in other languages require separate words. The Grecnland dictionary contains 1,370 radicals and about 200 affixes. A radical may be made the foundation of thousands of derivatives, and a word can be composed which ex-
presses with perfect distinctness what in our prevses wilh perfect distinctness what in our Greenland and Labrador the missionaries have adopted the Roman letters for reducing the native language to writing. The printed Greenland literature, including what has been pubpamphlets and the like, to what might make 0 to 80 ordinary volumes.
Sociology- It is doubtful whether an organization like that of the Indian "families" has been discovered among the Eskimos. But
a division into tribes, each with their separate territories, actually exists. The tribe again is divided into groups constituting the inhabitants of the different wintering places. Finally, in the same station, the inhabitants of the same housc are closely united with regard to common Religion.
Renland .-The inhabitants of Danish West part of the Labradorians, and the southern Alaskan Eskimos are christianized. As for the rest, the religion of the Eskimos is what is generally designated as Shamanism.

The Eskimos are believed by some to have ing the river courses, to have arrived at the Arctic sea, where they have developed their abilities as an Arctic coast people. The Eskimos The be divided into the following groups: (1) territory and the Asiatic side of Bering Strait (2) the Mackenzic Eskimos, or Tchiglits from Barter Island to Cape Bathurst; (3) the inhabitants of the central regions, including the Arctic Archipelago; (4) the Labradorians; (5) the Grecnlanders; a side branch inhabiting the
Aleutian Islands, speak a dialect considerably Aleutian islands, speak a diasect considerably people.
The Christianized natives still preserve their ancient folklore. It represents at the same time tory, praising the deeds of idcir and his in braving the dangers to which their race has been continually subjected. The 'Tales and Traditions of the Eskimo' (1875) comprises a collection of 150 tales founded on versions sup plicd ly about 50 narrators from different parts valuable collection has since been acquired from East Greenland, some tales from Baffin Land, and a number of the simplest fragments of the same from Bering Strait. See Alaska; Polar dorearch; Ethnology; Greenland; Labra (Bureau of Ethnology 6th Annual Report) McLean, 'Notes on the Hudson Bay Territory' (1846) ; Hall, (Life with the Eskimos) (1864) Rink, The Eskimo Tribes' (1887); 'Tradi tions of the Eskimos' (London 1875) ; 'Danish
raphy of the Eskimo Language' (1888) ; Peary, Life) (1894): Thalbitzer, 'A Phonetical Study of the Eskimo Language' (Copenhagen 1914);
Stefansson, 'My Life with the Eskimo' (LonStefansson, 'My Life with the Eskimo' (Lon-
don 1913); Morillot, (Mythologie et Legendes don 1913); Morillot, (Mythologie et Legendes
des Esquimaux de Greenland) (Actes de la Sociête Philologique
Regions) (1861).
ESLA, a river in Spain, which rises in ESLA, a river in Spain, which rises in the
Cantabrian Mountains and flows south for 150 miles through León and Zamora and empties ESLAVA, Miguel Hilarion, Spanish composer: b. Burlada, 1807; d. 1878. He was appointed mæstro in Ossuña cathedral at the age of 21 . Later he became a priest and in 1832
removed to Seville. Queen Isabella appointed him court mxstro at Madrid in 184. He pro-
duced the operas 'EI solitario' (1841); 'Las duced the operas 'El solitario' (1841) ; 'Las
treguas de Tolemaida) (1842); (Pietro el crutreguas de Tolemaida' (1842) ; 'Pistro el cru-
dele) (1843); the collections 'Muso organico espanol'; 'Lira sacro-hispaña' (1869); also
ESLAVA, Sebastiân

ESLAVA, Sebastián de, Spanish soldier:
Navarre, 1714 ; d. Madrid, 1789 . He was one of the first graduates of the Real Academia Militar of Barcelona. He won distinction in the campaigns undertaken by Philip V, was made lieutenant-general in 1738 and two years later viceroy of New Granada, the present re-
public of Colombia, South America. He strengthened the fort at Cartagena and defended it successfully against the English under Sir Edward Vernon in 1741. He returned to Spain in 1748, was advanced to the grade of captain-gencral and in 1750 made governor of
Andalusia. Four years later he was made War Minister and retired from public life on the accession of Charles III.

ESMANN, ěs'män, Gustav Frederik, Danish dramatist: b. Copenhagen, 17 Aug. 1860; d. 1904. After a short period of legal study, he abandoned law for literature and his first work
was a volume containing two short stories, was a volume containing two short stories, voted himself mainly to dramatic composition and a notable series of plays, which have been acted with great success throughout the Scandinavian countries, have come from his pen. '(For Bryllupet); (I Provinsen' (1890); 'Den Kxre Familie') '(1892); 'Magdalene') (1803), 'Den Store Maskerade' (1895); 'Vandrcfal-
ken' (1898): 'Det Gamle Hjem' (1899); ken' (1898); 'Det
'Sangerinden) (1901).
ESMARCH, Johannes Friedrich August, yō-hän'nếs frêd'ríh ow'goost ěs'marh, German military surgeon: b. Tonning, Schleswig-Hol-
stein, 9 Jan. 1823; d. 23 Feb. 1908. He received his medical and surgical education in the universities of Kiel and Gottingen, and in 1860 was appointed director of the Kicl Hospital. In 1870 he was a member of the hospital commission of the Prussian army, physician-gen-
cral and consulting surgeon of the army and cral and consulting surgeon of the army and and originated noteworthy improvements in ambulances and barrack hospitals. In the auttumn of 1888 he made a trip to the United States. He was an authority on gunshot
wounds. Among his published works are (Ueber Resektionen nach Schusswunden'
(1851) : 'Beitrage zur praktischen Chirurgie' dungen' (1867): 'Ueber đen Kampf der Humanitãt gegen die Schrecken des Kreges (1869), 'Der erste Verband auf dem Schlachtfelde' ($1899,3 \mathrm{~d}$ ed.); 'Verbandplatiz und Feldlazarett' (1871); Ueber kunstlicue
Blutteere bei Operationen', (1873); 'Handbuch der kriegchirurgischen Technik' (1877) 'Die erste H
ESMENARD, Joseph Alphonse, French editor and poet: b. Peseph Alphonse, French Bouches da
Rhone, 1769 ; d. 1811 . He cane Rhone, 1769 ; d. 1811 . He came to Paris about 1797 and became coeditor of La Quotidien it France. He was secretary to Villaret-Joyeuse governor of Martinique under the Consulate and in 1804 was consul in the island of Sain Thomas. In 1805 he published 'La navigation, a poem inspired by his carly travels in America
In 1810 he was elected to the Academy Soor afterward a caustic article on Kemssia in Le afterward a caustic article on Russia in that he banished Esmenard from France.
ESMERALDAN, a linguistic stock o aborigines of South America, who formerly dwelt along the Esmeraldas River in norther Ecuador. Consult Rivet (in L'Année linguis
tique, $1008-10$) and Seler, 'Geschichte Abin zur amerikanischen Sprach-und Altertums kunde) (Vol. I, pp. 49-64, Berlin 1902).
ESMOND, Henry V., (real name, Jack), English actor and dramatic author: b. Hamp ton Court, 1869; d. 17 April 1922. He was edu 1885 but later abate tutors, went on the stage in 1885 but later abandoned it for the dramatic field Way' : 'One Summer's Day) (1897). (Grier son's Way' (1899); 'The Wilderness' ((1901); 'When We were Twenty-one' (1901); (The
Scntimentalist') (My Lady Virtue)
(1902) Scntimentalist); (My Lady Virtue) (Billy 's Little Love Affair) (1903) ; The 'Billy's Little Love Affair' (1903); (1907); 'Under, the Grenwood Tree) (1907): 'A Young Man's Fancy' (${ }^{\text {(} 1912 \text {) }}$ Consult Winter, W., 'The
$(2$ vols., New York 1913)

ESNAMBUC, Pierre Belain d', Frencth navigator: b. Allonville, 1585; d. 1636. While commanding a vessel in the Caribbean ho seized the island of Saint Christopher and so settlements in that region. He suggested plan for dividing the island between France and England which was approved. He brought about 500 immigrants there in 1626 and in the re maining ycars of his life founded colonies on group. He was the founder of the town and fort of Saint Pierre, which was annihilated by volcanic eruption on 8 May 1902.

ESNEH, ēs'nẻ, or ESNE, a town in upper Egypt, about 30 miles above Thebes on the leit bank of the Nile. It is a seat of manufactures, produces blue cotton cloth and pottery and is a
depot of caravans from Ahyssinia and Scnhaar. The town was anciently called Latopolis; and was the centre of worship of the fish latus, a species of carp. Among the ruins of this once populous city is the temple, whose portico umns and a zodiac on having 24 beautiful colmains are in the neighborhood. The Christians
aere suffered severely in the persecution under ocletian (A.D. 303)
ESOCIDAE, è-sŏs'ī-dē. See Lucide.
ESOP. See Ksop.
ESOPUS FORMATION. See Caudaalli Grit.
gisSOPUS WAR, a long-continued and esultory conflict between the Dutch and the known at a place in Ulster County, N. Y. called Kingston. This series of skirmishes began in 1658, when the Dutch fired upon some ndian farm hands, who were drunk and riot ous. Esopus, which the Dutch called Wiltwyck, was at last destroyed by the aborigines, who 21 men. Governor Stuyvesant sent out a strong orce to punish the Indians, and in May 1604 treaty of friendship was ratified.
ESOTERIC, ēs-ō-tĕr'ỉk (Gr. हैб由тepıк̀s In er"), a term used in opposition to exoteric In reference to the teaching of Pythagoras, histotle, and other ancient philosophers, it reo their select disciples in contradistinction to those which they published to all the world (exoteric). The distinction does not necessarily mply that the esoteric doctrines were kept se high as a mystery, but only that they were of a LE: PYTHAGORAS) Consult Christ-Schmid Geschichte der Grieschischen Litteratur) (Munich 1908).
ESPALIER, ès-pảl'yér, in gardening, a ort of trellis-work on which the branches of ruit-trees or bushes are extended horizonally, with the object of securing for the plant posure to the sun Trees thus trained are not subjected to such marked nor so rapid variatons of temperature as wall-trees. The term most commonly used in France, where it is applicd to a row of trees planted along a wall

ESPARSETTE. See Sainfory

ESPARTERO, Baldomero, bāl'dō-mā'rō par-ta ro, Dúke of Vroirla, Spanish states an. bis The son of a whelwright io wa educated for the priesthood, but joined the army as a volunteer in 1808 and continued with fighting against Napoleon until 1814 horty afterward he went to South Americ where he served in the army of Spain against
the revolting colonists. He returned in 1824 and took a leading part in the conflict with the Carlists and was one of the most prominent men in Spain during several decades of the 9th century. He was lieutenant-general and com mander-in-chief on two separate occasions. In Carlists (in 1836 and 1837) ; and by the Agreement of Vergara (1839) entered into with Maroto, he forced Don Carlos to withdraw from Spain. In reward for these services to he Crown he was grated the thes of Duk Spain. In 1841, on the resignation of the re gency by the Queen Mother, Maria Christina he became regent. Two years later he wa forced into exilc, which he spent in England

He returned to Spain in 1848 and oecame again his name candidate for the throne, but the proposal was unsuccessful and the closing years of his life were spent in retirement
ESPARTO (Gr. orapros; Lat. spartum), a grass, the Stipa tenacissima, growing in Spain by them to the manufacture of cordage, matting, etc., and still more extensively used at the present day. Numerous species of Stipa are found in North America, chiefly in the western part. Esparto grows in tufts and bunches, like rushes, to a height of from two to four feet,
and has a long flat blade, which becomes cylindrical when the ripened plant begins to dry. It is pulled up by the roots, dried in the sun and packed in bundles for exportation. Besides the various uses already indicated, esparto has for some time been applied to the manufacture
of paper. Formerly the supply of esparto was almost wholly obtained from Spain, but a closely allied fibre called alfa (Stipa arenaria) is now obtained in still larger quantity from Algeria, while a third fibre, dis (Festuca patula), is imported for the same purpose from
Tripoli and Tunis. See Fearher Bunch-Grass: Fibre.

Espatolino. See Sab or Espatolino. ESPERANTO LANGUAGE. "Esperstablish international language, has made considerable progress. The latest reports show that a substantial and lasting interest in this inguistic enterprise now exists. In 1887 Dr . ammhlet, concerning a suigrested new international language, to be called "Esperanto." Only small progress was made during the first 10 years of the movement. The idea first took root in the originator's native country. Russian educators and other men of culture looked
upon the innovation with favor. After the lapse of a decade, a start was made to introduce the Zamenhof idea among the Norwegians and Swedes. They, too, showed a friendly attitude. Then France manifested great interest, and almost immediately became
prominent as a stronghold of Esperantism. From France the movement extended to Germany, thence to Austria, Switzerland, Taly and England. In the latter country 30 societies of Esperantists were organized within a year of the system's introduction. During the past years, active missionary work has becn urd the promulgation of the Zamenhof plan for use in commercial, educational and other fields. There is little doubt as to the success of the outcome, indorsed as it is by some of the greatest philologists in Germany, Alistria, England, France,
Russia and the United States. Advocates of an international language have in the past included numerous philosophers and scientists, including Roger Bacon, Descartes, Pascal, Leibnitz, Locke, Condillac, Voltaire, Diderot, and, more recently, Tolsto, who unqualifiedly supits grammar rules in an hour. Only of late years have the linguistic theories of these famous thinkers been molded into anything like practical shape.

Occasions Calling for the Use of an International Language.- One of the principal reasons for renewal of interest in the direction producing a vehicle of common expression among delegates representing various countries at congresses and on similar occasions. It has their respective nations, to keep in touch with the proceedings from day to day. The extended use of Esperanto and the widespread appreciation manifested in its development indi-
cates that the method of Dr feasible solution of what has, hitherto, been an unsolved problem. In addition to the advantages of having a common language for cosmopolitan assemblages, the transaction of and merchants of various nations, requires some such system to facilitate the making of purchases and adjustment of mercantile accounts. For educational purposes, as in other ways, the availability of a means whereby educators can compare systems and processes without en-
countering the difficulties connected with proper and complete translation is very evident.
Present Uses of the Esperanto Language. - From a recently published review it is learned that among the books in the Esperanto language, are translations from every known national tongue in common use, and many origing national propaganda journals, scientific and official organs of various international socicties, such as the Good Templars, the Free Masons, the Roman Catholics, Peace Associations, etc., printed in the international language, ceeded 200. Since August 1914 many of the magazines in the smaller countries-notably, have been forced temporarily to suspend publication, although the official organs are still appearing regularly in England, France, Russia, Spain, United States and several of the South, American countries. On the continent of Europe and in the United States represcntative daily and weekly newspapers regularly publish
articles in Esperanto, many courses of study articles in Esperanto, many courses of stity
have been furnished by the press and editorial endorsements are most frequent. Esperantist clubs and societies are operating in practically all of the European cities and have large membership. Among the most important are those of Paris, with 3,000 members, Marseilles, Lyons, lin and Dresden. The Esperanto Association of North America reports affiliated clubs in nearly ail of the large cities and in many of the smaller ones in both the United States and Canada.
Several French, English and American pub-
lishers have undertaken in an extensive way to publish Esperanto works, conditional on the possession of exclusive rights, while the various national Esperanto publishing houses turn out many books annually. A library of over 5,000 books, translated and original works, is now found listed in the Esperanto catalogues. Quite a number of large commercial concerns are using the system for cable and telegraphic purposes. Courses of study in Esperanto form an attractive feature in commercial schools,
clubs and public institutions, some of which make a special fcature of teaching the blind to ard typewriters are equipped with Esperanto keyboards, and in that connection many stenographers are learning the use of the language
shorthand purposes.
In the colleges and schools, Esperanto is Fsperantist triumphs was the delivery of a address in the Esperanto language by Mr. Moch, the famous peace advocate, at the Internationa Peace Congress, Lucerne. At the Boulogncers Universal Esperanto Congress, 1,200 delegatan-
from 22 countries spoke the Esperanto language frecly and understood each other thoroughly. A complete test was made by means of speeches, discussions, concerts, dramatic performances and religious services. During
that congress the work of Dr. Zamenhof was that congress the work of Dr. Zamenhof wast. The Minister of Public Instruction extended thanks in behalf of the president of the republic and of the people of France. In the course of the proceedings a reception was tendered the creator of Esperanto at the Hotel de Vthe Esperanto language is a practical spoken tongue 11 universal congresses have been sched uled-two having taken place in the United States. The largest on record was arranged
for Paris, in August 1914 , at which over 5,000 for Paris, in August 1914, at which over 5 , the globe had alrcady enrolled. A large majority, including a number from the United States, had arrived in Paris for the Congress week when the declaration of war was made known -11 universal congresses have been sched international gatherings ever known. The 11 th Universal Congress was held in San Francisco, August 1915, in conjunction with the Eighth National Convention of the Esperanto Association of North America. The value and use of Es peranto in the war have been attested in many
ways. Striking instances of the use of the inways. Striking instances of the use of the in and their Russian captors; between Russian captives of the Austrians and Germans, etc. have been made known. Esperantists have sent several fully equipped Red Cross Esperanto
ambulances into the field with personnel. Esperanto is being taught in the prison and internment camps, so that there may be a common anguage. There is an Esperanto repatriaion bureau maintained in Geneva, Switzerland hrough which disrupted families are hrought ogether, correspondence forwarded, and mate ments relating to justification for the war were issued in Esperanto by governments, notably the French and German - the latter also issuing official war bulletins in Esperanto for international distribution. Keys, weighing but
five grams, though containing the elements of the language and vocabulary of more than 2,000 words, are published in practically all languages, for international conversational and correspondence purposes. A similar scries of Esperanto work is being accomplished along these lines. In short, Esperanto is proving its great value for its intended purposes and it is the best passport in warring countries that one may possess.

Method of the Esperanto Language.- In the general plan of Dr. Zamenhof the aim is to each nation, retaining only such words as ar common to all nations. Sounds peculiar to any one language are eliminated. The English th and $z v$, appearing in English words, but not in
those of the French or German languages, are thercfore, according to the rule of the origina tor of Esperanto, dropped. The French u, the Gernan u and the French nasals not used in English are left out, also the Spanish n and j
and the German th. The pursuance of this and the German the The pursuance of thi tion. Phonetic spelling is the Esperanto rule, a Certain letter having the same sound always. Mute and double letters are cut out. The lette x becomes $k s$, ph becomes f, ch becomes k for the guttural sound, and $\hat{c}-c$ remaining for
the ordinary sound in words like cigar. The g is used for the guttural (gril, garb), and g is used for the sibilant $a \hat{g}$ which is equal to age. New signs introduced are \hat{c} and \hat{d}. But these are for sounds already recognized. A third sign takes the place of a double letter
viz., \hat{s} for sh (sip equals ship and $\hat{s i}$ equal size, \hat{s} for she (sip equals ship and se details regarding the vocalulary, prefixes and suftixes - in fact, the whole grammar - have been issued in separate form an can be readily obtained by students. It will Suffice to say here that the Esperanto vocabir lary is much smaller than that of any other lan exclusive of scientific and technical words, as compared with 32,000 in the French language, considerably larger number in the German lan guage, and over 100,000 in English. The sinplicity of the Esperanto grammar, comprising quite remarkable The majority of those who undertake the study of Esperanto, diligently with the proper textbooks or instruction, maste it in a short time. See Universal Language Science of Language.
ESPERSON, Pietro, Italian jurist: b. the university of his native place and in $1860-65$ was instructor in law there. In 1865 he became professor of international law at Pavia. He published 'Rapporti giuridici tra i belligeranti e i neutrali) (1865); 'La questione Anglo-Americano del "Alabama," discuss (1869) : 'Giurisdizione internazionale maritima' (1877) ; 'L'Angleterre et les capitulations dans Hile de Chypre au point de vue du droit international' (1879) ; 'Le legge sulla naturalizzazione in Italia' (1886) ; 'Dc' dritti di autore zionali) (1899) ingegno ne' rapporti internazonali' (1899)

ESPINAL, Colombia, town in the department of Tolima, about 70 miles south of the
capital, Bogota. It has industries of tobacco and pottery. Pop. about 8,000

ESPINAS, Alfred Victor, āl-frā vèk-tōr à-spē-nä, French sociologist: U. Saint Florentin, Yonne, France, 23 May 18t4. After teaching philosophy in the lycées of Bastia, Chaumont, fessor of philosophy in the universities of Douai, Lille and Bordcaux and in the latter was dean of the faculty of letters 1887-90. Since 1894 he has been professor of the history of
social economy on the Chambrun foundation, in the faculty of letters of the University of Paris. Besides contributing largely to the
Revue Philosoplique, he has translated (with Ribot) Herbert Spencer's ' ''sychology' (1874), and written 'Des societés animales' (1877-78); (1880) philosophie experimentale enomiques' (1893): 'Les origines de la tcchnologie' (18ecle et 'La philosophie socia

ESPINASSE. Sec L'Espinass
ESPINASSE, Esprit Charles Marie, French soldier: b. Castelnaudary 1815; d.
Magenta 1859 . He invaded the National AsMagenta 1859 . He myaded the National As-
scmbly at night and seized the quæstors which scmbly at night and seized effect his coup d'état of 2 Dec. 1851 . For this service he was made general and aide-de-camp to the emperor. He fought in the Crimean War, was Minister of the Interior in Fcbruary-June 1858, and in this office presented to the chamber the "Law of Public Safcty". Later he was appointed sena-

ESPINEL, Vicente Martinez, Spanish ESPINEL, Vicente Martinez, Spanish d. 1624. He studied at Salamanca, was expelled from the university there in 1572, served in the army in Flanders and about 1584 returned to Spain. In 1587 he took holy orders, in 1591 was appointed chaplain at Ronda. He lost this charge through absenting himself without permission, but his musical abiter at Plasen cia. In 1591 appeared his 'Diversas Rimas,' which showed considerable ability. He revived the metre known as decimas - a stanza of 10 octosyllabic lines - and since popularly known
as espinelas. He is said to have added a fifth string to the guitar, but this is disputed, al though the evidence against it is far from conclusive. Espincl is best remembered, how ever, for his picaresque novel, 'Relaciones de la vida del Escudero Marcos de Obregon' (1618) this work is an autobiography with consicterale embetwithstanding, Le Sage borrowed about onenotwithstanding, Le Sas.' Many pocms of Espinel have remained unpublished owing to their licen tious character. Consult Perez de Guzman' edition of 'Marcos de Obregon' (Barcelona (l'aris 1890).

ESPINOSA, Aurelio Macedonio, Amerian educator: b. Carncro, Colo., 12 Sept. 1880 He was educated in the public schools a Veteran and Del Norte, Colo,, at the University of Colorado and the University of Chicago. It $1901-02$ he was assistant in Romance languages
at the University of Colorado, and from 1902 to at the University of Colorado, and from 1010 was professor of Spanish and French a 1910 was professor of Spanish and French at
the University of New Mexico. In 1910 he was appointed associate professor of Spanish at cland Stanford University. He was founder and special collaborator of the Societe Inter nationalc de Dialectologie Romaine and is He is the author of 'Metipsimus in Spanish and French' (1911) ; 'La cosecha humana' (Spanish trans. of Jordan's 'Human Harvest, 1912); 'E1 Imperio Invisible) (Spanish trans
edited Echegaray's 'El gran galeoto' (1903); and 'El Poder de la impotencia' (1906); Ensueño' (1917); and 'Canción de Cuna' (1918); Benavente's 'E1 princ:pe que todo lo aprendió en los libros' (1918); with C. G. Allen, 'Ele'Elementary Spanish Reader' (1916) ; 'Advanced Spanish Composition and Conversation)
(1917); Radin's 'Folklore de Oaxaca' (1916). He is a frequent contributor to the Revue Hispanique, Journal of American Folklore, Revista Ilustrada, Revista Positiva, the Monitor,
etc.

ESPIONAGE ACT OF 1917. When the 1917 it immediately became apparent that extraordinary legislation was needed to keep in check treasonous action by certain citizens, but more especially by sympathizers with the Espionage Act was passed, 15 June 1917. The first provision was that whoever was in any way instrumental in the gathering of information, pictures, sketches, etc., on government property with the intent of using them in a way detrimental to the interests of the United States
was liable to a fine of $\$ 10,000$ and to imprisonment for two years. This was, of course, designed to check enemy aliens who had access to navy yards, wireless stations or places where construction work was going on. The transmission of such information to a foreign country, or its representative, in time of war, was
made punishable by death, or 30 years' imprisonment, and this applied to any sort of information that might be useful to an enemy. The circulation of false reports for the purpose of causing insubordination, disloyalty, mutiny, etc., including obstruction of enlistment, was made, punishable by not over $\$ 10,000$ fine and 20 years'
imprisonment. Conspiracy with a view to doing any of these things carried the same punishment to all conspirators, whether or not the things were accomplished. The harboring or concealing of any one guilty of such treasonable ofyears' imprisonment.
The Espionage Act also gave power to the President, in case of emergency, to regulate the anchorage and movements of vessels in United States waters, and provided not over $\$ 10,000$
fine and two years' imprisonment for fine and two years imprisonment for any one
failing to comply with or interfering with the carrying out of such regulations. A similar provision was made with reference to the harboring of enemies on vessels in United States waters. The injury of vessels engaged in foreign commerce, as by setting fire to them or
placing bombs, carried a fine not exceeding $\$ 10$. placing bombs, carried a fine not exceeding $\$ 10$,of violent obstruction of exportation called for not over $\$ 10,000$ fine and 10 years' imprisonment.

For the enforcement of neutrality the Espionage Act carried a long list of prohibitions. On reasonable cause any vessel might be
detained in port, to prevent the unlawful shipment of supplies or dispatches. The sending out of armed vessels without permission was strictly prohibited. Very careful regulations were made to prevent any sending of goods
and statements had to be filed with the collector of customs to aid in carrying out such orders. The taking of a vessel out of port in
violation of the rules laid down involved a fine of not over $\$ 10,000$, plus five years' imprisonment, and forfeiture of the vesscl and goods. Any interned alien escaping or attempting to
cscape was liable to $\$ 1,000$ fine and a ycar in cscape was liable to $\$ 1,000$ fine and a ycar in
prison. Bcing engaged in any unauthorized or prison. Bcing engaged in any unauthorized or ble fine of $\$ 3,000$ and three years in prison. The President was authorized to use the army or
navy as necessary to carry out any of the pronavy as necessary to carry out any of the pro-
visions specified.
The seizure of arms and other articles intended for export was provided for, and the same forfeited to the United States, and the
method of trying such a case beforc a compemethod of trying such a case before a compe
tent court was set forth. The President was tent court was set forth. The President was tion might be harmful to the United States, and the penalty was placed at not over $\$ 10,000$ fine and two ycars in jail. Directors and officials of transportation companies were made personally liable. The disturbance of foreign relations was provided against by making
criminal any harmful statements to or about foreign officials, under certain conditions, or the impersonation of a foreign official, or the acting as an agent of a foreign government except as a regularly appointed consul or attaché, was punishable. Conspiracy in this country to destroy property in a foreign country was cov-
ered under this clause, and carried not over five years' imprisonment and $\$ 5,000$ fine. All abuses of the passport privilege were severcly dealt with. The counterfeiting of the government seal, or mutilation or alteration of any document bearing such seal, involved a
$\$ 5,000$ fine and 10 years' imprisonment.
The act included a very long section as to the issuing of search warrants. This permitted judges of District Courts as well as of State and Territorial courts to issue search warrants for either property or papers em-
bezzled contrary to a law of the United States. Probable cause had to be shown, supported by affidavits, the rights of citizens being carefully protected, but when the warrant was issuncd and in the hands of the proper officer he had the right to break and enter as might be necessary a receipt and inventory of the property so taken, tinder oath, and a copy must be placed with the person from whom the property or papers were taken. Restoration of the property in case of error was provided for. Obstruction of such scarch warrant officers in their duty involved a ment.

The use of the mails was prohibited for any papers, etc., in violations of the provisions of
the Espionage Act, but only a scarch warrant the Espionage Act, but only a search warrant authorized the opening of a sealed letter addeclared non-mailable, and the mailing or attempting to mail such carried a possible finc of $\$ 5,000$ and five years' imprisonment.
The Espionage Act was framed so as to in
信 clude not only the United States proper but all its territories, as the Philippine Islands and the
insular. The act is a document of over 10,000 words, under 13 titles, and was modeled more or less on the experiences of Great Britain in
dealing with the same sort of difficulties during the earlier years of the war. It proved quite effective in checking the evils at which it was aimed, and after the first year of the war there Was very little encmy activity in the United tively and all surreptitious treason was cffecoccurred sporadically and not as the result of organized bands of conspirators.
ESPINOSA, Gaspar de, Spanish soldier: b. Medina del Campo, about 1484 ; d. 1537 . He studied law and entered into practice in Spain. Davila he came to America with Pedrarias Davila and was made chief justice at Darien. Balboa to death, but only passed sentence on the latter at the express command of Davila. He resigned his judicial office and led several expeditions against the aborigines, whom he treated most inhumanely. He founded Panama in 1518, was sent out soon again as a Crown officer in Santo Domingo. He backed Pizarro in his second expedition against Peru and accom-
panied him to the latter country, where he died at Cuzco.
ESPIRITO-SANTO, ĕs-pē'rē too-sån'tô, of Bahia on the east by the Atlantic Ocean on the south and west by the states of Rio de Janeiro and Minas Geraes. Area 17,312 square miles. The coast lands are swampy, but in the interior mountains rise to a height of 7,000 feet; the highest of these, Mestre Alvares, is one of coast. The temperature, which is tropical, is moderated by the state's proximity to the sea. The state has immense forests, and is noted or the valuable woods found in them and the rare drugs which are distilled. The Doce River laws through some of the richest of the hinterSao Matheus, in the northern part of the state, is surrounded by coffee and mandioca plantathons, the products of which are shipped from Barr port, oflicially known as Conceição de tween the Doce River and the spacious bay of Espirito-Santo, which has given its name to the state. Coffee, the chicf agricultural product, is largely exported. Other exports are sugar, tapioca, cotton, cocoa, hides and skins, and whonds. There are valuable marble deposits, to connect Ouro Preto, on the upper waters of the Doce, with the coast. Cotton goods are manufactured in the town of Pessanha. The Dopulation of the state, which was 135,997 in
1890 , increased to 430,000 in 1913 , this growth being due to European in 1913, this growth yeing due to European immigration. A few
years ago the city of Victoria (pop. 15,000) had almost no maritime trade, as its port was too shallow to admit large vessels. Recently improvements have been made in the harbor,
which now accommodates transatlantic stcamWhich now accommodates transatlantic stcamit. It was first visited by the Portuguese in Tyrolese, Portuguese and Italians are established near Anchieta, Alfredo Chaves, Ita-
pemirim and Cachoeiro - chiefly in the south ern part of the state. Some of these colonies are under government protection, receiving an jority of the colonists already own lands which they work without government aid. Education, though well subsidized by the government, is, so far as the native population is concerned, in a very backward condition. The state returns fou
representatives to the Chamber of Deputies.

ESPLANADE, ěs-plâ-nãd', in fortificat ESPLANADE, ess-plâ-nãd', in fortification, the nearest house of the city, to prevent an enemy from being able to cissail it under cover of these houses. The term is also frequently applied to a kind of terrace, especially along the wide city street. e city street.
ESPOUSAL (SPONSALIA), or BEsists of a deliberding to Church law conriage, expressed persons, both of whom may lawfully and validly enter into such whom may lawfully and validly promise is made and accepted on both sides, neither party can lawfully withdraw from it without the other's consent or unless something occurs or some circumstance comes to light which, had it been known in time, would have hindered the engagement. Formerly such engagements used to be made with some solemnity coram ecclesia or at least in presence of wit-
nesses; now they are usually made without cercmony, or publicity. See Marriage. Consult Mielziner, 'The Jewish Law of Marriage and Divorce)' (Cincinnati 1884)
ESPRIT DES LOIS. See Spirit of the Laws.
ESPRITS FORTS (bold spirits), the name of the French schol of writers better known as
freethinkers which included Dilembert reethinkers, which included D'Alembert
Diderot, Helvetius and Voltaire aimed not to establish general toleration for all forms of speculation, but sotight to improve their own views of religion and philosophy. They recognized pure reason as the only dependable guide; their motto might have been
"L'esprit prime tout" (Intellect is supreme) They had a wide influence on their time, and their doctrines have borne fruit ever since, the quality varying greatly among the different races and peoples. Their extreme radicalism may be said to have paved the way to socialism; while their less radical principles
build the democracies of our day.

ESPRONCEDA, Josê de, Spanish poct: h Almendralejo, (Badajoz) 1810 , d. Madrid, 23
May 1842 He May 1842 . His father was a colonel of cavalry,
and the hoy was horn in the army for his and the hoy was horn in the army for his
mother insisted on following her husband durmother insisted on following her husband dur-
ing his campaigns. At the close of the war ing his campaigns. At the close of the war
young Espronceda was pit into school in Madyoung Espronceda was pirt into school in Mad his precocity. his love of poetry, his enthusiasn his precocity. his ove of poetry, his enthusiasm
and his good literary taste. At the age of 14 he was already known as a poet of great promise. He was filled with democratic and revolutionary ideas; and he was arrested for
his boldly advocated ideas in his 15 th year, and his boldly advocated ideas in his 15th year, and
confined in a convent in Guadalajara, where his parents were then living. There he began the composition of his celebrated poem 'El

Pelayo.' On his liberation from prison he went to Madrid; but fecling that his every movement was watched by agents of the government, he London and Paris. Later he fought in the revolutionary ranks in Paris (1830). He then joined an expedition sent to help Poland. After long wandering and cxile from home, often with the most limited means of subsistence, he
finally took advantage of the act of amnesty of 1833 and returned to Spain. There he might have lived in peace and followed his poetical inclinations, lut his revolutionary bent kept him in constant trouble. Through family influence he obtained a commission in the Queen's
Guards (1833) ; but he was Grom the army and he was soon dismissed account of his interference in politics. The following year he was permitted to return to
Madrid, where he again plunged into militant Madrid, where he again plunged into militant politics, and into the insurrectionary movements
of $1835-36$. From this on he became the most of 1835-36. From this on he became the most ism; and in 1840 his was the most listened to voice in revolutionary Spain. In December 1841 he was sent as secretary of legation to The Hague by the Republicans who had secured
possession of the government, a position he possession of the government, a position he
retained a very short time because of his election as deputy for Almeria. Already ill from his residence in the damp and cold climate of Holland, he hastened back to Madrid only to die of a severe inflammation of the throat. Espronccda is the greatest of the passionate, patriotic pocts of Spain. With him patriotism was a passion and hatred of autocracy an ob-
session which mastered him. There is no more passionate and compelling voice in all Spanish literature than his. He runs all the gamut of feeling; love of the most passionate kind; the fiercest hatred of oppression and injustice; the deepest patriotism, expressed in the most comsocialism; the passion of great aspirations and pure and noble purpose; and the depths of despair of atheism and of vanished hopes and disappointed aspirations. On account of his vivacity, his burning imagery, his wonderful
power of word painting, his simple direct methods in literature and his ever youthful mind Espronceda has been called in Spain "the poet of youth and of democracy." No other writer in Spanish literature or Spanish life had, at
his age, at his death (32), such a hold over his his age, at his death (32), such a hold over his
followers and admirers as José Espronceda. followers and admirers as José Espronceda. who paid his last poctic tribute, to him at the graveside, broke down and sobbed the mourners for the bright particular light of democracy that had just been extinguished in Spain. No definitive edition of Espronceda's works has
been published for the reason that his cfforts were spread over such a wide field of endeavor, and his writings appeared in newspapers, journals, reviews and pamphlets. Yet numerous editions of the best known of his literary productions have been issued in Spain and in several
forcign countries. In these editions the followforcign countries. In these editions the following works appear: 'El Palayo'; 'Don Sancho manca' ; the drama ' $N i$ el Tio ni cl Sobrino,'
written in collaboration with Antonio Ros de

Olano (1834) ; many short pocms of a social, political, reflcetive or amatory nature; ' E Diahlo Mundo' (1841) ; and many of the bes
lyrics in the Spanish language. His literary lyrics in the Spanish language. His literary
work has the form of Hugo and the spirit of Byron with an originality that is Espronceda's alone. The first edition of his collected writ ings appeared in Paris in 1840, the second in Madrid in 1846; and the Hartzenbusch cdition, with a biography by Ferrer del Rio, in Paris
two years later. A more complete edition than any of these was published by Espronceda's only daughter, Blanche Espronceda de Escosura in 1874. A fairly complete edition of his poetical works also appeared in Barcelona in 1883. Sc el Estudiante de Salamanca
ESPY, James Pollard, American metcorologist, the founder of modlern metcorology: b cinnati, 24 Jan. 1860 . He was graduated at Transylvania University 1808 . The name "storm-king" was given to him for his originating a theory of storms which involved him in Ohio controversy. He studied law at Xenia Cumberland, Mas., for five years (1812-17). From there he went to the Franklin Institute, Philadelphia, as professor of classical languages (1817-53). In 1836 he won the Magcllanic prize for an essay on the theory of storms; and four years later he visited England and France where he explaincd at length his storm theorics
before the chief scientific societies of both countries. On his return home he was appointed by the United States Congress metcorologist to the War Department, and later to the Navy Department also. His 'Philosophy of
Storms' which was published in 1841 gained him Storms' which was published in 1841 gained him
a great reputation in his special field. His a grat reputation in his special ficld. His
metcorological doctrine on the point of how atmospheric disturbances commence was ap proved by the French Academy, but his vicws as to the mechanics of storm are contrary to received fact, and have been exploded. His was his institution of a system of telegraphic weather bulletins, which should converge at the capital and give daily intelligence of the weather in different widely separated points, and it may be justly claimed that he thus laid the fommdation of all sound thcory on the subject of
weather prediction. Consult Monthly Weather Review (Vol. XXXV, Washington 1907) and Appleton's Popular Science Monthly (April 1889).

ESQUILACHE, Don Francisco de Borja y Aragon, Príncipe de (Francisco De Borja y Aceveno), Spanish poct: b. Madrid, about 1581 ; d. there 1658 . From 1614 to 1621 he was viceroy of Peru, after which he returned to
Spain and lived at the court of Marid He Spain and lived at the court of Madrid. Ficd
wrote (La pasion de Nuestro Scñor)' a sacred poem (1638); 'Nápoles recuperada,' celebrating the conquest of Naples (1651); a translation of Thomas a Kcmpis (1661), and many pocms. Sclections of his works are included in (Biblioteca de Autores Españoles.)
ESQUILINE HILL (mons Esquilinus), the highest of the seven hills of Rome. It is 246 feet in height and under Augustus was jaid out in pleasure gardens, known as the Gardens
of Mrecenas. Soon after it was the fashionable Mesidential section of the city. Virgil, Horace of its residents at this period. The baths of Litus and Nero's golden palace were on the squilinus and many of the ruins have been uncovered only to be at once destroyed in the
course of erecting new buildings. In the modern city the Esquiline is a new modern portion ern city the Esquiline is a new modern portion
with fine streets and buildings. Consult Plat cr, 'The Topography and Monuments of An cient Rome) (2d ed., New York 1911).
ESQUIMALT, ës-kwi'mält, Canada, naval coase in British Columbia, on the southeast of of Vancouver Island, and on the Strait
San Juan de Fuca and the Esquimalt and San Juan de Fuca and the Esquimalt
Nanaimo Railway, four miles from Victoria. The harbor is extensive and capable of recciving vessels of the greatest size, and was the British navy station for this part of the Pacific coast. It has a navy yard, and a large dry dock built in 1888. The de ienses were greatly strengthened by the British loned here until in 1905 , on the Canadian gov rnment undertaking to look to the defense of Canada, it was withdrawn. The drydock 1910 transferred to the Canadian government in

ESQUIMAUX. See Eskimo

ESQUIRE, escuyer, old French; escudero panish; a shield-bearer or armor-bearer, an a title of dignity next in degree below a knight In Great Britain this title is given properly to he younger sons of noblemen, to officers of he king's courts, and of the houschold, to counsellors at law, justices of the peace while in commission, sheriffs, gentlemen who hav held commissions in the army and navy, and in
fact to anyone save tradesmen, mechanics and peasants. It is usually given to all professional and literary men, both there and in the United sates. In heraldry the helmet of an esquire is epresented sideways with the visor closed. The letters patent.

ESQUIROL, Jean Etienne Dominique
 cian: b. Toulouse, 4 Jan. 1772; d. 12 Dec. 1840 His life was chiefly given to improving the methods of treating the insane, and he contributed greatly toward the abolition of the harbarous methods so long in vogue. In 1799 he the asded a model asylum at Paris; visited all
the France 1808; was appointed physician to the Saltpetriere 1811; and in 1826 became head of the private asylum at CharenDublic revelations of the abuses current in public revelations of the abuses current in
French asylums led the government to appoint an investigating commission. His studics included the architecture and construction of asylums, and the best of the earlicr 19 th cenas those at Roulen, Nantes and Montpelier were built in accordance with his plans and Instructions. He wrote 'Des Illusions chez le maladies mentales) (1838) ; and articles in the Dictionnaire des sciences médicales,' and the Encyclopédie des gens du monde.',

ESQUIROS, Henri François Alphonse, on-ré frañ-swâ al fôns ěs-kê-rōs, French poet and miscellancous writer: b. Paris, 23 May work, a volume of poetry, (Les Hirondelles,' appeared in 1834. This was followed by numerous romances, and a socialistic commentary on the life of Christ, 'L'Evangile du peuple' (1840), for which he was prosecuted and imprisoned, and 'Charlottc Corday' (1840). He then published 'Les chants d'un prisonnier)
(1841), poems written in prison; 'Les vierges (181 lcs ' (1842); '(Les vierges sages) (1842); 'L'histoire des Montagnards' (1847). Having to leave France in 1851, he resided for years in England, and wrote a serics of essays for and character, which were translated under the title of 'The English at Home,' and were very popular. He also wrote a similar work on the Dutch. Other works of his are 'Le droit au travail' (1849); (La vie future au point de
vue socialiste) (1857) ' 'Histoire des martyrs vue socialiste' (1857); 'Histoire des martyrs
de la liberté) (1851); 'La Morale Universelle) (1859) ; 'Religious Life in England' (1867, published in English); 'Les paysans' (1877); 'Le chăteau enchanté' (1877), a novel.
ESQUIVEL, Juan de, hoo-än' dã ěs-kê-včl, Spanish soldier: b. 1470; d. 1519. He was the companion of Ovando when the latter went to Hispaniola to succeed Bobadilla as governor. Ovando sent him as leader of an armed expedition against the uprising of the native chice, 1509, at the instance of Diego Columbus, he conquered the island of Jamaica and settled it as a Spanish possession. The colony flourished under his administration, and he founded there the city of Sevilla Nueva.
ESS, Johann Heinrich
fân ếs (better known by his Benedict hin rime "Leander"), German theologian: b. Warburg, 15 Feb. 1772 ; d. Affolderlach in the Odenwald, 13 Oct. 1847. He entered the Benedictine abbey of Marienmunster as a novice 1790; was pastor at Schwalenberg 1799-1812; and professor of
theology at the seminary in Marburg 1812-22. In 1807, with his cousin Karl, he published a German translation of the New Testament, the circulation of which was forbidden by the Pope. The following year he published a defense of his views as to Bible reading by the people, a
new edition of which was issued in 1816 entitled 'Gedanken über Bibel und Bibellehre.' After 1822 he gave his whole time to circulating his Bible versions among the people, to spreading his doctrines and to the composition of a German version of the entire Scriptures, which he arc 'Was War dic Bibel den Ersten Christen?' (1816) ; 'Die Bibel Nicht ein Buch für Priester) (1818) ; an edition of the Vulgate (Tubingen 1822-24); of the Septuagint (1824; new ed. 1887) and of the Greek New Testament (1827)

ESSAAD EFFENDI, Mohammed, Turk. ish historian: b. Constantinople, 1790; d. 1848.
He was appointed historiographer of the He was appointed historiographer of the
empire, editor of the official state journal, and for some time served also as Ambassador to Persia. Caussin de Perceval published some of his work under the title, 'Précis historique de
la destruction du corps des Janissaires) (Paris
1833). 1833)

ESSAD, Pasha, Albanian soldier and adventurer: b. about 1865 . The descendant of a
powerful and wealthy family - the Topdani powerful and wealthy family - the Topdani -
who maintain to this day a sort of feudal authority and splendor, Essad began his varied authority and splendor, Essad eigan he brother
career in the Turkish army. His elder brother Ghani, became a secret instrument of Abdu Hamid II for the noiseless removal of obnoxious personages. A relative of one of his
victims murdered Ghani, and was in turn shot victims murdered Ghani, and was in turn sho light. Combining the profession of / a bandit chief with that of a soldier, Essad Pasha had at all times a host of Albanian clansmen at his command. He espoused the cause of the
Young Turks in 1908 and after the revival of Young Turks in 1908 and, after the revival of a deputy from Durazzo, the Albanian capital. It was Essad l'asha who announced to the sultan that the committee had decided to depose him. On the outbreak of the Balkan Wars
(q.v.) he was appointed commander-in-chief (q.v.) he was appointed commander-in-chief to
defend Albania with some 18,000 troops. With the garrison of Janina he defended that place for three months when he surrendered to the Greeks wilh 30,000 men on 6 March 1913; six weeks later he surrendered Scutari to the Montengrins. It appears that Essad Pasha
cherished ambitions to create Albania an indecherished ambitions to create Albania an indewere strong grounds to believe that the two capitulations-of Janina and Scutari-were the price he paid for eventual rccognition, in addition to which he received a handsome fee from Russia. The selection by the powers of Prince the hopes of Essad Pasha, who now became Minister of War under the new régime. Before long, however, he was fomenting an insurrection and was deported. The king of Albania had soon to flee from the country himself, and to Durazzo in October 1914 in the role of dictator. He was elected president of the Albanian provisional government. He dismissed the Austrian Minister - whose government had supported the claims of Ismail Kemal Bey for the the Serbian army with his own forces against the Austrians and Bulgarians. In 1916 it was reported that Essad Pasha had fled to Italy.
ESSAY. The term essay is used in various loosely defined ways, but usually describes a brief prose composition of an expository implies a tentative and surgective as distinguished from a formal and complete, discussion; and this use is applicable to the "familiar" essay, the most purely literary of all the types. Dr. Samuel Johnson, from the same standpoint, defined the essay as "a loose sally of the mind, an irregular, migetedly applicable, in modern
hand, the term is cquall use, to formal expository compositions, and has even been extended to cover treatises of an extensive charaterer, as Locke's 'Essay Concerning Human Understanding (1690 . In the
18 th century it was also extended to compositions in verse notably Pope's (Essay on Man) 1734. Essays are sometimes classified, for con-
venience, as (1) gnomic or aphoristic, (2) per Sonal or familiar, and (3) critical or didact the The first type, which may be regarded as an essay by the process of bringing together gnomic sayings or aphorisms having to do with the same subject,-a process well excmplifie by certain portions of the biblical book Proverbs. Thus, while the greater part o
that book is made up of brief separate proverbs or epigrams, these are developed into what may well be called essays in such passages as the account of Wisdom (chap. 1, verses 20-33) or of the Virtuous Woman (chap. 31, 10-31) The second type represents the treatment in dividual standpoint, and at times reaches a point of devclopment closely analogous to the personal lyric in poetry. The third type rep resents a more utilitarian purpose, and ha been most fruitfully developed in the pursur
of literary criticism. But the several types ar of literary criticism. But the several types are
not infrequently blended, and others might wei enough be added if the classification were made complete.
In ancient classical literature the essay wa not a recognized literary form; its, function my the epistle and the din accomplished large. said that "Seneca's epistles to Lucilius, if one mark them well, are but essays"; and one might say that certain of Plato's Dialogue mark the highest reach of the method of the essay in any language. To a later philosopher
Theophrastus, wcre attributed the "Ethica Characters," descriptive of various character types, which we shall see gave rise in moder times to a kind of essay form. The closes approach in antiquity, however, to what we now call the essay is to be found in the late
Greck period, when the biographer and philosopher Plutarch (1st century a) wrote a num ber of compositions, traditionally called Opera Moralia (Moral Works), on such subjects as "The Right Way of Listening," "How a Flat tercer may be Distinguished from a Friend,
"On Chance," "On Superstition," and "On
"On Exile." Analogous to these writings, in Latin literature, are the partly philosophic partly personal' 'Tusculan Disputations' Cicero, the epistles and other moral disquisitions of Seneca, and - closest to the essay in tions' of the Emperor Marcus Aurelius Some influence on later types of essay literature may also be traced to the miscellanies - anecdota and otherwise - of Valerius Maximus an Aulus Gellius; the work of the former is calle Books of Memorable Deeds and
that of the latter Attic Nights)
In of the latter Attic Nights.?
In the medizval period the
ecognized as a scparate type; somay cannot be jon to it may be noted in the approxima he miscellais just mentione successors o collcctions just mentioned, and in variol1 ences). In particular writens in the or serice of the Church made a practice of bringing together incidents and utterances illustrative of particular virtues, vices and spiritual truths which, though they were more likely to de elop into homily or sermon than into essay, sometimes furnished method or materials liod Moral Lesson (lecon morale) has been thought

Lo form a link between these medixval writings
1o form a link betwecn these
and the essays of Montaigne
The modern conception of the essay as distinct literary form, and the use of the word "essay" to describe it, have their origin with 1 definiteness in the work of Montaigne, who in second edition, with important additions, fol owed in 1588. A considerable portion of the essays of Montaigne is in the classical and nedixval tradition,- discourse on moral themes, illustrated with anecdotes and aphorisms colthis type of essay Montaigne developed the more personal type, discoursing on whateve subject came to hand from the standpoint of his individual experience and mood; so that he could say in his address "to the reader") I have 0 respect or consideraing Myself he groundwork of my book. It is then no eason thou shouldest employ thy time about so frivolous and vain a subject." To this sor of mood, and the essays that represent ", whole later development
essay is universally traced
ssay is universal
widely read in England, and thanslated and became more important across the Channel tha in its native land. In 1597 Francis Baco borrowed the name Essay for a little collection -only 10 in all: in the edition of 1612 the number was increased to 38 , in that of 1625 to 58. This collection also became popular, and has remained a classic; but Bacon held rather o the older tradition of the aphoristic essay han to the newer type of Montaigne. In me times more personality, to the form, yet never to the point of becoming "familiar.
Sir, William Cornwallis, a contemporary of Bacon's, followed his work with a succession of essays on moral themes (1600,1610 , etc.), in the 17 th century, were Felltham (who called his essays Resolves, about 1620), Cowley (who included 11 essays in his collected works of
1668), and Sir William Temple ('Miscellanea, 1668), and Sir William Tcmple ('Miscellanea, 680, etc.). In the Restoration period Dryden critical essay in the various prefaces on literary subjects which he was fond of prefixing to his writings. He also revived the dialogue form for the same purpose, in his 'Essay of Dra matic Poesy) (1667). Near the close of the century Defoe bcgan to develop the essay form
for the discussion of social, political and educational questions, notably' in the 'Essay on Projects) (1697). One may also note two other fiterary types which, going hack to much carlier periods, were highly valued in the 17 th century first contributed to the art of the essay. has been mentioned, by the Greek, Theophrastus, whose quasi-cssays were now revived and imi tated in both England and France, - notabl by Joseph Hall ('Characters of Vices an irtues,' 1608), John Earle ('Microcosmog aphie, or a piecc of the World Discover
in Essays and Characters, 1628), and Jea L_{a} Bruvère (ILes caracteres, ou les moent de ce siecle, 1688). The second type is the epistle, also, as we have scen, of long-standing
importance, and newly cultivated in the Re naissance and the succeeding age; notable examples of the devclopment of this form in
the direction of the literary essay are the the direction of the literary essay are the were translated into Enclish more than once and came to be called the "Golden Epistles") the French letters of Jean de Balzac (1624) and James Howell's 'Epistolx Ho-Elianx, Familiar Letters Domestic and Foreign) (164555). Finally, for the 17 th century, it should be observed that the (Religio Medici' (1642)
and (Urn Burial) (1658) of Sir Thomas Browne exemplify some of the most delightful qualities of the familiar essay, in expanded form, though not called by that name.

The early 18 th century saw a highly important development the essay in connection with the growth of periodical literature. The in the work of Defoe and even carlier, but its first conspicuous representatives were Steele and Addison, in the several periodicals which they issued singly or yodica, indeed one might Steele's Tatler, which began to appear in 1709. Addison presently became Steeles coadjutor, and in the Spectator, begun March 1711, his influence was paramount. The type of essay developed in these perionicals was of farrly table and qualities of the familiar and didactic essay: that is, its purpose was the serious and profitable discussion of social, ethical and literary topics, but the point of view was distinctly personal, being represented as that of a saga-
cious but whimsical character, named "Mr. Bickerstaft" in the earlier periodical and simply "The Spectator" in the later. The influence of these periodical essays of Addison and Stecle can scarcely be exaggerated, and it persisted throughout the century, not only in English jurrals or essay-series of the Spectator type have been counted for the century 1709-1800, and in France, Germany, Italy and even Russia it was also imirated. In France Mervarix first wrote Adisonian essays for the Francais. In Zurich appeared the Discourse der Maler (1721), essays written by the members of a club headed by Johann Bodmer, under pen-names adopted from famous artists; in Hamburg an essay-periodical called Der Patrio appeared in 1724 and at Leipzig in 1725 Gott-
sched's Verninftige Tadlerinnen ("Sensible Fault-finders"). In the direction of literary criticism perhaps the finest results of the movement in Germany, are to be found in certain essays of Lessing's, such as the series called (1767-69) successors of Steele and Addison were Dr Samuel Johnson, who isstued The Rambler in 1750-52 and later wrote various series of essays for other periodicals, and Oliver Goldsmith, who contributed essays to The Bee, The Public the co, elc.e (familiar and didactic work in the only rival of the Spectator at its best whether in charm of manner or quality of substance; in particular, he developed skillfully substance; in particular, he develoned skill

World, an amusing method of commenting on contemporary life from the assumed standpoint of a foreigner, which had been availed of by earlier critics, notably Montesquieu i the Lettres Persanes (1721).
The development of the essay in the early 19th century was again due largely to the evolu
tion of periodical types, and in English literation of periodical types, and in English ittera-
ture one distinguishes clearly two of these types, the magazine and the critical review, which gave new opportunity for the familiar and the critical essay respectively. Most im portant of the former were Blackwoods and 1820; of Blackwood's John Wilson ("Chris topher North") soon became the leading cssay ist, while the London Magazine had the dis tinction of printing some of the most brillian work ors John and Leigh Hunt were also concerned in the publication of a number of periodicals, some (like the Examiner) being of a newspaper type, but offering space for literary essays, others (like the Indicalor) con tinuing the Spectator tradition. For alth the possible exception of John Wilson, the mos prolific of the 19th century essayists. The Elia essays of Charles Lamb, which appeared in the London Magazine 1820-25, are by universal consent the finest examples of the familiar type however (to be found in his collections called The Round Table, 1817, and Table Talk, 1822) are not far beneath them, and of substantia literary criticism (as in the papers called Characters of Shakespeare's Plays, 1817) Hazlitt gives us far more than Lamb. Of the
second newly developed type of periodical, the critical, the leading representatives are the Edinburgh Review and the Quarterly Review, founded in 1802 and 1809 respectively; these gave rise to a new form of literary. essay, origin in an account of some recent publicaorigin in an account of some recent pubio the subject suggested by the work in hand. The typical examples of this form are to be found in the essays of Francis Jeffrey, long editor of the Edinburgh, and John Gibson their work, important as it seemed, has proved insignificant in comparison with that of Thomas Babington Macaulay, who began his career as reviewer in the Edinburgh with his famous
article on Milton, 1825, and remains the most article on Milton, 1825 , and remains the most
brilliant and prolific of English critical essayists.
We cannot here follow the course of the essay throughout the 19th century. In general, England has continued to produce the most distinguished work in the familiar type; its
best representative in recent times was Robert best representative in recent times was Robert
Louis Stevenson ('Familiar Studies)' 1882, and (Memories and Portraits,' 1887). English writers have also done fine work in the critical essay, notably Matthew Arnold ('Essays in Criticism,' 1865, 1888) and Leslie Stephen ('Hours in a Library,' 1874-79) ; but here the palm must he yielded to the Fssay most characteristically for this purpose, notably Saintc-Bcuve ('Causcries du
Lundi,' 1851-72), Brunetiere ('Questions de Critique, 1889), and Anatole France ('La Vie

Littéraire,' 1907). American literature in cludes, for the early period, one notable rep resentative of the Addison tradition, Was ington Irving ('Sketch Book,' 1820). By Emerson, who revived to some extent thi method of the aphoristic essay, ernphasizing the single utterance rather more than the who composition ('Essays,' 1841-44). In the crit cal type the work of James Russell Lowell mains linexcelled (Among my Books, the 19 th century are E. P. Whipple, Edgar A. Poe, Donald G. Mitchell ("Ik Marvel") Thomas Wentworth Higginson, George liam Curtis and Charles Dudley Warner. 1), the 'Autocrat of the Breakfast Table) (1858), use of the method of the familiar essay, thoug in an expanded and discursive form whi belongs to no definite type.

Bibliography.- The best account of the familiar essay is to be found in the introduction to Bryan and Crane's collection called For the English essay as a whole, consult Walker's 'The English Essay and Essayists'
(London 1915) ; MacDonald, W. L., 'Begin(London 1915): MacDonald, W. L., 'Begin
nings of the English Essay' (University of nings of the English Essay' (University of
Toronto Studies) ; Wylie, Laura T., 'The English Essay' (in Social Studics in English Literature,' Boston 1916). For the reviews and the critical essay, consult the introductions to Gates's 'Selections from the Essays of Jeffrey' (Boston 1894), and Hancy's (Early Reviews Saintsbury's ('History of Criticism) (Edinhurgh 1904). For the character-writers, consult Morley's 'Character Writings of the 17th Century) (London 1891) ; for the letterwriters, Hansche's (English Familiar Letterwriters and their Contribution to the English Essay) (Dissertation of the University of influence, consult Beljame's 'Le public et les hommes de lettres en Angleterre aut ise siecle) (Paris 1881). There is a convenicnt collection of essays by British writers in the Everyman's Library series, and a similar colBrander Matthews (Oxford Press 1914).
Professor of English, Leland Stanford Junior Professor of

ESSAY ON CRITICISM, An, a didactic poem in heroic couplets by Alexander Pop (q.v.) in which he explains and propounds and criticism. The pocm, Pope's first really original work, was written either in 1707 or 1709 , published anonymonsly on 15 May 1711 and sold so well that another impression was made the same year. The second edition, published in 1713, gave as the name of the author "Mr. Pope." Since then it has been included in practically every edition of Pope's works. The most exhaustively critical and most carefulify
annotated edition is that cdited by J. W. annotated edition is that cdited by J W.
Croker, W. Elwin and W. J. Courthope (LorCroker, W. Elwin and W. J. Courthope (Loin
don 1871-89) where it will be found in the second volume. It has been translated into
Latin, French, German, Italian, Spanish,

Portuguese, Hungarian, Polish and Russian, are divided. In its own days it was praised very divided. In its own days it was praised and Dr Johnson. Of the next generation of critics, Hazlitt continues to sing its praise but DeQuincey criticizes it harshly.
The fact remains, however, that, though metrically by far the least polished of Pope poems, it was a remarkable performance fo value and in respect to its contents. It imagery, though very uneven, at points reach heights which were never surpassed by the author and many of its striking passages hav become familiar quotations. It is one of Pope into three parts. With it began the loing seri of literary quarrels in which Pope was involved throughout his entire carect as a result of his biting satire. In the 'Essay on Criticism' h attacked particularly vigorously and outspoken Dennis critic and playwright of that day, called 'Reflections upon a late Rhapsodic, calle "An Essay upon Criticism" in which he in turn criticized very sharply and in places with considerable justice Pope's work. Consult say aner, K.' Die Ubersetzungen, von Pope's Es See Pope, Alexander.
B. H. Goldsmitif.

STSSAY ON THE HUMAN UNDERSANDING, An. John Locke's 'Essay on the Iish common sense empiricism. Subsequen philosophy and psychology and English though in general are weighted with its terminology opinions.
quire into the origin, certainty and extent of human knowledge, together with the grounds and degrees of belief, opinion and assent." He
would determine the powers of the understandWould determine the powers of the understanding by an "historical method, that is, by tracAs a result of his analysis Locke decided that mind is conversant only with "idcas" and their relations, which ideas it acquired through sensation and through reffection on its own operthe s. These ideas, "whatever is the ohject of of ming when a man thors, are the copies jects. He never questioned their representative character so far as the primary qualitics, Such as extension, motion, etc., are concerned and considered

Knowledge is the perception of the agreement or disagreement of ideas and arises in immediatcly the relation between two ideas; demonstrative, i.e., a chain of intuitions; sensitive, which gives us knowledge of particular things. The limitation thus imposed leaves outSide the realm of knowledge most of the matters with which the mind is generally occunied mined by probable "judgment."

- Locke was very uncritical and avoided the ingical extremes to which his argument is obviously subject and which are to he found in
of Condillac. His doctrine of representative ideas as the ultimate data of knowledge clearly expresses an epistemological position which may
be regarded as the fundamental principle or fundamental fallacy of subsequent philosophy according to one's metaphysical preferences. The 'Essay' has probably run to more editions than any other modern philosopical classic and almost every subsequent philosopher has takcn it at one time or another as a topic. Leibmain' (1761) is a running commentary huLocke. The best critical edition is that by Prof. C. Fraser (1894). Walter B. Veazie.

ESSAY ON MAN, The, one of the later works (1733-34) of Alexander Pope, shares with the 'Essay on Criticism,' the 'Rape of the
Lock,' the 'Dunciad,' the 'Epistle to Dr. Arbuthnot' and a few other pocms the position of foremost place among his original works. It is a didactic poem of some 600 heroic couplets grouped into four epistles and dedicated somewhat trivial philosophy it is in substantial agreement. There is probably a fixed order in the universe and definite gradations among all living things, including man, but it is presumption in man to attempt to define himself and to determine his place in the universe; he can only humbly submit to the decrees of mankind is man, in whom the outstanding characteristic is a mixture of two principles self-love and reason, which arc expressed in varying combinations of virtue and vice, which ends of Providence. Reason and self-love the ate in the formation of Society and its institutions are according to the divine purnose This universal aim is human happiness which though obscured by false notions of the means of attaining it, consists in the acquisition of virtuc. This is the general law, which it is
folly to think will be altered to suit man's deires for prosperity, honors and the many ob jects of ambition of men. The philosophy is not particularly moving or consistent, and the poem is to-day best remembered for the large number of familiar quotations that it has con is right," "Pleased with a rattle, tickled with raw," "Order is heaven's first law," "An hones man's the noblest work of God," "The wisest brightest, meanest of mankind," etc. A good account is to be found in Chapter VII of Leslie Stephen's 'Pope' in the English Men o
Letters.
ESSAYS OF BACON. Bacon's (Essays) cre practically the first things in English liter word, in the 16th century, generally car ried the idea of attempt or trial and it was in some such sense that Bacon used it. In th 10 essays first published he gave, not finished reatments but rather tentative reflections. H rather significantly than curiously (i.e., sug gestively rather than carefully), which I have called Essays." Montaigne had used practically the same word in French a few years be ore and almost io be colter Bacon's co
developed into several forms in the 17 th century, but in the earlier essays there was something of the expcrimental, incomplete character which we do not generally have in mind
when we think of the essay at present. The when we think of the essay at present. The
subject matter of Bacon's 'Essays' was also subject matter of Bacon's 'Essays' was also
informal and familiar. His own often-quoted words are that the 'Essays' have been "the most current" of his works because "as it seems, they come home to men's business and bosoms." The 'Essays' are, in fact, the sincere and natural thoughts of a great man, not elaborately molded into a monumental work, but set down
much as they may have come to his mind when he had leisure to think of the things that interested him. Bacon was a great figure in the development of philosophy and science, but it is not for such reasons that his 'Essays) have been read. The subject matter of the 'Essays'
is mostly the thoughts and ideas that come to the private heart of man as he thinks of himself, of how he gets on in the world, and how he stands with eternity and with God. There is in them much that belongs especially to the private thought of Bacon, who lived the life that of a scholar. But everyone finds something of interest in the 'Essays,' for they give the natural reflections of a powerful mind as it considered the things that are likely to occur to everybody. In style the 'Essays' are generally less familiar than in substance. In the matter of expression they are concise and pol-
ished, by no means the sort of thing that a man ished, by no means the sort of each that a mole, they do not make complete and finished treatments, yet the separate sentences are condensed and often proverbial and seem carefully cor-
rected as a comparison of the different editions rected, as a comparison of the different editions shows they are. The 'Essays' were first pub-
lished in 1597 , when 10 only appeared, dedicated to his brother. In 1612 appeared a new cdition containing 38 essays, tine of them of the earlier collection. In 1625 the last edition in Bacon's life contained 19 essays more. There have been numberless editions since,
among which are E. Arber's 'Harmony,' and the editions with annotation by R. Whately, W. A. Wright and J. Spedding

Edward E. Hale.
ESSAYS FROM THE EASY CHAIR. familiar and personal essays in a department of Harper's Magazine called "The Easy Chair." He continued to do so for the 38 remaining years of his life, writing approximately 2,500 in of imaginable subject - "with worthies ancient and modern, with early impressions and striking contemporary situations, with poets and novelists and orators and actors and musicians, with every aspect of the social comedy as vicwed hy the most genial of spectators, with all matters that secmed to lend themselves to his purpose
of unobtrusive didacticism-a purpose so veiled by animated and fanciful discourse that the reader is hardly conscious of its cxistence." From these essays three volumes of representative essays were selected and republished after his death. They not only throw interesting but together they constitute a series of invalu-
able incidents and interpretations of Americal life for nearly half a century
Curtis has many of the characteristics of the men who from Montaigne to Stevenson have made of the personal type of essay one of
permanent and most delightful forms of literature. The light touch, personal likes and dis likes, character sketches, delicate humor and pathos, suggestive bits of wisdom, are all found in his essays. He suffers most by contrast wit Lamb in his lack of felicitous literary allusio nent effects of rhetoric, in the better sense of that word. He is perhaps more like Addison, or Goldsmith, or Irving, though less final in power of expression than any of them. A typical volume of these essays gives some idea of the range of his topics. He has reminis Thoreat, Wendell Phillips, Jenny Lind Thackeray and Browning, each of whom recalled in some typical lecture or conversalion or dinner. The theatre figures in an account of Jefferson as Rip Van Winkle and in remiler. That he was fond of music is suggested in "The Opera in 1864," "Thalberg and Other lianists" and "Cecilia Playing." Typica sketches of social life and of various aspects
New York are to New York are to be found in "Shops andithopp," "Easter "Mrs. Grunds" and "The Town."
At the time Curtis was writing such essay for Harper's Magazine he was writing ed torials for Harper's Weekly and delivering ad dresses throughout the country of an entirel different character. It is surprising that the mavi who was a leader in the movement
service reform, who helped to inaugurate the independent movement in American politics and who at an earlier date took a prominen part in the organization of the Republica party, should have been able to detach him his charming essays. In this respect as in matn others, he was like his friend James Russel Lowell, who wrote to him words that best give an interpretation of his personality:

Had letters kept you, every wreath were yours; Had the world tempted all its chariest doors Had swun on flatered binges to admit Such high bred maners such
 Had swung on flattered hinges to admit uch high bred manners, such good natured wit."
 Edwin Morris

ESSAYS OF ELIA. Charles Lamb Essays, the most famous and delightful of his works, were written in the spare hours of
busy life, and were originally published chiefly busy life, and were originally published chien 1820 to 1833 . Essays of Elia,' appeared in 1823; the second 'Last Essays of Elia,' 10 years later. The signature Elia, which Lamb adopted from the name of a former clerk in the South Sea House where he had been employed, served as a thin disguise, under the cover of which the antho
revealed in an intimate way his own experience and thoughts, distorting the actual facts of hi life only so much as was necessary to preserv semblance of anonymity.
The substance of many of the essays consist in reminiscences of Lamb's early ycars, towar mantic yearning. He describes, for example, is
the essay entitled "Christ's Hospital Five-and Thirty Ycars Ago," his schoolloy life and his first association with Samuel Taylor Coleridge in "Blakesmoor in H-shire," a visit with h sister, Bridget Elia (Mary Lamb), to an old "My First Play," his earliest sensations in the theatre; in "Old Benchers of the Inner Temple," the curious personalities of the antique lawyers with whom he had become acquainte in his boyhoord home in London. In thes stances of his own lich refer to the circunto the inner circle of his thought. He frankly confesses his weaknesses and his prejudice He pictures in "The Superannuated Man" hi sensations on finding himself at last free from Writes the "Confessions of a Drunkard," speak ing seriously and truthfully of his own experi ence. Finally, in that most beautiful of all the essays, "Dream Children," he indulges in vision, regretful but not inmmanly, of what might have been had the circumstances of hif lovable nervades some of the essays, others, like famous "Dissertation on Roast Pig," are full o hilarious fun. In the majority of his sketche humor and pathos go hand in hand. The senti make is relieved by briliant tashes of wit whit humorists. the laughter is tempered by kindly sympathy.
Lamb's romantic love of bygone things is apparent everywhere in the essays. He com plains of "the decay of beggars in the me sweepers," describing with delightful humor the annual dinner given in their honor by his friend Jem White. He confesses to an almost femihine delight in old china, prefers the sun-dial to the clock and the old type of schoolmaste to the new. In human personality Lamb is With interested in out-or the-way "oculiar humor or bias, "odd fishes," like the old-fashioned clerks of the South Sca Housc or the immortal, whist-playing Sara Battle. A number of the essays deal wit iiterary matters, particularly with the drama, it Which he was much interested, and with thos
older authors like Sir Thomas Browne, toward Whom he was drawn by his antiquarian instinc and by his liking for the unusual and piquant in literature as in life. As a critic Lamb is appreciative and informal, relishing his favorite allthors rather than juclging them. He is the
Whatever his subject Lamb casts upon it the magic of a style rich in personality, picturesque, brilliantly witty and singularly responsive to the author's mood. Quaint turns of phrase and antiquated words, borrowed from the older writers of whom Lamb was fond,
give a touch of oddity to his language which give a touch of oddity to his language
suits his highly individual type of humor.
The 'Essays of Elia' are the most attractive example in our literature of the personal or informal essay, compounded of wit and sentiment, olservation and reflection, familiar in richly whimsical and unexpected in idea, but intimation and suggestion on the decpest truths. voL. 10-33

Consult 'The Works of Charles and Mary Lamb' (cd. E. V. Lucas, 1903-05); (The Essays of Elia' (In 'Everyman's Library'), and (The World's Classics' (Oxford), essays on Lamb 'Obiter Dicta' (2d series); G. E. Woodberry's 'Makers of Literature,' and C. T. Winchester's 'A Group of English Essayists.' For bibliography, consult 'Cambridge History of English Literature) (Vol. XII). ESSAYS AND REVIEWS, a work issued
in 1860 by seven members of the Church of England, six of whom were laymen. It was severely criticized by the clerical body and in 1864 was condemned by convocation. Two of the seven contributors were sentenced to suspension of one year by ecclesiastical courts, but the Privy Council reversed this

ESSEG. See Eszec,
ESSEN, Hans Henrik, Count, Swedish statesman: 1. Kaias, West Gotland 1755 ; d. 1824. He reccived his education at the University of Upsala and entered the army in the
service of Gustavis III. In 1705 he was made governor of Stockholm and five years later governor-general of Swedish-Pomerania and Raigen. In 1807 he defended Stralsund against the French and two years later was made a count and a conncillor of state. Charles XIII
made him Ambassador to France in 1910 and he was successful in having Napolcon restore Pomerania to Sweden. In 1811 he was made ficld marshal, campaigned in 1813 against Norway, of which he was governor in 1814-16. In 1817 he was transferred and made governor-
general of Skăne. Consult the life by Wicselgeneral of Skane
gren (Malmö 1855)

ESSEN, Germany, town of Rhenish Prus sia, 18 miles northeast of Dusseldorf. It has recently greatly increased in population and man-
ufactories. The cathedral, founded in the 10th century, is one of the oldest in Germany. It is celebrated for the steel and iron works of the Krupps (q.v.) the most extensive in Europe, employing 70,000 workmen in their various unstarted in 1811, wilh only two workmen was rifled steel cannon made here were supplied to most of the armies of the world. In the suburbs are the "colonies" - cottages, churches, schools, stores, libraries, places of amusement, homes for superannuated and disabled workmen, etc., established by the Krupps for their workmen
who, however, on pain of dismissal, are forbidden to become associated with any socialist or trade union organization. During the European War, Essen was frequently attacked and hombed by allied air squadrons. (Sce WAR, European). The town was founded in the 9th lished here, and for some time it was under the control of the Abhess of Essen. In the 101h century the Abbess Hagona gave the town municipal privileges. In 1803 it was incorporated into Prussia, The town of Ruttensche:d was annexed to Essen in 1905 and the commune of
Huttrop in 1908. Pop. 295,000.

ESSENCE, in metaphysics, originally the me as substance. Later, substance came to be
for the undetermined substratum of a
thing, essence for the qualities expressed in the definition of a thing; or, as Locke put it,
"Essence may be taken for the bing of any"Essence may be taken for the being of any-
thing, whereby it is what it is." (Essay Conthing, whereby it is what it is." ('Essay Con-
cerning Human Understanding,) Book III, cerning Human Understanding, Book III,
Chapter III, Section 15). It is now used in a Chapter III, Section 15). It is now used in a
wider sense, to designate the intrinsic nature of a thing. In chemistry, and in popular parlance, essences are solutions of the essential oils in alcohol, and may be prepared by adding rectified spirit to the odoriferous parts of plants or to the cssential oils, and distilling; or simply
by adding the essential oil to the rectified spirit by adding the essential oil to the rectified spirit, The term has, however, received a wider significance, and is applied to any liquid possessing the properties of the substance of which it professes to be the essence. Thus essences of coffece and beef contain in a concentrated form the virtues of coffee and beef, and in
some circumstances may be substituted for them.

ESSENCE DE PETIT GRAIN (essence of small grain), a perfume produced by the of small grain), a perfume produced by the
distillation of small oranges while in an unripe state. The oranges for this purpose are taken when about the size of a cherry.

ESSENES, ěs-sēnz', a sect or socicty of Hyper-Pharisaic Jews, in existence 150 years b.c., and which existed till the $2 d$ century, the remnant then returning to Pharisaic or orthodox Juda:sm or entering the Christian communion. ical literature. Josephus the historian (1st century) describes their manner of life in some detail; Philo Judacus has a notice of it, so too has Pliny in his 'Historia Naturalis.' Josephus was in his youth a probationer of the society, but lived among them only a short time and tem, which were strictly withheld from novices; but his narrative has the marks of authenticity, In essentials Josephus and Philo are in accord, and with them agrees Pliny in the one peculiarity of this socicty which he notices - theit celibate life. The Essenes were stern ascetics
and in that respect were the prototype of the
Christian Solitaries, who in the 3 d and 4 th centuries peopled the Nubian deserts; withal, they were both in name and in deed Friends for such was one of the appellations of the brethren. Among themselves they had all things in common, like the first Christians, and they were open-handed and hospitable to numbered more than 4,000 souls. There were groups of Essenes in all the towns of Judea, but their institute had opportunity for full development only in their communal settlements on the western shore of the Dead Sea, where gious observances and to agriculture and a few simple handicrafts. Their food was of the simplest, taken at the common board, their only drink, water; their attire was of the plainest white linen material. None possessed more than one tunic or more than one pair of shocs. and a hymn they went about their customary occupations. (Here we are reminded of what Pliny wrote to Hadrian concerning usages of the Christians in Bithynia: "They met on a stated day before daybreak and chanted a hymn
to Christ as God..") At the 5th hour (11 A.x.) they again assembled in one place and bathe
their faces in cold water, after which they put on pure white garments and repaired to the common simple meal, which was preceded D a blessing, a prayer and a hymn; and after (1) repast there was again prayer and a hym. of white linen, put on their workday attire, and went back to their employments. No women were admitted to the order; like some of the modern Shakers they adopted young boys an
brought them up in their own simple way of living; on attaining maturity they might, it willing, be admitted to membership after term of probation; or they were free to return to the world. But they also received accession of life-weary grown people. "Thus," say Piny, here is a peonle that never dics on (aterna est) yet in which there are no hirths,
so fruitful for them is others' (disgust of life') (Tam fecunda illis aliorum vite paenitentio cst). They were opposed to trading as leading to covetousness, and to the making weapons o offense, and rejected animal sacrifices. Lin
the Society of Friends they forbade they held that a man whose word needed to be confirmed by oath was not to be believed at all Nevertheless the postulant for admission into the society was required to take "terrible oaths" that he would pay worship to God, be just io men, injure none, hate the unjust, io
faithiful and true to all, especially rulers, for none bears rule save by God's will. Pliny write of a similar oath taken by the Christians.
There were four degrees of membership re sembling in sume respects the castes of the fiit dus. If a person in a higher degree so much defiled and was bound to make himself clean in cold water. Their severely abstemious life, their contempt for riches and honors, their dee, Conviction of the immense superiority of the cligion gave them all the heroic courage in of persecution and torture which distinguish scrupulous were they in avoiding everything like idolatry, that some of them would neve enter any city because of the images erected a the gates; nor would they touch a coin that bor he likeness of any ruler.
Bibliography.- Pliny
Bibliography.- Pliny, 'Historia Naturalis', the writings of Josephus and Philo Judacus, Heresics,' ' written in Greek 230 A.D., author unknown; Lightfoot, 'Colossians and Philemon' (3 d ed., London 1879) ; Fairweather, 12 ; Packground of the Gospels' (New York trens. New York 1912) : and Hastings, (Encyclopedii of Religion and Ethics.)

ESSENTIAL OILS are those volatile

 aromatic constituents of certain flowers, fruits, sceds, etc., which contain their specific odor ight the senses is, the properties which imed at in the manufacture of these essences is that they may be transferred to other combr nations, through which the pleasure they affor nay be enjoyed to a far greater extent. be better appreciated whe be employed nered that these oils are products of the living plantsand that immediately upon harvesting the plant ing withces begin to deteriorate, the loss vary time when the life of the clapses between the the time when the essential oil is finally secure in a permanent form. Another point to be care best attended to is that each essence is at it and that it must be taken at that time - neither immature nor past malurity Other conditions are liable to affect the product injuriously, and heat is one of these. The delicate essence the strawherry is quickly dissipated if the sun cats down hot upon it, and many other essenpeculiarity of course prevents the use of the chici refining process of the chemist, that o distillation, for these particular oils. An ex ample of this condition is presented in winmin the oil of lemon from the pecl. Any attempt to low quality. The fine flavor has to be gained by cold pressing of the raspings of the surface The banana, peach and pineapple are in the same class with the strawberry and the lemon large thespect. This difficulty is overcome in large measure by dissolving out the cssential
oils with alcohol, and distilling the alcoholic Solution under vacuum - which so reduces th degree of heat needed that the delicate flavor are preserved. Another condition likely to in of these sensitive substances is undue exposur ing. Some oils quickly become rancid harves the case of ousers fermentation of the and of the oil completely destroys it. The class of flavors and odors which are injured by fermenSupen is practically the same as that which other mentation of the fruit scrves to accentuatc it Particular flavor
the olatile oils consist of two component groups, the taste-carriers and the terpenes. In addition waxy se there may be varying proportions of many and resinous matters. The aim of the the taste-carriers' constituents, for it is solely upon these that its market value depends.
oils The methods employed in making essentia oils are (1) expression; (2) distillation; (3) extraction. The first makes use of simple press-
ure ; the second uses distillation with water or steam, and subsequent rectification to remove the water; the third is carricd on by dissolvin Out the desired oil with a solvent, such as al being, chloroform, benzol, etc., these solvent ture afterward distilled off at a low tempera from some kinds of oil by the vacuum process, eing the first to pass over on the rise in temperature. The sesquiterpenes follow. At a giil coly higher degree the true flavor carrying the comes over. When it is necessary to raise distie overature arc gathered scparatcly as not the highest quality. Another method of remov ing the terpenes used with a class of oils whic annot be worked by the first process, is by of oholic distillation. In this process one par of the oil to be treated is mixed with five part ure vapors containing about 80 per cent alcohol and 20 per cent water, together with the vapors
of the oil, pass over into a receiver where they are insoluble in alcohol of that strength. The essential oils remain in solution with the alcohol The process is continued until the collecting lerpenes cease to increase in quantily. The oil thus purified is dried by agitation with anhyand airproof bottles. From these essential oils and airproof bottles. From these essential oils
are made the so-called "essences," tinctures, flavoring extracts, syrups for soda water, per fumes, cordials, liqueurs, etc. Many of the es-
sential oils are used as medicinc, or in medicinal sential oils are used as medicine, or in
The United States Census of Manufactures for 1919 reported 78 establishments engaged in the manufacture of essential oils, employing 497 persons, of whom 321 were wage-earners receiving annually $\$ 391,000$ in wages. The capital invested totaled $\$ 6,380,000$, and the year's
output was valued at $\$ 5,698,000$, of this, $\$ 1,705$, output was valued at $\$ 5,698,000$; of this, $\$ 1,795$,other establishments reported making essential oils as a subsidiary product and the value of their production was placed at $\$ 199,066$. Sce OIL

ESSENTUKI, or ESSENTUKSKAYA, Russia, a health resort in the territory of Terek, northern Caucasus, 10 miles north of is widely known for its cold alkaline springs. Pop. 8,000.

ESSEQUIBO, ês-sê-kè bō, the largest river of British Guiana, draining about one-half of the area of the colony. It rises in the northern slope of the Akarai Mountains, which marks the watershed between it and the Amazon, take an irrcgular northerly course, and flows into the
Atlantic west of Georgetown by an estuary 20 miles in widh. Its whole length is about 600 miles. It is navigable for some distance from the ocean. The district or division of Esscquibo, which is in the basin of the Essequibo River, is well cultivated and extremely fertile, principle tributaries are the Mazaruni, Cuyum, principle tributaries are the Mazaruni, Cuyum1, basin of this river was included in the disputed territory claimed by the Venezuclan and the British governments in 1896. The claims were settled by an arbitration of trcaty 2 Feb. 1897
and the award made 3 Oct. 1899. Pop. 36,000 .
ESSEX, Arthur Capel, 1st (Capel) Earl of, English, statesman: b. January 1632; d. 13 July 1683. At the Restoration he was created Viscount Malden and Earl of Essex. He be-
came troublesome to Charles II and to be rid came troublesome to Charles II and to be rid of him the latter sent him as Ambassador to
Denmark. His conduct in Denmark. restored him to favor and in 1672 he was made privy him 10 avor and in 1672 he was made privy
councillor and lord-lientenant of Ireland. His subsequent administration lasted five years and was most successful and honest. He kept a just halance between the Catholics, Presbyterians and the members of the Church of England tion made him many enemies, who through in triguc brought about his recall. He joined the so-called Country Party under Lord Halifax and again became noted for his opposition to the Crown. With Shaftesbury he supported the Exclusion Bill, designed to keep James from in the Tower. His spirits appear to have been
cast down and about a month after his arrest he was found with his throat cut. Consult Papers) (Camden Society 1890).
ESSEX, Robert Devereuz, 2D EARL of, English courtier: b. Netherwood, Herefordshire cducated at Trinity College, Cambridge, and appeared at Court in 1577. He greatly distinguished himself at the siege of Ziitphen in 1786 . On Lecicester's death 1588 , he became the chief
favorite of Elizabeth. In 1590 he married the favorite of Elizabeth. In 1590 he married the widow of to support Henry IV against Spain, but the expedition effected nothing of importance. About this time Essex was on terms of close friendship with Francis Bacon, who assisted him greatly hy advice on political and other to Spain, and greatly distinguished himself a the capture of Cadiz. In 1597, after an unsuccessful expedition to the Azores, he, with Howard and Raleigh, made cxtensive captures of Spanish ships. He became carl marshal and
chancellor of the University of Cambridge Next year he quarreled with the queen, who struck him on the car and bade him "go and beruck hanged." After some months a reconciliation took place, and he was appointed lord-licuenant of Ircland (1599), then in a state of rehaving been entircly unsuccessful in his government and made a humiliating truce with the rebels; was made a prisoner in his own house and was shortly afterward (June 1600) tried by special court. The charges against him were that he had excceded his instructions in the out leave; and he was deprived of all his offices, and sentenced to imprisonment, but not long afterward was set at liberty. He now conceived a deep resentment against the queen's councillors particularly Cecil and Ralcigh, who, he imagined before the council, he assembled his [riends in his house, and proceeding to the city, endeavored to crlist the citizens to enforce dismissal of the queen's minisicrs. After a skirmish with a party of soldiers he returned to his house, but render, and sent to the Tower. He was tried for treason on 19 Feliruary and exccuted on 26 Feh. 1601. Consult Croxall, (Mcmoirs of the Unhappy Favorite' (1729) ; Spedding, 'Bacon' 881) : Abbott, 'Bacon and Essex) (1877)

ESSEX, Robert Devereux, 3n EARL of Finglish soldier: b. 1591 ; d. 14 Sept. 1646 . When 11 years old he was restored by James I to the He scrved in the army of the elcetor palatine in Holland 1620-23, was vice-admiral of an unsuccessful naval expedition against Cadiz in 1625, and licutenant-general of an army sent by King Charles against the Scotch Covenanters in measures of the king, refused payment of the forced loan in 1626, supported the Petition of Right, and in spite of attempts to detach him, favored the exccution of Strafford. Espousing the cause of the Parliament against the king, he was appointed to the command of the parliawar, was victorious over Charles at Edgehill

1643 captured Reading in 1643 and relieve Gloucester, but his invasion of Cornwall in the ollowing year was a failure; the greater pat was obliged to escape by sca. He dissented from Cromwell's measures against the Scots as likely to stir up ill will between the two nations, and
resigned in anticipation of the Self-Denying resigned in antici
Ordinance in 1645
ESSEX, Thomas Cromwell, Earl of. See Romwfle, Thomas.

GSSEX Walt
 ESSEX, Walter Devereux, 1 st (Devfreux)

 Earl or, English soldier: b. 1541 ; d. 1576 . It Clinton as high marshal under Warwick an putting down the relicllion ind the north. in 572 he was created Farl of Fisex as a rewar or his zeal in the quen's scrvicc. In 1573 in ffered to sulducue and colonize a portion o the province of Ulster. His offer was accepted with some modifications and he set out in Jil 573 with a force of about 1,200 men. Storm delayed the expedition and sickncss, death anddesertions cut the force to about 200 me desertions cut the force to about the
Meanwhile Essex was in difficulty with the dcputy, Fitzwilliam, his operations consisted of raids and hrutal assaults on the O'Ncills. i) ireachery he captured Sir Brian MacPhelim, leader of the ONeills, slaughtered his atten ants, and executed him, his wife and brother
Dublin. He next prepared to attack the Iris chief, Tirlogh Luincach, defeated h:m and mas sacred scveral hundreds of the followers o Sorley Boy McDonncll, mostly women an children whom he found hiding on Rathli Island. In 1575 he was recalled, retired fron public lite, but returned to Ireland the Dubli soon aitcr his arrival.
ESSEX Cand
ESSEX, Canada, a town in the province of Ontario, on the Michigan Central Railroad, 1 miles southeast of Windsor. Electric tramway connect it with Leamington, Kingsville aind brick and tile yards and a large canning establishment. Natural gas is plentiful in the distric Pop. 1,353.
ESSEX, Conn., a town in Middlesex County on the New York, New Haven and Hartfor southeast of Hartford. It contains a larg piano factory, a tool factory and a puble ilirary. Pop. 2,745 .
ESSEX, England, a maritime county, on the southeastern coast; area, 1,530 square miles of which 80 per cent is under cultivation. I the northwest wheat and barley are the prill swamps, now turned wilh excellent grazin? land; there are no great manufactures, but tim fisherics are important. The Stour, Coln Blackwater, Lea and Thames are the principa rivers. The chicf towns are Chelmsford, Essex is one of the six "Home Counties," an took its name from the East Saxons, who monarchs reigned over it from A.D. 617 to 82 when the kingdom was ahsorbed hy the We Saxons. It was recognized as Danish terr tory by Alfred the Great at the Peace of We more in 879, int was reconguered hy his son
Edmund the Elder. In 1045 it was a part 0 the earldom of Harold, but passed into the
hands of the Norman conquerors. The count was rich in monastic foundations, of which ancient churches and other ecclesiastical antiois div. The county for parliamentary purposes is divided into cight divisions, each returning one member. Pop. 1,350,881
the ESSEX, Vt., town in Chittenden County, on east of Burlington Classica Institute. Agriculture and dairying are the only industries. Pop. 2,714

ESSEX AND ALERT, Naval Action Between the, in the War of 1812. On 3 July 1812 the American frigate Essex, rated as a 32 Put carrying 44 guns, under Capt. David (q.v.) as a midshipman, left Ncw York and atter capturing a brip containing 197 soldiers on 10 July, came up with (30 August) and was chased by the British sloop of war Alert 1 rated at 16 guns, hut carrying 2 long 12 's and Langharne 32 , under Capt. Thomas L. P. Essex, the Alect closed up and opened fire, whereupon the Essex nearly sank her with a broadside and after five minutes of fighting compelled her to strike her colors. The Alert prisoners converted into a cartcl and Porter's John's Nowf sedlind on parole to Saint more prizes and being chased by two British ships, Porter returned to port 7 Septembe II, pp. $52-55$). J. Farragut, 'Loyall, ('Life of Farp. pp. $52-55$) : Farragut, Loyall, 'Life of
(pp. 15-17) : James, William, (Naval Arragut' (pp. 15-17) ; James, William, 'Naval of the Navy' (Vol. I, pp. 326-31) ; Roosevelt, John R War of 1812) (DP . 52-82) ; Spears 'History of Our Navy' (pp. 33-50).

ESSEX HOG. Sce Hogs.

ESSEX JUNCTION, Vt., village in Chit tenden County, seven milcs cast of Burlington, On the Central Vermont Railroad. It contains It has also Allen and a national army posi. a corn-canning factory and a butter factory, Its agricultural interests are exiensive. The ililare owns its water plant. Pop. (1920) 1,410. ESSEX JUNTO, a name applied about 178 by John Hancock to the group of Massachusctts political leaders resident in or con-
nected with Essex County, Mass.- the northnected with Essex County, Mass. - the norththe New Hampshire boundary of Bostont a line of commercial and fishing towns and its interesis thercfore overwhelmingly in favor of a strong national goverıment to protect them This forcign countries and their sister states. this made its leaders, whose great ability gave ultra poweriul influence, the vanguard of the Whom they followed in his split with John Adarns. The latter revived the old nickname, hatged them with loeing a "British faction" nd forcing on a war with France and for wiess after his retirement assailed them in the War solidified all New England Federalism in a common self-defense, all the opposition and he suspected treason were attributed by out-
siders to the Essex Junto. Its chief member werc George Cabot, Timothy Pickering, Theoph
ilus Parsons (State chief justice), the Lowel family, Stephen Higginson and Benjamin Good hue. The "Junto" disappeared with the Wa of 1812 as far as its influcnce on national af fairs was concerned. It held on for a few mor 1823 its candidates New England States, but by sex County. Consult Brown, C. R., 'The Northern Confederacy according to the Plans of the Essex-Junto) (Princeton 1915)
ESSEX, PHEEBE AND CHERUB, Battle of the, in the War of 1812 . On 28 Oct. 1812 the Eissex, under Capt. David Porter (q.v.) passed the Delaware Capes and ran south to ucd her voyage and on 12 December, a litite south of the equator, captured the British frigat Norton, which was dispatched to the neares American port hut which on the way was recap arca hy the Belvidere. Portcr then sailed round Cape Horn, arrived at Valparaiso, the next few months cleared the seas of British whalers and warships, one of which he turned into a 20 -gun ship and renamed the Essex Junior. After numerous adventures the two hips put in at Valparaiso, where on 8 Fcl. 1814 frigates Ploebe (13 long 18 's, 1 by the British frigates Phocbe (13 long 18 's, 1 long 12,1 long
9,7 short 32 's and 1 short 18), Capt. James Hillyar, and Cherub (2 long' 9 's, 2 shor 18's and 9 short 32 's). The Essex was armed with 17 short 32 's and 6 long 12's so that while she could overpower the Phobe at short range able her completely to destroy the Essex from a position beyond reach of the latter's froms For a month Porter lay practically idle, but, on learning of the approach of several othe ships, had decided to run the blockade when on 28 March 1814, the Essex parted her port cable compelled him to return. As he was anchored in a small bay a short distance from shore Porter supposed the British would respect the neutrality of the port and had begum to make
 on him and a few minutes before 4 o'clock
opened firc. As the Phobe was on her stern opened firc. As the Phobe was on her stern
and the Cherub off her starloard how, the Esse.x could not reply effectively with he iroadside, but Porter ran two long 12's out o the stern ports and at 4.30 compelled the Phocbe to haul off to repair damages. Since and his carronades could not reach them, the British ships then proceeded leisurely to pound the Essex to pieces, the P'locbe anchoring and firing her broadsides of long 18 's into the quarter of the Essex while the Cherub kep gunder way and threw solid shot from her bow sel ashore but was prevented by a shift of the wind; accordingly he let an anchor go, brought the head of his vessel around and gave the Phabe a broadside that crippled her and caused her to drift away with the tide. Unfortunately at this moment the hawser of the Essex parted
and, a helpless wreck, she aimlessly floated toward her antagonist ; twice she took fire, par of her powder exploded, she had been hulled
at almost every shot, and at 6.10 her colors werc hauled down, though the British did not ceas fring until 6.20. The Essex lost 58 killed an 66 wound of 255 while the British loss was only five killed and 10 wounded. The Essex Junio was converted into a cartel and Porter and the survivors were sent to New York, arriving in
July 1814. Consult Adams, 'United States' Vol. VIII, pp. 174-181) ; Barnes, James, (Naval Actions of the War of 1812) (pp. 171-87); Cooper, J. F., 'Naval History' (Vol. II, pp. 76 82) ; Maclay, E. S., 'History of the Navy' (Vol I, pp. 543-75) ; Mahan, A. T., 'War of 1812'
(Vol. II, pp. 244-52) ; Porter, (Journal of a (Vol. II, pp. 244-52); Porter, 'Journal of a
Cruise made to the Pacific Ocean by Capt. David Porter in the United States Frigate Essex (2 vols., 1815) ; Porter, David D., 'Life o Porter); Roosevelt, 'Naval War of 1812' (pp. 293-309)' : Spears, J. R., 'History of Our Navy (Vol. III, pp. 1-53); Wiley and Rines, 'The United States) (Vol. V, pp. 486-93) and ragut, I. R. Spears, A. T. Mahan, James Barnes and P. C. Headley
ESSEX SKULL. See Man, Prehistoric ypes of
ESSIPOFF, Annette, Russian pianist: b. Saint Petersburg 1851. She studied under
Leschetitzky, of whom she was the most brilLeschetitzky, of whom she was the most bril liant pupil. In 1874 she began her carecr in Europe, and in 1876 visited the United States, where she also achieved a large measure of success. She married Leschetitzky in 1880, bu the pair soon separated and were divorced She taught piano at the Saint Petersburg Con rvatory from 1893 to 1908
ESSLINGEN, or ESSLING, Austria, village about six miles east of Vienna, famou and Austrians on 21-22 May 1809. It is sometimes known as the battle of Aspern.
ESSLINGEN, ěs'ling-ěn, Gcrmany, town in Würtemberg, on the Neckar, seven miles east southeast of Stuttgart. It was founded in th Bih century and was long a fortified, Imperia free town. there are three noteworthy espectively. Originally Esslingen belonged to the duchy of Swabia and the Swabian Leagu of Swabian cities and governments was formed here in 1488 . There are great railway work shops, manufactorics of machinery, cutlery, cot
,
ESSON, William, British mathematician
1838. He received his education at the Inverb, 1838. He received his education at the Inver 97 he was Fellow of Merton College and also o New College. In $1894-97$ he served as deputy Savilian professor and after the latter yea was full professor at Oxford. He was clectes actions) appeared his (Laws of Connection be tween the Conditions of Chemical Change and ts Amounts) (1864, 1866, 1895) and 'Varia tions with Temperature of Rate of Chemical Change) (1912)

ESSONITE, or HESSONITE, a variety of garnet (q.v.), also often called Cinnamon

ESSONNES, es'son, France, town in the department of Seine-ct-Oise, 20 miles southea of Paris. Its industries comprise iron
dries, linen and paper manufactories and madries, linen and paper manufacto
chinery. Pop. (commune) 9,348

ESTABLISHMENTS, Ecclesiastical, religious bodies having prescribed relations to the state in return for which they enjoy variou privileges and are obligated to certain dutics. The origin of the custom harks back to the period when the religious belief of a nation a mixture of faiths such as we witness to-day among practically all modern nations. In Eng land, the connection between Church and Stat grew up prior to any formal legislation on ther subject, and at the Rcformation, as in otner
countries which then changed their spiritual countries which then changed their spitions-
affiliation, passed to the new denomination In Ireland the Protestant Church, though in ${ }^{2}$ minority, enjoyed all the privileges of an con-
tablished church until 1870 . The usual col nection between an established religion and the state is seen in the appointment higher church officials by the secular power by taxation for the support of the clergy, by regula of of religious property, by the maintenalaw of ecclesiastical courts in which the canon education under the general supervision of the education under the general supervion Norway,
clergy. England, Greece, Sweden, clergy. England, Greece, Sweden, No untul
Prussia and other Gcrman states, and un 1917 Russia, have established churches. In cer tain republics of Latin America the Cathols Chuch enjoys special privileges, but the neare approach to an established church in America is to be found in the Province of Quebec. I the particular relations existing between various countries.

ESTAING, ès-tãñ, Jean Baptiste Charles Hector, Comie d', Marquis of Saillans, French army and navy officer: b. Auvergne, 1729 ;
Paris, 28 April 1794 . He entered the French army as colonel of infantry; was promoted to vice-admiral in the French navy. In 1778, accordance with the treaty between France and the United States, France fitted out a flect of 12 ships of the line and four frigates to aid the latter in the struggle against Great Britain and
Estaing was placed in command. He sailed 13 Estaing was placed in command. He saild pro ceeded to New York. He captured some prizes off the coast of New Jersey, agreed to assist in a land and sea attack on Newport to expe the British from Rhode Island; reached the hare bor late in July; and hearing of the approach of a flect, put to sca to meet it. He was over
taken hy a severe storm, which caused 1 im to put into Boston for repairs and the prod jected attack failed. Subsequently he captured Saint Vincent and Grenada, West Indies, and in1779 co-operated with General Lincoln in an He cffectual attempt to capture Savannah, Ga. returned to France in 1780. He commanded chosen admiral of the navy in 1792 . He in favor of the French Revolution, and was of the Assembly of Notables. In 1789 he commander of the National Guard, and the years later admiral by the sclection of
ably because he had tried to save the life of and inde Antoinette, despite his eminent military demned as services France he was con had ambition to shine as a literary man and he wrote poctry, a drama and a work on the Colonies.
Pis ESTAMPES, or ETAMPES, Anne de mistreu, Duchesse D, Frencli adventuress, mistress of Francis I: b. 1508; d. 1585. She mas maid of honor to Louise of Savoy, the in 1526 soon after his return from Spain. At the age of 28 she was married formally to Jean
de Brosse and received the title of Duchess de Brosse and received the title of Duchesse ${ }^{\text {over }}$ Stampes. She wielded a powerful influence the person of Diane de Poon arose a rival of the Dauphin. Political parties gathered about these two courtesans but the accession of Henry Whetaly eclipsed the Duchesse destampe who rctired to her estates. She embraced the Huglo and waspor 'Etudes sur Francois Ier) (Paris 1885)

ESTANCIA ès-tanthē Philipins

 pueblo of the province of Iloilo, situated on th easlern coast of the island of Panay, 66 mile horth of the town of lloilo. The main por ton of Estancia is one mile inland, connecte ground good road with the coast and anchoragESTATE, a term
Property Te, a term sometimes used to indicate Sometimes it includes land alone. It signifie in law the interest which a person may hav property. It denotes the time during whic Corever vided, as regards the quantity in land are d two kinds, (1) freehold estates, and (2) estate ess than freehold. A frechold is an csta which may last for life or longer. An estate of yich is circumscribed within a certain number fixed years, or one in which the possessor has no and alihough in fact it may last longer then the ite of its first possessor, still the law regard t as a lower estate than a freehold; it is per Onal property in the eye of the law, and does not descend to heirs, although it may pass to

Frech or administralors.
nheritance which are divided into estates of in inheritance; the former are again divided int states in fee simple and estates in fee 1ail. An has in fee simple is the estate which a man assolutery lands are given to him and his heirs chate, and it is the most extensive and the ighest interest a man can have in land. If not O_{n} ted or devised, it passes to heirs generally is the other hand, a fee tail is an estate which certain class certain particular heirs or to a others : as to the heirs of exe's body of the excludes collateral heirs, or to the heirs male one's body, which excludes females
In the United States fee tails have had only himited existence, and are now in genera fee simple They were changed into estates in holds not of inheritance are for life only, either
for the life of the tenant or of some other per son or persons; when the estate is called an
estate pour autre vic. Life estates are crcated by operation of law, or by the act of the parties An example of an estate created by act of the parties is where A conveys land to B for the term of his natural life, or where A conveys land to B without mentioning the duration of
the term. Here under the common law B would the term. Here under the common law B would take only a ife estate; but by statute in many
of the States-among them New York-a grant or devise of real estate possesses all of the interest of the grantor or testator, unless the intent to pass a less estatc or interest appears by express terms or by necessary implication. operation of law. An estate by the curtesy is that estate to which a husband is entitled upon the death of his wife in the lands or tenements of which she was seized in possession in fee simple or fee tail, during their coverture, provided they have had lawful issue born alive, and possibly capable of inheriting her estate. An estate in
dower is an estate which a widow has for her dower is an estate which a widow has for her
life in some portion of the lands of which her husband was seized at any time during coverture, and which her issue might have inherited if she had any, and which is to take effect in possession from the death of her husband.
Estates less than frechold are divided into
states for years, at will and by sufferance. An estates for years, at will and by sufferance. An
estate for years is an interest in lands by virtue of a contract for the possession of them vor a definite and limited period of time. Such estates are ordinarily called terms. The length of time for which the estate is to endure is of no importance in ascertaining its character, unless is where one man lets land to another to hold at his will, as well as that of the lessee. An estate of this kind is terminated by cither party on notice. Out of estates at will a class of
estates has grown up called estates from year to year, which can be terminated only by six months' notice, expiring at the end of the year An important elcment in creating this estate is the payment of rent. An estate at sufferance is into pcssession of lands by permission of the owner, and continues to occupy the same after the period for which he is entitled to hold by such permission. This estate is not of frequent occurrence, but is recognized as so far an estate that the landlord must enter before he can bring
ejectment against the tenant. If the tenant has personally left the house, the landlord may break in the doors, and the modern rules seems to be that the landlord may use force to regain possession, subject only to indictment if any injury committed against the public peace.
eir existence may depend on the happening or not happening of some event whereby the estate may be created, enlarged or defeated. A term for years, a frechold or a fee may thus be upon condition. The condition must either be can vest or he enlarged; or must be subsequent when it will defeat an estate already vested.
Estates may also be divided into estates which are legal and those which are cquitable. Estates are termed equitable when the formal ownership is in one person, while the beneficial ownership
may be said that a trust is created. The nature of the estatc is not affected by this distinc
tion. For example, a trust estate may be an estate for life or a fee, and in the latter case is ransmissible to heirs as though it were a legal
Estates are divided into estates in possession and estates in expectancy, in regard to the time en enjoyment. An estate in possession is one Estates in expectancy are those which give ither a vested or contingent right of futur enjoyment. Estates are also divided, in regard o the number of owners, into estates in sever alty, in joint tenancy, in common and in cohas only a single owner. An estate in joint enancy is an estate owned jointly by two or more persons, whose title is created by the same instrument. The right of survivorship is the distinguishing characteristic. When a tenan oes to the survivors. Where an estate is conreyed to two or more persons, at common law ithout indicating how it is to be held, it is onstrued to he in joint tenancy. In most of the nited States, however, this rule has been estate is conveyed or given take as tenomts in common, unless they hold as trustees. An estate common is an estate held in joint possession by two or more owners at the same time by several and distinct titles. An estate in coparcenary is an estate which several persons hold estate has the three unities of time, title and possession. The interests, however, of the coarceners may be unequal. In the United State his estate is essentially extinguished, and heir be as tenants in comnion.
estate Duties. Sce Dentit Duties.
ESTE, ès-tâ, the name of an illustrious and ancient Italian family. Aldert Azzo II is considered the founder of the greatness of his Mouse. He inherited or acquired Este, Rovigo, Montagnana, Casal Maggiore and other places int Italy; and was made governor of Milan by
Ifenry III in 1045 . One of his sons became Duke of Bavaria in 1071, by the title of Welf I. He was the ancestor of the German branch of the house of Este, the dukes of Brunswick and Britain from whom the royal house of Great escent. Albert Azzo died 1097, having previously resigned his Itelian possessions to his son Fulk, and retired to Burgundy. Fulk I was attacked by his brother Welf. who compelled him to become tributary to him to the
extent of a third of his revenues. He was succeeded (1137) hy his son Obizzo I who joined the Lombard leaguc against Frederick Barbarossa in 1167 . He d. 1193 , and was succeeded by his son, who in the annals of the family is called Azzo V. Either he or Oberto acquired by marriage Ferrara, with its dependencies in Romagna, the house of Torello for a member of which house the bride, violently carried away by the Estes, was intended. The house of Este thus became vassals of the Church as well as of the Empire. He was succeeded by Azzo VI (d. 1212). He was constantly, engaged in war with the To-

Ferrata. Aldobrandino, his son, died young and was succecded by his brother Azzo VII, wars with the Ghibelline party. Honorius VI invested him with the marguisate of Ancona He d. 1264, and was succeeded by his grandson, Obrzzo II, who was chosen lord of Modena and Recgio. We may. pass over his successors to Niccolo III, who succeeded in 1393 at the of his predecessors, the house of Este became patrons of literature. Niccolo died at Mila 26 Dec. 1441. Lionel, his son ($1441-50$), re ceives a high character from Muratori for jus tice and picty, and for his patronage of letters.
He mediated a peace in 1450 between the Venc ians and Alfonso, king of Sicily, and dicd in Novembicr of the same year. He was succeede by his brother, Borso (d. 20 Alug. 1471), who reccived new accessions of dignity from ther, emperor, and was created Duke of Ferrara
Pope Paul II. His reign was peaceable and prosperous. Ercole I, his brother (d. 25 Jan 505), succeeded, to the prejudice of his so Niccolo. His usurpation caused a war, whici was unsuccessful in doposing him. He ha Vilan and Florence for allies, the Pope an peace in 1484 he maintained neutrality in his estates for the remainder of his reign, whil the rest of Italy was convulsed with wars and revolutions. He had for his minister Boiardo he famous author of the 'Orlando Innamorato and Ariosto, horm near the commencement fonso I, his son, d. 31 Oct. 1534 . His rcigh was a contrast to the peaceable one of father. In 1509 he joined the I cague of Cam brai, and commanded the Papal army as gonthe allies elscwhere, his estates were ravaced by the mercenary troops of Venice, whose atroc ities are described in the 36 th canto of the 'Orlando Furioso.' Alfonso continued in the French alliance after the Pope had joined the enetians. He assisted in the hattle of Ravenna of the Pope. After the French had been drive from Italy he endeavored to make peace wit the Pope; but Julius continued implacable. Le X restored him to his possessions, with the ex ception of Modena and Reggio, but afterwar between Francis I and Charles V on the side of the French king, hut was afterward reconciled with the emperor, who confirmed him in his possessions, against Pope Clement VI (1530). He married as his second wife the amons lucrezia Borgia (q.v.). His brothe Alfonso was succeeded by his son, ERcole 1 who died 3 Oct. 1559 . He married René o France (daughter of Louis XII) in 1528 . Sh favored the Reformation, and made the cour of Ficrara the resort of the few advocates o Ercole at first adhered to the imperial 153 Ercole at first adhered to the imperial par 1556 joined the league of Paul IV an Henry II of France against Spain, and wa made general of the allied forces; but did no push the war with vigor, and made peace wit Spain in 1558. Leonora, his laughter by Rene was the ohject of the unfortunate attachment

II, the patron and persecutor of Tasso, who died 27 Oct. 1597 . He was succeceded by his cousin Cesare (d. 11 Dec. 1628), whom by his testament he had made his heir; but this disposition was annulled by the Pope, Clement prived wim of Ferrara with the dapendencies of the Church Cesare was obliged to content himself with Modena and Reggio, which depended on the empire. From this period the political importance of the house of Este greatly diminishes. Alfoxso IV, who lived in the latter ronage of the fine arts. His daughter Mary of Modena, was married to James II of England Rinaino (1655-1737) by his marriage with the daughter of the Juke of Brunswick-Luneburg, the ented the German and Italian branches 1803 the male line death of his grandso oxt daughter was marricd ${ }^{\circ}$ to the Archduke Ferdinand of Austria, third son of Francis 1 , who founded the Austrian branch of the family of existed until 1875. The last sovereigh in the house was Francesco In 1859, whe dynasty was deposed by the National Assembly the duchy was annexed to Sardinia by the Treaty of Zurich, 10 Nov 1859, and has consequently been incorporated 'With the kingdom of Italy. Consult Browning, Guelfs and Ghibellincs' (1893); Gardner, 'PrinStory of Ferrara) (1904): Sismondi, 'Italian Republics' (Eng. trans., 1832); Symonds, 'The Renaissance in Italy' (1875-76).
ESTE, Italy, town in the province of cient Adeste 17 miles southwest of Padua; the antery, cordage and ironwarc products ing tower, or campanile, is an interesting feature tress, known as the Rocca. Here once ruled the Este family one of the most ancient and illustrious families of Italy. In the 11 th century the house of Este became connected by marriage fou the German Welfs, or Guelphs, and Este, the dukes of Brunswick and Hanover. The reigning house in Great Britain descends trom this family. The sovercigns of Ferrara of Modena were also of this family, several The them being famous as patrons of letters.
The lives of Boiardo, the author of 'Orlando Innamorato,' Ariosto and Tasso were closely connected with members of this house. The 1708 male representative of the Estes died in 1798. ITis danghter married a son of the the Austrian branch of the house of Este, of Which the male line became extinct in 1875, Ferdinat 11,700.
ESTEBANEZ, Calderon, Don Serafin, opanish author, hest known as "E1 Solitarin": 1867. He studied for the legal profession at the University of Granada, was called to the 1822 he was appointed professor of poctry and 1822 he was appointed professor of poctry and 1831 under his Dseudonym of "E1 Solitatio" he Dublished a volume of verses. He wrote several
articles on Andalnsian customs for Cartas Españoles, and in 1834 bccame auditor-general
of the Legitimatist army of the north. Two ycars later he was made mayor (Jefe-político) of Logrōno, but before entering on his new duties an accident obliged him to retire to scripts of the national literature of Spain. In 1838 he was made jefe-politico of Seville an thereafter served several terms as depity. In 1856 he was elected to the Council of State. In 1847 appeared his, greatest original work life most of which has now gone. His manuscript collections are now the property of the Spanish government. Consult Canovas del Cas ${ }^{\text {tillo, }}$ (El solitario y su tiempo) (2 vols.

ESTELLA, Spain, town in the province o Navarre, 20 miles southwest of Pamplona. I is a well-built city with fine streets and many
interesting churches, some of which are many centuries old. Its trade and manufactures are also considerable and it is a place of military importance. The town was taken by the Car lists in 1835, and in 1839 was executed here the Carlist leader, Maroto, with five other generals of that party. Again in the seventics it was the scene of spirited conficts and the stronghold
of Don Carlos. When the latter lost the town in 1876 his cause suffered a complete collapse Pop. 5,638.

ESTEPA, Spain, town in the province o Seville, 60 miles east of the city of that name and situated in a hilly region. It contains famous old Moorish castle and has fine broad strects. Agriculture and stockraising are it
princinal interests but it has also manufactures of oil soap. Jasper quarries in the neighbor hood give employment to a large number o persons. Estepa is the ancient Astapa, which came into prominence during the Second Punic chose to dic hey fire rather than surrender to the Roman besiegers. Later it was a flourishing Roman colony. Ferdinand III took it from the Moors in 1240. Pop. 8,234.

ESTEPONA, Spain, seaport in the province of Malaga, on the Mediterranean coast, 2 milcs northcast of Gibraltar. It is situated in a fertile region which produces fruits, grain
vegetables and wine. Its coast trade is hampered by the lack of adequate harbor facilitie but its fishing interests are consideralle and it has distilleries, leather-curing estallishments, rope and cork works and brick and tile yards

ESTERHAZY. Sce Eszterilizy,

ESTERIFICATION. Sce Esters.
ESTERS (an arbitrary modification o ether). Compound ethers, or ethereal salts are basic radicals are united to one ar coho ar id radicals. They are analogous to the salts of the metals. Thus $\mathrm{CH}_{3} \mathrm{COO} . \mathrm{H}$ is aceti acid and if the typical hydrogen of this acid is replaced by the monad radical ethyl, the resulting compound, $\mathrm{CH}_{3} \mathrm{COO} . \mathrm{C}_{2} \mathrm{H}_{5}$, is known as ethylacetic ester. Chemically, this sub
stance is analogous to potassium acetate stance is analogous to potassium acetate of the acctic acid by potassium. The word
ster was originally applied by Gmelin to compounds of the alcoholic radicals with oxygenated acids; but it has now been extended so as to include all the salts of the alcoholic radicals. Ethyl bromide, $\mathrm{C}_{3} \mathrm{H}_{8} . \mathrm{Br}$, for example, 15 now included among the esters. Some of the acid upon the alcohol. In other cases a mixture of the acid and the alcohol is distilled with the addition of sulphuric acid, zinc, chloride or other dehydrating agent. The esters may also ee prepared by treating the iodide of the alcohol adical with the silver salt of the acid, the ilver, while the liberated alcoholic and acid radicals combine to produce the desired ester The esters of the organic acids occur in fruits and flowers and arc also prepared artificially for lavoring purposes and for improving the contain glycerine in combination with which margaric and other acids may be regarded as esters, since glycerine is a triatomic alcohol. Much attention has been paid to the esters in connection with theoretical chemistry, since hey are well adapted for the study of the laws Ether.
ESTES, Dana, American publisher: b Gorham, Me., 1840; d. 1909. He received his ducation in the public schools, for many years was engaged in mercantile affairs and served in he Union army in the Civil War. He became and Company, and afterward that of Lee and Shepard. In 1872 he became a partner in the rm of Estes and Lauriat, which in 1898 be came known as Dana Estes and Company. He was also a traveler of note, being the firs American to explore the region of the Nile as ar as uganda and the Kongo. He also helped ion, of which he became the first secretary He wrote 'Chimes for Childhood' (1868) 'Spectrum Analysis Examined' (1872); and was the editor of (Half-Hour R
ESTEVAN, Canada, town in Assiniboia District, on the Canadian Pacific Railway and on the Souris River, 145 miles southeast o Moosejaw. Flour mills, lumber and brick yards has also a government coal-testing plant an號 is a large trade in coal and hrick. Th electric-ligh
Pop. 4,000 .

ESTHER, or HADASSAH (Heb. myrtle; Babylonian, Ishtar), the name of a Jewish maiden, chosen by Xerxes to be his quecn. She maiden, chosen by xerxes to be heroines of Hebrew history and maintained the rights of her nation at the court of the king of Persia. Esther gave her name to the 'Book of Esther,' one of the books of the latter, Esther belonged to the tribe of Benjamin. Much controversy has been expended over the character of Esther whom the more radical Biblical critics have been inclined to look upon as a purely mythical personage evolved from the Ishtar, a name which, in later Babylonian, becomes Estrà. The Jewish account of the life of Esther states that she was the daughter of

Abihail who died while she was quite young leaving her to the care of her cousin Mordeca had grown to capital of Persia. When Xerxe (Ahasuerus) divorced his queen, Vashti, and made Esther queen in her place. But according to Herodotus Xerxes had only one quech Amestris, whose character and history in 11 it has been poithose of Esther. Morco the Persian sovereigns were by critics that by a certain court etiquette, and by Persian custom, to selec their legal wives from the Persian roy family or from the daughters of foreign roy familics in order to maintain the purity of wa looked upon Persian sovereign. $i n i$ an when the royal family was believed to be the direct blood descendants of the gods. Vash is said to have been divorced because she rc fused to unveil herself publicly at a banque nection been suggested that there is some that Ishtar (Estrā) was called the naked god dess, and was looked upon as the great motht deity and the "queen of heaven." As the Pe heaven, his queen was also styled the queen o heaven and thus probably represented the deit of the same title. Hence the more advance Biblical scholars have concluded that Esthe was never the queen of Xerxes; and that she
could have been nothing more than the chie favorite of his harem, if she ever had any real existence.
Notwithstanding this attitude of modern critics, the Jews never had any doubt as to th truth of the Biblical account of the life an doings of Esther, who is credited with doliver
ing the Jewish pcople from the exactions and cruclty of Xerxes' vizier and effecting the fina overthrow of the latter. This belief is strong to-day as in the past, and the delive ance effected by Esther is still celebrated the Feast of Purim. Consult the Biblical THER, Воok or
Bibliography.- Cheyne, (Founders of Oid Bibliography.-Cheyne, 'Founders of
Testament Criticism' (London 1893); Debaeza, 'Historia Esther') (de Lagarde, 'Purim (Göttingen 1887) ; Gunkel, 'Schöpfung un Chaos' (Göttingen 1895); Hughes, 'Esther an Buch Esther) : Nowack (Archalogic). Sayc ' (Ntroduction to Esther) (London 1885) , 10 ', 'New World'
and Ahasuerus' (Vol. 5, 1887); Tyyw
(London 1868).

ESTHER, Indian chieftainess. See Mo

 tourESTHER. (1) Drama on the life of Esther the personage of the Old Testament, written ! Racine at the instance of Madame de May tenon. The pupils of Saint-Cyr performed th
drama before King Louis XIV in 1689 . An oratorio by Handel based on in 1689. An oratorio by Handel based on the drama
Racine, first performed in 1720 . The wor were by Humphreys.

ESTHER, Apocryphal Books of. See

ESTRYPIIA

ESTHER, Book of. The book of Esthe was written for the primary purpose of givin an account of the supposed circumstances
the origin of the feast of Purim. This was put in the reign of the Persian king Ahasuerus, ${ }^{1 s}$ certainly to be identified with Xerxes, who reigned from 487 to 466 B.C.

The first question is concerning the historical character of the book. The author had a gensome of the statements made are confirmed from other sources. But some of the details of the book are certainly inaccurate, and many severs probably so. Xerxes' queen from the Seventh to the twelfth year of his reign was not a Persian. no captive of Nebuchadrezzar's was chicf minister of Xerxes; and the chronology is incorrect. The book, therefore, is not accurate history; it is probable that there is no
historical element in the book. This appears esperial element in the book. This appears Purim. This is stated in ix, 26 see fiii 7 to have been derived from the presumably Pcrsian word Pur, meaning lot. No such Persian word tionnown. The feast of Purim is first menin 2 , under the name of the day of Mordecai, ien in the likely that the feast was established as early as the time of Xerxes, and hence makes improbable any historical basis for the book. The book, therefore, is of the nature of a origin of the feast ${ }^{\text {origin }}$ of the feast
therefore, to have been unknown to the seem, and his time. This gives a presumption that it was of foreign origin. The indications are that the origin was in Babylonia. The name the name of the head of the Babylonian pantheon, and Esther is Ishtar, the principal Babylonian goddess. Haman, further, is HumMan or Humban, the chicf Elamite god, and a ashti is probably to be identified with Mashti, a vaguely known Elamite deity. Originally, slying an account of a conflict between the principal deities of Babylonia and Elam. It is mot possible, however, to find any probable idenBabation of the feast of Purim with any known the feast has here been put into a Jewish form It is, of course quite possible a the myorm. nature of the story had been obscured before it reached the writer.
book. The indications point to a late writing of the obok. The author was living in the time of the probably late, as has been indicated. Which was ion of Esther and Mordecai from the long list of Hebrew worthies in Eccl. xliv-xlix, written ha 180 b.c., strongly suggests that the book ges not then been written. It has been sugGented that the attitude of hostility to the due to the experiences of persecution by AntioChuts Epiphanes. But the absence of any specific Teferences to the Maccabean period makes it probable that the date was before 168 B.C. The ante noage of the book is late, although there fied as Greck. The author speaks of the reign ${ }^{\circ} \mathrm{f}$ Xerxes in a way which indicates that it was long past. It is proballe that the book was
Written after 180 B.C. and before 168 .

The absence of the name of God from the hook has been the occasion of much perplexity The explanation has been suggested that it was be read at the celcbration of the feast of Purim this being a festival of such mirth, due principally to drinking, that there would be danger ecurred profanation of the name of God if occurred in the reading. The principal relidence of God over biok is that of the provi ceived, however, in a spirit of national bigotry. The interest of the writer is not primarily religious but national
hara moral tone of the book is not high. No character portrayed in the book is an admirable one. Esther and Mordecai have the desire for revenge, as well as other qualities rather spirit is below the level of most of the old Testament.
Bibliography.-Adeney,
W. F. Find
(Ezra, Nehemiah and Esther) ('Expositor's Bible),
New York 1893); Davics, T. W., 'Ezra, Nehemiah and Esther' ('Century Bible,' Edinburgh no (date); Paton, L. B., 'The Book o New York 1908) ; Streane, A. W., 'Esther ('Cambridge Bible,' Cambridge 1907).

George R. Berry,
Professor of Old Testament Inlerpretation and
emitic Languages, Colgate University.
ESTHERIA, bivalve crustacean of the rder of Brachiopods, found as a fossil in fresh the Plestocene periods. There are about 24 iving -species and about the same number o fossil species. In the former the shell is from one-cighth to one inch in length and is rounded and flat with beaks near the hinge. The sur serve to distinguish it from the small pelecypods. Consult Jones, (Λ Monograph of the Fossil Estherix) (in 'Monographs of the Palæontoogical Society,' London 1862).
ESTHERVILLE, Iowa, city and countycat of Emmet County, 140 miles northwest o Des Moincs, on the Des Moines River, and on cago, Rock Island and Pacific railroads. It has extensive agricultural and stock raising interests and contains flour mills, grain clevators, failroad repair shops, machine shops, tub fac ories and cement works. It has also a Carnegie aterworts and electric-lighting and owns th (1920) 4,699 .

ESTHONIA, es-thóni-a, a maritime re public, bordering on the Gulf of Finland and the Baltic. On the east is the Russian government of Petrograd; on the south Lake Peipus and the republic of Latvia. Most
of the territory included in Esthonia is low and swampy or cut up by streams and lakes and cold, raw winters and hot summers are the rule. Live stock raising and agriculture are the chief occupations of the inhabitants, who are idustrious, enterprising and given to the use of modern methods of farming and stock raisng. Among che gry iron and steel, liquor and cotton. Considerable trade is also carrie on with neighboring countries and with the
interior of Russia. It includes several islands of which the most important are Dagoe and
Oesel ; area, about 23,160 square miles. Th peasantry are almost all of Finnish origin and speak a Finnish dialect. In the 10th and 12th centuries it belonged to Denmark; it was afterward annexed by Sweden and in 1710 was seized dependent reputblic. The chief seaport, Reval which is connected by rail with Petrograd, has extensive shipping. (See Reval). Pop. 1,750,
000 . Consult Vincent, (Norsk, Lapp, and exte.
Finn.'

ESTHS. See Esthonia
ESTIENNE, ā-tê-ền, or ETIENNE (Lat. cholar: b Datis 1528. d, French painter and He was a son of Robert Estienne (q.v.) and continued his work. Besides compiling the noted 'Thesaurus lingux Grxcx) (1572), he wrote Apologie pour Herodote' (1500); 'Traite de
la conformite du Francais evec le Grec), etc.

ESTIENNE, or ETIENNE (Lat. StephaNUS), Robert, rō-bãr, French printer and In 1526 he established a printing house in Paris and in 1539 was appointed royal printer to
Francis I. He removed to Geneva about 1552. He puilished many editions of the Greck and Latin classics and compiled numerous, other orks. His son Henri took up his father's work on the death of the latter and was a
of note. He died in Lyons in 1598 .

ESTIVATION, the dormancy or "summersleep," induced in some of the lower plants and animals by heat and drought, and the means by conditions, as they do others in winter by hibernation. The two states are comparable, though induced hy opposite condlitions. In summer the exposed is the deprivation of water. Some of the lowest are able to endure this to an extreme degree. Certain bacteria and other low plants and various animalcules will survive prolonged baking and may blow about in the dust of cried-up ponds for a long period, ready to revive is a commoned. Among land-snails estivation is a common phenomenon, the snails protecting themselves from excessive loss of moisture, not
only by burrowing into the ground, but by throwing one or several epiphragms of hardencd, sometimes chalky, mucus across the aperture of the shell, thus shutting themselves into an air-tight case, where they, remain inactive ner certain fishes and amphibians bury themselves in the muddy bottom of ponds or riverpools evaporated by drought, where they preserve sufficient dampness ahout them to keep alive. Turties, on the other hand, are often compelled to leave their pools in the tropics,
because the water becomes so hot and full of hecause the water becomes so hot and full of
fermentation and seek cool spots under rocks, and the like, where they sleep torpidly until autumn. Even a few mammals of extremely hot regions, such as the deserts of Australia, go into a summer-slect during the height of the hot season, substantially as their congeners
hibernate in the midwinter of northern climates. See Hibernation.

ESTLANDER, Carl Gustav, Finnish ESTLANDER, Carl Gustav, Finnis pointed professor of æsthetics in the University Finland His many works were of great importance 10 the artistic literature of his country; they in clude 'The History of the Plastic Ars our own Time' (1867) ; 'The Development Past and Future of the Art and Industry of Finland (1871) ; (Richard Coeur de Lion in History' and Poetry' (1858) ; 'The Robin Hood Ballads' (1889); and researches into the
mance, published in French (1866)

ESTOC, a small dagger, known in the 10th entury as a "tuckle" and usually worn at the girdle.
ESTOILE, or STAR, a bearing in heraldry differing from the mullet in that it has six wav rays instcad of the five plain waves of the latte See Heraljiry
ESTON, England, town in the North Riding of Yorkshire, four miles east of Middlebor Pop. 12,026.
ESTOPPEL, the preclusion of a person from asserting a fact by previous conduct, inconsistent therewith, on his own part or the par of those under whom he claims, or by an ad judication upon his rights which he cannot which prevents a man from alleging or dicnying which prevents a man from alleging or in consequence of his own previous ac allegation or denial of a contrary tenor; a plea hich neither admits nor denies the facts allegc by the plaintiff, but denies his right to alleg them. According to Blackstone, it is a specta plea in bar, which happens where a man ha
done some act or executed some decd which precludes him from averring anything to the contrary. Where a fact has been asserted of almitted for the purpose of influencing the conduct or deriving a benefit from another, so faith, the law enforces the rule of good moral as a rule of policy and precludes the party from repudiating his representations or denying his admissions. (Rawle, Cor. 407.)

This doctrine of law gives rise to a kind of pleading that is neither by way of traverse no which, waiving any question of fact, relic merely upon the estoppel, and, after stating the previous act, allegation or denial of the oppo site party, prays judgment if he shall be re ceived or admitted to aver contrary to what pleading by way of estoppel. Until a recen period questions regarding estoppel arose almos entirely in relation to transfers of real estat and the rulles in regard to one kind of estopp were quite fully elaborated. The principle now applied to all cases where one by words the existence of a certain state of things, and induces him to act on that belief or to chang his own previous situation.
Estoppels operate not only on present in terests, hut on rights subsequently acquired They operate, however, only between pare ${ }^{5}$ toppel must be one who was adversely affected
by the act which constitutes the estoppel. An estoppel may be by record, and by record in of a judicial character. An admission made in a pleading in a judicial procceding cannot be contradicted by the person making it. So, ordinarily, the judgment of a court of competent mines iction cannot be impeached. If it determines the status of a person or thing, it is comestic or a foreign court. Judgments of this character are judgments in rem. If the judgment is in personam, it is conclusive if rendered ins a domestic tribunal, and is conclusive in some instances if rendered by a forcign tribunal. (Bigelow on Esords absolute verity. An on Estop. 33. the provisions of a deed. It is a general rule that a party to a deed is estopped to deny anythe other stated therein which has operated upon the other party, as the induccment to accept and covenant of warranty, which a deed made with a subsequently acquired title. The deed must er good and valid in its form and execution to create an estoppel, and must convey no title of a covenant
covenant. in pais or must be reciprocal. An estoppel party to an action has by his act or declaration nduced the other party to do some act or acts Which otherwise would not have been done, or have done, and by means of which he would mlured The principle underlying such estop pels is, that it would be a fraud in a party to dssert what his previous conduct and admission ave denied, when, on the faith of that denial, Thust, however, as a rule be some intended de ception in the conduct or declarations of the party to be estopped, or such gross negligenc on his part as to amount to constructive fraud which another has been misled to his injury
ESTOTILAND, a mythical land, placed by Newf geograpliers where are now portions of British America bordering on that part Was said to have been discovered by two Fries and fishermen driven out of their course by a Sorm, two centuries before the time of Columfor Estotiland but discovered instead New Estotil
ESTOURNELLES DE CONSTANT Paul Henri Benjamin, B^RoN D', French educated at the Louis-le-Grand Lyceum, Paris, and at the School of Oriental Language lined the diplomatic scrvice, in which he bound as secretary to the commission for the boundaries of Montenegro, afterward becomserved also at The Flague and in Tunis and -ondon. In 1895-1904 he was deputy from arthe and in the latter year was elected senof . He become conspicuous for his advocacy The international peace, was elected member to court Hague conferences and of the international ing between ffrorts to bring about a better feel-
ing and in 1909 he was awarded the Nobel priz or peace. He has published frequently in reviews in England, France and America, has fritten on modern Greece and made transla reports of The Hague confcrences and prepared papers for the Parliamentary Union, etc. Other works are Lcs congregations religeuses chez les Arabes' (1887); 'La politique française en Tunisic' (1891); and 'Les Etats-Unis sions during his visits to America in 10021907 1911 and 1912.
ESTOVERS, in law, (1) wood which a tenIt may legally use, as for repairs or fircwood. It is a principle of both English and American
law. It includes to-day, in the absence of exlaw. It includes to-day, in the absence of express covenants to the contrary, any wood which a lenant for lifc, for years, from ycar to year,
or at will may use from the estate to repair the house, fences, implements, etc., thercon, in adelition to that which he uses for fuel. (2) For merly, alimony allowed a divorced wife; also a widow's allowance.

ESTRADA, Spain, town in the province of Contevedra, 15 miles southeast of Santiago de agricultural and stock raising interests and contains lumber yards and manufactories of linens and woolens. Mineral springs are in the neigh-
rhood. Pop. (commune) 27,898.
ESTRADA CABRERA, Manuel, Guate malan statesman: b. Quczaltenango, 1857. A and philosophy and practised his profecsion He was appointed district judre and finally tained the sunreme bench. About 1885 he hegan to take an active interest in politics and was elected to the National Asscmbly; he was appointed Sccretary of State in 1892 and six years later, on the assassination of Presiden few months he was elected to a full presidential term and secured re-election for a second term in 1905. His administration was very progressive; he did much to place the finances on a sound basis, promoted agricultural and indusin general the well-being of his country. Scycral attempts were made on his life by the bitter enemies he had made. For the third time he was elected to the presidential chair in 1911.
ESTRADES, Godefroi, COMTE D', French soldict: h. Agen, 160; d. 1680 . He served as a page at the court of Louis XIII and in 1646 was sent to Holland on a special mission. He 1047 was made field marshal. He was sent as Ambassador Extraordinary to England in 1661 to negotiate the cession of Dunkirk to France; he also served as ambassador to Holland and distinguished himsclf at Wesel and Liege. In 1678 he represented France at the Peace of
Nymwegen. His 'Lettres, Memoires et ncgo tiations) (9 vols. Paris 1758 and a tenth vo ume, London 1763) were published after death Consult Lauzun, Philippe, 'Le Mareschal d'Estrades' (Agen 1896)

ESTRAY, in law, any animal not fere nature and the subject of property which is found at large without ostensible owner in any
found on private land such animal in most jurisdictions may be impounded at the cost of the owner. In England an estray becomes subject therein which becomes absolute in case the animal is not reclaimed by the owner after due proclamation by the lord of the manor. In some States the finder of an estray may after due advertisement sell same at public or privatc sale and the purchaser will acquire a good title
therein. The procecds of the sale after the finder's expenses have been deducted are as a general rule paid into the town treasury. Constllt Burn, 'Justice of the Peace and Parish
Officer' (30th ed., London 1869).
don 186)
ESTREAT, in law, a copy or extract of an original record, particularly of fines: common in the phrase eslreat of a recognizance, or the removing of such recognizance from among the chequer to be enforced. In England, if a recognizance is forfeited by violation of a condition, it is estrated, whereupon the partics become indebted to the Cr
ESTREES, Gabrielle d', French court favorite and mistress of Henry IV: b. abou 1573 ; d. 1599. She was the daughter of the de France. In 1590 she met Henry IV at her ather's castle and he fell a slave to her charms. Her father, having learned of the king's infatuation and fearing a scandal, forced Gabrielle nto a marriage with M. d'Amerval de Liancourt but the king annulled the marriage and chioness de Monceaux and Duchess of Beaufort. She had several children by Henry and was the recipient of the greatest favors at his hand. To make her queen he even had in mind to divorce Margaret of Valois and was only hindered from so doing by the sudden 'Gabrielle d'Estrees' (Paris 1889)
ESTRELLA DE SEVILLA, a comedy of Lope de Vega, which by many critics is con-

ESTREMADURA, ěsh-tra-ma-doora, Porugal, maritime province divided by the Tagus nto two nearly equal parts, of which the north is the more mountainous. Wines and olives are he principal products. The chief city is Lis-
ESTREMADURA, ā-ştrā-mä-doo'rä, a division of southwestern Spain, consisting of two part has large forests, and in the central and southern parts are some good agricultural lands Deposits of coal, copper and silver are found in the mountains; but the mines are not wcll developed. Area, 16,162 square miles. Pop. 0,990.
ESTREMOZ, Portugal, town in Alemtej province, 30 miles northeast of Avora. It is
1,500 feet above sea-level and contains the ruins 1,500 feet above sea-level and contains the ruins
of two ancient forts. The porous clay of the district is much used in the manufacture of the earthenware which has made Estremoz famons hroughout the peninsula. Wool is exported in arge quantitics from here and marble of varie color is quarried nearby. Pop, 7,857

ESTREPEMENT, the waste of lands com mitted by a tenant, in which sense the wor has been supplanted by the term "waste."
survives, however, as the name of an ancient writ of common law to restrain the commission. of waste. In most modern jurisdictions the writ has become obsolete through the developmen of the functions of the courts of equity, but still exists in Pennsylvania, where there are no courts of

ESTRUP, Jacob Bronnum, Danish states manl: Soro, $1825 ; \mathrm{d}$. 1913. He was clected the Landsthing in 1864 and in due time bcave in the preparation of the new constitution of 186 He served as Minister of the Interior in
$1865-69$ and did much to improve the railway $1865-69$ and did much to improve the railwa service of the country. He was chosen pres dent of the council in 1875 and at the same After 1877 he acted very arbitrarily in issuing provisional acts and for several years, fron 1885 to 1894, financed the government througi provisional budgets. All this involved him difficulties with the Folkething and his resigof power from the upper house to the lower He soon lost his influence and his opposition to the sale of the Danish West Indies in 1902 and later to electoral and tax reforms were littic heeded.
ESTSANATLEHI, the ever-self-renewin goddess of the Navajos, wife of the sun an mother of the two war gods. See Namoun
ESTUARINE DEPOSITS, sediments laid down in estuaries along a coast. They ar frequently formed on great mud frats or flats that are above the ocean water part of result they often partake both of the natur of marine sediments (q.v.) and of terrestria sediments (q.v.).

ESTUARY. Where a shore-line is sinking or has been recently depressed, the rivers, unless large and heavily charged, with scdiment have their valleys drained by the encroaching sca, forming roughly funnel-shaped bays. Sucr bays are called estuarics and are common alon Inlustrations arc seen in Passamaquoddy and Narragansett bays, the mouth of the Hudso River, Delaware and Chesapeake bays. Owin to their shape, estuaries frequently have stron tidal currents, due to the height of the tides, an the rising tide rushes in as waves. the mos remarkatie examples of such surf-like
waves, or hores, being found in the Bay o Fundy. The rivers entering estuaries drop much of their fine sediment there because of the checking of their currents and the precipitatint cffect of salt water. The strong tidal current sweep away and rearrange these sedimen Hence conditions on the the growth of organ isms, and the estuary deposits of past ages ar seldom rich in fossils, but may contain remain of land organisms brought down by the river; and the tidal mud-flats have preserved th prints of raindrops, the traces of worms an
the tracks of birds and reptiles. See Rivers.

ESZEK, es'sěk, or ESSEG, Jugoslavia, canitaportant city in Croatia and Slavonia, Capital of the county of Virovitica, on the Warde about 63 miles west-northwest of Peter tiaily fortificd, and three suburbs, and is the seat of an appeal court for three centuries public buildings of note are the Capuchin and Counciscan monasteries, the town hall, count court building, and commandant's residence, It has otass, etc There is a considerable trade grain and meat and other products of the dis trict. The four annual fairs, chiefly for coltle and hides, are important. As a Roma the name founded by the Emperor Adrian, unde Lower Pannonia, and in 335 was made a bishop see by Constantine. In 1848 the Hungarian under Batthyanyi, held out for some time Rop city before submitting to the Austrians

ESZTERGOM Hungary royal free town dapital of the county of Esztergom, 25 mile culthwest of Budapest, on the Danube. Agr culture is the principal industry of the inhabi manufactures of bricke trade in wine. It ha medicinal springs have made it a health resort. The town is the seat of the Prince Primate of like Saint Peter's tructuint Peter's, Rome, and is an imposing Aructure in the Italian Renaissance style the primate's palaces, the ecclesiastical seminary the museum, gymnasium and town hall are well liserving of notice. In the cathedral is rary of 113,000 volumes and many mant? cripts, some of which are invaluable. Th was borne Saint oldest in Hungary; her Hungary, who established a bishop's kee of soon after his conversion in the year 1000 . It has long of importance as a commercial centre its declestruction by the Tatars in 1241 caused its decline and it never regained its forme session of the Turks. Pop. 17,881 .
ESZTERHAZY, âs-tār-ä̀-zề, or ěs'těr-hà-zǐ, Altistri 16 Des Ferdinand Walsin, forger: b of Papal Zouaves during the latter a regiment Fench Empire: was promoted commander, 1802. In equivalent to major in other armies, in from the army. He became notorious through hom the army. He became notorious through
Dis connection with the trial of Capt. Alfred Dreyfus ($\mathrm{q} . \mathrm{v}$.), whom he accused as heing the Writer of (the famous "(bordercaul," alleged to ave heen sent to certain German military officers 1894 Drearench military secrets. In December Convicted as the author of by court-martial and 5 Jivicted as the author of the document, and on
latan. 1895 was putblicly degraded and a little 1806, sent as a prisoner to Devil's Island. In rence burcan of the war office, made certain ascoveries which pointed to Maior Eszterhazy covere author of the bordereatr." These dis tive was led to further investigation and Drey
new trial in 1899, but was again convicted, al though much of the evidence gathered, pointed to Eszterhazy as the forger of Dreyfus's handWriting and as the real traitor. So strong did
this opinion become that Eszterhazy was compelled to leave France. He is said to have died pelled to leave France. He is said to
at Harpenden, England, 21 May 1923.

ESZTERHAZY VON GALANTHA, a family of Hungarian magnates, afterward princes of the German Empire whose authentic genealogy goes back to the first half of the 13th century. It traces its origin to Salamon von Estorded respectively the fam, Peter and Illyés, Illyeshazy about 1240 . The laster Zenazy and extinct in the male line with the death of
exter Count Stephen Illyeshazy in 1838. Peter's descendants took from their domain the name of Zerhazy, till Francis Zerhazy (b. 1563; d. and the first of the family to take a definite place in history, changed his name to Eszterhazy in 1584, on the occasion of his being named Lord (Freiherr) of Galantha, an estate acquired by the family in 1421.

Francis left three sons, of whom Daniel (d. 1654), founded the house of Czesznek; and Miklos, who founded the Farchtenstein branch, which occupies a prominent place in the Miklos Hungary.
Miklós (b. 88 April 1582; d. 1645), was in early life a Protestant but subsequently went
over to the Catholic party. He was made count over to the Catholic party. He was made count
of Beregh by Matthias II and in 1625 was made Palatine of Hungary. He was a staunch supporter of the Habsburg dynasty as a means of banishing the Turks from Hungary.

Heral and literary savant (b. 1635; d. 1713), a branch of the family. He fought against the Turks, and in 1683 took part in the liberation of Vienna from the Turkish yoke. He wrote several religious works. His grandson, Nicholas Joseph (b. 1714; d. 1790), was a great patron which Haydn and Pleyel, among others, were formed, and a brilliant soldier. Joseph II conferred the princely title on all his descendants, male and female. His grandson, Prince Nicholas Eszterhazy (b. 1765; d. 1833) was distinguished as a field marshal, but left the army to by his sovereign as extraordinary ambassador on several occasions. He gathered a prieless collection of paintings and engravings and erected several palaces. He refused the overtures of Napoleon for the crown of Hungary,
maintaining the traditional loyalty of his family to the Habsburgs. His son, Prince Paul AnTONY (b. 1786; d. 1866), was a distinguished and able diplomatist, serving his sovereign successively at Dresden, Rome and London. In DTA
ETA, or AETA. Se Negritos.
ETAMPES (ancient Stampas), France, a at the confluence of the Etampes and Jine 32 miles southwest of Paris. It has four Gothic churches, one of them a remarkable structure of the 13th century; tanneries and bleacheries, and a considerable trade in corn, flour and prepared

ETANG, ā-tānı, a French geographical term applicd to the remarkable salt lagoons and marshes on the south and west coasts of France. The stagnant seawater is generally utilized. as de-Rhone, for the manufacture of salt. The principal lagoons of this character in France are the Etangs de Berre, de Sigean, de la Palme, and de Leucate on the south, and de Heurtin, de Caza WA
ETAWAH, ĕ tä'wā, India, town in the capital of the district of Etawah, situated on the left bank of the Jumna River. It was once the residence of many of the Mogul grandees, and it is now an important trade centre. Pop. 45,350.

ETCHEMIN. See Malecite
ETCHING: ITS TECHNIQUE AND GREAT MASTERS. An etching is the proof prepared plate of copper or zinc on which the lines and forms of a subject had been scrateled by him and then bitton-in by the action of an acid. It is evident that to produce satisfactory must have an active imagination and a kein knowledge of the technique of etching and print ing. He must, moreover, be acquainted with the works of the masters of the art. In this article, therefore, the various processes used in producing an etching will first be described ene waster-etchers wil
I. Techinique of Etching

Materials Employed in Etching.-The following articles which can be procured a any artists' supplies store are now generall Copper plates

Etching-ground Stopping-out varnish Nitrin
\section*{Nitric acid Turpenitic TWax tapers

Wax tapers Charcoal Crocus powd

Crosus powder Tracing paper Emery paper

Whery pape}

Buming ner
Sraper
Ster
Scraper
Rabber
Hand-vise
Porcelain trays
Acid hydromete
Plate-warmer
The Processes of Etching.- The scvera steps taken in the production of an etching em race: grounding and smoking the plate; mark ing the outline; biting-in by means of an acid and printing.
Plate.- After thoroughly cleaning the plate first with turpentine and a soft clean rag, and then with a little whitening - a handvise is firmly screwed on to the middlle of one of its long edges. To prevent the jaws of the visc
from scratching the surface of the plate, a piece of thin cardboard is inscrted between them and the plate.
The plate is then uniformly heated throughout over the flame of a small gas jet or spirit amp and is covered with what is known as form of a ball, wrapped in a piecc of silk, and composed of mastic gum 30 parts; white wax 30 parts; and asphaltum 15 parts.
As it is desirable that the ground be spreat over the plate in an even and thin film, it is ists of a circular pad of horse-hair with card
board backing, enveloped in two wrappers, an inner one of cotton-wool, and an outer one silk fabric, the latter stretched tight,

The next step is to smoke the ground The plate is again evenly heated and then held over a flame of three or four wax tapers twisted together. Care must be taken to have only the tip of the flame touch the ground, while the plate is kept constantly in motion, until the
whole ground is blackened. The etcher must also see to it that the flame is not playing too long on the same spot of the ground or it will be burnt. When an area of the ground, no matter how small, does get scorchect, the whole ground becomes useless. After the process of
smoking is completed, the back of the plate is smoking is completed, the back of the plate
covered with some stopping-out varnish, to procovered with some stopping-out varnish, to
tect it against the action of the acid during the subsequent process of ctching. When the plate has been prepared in the manner described, it is ready to reccive the outline.
Ground.-A carcful drawing of the subject, the size of the plate, is first made on ordinary paper, from which a tracing is made on tracill paper. After rubbing some lead on the lack of this tracing, it is fastened, face upward, to the smoked ground of the plate; and with a hard pencil the outline is gone over, pressing
lightly. Upon removing the paper from the plate, the lines will be found transferred to its surface. On this pencil impression as a guide, the etcher next freely redraws the subject with an etching ncedle, putting into it all the art at
his command as rcgards beauty of line, form and composition gencrally
The needles used to ctch with are generally made for the purpose, and may be held in 3 handle specially contrived. A needle with a tine oval-shaped point is uscd for putting in
delicate lines, ment of skics or distances; and one with a blunt point for the deeper lines. The point is used with sufficient pressure to remove the ground expose and faintly scratch the bare copper alone its track. This faint ontline, made by the th neeme, is imsing the plate in a porcelain tray containing an acid solution, called a mordant.

The Mordants Used in Etching.- The two mordants now generally used are the nitric and the hydrochloric acid baths. The nitric mord dant is composed of nitric acid equally
with water. The hydrochloric bath, known the Dutch mordant, is composed of chlorate of potash, 2 parts; hydrochloric acid, 10 parts; a is pure water, 88 parts. The nitric mordant more liable to vary in its action than the hydio chloric; but it has the grcat advantage of berins
decidedly more rapid, thus affording the artist the opportunity of watching the process of tining and checking it when necessary. For this reason, it is preferred by many etchers
The action of either mordant may be te tarded or accelerated hy the varying condlition it at a uniform temperature (about 60° Falisen heit) throughout the biting. This is best regulated by performing the ctching on a pin.
warner-an iron box with gas-jets bencat
Method of Biting-in the Sketch.- Therc are two methods now used in etching the plate. The

ETCHING

plate is immersed in the acid bath for about five minutes, if in the nitric mordant and three suffice for the lightest tints to be bitten-in. After withdrawing the plate from the bath, it is Washed, and dried between blotters, and the ight lines are painted over with stopping-ou varnish-a combination of resin dissolved in hirpentine to which a little lamp-black had bee
\qquad
When dry, the plate is returncd to the bath and kept there for about 10 minutes. As after the first biting, the plate is again taken out, washed, dried and the next deeper tones stopped-out. The process is repeated four or ve times until the darkest tints have been pro is sufficient to bite-in the deepest lines.
A more satisfactory way of etching the plate consists in taking several different proofs during the process of biting. This method is as grouns: The etcher makes his drawing on with the needle, putting in grounded plate with the ncedle, putting in only and leaving the light lines for subsequent treatment. The plate is immersed in the mordant for about 15 minutes - just long enough to bitein the middle tint. After removing the ground with turpentine and thoroughly cleaning it, darker are rebitten in the same lines. This of course necessitates the regrounding of the plate without filling up the lines already bitten-in. To accomplish this, a very thin film of ground is spread upon another heated plate, and the roller, thinly charged with it, is lightly passed
over the etched plate, also warmed for the purpose. When the plate has been rebitten, another proof is taken, and if the middle tint then proves to be satisfactory, successive bitings are made. and proofs taken to obtain the dark tones. The middle and dark tones settled, the etcher next completcly covers the plate with transparent fill up the lines and protect the spaces between them, and draws in the delicate lines intended to represent the pale tints. These are bitten-in and the final proofs taken
Correcting Processes.- Light lines that have been over-bitten may be reduced by rubbing
with a piece of charcoal moistened with olive oil. Decp erasures are made with the scraper -a kind of a knife, triangular in section, and coming to a point. The polished surface in an erased area is regained by the use of the burmisher - a polished tool, made of steel and to slightly reduce an over-bitten passage by rubbing it on the plate, pressing, thereby, the copper more together into the lines
Auxiliary Processes.- Etched plates are frequently finished and enriched with what are known as dry-point and soft ground etching.
Dry-point is the name given to a form of engraving in which the lines are cut directly into the dry plate by means of the ncedle, and without the use of a mordant. It is remarkable for yielding rich and velvety proofs, which is due to the burr or rough edge of the copper, proproduced by the point as it cuts the plate. Dry-
point is employed to deepen forcground tones, and with the burr removed by means of the scraper) it is also useful for putting in the delicate narkings in a composition. Prints are
often made of plates produced entirely by dry point. In soft ground etching, the plate is low, to prevent it from hardening, and a piece of slightly rough paper is laid over it on which the artist makes his drawing with a lead pencil When the paper is removed it brings off with it etching-ground, exposing the copper in such a manner that when bitten-in and printed, the quality of a pencil drawing.
Muathod of Printing. - The apparatus and articles necessary for printing include:
A printing press
A plate-warmer
and
Printing ink
Printer's canvas
Soft old muslin
$\begin{array}{ll}\text { Arinting } & \text { Whitening } \\ \text { A printetr' dabber } & \text { Paper }\end{array}$
Proofs are made from the etched plate in ing following manner: After thoroughly clean little olive oil, the printer, by means of the dabber, covers the whole plate with thick oily ink, usually of a brownish tint, taking care to fill up the lines. With coarse canvas he then wipes out the superfluous ink from the surface In that portion of the sketch where a sombr thin film of the ink to remain on the surface of the plate; in another part which should be light, sharp and vivid, he wipes the surface of the plate dry and clean until it shines. In an area where the lines should be soft and velvety, he draws the ink out of the lines and over thei edges by means of a piece of soft old mushin laid face upwards on the platform of the press upon which had been first spread several print ing blankets of soft woolen cloth. A dampened piece of Japan paper or vellum is then laid ove press is slowly set in motion, and the plate, cov cred by the paper and blankets, passes under the heavy revolving roller. The pressure causes the inked lines and tones in the plate to be ransferred to the paper
II. The Great Masters of Etching.

Of all the graphic and plastic arts, the art etching has always had a profoun sculptor When weary of the more exacting arts of paining or sculpture, he frequently finds diversion in the joys of handling the copper plate and etch-
ing needle. Since the early part of the 16 th century when etching was originated, it has steadily risen into high artistic favor, so that now some of the very gratest names in the art history of England, France, Germany, Holland, Spain and the United States appear in the ist of those who have enriche
Etching in England.-England has produced many great painter-etchers. The most significant are Turner, Haden and Brangwyn. In the etchings of J. M. W. Turner (17751851) which were published in his 'Liber Studiorum,' he makes the same appeal to the
imagination as in his famous paintings, by casting an indefinable glamor over the bits of nature he interpreted. Technically, he was remarkable for having the power of selecting the main lines of a subject which he rendered boldly, depending upon mezzotinting for the delicate
tones. Sir Francis Scymour Haden (18181913), who was a London physician professionally, practised the art of etching merely as a
pastime. Nevertheless, he ranks as one of the greatest of modern landscape etchers. He was very skilful in depicting the poetry of still waters, the movement of clouds, and the beauty of trees, silhouetted against the sky. On purely vented several processes which he employed in the production of his works. His masterpieces for which he was knighted by his sovercien ar The Agamemnon,' 'Whistler's Housc' and 'Harlech.' Frank Brangwyn, although still a young man, has already won for himsclf first nd etchers. His prints of Italian, French and English subjects are famous for vigor and English subjects are famous for vigor o ones.
Etching in France.- France has given the world a legion of etchers, including Claude Lor ain, Delacroix, Daubigny, Jacque, Millet hese have attainced greater fame in painting, with the exception of Meryon and Legros, who rank very high as ctchers pure and simple. Charles Méryon (1821-68) etched for the most part the quaint old buildings and streets poetic fecling that they give one the same over whelming sensation that he experiences in list-

c Petit Pont (Mèryon)
cning to Reethoven's 'Heroic Symphony' or in vewing Michael Angelo's 'Day.) His etchings are indeed the sublime exnression of a great and little appreciated during his lifetime that his fincst nroofs sold for only 30 cents each. He
took this public indifference much to heart, and
one day, in a moment of despair, he destroyed some of his most magnificent plates. Finally, through adversc fortunc, he became mentally now that the master is an insane asylum. And proofs sell for thousands of dollars cach. proots sell for thousands of dollars cach.
Alphonse Legros (1837) has produced etchings

Portrait of Dalou (Legros)
which are austere and gloomy in sentiment and imple in execution. His portrait of the sculp or Dalon and hi b Death Dürer and Etching in reat pictorial genius of Gin Germany.- The Dürer (1471-1528) who excelled. in painting engraving and etching. Hc was among the firs to practise the art of etching in which, as in the other arts, he shows himself a man of int
tense seriousness, of powerful tense seriousness, of powerful lut somewhat turn of mind. His best work in this medium is 'Saint Jerome,' etched in 1512 and now in the British Muscum.
Etching in Holland.- The painters of Hol and who also practiced the art of ctching are Ostade, Patrl Potter, Ruysdel, Fverdingen and painter and etcher who has cver lived. It is common knowledge that he was a great painter, ut many are the critics who are of the opinion "What he is even greater as a:l etcher. This "Wizard of the North," as Rembrandt has leen ing such keen powers of versatile genius, hav technical skill, that with a few lines he coulid depict the life history of a human being or the spirit of a landscade. The subjects of his etch
ings range from the humble and lowly to the majestic and sublime; from 'A Group of Beg we feel the same master hand and mind.
Etching in Spain.- The one artist in the history of Spanish art who has especially dis higuished himself as an etcher is Francisco de Goya ($1746-1828$). He was a man of grea physical energy and courage, and an open revo of a morbid imagination. All these personal haracleristics found expression in his etching which he produced in several series. The most hoted are 'The Caprices' (80 plates), whic ave an important philosophical bearing; an Disasters of War) (80 plates), with which
ed to make men
tching in the United States was first practised by William Dunlap about 1830. Since then ver Pany painter-cechers have appeared, includin Peter Moran, Farrer, Falconer, Gifford, Smilie Orish, Church, Bacher, Whistler and Pennell national fame. James A McNeill Whistle (1834-1003) as an etcher is ranked with Rcm randt and Méryon. His subjects includ figure compositions, Holland, Venetian an aris strcet scenes and London wharves, which Of his strect secnes his skill and refineme Strect at Savern' and 'The Unsafe Tenement. His 'La Vicille anx Loques' is considered his est figure print. Joseph Pennell ($1860-$) ha etched a serics of plates of Spanish, Italian, Which, Philadelphia and New York suhject ited cxecution His pronis of the New Yor sky-scrapers) are particularly famous. Sec Engraving.
Department of Art, College City of Nczo York
ETCHMIADSIN, a celchrated Armenia Enastery in the Transcaucasian province Erivan, 10 mites west of Erivan. It consists of high groups of huildings, surrounded wall and from a distance has the ppearance of a fortress. It contains a the ological seminary, a library, with Armenian nantuscripts, and several churches, of which the Saingakath is said to have heen founded by its walls are decorated in Persian style. The monastery is the seat of the Armenian primate and after the Russian occupation also of the Armenian Holy Synod. The monastery was Ounded in the Geth century and was celled to
insia after the Russo-Persian War of 1827.
ETEOCLES, è tē̄̄-klēz, and POLYGreek legend sons of two herocs of ancient After their father's banishment from Thehes, Etcocles usurped the throne to the exclusion of his brother, whom he drove from Thehes, an act which led to what was known as "The ExDedition of the Seven Against Thehes," Polywent to the one of the seven caders. Polynices There he married the daughter of the latter and induced his father-in-law to help him against Thebes. The two brothers fell by each fher's hand. The interment of Polynices was forbidden under penalty of death, but Antigone
(q.v.), his sister, braved the doom decreed Racine has dramatized this story with some the story was famous long before he took it up having already played a part in Greck epic sccond only to that of the Sicge of Troy. Eschy lus used it in his The Seven Against Thebes, and Euripides in his 'Phcenissce' while it enters into the story plot of other Greek writings (Leipzig 1891). See Adrastus.

ETERNAL CITY, The, Rome, the capita of Italy. Legend states that it was raised by or under the immediate supervision of th immortal gods. The term is frequently to be met in classic literature. 'Ave, Roma Immor talis' is the title of a historical work on the 'The Eternal City) is the title of a novel by Hall Caine, published in 1901, the scene o which is laid in Rome. It was dramatized and produced simultaneously in England and in the United States in 1902 . (Sce Rome). Consul Moore, F. G., 'Urbs Æterna and Urbs Sacra (Transactions of the Ame
Association, Vol. 25, 1894).

ETERNITY, Cape, headland on the lef bank of the Saguenay River, Canada, about 40 miles up the river. It has an elevation of abont 1,800 fect and is a prominent feature of the landscape.

ETESIAN WINDS, winds blowing at stated times of the year; applied especially to north and northeast winds which prevail at certain scasons in the Mediterrancan rechons
They are due to the heat of the African Sahara which causes a huge displacement of air duc to superheating. This is supplied by the cooler air from Southern Europe

ETEX, Antoine, áni-twän âtēks, French culptor, painter, architect, engraver and writer Paris, 20 March 1808; Chaville, 16 Jul
 Rome (1829) with his 'Dying Hyacinthe). an became a member of the Legion of Hono 1841). Among his other works in sculptur are 'Cain and His Cursed Race' (1833); 'Rc sistance of France to Coalition of 1814,' and f eace, for the Arc de Etoilc; group, 'City era); 'Charlemagne'; ;equestrian statuc of Char es Í. Among his paintings are 'Romeo and Iulict) ; 'Faust and Margucrite'; (Allegorical Glory of the United States, for City Hall, New York (1853). Among his literary works
are 'Notcs on Paul Delaroche' (1857). 'Study of Life and Works of Ary Schæffer' ' (1859) Textbook for the Polytechnical Association, or Students and Workmen' (1861).

ETHANE, $\mathrm{C}_{2} \mathrm{H}_{8}$, a gascous hydrocarbon heonging to the paraflin scrics and constituting ts second member (the first being methane, or marsh-gas). It occurs in the gases that are given off ly crude petrole iodide with may be zine in closed tubes at $300^{\circ} \mathrm{F}$.; the iodide of methyl that is required being obtained by acting inon methyl alcohol (sce Miconol) with odine, in the presence of phosphorus. Ethane is also hiberated at the anode, together twith
trated solution of sodium acctate. It is a colorcos gas, which hurns with a pale flame and crystalline hydrate. Chlorine combines with ethane rapidly, in diffuse daylight, with the formation of ethyl chlorid, ${ }^{\mathrm{C}_{3} \mathrm{H}} \mathrm{H} \mathrm{Cl}$; but if excess of chlorine is present, higher substitution products are also formed, terminating with hexachlorcthane,
ETHE, (Karl) Hermann, German Oriental ETHE, (Karl) Hermann, German Oriental cducation at the universities of Greifswald and cipzig. In 1867 he was appointed privatdozent in Arabic, Persian and Turkish in Munich. Five years later he visited Oxford for the purpose of cataloguing the Oriental mantuvolume of his catalogue making its appearance in 1889. He was made professor of German and Oriental languages at University College Aberystwyth, Wales, in 1875. His varied abors include a catalogue of the Persian documents in the India oflice library, a critical text der ivanischen Philologic,' and articles on proessional topics in the Athencum, etc.

ETHELBALD, or ETHELBALD, king f Mercia: b. date unknown; d. 757. He was he son of Alwco and succeeded to the thron fiter the death of Ccolred in 516 . Wiihin 15 years he succeeded in making subject to him cutral parts of England as far as the Humber in 740 he invaded Northumbria and two year ater lecl a successful campaign against the Welsh. In 752 he was vanquished at Burford by Cuthred, king of the West Saxons. It is upposed that Ethelbaid was murdered by his (New York 1884).
ETHELBALD, king of Wessex: d. 860 e was a son of Ethelwulf, ling of the AngloSaxons; was present with his father at the
victory over the Danes at Ockley in 851 , and otained over the Danes at Ockley in 851 , and Ethelwulf was making a joinrney to kome, Ethelhald formed the project of seizing the hronc. A civil war was pecvented only ly moderation of Ethelwulf, who resigned to his son the dominion of Wcsscx and confirmed that portion of the kingdon to him in his will. excited general disapprobation by marrying contrary to the canonical law, his stepmother dith.
ETHELBERT, king of Kent: 1), about 552 d. 616. He married liertha, the daughter of Charibert, king of the Franks, and a Christian princess, who, stipulating for free exercise of bishop. Her condluct was so exemplary as to prepossess the king and his court in favor of the Christian religion. In consequence, I'ope headed by Augustine to preach the rospel 10 the Saxons (597). They were well received and numbers were converted; and the king himself at length submitted 10 be baptized. Civilization and knowledge followed Christianity laws, which was the first writter code promul-
gated by the northern conquerors. At the time af the landing of Augustine he had acquire a supremacy over all the English south of the
Humber. Ethelbert founded the see of Roch ester in 604 and huilt the first cathedral, and afterward that of London, and built the church of Saint Paul. He was succeeded by his son Eadbald
ETHELBERT, king of Kent and Wessex d. 866. He was the third son of Ethelwult 855 , and inced to the government of Kent about Ethelbald, became king of Wessex. His reign was much disturbed by the inroads of the Danes and Gaulish pirates, whom he repulsed with vigor, hitt without permanent success as, whencver they were driven from one part of the ETHELFI
ETHELFLEDA, or AETHELFLA' ED eldest dallghter of Alfred the Great, king of the Mercians. She was born about 870 ; d Tamworth, 12 June 918 . In 886 she was married to Aethelred, Earl of Mercia, and with him she held Mercia when her brother Edward ascended the thronc. They fortified Chester
907 and with the Danes held off the Norwegians when the latter besieged Chester in 900. Later with the Scots (Irish) and Welsh, she formed an alliance to resist the barbarians from the north. Her hushand died about 911 and Ethel fleda lost Middlesex and Oxfordshire to her brother but managed to hold the rest of her the Welsh, took Derby in 917 from the Dancs and Leicester and York in 918 . She was buricd in Saint Peter's, Gloucester. Having wielded almost royal authority the title of queen is frequently given her by the chroniclers. Consult 'Saxon Chronicle' ; 'Fragments of Irish

ETHELRED I, king of England: d. 871. He was the fourth son of Ethelwulf and suc by his brother. Alfred the Great (by whom he was succeeded), Ethelred drove the Danes from the centre of Mercia, where they had penctrated, but the Mercians refusing to act with him, he was obliged to trust to the West Saxons alone, his herechitary subjects. Notwith victory at Ashdown, the menace of the invaders continually increased.
ETHELRED II, king of England: b. 968 ; d. London, 23 April 1016. He succceded his brother, Edward the Martyr, in 978, and, for want of solud judgment and sagacity, was surrsel). About 981 the Dancs, who had for some time ceased their inroads, renewed them with great fury. In his reign began the practice of buying them off with ever-increasing presents of moncy. After repeated payments of tribute (see Danegeld) he effected, in 1002, a general massacre of the Danes in England Such revenge only rendered his enemies more violent;
and in 1003 Sweyn and his Danes carried fire and sword through the country. They were again bribed to depart; but, upon a new invasion, Sweyn obliged the nobles to swear allegiance to him as king of England; while
family. On the death of Sweyn, in 1013, he was invited by the national council to resume the second wife, Ethelred, in 1002, married, as his Richard II, by whom he was father of Edward the Confessor. His reign is described by Erecman as the worst and most shameful in English annals.
ETHELREDA, Saint, East Anglian princess: b. Exning, Suffolk; d. Ely, 23 June 679 . lock with cither of her husbands but kept her monastic vow. She finally became albess of Ely, and the county fair held in the Isle of Ely En her day, after her canonization as Saint sione "tawdry," as indicating something cheap and fine, such as would be offered for sale in a village booth.

ETHELWULF, king of England: d. 858. He succeded his father, Egbert, in 839, and soon after his accession associated his son Athelstan With him, giving him the sovereignty over
Essex, Kent and Sussex. In 851 the Danes poured into the country in such numbers that they threatened to subdue it; and though opposed with great vigor by Athelstan, they fixed their winter quarters in England, and next year Durned Canterbury and London. After intlict-
ing a great defeat on the Dancs at Ockley, he ing a great defeat on the Dancs at Ockley, he
went on a pilgrimage to Rome, and on his returt on a pilgrimage to Rome, and on his rehim. In order to avoid a civil war, he gave up the western division of the kingdom to his son, retaining Kent for himself. The

ETHENDUN, Battle of, the victory which Alfred the Great gaince over the Danes (878), and which led to the trcaty with Guthrum, the where the ling of East England. The locality Edington, in Wiltshire.

ETHER, ETHYL ETHER, DIETHYL ETHER, or SULPHURIC ETHER. When tion, dicthyl ether $\left(\mathrm{C}_{2} \mathrm{H}_{b}\right)_{2} \mathrm{O}$, is universally inderstood to be moant, just as ethyl alcohol is understood, when alcohol is mentioned dithout qualification. Ether is preparcd by cent alcohol and nine parts of concentrated sulphuric acid, at a temperature of $285^{\circ} \mathrm{F}$ aicohol being fed continuously into the retort during the operation. The distillate is treated With lime to remove traces of sulphuric acid, and dried with calcium chloride, and is then molile, colorless, inflammable liquid of agrecable odor, with a specific gravity of ahout 0.72 at ordinary temperatures. It volatilizes rapidly With the production of great cold. Its vapor
mixed with air is highly explosive. It will not mix with water to any great extent, but will with readily with many organic fluids, and also rominc and iocline, sulphur and phosphorus sparingly, guncotton, rubber, most of the resins and fats, and many of the alkaloids. It hoils at $95^{\circ} \mathrm{F}$, under a pressure of one atmosphere, and at $200^{\circ} \mathrm{F}$. below zero it freezes into a $180^{\circ} \mathrm{F}$. below zero. A hydrate of ether is ob-
ained hy evaporating aqueons ether on blot ting paper. It becomes solid at $26^{\circ} \mathrm{F}$. duces insensilility and it is used for this pror pose in surgical operations. Ether is also used nesthetically in the form of a spray produc ing an intense cold with inhibition of pain

ETHER, The, or COSMICAL ETHER in physics and astronomy, postulated materia and to penctrate frecly among the ultimate particles of which all matter is composed. It is not in any way related to the substance known as "cther" to the clicmist, and the identity in name is unfortunatc. The physicist has the advantage of priority, however, and cannot be ex-
pected to change the name because the chemist sulsequently appropriated it for something else Although it has not been possible to determine the properties of the ether of physics, the admission of its existence seemed a necessity of cicntific reasoning. For we know that light is know that it travels through interstellar space with a definite, finite speed. It appears alosurd to suppose that a motion of any kind could take place in a void, in which there was nothing to be moved; and hence, as has been said, it appears of a logical necessity to assume the existenc of some kind of a luminiferous (light-bearing,
ether throughout space. As soon as we begin to inquire closcly into its nature, however, we encounter difficulties that have proved insuperable. Obviously our conclusions in this respect depended to a large extent upon a study of the phenomena of light and, later, of electricity, petent to produce those phenomena. Naturally the assumption was first made that the ether when submitted to stress, conforms to the same laws of clasticity that hold true in ordinary mat ter. (See Elastictry). In that case the full mathematical theory of the motion of the ether
would involve no less than 21 numerical coeffiwould involve no less than 21 numerical coeffl as reasonable to believe that, whatever its nature may be, it is the same in all its parts, and that its properties, whatever they may be, are the same in all directions. If these two
facts are admitted - that is, if the cther be ad facts are admitted- that is, if the ether be adstants involved in the theory reduces to two These, as is explained in the article Elastictty arc (1) the modulus of compressibility, and (2) the modulus of rigidity. If the ether wer analogous to a liquid or a gas, its modulus of
rigidity would be zero. It is found, however, that the equations of motion that are oltained by making the modulus of rigidity zero are not at all competent to explain the acual phenom cna of light; for in this case the ether-wave would be merely waves of alternatc compres air, and there could be no such phenomeno polarization. It must therefore be admitted that the modulus of rigidity of the ether has a definite, finite value, if the ether itself is to be rcgarded as analogous to other kinds of matter so far as its general mechanical deportment is modulus of compressibility of the ther the definite, finite value, the conclusion is reached
that the ether can transmit two essentially different kinds of waves, one of which involves changes in its density. Of these the first would admit of polarization, while the second would not. Moreover, the two kinds of waves would have, in general, different velocities of propagation; and the fact that all ether-disturbances appear to be propagated at the same speed indi-
cates that only one kind exists, and that we must thercfore make one of the three following assumptions with regard to the compressibility of the ether: (1) The modulus of compressibility of the ether is infinite; or (2) it is zero; or (3) the circumstances under which the atoms
(or their component electrons) impress their motions upon the ether are such that the modulus of compressibility is not involved in any way. The first of these alternatives implies that the ether is absolutely incompressible, and this is the one that has been most favorably regarded by physicists in general. The second to the smallest compressive forces, so that it is essentially unstable. This view has leen deessentially in recent years by Lord Kelvin, but it is hard to regard it as more than a mathematical possibility. The mind cannot be brought to admit that it corresponds to the actual state of
affairs in space. The third of the suggested atfairs in space. The third of the suggested alternatives must although, for lack of exact knowledge, we can hardly pronounce it impossible. On the whole, therefore, it is plain that if the elastic behavior of the ether is analogous to that of ordinary bodies, we have to admit (tentaare concerned, the ether resembles an absolutely incompressible solid.
According to the elastic-solid theory of the ether, light consists of a periodic or wave-like disturbance in a jelly-like medium, the waves traveling in straight lines with a uniform velocrection of oscillation of the cther being at right angles to the direction in which the wave progresses, just as the direction of oscillation of the various points of a rope along which a wave is passing is at right angles to the rope. This
view of the case accords very well with most of view of the case accords very well with most of
the olserved phenomena, but there are some that do not appear to be reconcilable with it. We assume that the cther penctrates all hodies, and fills up the spaces between their molccules (or electrons) ; and as the phenomena of refraction show that the velocity of light is less in a transparent solid (say in glass) than it is glass has either a greater density or a less rigidity than it has in free space. Either of these suppositions will fit this simple case equally well; but there are other phenomena that will not be satisficd so casily, and it has
becn found to be impossible to make any single been found to be impossible to make any single cile the "elastic-solid" theory of the ether with all the known facts. For example, when we come to investigate certain problems in partial reflection from transparent media, and others relating to diffraction from small particles, we
are obliged to conclude that it is the density of the ether that varies, the rigidity remaining practically constant. On the other hand, the phenomena of double refraction require us to
admit that the rigidity of the ether in a doubly refracting loody is different in different direc tions; and hence we conclude that the rigidity cules of mer is modified by the presence of molt that previously reached by considering tit phenomena of diffraction and partial reflec in the application of the elastic-solid theory o the ciher to the phenomena of light, and al though reference to it is common, because it definite enough to present a clear image to the mind, and so is helpful in many ways, the gen ral opinion among physicists of the presen day is that it is no longer tenable as an accural It has been abandoned in favor of the "electromagnetic" theory of Maxwell, and itı abandoning it we also alyandon his method of estimating the density and rigidity of the ether.
Faraday was convinced, many years ago, that there is some mechanism by which magnetic and
electric forces are enabled to make themselves clectric forces are enabled to make themscive
felt through a space apparently vacuous. "Such an action," he said, "may be a function of the cther; for it is not unlikely that, if there be an cther, it should have other uscs than simply the conveyance of radiation." Maxwell, after read ing Faraday's writings, became so impressed his own ingenious and powerful mind to the problems whose solution Faraday had dimis glimpsed, and succeeded in completely revolutonizing our ideas with regard to light and the ether. His now famous "electro-magnetic the ory" is given in his masterly but excecdingly and a popularized account of it may be found in Oliver J. Lodge's 'Modern Views of Electricity. He agrees with previous writers that light some sort of a periodic disturbance in som sort of anl ether, and that the displacements that occur are indced perpendicular to the directio us that these displacements are not analogous to hose that are produced in an clastic solid when that solid is deformed. He considers that the are of an electrical nature, and that we mus carn about them not by observing the behavior of elastic bodies under stress, but by obscrving Maxwell has given us the fundamental equa tions that must be satisfied when an electrical disturbance is propagated through the ether, and by means of these equations the entir theory of light can be constructed on the new
basis. The theory thus constructed agrees well basis. The theory thus constructed agrees wel from the oljections that beset the old clastic solid theory. Morcover, it successfully with ood the scarching experimental tests devise and exccuted by Hertz and his followers, whose abors have shown us that electrical radiation are propagated with the same speed as ing racted, polarized, and made to interfere; s hat we are now quite ready to admit that onsists in a rapid succession of such radia ions. It is not at all essential to Maxweil "heory that we should know preciscly what a oces not teach us so much about and hence o he ether as we might desirc. It does tead that the clastic-solid analogy is probably
correct, and it strongly suggests that the ether an ethercal rotation going on in a magnetic held; but it has not yet been made to furnish means of estimating the density of the ether of oltaining any of 1 ts other constants ther is continuous, or whether it is molecula in structure Some writers find it difficult to nink of a displacement of any kind, in a space hat is entirely filled with matter, especially he matter is incompressible. Ohis ins objection is without weight
Faraday's idea that magnctic and electric as light proved to be exceedingly fruitful, and is by no means unlikely that the ether pos esses still other functions, which will throw urther light upon its nature, when they ar nderstood. The various kind or they are (hat have been discovered in recent years
("cathode rays," "Becquerel rays," "X-rays," and the like) were at first believed by many auhoritics to consist in cthereal motions differen rom those constituting light, and it was even hought that some of them might correspon the waves of cthereal compression that had tions, however, are now believed to be nothing but ordinary light of exceedingly short wave ength, and others are belicved, at least tentavely, to consist in the actual emission of storm frompuscles, or "electrons," from the bodie Radium which they proceed. (See Electron also been attributed to ether stresses, and it is hot impossible that this is its real nature. N mechanical explanation of gravitation, as an ether-phenomenon, has yet been offered, how urged to which serious objections cannot be assed. In Maxwell's theory of gravitation ether about them, of such a nature that there is pressure along the lines of gravitative force, combined with an equal tension in all directions at right angles to those lines. "Such a state o tor the says Maxwell, wonld no doubt account have not observed effects of gravitation. W magine any physical cause for such a state o tress." He calculates that to procuce the actual effects of gravity, as obscrved at the sur subject to a park, the e 37,000 tons per squar nch in to a pressure of 37,000 tons per squar ame numerical magnitude in all horizontal rections
One of the most obvious difficulties in the way of the cther-theory is that the plancts, and ven the atoms, move through space as thoug ideas, howsolutely cmpty. According to mode Gate of smaller "clectrons" each of which ma transpire to be nothing but a state of strain in he ether: and if this proves to be the case, we re certainly not in position at present to say that the ether would oppose in the slightest de gree the transmission of such a state of strain the theory of aberration is more formidable. If a shower of rin is falling vertically the drops will appear to an observer to descend verically so long as he remains stationary. If he moves forward, however, the drops will strike
him in the face and will therefore appear, to him in the face and will theretore appear, to vance of the zenith, rather than from the zenith itself. A similar phenomenon is observed in connection with light and is known as aberration. Every star is seen in its true position when the earth is moving directly toward it ; ing at right angles to this dircction, the observer's telescope will have to be inclined slightly toward the direction in which the earth is moving, in order that the light from the star may come down through the instrument centrally The maximum displacement that a star call to be about 20.47 seconds of are on the heavens. If the ether were motionless, the analogy with the raindrops would be perfect, and the "constant of aberration," whose value has just been giver, could be calculated from the known velocity, of light, and the known velocity of the that the theory of aberration is exccedingly complicated when the possibility of currents in the ether is admitted, and hence physicists have becn much concerned to know whether or not the earth drags the adjacent ether along with it, in its motion around the sun. As long ago as
1859 Fizeau showed, by a justly celebrated cxperiment, that the ether is apparently dragged along by a current of water flowing through a tube; and Michelson and Morley have since shown, by an even more ingenious experiment that here is evidence that the ether in the the earth's motion to such an extent that any difference that may exist does not amount to the twenticth part of the whole motion. Lodge, on the other hand, found no evidence of any "ethe drag" in the space between two rapidly whirled stecl plates that (Cere separated an interval of one inch. (Consult Preston, 'Theory of
Light'). The whole subject of the "drag" of the cther is still unsettled; but the observed value of the constant of aberration appears to require that the ether is not disturbed by the motion of the earth through it.
As indicative of confused condition of thought in regard to the ether, even among the
most illustrious scientific minds, the following quotations are appended. Sir William Thompson (Lord Kelvin) says: "The luminiferous cther is an elastic solid, for which the nearest analogy I can give you is this jelly which you sce." Fitzgerald remarks upon this, "I canno Sir William Thompson's speaking of the ether as like a jelly.". Alfred Sang remarks, "Some of the most eminent physicists have adopted the vicw that the universal medium must be solid We are asked to conccive ourr planct moving a the ratc of 18 miles per second through it, and place without any friction." Sir William Ramsey says, "It is almost universally held that al phenomena are 'mechanical,' that is, they ar the result of matter in motion, and can be pic tured to the mind in a concrete form; tha some kind of (machine can if imagined which, in question." And, further, "It has not yot bee found possible to think ont a structure and mode of motion of the ether which will explain or make it possible to realize as a kind of
machine, all the phenomena in which the ether appears to play a part." J. Clerk Maxwell offers the hypothesis that the constitution of
ether is made up of clastic centres or vortices in close proximity, but goes on to say, "No theory of the constitution of the ether has yet been invented which will account for such a system of molecular vortices being maintained for an indefi
It has more recently been postulated of the compressible, motionless, but capable of taking on motion, non-elastic, and capable of indefinite subdivision, and that the suldivided parts can be moved over cach other without friction. On the other hand such eminent physicists as Ein-
stein, Ritz and Poincaré deny the necessity for any such suppositional substance as the ether. It is a fact that scientific inquiry is attacking this and similar problems along quite a different line, upon the hypothesis that matter has no existence otherwise than as a mode of motion

Consult Erwin, M., 'The Universe and the Atom' (New York 1916); Larmor, J., 'Fther and Matter) (Cambridge, Mass. 1900) (Pres-
ton, S. J., 'Physics of the Ether) (London 1875).

Richard Ferris
ETHEREAL SALTS. See Esters.
ETHEREGE, Sir George, English dramatist: b. Oxfordshire, about 1635: d. Paris, probably late in 1691 . He is said to have spent
some time at Cambridge, but this is probably not the casc, since we have it on high authority (Dennis) that he was unacquainted with either Latin or Greek. He traveled much abroad and spent some time in Paris, where it is probable that he saw the performance of the early comedics of Molierc. Returning to England he
studied law for some time. After 1660 he studied 'The Comical Revenge, or Love in a Tuh, which was produced in 1664 at the Duke's theatre. It was very successful and brought the anthor the patronage of the court. In 1608 he produced She Would if She Conld, a ratined a great success. For many year Etherege neglected literature but returned in 1676 with 'The Man of Mode, or Sir Fopling Flutter,' a splendid comedy of intrigue. It added to the author's fame and fortune, but his dissolute mode of life soon dissipated the
latter. He was knighted about 1680 and soon latter. He was knighted about 1080 and soon sent him on a mission to The Hague and in 1685 he was Minister at Regenshurg. He remained there for three and onc-half years, but never liked Germany. Consult the edition of his works by Verity (1888) and Gossc, 'Scvenbridge History of English Literature) (ib 1907-13)

ETHERIDGE, Emerson, American statesman: b. Carrituck County, N. C., 28 Sept. 1819 d. - When 13 years of age he removed to Tennessee, received a public school education, 1840 . He was a member of the legislature in 1845-47, and a candidate for speaker, and was then sent to Congress as a Whig and re-elected by the "American" party, serving from 1853 to 1857. He was defeated for the next Congress
ut was re-elected in 1858 and served again in 859-61, in which session he was chairman o the Committec on Indian Affairs. He wase tives and served from 4 July 1861 to 8 DC 863. On his return to Tcnnessec he devote himself to the practice of his proression and study of philosophy. He served in the Tennes for the governorship of his State, being de eated once and declining the second nomination He was the last Whig that served in Congres He published
ETHERIDGE, John Wesley, English nonconformist clergyman : b. near Newport, Isle o Wight, 24 Feb. 1804 ; d. Camborne, 24 May uired a thorough knowledge of Hebrew, Greek Latin, Syriac, German and French. In 1826 in attempled to enter the ministry and after period of probation was received in full con nection at the conference of 1831. Thereatt he spent two years at Brighton, when he to fail and he was pensioned and went to li at Caen and Paris. His health improving, he accepted the pastorship of a Methodist churc at Boulogne in 1842. Four years later he re urned to his native land and was successiven ance, Penryn, Truro and Saint Austell in Corn vall. Heidelberg conferred on him the degre of Ph.D. He published 'The Apostolic Minis try and the Question of Its Restoration Consid ered' (1836) ; 'Misericordia. or Cont mplatiol ${ }^{\circ} \mathrm{x}$) (1843). 'The Syrian Churches: Their Early cx' (1843); 'The Syrian Churches: Their Eail
History, Liturgies and Literature) (1840) (The Apostolical Acts and Epistles from the Peschitto, or Ancient Syriac, to which ar
Added the Remaining Enistles and Book of Added the Remaining Enistles and Book o (The Targums of Onkelos and ext than her Uzzicl on the Pentateuch, with the Fragments of the Jerusalem Targum) (2 vols., 1863) (Life of Rev. 1 dam Clarke) (1858)., Consul memoir by T. Smith (London 1871)

ETHERIDGE, Robert, English genlogist b. Ross, Hereford, ${ }^{3}$ Dec. 1819: 4. ChercanLondon, 18 Dec. 1903 . He engaged in mercan ural history study. He became curator of the muscum attached to the Bristol Philosonhical Institution, was made assistant nalcontologist 1857 and paleontologist six years later of the Geological Survey. In 1881 he was transtere to the geological department of the British M seum, where he was assistant curator for
years. He published 'Catalogue of Fossils in the Museum of Practical Geology' in collabo ration with Huxley (1865); 'Fossils of the British Islands, Stratigraphically and Zoolog cally Arranged' (Vol. I, 1888).

ETHERS, in chemistry those compoinds which may be regarded as derived from wate by the replacement of each of the hydroge atoms by a basic or alcoholic radical. ether is "simple" if the basic radicals that
so substituted are alike, and it is "mixed" they are unlike. The formation of a simple ether may be conveniently illustrated by
case of common, or "diethyl" ether, $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$) 0

This may be prepared in various ways, but the sulphuric-acid method will serve best to illus
trate the nature of alcohol, $\mathrm{C}_{2} \mathrm{H}_{6} . \mathrm{OH}$, is heated to $285^{\circ} \mathrm{F}$. with sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, one of the hydroge atoms of the acid, is replaced by the alcoho radical ethyl $\mathrm{C}_{2} \mathrm{H}_{5}$, according to the equatio $\mathrm{C}_{2} \mathrm{I}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4}=\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{HSO}_{4}+\mathrm{H}_{3} \mathrm{O}$, the genethyl-sulphate, or "sulphovinic acid." When he hydrogen-ethyl-sulphate comes in contact with another molecule of the alcohol, it under goes a second transformation, by which another thyl radical is taken up, and a molecule of sul phuric acid again set free, as indicated by th equation $\left(\mathrm{C}_{2} \mathrm{H}_{8}\right) \mathrm{HSO}_{4}+\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OH}=\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
$+\mathrm{H}_{2} \mathrm{SO}_{4}$. It will be seen that although a mole cule of sulphuric acid is used up in the first Part of the process, it is regenerated in the second part, so that on the whole there has been do change in the quantity of acid present. The water produced in the first stage, and the ether, $\left(\mathrm{Cf}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$, produced in the second stage, pas ready for the admission of a new supply o alcohol. The admission of a new supply is ormed, as here illustrated, is called etherificaton; and the etherification is said to be "con hercly if it can go on, as in this case, by nercly passing a stream of the alcohol into on end of the apparatus, and withdrawing the Methyl of ether and water at the other enc ne action of sulphuric acid upon methy alcohol in a manner precisely analogous to that explained above. The equations in this cas are $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{H}_{2} \mathrm{O}+\left(\mathrm{CH}_{3}\right) \mathrm{HSO}_{4}$ $\left(\mathrm{CH}_{3}\right) \mathrm{HSO}_{4}+\mathrm{CH}_{2} \mathrm{OH}=\mathrm{H}_{2} \mathrm{SO}_{4}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ methyl ether and $\left(\mathrm{CH}_{3}\right) \mathrm{HSO}_{4}$ is hydrogen-methyl-sulphate.
As an illustration of a mixed ether, the case of methyl-ethyl ether may be cited. If ethy cohol be heated with iodine in the presence 0 phosphorns, a substance known as ethyl iodine i $+\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$. On the right of this equa ton, $\mathrm{H}_{3} \mathrm{PO}_{4}$, is phosphoric acid, and $\mathrm{C}_{2} \mathrm{H}_{5}$. I ethyl iodide, which is a liquid boiling at $1.52^{\circ} \mathrm{F}$ readily separable from the phosphoric acid 1 y distillation. Now if ethyl iodide be mixed with Potassium ethylate (ohtained hy dissolving the following potassium in absolute ethyl alcohol) s formed : $\mathrm{C} . \mathrm{H}_{n} \mathrm{I}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OK}=\mathrm{KI}+\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ sut if the ethyl iodide is mixed with potassium methy/atc. CH_{3}.OK, which is obtained by dissolv ng metalic potassium in absolute methyl alco the then the ether that is formed contains cthyl radical methyl, CH_{3}, and also the radical $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{I}+\mathrm{CH}_{2} \mathrm{OK}=\mathrm{KI}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \mathrm{CH}_{3} \quad$ The mixed ether, $\mathrm{C}_{2} \mathrm{H}_{8} . \mathrm{O}_{3} \mathrm{CH}_{3}$, is known as nethyl-ethyl ether. The reactions that have here been given at some length are typical of similar hos that hold true very generally of the alcothe iodide of a given alcohol radical can be prepared by treating the corresponding alcoho "alcoholate" can be formed by dissolving metalac notassium in the corresponding (anhydrous)
aicohol. Then if we wish to prepare a proposed
mixed ether, we have only to treat the iodide of one of its radicals with the potassium compound moner ethers, both simple and mixed, strongly resemble one another in their general properties Thus they will not mix with water, nor combine with ammonia nor other alkalies, nor with metallic sodium, nor with dilute acids. The resem "blance is also close in other respects. For "ompound ethers" see EsTERS.
ETHICAL DETERMINISM. See Deter MINISM

ETHICAL MOVEMENT AND ETH ICAL SOCIETIES IN AMERICA AND ABROAD. The first Ethical Socicty was
estahlished and the Ethical Movement inaugurated in 1876 in New York by Felix Adler sponse to arer at Cornell Unecrsity. In response to a call, several hundred persons met in Professor Adler's address, outlining the purpose and spirit of the proposed organization, the Society for Ethical Culture of Ncw York was constitutcd. In this address he appcalcd to his auditors to unfurl a new flag of peace and con-
cifiation over the bloody battlegrounds where religions had fought in the past; he laid stress upon the urgent need of a higher and sterne morality to cope with the moral perils of the hour, especially noting the growing laxity tha accompanied the dechine of discredited forms o religious helief; and he placed peculiar emphasis upon the duty of caring for the moral education
of the young. The society thus initiated grew rapidly, and soon gave practical effect to his program. Within a few years it had established a free kindergarten for the children of the poor the first of its kind in Ncw York; and this developed into a workingman's school, based upon the Frocbelian pedagogy, which was the first
school to introduce manual training and systematic ethical instruction into the curriculum. I also inaugurated a system of trained nurses fo the poor, which has since become an adjunct o dispensary out-door relief in the city. Nor wer the larger social and political applications o morality to contemporary life neglected: it itteraces to special attention in his platfori social reforms, as being at bottom great moral issues. His vigorous exposure of the cvils o the tenement houses bore fruit in the creation of the Tenement House Commission of 1884, o which he was appointed a member. He also was among the first advocates of small parks and pullic baths; and, above all, of greater justice and humanity in the relations between labor and capital, employer and employed. The Labor party here found a new type of advocate and reformers and politicians a platform from which the issues of the hour wer brought to the touchstone of ethical first principles.

Meanwhile, the society filled more and mor the place of a church in the lives of its hithert unchurched members. It did not neglect the illuminate and inspire its members in thei dealings with the problems of the home and the vocation, family relations, marriage, the
training of the young, etc. Its position as a distinctive religious organization became better cibly felt, while its practical educational and philanthropic activities continucd to multiply. Its schools, testifying to its conviction that moral improvement must begin with the care and cducation of the young, expanded until kindergarten normal and high school departments were added. These expansions necessi-
tated greatly enlarged quarters; the socicty therefore erected at Central Park West and 63 d Street a thoroughly modernized school building, next to which an appropriately dignified meeting place and socicty-house were later on added. This thoroughly cquipped schoolhouse has enabled the society to fulfil its cherished
aim of having a model and experimental school, standing for the highest ideals of non-sectarian education and the most efficient pedagogical method of realizing them. Many significant developments have taken place including unique Arts High School. What distinguishes these from many other similar schools is their democratic organization and spirit; like the public well-to-do and of the poor, a generous proportion of free pupils being admitted under a system of free scholarships endowed by the society.
To give further effect to its conception of a eligious society as a body of workers, bent pervice, the society opens to its mombers many service, the society opens to its members many activity. Here the women of the society take a prominent part. Most of the philanthropies are alfiliated under a general, representative body, known as the Women's Conference.
Fortunate in drawing an unusual number of oung men to its ranks, the socicty has a strong Young Men's Union which contributes largely to the support of two neighborhood houses: the
Hudson Guild on the West Side, of which Dr. Hudson Guiid on the West Side, of which Dr.
John Lovejoy Elliott, one of Professor Adler's John Lovejoy Elliott, one of Professor Adler's Down-Town Ehical Society, on the lower East Down-Town Ethical Society, on the lower East summer home on its farm of 70 acres at Mounainville, N. Y., where a farm school is held, and a summer holiday is given to groups of the boys and girls who belong to the Neighborhood clubs. The larger policies and relations of all the working bodies of the society are considered representatives from all of them. One other event in the history of the society that calls for mention is the recent appointment of Professor Adler to the newly createl chair of political and social ethics at Columbia University. As
the chair was cndowed with a view to Professor Adler's tenure of it at the instigation of some of the well-known deal with the social evil in New York, of which committee Professor Adler was an active member, this appointment is a remarkable public tribute to the large public place which the ounder of the ethical movement has won for
Early in the history of the socicty, M. Salter and Walter L. Sheldon, were at-
tracted to it, and, after a period of apprenticeship in New York, went forth to found
societies in Chicaro, Philadelphia and Sain societies in Chicago, Philadelphia and Sain
Louis, and across the seas to London. To these have been added organizations in Brooklyn, Newark, the Bronx and Wilmington, Dcl., the heads and lecturers of these being in New York, Dr. Felix Adler, Dr. John Lovejoy Elliott, Dr. David Saulle Muzzey and Mr Alfred Martin; in Philadelphia, Mr. E. Burns Weston; in Saint Louis, Mr. Percival Chubb lyn, Dr. Henry Neumann; in Newark Mr George E. O'Dell. These American societies while looscly federated in a union, maintain at individuality of their own, and have developed different forms of activity according to loca was done in Saint Louis as early as 1889 , when "Wage Earners' Sclf Culture Clubs" werc established in four sections of the city. The all hold Sunday exercises, which consist for the most part of music, readings and an addeclaration of devotion to the ethical ends. All attach great importance to the moral and religious cducation of the young, and maintain well-organized Sunday schools and associations and clubs of young men and young wome devoted to the same end and to variol kinds of practical work. From the pulpal Union in Ncw York is issucd monthly The Standard, the organ of the movement. Among the literary products of the America societies are Professor Adler's 'The Religion of Duty,' 'Moral Instruction of Children' anc Lice and Destiny, ctc., Mr. Salter's Elical Religion'; Mr. Sheldon's 'An Ethical MoveTestament Bible Stories as a Basis for Ethica Instruction of the Young,' etc, several volume by Mr. Martin and others,
That the movement initiated in America ex pressed no merely local phase of religious de clopment is evicent by its still more rapid spread in Europc. American influences led to Society with which Professors Muirhead Bosanquet, Bonar and others, upon whom the ethical influence of Thomas Hill Green o Oxford had been profound, were identified and under its auspices lectures were given a Toynbee Hall and elsewhere by many men a the universitics and in public life who felt the as Seeley, Caird, Leslie Stephen, etc. Abou the same time Dr. Stanton Coit went over from New York to assume (vice Mr. Moncure D Conway) the leadership of the congregation a South Place Chapel, then renamed the South pastorate, he resigned to which, after a bris in other ways.

Under his leadership ethical societies multiplied rapidly in London and in the provinces. A union of ethical societies (14 or more) and a moral instruction league (to introduce systematic non-theological, moral instruction into all schools), since hecome a separate or-
ganization, were established. There has also been a considerable output of literature. Special mention should be made of the vali-
able series of books of ethical instruction by come. In America they continuc to move for Mr. F. J. Gould.
favorable soil on the was finding, meanwhile activity was established at Berlin, where Pro fessor Gizycki, Prof. William Focrster, and others identified themselves with the cause Germ societies were in time established in Germany, and in Austria at Vienna, in Italy at and Lausannc; and in France through the Union pour L'Action Morale (1891) which found spokesmen in M. Emil Desjardins (notably i is stirring brochure (Le Devoir Present'), and other well-known writers. In Germany the rnovement languished until only a small group Prafin toerster ecaragely a sadership of survivor.
The carly activity of these European centre ed to the establishment of an international or ganization with a central station at Zurich here in September 1806 an International Con gress was held which issued a represcntativ sense of the urgency of applying cthical principles in the domain of social and political affairs. It announced its sympathy with the ceforis of the populace to obtain a more human existence; hut recognized as an evil hardly less
scrious than the material need of the poor, the crious than the material need of the poor, the whose need which exists among the weallhy, the discords in which the defects of the present ndustrial system involve them It demande hat the social conflict should be carried within the lines prescribed by morality, in the interest of socicty as a whole, and with a view o the final establishment of social peace. It declared for universal peace, and against mill arism and the national egotism and jcalously all cthical societies not simply to concern then selves with these practical issues, but to devote heir utmost encrgy to the building up of a ne deal of life in harmony with the demands o modern enlightenment. This first international manifesto is still significant because it expresse social almost universal interest of ethicists in the theories, policics and measures of reform to the test of ethical principle; it expresses also heir interest in promoting peace and an education animated and unificd by an ethical pur Dose. It does not, however, lay the stress
which would to-day be laid upon the relation Which would to-day be laid upon the relation af the movement to modern liberalism, its frank scientance of the spirit and results of moder miraculous and priestly clements in religion hor does it voice the deeper religious seriousness and spirituality of the movement. By some of the leaders this latter is very strongly $e_{m p h a s i z e d ; ~ a n d ~ s o m e ~ o f ~ t h e ~ e t h i c a l ~ s o c i e t i e s ~}^{\text {an }}$ are primarily churches for inspiration and Suidance in the difficult effort to lead the good the international movement it is impossible to predict. So far it has crippled or handicapped the smaller socictics. In England there has heen a lirave struggle to maintain them. Perhaps after the war their great opportunity will
ward. While the inception of the ethical movement was due to the insight and prevision of Felix Adler, and its first powerful impact duc to his attractive eloquence and personal power, its
slow but steady growth is evidence that it met slow but steady growth is evidence that it met
a deep and widespread need. It was fitly born a deep and widespread need. It was fitly born on American soil; for a new ethical religion nitely prophesied and sketched by Emerson in his latter essays on 'Worship' and 'The Sov ercignty of Ethics.' He had said: "The prog ress of religion is steadily to its identity with morals. . It accuses us that pure ethics is not now formulated and concreted into cultus, a fratcrnity with assemblings and holy
days, with song and book, with brick and stone. . . . America shall introduce a pure religion. : . There will be a new church founded on moral science; at first cold and nakcd, a babe in a manger again, the algebra men to come without shawms, or psaltery, or sackbut; but it will have heaven and earth fo its beams and rafters, science for symbol and illustration; it will fast enough gather beauty music, picture, poetry." The development of ad vanced Unitarianism throulgh Channing and Parker had been in this direction. It had two
practical outcomes - the Free Religious Association, which still holds annual sessions; and the Ethical Movement. As distinguished from the Free Religious Association, which expressed vagucy the libertarian tendencies of Emerson's thought, the Ethical Move ment gave effect to the positive and con-
structive tendency which found clear utterance in his prophecy. Although this positive spirit was present in the religious socicty conducted in Ncw York by Octavius B Frothingham - who was wont to say, after he had retired and it had disbanded, that its legitimate successor was the Socicty for Ethica Culture-it was not until Felix Adler brough
to the new movement at once an ethical outto the new movement at once an ethical out school' of Kant, an impassioned Hebraic sense of religion as rightcousness of life, and a prac tical sense of the urgency and ethical impor of the great impending moral issues in th social, industrial and political world, that con-
ditions existed for the full birth of the new ethical religion
The most distinctive fcature of this new phase of religious development was that it did not propose to add to the religions of the past in the way in which these had multiplied namely, on the basis of differences of speculaportance and the priority of the ethical factor in rcligion. It approached religion, not from the credal, but from the practical moral stand point; and it saw, in a common affirmation of this priority and supremacy of virtuc and the good life, a ground of union for people of vary Emerson, it asscrted that character and conduct condition creed and thought; and that it is only by sowing a worthy character that men can reap a vital and meaningful creed. It contender that no certain and lasting basis of union can be found in anything so variable and persona
as one's philosophical view of the world; and that no one should pledge his intellectual futur
by subscribing to-day to a creed which morrow he may outgrow. What a man think is the result of what he is - the outcome, there fore, of his action, his experience, his effort and his love, far more than it is the outcome of his deliberate thought and accumulated knowl edge. This position differed from that of the fomtian posinitivists and in some respects, very negative philosophy. The new movement allowed for the greatest individual differences in men's philosophical interpretation of life, save in the one tenct that all must acknowledge the sacred obligation imposed hy man's moral nature to ing the dictates of duty according to the best light that is in each

On the basis of this moral earnestness and this attitude of moral resolve men may safely and hopefully work hackward into a philosophy and forward into a faith. Their philosophy and will, theistic or pantheistic, materialistic or ideal istic; it may or may not issue in a faith in immortality, conditional or absolute. This is a personal concern, and the statements on such matters frequently made by the leaders of ethical societies who differ much in thei conviction, and not made as in any personal mitting the societies. This is to make a clear distinction between the private and the public factors of religious belief; and to find as the only possible lasis for religious union, for Those who would jcalotssly guard their intellectual integrity, a moral aim by which any

The ethical movement has been criticiz as lacking in imaginative color and appeal, and therefore unlikely to spread among the masses of the people. Perhaps Emerson was right in emphasizing the austeritics of the new religion
in its early protestant phases. But at heart it is genial and passionately human. It has nothing sensationally novel to offer; it does not compete with picturesque claimants like Theosophy, Christian Science, Vedantism, etc., and it may be a fact that "plain goodness," "mere morality, "the bcauty or holiness," will not yet yet one finds among its adherents nothing less than a new type of the religious temperament, voicing a new imaginative sense of the hidden mysteries and wonders of the moral personality, the new unrevealed heights and depths of the moral life, the unrealized joyousness of devotion to duty and to service. Percival Chubr,

Leader of the Ethical Society of Saint Louis. ETHICS (from Gr. Jiondi, having to do with conduct, from $j 005$, character, lengthencd form Latin, mos mores customs) cf. morals, from the theory of conduct which is concerned with the formation and use of judgments of right executive or overt phenomena which arc associated with such judgments, cither as antecedents or consequents. As a branch of the theory of conduct, it is generically akin to he sciences of jurisprudence, politics and eco-
nomics; but it is marked off from such science in that it considers the common subject matte of human conduct from the standpoint of righ evil, the dutiful or obligatory, might be used in the definition as substitutes for the terms "right" and "wrong," but good and evil are somewhat 100 wide in scope, including, for instance, eco nomic utilities, commodities and satisfaction While duty is somewhat too narrow an ex pense of the idea of the good and desirable "Right" and "wrong" designate exactly thos phases of good and evil to which the idea the obligatory is also applicable. The terms moral philosophy, moral science, and mora ject of inguiry
In its historical development, ethics has been regarded as a branch of philosophy, as a scienc and as an art - often as a composite of two all of these in varying proportions. As hranch of philosophy, it is the business of ethic oo investigate the nature and reality of certa theorics of the universe. It is the theory reality in its moral aspect. The term good aken to denote or describe a property of all mate and absolute being. As such, it is usualiy co-ordinated with two other fundamental pron crties of reality, the true and the beautiful; and
the three philosophic disciplines are defined as cthics, logic and æsthetics. Even when so much emphasis is not thrown upon the place o the good in the general scheme of the univers cthics may still be regarded as a branch of philosophy, because concerned with the idea luith what ought to be, or with what is ab the utcly desirabe, as distinct from the actual, iew, ethics is regarded as normative in cha acter, that is, concerned with establishing an justifying certain ultimate norms, standards
and rules of action.

In contrast with such functions, ethics as a science is concerned with collecting, describ experience in which judements of right and wrong are actually embodied or to which the apply. It is subdivided into social, or socio ogical, chics, and individual, or psychologica ethics. (a) The former deals with the habit tions, etc, actually found in history or in con temporary life, in different races, people grades of culture, etc., which are outgrowth of judgments of the moral worth of actions which operate as causes in developing such udgments. Up to the present, social cthics ha icen deycloped mainly in connection, (1) with by itself or in connection with institutions o law and judicial procedure, or of religious cul and rite; or (2) with problems of contemporary ocial life, particularly with questions of philal hropy, penology, legislation, regarding divorch he family and industrial reform- such child-aloor, etc. In both aspects it is closel ometimes called inductive, or in its second a pect, applied ethics. (b) Psychological ethic concerned with tracing in the individual the origin and growth of the moral consciousness
hat is, of judgments of right and wrong, feel of desire for of action which are in accord with the jud bility of right, or the virtues; with the possi Dsychical nature, from the standpoint of the or voluntary action the individual, of frce psychological data bearing upon the nature of ntention and motive; desire, effort and choice adgments of approbation and disapprobation motions of sympathy, pity in relation to th mpulse of self-prescrvation and the formatio haracter etc navior as an expression of certain psychical lements and groupings, or associations: psyological analysis.
ethics as an art is concerned with discover gind formulating rules of acting in accord These with which men may attain their end ither of injulnctions or commands, which pre cribe as well as instruct; or as technical ormulx which indicate to the individual the hus way of proceeding toward a desired result, ing or difterent in kind from rules of paint depends of carpentry. Which view is take with which ethics as an art is associated. Ethics an art may also be an outgrowth of either general philosophy of conduct, or of a scien. analysis of it. Thus, from the philosophic iction view, a reccnt writer, Sorley, in th 1. p. 346, 1902) says of and Psychology (Vol not merely with actual conduct but with rirh good conduct, and accordingly with an idea rom which rules may be laid down for actua Concluct." It is clear that the philosophica ermishment of the ideal is considered to ther hate in rules for its attainment On the of Lecrislation) (1789), having before insisted hat ethics is a science whose truths are to be scovered "only by investigations as severe a athematical ones, and heyond all compariso thics "intricate and extensive," goes on to defin he production of the greatest possilhe quantity of happiness," and says it is the busincss rivate ethics "to instruct each individual in wat manner to govern his own conduct in the etails of lifc." Thus as an art ethics may be As upon either a philosophy or a science As may readily be inferred from the abov thics at present are concorned with definin delimiting its own scope, basis and aims rom a purely abstract point of view, all thre necptions can exist harmoniously side by side is possible exeoretically to regard certan hiij as assigned to ethics as a hranch of thers to the practical or scientific phase, and ut no consensus is to these various possibl ssignments exists. Usually those who insis at ethics is a branch of philosophy deny that can be anything else; they deny that any ${ }^{2}$ escriptive and explanatory account of actual, ame of rom ideal, conduct, deserves the ${ }^{2}$ belonging to the science of ethics is by them
treated as really a maller of history, sociology and psychology, not of ethics proper at all legins by attempting to prove that a natura science of cthics is inherently impossible, because moral conduct by its nature implics an ideal that transcends actual condnct which alone can be made a matter of observation and its alisoluteness transcends all the sanct.ons of experience. On the other hand, those who have occupied themselves with the scientific analysis of moral bchavior and character, have usually denied the legitimacy of the philosophic asyect Thus Bentham expressly regards all philosophi mere dogmatic personal assertions, or, as he calls them, "ipse dirits." A more recent write Leslic Stenhen, 'Science of Ethics' (1882), without ahsolutely denying the possibility in the remote future of a metaphysics of conduct, relevant to a scientific treatment. Along with this uncertainty as to the defining aim and characteristic methods of ethics, are naturally found a large number of subordinate and econdary controversies and divisions of opinion, As a matter of fact, however, in every his theorics some connection with ound in ethical sophic thought, and with the data of hehavio exhibited in experience (or the scientific aspect) and with the further direction and conduct of life - the practical aspect. Historically, cthics has passed through three eplochs: (1) the (3) the Early Modern : terminating with say the French Revolution, and may now be garded as having entered upon a fourth stage In each period, a certain practical interest is uppermost in social life. and this interest serves certain relevant theoretic pittention toward quate account of cthical thought accordingly is possible only in conncction with the large civilization and culture of which it is a part. bricf characterizations of the main prohlem o each epoch in its wider social tendencies wil serve, however, to point out (a) the philosophic cthics in each period.
The Greco-Roman period was characterized by the disintegration of local custom, 1 radition and institution, civil and religious, coincident with the spread of cosmopolitan learning and the lormation of an inclusive political organization tion-Greek culture and the Roman empire With the disintegration of the habits and modes of life which had previously defined the sphere of legitimate individual satisfaction, and which supplicd the sanctions of the moral life, there was necessarily coincident an inquiry which quate substitutes for the waning institutional quate substitutes for the waning institutiona historical science is the proof of the extent and stringency of the force of custom inl carly life It is custom which defines the morally right and obligatory, and it is custom which enforces its law very life of the people, emotional and intellectual
as well as practical. Where custom rules, mora theory is unnecessary and indeed impossible. In régime of custom was irretrievably shaken in regime of custom was irretrievably shaken in upon morals. Many thought that all sanctions for morality had disappeared, or at least lost validity, and that pure individualism in thought and conduct - tempered at best only by some judicious regard to consequences - was the
proper outcome. Others, prevented by what proper outcome. regarded as the low moral standards of customary morality from coming to its defense, were also shocked by the demoralization attendant upon ethical individualism, and set to work to discover a universal and unassailable basis for a higher type of ideal moralit
conflict, ethical theory was born.
The Greco-Roman Period (6th century b.c. to 5th century A.D.) - The controversy originated in a discussion as to whether morality exists by convention ($\nu \delta \mu()$, by arbitrary enactment (0 ion $)$, or in reality, that is (in the ter-
minology of the time), "by nature" ($\phi \hat{\sigma} \sigma e$) minology of the time), "by nature" (фiбgi) taught that morality was a creature of the efforts of the rulers of a community, being a device on their part to keed others in subjection for the better indulgence of their own desires much as many of the "free-thinkers" of the 18th geners of the Sophists) taught that religion was an invention of state-craft and priest-craft. Others taught that it was a product of social agreement or institution. Some of the nobler Sophists (like Protagoras, see the Platonic dialogue of the same name) interpreted this as against the raw, crude state of nature, whil others taught that it was merely a conventiona means to personal satisfaction, and hence had no binding force when short-cuts to happiness were available. In the meantime the actual
moral discipline of the Greek city-state was moral discipline of the Greek city-state wa much relaxed, partly because of the intermicause the religious beliefs which were the foundation of civic life were fast becoming incredible. Socrates (about 470 B.c.- 399 B.c.) was apparently the first to undertake a positive and the following contributions: (1) All things have to be considered with reference to their end, which indeed constitutes their real "nature"; the end of each thing is its good. Man must therefore have his own end, or good; this is real and inherent, not conventional nor the product of law. (2) To know is to grasp the essential, real being of a thing-its
"nature") or end; "know thyself" is the essence of morality; it means that man must base his activity upon comprehension of the truc end of his own being. All cvil is really involuntary, based on ignorance or misconception of man's true good. To be ignorant of the good is the one disgrace. If a man docs not know itat least devote himself seriously to inquiring to at least devote himself seriously to inquiring, to
the effort to learn. If not wise (a sophist) he can at least be a lover of wisdom (a philosopher). And until he attains knowledge, the individual will be loyal to the responsibilitics of his own civic life.

The two conceptions of the good as some
how the fulfilment of man's true nature or reality, and as attainable only under condition of rational insight are the bases of all man's end is, and as to the character of true know edge of it. The extreme division was between the Cynic school, the forerunner of the Stoics founded by Antisthenes (about 444 B.C. 35 B.C.), and the Cyrenaic (the precursor of Epi-
curcanism, founded by Aristippus (about 433 curcanism, founded by Aristippus (aboul
B.C. -360 B.C.). The former taught that virt B.C.- mifested in temperance or self-control, is the one and only good, pleasure as an end bcing evil, and that it is known by pure reason. The latter taught that pleasure, known only in fee
ing (the sensation of a gentle and continuous ing (the sensation of a gentle and continnou
change) is the good. The wise man of Socrates change) is the good. The wise man of socrating pleasure and is not captured by sudden and violent passion. Both schools take a somewhat antagonistic attitude toward the state; the Cyinc emphasizing the superiority of the sage to gove anecdotes of Diogenes and Alexander the Great; the Cyrenaic holding that the pleasures of friendship and social companionship of the congenial are superior to those of participation in public life. These schools thus set two of the fundamental problems of subsequen ethical theory, namely, the nature of the good
and the nature of knowledge of it; and supplied the framework of later schools of though Those who hold that pleasure is the good are termed Hedonists (Gr. jidov方, pleasure) ; those who held to its residence in the virtuous will Perfectionists, or (with certain qualifications
added) Rigorists. Those who hold that it is added) Rigorists. Those who hold that it
known through reason are Intuitionalists, the other school, Sensationalists or Empiricists. Plato (q.v.) (about 427 B.C. 347 B.C.) at tempted a synthesis of the conceptions of the two schools just referred to, with a constructive program of social, political and educational reform, and with a reinterpretaticn of earlier
philosophic theories of the universe and of knowledge. His most characteristic doctrines are (1) the generalization of the Socratic conception of the good as constituting the tric essence or nature of man. Under the influence of philosophic concepts derived from a variely of sources, Plato conceived man as essentially a microcosm; as the universe in miniature.
He is composed of a certain arrangement of the clements of reality itself; hence he can be trult known only as the real nature of the universal reality which constitutcs him is known; his good is ultimately one with the final cause or good of the universe. Thus Plato goes cuen farther than Socrates in asserting that morality is
nature - it is by the nature not only of math but of absolute reality itself, which is thus giver an ethical or spiritual interpretation. Thus he grounded ethics on general philosophic conceptions and has been the model for all since who have distinctly conccived ethics to be a branch of philosophy. Moreover, since he regards the and as the animating purpose in the creation of physical nature, he brings ethics into connection with religion, and with man's relations to the world ahout him. (2) Plato regarded the state in its true or ideal form as the lest embodiments or expression of the essential nature of ind
vidual man; as indeed more truly man than any
one individual. In its true organization, it good. Thus Pes the constitution of the ultimate nection Thus Plato brings ethics back into conorganization politics as the theory of ideal social state in outline Practically, he delineates this with Laws), and proposes in feasible detail in his specific reform of the existing order instead dsregard of it as with Cynic and Cyrenaic (3) He sets forth a scheme of the good as calizable in human nature, which endeavors to ure and the one-sided extremes of mere pleas to be the fulfiment of conceives the good ies or functions of human nature, the fulfil ment of each power being accompanied with it wnd appropriate pleasure, and all being ordere and bound together in a harmonious whole by to each its propure or proportion which assign are of pure knowledge. at the bottom the appetites; between, the pleasures of the noble enses (sight and hearing), and of the higher hpulses - ambition, honor, etc. The right func The systeach is virtue; its product is pleasure he good of pleasures according to virtue is irtues which result-wisdom, the knowled the good or organized whole; justice, the law io proportion or measure; courage, the asser un of the higher tendencies against the pleas or and pains arising from the contemplation iaw of subordination in accordance withe which ach lower function is restrained from usurpin he place of the higher. Plato's system of ethic "self
-rcalization" type
Aristotle (q.v.) (384 в.c.- 322 b.c.) gave the cientific and empirical turn of Plato a more ever, which is often exaggerated. He protested ginst the identification by Plato of human enc good with that of the universe, and conseyuently attached less importance to knowledge to practical insight or wisdom But, and mor ssuming the Platonic basis he carried into etail the analysis of human faculties or funcons involved in conduct, giving a careful varysis of desire, pleasure and pain, of the action modes of knowledge, of voluntary various forms of a remarkable analysis of the int. In a word he emphasized in detail psycho gical and social aspects, merely sketehed by ato. On the social side, it had become obvious the comprehensive scheme of reform enter Aned hy Plato was impossible; and here, also descrintio is free to undertake a more empirica revernment ases and bearings. When in the their moral enturies A.D. the works of Aristotle were again ade known to the European world firs rough translations from the Arabic and then ond the Greek, Aristotie's ethics became ematholi in the official philosophy of the Roma Saint Thomas Acspecially in the writings of iterary expression in the Divine Comedy of Tatte Expression in the Divine Comedy of undly affected common speech and thought
than those of any other writer, and to a larg extent have become a part of the moral com-mon-sense of civilized humanity
The details of later ethical philosophy in Greece and Rome form an interesting part o the history of ethics, but, with one exception, supply no new idea of sufficient importance to concention of virtue as exception is the Stoic with nature," and the conception of the "law with nature" which grew out of this. This idea under the form of jus naturale, was taken up into Roman jurisprudence, and became the ideal of a common moral law which underlies all dif ferences of positive municipal law, and which positive law can be tried, and its diversities duced to a common denominator. It reappeared in the Middle Ages in the form of the natura law (as distinct from revealed or supernatura law), written on the "fleshly tablets of the forming the still current notion of conscience as a moral legislative force. It came out in continental ethical thought of the 17 th and 18 th centurics in the conception of moral law as something analogous to a system of mathematical axioms, definitions and demonstrations, diswork of both individual and political ethics

Patristic Mediæval Period (5th to 15th turies A.D.) - The second period of ethical history is characterized by the subordination of cthics, as a branch of philosophy, to theology, The distinctive features contributed in this period to subsequent ethics are the emphasis duty, and merit or demerit, namely, the good as religious salvation involving a knowledge and love of God as supreme perfection, possible only in the next world; and evil as sin, guilt also needing supernatural expiation. Because of the are largely apon law and authority, mora ridical conceptions. Most significant, however for ethical theory is the transfer of theoretical interest from the conception of the good, the central idea of ancient ethics, to that of obliga tion. Not the natural end of man, but the duty
of absolute submission. of will to transcendent moral authority was the keynote. And even when ethics was freed from subservience to theology, it still remained easier for the modern mind to conceive of morality in terms of the nature and authority of duty than as the process of realizing the good. On the more concrete,
empirical side, the great contribution of medixval theory was in depicting the moral drama the struggle of good and evil, as it goes on in the individual soul. The fact that this was fraught with significance for an cndless future life made it a subject of anxious and minute attention; and here, too, even when the moral region was later marked oft more or less
definitely from the religious, modern thought owes its consciousness of the subtle perplexities, temptations and shades of moral effort and issue to mediæval rather than to ancient ethics.
Early Modern Period (The Reformation to the French Revolution). - The complexity and variety of moral theory and inquiry since the
15 th century, as well as its relative nearness, make it difficult to sccure the perspective necessary to its proper characterization. It is all
more or less connected, however, with the struggle toward greater individual fecdom, and with and institutional hife, on the basis of recognition of individuality -- the democratic movement. In its carliest period, modern cthics was largely characterized by reaction against scholasticism; it was an effort to secure a basis for to mene schoolmen's versions of Aristotle. Moreover so much of energy was expended in the practical effort to get frcedom of thought, of political action, of celigious creed, of commercial life, that moral theory turned largely upon detailed questions arising out of the practical struggic, the scattered, fragmentary condition of modern ethics as compared with the systematic character of cither Greek or medixval hought. Moreover, the very gaining of intellectual freedom of inquiry opened up countless fields of interest.
Ethical problems sprang into existence at cvery turn; every new movement in industry, in politics, national and international, and in art, brought with it a new ethical problem. Social life was itself undergoing such rapid change and in such tentative, uncertain ways, that each of these problems had to be attacked independindividualistic, rather than a constructive and systematized ethics - with the advantage, however, of remarkahle richness in detail.
Continental ethics followed the prevailing philosophic method of rationalism; the attempt social, on the basis of pure reason, independent of revelation of ecclesiastic authority, or positive institutions. While the method was a priori in name, as matter of fact it drew largely upon the inheritance of generalized Roman law, at-
tempting to harmonize and purify it in accordempting to harmonize and purify it in accord which were supposed to represent the demand reason. Grotius (1583-164.) was the founder of this movement, and, in his De Jure Belli e 'acis, used the idea of law which is founded upon man's rational nature, which in turn is fomity, commerce and war upon a more humane and cnlightenced hasis. His German suc cessors, Puffendorf (1632-94), Lcibnitz (1646716), Thomasius (1655-1728), Wolff (1679 1754), carried on with greater critical acumen and more ader ind fing deved a complet ystem of rights and duties (called Naturrech fter Jus Naturale) applicable to all spheres o private, domestic, civil, political and interna ional life - a code of morals, positive in effect but supposed all to be drawn deductively from rational first principles. Upon the whole, the
infuence of German ethical rationalism was conservative; the result in fundamentals was the ustification of the existing social order, purged of inconsistencies and reformed of abuses in detail. French rationalism took a different turn It attempted a synthesis of the more basal notions of the newly arisen physical science with his English successors. It was rationalistic no so much in attempting to deduce an cthical system from the conceptions of reason, as in
subjecting the existing order of belief and insti-
tutions to unsparing criticism as anti-scientific. In its extreme forms it scemed to demand an abrogation of existing institutions, the erectiont Of the same tabula rasa in social matters, creation de novo, by sheer voluntary action, of a new social order, aiming at universal happ ness. Reason gives an ideal of socicty in which economic want and misery shall 1 e abolished, and a widely diffused intelligenco and weaith shall be instituted. Pessimistic to the extreme as regards the existing order, it was equally optimistic as to the possibitities of social the infinitely progressive perfectibility of human nature; thus Helvetius, 1715-71 (De l'esprl, 1758; De l'Homme published 1773): Diderot (1713-84) ; Condillac (1715-80); D'Holbacl1 (1723-89), especially 'Systeme Social' (1773), Condorcet (1743-94.). Whate German ethical law which is social in nature, French thougit culminated in a deification of natural rignts which are individual in their import and location. Certain characteristic features of not only American American publicists in dhe latter hale of this influence.
English cthical theory received its impetus from Hobbes (1588-1679). He begins with an analysis of the make-up of the individual, and resolves the latter into a bundle of egotistic in-
pulses, all aiming at unrestricted satisfaction. pulses, all aiming at unrestricted satisfaction.
He denies the existence of any inherent social tendency, or of anylhing "rational" in the inclividual save as deliberation may be involved in the individual's cefforts after satisfaction. The social counterpart of this unlimited individualisin
is chaos, anarchy, conflict - the war of ali is chaos, anarchy, conflict-the war of alt
against all. Hence the individual's quest for against all. Hence the individual's rfuest for of fruition only within the state of alsolute power which prescribes to each indiviclual the proper sphere of the excrcise of his powes
The state is thus the author and sanction of al The state is thus the author and sanction of aumoral distinctions and obligations. The aus is alsolute; since the source of moral law, ${ }^{12}$ cannot be sulbject to anything beyoud itself. There are thus three strains in Hoblocs' teaching. The psychological, which tcaches pure egotism
and hedonism; the ethical, which makes the state the source of moral values and relations; the political, which makes its athority un limited. Each strain evoked profound and instant reaction. John Locke (1632-1704) talught that the individual has a natural right to a of personal security, possession of property
social activity, subject only to limits of social activity, subject only to limits
similar rights of others, and that the stal comes into existence to protect and secure the rights by settling cases of dispute or aggression and hence is null and void when it goes beyo this province and encroaches upon individ
rights. A succession of rights. A succession of writers, notably Staiter ler (1692-1752)) : Adam Smith (1723-90), , dertook a re-analysis of human nature, endeavored to justify the presence of disit terested henevolent impulses, of tendencies ${ }^{\text {to }}$ 88) ; More (1614-87); Cumberland (1632
1718); Clarke (1675-1729); Price (1723-91) linctions, and tried to show that they were dised not in the state but in immutable laws of reason, or upon a science as abstract and certain as tuition, etc, But during made known in inproblems came to light, and led to a rearrangement of forces. These problems were (1) the relation of happiness - the expression of the self-secking tendencies of man - to virtue, the expression of his benevolent tendencies; (2) the wrong; (3) the nature of moral knowledye The first problem led in Butler to the attempt to introduce "conscience" as a third and baland ing authoritative factor in human nature, and in Smith and Hume (1711-76) to a peculiarly rich and significant theory of symtinctively moral sentiments are generated and whose exercise is intimately bound up with individual happiness. The second and third problems taken together lead to the contlict of htilitarianism and intuitionalism, the former possilile happiness is the standard of right the basis of olligation, and the source of all moral rules; this conduciveness to be determined by actual experience; the latter holding that there are moral values, which are inherently and absolutely such, without reference to consea non-theological varicty. Among theological utilitarians are prominent: Gay (1686-1761), and Paley ($1743-1805$); among the non-theological Jeremy Bentham (1748-1842) outranks all the mentall. Without adding much that is fundamentally new to the theoretical analysis, he with a discussion of the various impulses (or motives as he termed them) of human nature he basis of a thorough-going scheme of judicial and penal reform. Through him utilithe first became the most potent instrument of the first half of the 10 th century of social distributed happiness being the test by which alt customs, traditions and institutions were tried - and by which most of them in their exent forms were condemned.
Recent Modern. (From the French Revolusignalize a tust 20 years of the 18th century thought. Bentham's and Kant's chicf works are dated in this period. The French Revolution, arrying into effect the naturalistic rationalism ind its optimistic faith in the possibilities of the Individual, compelled a reconsideration of the The problem premises from which it set forth. liack fromem of 19 the century cthics was to get Vnich includes him and within which he functans; but to do this in a way which should take dhe account of the deepened significance Wiven to individual initiative and freedom$i_{\text {ism, }}$ or to arbitrary external authority. The following schools or main tendencies are easily (astinguishable:
(a) English Liberalism. - In Bentham, utili(arianism, English Liberalism.- In Bentham, utinof social reform. The attempt to stretch an in-
istic hedo 35 the
vol. $10-35$
end of desire is always the agent's own pleasure into a theory which taught that the individual should always judge his motives and acts from
the standpoint of their bearing upon the happithe standpoint of their bearing upon the happi-
ness of all beings, brought out all the weaknesses ness of all beings, brought out all the weaknesses
of the theory. James Mill (q.v.) (1773-1836) of the theory. James Mill (q.v.) (1773-1836) strove valiantly to overcome these weaknesses tion, in virtue of which individual states become indissolubly connected, through punishment or commerce, with the welfare of others - the theory of "culightened selfishness," for which Hartley (1705-57) had previously provided the psychological machinery. His son,
John Stuart Mill (1806-73) while extending the same idea, introduced into utilitarianism two innovations, which were scized upon by his intuitional opponents as virtual abandonments of the entire hedonistic position. These were quantity and pleasure is more important than social and so instinctively judges his own welfare from the standpoint of society, instead of vice versa. J. S. Mill also severcly criticised the other utilitarians for their neglect of the ideal clements in education, and for neglect of the culture element in historical development. With-
out abandoning the individualistic basis he was much influenced by schools (b) and (c) below From (b) came the influence of Coleridge (1772-1834); Maurice (1805-72), and Sterling (1806-43): Bain (1818-1903) belongs to the same empirical and utilitarian school. Sidgwick
$(1838-1900)$ in his 'Methods of Ethics' attempted a fusion of the utilitarian standard with an intuitional basis and method.
(b) German rationalism culminated in Kan (1724-1804), who reduced the function of moral reason in man to a single principle; the consciousness of the moral law as the sole and
sufficing principle of action. Since the claims of sufficing principle of action. Since the claims of
this principle are opposed by those of self-love - the desire for personal happiness - the presence of moral reason in us takes the form of a "categorical imperative," or the demand that duty alone, without any influence from inclina-
tion, desire or affection, be the motive of contion, desire or affection, be the motive of con-
duct. Upon the consciousness of duty are built the ideas of freedom, God and immortality -that is, by moral action is opened to us a sphere of reasonable faith in transcendental realities which are shut to scientific and philosophic cognition. Kant brought rationalism to a turn
much as Bentham had affected empiricism. Subsequent German thought attempted to overcome the formalism of Kant's bare reason, making itself known only in a conscionsness of obligation Hegel (1770-1831) attempted a synthesis of the Kantian idealism with the ideas of Schiller, of Spinoza (especially through the medium of
Goethe), and of the rising historical school founded by Savigny. He endeavored to show that the social order is itself an objective embodiment of will and reason, and that the regions of civil law, of family life, social and commercial intercourse and aliove all the state constitute an ethical world (as real as the physi-
cal) from which the individual must take his cue. He anticipated in many particulars from the standpoint of a different method and terminology, doctrines of recent anthropology and social psychology. Gcrman moral influence has been felt in English thought chiefly throngh
Coleridge, Carlyle (who was mainly affected by

Kant's successor, Fichte, 1762-1814), and more Kant's successor, Fichte, 176-1814), and more England Transcendentalists were also affected by this school of thought, Ralph Waldo Emerson (q.v.) (1803-82) giving a highly origina version of it, blending it with factors of his own ism.
(c) In France, the reaction from the individualism of the Revolution was most marked. At the head of the reaction stands Comte
(1798-1857), who attempted to build up a theory of ethics upon an organized social basis, similar in many respects to that of Hegel, but relying upon philosophy, for method, his system accordingly being termed positivism. Comte sought to show how such an ethical-social science could replace metaphysics and theology, the latter in the form of a religion of latter's wife, George Eliot, and also John Stuart latter'
(d) In the latter half of the 19th century the theory of evolution has been dominant in ethical as well as in other forms of philosophic and scientific thought. Herbert Spencer's appliis, however, generally recognized that his fundamental cthical conceptions were worked out before he became an evolutionist, and that the attachments between his ethics and the theory of evolution are of a somewhat external character. ment of the science of ethics waits upon the more thorough clearing up of the evolutionary ideas themselves, and upon more complete application to biology, psychology and sociology (including anthropology and certain phases of the history of man) in order to supply the auxiliary
sciences necessary for ethical science. Through the conception of evolution it is probable that the conception of will emancipated from the survival of the idea that it is an art whose business is to lay down.rules. The practical aspect of the theory of ethics will necessarily remain (since it
is theory of practice or conduct), but it will take is theory of practice or conduct), but it will take
the form of providing methods for analyzing and resolving concrete individual and social situations, rather than of furnishing injunctions and precepts. The coincidence of the evolutionary tendency with the growth of democracy will relieve ethics in its philosophic aspects from ards and laws, and constitute ethics more and more a working method for the self-regulation of the individual and of society.
Every period of ethical theory has been associated, as we have seen, with some corresponding epoch of human development, having whole, however, ethics has not as yet adequately outgrown the conditions of its origin, and, the supposed necessity they imposed of finding something as fixed and unchanging as custom Consequently, philosophic inquiry has been devoted to finding the good, the law of duty etc.;
that is, something unchanging, all inclusive. Even the empirical school, in its emphasis upon pleasure, has tricd to find something free from conditions of development, something fixed in the sense of heing. everywhere and at all times the same single unchanging standard and end
as merely relative, and anticipates a period in which cvolution will reach its goal-a period uniformly binding. But as ethical writers become more habituated to evolutionary idean mey will cease setting up ideais of a law; and will devote themselves to studying the condrtions and effects of the changing situations in which men actually live.
Consult the works of the authors already mentioned and also Clifford, W. K., 'The Scientitic 'Philosophy of the Practical) (London 19131; Dewey and Tufts, 'Ethics' (New York 1908); Mackenzie, J. S., 'Manual of Ethics' (New York 1901); Mezes, S. E., 'Ethics' (London 1901) : Palmer, G. H., 'The Field of Ethics' (Boston 1901) ; Paulsen, F., 'System of Ethic of (New York 1899) ; Royce, J., (Philosophy of Tendencies in Ethics' (Edinburgh 1904) Stephen, Sir Leslie, 'The Science of Ethics'
(2d ed., New York 1907); Thilly, Frank, (2d ed., New York 1907); Thilly, Frank, 'Introduction to the Study of Ethics' (New
York 1900) : Wundt, W. M., 'Ethics' (London York 1900)
1897-1901).

John Dewey,
Professor of Philosophy, Columbia University.
ETHIOPIA (Gr. ai $\theta \omega$, to burn, and $\delta \psi$, countenance), the biblical CUSH, in anclent Geography, the name originally given by world. It is divided in the poems of Homer into eastern and western Ethiopia, and this distinction is repeated by Herodotus, and by the later Greek and Roman geographers. Homer northern boundary f Se Southern Sea Some ancient writers give the boundaries of the three Ethiopian kingdoms, Meroē, Aksum anu Napata. Eastcrn Ethiopia appears to have in cluded southern India, whose inhabitants were called Ethiopians from their color. There were, of a darker color than their neighbors, who wore crests made of the hides and manes of horses, and are supposed to have been a Mongolian tribe which had wandered into the steppes of Koordistan. The name Ethiopia was more usually and definitely applied to the coun the try South of Libya and Egypt, between on the west, and embracing the modern regions of Nubia, Scnnaar, Kordofan and Abyssinia. In a still narrower sense, the designation was restricted to the province or kingdom of Mcroda. which was also called the civilized Ethiopia.
African Ethiopia, which is called in the Bibic the land of Cush, embraced, according to Pliny, 45 distinct kingdoms; yet as neither the Greeks nor Romans ever penetrated beyond Napata, in lat. $19^{\circ} \mathrm{N}$., we are indebted for most accounts of it to Greck imagination. Mcroe, between the Nile and the Astaboras, formed the constitution. The other principal divisions were the Blemmyes, whose aspect was hideous; thi Troglodytx, who lived in caverns; the Macrobii, or long-lived men; the Ichthyophagi, or fish eaters; and the Creophagi, Chelonophagi, respectively the eaters of flesh, tortoises, ele-
phants, ostriches and serpents. Fable placed parts of Ethiopian were named from their productions; as the land of cinnamon, and of myrrh, and the Jews and Phoenicians went Ethither to obtain aromatics and ivory. The among the priests, and the order of succession gave the crown to the nephew of the king the son of his sister; and in default of an heir an election was made. The people practised circumcision, and embalmed their dead in a manner similar to that of the Egyptians. They character, and yet are represented as violent and practising justice. Homer makes Jupiter visit them, and sit at their feasts. There were many Ethiopian queens named Candace, one of Whom became subject to the Emperor AugusEthiopia became almost wholly Arabian of so continued after the introduction of Christianity in the 4th century. When the followers or Mohammed overran the entire region some centurics later, the Arabic element gained comAges the Christians and During the Middle were designated as the Ethiopian Church. See Meroe.

The Geez has 10 conjugations, 8 of which 6 th being peculiar. A double infinitive is the substantively, this mood having both an absolute and constructive form. There is no participle. The dual is unknown both in verbs and nouns the difference of masculine and feminine is observed throughout in the second and third
persons. The relation of the pressed by an inflection, causing some chatges in the terminations, or through the relative pronoun; the dative by prepositions; the com parative and superlative degrees by particles The plural is formed by affixed syllables, an in masculine, at in feminine nouns, on the prinAramaic, or by changes in the radical letters after the manner of the so-called broken plural in Arabic. In the formation of nouns the Gcez most resembles the Hebrew, but it has superfluous final vowels, modified in certain cases, in which it is analogous to the Arabic in inscriptions, there are no remnants of the ancient Ethiopian literature of a period preced ng the introduction of Christianity under Con stantine the Great, but of works composed since hat time about 200 are known to European the Septuagint by unknown Christian writers in the 4th century, is extant in manuscripts in Europe, but only a part of it has been printed The Psalms were published in Ethiopic and Latin by Ludolf (Frankfort 1701), and in thiopic alone (London 1815). The versio of the New Testament appeared at Rome in
1548 , and in the London polyglot Bible. O versions of apocryphal books, in which the Ethiopic is particularly rich, several have bee published, as the 'Book of Enoch,') translated by Richard Laurence into English (2d edition London 1833), and by Hoffmann into German into Latin, and published in translated by Laurenc (Oxford 1819). Geez in 1840 (London), and Ascensio Isaice. The (Didascalia, or Apostolical Constitution of the Abyssinian Church,' wa (London in Ethiopic and English by Platt saints, martyrologies and the hymns of the Ethiopian Church, in rude rhythmical form every three or five lines often ending in the same consonant, which forms a kind of rhyme. The profane literature of the Ethiopian lanof chronicles, which appear to be of considerable interest, but have not yet been generally accessible. Of these the most remarkable are the 'Keber za Nageste,' containing the traditional and legendary history of the once mighty kingdom of Aksum, a copy of which was brought to Europe hy Bruce, and a translation Nagushti,' or chronicle of kings. In Europe the Ethiopian language was almost unknown until the time of Job Ludolf, who, being assisted by an excellent native scholar, Abbas Gregorius, made himself master of it, and published an admirable dictionary and grammar (2 d imManuscripts written in the Ethiopian language are in possession of Ahyssinian monks and in libraries in Europe. Their knowledge of music may be inferred from their musical notation
which has been published. After a long inter val the interest in this language and literatur has been revived hy the works of Platt, Lau rence, Gesenius, Hupield, Hoftmann, Rodiger Ewald and others, as well as by the contribu-
tions of Isenberg, Blumberg, and D'Abbadie Bibliography.-- Breastcd, 'History of Egypt (New York 1909); Budge, 'The Egyptian
Sudan' (London 1907) D'Almeida, 'Historia Sudan' (London 1907) ; D'Almeida, '(Historia de Ethiopia alta' (Coimbra 1660) ; Bosset tudes sur histoire d'Ethiope' (in Jurnal Ahe Ethiopians) (London 1893); Bruce, 'Travels in Abyssinia' (Edinburgh 1773)
Hoskins, 'Travels in Ethiopia' (London 1835) Dillmann, 'Grammatik der Athiopische Sprache' (Leipzig 1859; 2d ed. by Bezold (1871); id. 'Grammatik der tigrina Sprache (1871); : Schrieber, Manuel de la langue tigrai') (Vienna 1887); Goldschmidt, 'Biblio theca Fthiopica) (Leipzig 1892); Fumagalli, 'Bibliografia Etiopica' (Milano 1893); Litt
mann, (Die dcutsche Aksum-Expedition' mann, Die deutsche Aksum-Expediti pe la storia d'Etiopia' (Rome 1903)
ethiopian Church. See Abyssinian ETHURCH. ETHIOPIAN PEPPER. Sce GUINEA EPEIOPIAN REGION. See Zoógeog

ETHIOPIANISM, a movement among the native races of South Africa, having for object negro domination in Africa, thus contem-
plating the ousting of the whites. It has in he past masqueraded as a sort of religiou caching and took its start in the carly receded from the Wesleyan Church and founded the Church of Ethiopia for blacks ex clusively. One of these ministers, Dwane, came to America and had his church recog nized by the African Methodist Episcopa Church. Later he sought a union with the Anglican Church at Cape the temporizing and weak-kneed policy of the Anglican archbishop Various troubles, religious and political, have been traced to the movement; of the latter we may cite the Herero uprising of 1904, and the ulu insurrection two years later. Little has decade.
ETHIOPIC. Sce Ethiopia, Language and
erature: Ethiopic Writing
ETHIOPIC WRITING. Sce ETITIOPIA.
ETHIOPS MINERAL, a name formerly given by chemists to the black sulphide of mercury, prepared by rubbing mercury and sul phur together, either hot or cold. Fithiops martis, or ethiops of iron, was the black oxide got by exposing iron-filings and water to the air. wrack, heated

ETHMOID BONE, The (so called from ethmos, "a sieve"), is one of the eight bones of a somewhat cubical form, and enters into
the nasal fossx. Its upper surface is perforated by a number of small openings (whence it See Nose
ETHNIC PSYCHOLOGY Sce Ps chology, Ethnic.
ETHNOGRAPHY, a branch of ethnology the vast science which treats of mankind language, art origin and their development barbarism into civilization. The Germa scientists class ethnology as a science stand
midway between natural history and philosopty As natural history in the ordinary sense the term, is a classification and description the lower animals, ethnology may fairly be considered as a classification of the various fan lies of the human race, based on the observation of their physical characters, and geo ords and monuments of mankind we nim traces of various lypes of humanity. The statues and paintings of ancient Egypt rep resent several racial types including the negr the Berber and the Asiatic. In the first bo their descent from one of the three sons o Noah, Shem's progeny occupying Wester Asia, while to the posterity of Ham and Japhet fell North Africa and southern Europe, respectively Some recognition of the superfic physical differences ohservable in variously als
tributed races may also be found in Greek and tributed races may also be found in Greck
Roman writers. In the Middle Ages little prog ress was made in cthnography. The discovery of America, with its revelation of new huma types, seems to have given the first genume stimulus to this study, and the word ethnog raphy was first uscd in a book published graphical Picture Gallery.' In his great work 'Systema Nature,' Linuæus classes mankind (Homo sapiens.) together with the apes unde
the order of Primates, and divided them into the order of Primates, and divided them
four groups, as American, European, Asic four groups, as American, Brican. Buffon in his 'Variétés dan l'espece lumaine' distinguishes the races an cording to their geographical distrinution, though he makes some reference to physify
variations. Blumenbach was the first to classif the races of men according to the shape of their skull. The Caucasian, whose skull wad symmetrical, he set as the normal type, mire
way between the Mongolian with the square skull, and the negro with his prognathous skull, while the American was ranged between the Mongolian and the Caucasian, and the Malar In van between the Cancasian and the negro. each of these types he distinguished and recog mized as important the character of the
the setting of the eyes, and the form of tire mouth.
The modern science of ethnography dates from the year 1829 when Milne-Edwards wrote to Thierry, with the result that the Socle of
Ethrologique was founded. The founding of Ethrologique was founded. The founding an ethnographic museum was suggested
Jomard in 1843, and built some ycars later in Paris. Since that time the study has bect thoroughly systematized all over the worl
While of all cthnographical classifications the While of all ethnographical classifications the
most obvious is the enumeration of the white, most obvious is the enumeration of the wether
yellow, red and black-skinned races, as toge yellow, red and black-skinned races, as togent
making up mankind, this is clearly insufficient
ent it would be likely to confound widely differclassification have been made. Oscar Pechsel recognized seven races of men: (1) the Austhe Papuan, including the Melan cluding the Pelynest.; (3) the Mongolian, inand the American Indian; (4) the Eskimo, (southern India and Ceylon); (5) the HottenMet and Bushman; (6) the negro; (7) the clude the Hamitic, Semitic, and Indo-European It will be seen that these divisions are based pon other considerations than those of physical character, for it is merely because of their geographical proximity that the Hamitic, which be placed in one category with the Caucasian Among the most recent systems of ethnographical classification is that of Hacckel who has coided the human family into races in accordance with the variations of a single physiing to hister, that namely of the hair. Accordand four sub-species of hair found among mankind, who may be broadly separated into the Woolly-haired (Ulotriches), and the straighthaired (Lissotriches). The woolly-haired consubt (1) of the crested-haired (Lophocomi) the Papuan. represented by the Hottentot, an (Eriocomi) which includes the negro and the naffir. The straight-haired are subdivided nto the streaming-haired, and the curly-haired To the former belong the Australian, the Arctic wellers, the American Indian, Malay, and MonSolian; to the latter the Dravidian, the Med NoLocy and consult works subjoined See ETH

ETHNOLOGY, that branch of the science mankind and seeks to treats of the races of development.
Anthropology is the science which treats of man in relation to himsclf, to other men and 0 all nature. It is subdivided into severa ranches, each of which treats of some special diaference in the meaning given by sture is he names employed to designate the division of the study of man. Ethnology, ethnography and anthropology have been to some extent in ierchangeable terms. Each of these branches of knowledge has a special meaning given it in more general acceptance of a definite meaning or these topics. The comprehensive tern anthropology is recognized in its general sense to include all others (Keane, Tylor, Mason) The meaning hercin given to Ethnology is of the term anthronology, bo desimate socictics ior the study of man and for sections in naional scientific bodies on both sides of the Atlantic, indicates a general tendency to accept he proper meaning of the word.
Ethnology differs from ethnography, which ing chiefly with the collection of facts regar in the families, tribes and races of mankind information obtained. Ethnography (from zover people, rpí申ecv to write) is a writing about description of, peoples. Ethnology (from

Oovos, a people, doyor a discourse), attempt to interpret the facts gathered, to explain th causes for the conditions and the relationship ogy occupy a relation to each other somewhat kin to that of geography and geology. On deals chiefly with existing facts, the other at tempts to interpret the history which brough hem forth
Broca says ethnography studies peoples ethnology races. The following seems a conanthropology. Substantially it is as follows Archæology, Biology, Psychology, Ethnology Ethnography, Philology, Technology, Sociology The Religion (Mason).
The unity of the race is now generally accepted. From the researches of the physiologist
the anatomist, the philologist and the psycholo gist we obtain the same testimony as to th specific unity of our race. The place of origi or centre of dispersal is not fixed. From th studies of eminent specialists, it would seem
that the land about the shores of the Mediterrancan, or the region farther eastward toward India, may claim to be the home of primitiv man. About the Mediterranean they settle down like frogs about a pond (Plato)
Classification.-For classification, mankind is divided into groups. On account of thei geographical divisions. They are also distincuished as families, clans, tribes, nations, peoples and races. In the naming of the latter family relationships form a prominent factor It is with both of these lines of classification and the distribution of those discussed under
them that ethnolagy has to do. In these efforts at classification, different schemes have heen tried. It is generally accepted that there are two groups of clements of characterization which are sometimes called criteria. These are physical clements and psychical elements.
The principal physical elements are the the color of the skin, color shape and textur of the hair. Of these, color, probably because the most conspicuous feature, was the first to be considered and formed the basis of all the early classifications. The craniological school the shape of the head the basis of classification and introduced exact methods into this branch of the subject. This was based on the relative length and breadth of the skull, and accordingly mankind was divided into long-skulled and in craniology introduced a third class, repre senting a mean between the other two. Craniology alone cannot be depended upon to supply sufficient or trustworthy materials for the proper classification of mankind. Ncvertheless it has thrown much light upon the subject. Of late years the color, shape and texture of the hair
have steadily riscn in the estimation of naturalists as a racia! test. The hair is now re garded as the most constant of all the physical features and has been made the forndatio of their groupings by some of the most emi anthropologists.

The other physical ethnical elements are of litle value separatcly, but are often useful aids the shape, color and position of the eye; the
size and form of the brain; the shape of the nose and mouth; the superciliary and zygomatic arches, and all such other elements as collectively constitute the lower,
races. and have psychical clements are less conspicuous, in classification. It has been said that "Love and hunger rule the world." The former relates to the perpetuation of kind, the latter to selfpreservation. Around these two may, be
grouped the other factors of this class. The following are the principal psychical elements:
(1) Preservative instinct, food, clothing, shelter; (2) Perpetuating instinct; (3) Language; (4) Religion; (5) Government (6) The Arts.
Food, clothing and shelter are the imperative needs of the human species at all ages and
under all conditions. Among the prominent topics considered under the sexual impulse are the position of woman, the marriage relation and the line of descent. Language is the chief of the psychical clements. Some perhaps, with Horatio Hale, would make it the sole test of
race. The power of religion, both as a conrace. The power of religion, both as a con-
structive and dispersive force, is the repeated structive and dispersive force, is the repeated
testimony of history. The organization and administration of government, whether in its
primitive forin or in the more enlightene tage, is of deepest interest. The arts of find their origin in the rude homes of eariy man, and have steadily been influential in a lost, tribes been destroyed, nations been formed, battles been won. They have been the motive power in every effort, the impulse behind ever forward movement of mankind from the carl st days to now

Race Classification. There have been so nany changes in this world of ours and so many mixtures of ancestral strains that it is mpossible to determine certainly to which ract certain peoples belong. After successive effor or that character to classify mankind upon the tendency now seems to be to return to the earlier classifications. To recur to the three greater subdivisions - white, black and yellow or, Caucasian, Negro, Mongolian.

With all the data gathered and the characters used in succeeding classifications, the origina color plan in a general way is as good as
know. Popularly too, this secms to have struck know. Popularly, too, this secms to have stru
the fancy. Without thought we speak of a person as white, black or red, as he is a Cau casian, Negro or an American Indian. Dall divides nian into three groups: white,
black and yellow. Flower and Lydekker also GENERAL ETHNOGRAPHIC SCHEME.

Race	Traits	Branches	Stocks	Groups or Peoples
European	Color white Hair wavy Nose narrow	I South Mediterranean II Mediterranean	1. Hamitic 2. Semitic 1. Euskaric 2. Aryac 3. Caucasic	1. Libyan 2. Egyptian 3. East African 1. Arabian 2. Abyssinian Euskarian Indo-Germanic or Celtindic peoples Peoples of the Caucasus
African or Negro	Color black or dark Hair frizzly Nose broad	$\begin{gathered} \text { Negrillo } \\ \text { II } \\ \text { Negro } \\ \text { III } \\ \text { Negrvid } \end{gathered}$	1. Central African 2. South African 1. Nilotic 2. Sudancse 4. Guinean 1. Bantu	Dwarfs of the Congo Bushmen, Hottentots Nubian Kaffirs and Congo Tribes
Asiatic or Mongolian	Color yellow or olive Hair straight Nose medium		1. Chinese 2. Tibetan 3. Indo-Chinese 1. Tungusic 3. Tartaric 4. Finnic 5. Arctic 6. Japanic	Chinese Natives of Tibet Burmesc, Slamese Manchus, Tungus Mongols, Kalmucks Turks, Cossacks Finns, Magyars Japanese, Koreans
American	Color coppery Hair straight or wavy Nose medium		1. Arctic 2. Atlantic 1. Mexican 2. Isthmian 2. Pacific	Eskimos Tinneh. Algonkins, Iroquois Chinooks, Kolosh, etc. Nahuas, Tarascos Mayas, Chapanecs Caribs, Arawaks, Tupis Chibehas, Quichuas
Oceanic	Color dark Hair wavy or frizzly Nose medium or narrow	$\begin{gathered} \text { I } \\ \text { Negritic } \\ \text { II } \\ \text { Malayic } \\ \text { III } \\ \text { Australic } \end{gathered}$	1. Negrito 2. Papuan 3. Melanesian 1. Malayan 2. Polynesian 2. Dravidian	Mincopies, Aetas New Guineans Feejecans, etc. Malays, Tagalas Pacific Islanders Australians Dravidas, Mundas

size and form of the hrian the thape of the nose and mouth; the superativy and zygomatic arches, and all stich oder fore lower the ovat and :races. and have but recently len taken into account ith classification. It has been said that "Love and hunger rule the worlu." The former relates preservation. Around these two may be grouped the other factors of this class. The following are the principal psychical elements: (1) P'reservative instinct, food, clothing, sheller; (3) Perpetuating inctinct; (3) Ianguage; (4) Religion; (5) Government (6) Food, clothing and shelter are the imperative needs of the himan species at all ages and topics considered under the sexual impulse are the position of woman, the marrisge relation and the line of rescent. Language is the chicf of the psychica! clements. Some perhaps, with race. The Rower of religion, hoth as test of structive and dispersive force, is the repeated testimony of history. The organization and administration of sovernment, whether in its
primitive form or in the more nlightes stage, is of decpest interest. The arts of find their origin in the rude homes of sat human prozress For these have lives lost, tribes been destroyed, nations hern formo battles been won. They have been the met-1 power in every effort, the impulse behind of forward movement of mankind from the ciai
est lays to now. Race Classification. There have been many changes in this world of ollrs ant impossible to determine certainly to which certain pcoples belong. After successive eff. by able sludents to classify mankind upon or that character or group of characters, tendency now seems to be to return to earlier classification. To recur to the th or, Caucasian, Negro, Mongolian and With all the data gathered and the charac used in succeeding classifications, the origi: color nlan in a general way is as good as know. Fopularly, too, this seems to have str: person as white black or ted as speak o casian, Negro or an American Indian. Dall divides man into three groups: wl. black and yclow. Flower and Lydekker ain black and ycllow
GE:SERAL ETHNOGRAPHIC SCHEME.

Race	Tiats	Branches	Stocks	Groups or Pcoples
European	Culur white Hair wavy Nose nartow		1. Hamitic 2. Semitic 1. Euskaric 2. Aryac 3. Chanture	1. Libyan 2. Egyptian 3. East African 1. Arabian 2. Abyssinian 3. Chaldxan Euskarian Indo-Germanie or Celt peopoples of Caucasua
$\begin{aligned} & \text { Mrican sr } \\ & \text { Ne!rm } \end{aligned}$	Color black or dark IIair frizzly Than swarl		1. Cintral African 2. South Africisn 1. Nilotic 2. Betianew i. (-1imeste 1. Bantu	Dwarfs of the Congo Bushmen, Yottentats Nubian Kaffirs and Congo, Trives
Asiatic or Mongolian	Color yefluw or live Hair straight None mediur:		1. Chinese 2. Tinctan 3. Indo-Chinese 3. Tungusic 2. Murisilic 3. Tartaric \therefore Finnic \therefore Arctic 6. Japun.	
American	Cobr mpery Ha: strasht or क.ry Nise mellutm	$\begin{aligned} & \text { I } \\ & \text { Northera } \\ & \text { II } \\ & \text { CCntral } \\ & \text { III } \\ & \text { Southern } \end{aligned}$	1. Arctes 2. Atlantic 3. Pacific 1. Mexican 2. Isthrian 1. Atlantic 2. Pacific	Eskum: Tinneh, Alponkin - Yrogu Chinooks, Kolush, etc. Nahuaテ, Tarasions Mayas, Chapanecs Caribs. Arawaks, Tupis Chibehas, Quinhas
Oceanic	Chiur de: : Hair wtay er !cizaly Nome matian at паны"	$\begin{gathered} \text { I } \\ \text { If ritic } \\ \text { II } \\ \text { Matyic } \\ \text { Australic } \end{gathered}$	1. Negrito 1. Papuail 3. Mclanesian 1. Malayan 2. Polynesian 1. Australian 2. Itravidian	Mincopies, Aelas Feejecens, etc. Malays, Terelan Pacific Islanite:n Australians Dravidas, iiandas

RACES OF MANKIND

assign all representatives of mankind to three primary divisisions. The status of the American these a place among the races, making four Linnzeus in his day adopted four primary divisions. He, however, recognized man as a disinct genus, homo, having four species: Homospethiopicus, Homo sp mongolicus, Homo sp mericanus, Homo sp caucasicus. Gerland divides vidians from the other groups considered a single species, To-day man is varieties or races. Blumenbach gives five groups, classified according to the color of the skin. Professor Huxley also designated five troups along somewhat similar. lines. Morton Haeckel and Broca the hair; and Hale lantuage.
To one who carefully goes over the different schemes of classifying man, it is apparent that
tone is wholly satisfactory, tione is wholly satisfactory. Each in some direc-
toverlaps some other. It is by taking all rese race criteria so far as they are of value hat the most reliable conclusions may be drawn sto the proper classification of mankind. No ne set of standards will properly answer. That vissinincation will be most satisfactory which All that we can aim to do is to group under some general and loose fitting subdivisions these nembers of the species which display the greatst number of similarities. (Brinton). Perhaps of will be as satisfactory to follow the plan of Linnxus and classify the races of men acCording to gengraphical arcas. Under such a plan we speak of the European race, which in
ancient times was confined to jacent parts of Asia and Africa; the Africa race, whose natural home is Africa; the As:atic race, which is chiefly confined to Asia; the the Europeans continent before its occupation by comprising the tribes of Polynesia, Australia and the many groups of islands sometimes in cluded in Oceanica. We can use Blumenbach's scheme of dividing them according to the color follow skin. Under it, they are grouped as

1, Caucasian, or white; 2, Ethiopian, or red. 5 3 , Mongolian, or yellow; 4, American, or cnumerated five races of mankind. Their chie characteristics may be summed up substantially ds follows: 1. The European Race - Trait stralor whis, hai wavy, hose narrow, jaw
 -Traits - Color black hair woolly Negro Rac jaws protruding, skull long, languaree a unative, religions material. III. The Asiatic, or Mongolian Race - Traits - Color yellowish o jownish, hair straight, nose fat or medium isaws straight, skull broad and high, language Iv. The Ameticut Rative, rcligions material pery, hair straight nose narrow, Cols cop skuil variahle, language incorporatiug, religions cal. V. The Oceanic Race - Traits - Color Jark, hair lank or wavy, languages agglutina-

Classified in this manner, the human species
presents the subdivision shown in the preceding
"scheme."
The European Race.- Of the South Mediare Semitic. The former is divided into three groups, the Libyan, Egyptian and East African. from the Atlantic Occan to the Nile. Some of these tribes are very dark and have been lermed "Black Caucasians." Neverthless, except for color, they are fine representatives of he white race. The Egyptian group is represented by the ancient Egyptians and their descendants, the modern Fellah of the Nile valley
and the Copts. These two groups of this branch of the European race have been of this branch in the world's history. The development of the carliest seats of culture, the organization of government, and the establishment of high degrees of civilization have been the work of their representatives. On the contrary the East
African group is represented by a number African group is represented by a number of
tribes who are chiefly nomadic and occupy the territory south of the Egyptian group and extending from the Nile to the Indian Occan. They include the Gallis, Somalis and Agaas.
The Semitic stocks are made up of thre groups - the Arabian, Abyssinian and Chaldxan. The most prominent of the first group are the Ishmaelites and Bedouin. They have occupied at different times parts of the Arabian peninsula and now practically cover it all
The Abyssinian group is supposed to ha originated in the region last mentioned and to have been dispersed over Abyssinia and adjacent parts of Africa. They have become of Christianity exists among them. The Abyssinians, Tigre and Amhara are prominent na tions. The former is best known.
The third group of Semitic peoples has been called the Chaldxan. This includes the Syrians, Israclites, Samaritans, Babylonians and Jews. They also originated in Arabia and spread out wide in his dispersal. From these peoples great nations were developed and from them two great religious leaders, Jesus Christ and Mohammed, have sprung.
The North Mediterrancan branch is divided into three divisions. They are the Euskaric Aryac and Caucasic stocks. The only surviving
remnant of the Euskaric stock is the Basques of Spain. That they formerly were more widely distributed is generally helieved. Their rela tionship with other peoples is not satisfactorily determined. The most extended and most important of these race stocks is the Aryac. The origin of the Aryans has been a fruitful theme
of discussion in recent years. While there is still a difference of opinion on this subject, the majority of writers have accepted the theory of their European origin. The Aryac or IndoGermanic stock is divided by Brinton into eight groups: Celtic, , tialic, Myyric, Hellenic, Lettic, The Lettic or Lithuanian pranic groups. comparatively inconspicuous, are in some whil spects the most interesting of their fellows. They are thought by some students to be the remnant of the original stock and that which
most resembles it. They are located along the Baltic Sca in Prussia and Russia. The Indo-Iranic group is of special interes
because it has the larthest castern range for the reason that it is nearest the region which those who believe in the Asiatic origin of the race think was its primitive home The term Iranic is derived from the plateal of Iran, which has been thought by some to b he area of dispersal of the race. The groul representatives were the Bactrians and Persians To-day it includes the modern Persians, the arsees, generally known as fire-worshipper and the tribes of Beluchistan, Afghanistan an neighboring regions. The Indic branch com prises the peoples occupying India. The most prominent of these are the Hindus, Rajpoots the best representatives of the stock.
The Teutonic group includes the German English, Norwegians, Swedes and Danes, and hcir ancestors, the Goths, Vandals, Angle Saxons, Norsemen. These independent, aggres sive, progressive races have been conspicuous in present. They have spread throughout the world as missionaries of business, education o religion. They are the forces which operate in all progressive government, and are destined to sway the world
East of these is the Slavonic group. It is represented to-day by the Russians, Poles Czechs, Bugarians, and other tribes of the history are the Scythians and Massagcto. The Slavonic tribes to the east, in one direction, came in contact with the Indo-Iranians and, in another, with some of the branches of the Mon golians. Within comparatively recent lime some of them have made remarkable progress
The Hellenic group comprised the ancient Greeks and their relatives. They occupicd a an early date the peninsulas of Asia Minor Greece, the solthern part of Italy and con tiguous territory. The progress of Greck cul-
ture is familiar. Greek language, literature and art form the basis of edlucation everywhere Their dominion was one of the world's greates confederacies. Overthrown by the Romans and subsequently by the Mohammedans, they were for generations hidden from the view of the progressive world. The liyric stock is situated near the Grecks in Turkcy. It is represented most of the Italian Peninsula. The Umbrians Etruscans, Oscans and Latins were the principal older representatives. They developed the Roman Empirc, and in the organization and conduct of government and the framing of laws they achieved a front place in the history of the
world. The Celtic group, originally spread over tain parts of the British Isles and the north of France contain the surviving members. These are the Irish, Welsh, Scotch, Manx and the peonle of Brittany
The Calucasic stock is represented hy four groups: Lesghic, Circassic, Kistic and Georgic
They occupy the Caucasus Mountain region. The African or Negro Race. - The African race occupies Africa south of the Sahara Desert
and of the Nile Valley. It is classified in thre groups: the Negrillos, Negroes and Negroids the Akkas and other pygmies of the ine groupe the Akkas and other pygmies of the interior re tots farther south. The characters of some o these tribes are faithfully preserved in figure upon the Egyptian monuments. The mos striking of these physical features is the peculia growth and development about the pelvi region. The clicks of the Hottentot and Bush man languages find no counterpart in any to western and central Africa, ranging cast into Nubia. They comprise four subdivisions: th Nilotic, Sudanese, Senegambian and Guineal The first is confined to the upper Nile Valley The Sudanese group is represented by tribe south of the Senegal River is the territory of the Senegambians. Farther south toward the Niger River are the tribes of the Guinea group This region was the chief source of the slave trade. The descendants of the Guinea negrocs found throughout the United States are living a generation a a generation ago
The Negroids
in some ways quite color is brown rather than black; their hair i "kinky" but not woolly; the nose is straight and not short and flat. They are of two groups in Nubia and the unpper Nile Valley. The found occupies practically all of southern Africa except the region of the Hottentots and Bushmen. Among the better known tribes are the Kaffirs Bechuanas and Zulus. The African race occupics a low stage in culture. It has developed in the restricted area south of the Sahara basin
Probably it reached its typical the Niger Valley
The Asiatic or Mongolian Race- The Asian, or Mongolian race, is made up of twe divisions - the Sinitic and Sibiric. The Sinitic branch includes the Chinese, Tibetans and the inhabitants of Anam, Siam, Burma and Cochin China. The Chinese have occupicd their terrioped a peculiar civilization and in some par ticulars reached quite a high stage of culture While there is ionsiderable difference of opinion whether the arts of ancicnt China dcveloped there or were acquired from the Aryans to the westward, it seems probable that in a
indigenous.
The Sibiric branch of this race is largely located north of the mountains of central Asia. ranging with the Arctic Circle from the Pacific to the Atlantic Occan. The six groups are the Tungusic, reaching from northern China toward the Arctic Occan and to Kamchatka. The Mongolic occupying the vast highlands west of established two of the wide extended Mongol empires. The Tartaric, another highland group, has spread from Turkestan in several direc tions. The Turk is the mast conspicuous representative, though much mixed with other races. The Finnic is a group of Mongols octhere by the Finns and Iapps, and farther sonth by the Magyars. From there it extends cast
to the Volga River. The rude tribes fringing ing to Arctic Ocean in castern Siberia and reach Arctic. The Chukchis and Kamchatkans are of their number. The Japanese and Koreans conslitute the Japanese group. The Japanesc Ase the most progressive and advanced of the Asiatic race.
may be Oceanic Race.-The Oceanic race May be divided into fhree stocks - Negritic, the islands of the South Pacific and Indian oceans and the adjacent shores of Asia. In their migrations, whether along the shores or over the seas, they have so intermingled that their relationships are puzzling. The Negritic stock is represented by the Negritos, including Andaman Islands, the the Mincopies of the and other islands, and the Melanesians. The Malayic stock is the most conspicuous and energetic of the ocean peoples. Its representatives are found extending almost two-thirds around fadorld, reaching from Easter Island to Madagascar. The most typical Malays are others less marked extend from the Cele while the Philippines. The Malays farther to the eastward are often called Polynesians. From their traditions it has been possible to obtain fairly good idea of their successive migrations and of the comparative time of the settlehent of the different island groups. They extend from New Guinca to New Zealand, Easter includes the different tribes of Australic stock extinct Tasmanians, and, according to some athorities, the primitive peoples of the peninsula of Hindustan. The Australians are very ow in culture, nomadic, lacking government these savages proves to be of undeveloped type, alike in arts and institutions, so much so, that the distinction of being the lowest of B Thal tribes may be claimed for them.) - (E. , Tylor).
The American Race.--The American race continest at the peoples occupying the western men. Finer the time of its discovery by white divided into seven groups : Arctic, North Atlantic, North Pacific, Mexican, Inter-Isihmian South Atlantic, South Pacific.

The Arctic, sroups include.
deutian peoples. They occupy the shores of he oceans in Arctic America and extend from abrador to Greenland. In the North Atlantic Group are some Indians of wide range. The Yukon and lower Mackenzie to valleys of the fakon and lower Mackenzie to Arizona; while uic warlike Apaches are of this proup. The Rgonkins ranged from Newfoundland to the Rocky Mountains and from the Churchill River alley and Hudson Bay southward throughout une Ohio and Mississippi valleys to the TenIndsee River. These included most of the names are more or hy the early settlers. Their history are more or less familiar to us from dable Dakotas (Sioux) the south the formi ome of whom built mounds within historic times, and the tribes of the interior plains also
belong to this division. The North Pacific Koup includes a number of tribes west of the represent distinct many of which are sniall and these tribes have the hisad stocks. Several of These include the Flatheads and Nez Perces (Pierced Noses). The Cliff-dwellers and Puebio tribes of the arid regions of the southwestern United States are placed here. The Mexican group is notable because of the state of civilization attaned by the Aztecs, its besternment established, education developed, govings constructed and arts pursued were unequaled by any tribe of the American race. The Mayas were the most important tribe of the Inter-Isthmian group. They were builders of note, elaborate decorators of stone and mural Atlantic coast of South America occupied the chiefly wandering tribes without settled habita tions. The Quichuas of Peru are the bestknown tribe of the South Pacific group. They attained higher civilization than any other South American tribe. They developed agribuildings of stone, animals, constructod large metals and devised a method of record by means of strings and knots called quippus See Anthropology; Ethnology : Man Cuippus. tian Anthropology; Man, Prehistoric Races
f; Embryology, Human
Bibliography.- Boas, F. (The Mind of (Races Man' (New York 1911); Brinton, Kace'; Deniker, (London 1900); Gerland, Races of Man Keane, A H., 'Ethnology' (2d ed., New York' 1906) : id., 'Man Past and Present' (ib 900) : Morgan, L. H., 'Ancient Society') 1878) ; Ratzel, F., 'History of Mankind' (3 vols., ib. 1904); Thomas, W. I., (Source Bnok for Social Origins) (Chicago 1909), with an extensive bibliography; and Tylor, E B,
'Anthropology' ; id., (Primitive Culture) vols., New York 1891).

Zoologist and Anthropologist, Indianapolis. ETHNOLOGY, Bureau of American. Sce SMITHSONIAN INSTITUTION
ethology. See Bronomics.
ETHYL, the organic radical $\mathrm{C}_{3} \mathrm{H}_{3}$, which occurs in many carbon compounds, but which is not known to exist in the free state. Its most important compounds are ethyl hydrate, or
ethyl alcohol (see Alcorror.) and ethyl oxide, popularly known as ether (q.v.) ; but the iodide, nopularly known as ether (q.v.) ; hut the iodide, alcohol with iodine in the presence of phos phorus, is also of much importance in synthetic
ethyl Nitrate. Sce Nitrous Ether
ETHYLAMINE, an amine (q.v.) in which one or more of the hydrogen atoms of ammonia, Thrce compounds of this sort are nossible, and all have been actually prepared. When only one of the hydrogen atoms of the ammonia has been replaced, the resulting compound, NH_{2}. monamine and it is this substance, or ethy understood when the word ethylamine is used
without qualification. $\mathrm{NH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ is known as diemine All three are formed when absolut ylamine. All three are formed when absolute
alcohol is heated with zinc chloride, in closed tubes, to $500^{\circ} \mathrm{F}$.; and they may then be separated by the crystallization of their picrates Ethylamine (that is, the mono-amine) may also be preparcu by bolling cyanic ether with an aqueous solution of caustic potash, absorbing the liberated gas by passing it through hydrohydrochloride that is so formed, and distilling it with quicklime. All three of the ethylamine are alkaline, all smell strongly of ammonia and all combine with acids to form salts. The monoamine is a colorless, caustic, inflammable liquid, burning with a yellow hame, having a specific ifying at 220° below zero, F. Diethylamine (which may be prepared by heating the mono amine with ethyl bromide is also volatile, color less and inflammable, with a specific gravity of 0.72 , and boils at $133^{\circ} \mathrm{F}$., under ordinary atmos pheric pressure. Triethylamine is an oily
liquid, alkaline, and similar to the other two in general character. It has a specific gravity of 0.73 , boils at $194^{\circ} \mathrm{F}$., and its critical temper ature (according to Pawlewski) is $513^{\circ} \mathrm{F}$ (See Critical Pornt). Triethylamine is but slightly soluble in water; diethylamine dissolves in water freely; mono-ethylamine mixes with and the prolable formation of a hydrate, though it is entirely expelled again, upon boiling.

ETHYLENE, a gaseous hydrocarbon hav ing the formula $\mathrm{C}_{2} \mathrm{H}_{4}$, and constituting the first member of the olefine series. It is formed in the dry distillation of numerous organic bodies and constitutes 4 to 5 per cent of ordinary coa gas. It is most convenicntly prepared for labor4 atory purposes by mixing part of alcohol with to form a paste, and heating the mass over a flame. The sand takes no part in the chemistry of the process, but merely scrves to regu late the action. The sulphuric acid, owing to its affinity for water, removes the elements of water from the alcohol, and thereby liberates
the ethylene, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4}$. Ethylene is a colorless gas, which burns with a bright flame, a five-foot burner, using the pure gas, yielding a light of 68 candle-power. It may be condensed to a transparent liquid which boils, under ordinary atmospheric pressure, at $153^{\circ} \mathrm{F}$. below zero, and freezes at $272^{\circ} \mathrm{F}$. below zero. Ethylene is an unsaturated compound, mixed with that gas and led over platinum black; the product of the combination being ethane, $\mathrm{C}_{2} \mathrm{H}_{0}$. Mixed with three times its own volume of oxygen, and fired by a spark, ethylene explodes with great violence. When it is mixed with chlorine in the dark, combination takes
place according to the formula $\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{Cl}=\mathrm{C}$ $\mathrm{H}_{4} \mathrm{Cl}_{2}$, the new substance being an oily fluid known as cthylene dichloride, or "Dutch liquid." It is on account of this reaction that ethylene was formerly called "olefiant" (or "oil-forming") gas. It will be obscrved that the foregoing reaction is an additive one. In diffuse daylight chlorine attacks the dichloride of ethy-
lene, with the formation of more highly chlorinated substitution products, of which the highest is $\mathrm{C}_{2} \mathrm{Cl}_{\text {a }}$.

ETHYLENE DICHLORIDE. See DUTCH Liouid.
ETIENNE, Charles Guillaume, shärl ge yōm ả-tēe-n, French dramatist: 1). Chamounly,
6 Jan. 1778; d. Paris, 13 March. 1845 Under the First Empire he was censor, editor-in-chic of the Journal of the Empire, and a member of the Academy. He took part in Napoleon's campaigns in Italy, Germany, Poland and Austria. At the Restoration he was expelied from the Academy, and thereafter as editor
of the Constitutional was a power on the of the Constitutional was a power on the
side of the opposition. His comedies give proof of brilliant fancy, elegant style, and grea constructive skill; 'The Two Sons-in-Law' is the best comedy of the Imperial Era, and no unworthy of Moliere. He composed many farces, vaudevilles, operettas and spectacula operas, 'Cinderella') and 'Joconde,' were the delight of Paris. He wrote a 'History of the French Theatre
ETIENNE DU MONT, ā-tē-ěn dủ môn (Fr. "Saint Stephen of the Mount"), a fine church of mediæval Paris. It was founded in $1220 ;$ its completion and restoration were begun
in 1517 , and the building reached its present perfection in 1626. The shrine of Saint Gene vieve, heroine and patron saint of Paris is its principal point of antiquarian interest, but it is also the burial-place of Pascal and Racine.

ETIOLATION, ëtī-ō-lă'shón, the altera tion in the color and the structure of plants due to the absence of light during growth. The most noticeable changes are paleness and elongation
of the stems. The elongation is due to the exof the stems. The elongation is due to the ex tension of the cells, and the paleness to the
non-development, arrested development or de struction of the chlorophyll or green coloring matter of the plant. Other phenomena are inj perfect development of leaves, altered method of branching and various modifications of tissues, especially in the imperfect developmen of the cell walls, which do not attain norma
thickness. Agriculturally, ctiolation is either a thickness. Agriculturally, ctiolation is either
fault to be shunned or a useful process. In the first case it is often responsible for the "lodging" of wheat and other grain-crops sown too thickly, the bases of the stems being shaded so much that the cells fail to develop normal easily beats down the plants. The sprouting of potatoes, turnips, etc., is also undesirable But etiolation is utilized in the blanching of various plants, such as asparagus and sea-kale and especially salads such as celery, endive and chicory. The process involves the exclusion of
light by means of earth banked around the light by means of earth banked around the stems, by boards, paper, etc., or by tying with endive or with cauliflower. Rhubarb is often grown in darkness. In general, tenderness and modifications in flavor are the chief ends sought in the process
ETIOLIN, in hotany, a name given by the older authors to the carotin of etiolated plant

ETIQUETTE, Madame, the nickname of the Duchesse de Noailles, mistress of cereAntoinette, because of her rigid adherence to the formalities or prescriptions for the various ceremonies at court.

ETIQUETTE, êt \uparrow i kêt, a collective term for Among courts the Byzantine and Spanish society and the French court under Louis XIV and -ouis XV, were noted for the strictness of heir etiquette. Social etiquette consists in so many minute observances that a tolerable considerable with it can be acquired only by a Wuickness of intercourse with polite socicty of olservation are more needed for proficiency in this sphere than mere power of intellect The term is derived from the French word ciquette, originally a ship of paper affixed to packet to indicate its contents. This term has come to mean the various decorums to be and especially ordinary intercourse of life, casions perhaps from the custom formerly of distributing tickets or slips of paper to each person containing the rules to be observed by him or her at the ceremony. The word is also used by the members of certain professions to designate the rules to be observed by the memsense, however it has been supplanted by the word "ethics."
ETIVE, ět'ĩv, Loch, an inlet from the Firth of Lorne, in north of Argyllshire, west coast Loch Awe, and the river Awe, the outlet of At Connel Ferry, about three miles from the ea, it is barely 200 yards wide, and is crossed y a ridge of sunken rocks. The depth here which rises 14 feet, rushes with tremendous orce through the narrow channel, breaking heard raging foam which may sometimes be castle, once a royal fortress, is near its mouth.
ETLAR, Carit, pseudonym of KARL Bros Danish realistic novelist: b. Fridericia, 7 pril 1816; d. 1900 . His first story was 'The muggler's Son' (1839); of his later writings, he Guard' and the realistic story 'The People Need' (1878) are the most popular; his verse also has merit. An edition of his collected orks was published in 1859-68, with an addiDeared collection in 1873-79; a new addition ap ared in 1888
ETNA, or ÆTNA, a volcano in the eastern of Sicily, and the of Catania, on the islan Europe and the highest mountain in Italy. irectly north is the valley of Alcantara, o he west and south, the valley of Simeto, and on the east, the Ionian Sea. From the waters 6,000 east, which are in depth from 5,000 to about 10,875 feet, Etna rises cone-like to a height of seems formed of but on the south and west it terminal being surrounded by a number of cones, all of volcanic origin, about nine of which re of considerable size. The circumference it the base is about 90 miles. Around the of villain and at the lower slope are a number orange- filages, cultivated fields, groves of oliveup is a belt of date-trees; and a little higher and a belt of forest with oak, birch, beech
anferx. Above 7,000 feet vegetation is *Canty, the cone is almost barc; rocky precipices, lava beds, masses of ashes and scorize are
visible at its summit except where covered by snow. A deep depression, Val de Bove, on the eastern side, was once the principal crater; of the mountain, thus forming small cones and craters, about 200 of which are now distinctly marked. The summit is usually altered with every eruption. From the summit may be seen the whole of the island of Sicily, the Lipari Islands, Malta and Calabria.
and many of them destructive been numerous and many of them destructive; more than 80 fore the Christian Era. That of 1169 A.D. overwhelmed Catania and buried 15,000 persons in the ruins. In 1669 the lava spread over the country for 40 days, and 10,000 persons are estimated to have perished. In 1693 there was an earthquake during the eruption, when over
60,000 lives were lost. One eruption was in 1755, the year of the Lisbon earthquake. Am in more recent eruptions are those of 1852,1865 , 1874, 1879, 1886, 1892, 1909 and 1911. An eruption is ordinarily preceded by premonitory Gymptoms of longer or shorter duration. In allusions to Etna, especially in the frequent allusions to Etna, especially in the legends 'Characteristics of Volcanoes'; Kneeland, 'Volanoes.'
ETNA, Pa., borough in Allegheny County, on the Allegheny River, the Baltimore and Ohio and a branch of the Pennsylvania railroads. It is really a suburb of Pittsburgh, with only he Allegheny River between. The chief industries are in connection with the iron and
steel products for which this part of steel products for which this part of the State
is famous. It has rolling mills, furnaces, steel mills, galvanized-pipe works and other manufactures. The waterworks and electric-light plant are owned by the borough. Pop. 6,341.
ETON, England, village and parish, in the county of Buckingham, on the Thames, 21 miles west-southwest of London. It consists principally of one narrow strect which has of across the Thames comects Eton with Windsor from which it is separated only by the river. Eton derives its celebrity from its college. Pop. 3,192 .
ETON COLLEGE, the most famous of English public schools, was founded by Henry VI in 1440, under the name of "The College of the Blessed Virgin Mary Beside Windsor." and the whole of the original structure was 1441 pleted about 1523 . Important additions were made in 1846, and also in 1889. This school was intended originally for the benefit of the sons of worthy but poor parents, and also for the support of 25 poor infirm men; and was to be demesne lands. Now the students admitte roya the sons of the gentry and nobility, and so numerous are the applicants that it is usual to enter the names at birth. The scholarships ar open to all British subjects; but candidates must be 12 years or over and not more than 14 years, and must pass an examination. A certain num ber of the students, not under 17 years, are lege, Camhear thens foundation is limited to 70, but the number out-
side, called oppidans, who board and lodge in the houses of the masters is about 1,000 . The course of instruction is mainly classical, but sciences are given now a due share of attention. The college roll includes the most famous names in more recent English history in nearly every department of service, and especially among tatesmen and administrators. Consult Cust, Eton College', Lyte, 'History of Eton Col-
ETOROFU, a'tō-rō-foo, or ITURUP, e-too-roop,' (1) an island; (2) a strait; in the
most northerly part of Japan. The island beongs to the Kurile group. Area, 1,500 square miles
ETOSA LAKE. See Kunene. ETOURDI, L', a comedy of Molière, which was first produced at Lyons in the year
ETOWAH MOUND. Sce Mound Butlders and Mounds.
ETRETAT, France, a fashionable summer resort on the English Channel, 17 miles east of Havre, in the department of Seine-Inferieure. It contains a casino, bathhouses, a hne strand and many summer residences. It is artists. Pop. (commune) 1,973.
ETRURIA, è-troo'rì-a (Greek Tyrrhenia)
ETRURIA, e-troo ri-a (Greek I yrrhenia), which corresponded with the greater part of modern Tuscany and part of Umbria, and was bounded by the Mediterranean, the Apennines, the river Magra and the Tiber. The name Tuscia, for the country, came into use in late times, while Tusci, as well as Etrusci, was used by the an carly period. The oldest inhabitants of the country belonged, according to the accounts of the ancients, to the Umbrian stock and were dispossessed by the Tyrrhenians or Tyrsenians, a people who came by sca and who were generally believed to be Lydians. These again were in early times subjected by another race became incorporated with the Tyrrhenians proper, the whole nation then being called Tuscans or Etruscans. These Rasena, hy ancient writers usually confounded with the Tyrrhenians, entered Italy at a very early period from whole country from the Alps, Ticino and lower Adige on the south
To what race the Etruscans belonged is unknown and our ignorance is equally great with regard to their language, remains of which still exist in numerous inscriptions mostly on tombs. It appears to have been quite distinct from the languages of the rest of italy, but attempts to Semitic languages have had little or no success. The characters used are essentially the ancient Greek and were cither introduced from Magna Gracia or possibly from Corinth. Etruria was very carly a contederation under the rulers of republic by itself. The chiefs of these republics were styled lucumones, who were also the priests and generals and held their mectings in the temple of Voltumna, where they deliberated together on the general affairs of the country. In
all the cities there appears to have been an ristocracy, toward which the mass of the conmon people stood in the relation of clients irely free men resembling the plebeians a Rome. The religion of the Etruscans offers a sul)ject of great difificulty, but it is at least cerain that it had many points in common with the religious systems of the Sabincs and Latins, while in some respects it shows evidences of an Eastern origin. Among the deities may be menLatin Jupiter; Cupra, corresponding to Juno Menerfa (Minerva); Sethlans (Vulcan) Turms (Mercury); and Aplu or Apul (Apollo).
What may be called the Etruscan Era comnenced aboy in s.c. And central Italy and Rome itself fell under their rule and was ruled by Etruscan kings. In the maritime wars the were in alliance with Carthage against Greec The zenith of their power was in the 6th cel tury в.с., when with the Greeks and the Phon cians they shared the maritime supremacy of the Mediterranean. Their naval power was
shattered in 474 b.c. by Hiero I of Syracuse and after this their decline was rapid. The Gaul swarmed over the Alps in 396 b.c.; in 351 the southern Etruscans made submission to the Romans; and the process of conquest was completed by the subjugation of the norther Etruscans in 282 B.C. After this they becam merged in their conquerors, on whom they ex social and political life
The chicf occupations of the Etruscans wer agriculture and commerce, both maritime an overland. Grain, wine, timber, cattle and wo seem to have been the principal articles of trade The staple food of the common people was pulse, but the upper classes werell as in dres and in furniture. Their knowledge of the arts and sciences is said to have been derived mainly rom Greece and in a less degree from Egyp The iron mines and copper mines in the interio of Etruria were worked at a very remote pc^{-} riod and the metallurgical skill shown by the Etruscans was obviously connected with their ilver, gald, etc. Of Etruscan architecture ou knowledge is limited; but their cities were laid out on a quadrangular plan and strongly fort fied. The so-called Tuscan order seems to b little else than a modification of the Doric. O heir temples there exist no traces; the theatres ave been more fortunate, that at Fiesole sho owed to the Greeks. The senstruction the were always sulbterranean, but frequently havin superstructures of an architectural characte surmorunting them, present many varicties o onstruction
For articles in terra-cotta the Etruscans were especially celebrated. These were not restricte
to small objects, but embraced statues an figures of large size, with which the exterior and interiors of their temples were adorncd Closely related to this branch of art was the Etruscan pottery, in the manufacture of which
they excelled; but the only extant productions they excelled; but the only extant productions
the red ware of Arretium and the black ware o of thicm of a Urientai character. On the other hand, numbers of the painted vases popularly known as Etruscan vases are undoubtedly productions of Greck Workmen, the subjects, the style and the inscriptions being all Greek. The skill of the Etruscans in works of bronze is attested by many specimens. The style of art characteristic of
and hese works is stiff and archaic, having some esemblance to the early Greek, though some If the existing specimens exhibit more freedom design and great beauty of execution. The have candelabra, of which many examples oth in Greece and Rome eagerly sought after art which seems to have been peculiar to this pcople was that of the engraved bronze mirrors, considerable number of which has been disovered, some quite recently. These mirrors cre polished on one side, and have on the from Greck legend or mythology. Consult Dennis, 'The Cities and Cemeteries of Etruria' (1892) ; Seymour, 'Up Hill and Down Dale in Ancient Etruria' (1910).
ETRURIA, Kingdom of, the name given 1801 the province of Tuscany, in Italy, when, in 1801, Napoleon formed of it a kingdom, and made Florence the capital. In 1808 he incor-
porated it with the French Empire, and in 1809 porated it with the French Empire, and in 1809
his sister, Elise Bacciocchi, was made Grand Duchess of Tuscany. When Napolcon became an exile in 1814, Tuscany reverted to Austria, and Frederick III became king.

ETRUSCAN. Sce Etruria.
ETRUSCAN VASES, a class of beautiful ancient painted vases made in Etruria, but not strictly speaking a product of Etruscan art, since they were really the productions of a ripe
age of Greck art the workmanship, subjects, style and inscriptions being all Greek. They are elegant in form and enriched with bands of cautiful foliage and other ornaments, figures and similar subjects of a highly artistic haracter. One class has black figures and of the clay; another has the figures left of he natural color and the ground painted black. The former class belong to a date about and extend over a period of about 350 years, When the manufacture seems to have ceased. The subjects represented on these vases frequently relate to heroic personages of the Greek mythology, but many scencs of an ordinary and ven of a domestic character are depicted. The

ETSCH. See Amige

ETTINGHAUSEN, Konstantin, Baron von, Austrian gcologist and botanist: l). Vienna,
1826 ; d. 1897 . He was educated in his native city and became professor of botany and of medical natural history at the Joseph Academy in 1854. He removed to Gratz in 1871 and Scven years later was engaged by the British Muscum to arrange the collection of fossil
plants there. His works include (Physiotypia plants there. His works include 'Physiotypia 'Physiographis der Medizinalpfanzen) (1862);
(Beitrage zur Erforschung der Phylogenic der flanzenarten' (7 vols., 1877-80).
ETTLINGEN, èt'lling-ēn, Germany, town
the Free State of Baden, in the Free State of. Baden, on the Alb, five miles sotuth of Karlsruhe. It is an ancient
place, containing some Roman remains; is entered by three gates, and has an old castle with gardens, town-house, hospital, normal and other schools, manufactures of machinery, linen and cotton goods, starch, leather and paper. Near he town the Archduke Charles of Austria here 10 July defeat at the hands of Moreau, 9 and Jứ
ETTMULLER, Ernst Moritz Ludwig, lood vig et'mill-ler, German philologist and
historian: b. Gersdorf, Saxony, 5 Oct, 1802 . d. Zurich, 15 April 1877. He was graduated at Leipzig; lectured at Jena on the German poets of the Middie Ages; in 1833 went to the Gymnasium at Zurich and in 1863 he became professor of German literature in the searches in German mediaval literature and was author of 'German Dynasty Founders' (1844); and other epic poems, besides the Anglo-Saxon Lexicon' (1852). He also translated (Beowulf) into German.
ETTOR, Joseph J., American industrial gitator: b. 1886 . He came into prominence during the labor troubles at Paterson, N. J., rooklyn, N. Y., and elsewhere, but attained his greatest attention in conducting the textile in 1912. For his methods in this affair he was sentenced to nine months' imprisonment, having been held responsible for the death of a woman shot in a riot there on 29 Jan. 1912. After his release he was again prominent in the waiters' strike in the same city in 1914. He is prominently identified with the Industrial Workers of the World, of the executive council of which he became a member.
ETTRICK, ět'rik, a district of Scotland, in Selkirk, through which the Ettrick water rums. It is now a sheep pasture, denuded of wood, Forest, which included the part of Ettrick well as parts of Peebles and Edinlurgshire The "Ettrick Shepherd," James Hogg, was a native of this district. Consult Craig-Brown, History of Selkirkshire) (Edinburgh 1886).
ETTRICK SHEPHERD, The. See Hogg,
ET TU BRUTE ("and thou also, Brutus"), he words supposed to have been uttered by Julitus Cæsar at the moment he was stabbed by Brutus. There is, however, no ancient authority for attributing this utterance to Cæsar, and due to the use of these words by Shakespeare n his play, 'Julius Cæsar.' Other dramatists of the same period also used the phrase.

ETTWEIN, "̌t'vin, John, American Moravian bishop: b. Trendenstadt, Würtemberg, 29 June 1721; d. Bethlehem, Pa., 2 Jan. 1802. He came to America in 1754 and for nearly 50 ycars worked among the Moravians as evangel-
ist, pastor and bishop. He traveled thousands ist, pastor and hishop. He traveled thousands
of miles, oftentimes on foot, preaching in 11 of of miles, nftentimes on foot, preaching in 11 of
the 13 colonies and in what is now the State of

Ohio, "in cities, in villages, in homesteads, from pulpits, in the open air, in courthouses and
barns to many and very different classes of men," as he himself wrote. Among the Indians too, he worked with great success. In 1776-77 he rendered noble services to the sick and wounded of the American army in the general hospital at Bethlchem, Pa. Elected bishop in 1784, he presided over his Church for nearly 17 years, displaying the soundest judgment in matters of polity and a fine personal heroism the Society for Propagating the Gospel Among the Heathen, which still exists, richly endowed and is the bulwark of the extensive Moravian mission work. He became proficient in the language of the Delaware Indians, prepared a dictionary and phrasebook of it, and in 1788 vocabulary, which has since been published by the Pennsylvania Historical Society. Old age compelled his retirement from active service in 1801.

10 ETTY, William, English painter: b. York 10 March 1787 ; d. there, 13 Nov. 1849 . He worked long without much recognition, but at Finders.' In 1828 he was elected by his 'Coral cian. Among his works, which were great admired, are a scries of three pictures (182731) illustrating the 'Deliverance of Bethulia by Judith' ; 'Benaiah one of David's Mighty Men'; ' (Women Interceding for the Van-
quished.' All these are very large pictures, and quished.' All these are very large pictures, and
are now in the National Gallery of Scotland. are now in the National Gallery of Scotland. 'The Rape of Proserpine': 'Youth at the Prow and Pleasure at the Helm.' In coloring and the representation of the nude he displayed high ability.

ETUDE, at first a term to designate a uusical composition written for the purpose of developing some particular point, as arpeggio etc., has come to mean a study for a concert Some of the latter by famous masters are of special beauty and elegance, of which we may mention here the famed études of Chopin, Liszt and Schumann, which rank among the inest compositions for the piano. For the vioin the compositions of Fiorile aganini are justly famous.

ETYMOLOGICUM GUDIANUM. Sce

etymologicum Magnum.

ETYMOLOGICUM MAGNUM (Gr. "the great etymological glossary, or dictionary"), the sole lexicon of size surviving from the Byzancompilation from other works of the same class, and bears no author's name. The book may be attributed to the 10th century. It consists of a number of quotations from the works of ancient grammarians, arranged alphabetically. it may have received its name from its first critical editor, Sylburg, or from its printer, Calalthough many of the derivations of words contained in it are fanciful and utterly unscientific. Consult Cohn, 'Griechische Lexicographie' (in Griechische Grammatick' of BurgmannThumb, Munich 1913); Gaisford, 'Etymologicum Magnum) (Oxford 1848); Reitzenstein,
'Geschichte der griechischen Etymologika' (Leipzig 1897) ; Sturz, 'Etymologicum Gudia-
num' (Leipzig 1816-20).

ETYMOLOGY, that branch of philol ogy which deals with the investigation of the origin or derivation and of the original sig
nification of words. It forms a subsidiary part nification of words. It forms a subsidiary part of ough it has occupied the attention of the learned and the curious in every age, it is only within the 19 th century that its study has been pursued on really scientific principles. Ignorance, or what is still more dangerous, half
knowledge, has often suggested fas knowledge, has often suggested false etymologies and many more have sprung from that which will not take plain words like beef-cater and welsh-rabbit for what they are. Folk etymology, properly so called, has played an important role in the development of languages The words that the people have known from infancy are for them things, but it is quite
different from the new terms they meet arrest their curiosity, and, as they believe that every word has its signification, they seek for this, guided by resemblances of sound with words already known, and consequently reach conclusions often hopelessly distortcd by false analogies. We sce the same illogical personal names, applied conveniently after the act; in the Homeric explanation of the names of gods and men; in the quaint etymologies so common in the medixval writers and in such moderns as Thomas Fuller; in the vagaries of Celtic topographers; and even in the pages of such a statement as that is possible to find newes is derived from a certain conjunction of the points of the compass, north, east, west and
south. These whimsical etymologies were south. These whimsical etymologies were laughed at by Dean Swift, whose osiler $=$ oat stealer, was a stroke of genius, but have not yet disappeared; and, indeed, the modern ideas of the point attained by the grammarians of Alcxandria and by Varro among the Romans. It was the birth of philology and the study of the languages of the East that made a scientific etymology possible. It no longer sought the clasion of the words of a single language exto the whole group of cognate tongues, or, wider still, to a whole family and became a new science under the name of Comparative Grammar. Grimm's Law was the first finger-post that pointed out the path; among his greatest successors are Curtius and Fick. The Tcutonic revival in England in the 19th century com-
menced the history of English upon an historical menced the history of English upon an historical English etymology, as seen in the dictionarics of Professor Skeat and Dr. Murray. No more useful chart of warning could be given than the ormer's canons for etymology: "Before atform and an etymology, ascertain the carliest form and use of the word and observe chroshould next trace its history in cognate languages. If the word be borrowed, we must bserve geography and the history of events, remembering that borrowings are due to actua) contact." See Curtius, 'Grundzüge der Griech-
ischen Etymologie' (1879); Fick, 'Vergleichendes Wörterbuch der Indo-germanischen ogy' (1882) (1874-76) 'Palmer, Folk-Etymology) (1912), and authorities quoted thereunder.

ETZEL. See Attila.
EU, e (Lat. Auga), France, town in the the mouth of the Bresle, 17 miles northeast of Dieppe. It was in the castle belonging to this place that William the Conqueror married Maud Flanders. The town was burned to the ground in 1475 , by order of Louis XI, to prevent it from falling into the hands of the Enginsh. It has several small manufactu
lishments. Pop. of commune 5,651 .
EUA, à-oóa, or EOA, a small island belongBritain. It is about $10^{1 / 2}$ miles long by three wide. The climate of all the islands of the longa group, to which the Friendly Islands belong, is but slightly higher than that of the moan Islands, just north. Pop. about 400.
EUUANTHIUS, Roman grammarian: d. Constantinople, 358 a.d. He wrote a commenHis treatise 'De Fabula) was also incorporated by Donatus. Consult Wessner, (Æli Donati Commentum Terenti) (Vol. I, Leipzig 1902)...
EUBCEA, प̄-bēa, formerly called Negroof the Ægean Sea. It is 90 miles long, 30 in reatest breadth, reduced at one point to four miles. It is separated from the mainland of Treece by the narrow channels of Egripo and shore by a bridge. There are several Bountain peaks, one over 7,000 feet. The island is well wooded and remarkably fertile. Wine is a staple product and cotton, wool, pitch and turpentine are exported. The chicf towns are halcis and Karysto. The island was anciently vided among seven independent cities, the most Important of which were Chalcis and Eretria. me Romans and the Venetians, it was taken by the Turks in 1470, and in 1830 was delivered rom their control. With some small islands it f 116 a modern nomarchy, with a population f 116,903
EUBULIDES (ū-būllidểz) OF MILEdiscin, Greck philosopher: the best known of the disciples of Euclid of Megara, flourished about truggle against Aristotle, in which by a captious logic he sought to prevail against good sense. A partisan of the Megaric principle, that there is othing real but what is always one, simple and dentical, he immediately found an adversary in the founder of the great contemporary school He made experience the condition of science. of Elea, by striving to show that there is none of our experimental notions which does not give place to insolvable difficulties. He wrote a numher of comedies and a work on Diogenes the
Cynic. Sce Mrgarian School of Philosophy. eubulius. See Cyrillus and MethoIUs.

EUBULUS, ū-būlūs, Greek comic writer: at Athens about 375 b.c. His subjects were chiefly mythological and many of his plays conEuripides. H paros of the tragic poets, especially Euripides. He is credited with having written and 50 titles have survived. Consult Koch, 'Comicorum Atticorum Fragmenta' (Leipzig 1884); Mcinke, 'Fragmenta Comicorum Graorum' (Berlin 1839-57).
EUCAINE. Sce Cocaine.
EUCALYPTOCRINUS, a genus of fossil Crinoidea found in the Silurian beds of the
Niagara group in America and in England and Niagara group in America and in England and
Scotland. Its special peculiarity is that its 20 arms rest in vertical compartments divided by 10 partitions attached to the tegmen and supported by the interbrachials.

EUCALYPTUS, ū-ka-līp'tŭs, a genus of trees and a few shrubs of the family Myrtaceae.
The species, of which there are about 300 , are characterized by simple symmetrical leaves, whose edges usually turn toward the sun; gensolitary, but commonly in terminal or axillary umbels near the ends of the twigs; calyx-lobes oined to form a lid, which falls off when the flower opens (from this feature the genus is named) ; numerous stamens; and many-sceded, angular fruit-capsules. With the exception of of the East Indies and the Malay Pecies natives the members of the genus are indigenous to Australasia, where they are among the most ommon forest trees. The various species are highly valucd for planting in parks and along avenues; for the gum-resin which oozes from heir trunks; for the volatile oil contained in bark; and for the fibre of their inner bark They have been widely distributed by man in warm climates, particularly in the British possessions. Above all they are valued for their timber, which is extensively used for wharf, ship, bridge and house building, telegraph poles, obtain it the trecs are frequently ring-barked about the beginning of the warm season so as to exhaust the sap as much as possible. After standing until the end of the dry scason they are felled. Some of the species are among the largest living trees of the world. Specimens of 50 feet are occasionally. reported girth

Few species are hardy but many
ted for ornament where they can be cultishelter from cold winds, or where, like other tender ornamental plants, they can be removed o a house during the winter. In California a majority of the species thrive in the open air
and are valued for their striking hahits of growth, their foliage, etc. They are readily propagated from sceds sown in light, sandy soil. The seedlings should be transplanted when about four inches tall and again at rather frequent intervals, to ensure the formation of filrous roots near the surface, thus to secure them a Transplanting should always be done in cool moist, cloudy weather. When once established they demand no further attention than ordinary pruning and training.
Among the best-known species are the fol-
lowing: Eucalyptus globulus, the blue-gum which often exceeds 300 feet in height, has bluish or grayish smooth bark, except at the pleasantly flavored nectar of its blossoms, which is very attractive to bees, and its ability to withstand long periods of drought. It is the most frequently planted species in California, where it is also becoming naturalized by means in Florida. It is also planted to some extent to survive a temperature as low as $20^{\circ} \mathrm{F}$. It is one of the most valuable of timber trees and is one of the chief sources of oil of eucalyptus. A somewhat hardier species (E. viminalis), popularly known as manna gum, attains about the same size, but has either dark-colored persistent fornia, where it also is spreading like the former, it has withstood lower temperatures and made phenomenal growths, in some instances exceeding 70 feet in height and 3 feet in girth in 12 years. It is valuable for its nectar, of which bees are very fond, but its timber is less ing less strong. It is frequently used for fencing less strong. It is frequently used for fenc-
ing, shingles and other purposes where strain not expected. Perhaps the most valued is E. marginata, the jarrah tree or wood, which often attains heights excceding 70 feet without the development of any limbs, and at that height often has a girth of 15 feet. It is not hardy. Its wood is especially valued for wharf and ship building, since it is not attacked by the teredo
or shipworm. It is also highly esteemed for underground work, such as ties and telegraph poles, and, being easily worked and polished is popular for house finishing and furniture. The largest species is probably E. amygdalina, the peppermint-rrec, which is also noted for its abundant yield of oil. Its timber is not strong but is largely used for staves, shingles, buildgum, is perhaps the species most frequently planted in swampy places. Its timber is re$m_{\text {. kably }}$ durable and is used, like that of E. marginata, but is somewhat less esteemed. It is one of the finest of avcnue trees, and one of the best for bees because of its abundant nectar
and profuse bloom. and
antiseptic and stimulating propertics ised for its widely used in affections of the nose, mouth and bronchi, and in discases of the bladder and urethra. It makes a very agreeable and efficicnt drug to add to antiseptic mouth-washes and is useful internally as an intestinal anti-fermentative. Trees of eucalyptus have been planted,
especially in low marshy places, with a belief in their beneficial effects against malaria. It is frequently asserted that they have a direct action on malaria. By the aid they furnish in converting marshes into dry land they also help to prevent the development of mosquitoes, some forms of which are known to be the chief agents in the spread of malarial disease. (See
Malaria; Volatile Oils). Consult Bailey 'Cyclopedia of American Horticulture' (1914); Mueller, (Eucalyptographia'; Bentham, 'Flora Australiensis' (Vol. IIJ); Pepper, Eucalyptus n Algeria and Tunisia, from an Hygienic and of the American Philosophical Society, Vol.

XXXV, pp. 39-56) ; Cooper, (Forest Culture and Eucalyptus Trces.?

EUCHARIS, úka-ris, (1) a genus of plants of the natural order Amaryllidacea, the species which, mostly natives of Colombia, are perennia herbs with perennial bulb-like rootstock,
broadly ovate leaves and very showy white flowers in umbels upon long, strong scapes They are very popular hot-house plants because of their beauty and the prolificacy of their longlasting flowers. They are easily grown in course fibrous soil which will permit of abundant watering without danger of stagna tion. Partial shade and rather high tempera-
ture are also needed. The best-known specics is probably E. grandiflora, which is popularly known as star-of-Bethlehem and Amazon lily The flowers of this species are borne upon scape often excceding 18 inches in height and bearing two to four star-like and very fragran
flowers, often four inches in diameter genuers, of mollusks; also known as Glaucus. (3) the typical genus of Chaleidians, subfamily Eucharinx.

EUCHARIST, uka-rist, in the Roman Catholic Church, the sacrament of the body and blood of Jesus Christ, and also the Christian covenant sacrifice. Regarding the Eucharist as a sacrament, the Roman Catholic Church Jesus Christ under the "species" or appearances or physical properties of bread and wine. The institution of this sacrament by Christ is recorded in the three synoptic gospels and in Saint Yaul's first letter to the Corinthians. The name given to the sacrament comes from the expression in the original Greck lext of Luke
xxii, 19, غvरapıorच given thanks." The words of institution, as given by the same evangelist, are: "This is my body which is given for you. . . . This is the chalice, the new testament in my blood, which shall be shed for you." The perpetuation of "This sacrament is commanded in the words, "Yi, 24). A year before the institution of the sacrament Jesus Christ in a discourse at Capernaum, spoke of his flesh being "meat indeed" and his blood "drink indeed"; and it is import ant to note the circumstances in which he employed those extraordinary expressions. H had alrcady said: "I am the bread of life," at which the Jews murmured. Thereupor which offended them, re-enforced it, saying: "The bread which I will give is my flesh for the life of the world." At this the Jews again murmured, hut Christ does but emphasize the doctrine in the words already quoted. And no only the Jews were scandalized by these
speeches: many of Jesus' disciples even would no longer listen to him; they "went hack and walked no more with him." Would the apostles also desert him? and he elicited from them a profession of implicit faith in his words, however "hard" his sayings might be.
And that attitude of the apostles is the attitude of the Roman Catholic Church. Those notucements he made touching this sacramental mystery, the Roman Catholic Church from apostolic times has received in their plain literal interpretation--1he interpretation put upon

EUCALYPTUS

Forest Cover for Parks, Los Angeles, California

venue Shade Trees, near Santa Monica, California
them by all who heard them, Jews, disciples, apostles, and by Jesus Christ himself: the Roman Catholic Church teaches that in the Eucharist is contained "truly, really and sub-
stantially" the body and blood of Jesus Christ, together with his soul and divinity. Here nothing is added to, nothing taken away from, he words of Christ, and nothing explained whey in those "words of eternal life." And hen in the lith century the Church's reading stantial" words as denoting a "true, real and subChrist's body and blood was challenged by Berengarius, who, more "spiritually-minded" han the apostles of Jesus Christ, would fain see Christ's words only a figurative, symbolical presence of his body and blood in the sacrament, the Roman Catholic Church adopted the Wrought in the bread and wine - the word Iransubstantiation: in the Eucharist the substance of bread and wine remain no longer underlying the outward appearances, "species" of bread and wine: what underlies them now the body and hlood of Christ. Such is the egard to the real presence of Jesus Chist he Eucharist But the Eu
is also the perpetual New Covenant elieved to have heen foretold by the prophet Niffers as rendered in the Vulgate, which version: "From the rising of the sum even to the going down thereof, my name is great among the Gentiles, and in every place there is sacrifice, and there is offered to my name a clean oblation" (Mal. i, 10-11). And the Roman Catholic Church teaches concerning the - ucharistic sacrifice or the Mass that "it is cross: the victim is sacrife with that of the Christ, who offered himself, once only, a bloody sacrifice on the altar of the cross. The bloody and unbloody victim is still one and the same and the offering upon the cross is daily renewed command tharistic sacrifice, in obedience to the of Me, " - Catech Conc Trid, cap de Eucha ristice Sacr. Bibliogra
octrine of the Lord's Son, R. M., 'Christian T05); Armstrong, 'Sacraments of the New Testament' (ib. 1880); Bridgett. T. E., 'His ed., London 1908) Eucharist in England (new Primitive Church Life) (ib. 1808) : Dalgairns I D., 'The Holy Communion: Its History, Pilosophy and Practice) (3d. ed., Dublin 1868) enzinger, Heinrich 'Enchiridion Symbolorum iv Definitionum? (Wurzhurg 1854); Dimock, Church ' Eucharistic Worship in the Englis Charistia) (Rome 1868): Gardner P. 'Origin of the Lord's Supper)' (Gondon 1893). 'Origi Charles, (Dissertations) (ib. 1895); id., 'The Dody of Christ: An Inquiry into the Institution 1901 Doctrine of Holy Communion) (New York and the Groton, W. M.: Christian Eucharist 'Answer to Dr Puscy's Challence Respectin the Doctrine of the Real Presence) (2 vols., ib 1871) : Jacob, G. A., 'The Lord's Supper Historically Considered' (Oxford 1884); Jeaffre
vol. $10-36$
son, H. H., 'The Holy Eucharist) (London Eucharist in the Early Church' (ib. 1901). , B. The Later Mediæval Doctrine of fert, A. C., 'History of Christianity in the Apostolic Age) (New York 1897) ; Macnaught, J., 'Cœna Domine: An Essay on the Lord's Supper' (London 1878); Meyrick, Frederick, 'The Doctrine of the Church of England in Holy Communion) (New York 1908) : Mortimer, A. G., Catholic Faith and Practice) Supper of the Lord)' (London 1899) ; Perowne, J. S., 'Doctrine of the Lord's Supper' (ib 1887) ; Pusey, E. B., 'The Real Presence of the Body and Blood of Our Lord in the Holy Eucharist' (Oxford 1857); Sanday, William,
(Different Conception of Priesthood and Sac'Different Conception of Priesthood and Sac-
rifices' (New York 1900) ; Stanley A 'Christian Institutions' (London 1871); Stone D., 'History of the Doctrine of the Holy Eucharist) (2 vols., New York 1901): Strong T. B., 'The Doctrine of the Real Presence (ib. 1899); Thalhofer, V., 'Das Opfer des alten und neuten Bundes' (Regensburg 1870); Weizsacker, C., 'The Apostlic Age' (2 vols., the Holy Eucharist) (ib. 1853); Cardinal Wiseman, 'Lectures on the Real Presence) (Dublin

EUCHLORINE, a name given by Humphry Davy (q.v.) to the yellow gas obtained by acting upon potassilum chlorate with hydrochloric acid. Davy believed it to be a new oxide of chlorine; but it is now known to ClO_{2}. It has powerful bleaching and disinfect ing properties, but it is frightfully explosive and should never be prepared nor handled save by an expert chemist, provided with proper safeguards, and with a full previous knowledg of its properties

EUCHOLOGION, u-kô-1o'ji-on, the litur gical and ritual book of the Greek Church, cor
responding to the Missal, which is the Pontif responding to the Missal, which is the PontifiUniate Greek Church, or Church of the Greek Rite in communion with the See of Rome. has a separate Euchologion. The Euchologion con tains the liturgies, the order of daily service with prayers and litanies, and finally a collection rules, canons and blessings. The first printed edition was published in 1526 at Venice and since then the successive official Greek editions have been printed there. There are, however other editions published both in Athens and Constantinople. There is also an abstract lish translation but M Rajewsky is Eng lated it into German under the title 'Euchologion der Orthodox-Katholischen Kirche, ctc. (Vienna 1861-62).
EUCHRE, ü'kèr, a game of cards, regard ing the origin of which nothing definite is known. For a long time it was the most generally played parlor game after whist in the United States. The pack of cards consists of ordinary "deck," minus the deuce, trey, four, five and six spots of each suit. The pame is usually played by two, three or four persons,
the most interesting party being four, two playing on each side as partners. When choice o partners and first dealer has been decided five cards are dealt, usually two at once, then three,
or the contrary. Having dealt five cards to each player, the dealer turns up the next card for trumps, leaving it, face upward, on top of for trumps, leaving it, face upward, on top of value as follows: The best euchre card is the knave of trumps; the second best is the knave of the suit of the same color as the trump. The former card is called the "right bower," the left bowers the cards rank as at whist, the knaves of the color not turned as trumps falling into their regular place as at whist. The object of the game is to take tricks. The score is five points, unless otherwise agreed. In two non-dealer may "pass," or "order up" the trump. Should he pass, then the dealer may take up the trump and discard. In that case the deale must make three tricks or be "cuchred," which counts two points for the adversary, but if he makes the three tricks (or four), he counts on point. Should he make all five tricks, it is
termed "a march") and counts him two on the score. The non-dealer has the first lead, after score. he who takes the trick leads. Suit mus be followed if possible; otherwise any car may be played. Should the non-dealer "order "up" the trump he must make threc tricks or be "euchred," which counts two for his opponent if he win three tricks (or four), having ordere up the trump, he scores one point. Should players pass (the dealer turning down the trump), and then both decline to make a trump there must be a new deal. Either party nam ing a new suit for trump must make the three the same counts are made and the same rule practised as in the two-handed game, together with the following: The opportunity to "pass," "order up," "assist," or "play alone" goe around in rotation, beginning with the player on the left of the dealer. "To assist") is for the partner of the dealer to say "I assist," which
has the same effect as ordering up the trump has the same effect as ordering up the trump, and is subject to the penalty of two points
the adversary, should three tricks not be se cured by the party "assisting" and his partner Either partner ordering up a trump or making a trump may "play alone," that is, play his hand singly against the other two, his partner not euchre" is played by a number of participants at separate tables, the successful players mov ing up in a regular order. A prize is generally awarded to the two winners. There are also a number of other varieties: Railroad, French, Call-Ace or Australian Euchre, and Napolcon Consult Cady, A. H., 'Euchre) (in 'Spalding's Foster, R. F', 'Call-Ace Euchre' (London Foster, R. 'Foster's Complete Hoyle, etc.' (New York 1914) ; Jessel, F., 'A Bibliography of Works in English on Playing Cards and Gaming' (London 1905) ; Seaver, C. M.,' 'The Standard
EUCKEN, Rudolf Christoph, German philosopher: b. Aurich, East Frisia, 5 Jan.
child, but he enjoyed the loving care of his mother, a woman of marked intelligence and warm sympathies. His early education was the influence of the theologian and philosopher, William Reuter, who was one of his teachers. It is generally believed that Reuter stimulated his interest in religion. He studied at Gottingen where he entered the philosophical classes of Hermann Lotze. It was characteristic o
the man that, while he admired Lotze's acute ness, he was not attracted by it. Thus early ness, he was not attracted by it it Thiss eucken took his doctor's degree at Göttingen, not in philosophy, but in classical philology and ancient history. After his graduation, he spent fivt years as a gymnasium teacher. In 1871 he wa
called to the University of Basel, and in 187 called to the University of Basel, and
he reccived a call to succeed Kuno Fischer as professor of philosophy at Jena. Here he set tled permanently, refusing invitations to other places. During the quiet years passed as a teacher at Jena, he worked out his own philosophy of history and life. In 1908 he recelved the Nobel prize for literature. His interna tional fame dates from this period. In ception, and the next year he came to the United States to deliver a course of lectures a Harvard.

Eucken's early philosophical work was along historical lines. In fact, his first publication deal with Aristotle. Gradually, his thinking be in the direction of a philosophy of religion. His philosophy can best be described technically as a spiritual activism founded on a NeoKantian theory of knowledge. He makes constant 1150 of history to show the growth of lifc-system which soar beyond anything for which the phy
sical world can account. This inner spiritua life of man is real and tremendously significant While it is conditioned by physical processes, it is not reducible to them. Spiritual values are achievements which must be actively appropriated by those who come after. Mere acceptto his anti-intellectualism. This does not conto his anti-intellectualism. This docs not conconcepts are not sufficient. There must be experiencing as well as knowing. Philosophy must aim at a profound penetration of life in must aim at a profound ps.

There can be no doubt that Eucken has struck an important note. His attack upon mere traditionalism, for instance, is
So is his stress upon personal idealism. Jut the technical thinker is likely to criticize hi neglect of theory of knowledge and his distc gard of the mind-body problem. These lacune need filling in, as even his most ardent discipie admit. Yet, when all is said, Eucken must D accorded a high place among modern thinker
He has helped to free religion from its mytho He has helped to free religion from its mytno-
logical setting and to bring into relief its ethical content. He has been a very prolific writer The following are his chief works: 'Dic Methode der Aristotelischen Forschung' (1872) ; 'Die Grundbegriffe der Gegenwar' (1878; this was published in its third edition under the title Geistige Stromungen der Genwart). 'Geschichte der philosophischen genwart') ; '(Geschichte der philosophischer teslebens' (1888): 'Die Lebensanschauunger
der grossen Denker' (1890 ; English title 'The einen rem of Human Life'); 'Der Kampf urn Wahrheitsgehalt der Religion) (1901 . E wle (The Truth of Religion)) ((Hauptproblem der Religionsphilosophie der Gegenwart) (1907 nglish title 'Christianity and the New Idea English 'Sinn und Wert des Lebens' (1908 , Life'sh
title 'The Meaning and
Value of
(Religion and Life) (1911); 'Can Wc asite Christians' (1914). The two best exDasitions of Eucken's philosophy in English phy of Life) (New York 1907), and W. Tudo Jones's 'An Interpretation of Rudolf Eucken's sion in 'Modern Philosophers,' Meyrick Booth's 'Eucken: his Philosophy and Influence,' and 0 . Siebert's 'R. Euckens Welt und Lebensanschauung.'
Professor of Philosophy, University of Michigan.
EUCLASE, úklâs, a very rare gem mineral, ${ }^{\text {a }}$ be bic silicate of beryllium and aluminum, tust Al SiO_{6}. It occurs in Brazil, Siberia, and pale-green or brilliant, transparent, colorless to with pecn or blue crystals of monoclinic forms, .5. Its specific gravity is 3.1 . There is a fairly extensive, scientific literature, a bibliography o which as well as all available scientific detail regarding Euclase may be found in Dana, E. S. ana) (System of mineralogy of James D
EUCLID OF ALEXANDRIA, Gree ,athematician: fl. about 300 B.C., taugh geometry at Alexandria in the reign of Ptolemy of mathematical science. The severity and ac aracy of his method have never been surpasse There is very little known regarding his life, roclus (412-485 A.D.) forming the chief source or our information. His chief work, raspoíXeim known as 'Elements' and has formed for he study genations the principal introduction though some editions contain two additiona ooks, which, however, are almost withou doubt not the work of Euclid. There also have een preserved six other works: 'Data,' 'Intro 'Puction to Harmony,' 'Section of the Scalc, cerning some optics and Catoptrics. Conwhether Euclid was the author or not. Even hore doubtful is the authorship of some fragnents sometimes ascribed to him. From quotations, etc., it has been well established that te wrote four other works of which, however (Pothing is in existence now: three books on on 'Conic Sections' and ene on (Fallaok The 'Elements) have come to us indirectly rough the Arabs who made a number of translations of which, however, only one, made in It 13 th century, has been printed (Rome 1594) ir is claimed that the first retranslation into Bath from Arabic was made by Adelard of bised the first printed Greck edition edited was cmments by Campanus of Novara (Venice 1482), which, however, is not very reliable. The st translation into Latin, made by B. Zam
berti, was published in Venice (1505). The first reliable Greek text was printed in Base (1533) and edited by S. Grynaeus. Othe (Greek and Latin, Oxford 1703) ; F. Qregory (3 vols., Paris 1814-18). E F. August (two parts, Berlin 1826-29): T. L. Heath (3 vols., Cambridge 1908). His complete works hav cen edited by M. Curtze (Leipzig 1899) and y J. L. Heiberg and H. Menge (Leipzig 1883 nto almost all the modern many translation first English translation was made by H Bi ingsley (London 1570) ; the first French by D. Henrion (Paris 1615); the first German by . Scheybl (Augsburg 1555). There are also a large number or commentaries, almost cvery aw editor for many years fecling it his dut to attempt a new and original, and, therefore Anon., 'The Elements of Euclid' (in Dublin Review, Vol. XI, p. 330, London 1841) ; Dodg son, C. L., (Euclid and His Modern Rivals (London 1879); Heiberg, J. L., (Litteratur882) : Hultse F (Euler Euklid) (Leipzig Wissowa (Real ${ }^{\text {n }}$, Eukides) (in Pauly Altertumswissenschaft, Vol VI Stuttgar 1907): Riccardi, P (Saggio di una Biblio rafia Euclidea' (four parts, Bologna 1887-90) Smith, T., 'Euclid: His Life and System New York 1902)
EUCLID OF MEGARA, Greek philos opher, the founder of the Megaric school of He was a pupil of Socres, after whose death 399 в.c., he retired to Megara (most probably his native city) and set up a school of philoso phy, in which he blended the doctrines of the Eleatic school with those of his master. He adopted the Eleatic notion of one universal unchangeable existence, and upon this he en subtlety and disputativeness, the school Euclid was sometimes called the Dialectic Eristic. He wrote six dialogues of which only one small fragment has been saved.

EUD ÆMONISM, the doctrine that happi ness (Gr. cudaimonia) is the chief good. Hap piness, according to Aristotle, is the activity o sour in accordance with virtuc, virtue heing mined by reason. As pleasure and life are in separably joined together, the one is therefore essential to the other, and the former is a necessary part of all human activity. See
EUDEMUS OF RHODES, Greek philosopher and the disciple of Aristotle. He wrot the philosophy of his master; of these the mos celebrated is the 'Eudemian'Ethics.' published as a part of the writings of Aristotle. H wrote also a history of mathematics and astronomy, now lost, but of which a com mentary remains to us in a work on Fuclid by Proclus and in the works of other writers w have fragments. All these fragments were pubphorum Græcorum' (Vol. III, 1881). Consult Gow, History of Greck Mathematics) (Cambridge 1884).

EUDES. See Odo,

EUDES, Duke of Aquitania: d. 735 A.D. He ruled that portion of France from the Loire defeat on the Arabs, who had besicged Toulouse. Ten years later Charles Martel began his incursions into Aquitania and the Arabs took advantage of this state of affairs to again invade France; Eudes joined forces with Charles to repel the invader and the allied
armies won the battle of Tours in 732 . Consult Vic and Vaissette, 'Histoire generale de Languedoc' (16 vols., Toulouse 1872-1904).
EUDES, Jean, the venerable French clergyman and founder of the Catholic congregation known from his name as the Eudists: b. Ri, 14 Nov. 1601; d. Caen, 19 Aug. 1680 . He was 1623 entered the Congregation of the Oratory at 1623 entered the Congregation of the Oratory at at Caen in 1639. In 1643 he founded the Congregation of the Mission Priests of Jesus and Mary for the training of pricsts in missionary work. This society came to be known by the name of their founder, took no vows, were at liberty to leave the congregation at any time they pleased. They received papal approval in 1674 and were regarded with jealousy by the Oratorians, especially after the latter became affected with Jansenism which the Eudists reprobated. The congregation spread rapidly of the Revolution. In 1826 it was reorganized and has since spread to Canada. Eudes also founded a society for the rescue of fallen women which still exists. Pope Leo XIII bestowcd on Eudes in 1903 the title of "Author of the liturgical worship of the Sacred Heart In 1908 the canonical process for his beatification was instituted in Rome. Consult Montzey, ${ }^{\text {tion was }}$ Le Pere Eudes et ses instituts) (Paris 1869), EUDIALYTE, $\overline{\mathrm{u}}$-día-lit, rhombohedral
red mineral of vitreous lustre, translucent or nearly so; its hardness 5.5 . specific gravity, 2.90 to 3.01 . It consists principally of silicates of iron, zirconia and lime. There are two varictics, tion is positive, and cucolite, in which it is negative. It is found in North Greenland, Norway and Arkansas.

EUDIOMETER, an instrument employed in the analysis of gaseous mixtures. It was originally designed for ascertaining the quantity of oxygen contained in any given bulk of elastic fluid. The first instrument of this kind was concudiometer two platinum wires are inserted near the top of a graduated glass tube open at the bottom. An electric spark is introduced by these wires. The process involves the explosion and combustion of one of the constituents to be
determined. The operation may be conducted determined. The operation may be conducted
in a trough of mercury or over water. See in a trough of mercury
EUDISTS, \vec{u}^{\prime} dists, a congregation or sotury by a priest named Eudes for the purpose of "missions" in parisht churches, for the revival of "missions" in parish churches, for the revival of
religious zeal and the conversion of sinners. religious zeal and the conversion of sinners.
The members of the society take no religious The members of the socicty take no religious
vows, but they live in common and are volun-
tarily subject to the orders of their superior. them from the rest of the secular clergy. Their first house was established at Caen in Normandy 1643; the membership at that time consisted of Eudes and eight other priests. In his time Eudes conducted 110 missions in various
places in the kingdom. The institute never places in the kingdom. The institute never spread to other countries. Eight or mor
Eudists were among the priests who were Eudists were among the priests who were
butchered in the wholesale slaughter of priests, butchered in the wholesale slaughter of prise Sentember 1792. The society was broken up during the French Revolution, many of the members secking refuge in England. In 1826 the apos-
tolate was revived and resumed with ardor and tolate was revi

EUDO DE STELLA. See Eon.

EUDOCIA, ū-dō'shî-a, Roman empress: h. Athens, about 393; d. Jerusalem, about 460 . She sophist. After the death of her father, who left nearly all his property to his two sons, she went to Constantinople for the purpose of complaining of this injustice to the empcror, Theo-
dosius II. There she embraced the Christian dosius II. There she embraced the Christione empress 421 A.D., through the efforts of Pulempress 421 A.D., through the efforts of Pul in reality ruled the royal houschold and Eudocia appears to have bowed to her will in everything. Finally, however, they quarreled over religious matters and Pulcheria whe succeeded in again securing her influence there and Eudocia was afterward divorced or retired from Constantinople and spent the remainder of her life in Jerusalem, engaged in acts of devotion. She is said to have written some Greek poems and also a life o Christ. Consult Diehl, 'Figures byzant (Leip-
(Paris 1906); Gregorovius, 'Athenais' (Le zig 1892) ; Ludwig, 'Eudociæ Agustæ Carminum Reliquixe' (Konigsberg 1893); any good history of the period.

EUDOXIA, \mathfrak{u}-dǒk'sǐ-a, Byzantine empress: wife of Arcadius, emperor of the West: d. 40 . She was the daughtcr of Banto a Frankish general of Theodosius. Eutropius the eunuc intriguing against Rufinus, chief minister
Arcadius, induced the emperor to take her Arcadius, induced the emperor to take her
wife, instead of marrying the daughter of Rufinus, as the latter had designed. Eutropius soon after this union caused Rufinus to he pul to death and succecded him. Eudoxia, if we may helieve John Chrysostom, was an infamons creature, althongh at one time winning his admiration and profuse acknowledgments profession of religious earnestncss. She was a woman of strong passions and resolute was a woman of strong passions and resolung
will, and when Entronius insulted her by saying that as he had raised her so he could debasc her, she appealed to the weak Arcadius who once degraded Eutropius from all his honory and ordcred his statue in the market place Constantinople to be destroyed. Chrysostom Eudoxia that she caused him to be banished 403, but popular clamor, added to the panic caused by an earthquake, induced her to recal
him. But her enmity caused his second cxile in him. But her enmity caused his second exile in two years, and if she were too impatient under two years, and if she were too impatient rindop
the almost Aristophanic invective of a bishop

Who was more a monk than a courtier, she was
probably sincere in her anxiety to rescue the probably sincere in her anxiety to rescue the
feeble Arcadius from the dominion of a minister like Entropius, and the best act she ever did in her life was to bring this monster of profligacy and corruption to the end of his

EUDOXIA, Roman empress, who was the daughter of Theodosius II: B. Constantinople, cousin Valentinian She was married to her after whose death, by the hands of emissaries of the senator Maximus, she was constrained to espouse the latter. Maximus subsequently had une folly to reveal to her the part which he had taken in the murder of Valentinian, and when come she invited to Italy Genseric, king of the Vandals, at whose approach Maximus was murdered. Genseric delivered Rome to pillage and vore away with him to Africa Eudoxia and her

EUDOXIA FEODOROVNA, tsarin:: o Russia: b. 1669; d. 1731. At 19 she became the Wife of Pcter the Great, but her adherence to the Conservative party caused her husband to refusing to consent to a divorce she was im prisoned in a convent at Susdal. In 1718 she was brought to Moscow for trial on a charge of adultery and forced to confess her guilt. Thereafter she was confined in the monastery of Staraya Lodoga, but on the accession of her grandson, Peter II, in 1728, she was set at
EUDOXIANS, ư dōk'sì-anz, followers of Antioch in Syria, and from 360 to his death in 370 bishop and patriarch of Constantinople. He Was successively an Arian, a Semi-Arian and an Aetian. Respecting the Trinity, he believed the Will of the Son to be differently affected from hat of the Father
EUDOXUS (ti-dỏk'sus) OF CNIDOS, scholar and friend of Plato. All his works are lost, but the poem of Aratus on astronomy makes us acquainted with the extent of his astronomical knowledge. Eudoxus seems to have been the first to introduce an astronomical globe into Grecee and this may account for the great reputation which he acquired and long
continued to enjoy. He is said to have discovered that the solar year is six hours longer than 365 days and to have invented a sun dial. He was considerable of a philosopher too, in his day; and he held that the summion bonum of all things is pleasure, which is the aim of cveryone. Consult Letronne, 'Sive les écrets et les travaux d'Eudoxe de Cnide' (1841)
EUFAULA, ū-fála, Ala., city in Barbour County, on the Chattahoochee River, and on cast of Montgomery. It is at the head of steanboat navigation on the river; is the trade centre of a large manufacturing and agricultural district, and carries on an extensive cotton-shipping trade, exporting over 30,000
bales annually. It has manufactures of cottonbales annually. It has manufactures of cotton-
goods, cottonseed oil, huggies and fertilizers. It has gas and electric lights, waterworks plant erected by the city in 1897 at a cost of $\$ 60,000$,
public parks, Union Female College, public high
EUGANEAN (ū-gảnē-an) HILLS, a range of well-wooded hills, lying southwest of Padua, lione, the canals of Battaglia and Este and the river Bisatto, deriving their name from an ancient Italian people called Euganei. They owe their origin to eruptions of trachyte during the Jurassic Period. The highest point, Monte Venda, reaches about 1,980 feet. On
their slopes stand several villas with interesting histories, among them villas with interesting Arquà in which the Italian poet died in 1374 . His tomb is on the market square of Este at the southern end of the Hills and near this town is the villa, I Cappuccini, lent by Byron to Shelley, who there finished the first part of Written Among the Eugancan Hills) (1818). There are also a number of monasteries dating back to the early Middle Ages, some of them in ruins. Valuable building stone, quarries and mineral springs abound. Consult Reyer, E., 'Die Eugancen. Ba11 und Geschichte eines
Vulkans' (Vienna 1877). Symonds Vulkans' (Vienna 1877); Symonds, J. A.,
'Among the Euganean Hills') (in Fortuightly Reviere, Vol. LIV, p. 107, London 1890)
euganei. Sce Euganean Hills.
EUGEN, Frederich Karl, Duke of WurtTemberg, Russian general: b. Oels, Germany,
1788; d. 1857 . His aunt was the wife of Tsar Paul of Russia and while still in his early years he was made major-general. In 1806-07 he took part in the military operations in Prussia and in 1810 in Turkey. He won distinction at Borodino, Krasnoi, Lutxen, Kulm, Lcipzig and other Corps in the war with Turkey in 1828 and retired from the service after the peace of Adrianople. He now gave his attention to study and composed an opera 'Die Geisterbraut,' produced at Breslau in 1830. His works include (Erinnerungen aus dem Feldzuge des Jahres 1812 in
Russland) (1846) and 'Memoiren'
shand (1862).
EUGEN ONIEGIN, an opera in three acts by Peter Ilich Tschaikowsky (libretto the students of the Conservatory at Moscow in March, 1879. The reception was cool, but gradually the work crept into popular favor. In spite of the strong dramatic character of Tschaikowsky's music, he never developed any marked talent for the theatre and from the many weaknesses. Beside the works of the younger Russian school of which Monssorgsky is the leader, it scems to lack the virility that has come to be associated with modern Russian musit. The influence of sumny Italy is felt rather than that of the Northern steppes. But ation and is pervaded by a romantic melancholy and elegiac sentiment that makes its emotional appeal very strong. The fetter scene is the most popular bit in the opera. Rosa Newmarch, who has made a special study of Russian opera, likens 'Eugen Oniegin' to "the embodiment of some captivating, wayward, female spirit, which subjugates all emotional their will." Lewis M. Isaacs.

EUGĖNE, è-zhân, Prince (Françors Eu b. Paris, 18 Oct. 1663; d. Vienna, 21 April 1736 Among all the generals and statesmen of Austria, none has rendered more numerous and important services than Eugene. He was great alike in the field and the cabinet. He petitioned Louis XlV for a company of dragoons, but Louvois. Minister of War, who hated the family of Eugene. Indignant at this repulse and at the banishment of his mother, a niece of Cardinal Mazarin, Eugene, in 1683 , entered the Austrian service. The distinction he earned at the siege of Vienna in 1683, at that of Belgrade in 1688, at that of Mayence in 1689 and elsehaving broken out between France and Austria he prevailed upon the Duke of Savoy to enter into an alliance with the emperor, and in 1690 received the command of the imperial forces sent to Piedmont to act in conjunction with the troops of the Duke of Savoy. He defeated the Turks at the battle of Zenta (11 Sept. 1697) Europe. The loss of the Turks at Zenta obliged them to accede to the Peace of Carlowitz, 1699, which was the first symptom of their decline. On the outbreak of the War of the Spanish Succession he was given the command in Italy and defeated the French on several occasions,
but inadequate forces led to his defeat at
Luzzara, 15 Aug. 1702 . In 1703 he received the command of the army in Germany, and his efficient co-operation with Marlborough frustrated the plans of France and her allies. In the battle of Höchstädt (Blenheim), 13 . Aug. 1704, the two heroes gained a decisive victory manded by the Prince of Bavaria and Marshal Tallard, the latter of whom was made prisoner. In 1705 Eugene returned to Italy, where he hastened to the relief of Turin, stormed the French lines, forced them to raise the siege and n one month drove them out of Italy. In 1707 but the immense superiority of the cnemy obliged him to retire into Italy. During the following years he fought on the Rhine, took ille and, in conjunction with Marlborough, defeated the French at Oudenarde (1708) and Malplaquet (1709). After the recall of Marlborough and the defection of England and Holprogress was in a great measure checked. The progress was in a great measure checked. The of Utrecht, was concluded between Eugene and Villars in 1714. In the war with Turkey, in 1716, Eugene defeated two superior armies at Peterwardein and Temesvar, and, in 1717 , took Belgrade, after having gained a decisive victory
over a third army that came to its relief. The Treaty of Passarovitz (concluded in 1718) was the result of this success. His fame is still celebrated in popular song, "Prinz Eugen der dle Ritter." He was also distinguished as a discriminating patron of art and literature. Consult Malleson (Prince Eugène of Savoy 888).

EUGENE, ū-jēn', Ore, city and county-seat of Lane County; on the Willamette River, the railroads; 123 miles south of Portland and 50
miles from the Pacific Ocean. The University of Oregon was established here in 1876 and now has about 1,000 students. The city is also the has about 1,00 students. The city is also
seat of the Eugene Bihle University and con-
tains a Carnegie library. It is the commercial tains a Carnegie library. It is the commercial centre of a fertile agricultural region. Lumber-
ing and gold and silver mining are carried on in ing and gold and silver mining are carried on
the vicinity. The manufactures are chiefly flour, vicinity. The manufactures are brick, tiling, fruit drying and packing, a flax factory and some articles for home consumption. The United States census of manufactures for 1914 showed within the city limits 37 industrial establishments of factary earners receiving annually a total of $\$ 167,000$ in wages. The capital invested aggregated $\$ 651,000$, of this, $\$ 403,000$ was the value added by manufacture. The city was settled in 1854, and was incorporated in 1864 . The government is administered by a mayor, chosen for two years,
and a city council. The waterworks and clecand a city council. The waterworks and clec
tric-light plant are the property of the city.

EUGENE ARAM, a novel by Edward Bulwer-Lytton (q.v.) written in 1831 and published in 3 vols., 1832. It was founded on the career of an English scholar, Eugene Aram:
1704; executed for the murder of one Clark in 1759. The character of the murderer and the circumstances of his life made the case one of the most interesting, from a psychological point of view, in the crimina! annals of England. Aram was a scholar of unusual ability, who, selftaught, had acquired a considerable knowledge of languages, and was even credited with
certain original discoveries in the domain of philology. Of a mild and refined disposition, his act of murder seemed a complete contradiction of all his habits and ideals of life. 'Eugene Aram' is an unusually successful study in fiction of a complex psychological case. At the time of its publication, it caused a great stir in England, many attacks being made upon
it on the ground of its false morality. To the present generation its romance is of more interest perhaps than its psychology. Some years after the novel was first published, the author hanged his opinion concerning the guilt of Aram and as a result also changed the story lish poet, Thomas Hood, wrote a poem on the same theme entitled (The Dream of Eurene Aram' (London 1831). It has also been dramatized, first by Bulwer-Lytton, who, howcver, never finished the play but published it in its unfinished form in The New Monthly Maga 401, London 1833), and later attached it to the novel itself. Other dramatic versions were pub lished by Moncrieff, W. T., 'Eugene Aram, or Saint Robert's Cave' (in 'French's Acting Edition of Plays,) Vol. CIII, London and New York, n. d.); Williams, E. W. H., 'Eugene 1874), A Play in Five Acts) (New Orlean was produced in 1873 by Henry Irving. For the history and life of Eugene Aram consult Scatcherd, N ., 'Memoirs of Eugene Aram' (London 1838).
EUGENE DE BEAUHARNAIS, e-zhâ̊l dé bō-är-nā. Sec Benuhiarnais, Eugene de.

EUGENI ONYEGIN. Pushkin's poem sian novels dealing with prototype of the Rus Here the hero Onyegin represents a member of cultured society in the 20's who took Childe Harold for their example. Indecd, the firs canto arose directly under the influence o the furt Der develo and chide Harold, but in an individual blase, but a class type of helpless, frivolous upper society, and, to a certain extent, gave his poem the nature of a social satire, as which it was recognized by contemporary critics. But, although Pushkin in the beginand irony, he looked more objectively at the hero as he proceeded, and even pitied him when his relation to Lenski and Tatyana became tragic. Onyegin legan by joining in his friends' orgies, but soon commenced to pine, and at last tried to busy himself with affairs. peasants to act as a benefactor to his After killing Lenski in a duel, he started on a journey, but even his wandering could not cur his hlasé spirit. He insulted simple-minded faithful Tatyana with his cold counsels, and tell in love with her only when he found her married to another man.
evidenced by the fact that up of this poem is printed in whole or in part 27 times, while for the same period there are recorded 55 critical essays dealing with the subject and 33 trans-
lations. English translations are hy D. Minaieff, lations. English translations are by D. Minaieff, (Saint Petershurg 1868); by Mrs. J. Buchan Telfer (néc Mouravieff, London 1880); by 1846, and in this form was kept in the repertoire tintil 1852. It gained its greatest popularity ihrough Chaykovski's opera, written in 1872 .

EUGENICS (from Greek eivevis well born). According to Francis Galton, the great English scientist who, in 1883, first used the term "eugenics," this branch of learning "is the science which deals with all influences that improve the inhorn qualities of a race." Within forces that tend to produce an increase in the number of such individuals as possess desirable hereditary qualities and a decrease in the number of those whose transmissible traits are undesirable. As applied to the human race Galton what hereditary traits are opinion exist as to are not. A warrior may approve pugnacity, a statesman, tolerance. An hereditary trait expressing itself in one of these qualities might asily prove unfavorable for the development of the other. Who, then, is to decide what qualities are really favorable? Galton met this sons would fail to consider that few perfundamental qualities as health, energy and ability. In a lecture before the Sociological Society of London in 1904 he reviewed some of the results that in his opinion would follow if the British nation through the practice of
elugenics were to raise its average quality to eugenics were to raise its average quality to
that of its better half. «The general tone of
doment domestic, social and political life would be less
foolish, less frivolous, less excitable and polit-
ically more provident than now. Its dem agogues who 'Played to the gallery' would play should be better fitted to fulfil our vast imperia opportunities. Lastly men of an order of abil ity which is now very rare would become more frequent because the level out of which they rose would itself have risen." It is evident of hercdity is requisite if eugenics is the law of hercdity is requisite if eugenics is to be sci
entific in fact as well as in aim. Such knowl edge must necessarily include ability to tell no only what traits are transmissible by physiolog ical processes but also the extent to which they are heritable. If these laws be given as known
factors, the eugenist then becomes interested in discussing how they may be utilized He wishes to know who are the bearers of the de sirable hereditary traits and how they may be led to contribute a relatively large proportion o offspring to the succeeding generation. Likewise he wishes to know who are the bearer of undesirable hereditary traits and how their
contributions may be minimized. Still further contributions may be minimized. Still further propagandist methods to spread abroad whatever knowledge exists within the field and by practical measures to better the breed of man The idea that, like the animals, the breed of man may be improved by a conscious selective even in early Chinese literature. Plato's suggestions on this subject in the (Republic') are too well known to dwell upon. Some of the Roman classical writers even give explicit rules of procedure. The modern eugenics movement however, dates from the publication in 1865 of acter" by Francis Galton in Macmillan's Magazine tor that ycar. So far as its scientific foundation is concerned, the origin of eugenics may be considered identical with the beginnings of biology. For this no specific date can be assigned because the history of biology - as mos ' F rom the Greeks to Darwin' - F. May be traced from a very early period. Nevertheless it was Darwin's 'Origin of Species' that in 1859 naugurated the distinctly modern period of biological investigation. The rapid and widespread acceptance of Darwin's contention that ing organisms are subject to change naturally prepared the public mind for a practical program for bettering those characteristics. Therefore when in 1869 under the title of 'Hereditary Genius,' Galton presented extensive biographical studies in support of the contention that widespread attention. An increasing literature on this and other phases of the problem soon popularized the subject. Eminent English writers, such as Wallace, Greg and even Darwin himself took part in the movement. In 1873 the appearance of Alphonse de Candolle's
'Histoire des sciences et des savants) the beginning of the interest of continentarked vestigators. In the same year appeared Ribot's 'L'Herédité psychologique.) Later, Georg Hansen's 'Die drei Bevölkerungstufen,' Ammon's studies of an anthropological character and Lepouge's 'Les sellections sociales' raised was not suffering from a "reversed selection"
caused by the attraction of the best stock to cities and a failure to reproduce therein. The subject matter of de Candolle's work was
closely related to that of Galton's. The conclusions reached in the former's book, however, did not fully support Galton's belief that specialized ability is hereditary. Galton immediately replied to it in an effective manner and
shortly after brought out his classic 'English Men of Science: their Nature and Nurture.' In this he set forth alditional carefully compiled data indicating the supremacy of nature over nurture. Shortly after these hopeful beginnings popular interest in the field now known as eugenics waned in England and for to the scientific side of the subject It is true that during this period Galton produced two important works 'Incuiries into Human Faculty and its Development' and 'Natural Inheritance,' the first in 1883 and the second in 1889 , but they aroused comparatively little general
notice. Even Galton himself "laid the subject notice. Even Galton himsclf "laid th
wholly to one side for many years."
In America, however, various contributions to the problem of race betterment appeared from time, to time. Among these Mr. Robert L. Duglale's 'The Jukes' (1877) was casily the most important. This was a thoroughly scienIn it the characteristics of over 500 descendants of the head of the family were carefully recorded and a number of important "tentative" inductions were drawn. Among these were: pauperism preponderates in the consanguineous lines; crime preponderates in the illegitimate lines; illegitimate criminal lines show
collateral branches which are honest and industrious. A popular impression has quite generally prevailed in America that this study of the Jukes constitutes a demonstration of "hereditary criminality," "hereditary pauperism," etc. This impression is unwarranted. As Professor Giddlings has pointed out its author never made
such a claim for it. "Mr. Dugdale") he says, "undoubtedly believed in the hereditary transmission of character tendencies as of physical raits and here and there he points out what seem to him to be evidences of heredity in this sense in the 'Jukes' hlood. But he is ever carcful to say 'scemingly' or 'apparently' or
otherwise to warn the reader that the concluotherwise to warn the reader that the conclu-
sion is tentative. Far from believing that heredity is fatal, Mr. Dugdale was profoundly convinced that 'environment') can be relied upon to modify and ultimately to eradicate even such deep-rooted and wide-spreading growths of vice and crime as the 'Jukes' group excm-
plificd." Another study of similar nature by plificd." Another study of similar nature by
McCulloch was published somewhat later under the title the 'Tribe of Ishmael.' In 1883 Dr.
Alexander Graham Bell's 'Memoir upon the Alexander Graham Bell's Memoir upon the
Foundation of a Deaf Variety of the Human Race' appeared, and shortly after under the imrint of the Volta Bureaul, endowed by Dr. Bell himself, there followed Dr. Fay's 'Marriages of the Deaf in America. Somewhat chapter on "Charity as a Factor. in Human Selecchapter on "Charity as a Factor in Human Selec-
tion" in his 'American Charities,' various studies on this topic were puthlished in the annual volumes of the proceedings of the National Conpublications naturally andealed to a rather lim-
ited number of specialists. Popular interest 11 the specific eugenic problem of social improvement through better breeding was waning to some ex
The beginning of the 20 th century, however, witnessed a very marked reawakening. By that time Darwin's doctrine of selection had thor oughly established itself and the public was ac-
customed to think of biological laws as something more than mere hypotheses. By that time, also, the Italian school of criminologists including Lombroso, Garofalo and Ferri had aroused lively discussion of the question as to how iar there was a true hereditary crimmal
type. In England much alarm had been octype. In England much alarm had been outh Africa. Morcover at about the same period Charles Booth's thorough investigations had been revealing the wide extent of poverty and degradation in London. The discussion of had arouscd widespread fears of progressive had aroused widespread fears of progressand Benjamin Kidd's 'Social Evolution' (1894) which had emphasized the relation of religion and biology to social progress was still the subject of lively comment in pulpit and press. In view of this situation it is not strange EngKand after Galton, foremost eugenist of Eation when in November 1900 he delivered his now famous Newcastle lecture on 'National Lite from the Standpoint of Science.' In this lecture he revicwed what he regarded as sources phasized the necessity of being ever ready to phasized the necessity of being ever ready
meet the competition of other peoples. "If the nation,". he said, "is to maintain its position in this struggle it must be fully provided witil trained brains in every department of national activity. . . . Are we certain we have a rescrve of brain-power ready to be trained? We have law of inheritance and that a dearth of capacity may arise if we recruit our society from the inferior and not the better stock." Again he exclaimed, "Our legislators get wonderfully; excited over laws relating to horses and cattle; they devote money and time to breeding pur poses and realize the strength of the law give prizes to encourage the maintenance of good stock or when again they work for the establishment of selected herds. But which of them has considered domestic legislation fromthe national history standpoint? What state of the national fertility of to-day is written the strength or weakness of the nation to-morrow? Primarily through the efforts of Professor Pearson, this lecture was followed a little late as hy the founding of the journal known as Biometrika. This journal became the particul he organ of those eugenists who attacked point of view. The impetus given to the movement by the various investigations published in this journal, however, was greatly strengthene by developments following another striking event-also purely scientific in its nature was the rediscovery by several independent workers of the so-called Mendelian laws of
heredity. These laws had been announced by Gregor Mendel as early as 1858 but had received covery, however, biologists all over the world began systematic experiments to ascertain the extent to which the so-called "laws" applicd. Hitherto such "laws" of heredity as had been formulated always expressed a relationship between the average amount of a given trait in an entire group of ancestors and the average their descendants. For example, the Galtonian "law of ancestral heredity" was, that two half of the total heritage of the offspring ; the grand grandparents, one-quarter; the eight great tells nothing, one-eighth. This, even if truc, individual inheriting any given characteristic rom any particular ancestor. The Mendelian aws, however, formulated relationships hetween specific trasts of a single pair of ancestors and For corresponding traits in their descendants. appear to "mendelize") Thus specific instance it is held with a high degree of probability, that if both parents have blue or gray cyes they cannot have children with black or brown eyes. The laws also express other equally definite but more complex relamany of the important heritable character. How of man follow the Mendelian laws is not yet known. The problem is one susceptible of accurate investigation, however, and rapid strides re now being made in solving it. Some notion of the importance of the results likely to gained by consider facts are collected may be many discoverics - namely, the operation of one phase of the law in the case of feeblio-mindedness. This trait is said to behave like the blue if or of cyes: that is, almost without exception, children will bents are fecble-minded none of the dard, will be normal. Dr. Henty H. Godinindedness in this country, found on focelethe in the case of all but six of 482 children Whose parents were all fechle-minded
The importance for eugenics of the dis-
covery of the Mendelian laws and of the farther Covery of the Mendelian laws and of the farther
nyestigation of the cxtcnt of their validity is nvestigation of the extent of their validity is
cyident. In the case of feeble-inindedness alone, the facts stated above, taken together with other known relationships of similar definiteness, contitute ample justification for active cfforts to
prevent propagation by the feeble-minded. This prevent propagation by the feeble-minded. This of the technical phases of the biological side the eugenic problem. Attention may properly nticipations, cherished by contemporary cugenis, that will indicate the possibilities of imrovement if, in fact, the biological hasis of the Daven becomes fully established. Dr. Charles berimental, director of the department of exat Cold Spring Harbor, Long Island, is, at the present time, one of the most enthusiastic heevers in what the future holds in store for ugenics. In describing the plans for the work $B_{\text {Feede committee on cugenics of the American }}$ interestring Association he outlined a number o interesting plans for future advance. Accord-
ing to Dr. Davenport one sub-committce of that organization is charged with the study of the fecble-minded, "This committce," he says, "has most important interests since the number of
fecble-minded in the United States alone is probably not less than 150,000 of which 15,000 are in institutions." Other contemplated types
of work for the eugenic committee included of work for the eugenic committee included study of the protoplasmic hasis of eye defcets; deafness, predisposition toward lung and throat trouble and toward diseases of the excretory
and circulatory organs. Still other forms of investigation which Dr. Davenport hoped could be undertaken were studies of criminality and pauperism, the effects of consanguineous marrages and of "such mongrelization as is prowas particularly anxious that the extant records was particularly anxiols that the extant records
of institutions be studied. The amount of such data is enormous. "They lie hidden in records of our numcrous charity organizations, our 42 institutions for the fecble-minded, our 115 schools and homes for the deaf and blind, our
350 hospitals for the insane 350 hospitals for the insane, onr 1,200 refuge
homes, our 1,300 prisons, our 1,500 hospitals and our 2,500 almshouses. Our great-insurance companies and our collcge gymnasiums have tens of thousands of records of the characters of human blood lines." By study of thesc records it will be possible "to learn whence come our 300,000 insane and feehle-minded, our
160,000 blind or deaf, the $2,000,000$ that are annually cared for by our hospitals and homes our 80,000 prisoners and the thousands of criminals that are not in prison and our 100,000 paupers in almshouses and out. This three or four per cent of our population is a fear ful drag dered civilization. per cent of A new plague that renat the most productive age, not only incom petent but a burden costing $\$ 100,000,000$ yearly to support would instantly attract universal attention and millions would be forthcoming for its study as they have been for the study of cancer. But we have become so used to crime, disease and degeneracy that we take them as ignorance is granted. That they must remain so, is denied. ... Vastly more effective than ten million dollars to 'Charity' wonld be ten millions to eugenics. He who by such a gift should redeem mankind from vice, imbecility and suffering, would be the world's wises actual investigations outlined by Professor Davenport has been undertaken under his own direction at Cold Spring Harbor and the results have been pullished from time to time in th ulletins of Eugenics Record Office
The phases of cugcuics emphasized by Pro icssor Davenport in the foregoing account ar
chiefly negative. They have to do with effort to climinate the unfit. Positive cugenics deal with a wholly different field, namely, the effor to increase the productivity of the best stocks There is no doullt whatever that the birth ratc among the more highly educated classes through than that of the more ignorant classes. It truc that a corresponding state of affairs exists in the matter of death rates. In spite of this however, the actual effective contribution of the better educated to the next generation is
at a much ? owver rate than that of the ignorant.

Not only is it true that college graduates as a group are scarcely reproducing themselves but
the same is true of the foremost men of science. the same is true of the foremost men of science scientific man in the United States and Canada according to a very careful investigation by Professor Cattell is about two; the surviving family about one and eight-tenths. Twenty-two per cent of the families are childless; only one family in 75 is larger than six. As a rule the fairly high as regards edication. During the 25 years from 1887 to 1911 the deaths among this class excceded births in families where the parents were native born by 269,918. The cugenic importance of these declines in birth rates among educated persons depends entirel the better educated are on the average possessed of better hereditary charactistics than other classes. Biologically considered the train ing that a man receives cannot be held to increase in any way the probability of his having children of higher talent than if he had not had any training whatsoever. It may well be,
however, that, on the average, those who possess better hereditary traits have succeeded in obtaining a good education more frequently than have persons less well endowed by nature On the other hand it may well be that, on the average, educated and successful persons have merely been more fortunate than others. The question as to whether or not success is an long debated but is yet far from solution Gal tong believed that if the eminent men of an period had been changelings when babies a very fair proportion of those who survived and retained their health up to 50 years of age would, notwithstanding their altered circumstances, have equally risen to eminence. If a man is gifted with vast intellectual ability, eagerness to work prehend how such a man could be repressed If this belief proves to correspond with fact, it is easy to see that the more successful members of society, including the better educated, must be the carriers of hereditary traits higher than the average. A low birth rate in such classes would be correspondingly serious from doubtful if the argument can legitimately be pushed as far as Galton carried it. Prof Lester F. Ward was never weary of contending that natural ability is distributed fairly evenly throughout the various classes in socicty. Naturally he did not contend that all individuals are equally endowed at birth - such a conten-
tion would have been absurd. He did hold tion would have been absurd. He did hold, however, that in all probability the percentage
of individuals highly endowed by nature with desirable hereditary qualities in all nations and in all social classes does not materially differ. If the question here presented could be scientifically solved it would carry with it the solution of the vexed question as to whether some was consistent in holding that the ancient Greeks were much more highly endowed with desirable hereditary qualities than are modern Europeans, and that the African negro of to-day ranks about as far below the present European as the ancient Grecks ranked above. The anthropol
ogist Boas on the other hand agrees with the Because of the held by Ward.
Because of the differences of opinion held concerning many of the biological questionser is likely to give unqualified approval to the more extreme practical measures adyocated by rad ical eugenists. It is probably in part at leas for this reason that advocates of the "sterilization of the unfit" have not as yet succeeded very
fully in having their ideas carried over into leg fully in having their ideas carried over into islation. It is true that of the United States have enacted sterilization laws, but only two appear to have attempted any enforcement and only a few operation have actually been performed. On the othe hand the increasing adoption of the idea that minded reflects the increasing willingness of public authorities to carry out measures advocated by those more moderate eugenists who base their practical plans upon established biological facts.

Possibly the most hopeful fact in the field of eugenics at the present time is the growing number of trained investigators who are at work upon the various phases of the problems whict lie within the field. One has only to glance over the reviews of books and articles on eugenic topics commented on or listed in the Eugenics Reviery to be convinced of the tre-
mendous popular literature that is accumulating. On the other hand one needs but to scan a few of the numerous strictly scientific journals in the ficld of biology to realize what a vast amount of accurate research is going on within the general field of heredity. To be convinced that much valuable work in the specialized in-
vestigation of strictly eugenic problems is being vestigation of strictly eugenic problems is beinging from time to time the results reached at the biometric and eugenic laboratories in England and, in America, the bulletin of the Eugenics Record Office. The work of this American office according to its own prospectus is: (1) To pository and clearing house. (2) To build up an analytical index of the traits of Americati families. (3) To train field workers to gathes data of eugenical import. (4) To maintain a ficld force actually engaged in gathering such data. (5) To co-operate with other institutions and with persons concerned with eugcnical heritance of specific human traits. (7) To advise concerning the eugenical fitness of proposed marriages. (8) To publish results of researches. To such persons as will undertake to fill them out it furnishes free in duplicate (one copy to be retained by the applicant) the Family Traits; (2) Index to Germ-plasm-a Parallel Family Record of Prospective Marriage Mates; (3) Musical Talent; (4) Mathematical Talent; (5) Tuberculosis; (6) Special Trait Chart; (7) Hare-lip and Cleft-palate.

The foregoing is sufficient evidence that the modern eugenic movement is very much alive. war is difficult to predict. Undoubtedly it will lose the services of many brilliant minds that, had peace continued, would have made notable contributions to the subject. It will thus, w

UGENIE
all the other sciences, feel the "disgenic" effect logical. On the other hand the various psychomay throw such light on various men as subjects eugenic problem that the science will advance even more rapidly than it has in the past. Furnermore the war may itself produce such potent demonstrations of various contentions now ence nce, if not for the race, will be advantageous onsult Biology; Heredity: Mental Tests Biblizion.
Gibliography-Galton, Francis, (Hereditary itance' (New York 1889), ; id 'Natural Inherf Science: Their Nature and Nurture) (New ulty and 189) ; id., 'Inquiries into Human FacPlity and Its Development' (New York 1883) point of Science) (London 1901) ; Conklin, E. G., 'Heredity and Environment in the Develpment of Men' (Princeton 1916) ; Davenport, B., 'Heredity in Relation to Eugenics' (New ork 1911) ; Dugdale, R. L., 'The Jukes' (4th (d., New York 1910) ; Goddard, H. H. The Kallikak Family' (New York 1912); Castle, Wm. E.; Coulter, J. M.; Davenport, nd Eugenics) (Chicago 1912): Doncaster, I Heredity in the Light of Recent Research (Cambridge, England 1911); Guyer, M. F., Being Well Born' (Indianapolis 1916) ; Tenhey, A. A., 'Social Democracy and Population' Economics and University Studies in History New York 1907) ; Kellicott, W. E., 'The Social Direction of Human Evolution', (New York 11) : 'Eugenics Laboratory Memoirs' (London $1901-$); 'Record Office Memoirs' (Cold Spring Harbor, N. Y., 1912-). The he Eugenics Revietre (publishedon 1902-); -ducation Socicty, London 1909-); Archiv H Rassen - und Gesellschafts Biologie (Werlin 1904-); The Journal of Heredity ashington, D. C., 1910).
Assistant Professor of Sociology, Columbi niversity.
EUGÉNIE, è-zhā-nē (Eugénie Marie de Mantijo), ex-empress of the French: b. GraJaly, Spain, 5 May 1826 ; d. Madrid, Spain, 12 was of a noble Spanish family; her mother patriof Scotch extraction, maiden name Kirk patrick. On 29 Jan. 1853 she became the wife On 16 March 1856 and empress of the French tage. When the war broke out with Germany he was appointed regent (27 July 1870) during the absence of the emperor, but on $4 \mathrm{Scp}-$ ember the revolution forced her to flee from France. She went to England, where she was the emperor. Camden House, Chiselhurst, became the residence of the imperial exiles, On 9 ame the residence of the imperial exiles. On later the prince imperial was slain while with empenglish army in the Zulu war. In 1881 the anpress transferred her residence to Farnbor

ough in Hampshire. She publishe Recollections from My Life) (1885).

EUGENIE GRANDET, è-zhả-nể grôn-dă In the scenes of the 'Comedie Humaine' that present aspects of provincial life the first place by universal assent belongs to 'Eugenic Grandet' $^{\prime}$ (1833). Its heroine is Balzac's finest her love; its story is probably the most terrible study of the corroding influence of avarice in any literature. Its astonishing power of gradually developing description, exhibited in the account of Old Grandet's house, its strongroom, store-closet, stairway, gives a presiding detail marks the inevitable next step in the inexorable progress of the miser's vice to monomania. Grandet's assumed stammering hesitancy in bargaining infects the reader with the same impatience that it was designed to produce in his victims in negotiation. "There tiger, something too of the boa-constrictor. He could lie in wait, watch his prey, leap on it,and then, opening the jaws of his purse, he would swallow a pile of ecus and settle down tranquilly, like the serpent after his meal, impassive, cold, methodical."

The story in brief outline is this: Felix Grandet, a cooper of Saumur, has amassed
wealth from trade, land speculation and usury, weat with such shrewd concealment that his wife and his daughter Eugénie think him as straitened as he is penurious. Partial confidents of his business intrigue for the hand of the unsuspecting heiress, but are made the dupes and Charles Grandet a Parisian covsin son of a bankrupt suicide, wins Eugénie's sympathy and a love of which he proves unworthy. Félix contrives to save his brother's name to his own hidden profit. Eugenie remains faithful to the memory of Charles, who prospers in India, while Felix, with unrelaxing vigilance, is to his hoard. Eugénie had given Charles her little store of gold coins on his departure. Her father sees opportunity to increase it by exchange. His discovery of the gift leads to a terrible scene, accentuating the miser's mania. He confines Eugenie and ignores her; avoids his wife, who fall have to render an account of she die tate to his daughter. It becomes policy to keep the ailing wife alive and to cajole Eugenie to a renunciation of the accounting. The mother dies, but Eugenie's renunciation even of the inheritance from her is attained with a truly diabolical ingenuity by playing on the poor girl's ing at the gold on a crucifix. His last words to his daughter, in the very gasp of death: "Be careful. Some day you will have to render an account of all." Eugenie, now a woman of 30 and heiress to $19,000,000$ francs, looks over-sea for Charles. He returns with enough to marry for social position and, ignorant of Eugenie's fortune, writes her a shameful etter, enclosing
a check for her loan, "with interest." He refuses to make final settlement of his father's debts. Eugénie does it. Charles discovers his mistake, too late. Eugenie contracts a marriage of form with the least unworthy of her old
suitors, a lawyer, who, thinking to secure her fortun, arranged that each should be the other's heir but was himself first to die. none has more scenes and descriptions that cling to memory Crandet's business transaction are told with the keenest psychological insight. The leading characters are among the masterpieces of all fiction; the minor personages, es pecially the maid-servant, Nanon, are clearly
defined definer; that of the miser's death is incompara ble. Consult translation by Marriage, E., in 'Everyman's library.'

Benjamin W. Wells,
Author of 'Modern French Literature.'
EUGENIUS, ū-jä’nǐ-ǔs, the name of four popes. The first, Saint Eugenius, was elected
654 ; d. 657 Eugenius II occupied the Roman See from 824 to 827 . His election was contested by a powerful faction in the city who favored Louis le Debonnaire who shared the empire with his father, came to Rome to quell the disturbance. On this occasion the people and clergy of Rome took the oath of fidelity to the two emperors and promised that thereafter whenever a new pope succeeded he should, before
his consecration, take oath in presence of the people and the emperor's representative to honor the emperor as the protector of the honor the emperor as the protector of the
Church. The Pope was the first to take this oath; its terms were complied with at the two papal elections next following, for example, of Valentius who filled the see threc months, and of Gregory IV. Eugenius III: b, Pisa; d
Tivoli, 7 June 1153. He was a Cistercian abbot and a close friend of Saint Bernard of Clairvaux and was clected 1145. Before his consccration the populace of Rome, led by Arnold of Brescia, effected a revolution and overturned the papal government; during a reign most of the time in exile, living at Viterbo Siena and other places in Italy and in France. Eugenius IV: b. Venice 1383; d. Rome, 23 Feb. 1447. He was a Celestine monk, cardinal and bishop of Siena when he was elected successor to Martin 1431. On 23 July 1431 was opened sor:- but not one bishop was present for the openirg, only theologians, abbots and canons On 12 November the Pope ordered the council to be dissolved and convoked another council to be held in 1433 at Bologna; but the fathers of the council of Basel continued to hold their sessions; throughout his reign the Pope was in
conflict with the council. From first to last the council sought primarily and almost exclusively to curb the authority of the Roman Sce, and in consequence there passed between Rome and Basel a succession of bulls ordering the dissolution of the council, annulling its acts, anathematizing its members; and from the other side decrees of the council declaring that genera assembly of the Church to be superior in auclaiming Eugenius deposed and setting up as Pope, Amedeo, Duke of Savoy, who assumed the style Felix V. This was the act of the council in its 35 th session held 8 July 1439 . At the same date there was assembled at Florence at the call of Eugenius, a rouncil attended by

160 Latin and same 20 Greek bishops, with the Emperor John Palacologus; at this council 3 reconciliation was effected between the Easter its terms and conditions became known in the East, when it was repudiated by the Greck Churci. The cause of the rival Pope Felix was at this time fatally weakened by the withdrawal by the emperor Sigismund of his support and by his declaring for Eugenius.
EUGIPPIUS, or EUGYPPIUS, an Italian monk of the 5 th century, born at Carthage of Saint Severin at Fariana and was afterward abbot of Lucullanum, near Naples. In 511 he wrote 'Vita Sancti Severini,' but his most important contribution to ecclesiastical history is a collection of excerpts from the works
Saint Augustine, 'Thesaurus Augustiancus.' Saint Augustine, 'Thesaurus Augustiancus.' Latinorum' (Vol. IX, Vienna 1885-86).
EUGNATHUS, ug-nā'thŭs, a fossil fish, à precursor of the mudfish, found in the Liassic rocks of England and also in Bavaria. It possessed an elongated hody with ganoid scales supported internally by vertical ribs, some of which were joined to each other.
EUGUBINE ($\left.\bar{u}^{\prime} g \bar{u}-b \check{n}\right)$ TABLES EUGUBINE ($\overline{\text { ung }}$ gubin) TABLES, the
name given to seven bronze tables found in name given to seven bronze tables found or Eugubium, now in the Italian province of Perugia, bearing inscriptions in a language dccided to be that of the ancient Umbrians. They were purchased by the town and are kept in its town hall. These tables are the most important monument of the language in which brian characters, two in Latin and the remaining one partly in Umbrian and partly in Latin. The contents of the tables refer to the ritual customs of the ancient Iguvinians. Photographic reproductions of the inscriptions, with A., 'Les Tables Eugubines' (Paris 1875-78). All edition of the Umbrian text with interlinear Latin translation was published by F. W. Newman, 'The Tcxt of the Iguvine Inscriptions'
(London 1864). Consult Aufrecht S. ${ }^{\text {and }}$, and (London 1864), Consult Aufrecht, S. T., and Kirchhoff, J. W. H., 'Die Umbrischen Sprach-
denkmaler, etc.)
(2 vols. Berlin 1849-51); denkmaler, etc.' (2 vols., Berlin 1849-51); C. D 'A G̈rammar of Oscan and Umbrian' (Boston 1904); Conway, R. S., 'The Italic Dialects) (2 vols., Cambridge 1897) ; Huschkc, G. P. E., 'Die Iguvinischen Tafeln, etc.' (Lecpzig 1859) ; Lassen, C., 'Bcitrảge zur Deutung der Eugubinischen Tafeln' (Bonn 1833); Lepsit1s, K. R., 'De Tabulis Sugubinis' (Berlin 1833), (Leipzig 1841); Planta, IR. von, 'Grammatik der Oskisch-Umbrischen Dialekte) (2 vols., Strassburg 1892-97).

EUGUVIUM. Sce Gubỉio.
EUHEMERISM, ü-hë̉mē rizm, or EUEMERISM. See Mythology.

EUKAIRITE, ù-kärit, a rare mineral of shining lead-gray color and granular struc ure, consisting chiefly of selenium, copper and silver $\mathrm{Cu}_{2} \mathrm{Se} . \mathrm{Ag}_{2} \mathrm{Se}$. Its name is derived from the Greek word meaning opportime, and was
given to it by Berzelius because found sol
after the discovery of selenium. It occurs in tine Red, Sweden, and in Chile and the Argengravity 7.5 . Its hardness is 2.5 and its specific System of Mineralogy of James D. Dana' (6t

EULACHON, û’lă-kồn, or CANDLE

FISH. See CANDle-fish.

EULALIA, ū-lälli-a, Spanish virgin martyr There is Estremadura; d. 12 Feb. 303 A.D. one is some doubt whether there was only rate there are two distinct festivals celebrate in Spain, one at Barcelona on 12 February and one at Merid 10 December 12 Feruary hymns and acts about these two saints are ver similar in many points. Concerning Saint Eulalia of Merida it is reported that when she was only 12 years old, the great persecution of Diocletian was set on foot, whereupon th young girl left her maternal home and, in the presence of the Roman judge, cast down the
idols he had set up. She was martyred by torture. Aurelius Rudentius has written (about E. a hymn about the martyrdom of Saint Ellalia of Merida, of which there are a num Der of translations. Her relics are at Oviedo, whereas those of Saint Eulalia of Barcelona are preserved in the Barcelona Cathedral. The of sailors. The oldest French poem in existence is also devoted to the descrintion of the hife and martyrdom of a virgin Saint Eulalia: Lut it is a mooted question whether it refers to one of the two Spanish saints or to still another. This manuscript is to be found in the library at Valenciennes. Consult Anon. Baring of Virgin Saints) (London 1846) (Vols II and XV, Edinburgh 1872) ; Moretus, T1., 'Les Saintes Eulalies' (in Revue des Questions Historiques,' Vol. LXXXIX, p. 85 Paris 1911) ; Ruinart, T., 'Acta Primorum Marlyrum, etc.) (Amsterdam 1713) ; Suchier, r., 'Uber Inhalt und
Französischen Gedichtes) (in Zelle des altesten ${ }^{\text {Französischen Gedichtes) (in Zeitschrift fiir }}$ 1891).

EULALIA, a popular name for certain species of tall perennial ornamental grasses o are natives of castern and southern Asia. The best-known species is probably M. sinensis, Which has developed scveral well-marked hortior ural varieties characterized by green, mottled or striped foliage and large terminal fan-like panicles of flowers, which, after shedding their their persistent silky hairs, which give the panicle a delicate, fluffy appearance for which they are valued as house decorations and for everlasting bouquets. Because of their beauty, their perfect hardiness and the ease with which they on be propagated by means of seeds or division especially for bedding aurposes促
EULALIUS, an antipope, elected in oppo-
sition to Boniface I in 418 . His election is the first to Boniface 1 in 418 . His election is th poral instance of the interference of the tem was unable to maintain his authority against

Bonface and was forced to leave Rome. Soon afterward he resigned his pretensions and submitted.
EULENBERG, oillèn-bèrk, Hermann German physican: b. Muhlheim-on-the-Rhine
1814 ; d. 1902 . He was. of Bonn and Berlin. From 1860 to 1870 he was government medical counsellor at Cologne and in the latter year was named counsellor to the Ministry of Education, in which relation he remained until 1887. In Coblenz he founded the Korrespondenzblatt der deutschen Gesellschaft
fiir Psychiatrie und gerichtliche Medizin and fïr Psychiatrie 1 und gerichtiche Medizin and
from 1870 to 1890 was editor of Vierteljahrs schaft für gerichtliche Medisin und offentliches Sanitätswesen. He published 'Das Medizinalwesen in Preussen) (1874); Frandbuch der Gewerbchygiene' (1876) ; 'Handbuch des of
fentlichen Gesundheitswesens' fentlichen Gesundheitswesens' (1882) ; 'Schul
gesundheitslehre,' with Bach (2d ed., 1896).

EULENBERG, Philip, PRINcE: b. Königs berg, Prussia, 1847; d. 16 Sept. 1921. He took and later studied law at the universities of Leipzig and Strasshurg. From 1888 to 1890 he was Ambassador at Oldenburg, latter at Stutt gart and Munich, and from 1894 to 1902 he served as Prussian Ambassador at Vienna. Ill health compelled his retirement and in 1900 hc was raised in rank, being made Fürst in tha He was also made hereditary member of the house of peers. Maximilian Harden attacked him bitterly in the Zukunft in 1907 and Eulenberg's reputation suffered greatly in conse quence and his influence was diminished. He wrote 'Rosenlieder) (1886 ; many later edi-
tions) : 'Skaldengesange) (1892): 'Dictere (ions); 'Skaldengesange' (1892); 'Dichtungen' lungen für Kinder) (1893): 'Abenderzalungen Marchen und Traume) (1894).

EULENBURG, ořlĕn-boorg, Albert, German physician: b. Berlin, 1840 . He received his education at Bonn and Berlin, was made as sistant at the University Hospital, Greifswald in 1863 and there published 'Die hypoderma-
tische Injection der Arzneimittel,' for which he tische Injection der Arzneimittel,) for which he was awarded a prize by the Hufeland Society,
Berlin. He was named professor of Berlin. He was named professor of thera-
peutics and director of the Pharmacological Institute at Greifswald in 1874, removed to Berlin in 1882 and began his researches in neuropathology, in which he was soon recognized as the leading authority. His published volumes include 'Sexuale Neuropathie' (1895) ; 'Lehrbuch der Nervenkrankheiten) (2 d ed., 1878). He edited the 'Real-Encyklopädie der Schwabe the Deutsche mediainische Wochen schrift.
EULENBURG, Botho, Count, German statesman: b. 31 July 1831; d. 1912. In 1867 he was elected to the North German Reichstag as a Conservative; became Minister of the Intcrior in 1818 and as such formulated the famous SoBismarck led to his resignation of this office 1881. In 1892 he succeeded Count Caprivi as president of the Prussian ministry, but owing to over the bill for an amendment to the criminal
code, the emperor dismissed them both in October 1894. In 1899 Eulenburg took his seat i EULENSPIEGEL, oillên-spe-gel, a typical character associated in Germany with all sorts of frolics and fooling. The type originated in Till or Tyll Eulenspiegel, a German clown who lived probably in the first half of the 14th century, and became celebrated for the wild pranks and escapades that he practised in all parts of tries. According to popular account he was born at the village of Kneitlingen, near Brunswick, and died at Mölln, near Lubeck about 1350 where his tombstone with the design of an owl and a mirror on it may still be seen. The tricks and frolics currently attributed to Eulen-
spiegel first appear in a Low Saxon accoun written in 1483; the earliest edition, in High German, was published at Strassburg in 1515, a reprint of which was published in Halle (1885) A poetic treatment of the same theme was published by Johann Fischart (q.v.) as 'Der Eulenspiegel Reimensweiss' (Frankfort A. M 1572; reprinted in Kürchner, J., 'Deutsche Na1892). The same collection published a reprint of the prose version in Vol. XXV. The work became very popular, and was translated into nearly every European language. In English it first appeared as a miracle-play, with the title (A Merry, Feast of a Man that was called "owl-glass"). An edition of Murner's collection was published by J. M. Lappenberg at Leipzig in 1864; English translations and editions appeared in 1860 and 1890 . In modern times a number of writers have used the same theme.
Some of them drawing freely on the old source but all of them creating more or less origina results. Amongst these may be mentioned the work of the Dutch novelist, Chatles de Coster 'Tyll Ulenspicgel' (1867, transl. into German by F. v. Oppelu-Bronikowski, Jena 1911); that of the German poet, Julius Wolf, 'Till Eulenspiegel Redivivus, Ein Schelmenlied (1875) in form of a Rondo by Richard Strauss, 'Till Eulenspicgel's Merry Pranks' (1894). Consult, besides any standard 'History of German Literature,' Brie, F. W. D., 'Eulenspiegel in England' (in Palastra, Vol. XXVII, Berlin 1903)
EULER, oi-lēr, Leonard, Swiss mathematician: b. Basel, 4 or 5 April 1707; d. Saint
Petershurg, 7 Scpt. 1783 . He was educated by Petershurg, 7 Scpt. 1783. He was educated by his father, a minister and mathematician, and then studied at the University of Basel under where he received the degree of Master in 1723 In his 19th year he gained the accessit of the prize offered by the Paris Academy of Sciences for the best treatise on the masting of vessels. He went to Russia in 1727 to become a member of the faculty of the newly founded Academy of Sciences of Saint Peterslurg and, in 1733 , labored with astonishing industry. He composed more than half of the treatises in this branch of science contained in the 46 quarto volumes published by the Saint Petersburg Academy 1727-83; and at his death left about
200 unpublished dissertations, subsequently
printed by the society. In 1741 he accepted an invitation from Frederick the Great to become professor of mathematics in the Berlin Acad Soon after his returncd to Saint Peted by a very serious illncss from which he finally recovered, but only after he had lost his eyesight. This, however, did not prevent him fromd continuing his work, employing a secretary and his elaborate computations chiefly by means of his remarkable memory. He finally submitted to an operation which, at first, was successful; but in some way he suffered a relapse and lost his newly recovered sight again. He first gave the conditions of the problem are first expressed by algebraic symbols, and then pure calculation resolves all the difficulties. He applied the analytic method to mechanics, and enlarged the boundaries of this science. He greatly improved the integral and differential complete course, which surpassed everything then extant on this subject. An extensive optical treatise, 'Sur la Perfection des Verres object. des Lunettes,' in the Mémoires de Berlin (1747), was the result of his inquiries into the means of improving spectacles. The share
which he contributed by this work toward the which he contributed by this work toward the
discovery of achromatic telescopes is sufficient to distinguish his name in this department also. He also employed himself in metaphysical and philosophical speculations. He attempted to prove the immateriality of the soul, and to defend revelation against freethinkers. In his well-known 'Lettres à une Princesse d'Allemagne, sur
Philosophie) Divers Sujets de Physique et
(3 vols., Saint Petersburg 1768 72), he attacks the Leibnitzian system of mon ads and pre-established harmony. Among his nlumerous writings may be mentioned here his 'Theoria Motuum Planetarum et Cometarum' (Berlin 1744); 'Introductio in Analysin Infinitorum' (2 vols., Lausanne 1748), which has tion; 'Institutiones Calculi ${ }^{\text {gentest produc) }}$ (Saint Petersburg 1755) ; 'Institutiones Calculi Integralis) (3 vols., Saint Petersburg 1768-70) 'Introduction to Algebra) (Saint Petersburg 1770) ; his 'Dioptrica' (3 vols., Saint PetersSaint Petersburg 1783-85). His industry was as remarkable as his genius. During his líe of 76 years, of which about 60 were devoted to scientific studies, he published a total of 32 separately printed books written in Latin, German and French, and many running to more than one volume; 331 treatises in the publica-
tions of the Saint Petersburg Academy, all in tions of the Saint Petersburg Academy, all in Paris, in French; 128 treatises for the Royal Academy at Berlin, all in French; and 196 miscellaneous treatises in Latin. For a detailed (Indiography of his works consult Hagen, J. G., (Index Operum Leonardi Euleri) (Berlin 1896). For his life, etc., consult Fuss, N., (Eloge d 1786) ; Hoppe, E., (Die Philosophie L. Eulers' (Gotha 1904); Schulz-Euler, S., Leonard Euler) (Frankfurt a. M. 1907); Rudio, F.
'Die Bascler Mat 'Die Bascler Mathematiker D. Bernoulli, und 1884).

EUM压US, a character in Homer's 'OdysSey,' Dook XV, who recognizes Odysseus on who matter's return from his long absence and of Penelope's suitors. He latter in getting rid occupation.
of EUMENES, ū'mè-nēz, Macedonian officer Chersexander the Great: b. Cardia, Thracian chersonesus, 360 ; d. 316 B.C. He began his ter's death occupied a similar and after the latander, who also placed him in command of the covalry. After placed dim in command of the hade governor of Cappadocia, Paphlagonia, and In coast along the Euxine as far as Trapezus. Craterus, with Perdiccas, defeated Antipater, himself f and Neoptolemus, but in 320 he was treat to Nora. Here he held out for ored to reyear until his soldiers at last betrayed him into he hands of Antigonus, who had him executed in 316 b.C. Consult the lives by Nepos and cintarch, also Vezin, 'Eumenes von Kardia: (Munster 1907).
${ }_{159}$ EUMENES II, king of Pergamum: d. ceeded to the was a son of Attalus I and sucfaithful to the throne in 197 B.C. He was a against Antiochus was given the provinces of ydia, Mysia and Phrygia. He was also an civil administrator and under him the prosperows was great and powerful, also rich and practically, and having Rome for an ally it was tractically invincible in the East. Eumenes did founded a magnificent library which in its day tad no rival other than that of Alexandria.

EUMENIDES, u-měn'î-dēz. See Furies, EUMENIUS, Roman educator: b. Augusto d 311 A. n . He in Chlorus, whom he accompanied on his ampaigns. Constantius commissioned him to in 206 the famous schools of Augustodunum dis Sch. We have an address, 'Pro Restauranother addresses attributed to Eumenius. For Bachrens, (Panygerici Latini)' (Leipzig 1874) nir) Teuffel, 'Geschichte der römischen Littera

(Vol. IIII, 6th ed., ib. 1913)

EUMOLPID®. Sce Eumolpus
EUMOLPUS, a mythical personage of anDhant times, celebrated as a poct, warrior, hieroprant and legislator, according to the common Chionen a Thracian, the son of Poseidon and have been daughter of Boreas. He is said to afterward dreturned from Thrace, but to have sequent carcer vary. According to one tradihe was the founder of the Eleusinian mys eries (q.v.). in which he was instructed by emeter. The sacerdotal family of the Eumolthis Eumolpus claimed to be descended from
EUMYCETES, ü'mī-sềtêz, the name use romstinguish Ascomycetes and Basidiomycete UUMIUS, Sec FUNGI.
4th EUNAPIUS, Greek philosopher of the and throughout his life bitterly opposed Chris
tianity. In 366 he set up a Neoplatonist school phers and the Sophists.) This work was edited by Boissonade (Paris 1849). He also wrote a history of his own time of which only fragments have conic down to us. These are to be found in Muller, 'Fragmenta Historicorum

EUNICE, a Jewess of Lystra, mentioned in Acts
othy.
EUNOMIANS, the extreme faction of the Arian sect in the 4th century, so called from They asserted the doctrine that Jesus Christ the son of God is of different nature (or substance) from the Father avopios ката ovaiav каí thus his doctrine was that of Unitarianisming): doctrine of the Roman Catholic Church, The clared in the Council of Nicæa, was that of uoovaios consubstantiality; that of the SemiArians was that the Son is of like or similar substance, $\dot{\phi} \boldsymbol{0}+\boldsymbol{i t c o s}$ and hence they are called homousians, white the orthodox took the name
of homousians of homousians* (both words ustally written expression to their distinctive tenet the Emomians changed the baptismal formula, "I baptize thee in the rame of the Father," etc., to this: "I baptize thee in the name of God, the Creator, into the death of Christ." Consult Newman, don 1886).

EUNOMIUS, Arian bishop: b. Dacora Cappadocia; d. there about 395. In the controversy which gave rise to Arianism, Eunomius was anl ardent disciple of Arius. So extreme were his views that he and his followers were
looked upon as members of a party within the looked upon as members of a party, within the Arian ranks and were called Eunomians (q.v.). deposed the following year as a result of his extreme views. He lived the life of an exile after this, but finally returned to his birthplace He wrote a number of works, three of which are still in existence: 'Apologeticus,' 'DeFaith, of the Defence' and 'Confession o (J. P. Migne, ed., Vol. XXX, Paris 1857-66) and has been translated into English by Whis ton, W., 'The Apologetick of Eunomius' (in 'Primitive Christianity Revived,' Vol. I, London 1711). The fragments of the second have liana' (pp. 124-147 Gôttingen 1704)' 'Marcelliana) (pp. 124-147, Göttingen 1794). Consul (Kiel 1833)

EUNUCH, ửnük, a castrated male, gener ally used to take charge of the harem. Eunuchism is of prehistoric origin and prevaile among all Eastern nations and peoples and amongst those of the West which had been subject to Eastern influences. History refutes the general idea that eunuchs are deficient in cour-
age and intelligence. In Persia, India age and intel.igence. In Persia, India, China pirc, they frequently occupied, with great suc cess, important military and civil positions. In modern times eunuchism is practiced extensively only in Moslem countries and even there it is gradually losing ground. Of secondary
importance has been its practice for religious
reasons, an exaggerated development of asceti cism. In the Christian Church it was, perhaps, most prevalent in the 3 d century, though never officially countenanced

EUNUCHUS, ū-nūk'uns, a comedy of Terence and one of the best of his works, written in 161 B.C., Modern imitators are Sedley in

EUOMPHALUS, a fossil gastropod, having a spiral shell and found in Silurian and Triassic rocks, but most numerous in the Carboniferous Age.

EUORNITHES, đi-or'nì-thêz, a grand division of birds, which, according to some authors includes all living birds except the ostriches and their allies and the penguins; and according to except Archroopteryx. In this sense it is equivalent to the preferable term Neornithes (q.v.).

EUPALINUS OF MEGARA, Greek architect, who constricted the great aqueduc for Polycrates on the island of Samos. Consult Smith, 'Dictionary of Greek and Roman Antiquities,
London 1890).

EUPATARIA, or EUPATORIA, Russia seaport, in the government of Taurida, on the Having long been possessed by the Tartars o He Crimea (who gave it the name of Koslof or Kesloff), it is more Asiatic than European in its aspect. The salt lake of Sake is a bathing resort. Formerly in possession of the Turk it was annexed hy Russia in 1783. It was her ment of the Crimcan War (14-18 Sept. 1854) It was unsuccessfully attacked by the Russians 17 Feb. 1855. Pop. 30,432.

EUPATORIUM, a genus of composite plants including many (about 600) species, especially characteristic of America, where severa are well known. Among the most prominen are boneset or thoroughwort (E. perfoliatum), a native of low grounds, distinguished by the the stem; and the Joe-Pye-weed, or gravel root (E. purpureum), whose purplish rosy flowers become conspicuous in late summer in wet meadows, borne on stems often 12 fect high. The hemp-agrimony is a well-known this genus are in corymbs, all the florets tubular. Several of these plants have enjoyed from time immemorial a reputation in folk-medicine as remedies for the breaking up of fevers Popular tradition has it that eupatorium is good for broken bones, the common name bonese preserving this notion. It has no such action fixed oil which eupatorium contains it makes a fair diaphorctic mixture, and in the form of "boneset tea" it is of service in causing profuse sweating. This may be of service in the treatment of congestions in different parts of the

EUPATRIDES (Gr. fimatpidal, eupatridai, well-born), the aristocracy, or land-owning class of ancient Athens, distinguished from the geomiroi, or peasants, and the demiourgoi, or
artisans.

EUPEN, oỉpêı (Fir. Néaux), Gerniany, town in Rhenish Prussia, on the Wenze, west of Aix-la-Chapelle. Its manufactures are numerous and varied. Eupen owes its mants facturing prosperity to the French refugee who settled here while the town formed pale of the duchy of Limburg, under Austrian rule was ceded to France, Eupen belonged to the department of Ourthe until the Peace of Paris in 1814, when this town, with other portionso limhurg, was ceded to Prussia. Pop. $14,000$.

EUPHEMISM, a figure of speech by which one avoids the use of words directly expressing anything improper, disagreeable or pain ul by the employment of phrases that suggest in more celicate manner or under a more chus the
ful aspect the idea to be conveyed. Thus Greeks, in speaking of the Erinyes or Furies came to call them the Eumenides, or well-ais posed, gracious goddesses, and sometimes sem nai theai, "the allgust goddesses." Nearly al languages have some euphemism for death, to express the fact that one has dicd, as wible we we speak of the phrases "he was gathered to have the phrases "he was gathered to the
fathers," "he has fallen aslecp," etc.; the Romans, with the same intention, said "he has lived" (vixit); the Germans say "he "is as cended" (εr ist hinaufgegangen), or "he ho been made immortal" (er ist verczuigt worde the fairies as the "good people."

EUPHORBIACEIE, ư-fôr-bī-ä'sec-e (the Spurge family), a family of plants, consisting Spurge family, a family of plants, shrubs and trees arranged in about 220 genera, some
which are well known for their ornamental and which are well known for their ornamententions
economic uses. They are, with few exception economic uses. They are, with enew ex tropical natives of warm climates, especies has an aerid Auice, ustally poisonous, but sometimes made bland when heated. Among the members portance. Thus the juice of some species and the roots of others are used in medicine, for in plants of this kind are found croton oil, eastor oil, etc. A few of the Euphorbiacex yield thei
grant balsamic products; a few, although the juice is poisomous, yield a wholesome starch in considerable abundance (sce Manioc) ; a fel are cultivated and used as pot-herbs, particll larly species of Plukenetia in the East Indies a few yield wholesome and agreeable suh-acid fruits, as Cicca disticha and C. racemosa inle, a
East Indies; the seeds of some are edible, East Indies; the seeds of some are edible,
those of the candle-nut (q.v.), etc. ; the oll the seeds is also in some cases used for food, the secds is also in some cases used for burning, as castor oil, candle-nut oil, the oil Aleurites cordata in Japan and Mauritius, the solid oil of Sapium scbiferum, which is 1 in China for making cations as a substitute for lard in mem i preparations as a substitute for lard. From pro
$v e a$ is derived the highest grade of rubber pro duced in South America. Others yield JVC^{2} stuffs. The timber of some of the Euphor cex is valuable - for example, African Of the numerous genera. many are represent 1 d in the American flora, the most important being Croton Ricinus (castor-oil plants), and Euphout

700 species, most abundant in the warm parts ot the north temperate zone, more than 125 of known as "spurge," and some are poisonous. Some one species is found in almost cvery part of America, those not native having escaped from cultivation. Some of the species used imposing ornamental plants and are much housed in landscape gardening and in grcengrowth, usually for their curious forms of Plants of this for their beatuty. differing of this family, although of widcly acterized ly uniscxual, monocious or dicccious Cowers, often brilliantly colored and often inConspicuous, in the latter case sometimes sulhinced by brilliantly colored bracts; the usually hrow the seeds sp

EUPHORBIUM. See Gums

EUPHORBUS, in Greck mythology, one f Pe bravest of the Trojan heroes, the son the Trojan War He was slain by Menelaus in
DTHEOA

EUPHORION, Greck grammarian and poet: b. Chalcis, Eubea, 276 ; d. about 200 b.c. Pointed educated at Athens and in 220 was apmaintained secret amours with Nicia, wife of Aexander of Euboca, reference to which fre4tently appears in the 'Greek Anthology.' He troduced several works on history and gramand epigrams. Fragments of his works appcar Koch, 'Fragmenta Comicorum Grecorum' Chalcidensis 1880, and Meinkc, (De Euphorionis Consult Christ-Schmid (Geschichte der 1823). ischen Litteratur) (Munich 1911) and Berther Klassikerterte (Vonich 1911) and Ber-
EUPHRANOR, Greek sculptor and painter $\mathrm{F}_{\text {is }}$ the 4 th century b.c. He lived at Corinth. ${ }_{P}$ is most famous statues were an Apollo. a arms. His ppresenting 12 gods in the Stoa Basileios, thens. Consult Gardner, F. A. (A Handbo of Greek Sculpture) (London 1911)
EUPHRASIA, a genus of plants of the rises about 110 species natives of It comand cold regions of hoth hemispheres, several them occurring in North America. They are small, or peremial low-branched herbs, with known blue, yellow or white flowers, generall Atnerican the name eyebright. The principa right and E. americana, hairy cyebright the ish widely distributed. The common EngAh eycbright, E. officinalis, is not known in mowrica. This is a vcry pretty little plant, the lowers white streaked with purple, and a yel ome spot on the lip. It grows so abundantly in ance of being covered with snow, an appear me of its flowering, from May to Scptember been whole plant is slightly aromatic. It has tions used with success in catarrhal inflammaor head the eye, in cough, hoarseness, earache whe follow after catarrhs.

EUPHRATES, ū-frä’têz, a celebrated river in the Arabic Peninsula, having its sources in central Armenia, at no great distance from the shores of the Euxine, and its mouth in the Permiles. It is formed by the junction of tw, 1,716 streams, called the Kara-Su and the MouradChai. These two head streams unite near Kaban Maden, about lat. $38^{\circ} 58^{\prime} \mathrm{N}$.; long. $38^{\circ} 30^{\circ}$ E.; from which point the river holds in the main a southeasterly course, until it falls miles from its mouth, it is joined by about 100 and the united streams is joined by the Tigris, Shatt-el-Arab. In point of current the Euphrates is for the most part a sluggish stream, cxcept in the height of the flooded season. The Shatt-el-Arab has a depth of from three to five fathoms and presents banks covered with viltown on the Shatt-el-Arab is Bassora or Basra The melting of the snow in the mountains along the upper part of the river's course causes the Euphrates to rise. This takes place about the beginning of March and it increases gradually up to the end of May. The river continues high for 30 or 40 days; but afterdle of Scptember to the midde. From the midriver is at the lowest. The Euphrates is navigable for a long distance from the sea, but there are numerous rapids. Steamers navigate the Shatt-cl-Arab. Between the Euphrates and the Tigris lies the celchrated region Mesopotamia.
EUPHROSYNE, ü-frōs'i-nẽ (Lat., from Gr . Ev申pooivy the personification of joy, from evpowv, euphron, joyous), in Greck mythology,

EUPHTHALMINE, inf'thāl'mĭn, an artificial alkaloid the hydrochlorate of which is used in solution in place of atropine and homatropine to dilate the pupil of the eye for ex advantage it possesses is that the effect gasses off within five hours and there is no passe of causing glatucoma, whereas atropine cause dilation for from 24 to 40 hours and homatropine for several days.
EUPHUES (ứfū-ēz), OR THE ANAT
OMY OF WIT, and EUPHUES AND HIS OMY OF WIT, and EUPHUES AND HIS ENGLAND, a book and its sequel, by Johi Lyly, published respectively in 1578 and 1580 when the author was a young courtier. They which can only loosely be called fiction in the modern sense. Perhaps the word "romance" best expresses its nature. For 50 years th work was fashionable in the polite circles o England; and the word "euphuism" survives in the language to designate the stilted, far-fetched, ornate style of writing introduced and made it too much of the affected to give it long life he undoubtedly did something toward making the 16 th century specch refined, musical and choice. It is this rather than any attraction of story that makes the 'Euphues' interesting to the modern stude Euphuism.
EUPHUISM, \bar{u}-fī̃ĩzm, an affected style o speech which distinguished the conversation and
writings of many of the wits of the court of Queen Elizabeth. The name and the style were derived from 'Euphues, or the Anatomy of
Wit) (1579), and the 'Euphues and His Eng land) (about 1581), of Joln Lyly. It is probable that Lyly got his idea of these books from Ascham who, in his 'Schoolmaster,' published a short time before, had said that Euphues is "he that is apt by goodness of wit, and appliable by readiness of will to learning having all other qualities of the mind and parts of the body that Lyly adopled the word "Euphues" as the title of his hero, whom he developed in the sense in which Ascham used the Greek word "a man well endowed by nature." Lyly deliberately, in his writing, appealed to the audience of ladies throughout Britain for whom it was made light, which his followers soon styled "the new English." For over half a century 'Euphues' remained one of the most popular of books and its author was held to bc one of the im mortals. Among his most noted ardent admir ers was Queen Elizabeth herself. These books gallants of the time, and an acquaintance with which was regarded as a test of courtly brecding, were characterized by smoothness and ver bal elegance, but chiefly by fantastic similes and illustrations. Sir Walter Scott draws the portrait of a euphuist in the character of Sir Piercie Shafton, in 'The Monastery.' Consult ArBond, 'Complete Works of Lyly' (1902); Laud mann, 'Der Euphuismus' (1881). Sce Eupiues

EUPHYLLOPODA. Sce Branchropoda

EUPION, ūpi-ōn, or EUPIONE, Reichenbach's name for a fragrant colorless liquid animal and vegetable substances. It is highly volatile and inflammable; it is insoluble in water, but mixes with oils, and acts as a solven for fats and resins. It is not readily acted on by ordinary chemical reagents.

EUPOLEMUS, Jewish historian, who lived in the 1 st or 2 d century b.c. He wrote a wor with the title, 'Concerning the Kings of Judxa, fragments of which have come to us through Clcment Alcxandrinus and Eusebius, Eupolemishaimed that from him it passed to the Phonicians and Greeks. For the fragments consult Kuhlmey, 'Eupolemi Fragmenta' (Berlin 1840) and Muller, 'Fragmenta Historicorum Græcorum' (Vol. 1II, Leipzig 1849). Consult Schürer, (Geschichte des judischen Volkes) (4th ed., Leipzig 1909) and Willrich, 'Jude

EUPOLIS, Greck poct: b. about 446; d 411 b.c. In 429 appeared his first play, written when he was about 17 . Suidas relates that he
wrote altogether 17 pieces and was awarded 10 wrote altogether 17 pieces and was awarded
prizes. Early in his literary career he was on prizes. Early in his terms with Aristophanes, with whom he collaborated. Later they became enemies and Eupolis was accused of plagiarism. Frag ments of his works are found in Meincke 'Fragmenta Comicorum Grxcorum' (Vols. I
and II. Berlin 1839-57) and Koch, (Fragmenta Comicorum Atticorum' (Leipzig 1880). Con-
sult Christ-Schmid, 'Geschichte der gricehischen Litteratur) (6th ed., Munich 1911)
EURAQUILO, ù-rāk'wĭ-lo, the name given by the sailors to the east-northeast wind which wrecked the ship on which Saint Paul was
traveling to Rome (Acts xxvii, 13, 14). The traveling to Romc (Acts xxvii, 13, 14). . Tre
Authorized Version adopted the incorrect Euroclydon from a faulty manuscript, probabiy.

EURASIANS. See Anglo-Indians
EURE, èr, France, a department in the EURE, er, France, a department in ara, northwest forming part of Normane flow
2,331 square miles. The chief river which through it is the Seine, of which the Eure the Rille are the most important tribumining
Wheat is the principal crop, and the mine and manufacturing industries are extensive Capital, Evreux Pop. 323,651

EURE, a river of France, which has givel its name to two departments - that of the Eurc and that of the Eure-ct-Loir. The river risc
in the department of the Orne, and flows int the Seine, near Pont-de-1'Arche, after a coursc of 124 miles, being navigable for about half the distance.

EURE-ET-LOIR, ér-ā-lwār, France, a department in the northwest, forming part of the old provinces of Orleannais and Normandy arca, 2,293 square miles. The department esscntialy agricultural, and has few manura
EUREKA, ü-réka, a Greek word meaning "I have found it"; used as an expressic.
EUREKA, Cal., city, county-seat of Hum boldt County, on Humboldt Bay, the Eel kive and the Northwestern Pacific Rairoad, 225 har bor, which has been improved by the Unite States government on the jetty plan. The city is situated in the famous redwood region, an has large lumber interests. Serpuoia Park, tract of 40 acres of redwood forest, is near the
city. The noteworthy features are the Carnegic city. The noteworthy features are the Carncg city hall and courthouse. An extensive trad is carried on in redwood lumber, shingles, but ter, fish, apples and wool, the exports in 191 amounting to $\$ 10,960,000$. There are shingle mills, tobacco factorics, bottling works, sash all
door factories, marble and granite works, a tall door factories, marble and granite works, a tar
ncry, iron foundry, woolen mill, etc. The Unite States census of manufactures for 1914 show within the city limits 57 industrial establisis ments employing 928 persons; 799 being wal earners recciving annually a total of $\$ 605,00$ in wages. The capital invested aggregated
$\$ 2.976,000$, and the year's output was valued at $\$ 2,976,000$, and the year's output was valued
$\$ 2,480,000$; of this, $\$ 1,263,000$ was the valu added by manufacture. The government, unde a charter of 1895 , is vested in a mayor, elected
bicunially, and a municipal council. First setted bicmnially, and a municipal council. First setted in 1850, Eureka became the county seat all was incorporated in 1856 . 'The city has gas and electric lights, high schools, daily and we
EUREKA, III., city and county-seat 0 Woodford County, on the Atchison, Tope and Western railroads, 20 miles east of Peor Eurcka College, under the auspices of the

Christian Church, was established in 1855. Th city is a trade centre for the surrounding agri as a town in 1856 . The waterworks are owned by the municipality. Pop. 1,559 .
EUREKA, Kan., city, county-scat of GreenAtchiod County, on Fill River, and on the souri Pacific railroads, about 58 mithe north east of Wichita. It is the seat of the Southern Kansas Academy, under the auspices of the library. The city is a trade centre Carnegie surrounding rich agricultural region. Eureka nas adopted the commission form of government and owns its waterworks. Pop. 2,333.
EUREKA, Nev., town, county-seat of toad Producing great quantities of lead, gold and silver; and many other valuable minerals. The town has numerous and important smelting and stroying works. I3ccause of severe fires, de tion decreased from 5,000 in 1880 to 708 in

EUREKA, Utah, city of Juab County, 90 miles southwest of Salt Lake City, on the San Fedro, Los Angeles anilroads. It has conper smelting works and quartz millis and a Carnegi neighty. Copper and silver are mined in the neighborhood. Pop. 3,608.
EUREKA COLLEGE, coeducational institution in Eureka, In.; founded in 1835 under the auspices of the Christian Church. The and instructors, 26° students, 275 ; and volumes in the library, 12,000 .

EUREKA SPRINGS, Ark., city and county seat of Carroll County, on the Jefferson HighRay and the Missouri and North Arkansas It is a noted health and pleasure resort to which 30,000 visitors come annually. The shipping of It has two banks with combined resources of 950,000 , taxalile property valued at $\$ 1,875,000$ Cublic and high schools and is the seat of the lic buildings are the city hall, United States post office and the county courthouse. It has also several large hotels catering to tourists. The receipts of the city amount to about ernment annually. The commission form of gov

EURIC, a king of the Visigoths (q.v.). EURINGER, oi'rŭng-èr, Sebastian, German educated at Munich, Heidelberg, Freiburg, Strasshurg, Tubhingen and at the Ecole Biblique Pratique at Jerusalem. He entered the ministry in 1887 and preached for two years, after 1804 he tolured Egypt and Palestine. From and to 1900 he held a pastorate near Allgshurg in the Dillingen Lyceum. He has published 'Der Masorahtext des Kohelet') (1890); 'Die Auffassung des Hohenliedes bei den Abes-
sinieren) (1000). (Die Chronologie der biblischen Urgeschichte) (1909) ; 'Die Kunstform der althebraischen Poesie) (1912); 'Ein un(1913).

EURIPIDES, son of Mnesarchus, a retail dealer of the Attic village, Phlya: b. 480 b.c. on the island of Salamis, and, according to tradition, on the day of the famous battle; d.
406 . His mother's name was Clito which indi406. His mother's name was Clito, which indicates aristocratic lincage. Under the influcnce of his father Euripides first paid attention to ophy. He learned much from Protagoras from Prodicus and from Anaxagoras, with whom he holds that nothing which exists perishcs. The poet entered upon his real career at 25. His first success was limited, but he became more and more the favorite of the people. The popularity of his plays at the
close of his life and throughout late antiquity was extraordinary. Later comedy was based on his methods. The Romans had a strong predilection for him. In modern times the admiration for Euripides was unhounded unti Schlegel set up a standard against him. But Schlegel is unfair: a poet mulist be measured failed at first to win the approval of the Athenians. He was unsuccessful until he was 38, and he won only five first prizes in his whole life. He was also personally unpopular, for he was essentially a pessimist. He felt goad. He loved retirement and sequestration from open haunts and popularity; preferred the contemplative life of the student to the active life of the statesman. He even acquired the reputation of being a morose cynic, vicious n his private life despite his austere exterior His gloomy visage, rendered doubly so by unthe Athenians, who detested an unsociable disposition. So he lived the life of a recluse, on his estate at Salamis, rapt in secret studies His library was dukedom enough for him Late in his life he repaired to the court of
Archelaus, king of Macedonia. Here he died Archelaus, king of Macedonia. Here he died cent tomb at Pella. The Athenians erected for him a cenotaph in Athens.
Euripides is the most rhetorical of the three tragic pocts, because he is most affected by the tive of the new Athens, of the new idea which were crowding out the simpler beliefs of the Æschylean and Sophoclean school. Eurip ides is nearer ourselves. He marks the transition to the modern world. The antique standard cannot be applied to him. With Alfred, de Musset he might have said: "je nc
puis m ' enfuir hors de l'humanite." His heart puis m' enfuir hors de lhumanite." His hear too lowly for his Alcestis to address, as sh bids farewell to the houschold. Euripides was the first dramatic poet to hold aloof from the world. But the motive was not pure indiffer ence: he spoke to a larger audience. No tragedian treated a greater number of patriotic demagogue. The pomp and glory of war had no fascination for him. The suffering of al humanity appeals to his generous heart. In
the cosmopolitanism of Socrates, traces of which we find in Euripides, he anticipates was naturally not orthodox. He did not actwally deny the existence of the gods - that were dangerous in Athens and in the theatre impossible. Euripides simply puts the question to his audience and so troubles their souls. He shrinks from discussing no question of heaven or earth. Toward the close of his
life he is supposed to have drawn nearer to the religion of his fathers, but the only monument of this change is that remarkable play, the 'Bacchæ.' No chronological development in his religious views can be shown. He was a skeptic and a seeker after truth, but not a creative philosopher. No other poet gives ing Athenian knew and read.
Much has been written about the poet's hatred of women. But we have only to read the 'Alcestis,' or 'Iphigenia,') to discover that he can portray the noblest types of womanhood. Euripides knew le mal que peut faire une pabilities of woman's nature. He is the firs Greck after Homer that showed any approach to a just conception of what under normal circumstances woman may and should be to society. True, he assailcd fiercely a certain type of woman, but this does not prove that the women of his time were especially depraved situation. He does satirize the women of his time for their gossiping disposition, for their cleverness and for their love of slander with a persistence that leaves no doubt as to his intentions; but, being a pessimist, his mind em phasized the bad rather than the good.
The plays of Euripides are not so subtle in more for striking situations than for articulated plots, more for thrilling scenes than for unity and symmetry of the whole. But he made a special study of the recognition as leading to the denouement. Another innovation of Eu ripides was the introduction of the prologue
In the very beginning he gives the entire setting of the piece, relates all the circumstances This mechanical opening has been criticized as flat and jejune. But he worked on a different plan from Sophocles. Like Lessing, he believed that the audience should know more than the characters themselves. He disdained
to excite vulgar curiosity. So he conceived to excite vulgar curiosity. So he conceived
the prologue as an integral part of the play. Moreover, he leaves the most important part untold; the audience does not know at the outset how the poct proposes to treat the myth; hence the pleasure of surprise is not entircly lacking. The audience enjoys also the sudden revelations to the individual char-
acters. Furthermore, the Greeks cared more for the quict contemplation of situations than we do. Nevertheless, this practice of beginning the play with a prologue became a mannerisn and was justly ridiculed by Aristophanes. Euripides' plays have also a mechanical ending when the conflict seems insoluble, the deus ex
machina interfers expressly to solve difficulties, to cut the cords atwain that seem too intrinse to loose. This is not high antique art; but the flaw-hunters unduly emphasize
the defect. Many of the plays also break in the defect. Many of the plays also break in Nevertheless, the scenes are interesting, sometimes stirring. Often the thoughts expressed are not adapted to the speaker; and the choral odes frequently seem irrelevant. The poet's monodies constitute an undue proportion of
lyrical element.
We have 80 titles of plays, but very few
We have 80 titles of plays, but very ew
fixed dates. There are 19 extant dramas- 18 tragedies and one satyr drama ('Cyclops'). The 'Rhesus,' regularly printed in the editions of the Euripidean corpus, is certainly not by Eu-
ripides. The earliest extant play is the ripides. The earliest extant play is the
(Alcestis) (438); the most famous is the 'Medea' (431) ; but probably the two greatest tragedies are the 'Hippolytus) (428) and the 'Bacchæ' (407). One of the most interesting is the 'Iphigenia in Tauris' (414) and the most charming the (Ion' (about 416). The (Iphigenia in Aulis) (407), 'Orestes) (408), 'Phnenissæ) (410) (Helen)' (412) (Electra' (413), 'Troades' (415), 'Andromache' (417), 'Heracles' (418), 'Supplices' (420), 'Hecuba (424), 'Heraclidæ' (430). See Alcestis; Meped

Joseph E. Harry,
Author of 'The Greek Tragic Poets.'
EURIPUS, tu-ri'pŭs, in ancient geography the strait between the island of Euboa and the mainland, Bcootia in Grece. At Chalcis, the werm Euripus is also sometimes applicd to the southeast part of the Eubœan Channel
EUROCLYDON, ű-rŏk'lĭ-dŏn, a tempestuous wind that frequently blows in the Levant, shipwreck of the vessel in which Saint Pau sailed, as narrated in Acts xxvii, 1444. In the form in which the word is found in the revised version it must be taken as made up of the two Greek words, euros, the east or rather
southeast wind, and klydon, a wave. But the word used for it in the Vulgate is Euro-aquito, a Latin compound signifying a northeast wind; and some of the best MSS. have the reading Eurakylon instead of Euroclydon, which is ac cepted by some scholars as the preferable read ing. Whatever may have been the true form of
the word, it was applied to a northeast or north-northeast, and not an east or southeast wind, as the course taken by the vessel referred to indicates. Exactly such a wind is described by sailors of the present day as prevalent at certain seasons (especially in early spring) in the wind is now known is Gregalia.
EUROPA, $\overline{1}-$ rō'pa, in Greek mythology the daughter of Agenor or of Phoenix, king of fable relates that she was abducted by Jupiter, who assumed the form of a bull and swam with his prize to the island of Crete. Here Europa hore to him Minos, Sarpedon and Rhadamanthlus. Zchus made her miraculous presents, Talos (a bronze man), a dog that never missed its mark. Brey his order also she became the wife of Asterius, king of Crete. As Hellotia, Europa was worshipped in Crete in the capacity of the goddess of fertility.

seems to have been originally a moon deity and a patroness of hunting.
EUROPA, Rape of. See Titian; VeroNese, Paul.
EUROPE, the smallest of the great continents but the most important, distinguished above the others by the character of its populaflon, the superior cultivation of the soil, and the and commerce.
Topography.- Europe forms a huge peninsula projecting from Asia, and is bounded on the north by the Arctic Ocean on the west by the Atlantic Ocean; on the south by the Med iterrancan, the Black Sea and the Caucasus River and the Ural Mountains. The most northerly point on the mainland is Cape Nordkyn, in Lapland, in lat. $71^{\circ} 6^{\prime} \mathrm{N}$. ; the mos southerly points are Punta da Tarifa, lat. $36^{\circ} \mathrm{N}$., and the Strait of Gibraltar, and Cape Matapan,
lat. $36^{\circ} 17^{\prime}$, which terminates Greece. The most westerly which terminates Greece. The most westerly point is Cape Roca in Portugal
in long. $9^{\circ} 28^{\circ} \mathrm{W}$, while Ekaterinburg is in long $60^{\circ} 36^{\circ}$ E. From Cape Matapan to North Cape is a direct distance of 2,400 miles, from Cape Saint Vincent to Ekaterinburg, northeast by east 3,400 miles; area of the continent, about $3,800,000$ square miles. Great Britain and Ireland, Ice land, Nova Zembla, Corsica, Sardonia, Sicily Islands Crete, the Ionian and the Balearic shores are very much indented, giving Europe an immense length of coast line (estimated at nearly 50,000 miles). The chicf seas or arms of the sea are the White Sca on the north; the North Sea, or the German Ocean, on the west from which branches off the great gulf or in land sea known as the Baltic; the English ChanTanean, communicating with the Atlantic by the Strait of Gibraltar (at onc point only 19 miles wide); the Adriatic and the Ægean seas branching off from the Mediterranean, and the Black Sea, connected with the Egean Sc through the Hellespont, Sea of Marmora and sporus.
The mountains form several distinct groups or systems of very different geological dates,
the lofticst mountain masses being in the south central region. The Scandinavian mountains in the northwest, to which the great northern peninsula owes its form, extend above 900 mile from the Polar Sea to the southern point of Norway. The highest summits are about 8,000 rope (unless Mount Elbruz in the Caucasus is claimed as European), extend from the Mediterranean first in a northerly and then in an easterly direction, and attain their greatest ele vation in Mont Blanc ($1 ., 781$ feet), Mont thesa and other summits. Branching off from whe Alps, though not geologically connected east them, are the Apennines, which run southof the peninsula. The highest summit is Mont Corno (9,541 feet). Mount Vesuvius, the cele is bated volcano in the south of the peninsula, is quite distinct from the Apennines. By south the extensions the Alps are connected with eastern peninsula of Europe Among the moun
tains of southwestern Europe are several mas sive chains, the loftiest summits being in the Pyrenees, and in the Sierra Nevada in the south
of the Iberian Peninsula. The highest point in the former, La Maladetta or Mont Maudit, has an elevation of 11,165 feet. Mulahaven, in the latter, is 11,703 feet, and capped by perare the Cevennes, Jura and Vosges; north and northeast, the Harz, the Thüringerwald Moun tains the Fichtelgebirge, the Erzgebirge and Böhmerwaldgebirge. Farther to the east the Carpathian chain encloses the great plain of Hungary, attaining an elevation of 8,000 or rope and Asia reach the height of 5,540 fect Besides Vesuvius two other volcanoes are Etna in Sicily, and Hecla in Iceland. A great par of northern and eastern Europe is level. The "great plain" of North Europe occupies part of France, western and northern Belgium, Holland the northern provinces of Germany, and
the greater part of Russia. A large portion of this plain, extending through Holland and North Germany, is a low sandy level not infrequently protected from inroads of the sea only by means of strong dykes. The othe great plains of Europe are the plain of Lombardy (the most fertile district in Europe) and the plain of Hungary. Part of southern
and southeastern Russia consists of steppes. and southeastern Russia consists of steppes. watershed runs in a winding direction from southwest to northeast, at its northeastern extremity being of very slight elevation. From the Alps descend some of the largest of the European rivers, the Rhine, the Rhone and the Po, while the Danube, a still greater strcam, rises in the Black Forest north of the Alps The Volga, which enters the Caspian Sea, an European rivers, having a direct length of nearly 1,700 miles, including windings of 2,400 miles. Into the Mediterrancan flow the Ebro, the Rhone and the Po; into the Black Sca, the Danube, Dnicper Dniester and Don (through the Sca of Azov) ; into the Atlantic, the Guadilquivir, the English Channel, the Seine; into the North Sca, the Rhine, Elbe ; into the Baltic, the Oder, the Vistula and the Duna; into the Arctic Ocean, the Dwina. The lakes of Europe may be divided into two groups, the southern and the northern. The former run along both sides of the Alps, and among Ne, Lucerne, Zurich and Constance ; on the south side, Lago Maggiore, and the lakes of Como, Lugano, Isco and Garda. The northern lakes extend across Sweden from west lo east, and on the east side of the Baltic a number of lakes, stretching in the same direction across Finland on the borders of Russia, mark the Russiation of the largest European lakes are found-Lakes Ladoga and Oncga

Geology.-The geological features of Europe are excecdingly varied. The older formations prevail in the northern part as compared with the southern half and the middle region. North of the latitude of E.dinburface of more recent origin than the strata
of the upper Jura belonging to the Mesozoic Period, and there are vast tracts occupied either by eruptive rocks or one or other of the older sedimentary formations. Denmark and the portions of Germany adj Period, as does also a large part of Russia between the Volga and the basin of the Dnieper. Middle and eastern Germany with Poland and the valley of the Dnieper present on the surface Eocene formations of the Tertiary Period. The remainder of Europe is remarkable for the great diversity of its superficial structure, rocks and deposits belonging to all periodsseing no great superficial extent. Europe possesses no great superficial extent. Europe phich are of most importance to man, such as coal and iron, Great Britain being particularly favored in this respect. Coal and iron are also obtained in
France, Belgium and Germany. Gold is found France, Belgium and Germany. Gold is found
to an unimportant extent, and silver is widely to an unimportant extent, and silver is widely
spread in small quantities. The richest silver ores are in Norway, Spain, the Erzgebirge and the Harz Mountains. Spain is also rich in quicksilver. Copper ores are abundant in the Ural Mountains, Thuringia, Cornwall and Spain. in ores are found in Cornwal, the Erage-Climate.-Several circumstances concur to give Europe a climate peculiarly genial, such as its position almost wholy zone, and the great extent of its marime
boundaries. Much benefit is also derived from the fact that its shores are exposed to the warm marine currents and warm winds from the southwest, which prevent the formation of ice portion has a less favorable climate than the western. The extremes of temperature are greater, the summer being hotter and the winter colder, while the lines of equal mean temperature decline south as we go east. The same advantages of mild and genial temperature which western has over eastern Europe, the
continent collectivcly has over the rest of the Old World. The diminution of mean temperature, as well as the intensity of the opposite ature, as well as the intensity of the opposite
seasons, increases as we go east. Peking, in lat. $40^{\circ} \mathrm{N}$., has as severe a winter as Petrograd in lat. 60°
Botany.- With respect to the vegetable kingdom Europe may be divided into four zones. The first, or most northern, is that of fir and
birch. The birch reaches almost to North Cape; the fir ceases a degree farther soulh. The cultivation of grain extends farther north than might be supposed. Barley ripens even under the 70 th parallel of north latitude; wheat ceases at 64° in Norway to lat. 62° in Sweden. Within this zone the southern limit of which extends from lat. 64° in Norway to lat. 62° Russia, agriculture has little importance, its inhabitants being chiefly occupied with the care of reindecr
or cattle, and in fishing. The next zone, which may be called that of the oak and beech, and cereal produce, extends from the limit above mentioned to the 48th parallcl. The Alps, though beyond the limit, by reason of their clevation belong to this zonc, in the moister parts of which cattle husbandry has been brought to
perfection. Next we find the zone of the chestnut and vine, occupying the space between the 48th parallel and the mountain chains of south-
ern Europe. Here the oak still flourishes, but the pine species become rarer. Rye, which char-
acterizes the preceding zone on the continent, acterizes the preceding zone on the continen of it to maize also. The fourth zone, comprehending the southern peninsula, is that of the olive and evergreen woods. The orange, lemon and olive flourish in the southern portion o it, and rice is cultivated in a few spots in Italy
and Spain. and Spain.

Zoology.-As regards animals the reindecr and polar bears are peculiar to the north. In the forests of Poland and Lithuania the urus,
a species of wild ox, is still occasionally met with. Bears and wolves still inhabit the forests and mountains; but, in general, cultivation and population have expelled wild animals. The domesticated animals are nearly the same through-
out. The ass and mule lose their size and beauty out. The ass and mule lose their size and beauty
north of the Pyrenees and Alps. The Mediterranean Sea has many species of fish, but no great fishery; the northern seas, on the other hand, are annually filled with countless shoals of a few species, chiefly the herring, mackerel, cod and salmon.
Inhabitants.- Europe is occupied by several different peoples or races, in many parts now
greatly intermingled. The Celts once possessed the west of Europe from the Alps to the British Islands. But the Celtic nationalities were broken by the wave of Roman conquest, and the succeeding invasions of the Germanic tribes completed their political ruin. At the pres the Scotch Celtic language is spoken only in of Ireland (Irish), in Wales (Cymric) and in Brittany (Armorican). Next to the Celtic comes the Teutonic race, comprehending the Germanic and Scandinavian branches. The former includes the Germans, the Dutch and the English. The Scandinavians are divided east, in gencral, of the Teutonic race, though sometimes mixed with it, come the Slavonians, that is, the Russians, the Poles, the Czechs of Bohemians, the Serbians, Croatians, etc. In the south and southeast of Europe are the Greck and Latin peoples, the latter comprising the Itall ians, French, Spanish and Portuguese. Al Indo-European or Aryan stock. To the Mongolian stock belong the Turks, Finns, Lapps and Magyars or Hungarians, all immigrants into Europe in comparatively recent times. Ihe Basques at the western extremity of the Pyrc nees are a people whose affinities have not yer been determined. The total population o Europe is about $425,000,000$; nine-tenths speak Teutonic lages of the Indo-European fanily, ouv, the Slavonic and Latin over $95,000,000$ each. The prevailing religion is the Chiristian, embracing the Roman Catholic Church, the various Protestant bodies and the Greek Church. A part of the inhabitants profess the Jewish, part the Mohammedan religion
Politizal Divisions.- The states of Europe, with their respective areas and populations, are as shown below.

Area and Population. - The following table and population according to "The Statesman's Year Book' :

Countries	Government	Area in square miles	Population
Albania	Principality	10,500	800.000
Andorra	Republic...	${ }_{39}{ }^{175}$	(1910) $7.529,935$
Belgiam.	Kingdom.	11.373	(1917) $7.642,054$
Bulgaria.	Kingdom. Republic.	47,750	(1917) 5 (1910) $13,914,336$
$\mathrm{D}_{\text {Dinzig. }}$	Free city	56, 579	(1919) 200000
Denmark	$\underset{\substack{\text { Kingdom } \\ \text { Republic }}}{ }$	15.582 23.160	(1916) $21,940,979$
Finland.	Republic.	23.160 125.689	(1918)$1,750,000$
$\mathrm{F}_{\text {rance }}$	Republic.	${ }_{212} 12.659$	(1911) 41 , 475 , 523
Germany	Republic.	121.391	$\begin{array}{ll}\text { (1919) } & 60,900,197 \\ \text { (1911) } & 45.370,530\end{array}$
Greece.	Kingdom.	121.391 41.933	(1911) $\begin{array}{r}45,370,530 \\ 5.250 .000\end{array}$
Hungar	Republic..	${ }^{54.090}$	9. 171.000
Italy.	Kingdom.	39,709 110.632	
Jugoslavi	Kingdom.	101,254	(1915) 16,361.459
Latvia.	${ }^{\text {Republic }}$ Pricina	24,440	(1914) $2.500,000$
Lithuania	${ }^{\text {Principalit }}$	36, 532	(1914) 4.651 .000
Luxembu	Grand Duchy	998	(1910) 263,824
Netherla	Principality	12,582	
	Kingdom.	125,001	(1918) $2,632,010$
Poland.	Republic.	141.854	(1911) ${ }^{30,072,181}$
Rortugal	Republic, Kingdom	35,490 122,282	(1911) ${ }^{(1912)} \mathbf{5}, 957,9398.149$
Russia (Europenn)		1,867, 737	(1915) 131, 700, 800
San Marino.	Republic.		(1919) 11,944
${ }_{\text {Spain }}$	Kingdorm.	194,783	(1918) $20,719.598$
Sweden.	Kingdom.	173.035 15,976	(1916) 3 3,937, 000
Turkey (Eu		2,000	(1916) 1.250,000
Ukraine..	Republic	498,100	46,000,000

Bibliography.-Adams, (European History) (1899) ; Allison, 'History of Europe) (1853); Bryce, 'The Holy Roman Empire; (1877); Duruy 'General History) (1898) ; Dyer, 'History of Modern Europe) (1901); Fyffe, 'His-
tory of Modern Europe'
(1890) ; Freeman, tory of Modern Europe' (1890); Freeman, Historical Geography of Europe' (1881); pire (ed. 1902).
EUROPEAN CITIES, Government of See Cities, European, Government of.
EUROPEAN FURNITURE. See Furniture, Medieval.
EUROPEAN HISTORY. See also Hisory, Ancient; History, Medisval; History, Modern. See also the articles on the Centuries First Century; Second Century, etc., and own titles on the varion nation n titles.
EUROPEAN WAR. See War, European
EUROPHEN, a yellow powder containing 27.6 per cent of iodine. Heat and moisture applied set the rodine free. Europhen is easily insoluble in alcohol, ether or chloroform, but is insoluble in water. In action it is similar to cause of to which it is often preferred beuse of its pleasant odor.
EUROPIUM, a chemical element round in s s Eu; atomic weight, 152 ; it is known in the ic state.
EUROTAS, ū-rótas, or IRI, a river of suthern Greece (Peloponnesus), at one time called the Iris and Niris in the upper and the of its course. It flows in a southerly direction
(King' River) in the lower part through the valley between the ranges of Jaygetus and Parnon, and enters the Gulf of

Eurotas.
of the goosefoot family (Chenopoliacere), which comprises two or three species, one of which, E. lanata, is found in western North America, and is generally known as white sage. It is a manybranched shrub, from one to three feet high, hairs. It is also called winter fat, being siky by cattle as a winter forage

calle as a winter forage.

EUROTIUM, û-rô'shĭ-ŭm, the common mold which appears on brcad, preserves, etc., is the generic name now in most general use.
EURUS, the southeast wind, also in Greek mythology, the son of Astraus and Eos. See Greek Mythology.
EURYALE, ū-ri'a-lē, a genus of the water lily family (N ymphacea). It has but one species, Luryale ferox, a native of China and southeastern Asia. The plant is covered with spines; the flowers are small, red or purplish, and diameter. The seeds are rich in starch, and in the native countries of the plant are an article of commerce, being roasted and eaten or used in soups. The root is also eaten. The plant is hardy and will grow out of doors in America and reproduce itself as far north as altimore
EURYBIADES, ū'rǐ-bīa-dêz, admiral of the Spartan flect and commander of the united Greek flects against the Persians in 480 the battle of Salamis.
EURYCLEA, the nurse of Odysscus, who ccognized the latter on his return by a scar the matter to Penelope.

EURYDICE, ī-rid'í-sē, in Greek mythology, the wife of Orpheus, who died by the bite of a serpent. Her husband, inconsolable for her loss, descended to the lower world, and, by the charms of his lyre, moved the infernal deities to grant him permission to bring her back. This look back upon her till he had reached the upper world. Forgetting his promise, he looked and lost her forcver. This story has often formed a subject for poets - as for Virgil in the Georgics (book iv), and for Pope in his 'Ode on St. Cecilia's Day.' One of the first modern operas was the 'Eurydice' (Euridice) Florence in 1600 . The name Eurydice was borne by certain Macedonian princesses.

EURYLOCHUS. See Circe.
EURYMACHUS, the son of Polybus and a suitor of Penclope. With the other suitors he was killed by Odysseus.
EURYMEDON, Athenian general. He was commander of a fleet at Corcyra in 428 B.C., and three years later, with Sophocles, son of
Sostratides, led an expedition against Sicily Sostratides, led an expedition against Sicily. On tes, which the Athenians suspected to have been brought about by bribery. Eurymedon was heavily fined, but in 414 was sent to reinforce the Athenians at Syracuse and lost his life before reaching Sicily.

EURYMONE, प̄̄-rim'ö-nể, an infernal deity, who gnawed the dead to the bones and was always
Apollo.

EURYNOME, \bar{u}-rin' ${ }^{\prime}$ ö-mé, in Greek my
thology, the daughter of Oceanus and mother of the Graces and of Zcus, and the wife of the Titan Ophion, the ruler of Olympus. In her temple at Phigolia she was represented as

EURYPTERUS, û-rǐp'tê-rūs, a remarkable fossil arthropod related to the horseshoe crab (Limulus), many gencra and species of which and eastern North America. They include the largest anthropods known, and form the family Eurypterida and order Eurypterida of the subclass Merostomata (q.v.). They rescmbled the modern horseshoc crabs in structurc, but had ing in a hinged, spike-like or flattencd tail or telson. The most remarkable feature, however, is the grcat size they attained, some exceeding six feet long, so that they werc well named ly Haeckel Gigantostraca. The surface was formed by a thin chitinous epidermal skeleton, ornamented faceted eyes and a pair of median ocelli. Beneath the cephalo-thorax are six pairs of legs, the foremost preoral, the basal joints of which serve as jaws. The last pair is greatly enlarged somewhat flattened and terminated by an ova plate, whin in swimming but they may have been otherwise useful. In Pterygotus and some allied genera the preoral limbs are modified into more or less antenne-like organs terminating in toothed pincers (chelæ), no doubt for scizing prey, etc. The ventral segments are 13 , of
which the first two bear the genital organs, and
the remainder leaf-like structures regarded as respiratory and equivalent to the "bookgills" or found associated with graptolites, cephalopods and trilobites in the Ordovician; with marine crustacea in the Silurian; with oceanic fishes
in the Devonian, and with land and fresh-water plants and animals in the coal measurcs. Their structure shows that they must have been marine and good swimmers; but toward the end of their race they became gradually adapted to brackish and even fresh water. The latest review of the group is in Eastman's American-
edition of Zittell's 'Text-book of Palæontology) (1900).
EURYSTHENES (û-rǐs'thę-nēz) AND PROCLES, prö̀clēz, the twin sons of Aristodemus, and the progenitors of the two royal
lines of Sparta, which consisted of 31 sovereigns.
EURYSTHEUS, ū-ris'thūs, the son of Sthenelus, and king of Mycenx, who, at Juno's instigation, ordered Hercules to perform "the twelve labors. Hyllus, the son of Hercules,

EURYTHMICS

Jacques JACQUES
EUSDEN, ûs'dě̃n, Laurence, English poct: Coningsby, Lincolnshire, 27 Sept. 1730 . He attracted much attention by his 'Original Pocms' (1714); 'Ode for the Ncw Year' (1720), and other poems. His appointment as poet laureate in 1718 was due to a fulsome pocm on the marriage of the Duke of Newcastie, in whose
\qquad
US
EAREAEBIUS (ũ-sêbĭ-ŭs) OF CEEb. probably Cæsarea, Palestine, 264 A.D.; d. b. probably 349 . He is known as Euscbins Cæsariensis and Eusebius Pamphili, that is, Pamphilus's Eusebius - a style assumed after the martyrdom of his instructor, Saint Pam-
philus. He was chosen bishop of Cæsarea 314. philus. He was chosen bishop of Cresarea 314 Nicæa (325), and was present at the Synods of Antioch (330) and Tyre (335). With the exception of Origen and Jerome he was the most learned of the fathers, and is regarded as the
father of ecclesiastical history. His moderation father of ecclesiastical history. His moderationclared him fitted to be the bishop of the whole world. Though he never subscribed to the views held by Arius and the Arians regarding the Godhead of Christ, he being averse to discussing the nature of the Trinity, was always friendly toward them and thus incurred censure as being at best a semi-Arian. Before the rise of Arianism he wrote a spirited defense of
the Christian faith in refutation of a book by one Hierocles, who contended that the noted impostor, Apollonius of Tyana, was superior to Jesus Christ in sanctity and in miraculous powers. Eusebius wrote two treatises which tion,' and (2) the 'Demonstration of the Gospel,' usually designated by their Latin tilles, 'Præparatio Evangelica,' 'Demonstratio Evantgelica.) The argument of the former is the groundlessness of idolatry, the impostures of
heathen mythology and theology; and the antho shows that the doctrine of the tunity of the Godhead and the truth of his revealed religion is as ancient as the world. In the 'DemonStratio' the argument is that the law and the prophecies of the Jewish scriptures clearly
foreshow Tesus Christ and the Gospel. Of his other works extant the chief is his 'History of the Church from the Time of Its Founder to the ycar 323.) It has the defect that in it no mention is made of the wickedness or dis Sensions of Christians as not being edifying to
the faithful. Sce Schöne (Die Weltchronik des the faithful. Sce Schöne, ‘Die Weltchronik des mus) (1900).

EUSEBIUS OF EMESA, Greek ecclesiastic: b. Edessa; d. Antioch about 360 . He
studied under Ensebius of Cæsarea, and a Alexandria and Antioch. Averse to all theological controversics he declined the bishopric of Alexandria vacant by the deposition of Dointed bishop of Emesa, in Syria, but was twice driven away by his flock, who accused him of sorcery on account of his astronomical studies. The homilies extant under his name are probably spurious.
EUSEBIUS EMMERAN. See Daumer, Georg Friedrich.
EUSEBIUS OF NICOMEDIA, Arian bishop: d. Constantinople 342 . He was appointed bishop of Beryta (Beirut) in Syria and
afterward of Nicomedia. defender of Arius at the Council of Nice and afterward placed himself at the head of the Arian party. He baptized the Emperor Con stantine in 337 , and became patriarch of Constantinople in 339

EUSKALDUN, in'skâl-dön. See Basques,
EUSKIRCHEN, ois"kir-kền, Prussia, town and capital of a circle in the Rhine province, 15 miles west of Bonn. It has manutactories of cloth, furniture, Icather, machincry, flour, meal

EUSPORANGIATES A'so
plants in which the sporangia occur bencath plants in which the sporangia occur beneath class includes all the seed plants and most o the Pteridophytes.
EUSTACHIAN (ū-stấkịan) TUBE, in anatomy, a canal leading from the pharynx to the tympanum of the ear; named for the Italian anatomist, Eustachio. Sce Ear.
EUSTACHIO, à-oos-tā'kê-ō, Bartolom1500; Italian anatomist: b. San Severimo, studied at Rome and became professor of medicine at the Studeo della sapienza there and was also pensioned physician. He later became physician to Cardinal Peretti, who therc-
after became Pone Sixtus V. Although Eusafter became Pope Sixtus V. Although Eustachio at first took the part of Galen against very considerably and thoroughly understood the importance of comparative and pathologica anatomy. He later came 10 appreciate the work of Vesalius. The eustachian tube to the midale ear and the culstachian valve of the feetal heart perpetuate his name. Fic investigated sicles of the ear the azyrous vein, the ductus
horacicus, the valve of the vena cava inferior, the oranial nerves, the muscles of the head and published 'De Renibus Liber') (Venice 1563); published 'De Renibus Liber' (Vcnice (De
(De Dentibus Liber);
Venice 1563); 'OpusDe Dentibus Liber' (Venice 1503); 'Opus-
cula Anatomica) (Venice 1564); 'Tabulæ Ancula Anatomica' (Venice
atomicæ) (Rouen 1714).
EUSTACHIUS, $\bar{u}-s t a ̄ k i ̆-u ̄ s, ~ o r ~ E U S T A-~$ EUSTACHIUS, ū-stáki-ŭs, or EUSTAAt first named Placidus, after his conversion to Christianity he took the name of Eustachius. It is told that while hunting he beheld Christ between the antlers of a decr. He is regarded as the patron of hunters and suffered martyrRoman Catholic Church he is commemorated on 20 September
EUSTATHIUS, semi-Arian bishop of Sebaste: b. about 300 ; d. 380 . He introduced Enonasticism in Armenia and the celibate demned at the Gangra Synod in 340 . At Scbaste he founded a hospital for the poor. His lict with his brought him into contemporaries, ut lis intimacy with Constantine enabled him to retain his see. In 358 he was deposed by the Synod of Melitene. Consult Loofs, 'Eustathius von Sebaste) (Halle 1898)
EUSTATHIUS, Byzantine commentator: b. probably at Constantinople, early in the 12 th century; d. 1194. He became a member of a
monastic order, was made deacon of Holy Wisdom (Hagia Sophia) and in 1175 was made archbishop of Thessalonica. His principal work is the commentary on the 'Iliad' and 'Odyssey,' still a valuable source of information on ancient learning. In 1542 the commentary was first published in Rome; the latest $1825-30$). He also wrote a commentary on Dionysius the Pcricgete, valuable for the fragments of Stephanus of Byzantium and Arrianus, which it has preserved to us. Consult the edition of Dionysius by Bernhardy (Leipzig 1828). He also wrote a commentary on Pindar also left a great number of historical pamphlets, tracts and speeches; these are nearly all found in Migne, 'Patrologia Greca) (Vols. CXXXV, CXXXVI). Consult Krumbacher, (Byzantinische Litteraturgeschichte) (Munich
1897) and Pauly-Wissowa, (Real-Encyclopadie der classischen Altertumswissenschaft' (Vol. VI, Stuttgart 1909).

EUSTATIUS, Saint, one of the Leeward Islands. Sce Saint Eustatius.
EUSTIS, James Biddle, American diplomatist: b. New Orleans, La, 27 Aug. 1834; d Newport, R. $1 ., 95 \mathrm{sp}$. ill the Civil War broke out. He then entered the Confederate army and served as judge-advocate on the staffs of Gens. Magruder and I. E. Johnston till the close of the war. He was elected United States senator in 1876, but not given his seat till late in 1877 ; and was professor of civil law in the University of senator, 1885-91. In March 1893 he was appointed United States Minister to France, and
practice in New York. He translated into English the 'Institutes of Justinian,' and Guizot'

EUSTIS, William
EUSTIS, William, American physician and politician: b. Cambridge, Mass., 10 June 1753 ,
d. Boston, 6 Feb. 1825. He served as a surgeon in the American army during the Revoluiion, and subsequently practised medicine in Boston. He was a member of Congress 1801-05
and 1819-23; was Secretary of War 1809-13; and 1819-23; was Secretary of War 1809-13 and governor of Massachusetts in 1823-25.
EUTAW, ư'tâ, Ala., town, county-seat of Greene County; on the Alabama Great South-
ern Railroad, about 95 miles southwest of Birmingham. It was settled in 1838, named in mingham. the battle of Eutaw Springs, S. C. (1781), where the American forces commanded by General Greene gained a victory. It is in a fich agricultural region. It has an oil mill, ginneries, a lumber mill and a cotton compress Pop. (1920) $1,359$.
EUTAW SPRINGS, a small tributary of the Santee River in Charleston County, S. in 1781. Sce Eutaw Springs, Battle of.

EUTAW SPRINGS, Battle of, 8 Sept. 1781, in the Revolution. Tactically a drawn battle, in results it was an important American victory, winning the object of Greene's campaign, as the British shortly abandoned interior South Carolina, retiring to Charleston. Grecne, having captured 96 men, stole on the
British, some 2,500 , under General Stuart, at Eutaw, 50 miles northwest of Charleston, and attacked suddenly at 4 A.M. He had about 2,000 men, part militia, but with Marion and Pickens for commanders; while the regular were the famous Marylanders under Howard and Hardman, Virginians under Campbell nant of the brave Delaware men; with William Washington, R. H. Lee and Pleasant Hender son for cavalry leaders. The British had one line ; the right on Eutaw Creek, the left in the air. The Amcricans had two, besides the re-
serves; the militia in front, who fought desserves; the militia in front, who fought desperately and fired in some cases fiving way. Then the regulars rushed forward and swept the British line off the ficld but gaining their camp, stopped to plunder it, and though rallied, could not drive the British from the strong positions they had taken. In assailing a brick house, Greene's guns were capa charge of Colonel Washington's was repulsed and himself taken prisoner. Grcene was obliged to retreat; hut Stuart decamped in the night. The American loss was 408 regular killed and wounded, militia prohably at least
150 ; British, 453 killed and wounded, 257 missing.

EUTERPE, ū-tèrpê ("the well-pleasing"), one of the Muses, considered as presiding over ascribed to her. She is usually represented as a virgin crowned with flowers, having a flute in her hand, or with various instruments about her. As her name denotes, she is the inspirer of pleasure. (See Muses). In hotany, Euterpe is a genus of palms found in South America eight species. Some specimens attain a height
of nearly 100 feet. The wood of E. oleracea is used for flooring. Its fruit, as also edible; and the latter species furnishes assai (q..v.). Euterpe in astronomy is
an asteroid (No. 27), discovered by Hind in an asteroid (No. 27), discovered by Hind in
1853 . EUTHANASIA, î-tha-nā'sǐ-a, means, in
Greek, being happy or opportune in the time of Greek, being happy or opportune in the time of
one's death. The correlative adjective is apone's death. The correlative adjective is ap
plied in Greck literature to a man who died for his country, and it has been translated by the Latin historian "felix opportunitate mortis." The term cuthanasia has recently been employed
by some scientific men in advocating the reasonby some scientific men in advocating the reason-
ableness of relicving the sufferings of those ableness of relicving the sufferings of those
afflicted with incurable diseases by administerafflicted with incurable diseases by ade in sufficient doses to prove fatal. But religion, law and medical ethics alike condemn all forms of self-destruction
EUTHERIA, subclass of Mammalia, comprising all mammals except the monotremes. Consult 'Cambridge Natural History' (Vol. X,
London 1902) and Gregury, 'The Orders of London 1902) and Gregury, 'The Orders MuMammals' (in Bulletin of the American, New seum of
York 1910).
EUTHYMIUS, Bulgarian prelate and author of the late 14 th century. He was a pupil of the patriarch, Theodosius, lived for a time as a monk at Mount Athos, but afterward with-
drew to Tirnovo, the seat of the Bulgarian patriarch. He here directed a large monastic establishment and revised the Slavic liturgical books. In 1375 he was chosen patriarch. He ical bodies. He wrote much on the lives of the saints, prominent churchmen and various pastoral epistles. His style was clearly Byzantine, as was his thought, syntax, etc. His school of religious iterature for a long time held Sw
Serbia.

EUTING, oi'ting, Julius, German Oriental scholar: b. Stuttgart, 1839 ; d. 1912 . He was scholar: educated at Tubingen, Paris, London and Oxford. He was made librarian-in-chief at the Imperial University and Government Library at Strassburg, of which institution he became director in 1900 . In 1909 he retired. Hc traveled extensively in the Orient and collected a great number of Semitic inscriptions, which
he bequeathed to the University of Strasshurg. He published (Sechs Phönikische Inschriften He published Idalion' (1875); 'Beschreibung der Stadt Strassburg und des Munsters' (1881 ; 15th cd. 1909): 'Nabataische Inschriften aus Arabien' (1885); 'Sinaitische Inschriften) (1891); 'Tage buch ciner Reise in Inner-A
'Mandaischer Diwan) (1904).

EUTROPIUS, Roman historian. He was secretary to Constantine a Constantinople and is known of him beyond the fact that he was still living in 378 A.D. He wrote 'Breviarium ab Urbe Condita, ' a compendium of Roman history down to the time of Valens. An enlarged edition was later issued hy Paunus Dia work was in three distinct forms - the two named above and a third interpolated copy The editio princeps (Rome 1471) was printed

From the text of Paulus. Good modern edi tions are those of Droysen (Berlin 1879), of notes lyy Hazzard (New York 1898). Consult notes ly Hazzard (New York 1898). Consult Teuffel, 'Geschichte der römanischen Littera-

EUTYCHES, üthi-kēz, heresiarch of the century. He was a priest and archimandrite or prior of a monastery in Constantinople; was the founder of the religious sect called after him Eutychians, but also Monophysites, as believing that in Jesus Christ was but one nature, and sus (431) having declared that in Jesus Christ were nited the divine and human naturcs Eutyches was condemned as a heretic by a synod of bishops held in Constantinople 448 , but the next year the "Robber Synod" of EpheSus, controlled by Dioscorus, patriarch of Alexandria, reversed that judgment. In 451 the
General Council of Chalcedon annulled the decrees of the Robber Synod, excommunicated Eutyches and formulated the Catholic doctrine regarding the hipostatic union of the divine and human natures in Christ. Eutyches died in exile. His doctrine took fast root in Syria and in those countrics the Monophysite (now known as Jacobite) churches are strong to this day. See Monophysites.

EUTYCHIANISM, u-tik'i-an-iz'm, in Christology, the monophysitism peculiar to Eutyches, an archimandrite, or abbot of a monastery, who lived near Constantinople during
the 5 th century A.D. Monophysitism designates the 5th century A.D. Monophysitism designates
the creed of those who in opposition to the Creed of Chalcedon maintain the single-nature in Christ, or that the human and the divine in Jesus Christ constitutes but one composite nature. In Eutychianism it is held that the divine and human person in Christ is so blended as to constitute one nature. Eutyches was seduced
by the vehemence of his opposition to Nestorianby the vehemence of his opposition to Nestorian-
ism into anl unorthodox view of the nature of Jesus Christ. Prior to his time the Nicene Fathers had pronounced on the relation of the Father to the Divine Logos but left within the the its of orthodoxy room for a difference as to The Antiochene school dreaded lest the idea of humanity should be cntirely merged in that of the , teachings of Alexandria, sought to avoid any contaminations of the Logos by the associations of humanity. These positions on dogma be came intermingled with questions of ecclesiasand authority, the connict of national ideal and the lower strife of personal rivalry. victim of his own zeal in opposition to Nestorius. Nestorius, a harsh, unpleasant man, in lolerant of doctrinal eccentricities, other than his own, made it his peculiar mission to prevent mankind from assigning human attributes to positiond boldly took the consequences of his Now
with Cyril, a member of the Alexandrian school. To Cyril, it seemed that the doctrine of the Incarnation of the Logos is impugned by any hesitation to assign the attributes of hit-
tanity to the divine Christ. And it was this
theological principle which was the cause, or at
least the pretext, of Cyril's first attack on Nestorius. On the other side, the Antiochene vestia, a learncd man and a great commentavestia, a learncd man and a great commentarectly of Nestorius - held to the christology of Theodore. In it the union of the divine and human in the person of Jesus was moral rather than physical or dynamical, and Theodore carcfully avoided the deduction that the relation of divine and human was similar in kind, though ers. And the actions of Christ and his qualities as man and particularly his birth, sufferings and death, were not, in the christology of the Antiochene school, to be attributed to God withou which Nestorius carried to was the docpractical conclusion; a position which is and marized in his saying: "I cannot speak of God as being two or three months old!" And yet this is the view which the Alexandrians, with Cyril at their head, and Eutyches among its folChrists, considere as virtually implving two In the Monophysite controversy Eutyches is the main figure. He had opposed Nestorius; now he was himself accused of disseminating errors of an opposite kind from those of his opponent. His accuser, Euselius of Dorylaum, induced Flavian, the patriarch of Constantinople, to call Eut hes Eutyches was accusaculty brought from the seclusion of his monastery. He was no theologian; and wished to fall back on the decisions of Nicæa and of Ephesus. But the accusers pressed him, and the old man replied that he contcssed Christ as being of of one nature afterward, being God Incarnate! On this point he would not recant: it was his peculiar monophysitism. How he appealed to the emperor, to Pope Leo and to the monks of Constantinople; how the decision of the Patriarch Flavian to excommunicate Eutyches 449; and how in Chalcedon, two years later, Eutychianism was condemned a second time, and the received doctrine came into existence; all this is without the limits of this article. In place of the Monophysite coctrine of the one nature, it was established at Chalcedon that substantial with the Father as to his divinity, and with man as to his humanity, the two natures being united with him, without conversion, without confusion and without division. But if the Council of Chalcedon had succecded in pronouncing Eutyches a heretic, it did not sect of the Eutychians continued quietly to grow for a century after his death in the churches of Armenia, Ethiopia and of the Copts. And soon after his condemnation, 10 different sects conl be colunted who shared his about that his heresy got for itself the came "ten-horned."
Monophysites still exist in Egypt and the East, under the title of Jacobites, a name derived from Jacob Barodæus. From them the orthodox are distinguished by the name of
Melchites, or Royalists, which title they have
owing to their adherence to the edicts of the Emperor Marcian, in favor of the Council of Chalcedon, and their adoption of the doctrine it laid down. (See Monorirsites). Consult Harnack, 'History of Dogma'; and Ottley

EUTYCHIANUS, ûtîk'î-ā'nüs, Saint, the 27 th Pope and bishop of Rome. He reigned from 275
December.

EUTYCHIDES, Greek sculptor of the 4th century B.C. He was a native of Megara tooch he executed a statue of Fortune, which made him famous. Many copies of it were made throughout the Orient and a small copy now rests in the Valican Museum. Some authorities hold that the 'Victory of Samo-
thrace' is his work, but of this there is no conclusive proof.

EUXANTHIC (ûk-sã̃n'thĭk) ACID ($\mathrm{C}_{10}-$ $\mathrm{H}_{15} \mathrm{O}_{10}$), called also PURREIC ACID, an acid obtained from purrec, or Indian yellow. With
the alkalis and carths, it forms soluble yellow the alkalis
compounds.

EUXENITE, ūk'sé-nīt, a rare Norwegian mineral, essentially a niobate and titanate o yttrium, erbium, cerium and auranium. It sometimes contains iron calcium and germa-
nium, while water is always present in orthorhombic crystals, but usually it is massive. It has a hardness of 6.5 , a specific gravity of 4.7 to 5.0 , a brilliant metallic-vitrcous lustre, and a brownish-black color, showing a reddish brown translucence in thin slivers.
EUXINE, ük'sin, the ancient name for the Black Sea
EVA, Little, a beautiful child, who becomes the friend and consoler of Uncle Tom in Harriet Beecher Stowe's novel 'Uncle Tom's
Cabin.' Her carly death forms one of the climaxes of that affecting story.

evacuatio

EVADNE, e-văd'rnē, in Greek fable, the daughter of Iphis of Argos, who threw herself
EVAGORAS, ẹ-vãg'ō-ras, king of Salamis in Cyprus, flourished ahout the beginning of the 4 th century b.c. His family had been expelled by a Phoenician exile. Evagoras recovered the kingdom in 410 в.C., and endcavored to restore in it the Hellenic customs and civilization. He was friendly with the Athenians, and in return for his services a statue was
erected to him at Athens. His increasing power attracted the jealousy of the Persian king, Artaxerxes II, who declared war against him and besicged Evagoras in his capital. He was saved only by the dissensions of his enemies, and was able to conclude in 387 a peace by which the sovercignty of Salamis was assassinated 374 B.C.
EVAGRIUS (e-vă 'r'rilus $^{(1)}$ SCHOLAS'EVAGRIUS (e-văg'rīl ${ }^{2}$ S) SCHOLAS'-
TICUS, Syrian Church historian: b. Eniphonia, ahout 536 ; d. after 594 . He wrote the history of the Church in continnation of the ecclesiastical historics of Eusebius, Socrates,
Theodoret and Sozomen from 431, the date of
the Council of Ephesus, to 594. His surname, Scholasticus, indicates that he was by profession (probably at Antioch) an advocate, for such at that time was a usual meaning of the word: he was legal adviser to Gregory, patriarch of
Antioch, who commended him for his fidelity Antioch, who commended him for his fidelity
and learning to the emperor, Tiberius Absiand learning to the emperor, Tiberius Absi-
marus, and obtained his promotion to a judicial marus, and obtained his promotion to a judicial
office. In recognition of his eminent integrity as an official of the cmpire his second marriage was made the occasion of a public festival; which, however, had a disastrous ending, for it was interrupted by a violent carthquake, which
EVALD,
EVALD, àvält. See Ewald, G. H. A.
EVALD, ávald, Herman Frederik, Danish novelist: b. 1821 ; d. 1908. His works deal mostly with history and are of considerable (1860); 'The Nordly Family' (1862); (Johannes Falk) (1865); 'Charles Lyng'
(1882); 'The Swedes at Kronlory) (1867); (1882) ; 'The Swedes at Kronborg') (1867);
(Anna Hardenberg' (1880); (Clara Bille)
 (1892); 'Leonore Kristine' (1895); '(Birsten' (1901); 'Bondebruden' (1904).

EVALD, Johannes, Danish lyrical poct: 1 . Copenhagen, if3; d. 1781. In 1704 appeared his Temple of Fortunc, followed two years These workes brought him fame, which was further established by the biblical drama, 'Adam and Eve,') in 1709. His 'Kolf Krake,' which appeared in 1770 , was the first original tragedy in the Danish, languagc. From 1770 o 1780 he wrote tragedics, comedies and farces,
including 'The Fishers,' his greatest work, in including 'The Fishers,' his greatest work, 111
which appeared the present Danish national anthem. Evald's health had been seriously impaired through overwork and the strain incident to the production of 'The Fishers' hastened the end. His works were edited by Liebenberg (8 vols., Copenhagen 1855). Con-
sult his (Life and Opinions) (Copenhagen 1792) ; and the lives by Hammerich (ib. 1882) 1792) ; and the lives by Hamen (ib. 1888).

EVANDER, in classical legend, the civilizer of Latium, the son, according to one account, of Hermes and an Arcadian nymph. Abont 60 years before the Trojan War he cstablished
himsclf in Latium and built, at the foot of the himsclf in Latium and built, at the foot of
Palatine Hill on the banks of the Tiber, a town, Palatine Hill on the lanks of the Tiber, a town,
to which he gave the name of Pallantium. The Roman legends represent him as teaching the Latins the use of the alphabet and the arts of agriculture and music, softening their fierce manners by the introduction of more humane laws, and introducing among them the worship of the Lycxan Pan, Heracles, Demeter, etc. In connection with Evander who Ave him a favorable reception, and becomes his ally against the Latins. Divine honors were paid to Evander by the inhabitants of Pallantium in Arcadia
EVANGELICAL, a word literally signifying "pertaining to the gospel" and used in dif fercut senses. In one of its senses it is a term used to qualify certain doctrinal opinions, strcan nature, noced of conversion, justification by faith, frec offer of the gospel, the plenarv in spiration and exclusive authority of the Bibie

In this sense the word, when applicd to a whole church, is in Scotland almost synonymous with the "liberal") significance, in contrast to the words Evangelical or rationalistic." In England the upon as extreme in its views, and is distinthe doctrines the orthodox party, which holds form. When used in a less general sense some thing more is implied in the word. It indicates peculiar attachment to sound doctrine and pecuthe fervency in adrocating it. In another sense the term is applicd in Germany to Protestants much as the former recognize no standard of faith except the writings of the evangelists and the other books of the Bible, and more espein Pially to the national Protestant Church, formed ind Calvinistic churches.

EVANGELICAL ALLIANCE, a voluntary association of members of the different sections ${ }^{0} 19-23$ thristian Church, organized in London a doctrinal basis, At thins mecting was adopted tion by the members of the divine inspiration, atuhority and sufficiency of the Holy Scriptures; the right of private judgment in their interpreTrinity the unity of the Godhead and the Irinity of persons therein; the doctrine of incarnation, depravity in conscquence of the fall ; the torial reign of the Son of Gad; justification by faith alone; the work of the Holy Spirit in conVersion and santification; the immortality of the soul, the resurrection of the body and the final judgment of the world, resulting in the eternal Dlessedness of the rightcous and the eternal
punishment of the wicked; the divine institution of the Christian ministry; and the olligation and perpetuation of the ordinances of baptism and the Lord's Supper. The organization thus commenced has since been extended throughout
Protestant cliristendom. Branch alliances have Protestant cliristendom. Branch alliances have Feen formed in Great Britain, Germany, Australia, and among missionarics in Turkey India, Brazil and Japan. These national hranches are related to each other as members of a confcelcration having efrual rights. The Whole alliance appears in active operation only When it mects in general conferences having Int claiming only moral and spiritual power. The American branch of the alliance was organized in 1867. Confcrences of the entire
alliance have been held in 1851, 1855, 1857, 1861 , alinance have been held in 1851, 1855, 1857, 1861, $1867,1873,1879,1885,1891,1896,1907$, that of branch held a conference at Chicago in October 1893. The alliance has aided largely in the promotion of religious liberty in Europe and the Fast. Consult 'Reports' of the conferences; and Arnold, 'History of the Evangelical Alliance) (London 1897).

Eig EVANGELICAL ASSOCIATION, a rehgious denomination founded in Pennsylvania

 jabot the heginning of the 19 th century by Evoh Albright, a member of the Methodist vania 1759, and from about 1700 traveled among the German population as an evangelist. Ai-bright founded a society of converts in 1800 , which so increased in numbers that it was
finally organized in 1807 as the Evangelical Association of North America, with Albright as bishop. The theology of the association as defined in its 21 articles closely resembles that of the Methodist Episcopal Church, from which, also, it differs little in government and form of
worship. The Church was divided in 1891, when a minority, numbering 40,000 organized the United Evangelical Church. In 1916 the association had 27 annual conferences, including one in Japan, one in Switzerland, and two in Germany; 1,603 preachers, 115,243 communicants, and property valued at about $\$ 11,000,000$.
Besides its German elements it has a relatively Besides its German elements it has a relatively lishes English periodicals and English books. It has four bishops, a well-equipped publishing house at Cleveland and another at Stuttgart, Würtemberg; a biblical institute and North-
western College at Naperville, III. western College at Naperville, Ill.; two semi-
naries; an orphan home at Flat Rock Ohio; a charitable society; a missionary society sustaining domestic and forcign missions in Japan and China and assisting the European churches; a Woman's Missionary Society; a Church Extension Society. Hospitals are maintained in various citics in Germany, and in Chicago and
in Bismarck, N. Dak. Its periodicals are The Evangelical Messenger (weckly). The Missionary Messenger (monthly) ; Der Christliche Botschafler (weekly). Consult Plitt, 'Die Albrechtsleute) (Erlangen 1877) ; Carroll, (Rc-
ligious Forces of the United States) (New ligious Forces of the United States) (New York 1912) ; Orwig, ' Hi
cal Association' (1858).
EVANGELICAL CHURCH, The United. See United Evangelical Church, Tife.
EVANGELICAL, CHURCH CONFERENCE, the name of the gencral meetings of representatives of the Protestant bodies of Germany and Austria. The first general conference inct at Berlin in 1846 and was followed by these conferences have been held every two years at Eisenach. The object is the promotion of unity among the several cvangelical bodies which send representatives to the conference. The official organ, Allgemeines Kirchonblatt fur larly at Suttgart Consult Braun, '7ur Frage der engern Vereinigung den Deutschen evangelischen Landeskirchen' (Berlin 1902).

EVANGELICAL COUNSELS, in Cathoic theology, are distinguished from divine commandments in this, that the commandments are saved, while the Evangelical Counsels point to the readiest and surest means of attaining that end. When a certain ruler put to Jesus. Christ may inherit life?" and received the answer "If thou wilt enter into life, keep the commandments," he was tanght the condition of salvation which applies to all mankind. But he wanted to know whether there is not a more excellent woy. he") "obs there not some go rom his youth "up"; was there not some other "good
hing" for him to do? Then Jesus prescribed to him the perfect way: "Sell all that thou hast and distribute unto the poor" (Matt. xix, 21),
giving him one of the Evangelical Counsels, the counsel of voluntary poverty. The celibate life is commended by Saint Panl as more favor than the state of marriage; that Evangelical Counsel is the principal topic of the epistle of 1 Corinthians. Finally, entire obedience is the third of those counsels - renunciation of selfwill, cheerful submission to the rule of superiors. Mcmbers of the religious orders of the
Catholic Church hind themselves by solemn vows to practise the three Evangelical Comnscls: poverty, chastity and obedience.

EVANGELICAL UNION, the name of a religious body, also familiarly known as the Morisonians, from the Rev. James Morison, of Kilmarnock, by whom, with three other clergymen, it was founded in Scotland in 1843. The founders were soon joince by a number of ministers and churches of the Congregational
Union of Scotland, and extended themselves Union of Scotland, and extended themselves considerably in Scotland and the north of Eng-
land. The Morisonians maintain the universality of the atonement, combining with this the doctrine of eternal personal and unconditional election. In point of church government the members of the Evangelical Union are independent, but many congregations have ruling elders. In 1896 nearly all the churches were body had in 1899 between 90 and 100 congregations, chiefly in Scotland, and 712 ministers Consult Ferguson, 'History of the Evangelical Union' (1876) ; and Adamson, 'Life of Dr James Morison' (London 1898)
EVANGELINE. (Evangeline: a Tale of Acadie) is based upon a truc story which traveled from Canada to New England by word
of mouth, reached Hawthorne, who did not of mouth, reached Hawthorne, who did not
care to use it for a romance, and was by him turned over to Longfellow, who published his poem in 1847. It instantly won the widest public, and has ever since remained among the most popular narrative poems in the English language. Hawthorne's disinclination to us the incident was probably due to the fact that he did not find it decply tragic: the fate of purely external force but who remain faithful till death is hardly more than pathetic. The tenderness, however, with which Longfellow handled the pathos of the theme quite conceivably appealed to a larger variety of readers than a stern tragic handling, such as Haw thorne's might have been. In form the poem (1795) and the greater 'Hermann und Doro thea' (1708) of Goethe, both of which had attempted to treat modern sentiments and manners with Homeric simplicity. But 'Evange line' owes nothing essential to its predecessors.
The hexameters in which the story is told, while not so close to classical hexameters those of A. H. Clough's (Bothic of Tober-naVuolich' (1848) or Kingsley's (Andromeda' (1858), added to English poctry, never before or since hospitable to the measure, a new rhythm. The language of 'Evangeline,' while rarely vivid, is purc, sweet and melodious;
its landscapes, though full of charm and color, like its characters, resemble its characters also in belonging less to any particular soil than to
the general world of romance. Still, in spite of its lack of raciness and actuality, the pocm founded a national legend which has kept alive have been forgotten; and by something universal in its gracious manner has increased modern literature with a story everywhere read and remembered.
Carl Van Doren.

EVANGELIST (a bringer of good tidings), in the New Testament, a preacher of the gospel, distinguished (Eph. iv, 11) from the apostles, prophets, pastors and teachers.
The term came ultimately to refer to only the authors of the four Gospels, but in modern times has been extended to indicate also an unattached preacher whose specific work is the arousing of personal interest in matters of religion.
EVANGELISTARION, a book of selections from the Gospels, used as a service book in the Greck Church. It contains the Gospel lessons for each day in the year. The book Epistles was called the I'raxapostolos. If both were included in a single work, the latter was termed a Euxologia. There are hundreds of manuscripts of these service books in existence dating from the 6th century onward. Consult Gregory, C. R., 'The Canon and Text ond
the New Testament' (New York 1907) and Scrivener, 'Introduction to the Textual Criticism of the Ncw Testament' (4th ed., London 1894).

EVANGELISTS, Symbols of the Four. These symbols take their origin from Irenzus, who identified the four living creatures before the throne of God (Rev. iv, 64) with the four Evangelists. For a long time there was little were assigned to each Evangelist. Later in the Western Church the following order became general: the man represents Saint Mathew the lion, Saint Mark; the calf, Saint Luke and the eagle, Saint John. Consult Goldsmith E. E.., 'Sacred Symbols in Art' (New York 1911) and Jenner, Mrs. Henry, 'Christian Sym'

EVANS, Alexander William, Amcricall
Alan 1868 . hotanist: b. Buffalo, N. Y., 17 May 1860 1894-95 studied at Munich and Berlin. In 1895 he began his connection with the botanica department of Yale, becoming professor of botany there in 1906 . He is an ex-president o the Botanical Socicty of America. He has made extensive investigations of the bryophtycs
of Connecticut and the hepaticx of Alaska. He is a Fellow of the American Association for the Advancement of Science.

EVANS, Sir Arthur (John), Englishl archæologist: b. Nash Mills, Hertiordshire 1851. He is a son of Sir John Evans (q.v.) He was educated at Harrow, Oxford, and
Gottingen, and was keeper of the Ashmolean Göttingen, and was keeper of the Ashmolean
Museum, Oxford, from 1884 to 1908 . Since 1893 he has superintended archxological ic ${ }^{-}$ 1893 he has superintended archxological searches in Crcte, excavating in $1900-08$ the
historic palace of Knossos. He has published 'Through Bosnia) (1895); 'Illyrian Letters'); 'Antiquarian Kesearches in Illyricum' (1883-
85) - 'Cretan Pictographs and Prac-Phoenician Script' (1896); 'Further Discoverics of Cretan and Egcan Script' (1896); 'The Myccnæa rree and Pillar
knighted in 1911.

EVANS, Augusta Jane. See Wilson, AUgusta Jane Evans.

EVANS, Christmas, Welsh Baptist divine . Isgaerwen, Cardiganshire, 25 Dec. 1766 ; d Swansea, 19 July 1838 . He was at first and in than but jomed the Baptists in 188 sionary among the Baptists of Carnavonshire itcr three or four years there he removed to Anglescy where he lived until 1826. In Anglese e practically exercised episcopal functions an his removal to Glamorganshire in 1826 wa occasioned by his arbitrary conduct. He re moved to Cardiff in 1828 and four ycars late to Carnarvon. He was an able and eloquen preacher and was well known throughout Wales ing. Consult the biography by Hood (London

EVVANS, Edward Payson, American uthor: graduated at the University of Michigan in 854, where, after several years of teaching in Mississippi and Wisconsin, he was proiesso modern languages and litcratures in 1802-6 guares ; in a special study of Oricntal lan 'Allgemeine Zeitung) of Munich in Europe which te contributed many articles on the iterary, artistic and intellectual life of the united States. He has published 'Summary of (The History of German Literature) (1809) Srogrcssive German kcaderi (18) A (Acture) (1806): (Evolutional Ethics and Animal Psyhology) (1808): 'Beitrage zur Amerikanischen Litteratur und Kulturgeschichte) (2 vols., 1898 203) ; 'The Criminal Prosecution and Capital

EVANS, Edward Radclife Garth Russell nglish cxplorer and naval offcer: b. 188 was educatcd at Merchant aylors and entered the navy in 1897 , becoming subhe relicf ship to the Discovery expedition in 902-04. In 1907 he was awarded the Shadwel Testimonial Prize by the Lords Commissioner f the Admiralty. In October 1909 he joine the British Antarctic Expedition as second in command, and was mate commander in after returned in command of the expedition on the Scott expedition in the United States in 1914, commanded the Mohazok in the bombard ment of the right wing of the German arm on the Belgian coast in 1914. In this year he ceived the cross of the Legion of Honor, wa made C.B. in 1913 and received the D.S.O. in

EVANS, Elizabeth Edson Gibson, Ameri an prose writer: b. Newport, N. H., 8 March Edward Payson Evans (q.v.) 1 IS(18. She has pulblished 'The Abuse of Maternity) (1875) Laura, an American Girl' (1884); 'A His ory of Religions' (1892); 'Story of Kasper

Hauser) (1892) ; 'The Story of Louis XVII of Hauser' (1892); 'The Story of Louis XVII of
France) (1893); 'Transplanted Manners' (1895) ; 'Confession) (1895); 'Ferdinand Lasalle and Helen von Dönninger' (1897); 'The Christ Myth) (1901).

EVANS, Evan Heber, Welsh Congregational clergyman: b. near Newcastlc, Cardiganshire, 1836 ; d. Bangor, 1896 . He reccived his cducation at Swansea Normal College and Bre con Memorial College. In $1802-65$ ho was 1865 to 1894 of Salem Church Carnaryon In 1886 he served as clergyman of the Welsh Congregational Union and in 1892 of the Congre gational Union of England and Wales. In 1894 he was appointed head of the Bangor Congregational Collcge. He edited the Welsh Con gregational magazine, Y Dysged
the biography by H. Elvet Lewis.

EVANS, Frederick William, American writer: b. Bromyard or Leominster, England March 1893. He removed to the United State in 1820 ; joined the United Society of Believer (Shakers) at Mount Lebanon, N゙. Y., in 1830 and became a recognized leader in that socicty dium of the Origin, History, and Doctrines of the Shakers' (1859); 'Autobiography of a Shaker' (1869); 'Shaker Communism' (1871) 'The Second Appearing of Christ' (1873).

EVANS, Sir George de Lacy, British general: b. Moig, Ircland, 1787; d. London, Jan. 1870. He entered the army in 1806, took part in the later stages of the Peninsular Wa and in the beginning of 1814 was sent to Aug. 1814) had two horses shot under him At the head of 200 mcn he forced the capitol a Washington. He was present at the attack on Baltimore, and was twice wounded before New Orlcans in December 1814, and was on tha account sent home to England, where he re
covered just in time to be able to join Welling ton at Quatre-Bras and Waterloo. He served with distinction on the side of the queen regent in the Carlist War of 1835-37. In 1846 he was raiscd to the rank of major-general. At the to the command of the sccond division of the to the command of the sccond division of the
British army, and distinguished himself at the battle of the Alma, the siege of Sebastopol and the battle of Inkerman. He was made a gen eral in 1861. He served as a Liberal member in the House of Commons between 1831-65, but not continuously

EVANS, George Essex, Australian poct b. London, 18 June 1863. He went to Australia in istrar at Toowoonly, Queensland. He has written extensively for the Australian press He was cditor of the Autipodean (1893-97); and he wont the 50 guinea prize offered by the government of New South Wales for the best ode on the inauguration of the Commonwealth in 101. He was founcer of Associa ature and Science) (1901). Among his published works are (Madelene Despar and Other Pocms' (London 1891): 'Loraine and Other Verses) (Melbourne 1898) ; The Garden o Qucensland' (1898) ; 'The Secret Kcy apd

Other Vcrses' (Sidney 1906). The greater par ork, most of which has bentribut lished in book form.
EVANS, Henry Clay, American politician: . Juniata County, Pa., 18 June 1843; d. Chat tanooga, Tenn., 12 Dec. 1921. He served in the 51st Wisconsin Infantry, enlisting 1864, and subsequently settled in Chattanooga, Tem. Hc He sat in Congress in 1880-93. His two terms. He sat in Congress in 1880-93. His election as
Postmaster-General 1889-93. His election as governor of Tennessee 1894 was disputed and the opposing Democratic candidate was seated He stood second in the vote for Vice-Presiden at the National Republican Convention 1896, wa appointed United States Commissioner of Penfrom 1002 to 1905 . He was subsequently missioner of education and health of the city of Chattanooga.
EVANS, Hugh Davy, American author: b. Baltimore, Md., 26 April 1792 ; d. there, 16
July 1868 . He studied law, began practice in uly 1868 . He studied law, began practice in urist. He was editor of The Trunent as 843-56, and was connected with various other papers. He was a prominent member of the Maryland Colonization Society, and prepared code of laws for the Maryland colony in iberia; and in 1862-64 lectured on civil and (Essays on Pleading) (1827); (Maryland Com-mon-Law Practice' (1837): 'Theophilus Angli canus' (1851); 'Essays on the Episcopate o he Protestant Episcopal Church in the United States' (1855); 'Treatise on the Christia Doctrine of Marriage) (1870). Consult memoi Harrison (1870)
EVANS, John, American geologist: b Portsmouth, N. H., 14 Feb. 1812; d. WashingState and Territorial geological surveys, and discovered remarkable fossil deposits in th Bad Lands of Nebraska. He was afterward commissioned by the United States governmen to carry on the geological surveys of Washing

EVANS, John, American philanthropist: b Waynesville, Ohio, 9 March 1814 ; d. Denver ical department of Cincing graduated at the med 1848 became a professor in the Rush Medical College of Chicago, in which city he accumulated a large fortune by investments in real estate Much of this he gave to philanthropic objects. He established the Northwestern University, an
endowed two chairs in it with $\$ 50,000$ each. In 1862 -65 he was governor of the Colorado Territory. Later he established the University of Denver, to the construction of which he gave $\$ 200,000$ and a large endowment. He gave largely for the erection of the Grace Methodis every educational institution and Methodist Episcopal Church in the State

EVANS, Sir John, English archæologist b. Britwell Court, Buckinghamshire, 17 Nov 1823; d. 31 May 1908. His publications include
(The Coins of Ancient Britons' : 'The Ancient 'The Coins of Ancient Britons') 'The Ancient Stone Implements, Weapons and Ornaments of Bronze Implements, Weapons and Ornaments
of Great Britain and Ireland' (1881). From 1878 till 1896 Sir John was treasurer of the Royal Society, and he presided over the Toronto was president of the Geological Society (1874 76), of the Numismatic Society (1874-1908), and of the Society of Antiquaries (1885-92) His great work on stone implements received prize from the French Academy, and both i and his other work on bronze implements were they appeared in England.

EVANS, John Gwenogvryn, Wclsh scholar: b. Ffynon Velved, Carmarthenshire School, the Presbyterian College, Carmarihen and Owens College, Oxford. He was edito of the 'Series of Old Welsh Tcxts,' wa inspector of documents in the Welsh languag
for the Historical Manuscripts Commission from 1894 to 1906 . He was nominated gover nor and member of the council of the Univer sity College of Wales, and governor and mem ber of the council of the National Libraty of Wales by the lord president of the Privy Council. His publications include 'Homeward (1887) ; (Facsimile of the Black Book of Carmarthen' (1888); 'The Bruts) (1890): 'The Book of Llandav' (1893); 'Diplomatic Text with Notes and Introductions, of the Black Book of Carmarthen' (1906); 'Editio Princeps of the White Book Mabinogion, and Romances and Text of the Book of Aneirin' (1908); 'Facsimile of the Chirk Codex of the Welsh Laws' (1909); 'Tacsimile and Text of the Book of Taliessen, with a revised text and translation into English' (1914)
EVANS, Margaret J. See Huntington, Margaret Evans.
EVANS, Mary Ann, or Marian. See
EVANS, Oliver, American inventor: B. Newport, Tel. 1755 ; d. New York, 25 April
1819. In 1787 Evans invented a machine for making card-teetl. Two years later he entered into business with his brothers who were millers, and in a short time invented the elevator, the conveyor, the drill, the hopperboy, and the descender, the application of which revolution in we water-power effected some years after these improvements were perfected, the inventor found much difficulty in bringing them into use, although in his own mill the economy of time and labor which they 1800 he was very manifest. Ahout 1709 or 1800 he set about the construction of a stcamfered in form as well as in principle from those in use, it occurred to him that it could be patented and applied to mills more profitably than to carriages; and in this he was completely successful. This was the first steam engine conEtructed on the high-pressure principle; and to life, and in 1787 and again in $1794-95$ had sent to England drawings and specifications, the merit of the invention belongs, although it has been common to assign it to Vivian and Trevethick, who had had access to Evans' plans. Io
$1803-04$, by order of the board of health of

Philadelphia, he constructed the first stean of a flat scow with a small engine to work he mat scow with a small engine to wor also invented the "Cornish boiler."
EVANS, Robley Dunglison, American EVANS, Robley Dunglison, American
naval officer: b. Floyd Court House, Va., 18
Aug. 1846; d. Washington, 3 Jan. 1912. He was appointed to the United States Naval Academ rom Utah in 1800, promoted ensign in 1863 af in $1864-65$ was on board the Powhatan He participated in both attacks on Fort Fisher in 1868 was commissioned licutenant-commande 1870-71 was on duty at the navy yard, Wash ington, in 1871-72 at the Naval Academy. Hav served in 1873-76 successively on the Shen andoah and the Congress, of the Europea 1891-92 was in command of the Yorktoziri a Valparaiso, Chile, where American sailors wer alled by a mob, and in 1893 became captain. He policed the Bering Sea sealing grounds
During the Spanish-American War he was in ommand of the Iowa, and at the naval battle destruction of Cervera's flect. In 1901 he was commissioned rear-admiral. in 1902 was made ommander of the Asiatic fleet with the flag hip Kentucky; was escort to Prince Henry o ussia, cluring the latter's visit to the Unite aking; commanded the Atlantic flect, 1905-07 tour of the world, as commander-in-chief, on and on reaching San Francisco, ill health orced him to give up the command. He wa etired 18 Aug. 1908. He published 'A Sailor' g' (1901) ; and 'An Admiral's Log' (1910)
EVANS, Thomas Williams, American denNov . Philadelphia, 23 Dec. 1823; d. Paris, 14 in Maryland made a specialty of saving teeth by filling. In secking a substitute for gold foil he mixed rubber and sulphur, which made a black substanc stead of a white one. Because of the unavorable color he laid the substance aside and used it no more thought till his mixture wa percha which he declared he had discovered a 1848 he went by invitation to paris as most skilful American dentist, to attend to th ecth of President Louis Napoleon. During his arcer in Paris he accumulated a very larg tation as He also won an international repu was one of the founders of the Red Cros society. His home was the refuge of the mpress Eugenie from the mob on the night 4 Sept. 1870. Dressed in his wife's clothe he was taken by him to the Normandy coast, where he secured her escape to England. He from $\$ 8,000,000$ to $\$ 12000000$ excepting $\$ 250$, 00 , to establish a muscum and institute in Philadelphia.
EVANSTON, Ill., city in Cook County, on he Chicago and Northwestern Railway, 12 mile orth of Chicago on Lake Michigan. It ha electric surface and elevated railroads to Chiplete filtraty system of waterworks, with com banks, deposits over $\$ 6,000,000$. It is the seat
vo.. 10-38
of Northwestern University (M.E.) founded in 1854 , largely endowed and of high repute It is the seat also of the Garrett Biblical Institute. The Dearborn Observatory was transferred here from Chicago in 1888. Evanston was the home of Frances Willard (q.v.). It is really a residential suburb of Chicago, and mercial Association - over 300 Evanston Com much influence in civic and business affairs Pop. (1920) 37,234.

EVANSTON, Wyo., city and county-seat of Uinta County, 76 miles east of Ogden, on the Bear River and the Union Pacific Railway and are valuable coal mines in the vinnity voted to stock-farming and agriculture. Oil ha been cliscovered in the neighborhood. Amon the local industries are a large flouring-mill ice plant and railway repair shops. The Stat city contains a public library and owns th waterworks. Pop. (1920) 3,479

EVANSVILLE, Ind., a city and port o entry of Vanderburg County, of which it is the county-seat, about 185 miles west of Louisville 192 milcs northeast of Cairo, and 180 mile sont the Louisville, E. \& St. L. the Louisvill \& N the Evansville \& T. H and Loner rail ways. It is pleasantly located on a high bank of the river. Evansville is the chief shipping point for southwestern Indiana, and ranks highly among the commercial centres of the State. The neighboring region abounds in coa and the local coal trade is a large one. Ther bacco, grain and timber. There are machinc shops and foundries, plow-works, furniture factories, flouring-mills, and manufactures of cottons and woolens, brick and tile, pottery terra-cotta and fire-clay products, malt liquors and saddlery and harness. The United State census of manufactures for 1914 showed with
in the city limits 297 industrial establishments of factory grade, employing 11,698 persons 10,333 bcing wage earners, receiving a total of $\$ 5,168,000$ annually in wages. The capital in output was valued at $\$ 31,427,000$. of this, $\$ 13$, 427,000 was the value added by manufacture The prominent buildings include the United States custom-house, the courthouse, the city hall, the Willard Library, the State Hospital for the Insane, Evans Temperance Hall, Citi zen's National Bank Building and the United parks. Daily and weckly newspapers are pul lished. Evansville was founded by Gen. R. M Evans in 1817, became the county-seat of Van derburg County in 1819, and was incorporated in charter of 3 March 1893, with amendment a charter of 3 March 1893, with amendment of 11 March 1895 . for a mayor, elceted for four years, and a commor council, one member from each ward for one year and four councilmen at large for two years. The annual expenditure of the mtinicipality is about $\$ 700,000$, the annual income about
$\$ 940000$ The municipality $\$ 940,000$. The municipality owns the waterof aboit $\$ 30,000$. Pop. (1920) 85,264

EVANSVILLE, Wis., a village of Rock County, 17 miles northwest of Janesville and 22 and Northwestern Railway. Amone its industries are an extensive wind-mill factory, an ironfoundry and two large tobacco warehouses. op. 2,209.
EVAPORATION (Lat. evaporatio, from craporare, to emit vapor), the formation of vapor at the free surface of a liquid. In cvaporation a portion of the liguid cscanes in the into the space, spreads through it according to he laws of diffusion of gases. Supposing the emperature of the space above the liquid to be miform, the evaporation proceeds (provided here is a sufficient quantity of liquid) until the space is uniformly filled with vapor. A space
thus filled with the maximum quantity of vapor corresponding to the temperature of it is said to e saturated. If the dimensions of the space be diminished, a portion of the vapor is forced to condense; if the temperature of the space falls, a portion of the vapor condenses also; while if the tempcrature of the space is inthe space ceases to be saturated, because the quantity of the vapor that corresponds to saturation is greater the higher the temperature. When there is not a sufficient quantity of liquid present to saturate the space completely, the whole of the liquid evaporates and the vapor diffuses uniformly through the space. The
space is then said to be non-saturated. Consult space is then said to be non-saturated. Consult March 1914. Sce Boining Point; Vapor.

EVARTS, Jeremiah, American editor and missionary secretary: b. Sunderland, Vt., 3 Feb.
1781; d. Charleston, S. C., 10 May 1831. He was graduated at Yale 1802, and settled in New Haven as a lawyer. His life was largely devoted to the intcrests of missions, he being editor of corresponding secretary of the American Board of Commissions for Foreign Missions 1821-31.

EVARTS, William Maxwell, Ameritan lawyer and statesman: b. Boston, Mass., 6 Feb.
1818; d. New York, 28 Feb. 1901. He was graduated from Yale in 1837, studied law in the Harvard Law School and the office of Daniel Lord of New York, in 1841 was admitted to the bar, and in 1849-53 was assistant district attorney in New York. In 1851 he was successful filibusters of the Cleopatra expedition. He was ctained in 1857 and 1860 to argue the Lemmon slave case on bchalf of the State of New York against Charles O'Conor, counsel for Virginia. An active and prominent Republican, he made the specch nominating Seward for the PresiChicago in 1860, though subscquently moving o make the nomination of Lincoln unanimous. In 1861 he and Horace Grecley (q.v.) were ival candidates before the State legislature for appointment to the senatorship vacated by Scward, newly made Secretary of State. As a comEvarts' legal knowledge was frequently em ployed in the service of the administration. On behalf of the government he conducted numerous important cases. Among such were that before the Supreme Court to establish the right
of the United States during the Civil War to deal with the captured ships as maritime prize (ional character of me State laws taxing United States bonds or stock of the national bank without authorization of Congress ($1865-66$). He was principal counsel for Andrew Johnson (q.v.) in the President's trial for impeachment and by his lofty judicial argument contributed much to a result which has since been regarde as most tortunate. He then went into Cabinct as Attorney-Gencral for the ro maining year of the term. In 1872 he was chie counsel for the United States before the Genev tribunal for settlement of the Alabama claims As chicf counsel for the Republican part settled the Hayes-Tilden Presidential dispute Evarts based his argument on the constitution idea that sovercign States must conduct the elections and govern themselves without Federa interference, pointing out that the electoral rc turns from Louisiana revealed the choice o Hayes electors. During Hayes' administratio he was Sccretary of State. He made, in 1880, trans-isthmian canal, whether at Nicaragua or Panama. His administration of the office wa marked by skill in diplomatic questions, the im provement of the consular servica and the pub commercial status of forcign lands. In 1881 in was a delegate to the international monctar conference at Paris, and in 1885 entered the United States Senate, his term expiring March 1891 . He was the senior partner in the law firm of Evarts, Choate and Bcaman, an was frequently retained in important corpora tion cases. While in the Senate he made severa moteworthy speeches and he also pronounced ing the Centennial oration at Philadelphia in

EVE. Scc Adam.

EVE, Paul Fitzsimmons, Amcrican plysician: b. near Augusta, Ga., 1806; d. 1877. Hc
was graduated at Franklin College in 1826 and was graduated at Franklin College in 1826 an at the medical college of the University of
I'ennsylvania in 1828. He then studied for two years in Europe, and in 1831 was sur two years in Europe, and in 1831 was during the Polish Revolution. In 1832-4. he was professor of surgery in Georgia Mcdical College, and in Louisville 1849, the Univer sity of Nashville 1850-68, and the University o Missouri in 186S-77. He was elected presiden of the American Medical Association in 1857 He published over 600 articles on medical stib) (1857).

EVECTION (I, at. evectio, "a turning upward"), the second inequality in the motion of the moon, due to the attraction of the moon by the sun. Owing to the cvection the position
of the moon may vary 1.20 degrees. It was dis of the moon may vary 1.20 degrees. It was discovered by Hipparchus nearly 200 years beíor the Christian era, and more completely detc

EVELETH, ěv'e-lěth, Minn., citv of Sain Louis County, 70 miles northwest of Duluth, of the Duluth and Iron Range, and the Dulut Missabe and Northern railroads. It has ex tensive dairying, lumber and iron-mining in terests, a public library, etc. The commissio
form of government was adopted in 1913. The waterworks are th
pality. Pop. 7,205 .
EVELINA. When (Evelina' appeared, in 1778, its originality created a literary sensatio period of mediocre and frequently indecorous mitations, should have produced a novel keen in observations, seemly in humor and spirited in exccution, won admiration everywhere. To-day some of the newness has worn off and the artistry has been partially eclipsed by the genius possess distinction But Evelina win alway hovel of domestic manners as seen through lear and subtle feminine cycs; time cannot rol of its intrinsic freshness, and, indeed, en Thes it with a certain charming quaintnes the story is told in the form of letters, col ut most of the Rect trate tradition of (Pamela) chology is omitted and the incidents are not sexceptional as those that were necessary regale an carlier gencration. With these modiications, the stress is laid upon the presenta on contemporary English life as it woul mpress an Evclina. The result is a degree of he penetration of Jane Austen. however, the hrface of society as it is reflected in the min of the youthful letter-writer, is portrayed with indeniable vivacity and comic power. The fay arises chiefly from the juxtaposition of contrasting ridiculous characters. They ar implificd and exaggerated almost to the poin make them human; and the comedy to which they give rise, though verging upon farce, is ways amusing and wholesome. Among the aried types moves Evelina, finally successful in Winning the recognition of her deceived father essence Miss Burney herself; and to the pontancity and vividness of her reactions to he life about her the novel in the last analysis wes its vitality and charm. Consult Dobson, Alstin (Life of - Fanny Burncy); Macaulay
I.ord, (Essays on Madame D'Arblay,') passim The Early Diary of Francis Burney,' passim

Gerce B D, passim
EVELYN, ěv'ě-lĭn, John, English writer cb. 1706, After 3 , oxford he began to study law at the Middle emple. He made some efforts in favor of the yyal cause in 1659 , on which account he wa much favored by Charles II after his restora-
tion, In 1662 he published 'Sculptura, or the History and Art of Chalcography or Engravin Society he On the foundation of the Royal lows and at its meetines he read a discours nn forest-trees, which formed the basis of hi ost celcbrated publication, Sylva, or a Dis Olirse of Forcst-trees' (1664). He continued and far at court after the Revolution of 108 and was made treasurer of Greenwich Hospital ord, and subsequently succeeded to his lirother' state of Wotton, his life being that of a loyal, orthy, public-spirited country gentleman, velyn left a most interesting diary, picturin is life from $16+1$ to 1706 , first published with
his correspondence in 1818. A new edition o the 'Diary' was issued in 1827; another, with Dobson in 1906.

EVENING GROSBEAK, a large finch Hesperiphona vespertina) or western North America. It is olivaceous, with the crown, wings, tail and fect black; forehcad and rump wing. It inhahits the forests of northwestern Canada and the Rocky. Mountain region, occasionally coming south into the upper Mississippi Valley in winter. This was the limit a few years ago, but since about 1905 the bir has extended its winter migration to easter Canada, New England and New York, where it annually appears in increasing numbers and is reported to have bred in a few instances. It nest is a rather rude structure placed in a trec crosbcak feeds by preference on berrics, espe ciallv those of the mountain ash, bittersweet an the like; also on buds, seeds, frozen apples, etc It goes about in small flocks, uttering a variety of calls, and in spring sings in a loud, odd way, of the extraordinary winter-spread account of the extraordinary winter-spread eastwar of this interesting of the ornithological magazines.

EVENING PRIMROSE, the common name of American plants belonging to the various genera of the family Onagracea, or evenin primrose family. They are annual or biennia herbs, the yellow flowers opening either during 40 species to which the name is applied, nearly all natives of North America, but some of them naturalized in Europe, particularly in England Evening primroses, especially Oenothera bicnni and related species, have attracted much interes because of experiments in plant breeding con-

EVENING or NIGHT SCHOOLS schools in which instruction is given to pupils dcbarred, generally by reason of being wage earners, from the advantages of the day schools evening schools arose at a time when compul sory education was not as widespread as at present and when more children were conse quently growing up without instruction. Be ginning with the idea of imparting the mor rudimentary branches, such schools have ex departments of institutions devoted to the stud of art, science or technology. In some of it wider aspects their work has bceome allied to the university extension movement.

Central Europe. - The evening schools in central Europe are thorly after the midd of the 18 th century began to add elementary secular instruction to religious teaching. The school age limit being less than at present, review or contmuation of school studies scemed of great importancc. In Germany, beginning with lessons in arithmetic and the mothe tongue, the range of instruction gradually
widened. Some states made attendance obligatory at such Sunday-schools in certain cases. At prescut the term Fortbildungsschulen (literally "further developing schools") is applied in Germany and Switzerland to schools intended for pupils who have passed the elementary
school age and yet study the elementary branches. These Fortbildungsschulen are open only in winter and rarely require more that six hours of attendance in the week. Their object is to give boys a practical turn of mind by instruction fitted to bear upon their future callings. They do not furnish instruction in matics. In Switzerland, all the 25 cantons have systems of Fortbildungsschulen held on Sundays, holidays and in the evening. The evening schools of France, now numbering many thousands, appear not to date back farther than ing rather endency is toward technical trainalso evening classes or lectures open to those who desire a broader culture.
Great Britain. - In 1806 a benevolent association founded an evening school in Bristol, England, for young persons who were working for a living. In 1811 a school for adults was
started in Bala, Wales, and others shortly followed in London and other towns. Such schools were originally supported by private benevolence or local funds, but the government, after a time, saw the wistlom of aiding them by grants. Since 1861 this aid has been greatly increased, but is not intended to suncrscde local effort. Accordtion of Great Britain for the school year ending 31 July 1903, local funds were expected to meet 25 per cent of expenditure for the evening schools and such expenditure to be approved by the board. The schools must not be conducted for private profit. They are under superto its examinations and must report to it Schools charging no fees are not generally recognized. Instruction must begin after 4 P. M. or on Saturday after 1 P. M. Students under 12 are not admitted nor those who attend day schools under government inspection (art students being excepted). The courses are as follows: (1) instruction: (4) mathematics and science: (5) home occurations and industries. The last course is largely for girls and includes "home nursing." The boys may take a course in ambulance training, in gardening, etc. Throughout London the evening schools give instruction in gymnastics and swimming and life-savpupils. Evening classes have been held in London at various institutions such as University College, King's College, South Kensington Museum, etc. In the so-called provincial colleges evening classes constitute an important part of
the work. Special schools give instruction in the work. Special schools give instruction in commercial branches, courses for women, art,
technology and advanced science. The Education Department of Great Britain reported 1911-12 for the evening schools of England and Wales 7,749 schools inspected and 222,776 pupils nrolled.
In Scotland the Parliamentary grants for Evening schools are administered by the Scotch and to supplement locally raised funds. The courses of study cover about the same ground. Gaelic is found on the curriculum, and agriculture, horticulture, navigation, military drill and wimming may all be learned
Evening schools also exist in most of the

America; and in Canada they are specially United States.-The first successful evening schools of the United States hegan near the middle of the 19th century, although an attempt without permancnt results was made in New York in 1834. Boston and other large cities came a recognized part of the common school system. The aims of the pupils in the evening schools being generally very practical and their minds more mature, the methods and subjects of instruction are varied from those of the day schools. Branches relating to commercial and incustrial occupations are naturally preferred. exist in some cities and drawing is included in the curriculum of some of the regular schools. Evening high schools have become common and in addition to these extensions of the public school system, various important institutions, land Institute, Baltimore, and the Drexel Institute, Philadelphia, offer evening courses of a highly varied and very valuable character, and of a range resembling that of the day classes. Free lectures also conncet such schools with university extension methods.

The evening schools of the Young Men's Christian Association in the United States, in Women's Christian Association had 65,129. In the business and commercial schools reporting to the United States Bureau of Education in 1912, there were 134,818 students in evening classes. The evening schools connected with reported, in 1912. for cities over 10,000 inhabitants, a total of 204 cities, 9,476 teachers. Fortyone of these schools were in Massachusetts and the remainder were scattered over the other States. In 1911 Massachusctts added greatly to the efficiency of the State vocational educabroad manner to the night schools. The greatest number of night schools are still to be found in the North Atlantic States and the smallest number in the South Central States and Territorics.
EVENING STAR (also called HESPERUS and VESPER), the name given to any one of the planets seen above the horizon Venus midnight; especially applied to the planct Jupiter and Saturn are the other chief evening stars.
EVERDINGEN, cv'er-dĭng-cn, Aldart or Allart van, Dutch landscape painter: b. Alkmaar, 1621 ; d. Amsterdam, November 1675. His sea picces, in which he represents the dis-
turbed elements with great truth to nature, are turbed elements with great truth to nature, are
particularly celebrated. In forest scenes, too, particularly colebrated. In forest scenes, too, he was a master. He is known also as an abl
engraver ly his plates to (Reynard the Fox.'
EVEREST, Sir George, English military ngineer: b. in Wales, 1790 ; d. 1860. He wa Woolwich, was commissioned second lieutenant in the Bengal artillery, and took part in a survey of Java and in engincering work on the Ganges. Later he was engaged on a survey o India and in 1830 was appointed surveyor-
in 1843. He was knighted in 1861 and was elected vice-president of the Royal Geographical Society in 1862. Mount Everest was named in
his honor. Hc published (An Account of the his honor. Hc published 'An Account of the Arc of India) (1847) Scetions of the Meridional

EVEREST, Mount, the highest known mountain in the world, is a peak of the Himis 29,002 feet high or about five and one. milcs. It was named in honor of Sir George Everest, an Englishman who for a time was surveyor-general of India. This mountain has een confused with Gaurisankar, whose twin peaks lie 36 miles west of Everest.
EVERETT, Alexander Hill, American iplomatist: b. Boston, Mass., 19 March 1792; d. Cinton, Chilla, 29 May 1847. He was graduthe from Harvard in 1800, was admitted to at The Hague, was Minister to Spain in 1825-29 He then became editor of the North American ceview, and was elected to the State legislaure of Massachusetts. In 1840 he was ap pointed special agent to Cuba, and from 1845 To the dealn he was a commissioner to China. To the North American Reviewe he contributed Cuba he was appointed to While resident in Jefferson College, but ill health compelled his return north. He was at first a member of The National Repuhlican or Whig party, but or a Gepperted Jackson. His work on 'Europe, or a General Survey of the Political Situation their Future Prospects, with Conjectures on estecmed in its time and was was highly French, Spanish and German. In 1827 appeared inis somewhat similar book on 'America.' Among his other volumes are 'Critical and Mis cellancous Essays) (1st serics, 1845 ; 2d series biogr) and 'Poems' (1845). He wrote also ren for Sparks' series of (Amery and Joseph War Uther works were (New Tdeas on Populaty.) (1822) ; and orations on 'The French Revolu Batule The Battle of New Orlcans,' and 'The Batile of Bunker Hill.
EVERETT, Charles Carroll, Amcrican Untarian clergyman: b. Brunswick, Mc., 19 Hune 1829; d. Cambridge, Mass., 17 Oct. 1900. He was graduated at Bowdoin College, and He returned to Bowdoin College, where Berlin tutor for two years, librarian for where he wa icssor of modern languages 1855-57. He was ordained pastor of the Independent Unitarian Collgregational Church in Bangor, Me., 1859 the resigned in 1869 to become professor of dean gy in Harvard Divinity School, and was Amone his school from 1879 till his death of Thought' (1869) : 'Religions Before Christianity) (1883): 'Fichte's Science of (180wledge) (1884); 'The Gospel of Paul' (1893) ; 'Psychological Elements of Religious (1902) ; 'Theism and Christian Faith' (1909).

EVERETT, David, American writer: b Ohio, 21 , Mass., 18 March 1770; d. Marietta, and while there wrote for 21 Dussell's Boston,
and a literary paper called the Nightingale He edited the Boston Patriot (1809), and the and Dutics of Nations,' an essay; 'Darenzel,' a tragedy (1800); 'Common Scnse in Déshabille, or the Farmer's Monitor.' He wrote the well-known lines beginning -

You'd scarce expect one of my age
To speak in public on the stage.
EVERETT, Edward, American statesman Dorchester, Mass., 11 April 1794 ; d. Boston 15 Jan. 1865. He was graduated from Harvard in 1811, pursucd studies in divinity, became in 1813 pastor of the Unitarian Church, Brattle strect, Boston, and in 1814 published his 'Grounds of Christianity Examincd) of to the G. English. In 1814 he was also chosen to occupy the newly established chair of Greck literature. To qualify himself for the pos he went to Europe in 1815 for a course of travel and study. He was for two years at the Uni versity of Gottingen, and later sojourned in returned to enter on the duties of his professor ship. He became also in 1820 the editor of the North American Review, and in $1820-24$ con tributed to it about 50 papers. He was elected to Congress in 1824, and by successive reelcetions held his seat until 1834. Throughout on Foreign Relations and in the 20 th Conmgres its chairman. He drew either the majority or the minority report of many selcet committees In politics he was a National Republican (Whig). He declined a renomination to Conof Massachusetts, subsequently elected governor of Massachusetts, subsequently was three times
re-clected, holding the office for four years, and in 1839 was defeated by a majority of one vote While in Europe in 1840 he was appointed Minister Plenipotentiary to England. At a time when there were many points of controversy be tween Enigland and the United States he was portant questions. He declined inumerous im pointment as commissioner to China, and in 1845 was recalled. In $1846-49$ he was president of Harvard, and in 1852 he became Secretary of State in Fillmore's Cabinet for the last four months of the
latter's administration. During this brief latter's administration. During this brief In a diplomatic note he declined the joint proposition of Great Britain and France that the United States should enter a tripartite convention which should guarantee to Spain exclusive possession of Cuba in perpetuity. Before he left the Department of State he was elected to Kansas-Nebraska bill for the rencal of the Missouri Compromise. He resigned his seat in May 1854. From 1856 to 1859 he pronounced his well-known lecture on Washington in all on 122 occasions, realizing thereby nearly $\$ 60,000$, which he turned into the treasury of the Mount Vernon Association for the purchase of Mount Vernon by private sulscrip-
tion. Ife preparcd a collective edition of the orations and speeches of Daniel Webster, with an introductory biographical notice; wrote a ife of General Stark for Sparks' 'American Biography'; and prepared for the 'Encyclopredia

Britannica,' at the instance of Macaulay, a life of Washington, afterwards separately publisher (1800). In 1860 he reluctantly became a candidate for the Vice-Presidency on the Con-stitutional-Union, or, as it was sometimes ($\mathrm{q} v$) , being the Presidential candidate. The (q.V.) being the presidential candidate. Kentucky, Tennessee and Virginia. During the Civil War he was a staunch Unionist, but disposed also toward a policy of reconciliation He deliycred the address at the dedication o the national cemetery at Gettysburg, Pa., 19 1864 as an elector-at-large he cast his ballot for Lincoln and Johnson. His last pullic appearance was at Fancuil Hall, 9 Jan. 1865, where he spoke on behalf of the sufferers at Savannah. Everett was noteworthy in his versatility,- preacher and theologian, a Greek scholar, an editor and author, ol much attention by his pul pit eloguence As a Grecian he was thoroughly equipped and gave in his time a considerable stimulus in America to the study of Greck letters, antiquities and history. His literary productions were carefully wrought and.marked by his scholarship; but, through interruptions by other activitics, they were eimited, so car as pull and the above-mentioned 'Defence of Christianity.) He did not complete a treatise on public law - a subject he was eminently fitted to ex-pound,- on which he was for some time at work. His utterances in Congress showed him rather the orator than the dehater, and while a member of the lower house he stood apar
from much of party contention as it there appeared. He took, however, a prominent part in discussion, and, as indicated above, was a most valuable committee member. While he was a foreign minister the general negotiations garding the northeastern boundary and Orego dificullties were transferred from him through as appoint as special ambassador, yet many of the points ment. As representative, secretary and senator he held to the possibility of saving the Union by compromise on the slavery question, but, the war once begun, he was among the ablest supporters and advisers of the Federal government It is as an orator that Everett is best known
His addresses werc generally written with elaborate carc, and werc of the Ciceronian type in the knowledge and culture displayed as well as in their finished rhetoric. More fully than any other American orator he combined the resources of learning with the arts of the speaker He lacked Webstcr's fire and Phillips' magic, but his manner was always impressive and well
poised. Even in his own time, however, his poised, did int escape criticism for lack of oratory in not escape criticism for lack of frequently been made against it. He may be
called the pioneer in the American "lyceum," called the pioneer in the American "1yceum,"
which long had such a reputation. His 'Orawhich long had such a reputation. His 'Ora-
tions and Speeches on Various Occasions' were tions and Speeches on Various Occasions' were
collected in four volumes in 1853-68. Consult also Dana, 'An Address upon the Life and Services of Edward Everctt) (Cambridge ton 1865) ; and Whipple's remarks in 'Char
acter and Characteristic Men,' pp. 243-252 EVERETT, James, English clergyman: b. Alnwick, Northumberland, 16 May 1784; d. Cumberland, 10 May 1872. In 1807 he began o preach as a Wesleyan Methodist minister
In 1821 lic retired until 1834 and was in the book husiness at Sheffield, later at Manchester. In 1842 his healih connpelled a second retirement. From 1846 to 1848 he published the notorious 'Fly Shects' intended to expose the incfficiency in the affairs of the Westeyan
Methodist Comnection. This led to his expult Methodist Connection. This led to his expul-
sion from the Wesleyan ministry along with sion from the Wesleyan ministry along whe
his fricnds William Griffith and S. Dunn. They formed the Wesleyan Reform Union which later united wilh other liberal Methodists and formed the United Methodist Free Churches. He was president of the Conference of this body. He was a voluminous author and a poet one Thillage Blacksmith) (1831), which passed through many editions. He was also the biographet of his friend Adam Clark, the great commentator. He assisted John Holland in the preparation of the life of
gomery $(7$ vols, 1854$)$.
EVERETT, Joseph David Enalish
EVERETT, Joseph David, English physicist: b. Rushmore, near Ipswich, 11 sept. 183 ;
c. 9 Aug. 1904. He was educated at Glasgow University; was professor of mathematics, King's College, Nova Scotia, 1859-64; assistant in mathematics, Glasgow University, 1864-67, and professor of natural philosophy in Quect College, Bcifast, 1867-97. He took a leading part in the selection and naming of dyyamincart and electrical units, and dratted a repor
(1873), the adoption of which originated the C.G.S. system now generally employed. His 'Universal Proportion Table,' was the first application of the parallel column arrangement for obtaining a slitle-rule with very open scale. (Physics) (1870) was so largely rewritten as to he almost an original work. Other of his publications are 'Centimetre-Gramme-Sccond System of Units' (1875) ; 'Elementary TextBook of Physics) (1877) ; (Shorthand for Gencral Use' (1877); 'Vibratory Motion and losonhy) (1887), the
EVERETT, William, American educator, Youngest son of Edward Everett (q.v.): b. Mass., 15 Feb. 1910. From 1870 to 1877 he was assistant professor of Latin at Haryard He was master of Adams Acadcmy at Quincy Mass., 187-93 and in 1897, and was membe of Congress $1893-95$. . He was the author
(On the Cam) (1865). (Changing Basc) (1868), 'Double Play' (1870), two hooks for boys; ${ }^{3}$ poem 'Hesionc, or Europe Unchained) (1869) 'School Scrmons' (1881); 'Thine, Not Minc' and many pamphlets on political, literary and religious subjects.
EVERETT, Mass., city in Middlesex County, threc miless north of Boston, on the
Boston and Maine Railway and with connection Boston and Mainc Railway and with connection by electric surface lines with Lynn, Accord
Chelsca, Boston and adjacent towns. Acord ing to the report of the 13 th United State census there were in Everctt 62 establishment
with a capital of $\$ 22,905,000$, employing 2,00
wage-earners at wages amounting to $\$ 1,979,00$ and having a product valued at $\$ 8,747,000$. The olast important manufactories are a chemica tas , products, Icather, beds, concrete blocks, tools, wons, heat, beds, concrete blocks, hools, ensus of manufactures for 1914 showed with the city limits 85 industrial estahlishments of factory grade, employing 3,788 persons; 3,22 ofing wage-earners receiving annually a tota aggregated $\$ 26,409,000$ and the year's output aggregated $\$ 26,409,000$ and the year's output was the valuc $\$$, 210 , ornufis, $\$ 0,0$, are two public libraries, the Shute Memorial and the Parlin Memorial, and the Whidde Memorial Hospital is also located here it was was settled in 1643 and until 1870 it was a part of Malden. It received its city in the decade 1890-1900. The government is administered by a mayor chosen annually, and a municipal council in which members of the lower chamber are elected by ward for one year, those of the upper chamber a large for two years. The more important of the subordinate officials are nominated by the are chosen confirmed by the council; the other

EVERETT, Wash., city, county-scat of Northern Cacific the Great Sound, on the Chicago, Milwaukee and Saint Paul railroads about 55 miles east by north of Tacoma and 30 miles north of Seattle. It has an excellen Pabor with water communication with the luable and agricultural lands, forests and natural resources is not common. Everett is the entrepot of the towns and camps in a rich mining belt. Within a district 36 miles long and 20 miles wide, the Monte Cristo, Great Lake, Silver Creek, Troublesome, Sultan, Stillathe ways contribute naturally to the substantia krowth of the city The city trades extensively in lumber, having some of the largest plants mose Northwest. Red-cedar shingles are the most important products. The smelter and Northwest plant ohtains mineral from all over the Hour- and lumber-mills, large shipyards sash and door factories, saw and shingle mills and One of the two plants in the United States for saving arscnic from smelter fumes. There are Several well-built brick buildings, churches, power, graded streets, electric light and moto Carnergie library, school houses, nowspapers, States customs and assayer's offices enite school system is excellent. Everett was settled 1891, incorporated in 1893. Its growth ha as rapid becalise of its favorable situation and its nearness to extensive forests. It has add Fop. (1920) 27,644 .

EVERETT-GREEN, Evelyn, English daughter . London, 17 Nov. 1856. She is the She was educated at Bedford College, London
studied music at the London Academy; and for two years was a nurse in a London; hospital Since 1883 she has devoted herself entirely to writing. Among her many published works the (1886). 'St. Wynfriths) (1893). 'Dare Lori mer's Heritage) (1892). 'Dominique's Venge ance'; 'Shut In' (1894)': 'Over the Sea Wall (1895): 'Arnold Inglehurst the Preacher and English') (18is Friends' (1896) ' 'French (1899); 'The Heir of Haskett Hall' (1899) (Monica) (1900); 'After Worcester) (1901) 'For the Faith' (1901); 'Olivia's Experiment' Fortunes) (1902): 'Alwyn Ravendale) 'Fallen 'Hero of the Highlands' (1903) 'Dufferin's Keep' (1905); 'The Magic Island' (1906) 'Marricd in Haste' (1907) ; 'The House o Silence' (1910); 'The Evolution of Sara' (1911); (Blackladies' (1914); 'The Double

EVERETT-GREEN, Mary Anne (Wood) English author: b. Shefficld, 1818; d. London,
Nov. 1895. She moved to London in 1841 and for nearly 40 years was cmployed in the record office as one of the editors of the 'Rolls Serie of State Paper Calendars.) The works edite by her include 'Letters of Royal and Illus trious Ladies of Great Britain' (1846); 'Diary of John Rous' (1856); (Letters of Henrietta Maria' (1857) ; 'Life of William Whitingham' of the Princesses of England from the Norman Conquest, (1850-55)
EVERGLADES. The name given to vast tract of land and water in the southernmos part of Florida, a region, though under the very eyes of the early pioneers and bordered by our own advanced lines or commerce and travel first decade of the 20th century. It is the marsh, a swamp nor a stagnant pool; neither land nor water. No white man had penetrated it for any greal distance, either by boat or on foot, owing to the variance in the depths of the water and the dense tangle of saw-grass, scrubwillow and custard-apple which abounded there top of limestone formation, covered with a network of pot-holes, varying in size from a few feet to thousands of acres; it has countless lakes of fresh water, fed by springs and subterrancan streams, and among these is Lake Okeechobee, named by the Indians Lake May dimi; at the southern end of the lake began the district known as the Everglades. This vast Beach counties, extending southward from the lake ahout 110 miles and having a breadth of about 45 miles. Over the rocky bottom of this region lay a layer of muck, formed of alluvial deposit and decayed vegetation, varying in in this muck the saw-grass found its origin took root and sometimes grows to a height.of 10 feet. This saw-grass is one of the most peculiar and interesting features of the Everglades. Shooting up rapidly, pale green in color, as it goes through the water, fading in the sunlight to a dull golden tint, its blades are a saw. Toward the western end of the lake it
s interwoven with wild myrtle and formed an almost impassable barrier, running through the entire length of the lake, although there are some passages through it, known familiarly to
the Seminole, but which arc almost impossible to locate by the explorer.
Scattered along the eastern and western very small, others hundreds of acres in extent, covered with luxuriant growths of live oaks and bays, interspersed with wild cucumber, cmon and orange trces. The papaya, the cus-tard-apple and prickly-ash are of frequent occurrence, and here and there may be scen the
cabbage palmetto, the pine and the rubber-tree. The first white man to enter this mysterious, silent country was a Spaniard, one Escalente de Fontenada, who, after being shipwrecked in the Strait of Florida, was made captive and slave by the great cacique, Calos, but he has left us only a few meagre details of his experiquent expeditions of exploration were sent out by the United States government from 1847 to 1900 to penctrate this wilderness if possible, but all failed, each bringing the explorers, after days of hardships and privations, to the conclusion that the Everglades, though fascinating in its wildness, was a region to be avoided; a grass, impenetrable and practically valueless: and the lake a mixture of currents which seemed to begin without reason, led nowhere in particular and generally ended in a comparaivcly still pool, with a labyrinth of passage Animal life in seemed no direct egress.
ant, decr being found on both eastern and western shores, otter are plentiful, alligators and crocodile quite numerous, while the snake s there in large numbers. -The Glades wer once the breeding place for the egret, the ibis yet to be found the plume hunter has made uch inroads that all are nearly extinct. Small lies and gnats are found where the foliage is thick, as in all regions.
Probably the most interesting of the denizens of the Everglades are the Seminole InMuskokis and the Mikasukes, who for hundreds of years have inhabited this section of Florida defying all attempts to dispossess them, and in 1835, during the Seminole War, killing a large number of troops, under Major Dade, sent against them. The shores of the streams by hich the Glades are entered are covered whont the cocoa-plum trec, which also grows about on the eastern and a white fruit on the western edge. Wherever the land is sufficiently dry, he coontie-plant, really the Florida arrow-root grows, and from these the Indian gets his susenance, extracting flour and starch from the

The physical fcatures of the Everglades are beyond description, beauty and charm blending in a strange, swect sense of mystery. In dry weather, when the water is low, it is possible to drive into the Glades, but the most beautiful and ideal approach is by water, all the rivers of the Glades finding their way to the sea, some by
the rocky channels worn hy their own age-long floods, and some through miles of wandering
curves, their shores lined with forests of mangrove trees.
Looking into these forests, only the dark waters are to be seen. Ascending, the fresh water of the Glades oyercomes the brackish tidal water, and the cocoa-plum takes the place the cocoa-plum gives way to the cypress, and pond lilies abound, the whole panorama of shitting green, - the lemon-like foliage of the cocoaplum, the dark olive of the mangrove, and the lighter green of the cypress, enlivened by the sunlight,-making a scene of unique beauty. In the perspective, when the water is low,
the Glades, with its numerous islands and with the tall golden grass, gleaming in the sunshine, waving over a field of silver, ending with a sky-line of blue, has a charm for the cye, uncrualed, perhaps, by any other spot in the world, and gives to the sightseer or cxplorer that subtle impulse and uncontrollable desir grass and water, never reaching the goal but always seeking for something that lies just beyond the horizon.
The climate of the Fverglades is faultless, showing no extremes of heat or cold, nor is it subject to sudden change. There are two sea sons in the ycar, the rainy and dry, the latter
including June and September, although light showers may be expected at any season. and in the autumn the humidity is very high. Malaria is seldom heard of, the pure air giving the hest assurance of health, and it is small wonder that the ancient explorers spent years here trying to find the "Fountain of Youth.
trustecs of the Internal Improvement Fund of Florida, under patents from the Department o the Interior of the United States, by virtue of an act of Congress of 1850, and they promate efforts to drain the Glades and open it to actual settcrs, the cost of reclamation being smat the great agricultural value A private company set about building a drainage canal from Lake Okecchobec to the New River in 1881. but owing to faulty plan ning the project failed. A definite plan was finally outlined by the State in 1906 and work was promptly hegun. This plan provided for coast to the lake, with the purpose in vicw of lowering the level of the lake sufficiently to stop the overflow of its waters into the Everglades, and to lower the water level there by means o these same canals. At the present time fiv canals of a total length of over 200 miles and o an average depth of 5 feet with a 60 -foot widim
have been completed and have served to reclaim about $1,000,000$ acres, although ecrtain acres have not received sufficient protection agains overflow during heavy raining season. The stuccess of this work proved that a great part of the remainder - $2,700,000$ acres-could time be reclaimed by the natural incline of the
surface, from the flood source to the rivers entering the sea. A contract was let to a dredging company of Baltimore to excavate ninc canals aggregating 425 miles. All of these watcrways arc now under construction, with widths ranging from 50 to 60 feet for the larget and an average of 25 feet on three smaller ones to seven feet, while some average four feet

The excavation is accomplished by huge dredges and ditching machines of the clamshell, dipper formation in which they are employed. Float ing dynamite plants are employed for rock excavation, and are equipped with steam-driven out from the bottom of the cut. The work is procecding at such a pace that soon about onc-third of the entire area will be ready for he farmer and the settler. The Everglades, rome drained, are being occupied by setliers fuit and vegetable raised in . Every kind of can be cultivated at a profit in Florida ranges, bananas, pineapples and other varicties may be added to the list. The farms under culivation in the reclamed portion prove the ruth of this. The new land is being sold in divided into truck and other farms to bo Dossibility of producing sugar is perhaps the most important. The total cost of the reclamaton project tunder the plan of 1906 has been bout $\$ 4,500,000$ or $\$ 1.125$ per acre. For acts, eports and official papers relating to the reclaormation concerning maluable in Everglades,' Senate Document No 8962 d Contess, ist Session (Washington 1911): 'Florid Everglades,' Report of the Everglades Engiecring Commission, Scnate Document No. 379 Congress, 2 S Session (ib. 1914); Rhode 912) amont Gmide to Forida' (New Yor glades," in Scientific American, Vol CIV Ner (21 Jan. 191); id., "Reclaiming the Everglades," in Scientific American, Vol. CXV, No. 12 (16 Scpt. 1916) ; and Dimock, "The Passing of a Wilderness") in

EVERGREEN, Ala., town, county-seat of vill Rilond, bnt Lounsvile anch Nash Mohile. An agricultural school northeast ment station and the State Baptist Orphan Asylum are located herc. Its mineral spring The agreeable chimate make it a winter resor The town is interested chiefly in agriculture a vencer mill, box factory and sawd contains waterworks and electric-light saw mill. The by the municipality. Pop. (1920) 2,000 .
EVERGREEN ISLE, a poetical name given Ireland.
EVERGREENS. Those plants which imperceptibly shed their leaves and acquire new liage, without noticeable change in thei aspect, and those which, like certain biennials the alpines, mantain their leaves throughout quick start season so that they may make a In the northern countries cultivated evergreens are roughly divided into two groups popularly called conifers and "broad-lcaved" cyergreens, he latter including laturels, rhododendrons, cyergreen, and some tropical flora is chiefly glargreen, and some trees, like the Magnolia
ghat shed their foliage in the north retain, it in the south This in the sonth.
the plants are subjected to extremes of where and wetness, or of heat and cold, has given
rise to many devices for regulating transpira tion or the deleterious effects of too much moisture, such as the rolling of leaves, waxy arrangements of pits, hairs and cells. Wherever the foliage is persistent for scveral years as is the case of persistent for scveral years, as is the case of the holly and of many tropileathery, being provided with a thickened cuticle especially where the leaf undergoes rough periodically. Other evergreens like cacti and rock-plants become fleshy or succulent, when living in arid conditions, storing water in thei lissucs and sometimes retaining it there with mucilaginous juices and salts. Furthcrmore shape in both leaf and stem the foliage often being reduced to more necdles and scales, being absent entirely. This rodlike, nearly leaf icss, condition is particularly noticeable in the so-called whip-plants of arid regions, which are reduced to switch branches with scales for surface during the heated term evaporating occur on the Mediterrancan shores where another type of device for controlling exhalation is conspicuous; for there the evergreens ar really gray, like the lavender, hoary with their envelopes of hair, just as some alpine plants notably the edelweiss, are smothered in felted many trees reduce thess forests of Australia by presenting only the edges of their leaves to the midday sun.

Coniferous evergreens furnish some of our most valuable forest products in the way of timber, naval stores and tanning materials, and also various food products as muts and hark as the West Indian yacen and the yew, furnish cabinet woods, but the latter scems to have been used wherever it grows, chiefly for bows Most of them also are uscful for windbreaks, hedges or for ornamental planting, where sheltcr, concealment or winter-color is desired; various species being adapted for differing sols and climates. Some of them, as the arbor-vitac
and yew, stand shearing well, and can be pruned into sundry geometrical forms; holly and box share this distinction, and the custom was formerly carried into grotesque excess in topiary gardening.
Laurel, rhododendrons and other "broad leaved" evergreens are often valuable in shrub-
beries not only on account of their winter verdure but because they also have handsome blossoms or fruit; they moreover afford sheiter for birds

Their long life and perpetual verdure have caused many of the evergreen tribe, particularly the fir and mistletoc, to be included among sacred plants; and they have become adopted of perennial remembrance, at funcral service and in graveyards. Several kinds, as the yew, served as "palms" on Palm Sunday, On the other hand, yews and cypresses, especially the latter, serve as emblems of eternal death and are frequently referred to in this connection in classical lith every
Evergreens are favorite
ing during the Christmas holidays: in England
a certain order was observed in their disposal, a certain order was find in Herrick's 'Ceremonies for Candlemas Eve':

Down with the rosemary and bays,
 Down with the mistletoe; Instead of holly. now uparase, The greener bow, for show.
 Then youthful box which now hath grace Your houses to renew,

Then Your houses to renews.
Grown old surrender must his place
Unto the crisped yew.
Presumably these holiday garlands and decorations of evergreens - rosemary, ivy, laurel, box, holly and mistletoe-were sur vivals, with the Christmas tree, of pagan cercmonies and trec-worship, more or less incorchurches; the mistletoe, however, was so intimately connected with Druidical rites that it was excluded from the Church decorations. There is a large trade in these Christmas greens, both of the forcign and native kinds, the latter ncluding southern smilax, long-eared pin

Helen Ingersoll.
EVERHART, Benjamin Matlack, American botanist: b. West Chester, Pa., 24 April ness career in his native town and Charleston, S. C., he retired in 1867 and devoted himself to botanical study, becoming a recognized author ity on cryptogamic botany. With J. B. Ellis of New Jersey, he published in 50 parts a notable work entitled 'The Century of North of which were discovered by Everhart. With W. A. Kellerman, professor of botany in Ohio State University, he founded and edited 'Th Journal of Mycology,' to which he contributed numerous articles on his specialty. Several new fungi discovered by him have been named afte

EVERLASTING FLOWERS, a name applied to certain plants belonging to the family Asteracece, from the fact that when dried they the French they are called immortelles, and this name has been introduced into our own language as applied to wreaths made of such flowers to be placed beside rccent graves as emblems of immortality. The plants to which this name is most commonly applied belong to the genus Helichrysum, and are natives of southern America to members of allied gencra, such as Antennaria, Gnaphalium, Anaphalis, etc. The native women of Australia are fond of decorating their hair with the flowers of Helichrysum elatum and Helichrysum bracteatum. See Amarantifus.
EVERLASTING GOSPEL, The. See joachim de Floris.
EVERLASTING MERCY, The. 'The Everlastng Mercy' (1911), by John Masefield, is a poem of some 1,800 lines, telling the old Life, while ruthlessly bringing every man's sowing to the harvest, is always merciful of evil. Mascficld prefers the familiar simile of the Christ knocking at the door of one's
(the name is suggestive of two biblical characters and incidents), who at the age of 20 "was tokened to the devil." The crisis in his depravity is hastened by the fight with Billy and succeeded by a drunken debauch at "the and succceded "y a drunken debauch ai and
Lion." After "three long hours of gin and smokes" with every nerve on edge and mind a-swirl in a tumult of accusing thoughts his reason reeled and a madncss that was not wholly from "Hot Hollands punch on top of stout" scized him. Throwing boots and torn clothes and glasses through the window he leap out and rushes through the street,

A naked madman waving grand
A blazing lamp in either hand He wakens the sleeping town with a furious
ringing of the fire bell. When the firmen rush toward him he flees and they, because o his nakedness and his wild yelling,

I'm fire of hell come up this minute
To burn this town and all that's in it.
think him an escaped lunatic. Having shaken his pursucrs he returns to "the Lion and sleeps. On waking a second spell of mim to the strect. On seeing puffing parson," with exaggerated rudeness he bars his path and pours out a scathing criticism of the established religious and social order, not sparing even the parson:

O. what are you, and what you preach And what you do, and what you teach Is not God's Word, nor honest schism,

But Devil's cant and pauperism.
Masefield is at his best when criticizing the social order, hut the sanity orded and effect
well disclosed in the parson's pointed ive reply. Saul Kane drunk and exaggeratedly boastful in his degradation is no1 bad al through. Before the fight began he looked at

The five and forty human faces
Inflamed by drink and going to
Inflamed by drink and going to
Faces of men who' n never been
Merry or true or live or clean.
It is a man's sympathy rather than a drunkard's that prompts Kane to comfort little Jimmy Jag gard who has lost his mother in the maren as soon as she is warned that "Saul Kane, the drunken braggard," is talking to her Jimmy, and in her cructc, unlettered and forccful way she pictures Kane to himself and to the as-
sembled crowd with pitiless accuracy, so that he confesses that

This old mother made me see
What harm I done by being me
And
Summat she was, or looked, or said,
Went home and made me hang my hear
I slunk a way into the night
Knowing deep down that she was right.
Put thus to shame before himself and the peo ple he drowns the mortification he felt in deepet drunkenness which spurs him to a more brazell assertion of depravity as exhibited in the insu offered to Miss Bourne, who regularly visited the saloons "To bring the drunkards' souls t grace," an act which shocked even his comp panions in drunkenness. This with such force from the clean sol and simple word of Miss Bourne that it causo something to snap inside his brain. The re maining part of the poem describes his wander ing "out into darkness, out to night," mergint
into the dawn of a new day, the birth of a new self, and the finding of the "everlasting mercy, eader." The whole poem grips and holds the speed of action. One forgets that it is vers and feels the touch of flesh and blood.
EVERLASTING PEA, a popular name for plants of the genus Lathyrns, of the pea
family. In the United States it is applied to he beach pea (L. maritimus), because it often lossoms until late in the fall. In Europe the everlasting pea is L. latifoluus, a cultivated plant ornament in the pea, sometim, cultivated
EVERMANN, Barton Warren, American 1886 he was . Monroe County, Iowa, 1853. In after which he spent 10 years as teacher and superintendent of schools in Indiana and Cali fornia. In 1888 he began his connection with the United States Bureau of Fisheries, wa Ade ichthyologist in 1891 and from 1903 to 1911 was chicf of the division of scientific of ing. Thereafter, until 1914, he had charg was also United States fur-seal commissione and in 1008 was made chairman of the fur-seal board. At various times he lectured at the universities of Corncll, Stanford and Yale He is the author of several bulletins of the United States Fish Commission and has con ributed to the procecdings of several learned societies.
EVERSLEY, 1st Baron (George John haw-Lefevre), English statesman: b. 12 Jun 832. He received his education at Eton an pleambridge University. In 1855 on the comthe bar He unsuccessfully contested Winchester at the election of 1859 , but was successful in 1863, when he was elected member for Reading, which seat he held until 1885, when he was elected from Bradford. In 1856 he became civil lord of the Admiralty and in 1858 was tion He carried the vote in the Commons, in 1868 for the arbitration of the claims arising from the Alabama. From 1869 to 1871 he was sec retary of the Board of Trade and in the latte year was made undersecretary at the fome Alice. In $1871-74$ he was secretary to the Admirally; in 1881-83 first commissioner of $1892-93$ he was a mestmaster general. In ministry and in 1894-95 was president of the Local Government Board. While in the Commons he sponsored many important legislative bills, especially dealing with modern in legislation. He was created first baron in 1906. He published 'English and Irish Land Q'Connestl): 'Incidents of Coercion'; 'Peel and Commons 'Agrarian Tenures'; 'English land' (1912): 'The Partitions of Poland' (1915) (1912); The Partions first EVERY MAN IN HIS HUMOUR, the down to us. It was produced at the Globe Theatre in 1598, with Shakespeare in the cast
and was printed in 1601. David Garrick late revised it and achieved a great success in the principal rôle.

EVERY MAN OUT OF HIS HUMOUR a satirical comedy by Ben Jonson, first pro-

EVESHAM, êvz'ham or èvz'am, England municipal borough and market town in the southeast of Worcester, beautifully situated in the vale of Evesham. It is an ancient place and was the scene of a battle fought in 1265 , which replaced Henry III on the throne. It had celebrated abbey, of which a fine tower and some other structures still remain. Fruit growing and market g
tries. Pop. 8,340 .

EVICTION. See Ejectment and Evic-
EVIDENCE. "The word evidence con sidered in relation to law includes all the lega means which tend to prove or cisprove any mat
ter of fact the truth of which is submitted to judicial investigation." (Taylor). Evidence may be either oral or documentary. Oral evi dence is the statements made by witnesses dur ing the trial; and documentary evidence con sists of the production of papers, on which is writing, marks or characters capable of being the trial. Oral evidence must in all cases direct: if it is of something that was scen, by the person who saw it; if of something heard by the person who heard if; if of an opinion by the person who holds that opinion; or if the knowledge was acquired in any other manner, by the person who perccived it in tha dence is not admissible. Documentary cvidence may be either primary or secondary. Primary evidence of a document is where the document itself is produced for the inspection of the court. When a document has been executed in counterparts, ach counterpart is primary evia document has been made by printing or any other means that will ensure an exact reproduction, each copy is primary cvidence of the other copics, but none of them is primary evi dence of the original. Secondary evidence of a document would be countcrparts of the docuthem as agies made from the orisinal execute pared with it office copies, official conies and oral evidence of the contents of a documen by a person who has seen the original. Before secondary cvidence will be received the part offering it must show a legal reason why the original is not produced, such as being lost destroycd, in possession of the adverse party
who refuses to produce it after notice to do so, or when it is a public document, or when it is in a country or place from which it is not permitted to be removed.
. Either oral or documentary evidence may be given of any fact in issuce or relevant to the issue; and where two facts are so connected the issue or relevant to the issue, yet is not of both may he given if that fact will render probable the existence or non-existence of the
other fact which is in issue or relevant to the
issue. Admissions are statements made by a party to any procecding and in reference to that proceeding, and they are admissible against the party making them, but not in his favor. Adbind the principal they must be made by the agent in his regular course of business or employment. If an admission is made after an agreement has been entered into between the parties not to use it as evidence, it is not ad missible, nor is it admissible in evidence made by a person charged with a crime stating or by a person charged with a crime stating or
suggesting that he committed that crime. If made voluntarily it is admissible as evidence against him, but if made while the person is under any threat or promise which has been given by a person in atthority, it is not admissible. Confessions may be made during the course of the trial, but if the question which after the witness had refused to answer it he had been compelled to do so, it is not a volunary confession and therefore inadmissible. But if he made no objection to answering the question, it is admissible as a voluntary confession. A witness's opinion is received in evidence when it falls under the head of expert testimony; as, the opinions of persons specially skilled in that art or science are relevant. Any subject on which special study or experience is necessary o the formation of a correct opinion is a science or art. The most frequent illustrations are medical and handwriting experts. Before the testimony of a person called as an expert is reccived, he must satisfy the court as to his dar subject on which he is to testify. The general rule is that evidence as to a person's character is not admissible unless it is the fact in ssue, except in criminal cases, but if a person introduce evidence to show good character, the other side may produce witnesses to show the iest or highest evidence. If a fact can be proved by a written instrument, the writing hould be produced and the party alleging a fact must prove it
In the United States the rules of evidence are laid down by State enactments which apply in State courts in civil cases, and in Federal courts also, in the absence of Federal enactments. There is no bar to the giving of testinal trials evidence follows common-law rules as interpreted by the Federal courts, modificd y Federal enactments. Consult Chamberlayne, 'Treatise on Evidence' (4 vols., Albany 1911); Greenleaf, 'Treatise on the Law of Evidence' (16th ed., Boston 1899) ; Stephen, J. F., 'Di1007) : Thayer (Preliminary (7th cd., London 1907) : Thayer, 'Preliminary Treatise on Evimore. 'System of Evidence in Trials at Common Law' (Boston 1904); Mills, 'Theory and Practice of the Law of Evidence' (London 1907).

EVIDENCES OF CHRISTIANITY, in
broadly into two great classes, namely, external evidences, or the body of historical testimonies to the Christian revelation; and internal evidences, or arguments drawn from the nature of Christianity itself as exhibited in its teachings and effects
Among the earlicr Christian apologists were Justin Martyr, Minucius Felix, Tertullian, Oricontinued by the schoolmen during the Middle Agcs. In the 16 th and 17 th centuries the infliences of the Renaissance and the Reformation gave rise to a spirit of inquiry and criticisnd by Herbert and Hobbes in the 17 th century, and Collins and Bolingbroke in the 18 th. The general position of English deism was the accept ance of the belicf in the existence of God, and the profession of natural religion along with oppositton to the mysteries and special claims o Christianity. It was in confutation of this posi, dences of Christianity of Butler, Berkelcy and Cudworth were written. In France the new spirit of inquiry was represented by Diderot, D'Hollach, and the encyclopædists, who assailed Christianity mainly on the ground that it was founded on imposture and superstition, and No reply of any great value was produced in the French Church, though in the previous age Pascal in his 'Thoughts' had brought together some of the profoundest considerations ycl offcred in favor of revealed religion. The 19th century was distinguished by the strongly rationalistic spirit of its criticism. The work bach stich wrotis as Strauss, Baucr and Feuer and the mysterious in the origin of Christianity, were answered by the works of Neander, Ebrard and Ullmann on the other side. The historical method of investigation, represented alike by the Hegelian school and the Positivis in in philosophy, and by the Evolutionists the
science, is the basis of the chicf attacks of the present time against the supernatural character of Christianity, the tendency of all bcing to hold that, while Christianity is the highest and most perfect development to which the religious spirit has yct attained, it differs simply in de grec of development from any other religion. Notable among later apologists of Christianity mers ('Natural Theology) Mansel Liddon and others, lecturers of the Bampton Foundation; in Germany, Luthardt, Ewald, Baumrstark and others. The evidence of the miraculous is not so much insisted on as it was; life and con duct and the fruits of Christian grace make stronger appeal to the age. Consult Bruce, Apologetics' (London 1902); Burton, 'Our Intellectual Attitude in an Age of Criticism
(Boston 1913) ; Fisher, (Grounds of Theistic and Christian Belief) (1883, rev. ed., 1902) and 'Manual of Christian Evidences') (Ncw York 1888); Foster, 'The Finality of the Christian Religion' (Chicago 1906) ; Garvic 'Handhook of Christian Apologetics' (Ne' York 1913) ; Robbins, A Christian Apologetic (London 1902) ; Rowland, 'The Right to BC lieve' (Boston 1909) ; Stearns, 'Evidence ${ }^{\text {Christian }}$ Experience' Apologetics; Christianity; Higier Criticis ${ }^{\text {M }}$

EVIL, King's. See Scrofula.
EVIL, Origin of, the subject of extensive theological and philosophical speculation. The that the existence question lies mainly in the fact consistent with the view that it was created and is maintained by an omnipotent and beneficent have all sought to clude this difficulty either lubet the supposition of some principle of evil equaly eternal with that of good, or by regarding evil as having only a relative existence, being a kind of good in an imperfect and immature stage. Dut the probtem remains inscrutable and in-
soluble. soluble.
Perh

Perhaps the oldest theory on this subject is according to which there were two original antagonistic principles, one good (Ormazd) and he other evil (Ahriman). This is the doctrine ism is now very often spoken of as Manichowith refcrence to the origin of dualistic theory Monistic theories of Brahmanism and Plato misn. According to the Brahmanic doctrine of emanation of all things from one original cing (Brahma), this original being was te garded as the sole true existence, and the pheit, was held to be mere illusion evils appearing in held that the good was the essence of all thine and that the evil and imperfect contained in hem had no real existence. The theory entuiated ly Lcihnitz in his 'Theodicee' ('Vindicaton of God') resembles that of P'lato. In tha work he assigns to the cvil existing in the best of all possible worlds he holds to be the existence; all that we call evil is, he holds, only evil to us because we do not see it in relation to he rest of the unverse, for in relation to the canverse it is not evil but good, and accordingly tional Che evil in its own mature. The tradi that given in Genesis. In the origin of evil is thercon, Satan, the personal principle of evil, differs from the Zoroastrian Ahriman only in ciple of co-ordinate with the personal prinThe of good. Consult Orchard, 'Modern of Good of Sin ' (1911); Rashdall, 'Theorics Good and Evil) (1898)

EVIL EYE. Sce Superstition

EVIL-MERODACH, è'vill-mê-rō'dảk, king Ife Babylonia and son of Nehuchadnezzar II and was put to leath by a year in 561 - 500 b.C. His name to tern forud on some colissar tablets. According to 2 Kinrs xxy 27 he liberated Jehoiachin, king of Judah,
EVOLUTE. The evolute of a curve is tangents to the cvolute will be normals to the curve, if it lics in a plane, and principal northals, if it lies in a threc-dimensional space, so of a the curve may be traced by the unwinding is a cord stretched along its evolute. A curve general, to be the involute of its evolute. In Volutes. Different involutes of the same curve are said to be parallel. The equation of the "volute of the plane curve $y=f c \cdot x$ is obtained
by eliminating x and y between the equation of the curve and $x_{1}=x-y^{1}\left[\frac{1+\left(y^{1}\right)^{2}}{y^{11}}\right], y_{2}=y+$ ${ }^{1}+\left(y^{1}\right)^{2}$

Circle, BBB, as Evolute and its Spiral Involute, MNRSA
In the geometry of surfaces, the so-called surface of centres corresponds to the evolute This consists of two sheets, correspondin respectively to the centres of maximum and minimum curvature of the various points of the surface with reference to which it is
evolution. See Man, Christian Anthropoiogy.

EVOLUTION, History of. In travers ing the history of natural science as in traversand activity, we seek constantly for new ough for the precise time of the discovery of the new fact, the announcement of the new idea the formulation of the new understanding or into the world; the world and its content are all the result of development and growth. So correspondingly very little comes wholly new into history; and the history of evolution is no exception to the rule. The history of cvolution clearly reveals that the evolution idea is the result of a long cvolution itself; it is impossible more primitive form of being, or just whenl its principal modifications or accretions occurred or when its present form was finally determined. In tracing the history of the unfolding of the evolution idea we shall find that the conspicuous achievements in conncction with it have not been the discovery of absolute newness, but the establishment of the important ideas and conception germs among the host offered.
An eminent American naturalist has defined thrce stages in connection with the discovery of the laws of science: First, a stage of dim suggestion and pure speculation with little refof a working hypothesis to explain certain facts; and, third, the proof or demonstration of the law hy facts. These stages can be recornized in the history of evolution. The first corresponds with the period of the Greek philosophers; the second with the post-Greek, preDarwinian period, and the third with the The evolution thenarwinian period.
at least by suggestion, by the Grecks. They
have left writings that can easily be interpreted as more or less clearly outlining the essential (493-435 b.C) organic evolution. Empedocles called "the father of the evolution idea," believed in spontaneous generation as the explana-
tion of the origin of life, and he believed that dion of the origin of life, and he believed that simultaneously. Plant life came first and animal life only after a long series of trials, but the origin of the organisnns was a very gradual process. "All organisms arose through the fortuitous play of the two great forces of nature upon the four elements. Thus, animals
first appeared not as complete individuals, but as heads without necks, arms without shoulders, cyes without their sockets. As a result of the triumph of love over hate, these parts began to seck cach other and unite, but purely
fortuitously. Thus out of this confused play fortuitously. Thus out of this confused play of bodies all kinds of accidental and extraor-
dinary beings arose." But the unnatural products soon became extinct because they were not capable of propagation. After the extinction of these monsters other forms arose which were able to support themselves and multiply. Thus, if onc cares to, one may see theory of the survival of the fittest, or natural selection.
Aristotle ($384-322$ в.c.), the greatest of the Greek natural philosophers, believed in a complete gradation in nature, a progressive development corresponding with the progressive life of the soul. Nature, he says, proceeds con-
stantly by the aid of gradual transitions from the most imperfect to the most perfect, while the numerous analogies which we find in various parts of the animal scale show that all is governed by the same laws; in other words, nature is a unit as to its causation. Man is the highest point of one long and continuous ascent. Arisarrangement of the world, and felt compelled to assume intelligent design as the primary cause of things. Nothing, he held, which occurs regularly can be the result of accident. Aristotle rejected the crude conception of Empetinction of unadapted, beings. "It is impossible that these adapted parts should arise in this manner [of Empedocles]; for these parts and cyerything which is produced in nature are cither always, or for the most part, adaptively produced; and this is not the case with anything which is produced by fortune or chance chance that it frequently rains in winter. As these things appear to be either by chance or to be for some purpose, and we have shown that they cannot be by chance, then it follows that they must be for some purpose. There is, thercfore, a purpose in things which are produced by and exist from nature."

The Greeks, taken altogether, suggested more or less crudely the idea of the gradual elimination of mistakes in production, and therefore the idea of the survival of the fittest, the idea of the adaptation of parts or the fitness of certain structures to certain ends, the in nature, as also the idea of nature heing controlled by the operation of natural causes due
in the beginning to the laws of chance. After all, however, in how far are we justified in reading into a happy suggestive phrase or sentence of any Greek speculative thinker a real conception of that idca of the origin and development of organic nature that
under the name of Evolution?
Following the Grecks the evolution idea was eft in the hands of the theologians, natural philosophers and naturalists of the long period from Augustine (1st century A.D.) to the end of the 17 th century, a period chiefly ruled by the Mosaic interpretation of the origin of organic life and its variety. Augustine, he a
sclf, large-minded man that he was, gave a liberal and naturalistic interpretation of the Mosaic record, favoring potential rather than special creation and teaching that in nature we should not look for miracles, but laws. But opposed to him were almost all the other churchmen, and their rigid adherence to all thinking about life for many conturies. The great Evolution idea lay practically dead from the time of its foreshadowings by the Greeks until the time of the speculative natural philosophers of the 16 th and 17 th centuries.
Bacon (1561-1626) pointed out the evidence upon the production of new species and upor the gradations of life forms. Descartes (1500^{-} 1650) advocated a strong mechanistic conception of the physical universe and all life within it. Lcibnitz (1040-1716) advocated a doctrine different classes of animals are so connected by gradatory forms that it was practically impossible either by observation or imagination to detcrmine where any one begins or ends. These ideas of continuity in nature werc also renter New-
and strengthened hy Spinoza, Pascal and New ton. It is interesting to note that all these contributions to the establishment of the evolution idea came from the speculative natural philos 0^{-} phers rather than from the naturalists.
chief among all the natural philosophers who have attempted to express the early idea of cvolution was Kant (1724-1804), but he was
staggered by the thought that any human investigation could ever reach an understanding of the laws which have governed the derivation of all organic beings from the lowest up to man. "It is quite certain," he wrote, "that we cannot become sufficiently acquainted with organized creatures and their hidden potentialitics by the much less can we explain them; and this is so certain, that we may boldly assert that it is alsurd for man even to conceive such an idea, or to hope that a Newton may one day arise cven to make the production of a blade on grass comprehensible, according to natural la we
ordained hy no intention. Such an insight we must absolutely deny to man"
However, certain naturalists of the 17 th and 18 th centuries did make their contributions of fact, or alleged fact, to the cvolit tion idea. For example Bonnet ($1720-93$), who is renuted to be the author of the term "Fwolution" in connection with the de dinary "encasement theory" of embryology, ac cording to which all the future progeny and successive after-generations derived from ${ }^{3}$
female animal existed in miniature in the egg in her body, with lesser eggs within the miniaso young, containing the next generation, and So on ad infuitum.
But it is with the great French naturalist
Buffon (1707-88) that Buffon (1707-88) that the real contribution of ment of the evolution idea importantly begins. He has, indeed, been called by Osborn the naturalist founder of the modern applied form of the evolution theory. But with other historians of evolution, he has no such standing. Radl, for example, says that "the best thing truthfully be said of him that he was the first great naturalist to point out on a broad scale the mutalisity of species in relation to changes of environment. Very early in his studies of comparative anatomy he found dificully in the special creation theory. "The pig docs not apspecial and perfect plan since it is an original of other animals. It has cvidently useless parts, or rather parts of which it cannot make any use, toes, the bones of which are perfectly formed and which nevertheiess are of no service to it. Nature is far from subjecting cleatures." Buffon believed in the direct modifying influence of environment. "How many species, being perfected or degenerated by the great changes in land and sea, by the favors or disfavors of nature, by food, by the pro-
longed influence of climate, are no longer zohat longed influence of climate, are no longer velat
they formerly were." He also fairly clearly expressed the conception of a struggle for existence, an elimination of the least-perfected species and a contest between the fecundity of certain species and their constant destruction.
This is anticipating more or less definitely the This is anticipating more or less definitely the the natural sclection doctrine of Darwin. But he was not of the stuff of which martyrs are called for an explanation of his views he said: I declare that I have had no intention of denying the Holy Writ; I declare that I firmly dion ase all that is written there concerning creacedure and concerning the time as the promy book that in any way is contradictory of oncernaic relation, as olanets as a purely philosophical conception."

It is interesting to note the fact that another grcat naturalist, Linnæus, exactly contempogreat systematist or classifier of organisms, was an absolute believer in the fixity of species necies were, in his mind, the units of direct reation; each species bore the impression of the thought of the Creator in all its structure and functions. Later in his life Linnæetrs did special Divine creation and abe, this idea of the species. "All the species of one gennis,") he "rote before his death, "constituted at first a ingle species, but this subsequently became multiplied by hybrid generations, that is, by incrcrossing with other original species."
Following Buffon, the next two most important names to be mentioned in connection Erasmus Darwin (1731-1802), and Lamarck
(1744-1829). Erasmus Darwin was a poet and naturalist, and the grandfather of Charles Darwin. He was, in his late years at Charles Darevolutionist, with conceptions concerning the factors or causes of evolution strangely like those afterward proclaimed by Lamarck, and quite opposed to those chiefly insisted on by Charles Darwin. After stating his belief that all organisms have been produced by "one and the
same kind of living filament," and setting strong arguments for the mutability of species, he says: "All animals undergo transformations which are in part produced by their own exertions, in response to pleasures and pains, and
many of these acquired forms or many of these acquired forms or propensities are transmitted to their posterity." This, ac-
cording to Osborn, is the first clear and definite statement of the theory of the transmission of acquired, characters as a factor of evolution. He provides against the charge of irreverence in substituting evolution for special creation by saying: "If we may compare infinities, it would
seem to require a greater infinity or power to cause the causes of effects, than to cause the effects themselves: that is to estahlish the laws of creation rather than to directly create."
Lamarck may fairly be called the first to set out in detail a full and logical theory of descent With explanations of the causes of this descent. prominent figure in the history of evolution metween the Greeks and Charles Darwin. But no one has been more misunderstood nor judged with more partiality by over or under praise. He had as contcmporaneous antagonist the great anatomist Cuvier (1769-1832) who gave all the heavy weight of his name and position to the attack on the Lamarckian doctrines in Cuvier, though he added enormously to our knowledge of comparative anatomy, almost as normously hindered the progress and postponed the acceptance of the cvolution theory, which actually finds a large part of its proof in facts of comparative anatomy.
and particularly of its causes, with the great stress laid upon the principle of the inheritance of acquired characters, and hence the all-important influence and effect of varying environment in the modification of species, has come to be in contrast with "Darwinism" or Charles Darwin's contribution with its special emphasis on natural selection as the explanation of the origin of species." "Darwinism" is too often popularly used synonomously with evolution, but it should not he so used. "Darwinism" is a convenient inclusive name for Darwin's ex-
planations of evolution; his theories of natural and sexual selection.
Contemporary with Lamarck were Goethe (1749-1832) who contributed somewhat to the evolution theory by his studies and generaliza tions on the metamorphosis of plants and the (1772-1844) who the skull, and Saint Hilaire truth of the evolution theory then being scured by the antagonism of Cuvier but who denied the inherited influences of habit, holding that the direct modifying action of environment on organisms was the sole cause of species

But it was Charles Darwin (1809-82) who
was first able to restore and extend enormously the prestige of the evolution conception. This was due first to his tremendous marshaling of facts to support it, and, second, to his contribution of a new, or practically new, causo-mechanical explanation of species change, or, as usually expressed, "origin of species." It lished the theory of descent and to have offered the first explanation of it that made a really winning appeal to biologists generally. It was also his fortune to bring the evolution conception home to the pcople. Up to the publication
of his 'Origin of Species) (1859) but few persons believed in evolution, and the great mass of the people knew nothing about it.
Part of the general acceptance of Darwin's ideas was due to the polemic ability of various immediate friends and champions of Darwinism among contemporary naturalists. Intimately the natural selection theory were such men as the natural selection theory were such men as Huxley, Lyell and Asa. Gray werc adherents and defenders of Darwinism, while Agassiz was among the more conspicuous of the antagonists. The actual weight of personal debate and polemic struggle on bchalf of Darwin fell largely
on Huxley. It could have rested in no better hands. Despite the fact that the time was ripe or Darwin, and despite his extraordinary massing of facts, and his marvelous anticipations and refutations of criticisms, the swift winning of the acceptance of Darwinism was largely due to the chismpionship of Huxley, Haeckel, the losopher of Tena, was the principal continental contemporary champion of Darwinism.
A curious incident in the history of the Darwinian evolution exposition and explanation is that of the extraordinary coincidence of the formulation of the natural sclection theory by of its utterance by Darwin. As a matter of fact both men published papers formulating this theory in 1858 in a single number of the Journal of the Linnrean Society The name of Wells (1813), Matthews (1831) and Nandin (1852), are often mentioned as those of men dates indicated, Darwin's utterance of the selecdates indicated, Darwin's utterance of the selec-
tion theory, by more or less clear statements of ts cssence, but none of them carried conviction its cssence,
to the world.
The post-Darwinian history of evolution has chiefly to do with the further development of the Darwinian theories, together with the rise of the so-called "mutations theory" of species
origin, associated with the name of De Vries, as an addition to Lamarck's and Darwin's explanations, and the stressing of the significance of the new knowledge of heredity, beginning with the discovery by present-day biologists of the experimental work and conclusions of Mendel, achieved some 30 ycars prior to their coming to be gencrally known. But as these later gether with Lamarck's and Darwin's own theories, in an article elsewhere in this work (see Evolution. Tineories of), this sketch of the history of evolution may suitally close with the period of Charles Darwin. The present status of the evolution conception is still
that so solidly established by Darwin and his
contemporaries. As to the explanations, of factors, of evolution, also, Darwin's still hold clief place, especially in the minds of the mass
of the generally educated people. Among biolof the generally educated people. Among biot ogists, however, there is a growing tendency to
see in the Darwinian selection theories many see in the Darwinian selection theories many
difficulties formerly unperceived, and to cast about for other aiding or even possibly replacing theories.
Bibliography.- Clodd, Edward, 'Pioneers of Evolution, from 'Thales to Huxley' (Ncw York 1897); Locy, W. A., 'Biology and Its Makers' (New York 1908) : Osborn, H. F, (From
1895).

Vernon Kellogg,
Stanford
Professor of Entomology, Leland Stanford
Junior University, California Junior University, California.
EVOLUTION, Theories of. In any consideration of the "theories of evolution" there must be kept clearly in mind the distinction be-
tween conceptions or theories of the origin or transformation of species and of plant and animal descent gencrally, and theories offering explanations of the causes and controls of this species, origin and descent. The first is the evolution conception proper, and should be what is primarily meant when the term evoluvolution, and recognize it as a great scientific fact, even if we had no wholly clear or generally accepted understanding of the causes that bring it about and the influences that control it. In fact, that is not far from being the actual ituation to-clay.
But in common usage, and in many books, the fact, or theory, of evolution, and the facts and theories of the causes of evolution are not however, the distinction is usually maintained, and it would be ot great advantage if it wer more widely and popularly made. For the evo lution conception itself is no longer a debated
question, whercas the particular methods and question, whercas the particular methods and
above alf, the so-called factors, or initiating and guiding causes of evolution, are still open to debate, and, indeed, are continuously and vigorously debated. When one reads of disagree ments among biologists concerning the merits of "Darwinism," it is not a disagreement concerning the fact of evolution, for which the erm "Darwinism" is too often synonymousis disagrecment concerning the value of Charles Darwin's explanation of the causes of evolution, namely, his theories of natufal and sextal selec ion.
However it is hardly possible io consider the general theory of evolution apart from theories
of its cause and control, and the subject of this article, which for the sake of brevity, is written simply as "theories of evolution," is really meant to cover a discussion of theories whic explain evolution; how it comes to be, what it methods are, and what are its causal factors the later churchmen and natural philosophers of the middle centuries, there were various dit ferent theories of evolution, if the incomplete and often fantastic speculations of these times can be called theories. Some of these are out-
lined in the article Evorovtion, History of. But lined in the article Evoroution, History of. But the real struggle from the heginning of serious
plant and animal forms up to the time of th (1859) and the few years thereafter, when it heretical doctrine was getting firmly establishe among scientific and educated men the world over, was between the believers in special their orig all these forms and believers To-day there is not
who does not accept the theory, or standing of evolution. And the great majority of all people who think about the matter at all also accept this once ultra-heretical and scoffed-at

The.
The explanatory theories of evolution are tinguishable from one another; they overlap more or less; but a number of fairly well-contrasted different theories can be made out when careful analysis is made of the whole group. Each of these is distinguished by the emphasis Which it gives to some one factor and the subtors particularly stressed in other theories.

These various distinguishable theories be grouped into several categories, such as those which are essentially vitalistic as compared with those essentially mechanistic in their explanaas as procecding by little leaps as contrasted with nuity in species. Some of the theories are based on the assumption of individual change in response to the environment and personal habit, and the inheritance of these "acquired characters." Others reject this possibility in toto, or partially, and stress the effect of a selection based on a rigorous struggle for variations which extinguishes the possessors of disadvantageous variations and preserves the lucky possessors of advantagcous ones, thus leaving only these latter to leave progeny, which will natuparents inherit the fortunate characteristics of the parents. Some sec the germinal variations, ments of evolution, produced purely by chance while others see them as the determined results of the influence of an inner directing orce, or of the outer environment.
Only the more important and more strongly For most of these theorics need be described. cipal themes. Lamarckism and on a few prin15 m as contrasted with Darwinism and NeoDarwinism; Vitalism as contrasted with the Mechanicalism; and Chance as contrasted with Determinism; these are the chief points that
need to be taken into account in differentiating tieed to be taken into account in differentiating
the various explanations of the phenomena of organic evolution.
Despite the suggestiveness of the many Evoution and Evolution-explaining speculations made by various natural philosophers and naturalists before the beginning of the 19 th cenyears, it was not until Lamarck, in the very first years of said century, began to express his view cally constructed evolution theory may be said to have been formulated. The nearest approach o such an earlier formulation was that made in the late years of the 18 th century by Erasmus
Darwin, grandfather of Charles Darwin. "A Darwin, grandfather of Charles Darwin. "A
rapic run through the later writings of Dr. Dar-
run through
vot io- 39
win," says Clodd, "shows that there is scarcely a side of the great theory of evolution which While Grant Allen notes suggestive comment.' ural selection, which was Charles Darwin's great contribution to the evolution conception was the only cardinal one in the evolutionary system on which Erasmus Darwin did not actually forestall his more famous and greater

Lamar

Jean-Baptiste-Pi the Lamarckian Theories. -Jean-Baptiste-Pierre-Antoinc de Monet, ChevaBazentin in Picardy (northeast France), was in 1800 professor of invertebrate zoology in the Museum of Natural History in Paris. He had previously been for many years keeper of the herbarium in the Museum. He was, therefore, well grounded in the facts of both botany and which, in the face of the facts of science learned by him, compelled him to turn from the orthodox view of creation by special design and act to the heretical one of evolution. In the opening lecture of his professional course in the year 1800 he outlined his views cvolution. Later he exposed his theory at length and in full detail in his famous 'Philosophie Zoologique) (1809).
The essential feature in the explanation of descent conceived and uttered by Lamarck is was convinced, first, of the certainty that species vary under changed external influences second, that there is a fundamental unity in the animal kingdom, and, third, that there is a progressive development. The main influences that tend to change specics come under the law of use and disuse, for he believed that nature
does not effect her changes directly (Buffon's belief) but through the reaction of animals to their environment. Lamarck denied, absolutely, the existence of any perfecting tendency in nature, and regarded evolution as the final necessary effect of surrounding conditions on Thu
Thus, instead of suggesting that animals had been created for a certain mode of life, he created them. "In considering the natural order of animals, the very positive gradation which the number as structure, organization, and in faculties is va well as the perfection of their new truth, because the Greeks themselves fully perceived it; but they were unable to expose the processes and proofs of this evolution because hey lacked the knowledge necessary to establish In consideration of this gradation of life, here are only two conclusions which face us as Nature (or its Author) in creating animals has oreseen all possible sorts of circumstances in which they would be destined to live, and has given to each specics a constant organization, as well as the form, determined and invariable in its parts, which forces each species to live there preserve the habits where it is found, and to it. My personal conclusion: Now belong producing successfully all the species of animals, and commencing by the most imperfect or the most simple to conclude its labor in the most
perfect, has gradually completed our organizaperfect, has gradually completed our organiza-
tion; and of these animals, while spreading generally in all the habitable regions of the globe, each species has received, under the influence of the environment which it has encountered, the habits which we recognize and the modificati."
The following is Lamarck's statement or explanation of the causes of this descent: "First Law: Life by its internal forces tends
continually to increase the volume of every body that possesses it, as well as to increase the size of all the parts of the body up to a limit which
it brings about. Second Law: The production of a new organ or part results from a new need or want, which continues to be felt, and from the new movement which this need initiates and causes to continue. Third Law: The development of organs and their force or power
of action are always in direct relation to the of action are always in direct relation to the employment of these organs. In cevery animal ment the more frequent and sustained employment of each organ strengthens little by little this organ, develops it, incrcases it in size, and gives it a power proportioned to the length of
its employment; whereas the constant lack of use of the same organ insensibly weakens it use of the same organ insensibly weakens it,
deteriorates it, progressively diminishes its powers and ends by catising it to disappear. Fourth Law: All that has been acquired or altered in the organization of individuals during their life is preserved by generation (heredity), and transmitted to individuals which proceed from these changes."
Neo-Lamarckian Theories. - Lamarck's theory was a simple and well-constructed one and one which, if based on established fact, would furnish the most satisfying explanation of evolution yet offered. But its great fault is that the basic assumption in the theory is not opposed to the facts. Despite a few plausible cases, about which a great storm of argument has raged-for example, the famous controversy in 1893 and 1804, in the Contemporary Re-
view, between Herbert Spencer, champion of wiew, hetween Herhert Spencer, champion of
Lamarckism, and August Weismann, its most Lamarckism, and August Weismann, its mos destructive antagonist - most naturalists agree do not support but strongly deny the Lamarckian assumption of the heritability of characters acquircd by an individual in its lifetime parts, and personal habit.
And yet there have always been, and are today, biologists of the very first class who believe in most of the essentials of the Lamarckian explanation of cvolution as opposed to the Darwinian. Their principal reasons fo to almost limitless time, rigor of the struggle to almost limitless time, rigor of the struggle for existence and actual validity of the minute,
fortuitous, germinal variations as determinins fortuitous, germinal variations as determining treme varicty of these variations, that have to be made in connection with Darwin's sclection explanation in order to get such results out of chance as are revealed in the extraordinarily animals to their environment

Second, it has been shown by the experi-
ments of Klebs, Tower and others, that the environment can sometimes alfect the gern-
cells, and that when it does it can actually procells, and that when it docs it can actually produce changes in the next generation that are
inheritable, although it must be said that these inheritable, although it must be said th
changes are not necessarily adaptive.
Third, it is a fact of familiar olservation that the adaptations of species are often almost exactly of the same character as the changes that are produced in individuals by their im-
mediate reaction to environment conditions, and mediate reaction to environment conditions, and on this the assumption is made that despite our
lack of any knowledge of how this individual change is impressed on the germ-cells, and even in facc of our greatly advanced understanding of the mechanism of inheritance, almost all of which goes to indicate the independence of the germ-cells from external influences affecting the body-cells, this parallelism must in some wharacters. there is a school of biologists, who may be called Nco-Lamarckians, which is busy formulating modifications of the old Lamarckian theory to make it fit our more recent knowledge of facts.

Charles Darwin and the Darwinian Theo-ries.-In a paper presented to the Linnean Socicty of London in 1858, and far more fully lished in 1859, Charles Darwin, horn in 1809, in Shrewsbury, England, and bearing, without any guestion, the most distinguished name in all evolution conception, presented an explanatory theory of species-forming and descent which is best known as the Sclection. Theory.

This Darwinian explanation rests on certain observed facts and certain inductions from these facts. The observed facts are: (1) the of the individuals in every species, whatever the kind of reproduction which may be peculiar to each species; (2) the always apparent slight (to greater) variation in form and function existing among all individuals even though of the same generation or brood; and (3) the
transmission, with these inevitable slight variations, by the parent to its offspring of a form and physiology essentially like the parental. The inferred (also partly observed) facts are: (1) a lack of food and room for all these new individuals produced by geometrical multiplication, and consequently a competition (active
or passive) among those individuals having or passive) among those individuals havich
any ocologic relations to one another, as, for example, among those occupying the same locality, or needing the same food; (2) the probahle success in this competition of those individuals whose slight differences (variations) are of such a nature as to give them an advantage over their confreres, which results in saving
their lives, at least until they have produced offspring: and (3) the fact that these "saved" offspring; and (3) the fact that these "saved ferred to action of heredity, hand down to the offspring their advantagcous condition of structure and physiology
The competition among individuals and kinds (species) of organisms may fairly be called
a struggle. This is obvious when it is active, as in actual personal battling for a picce of food or in attempts to capture prey or to escape
capture, and less obvious when it is passive, a in the endurance of stress of weather, hunger, thirst and untoward conditions of any individual threefold in or may be, for cach individual threefold in nature: (1) an active struggle or competition with other individuals ficient share of the food, and oppoblunity to produce offspring in the way peculiar and com mon to its species; (2) an active or passive struggle or competition with the individuals of oner species. which may need the same spac or food as itself, or may necd it or its egg more usually passive) struggle with the physico chemical external conditions of the world it lives in, as varying temperature and humidity storms and floods and natural catastrophes of The res
The resultant of these existing conditions is, according to Darwin and his followers, an inspecics. Thousands must die where a fow may live to maturity (i.e., to the time of producing young). Which 10 , say, of the thousand shall live depends on the slight hut sufficien advantage possessed by 10 individuals in the complex struggle for existence due to the differences (variations). The 990 with unfortunate congenital variations are extinguished in the struggle and with them the opportunity for the perpetuation (by transmission to offspring) of their particular variations. The offspring of will vary around the new and already proved advantageous parental condition: among the thousand, say, offspring of the original saved 10 the same limitations of space and food will again work to the killing off before maturity of This reaving the 10 best equipped to reproduce slow repeated and intensive selection leads to a through the successive generations, of the form and functions of the species; a modification always toward adaptation, toward fitness, to ward a motiding of the loody and its behavior The safe conformity with external conditions tions of the animal and of the parts and funcday to our infinite admiration and wonder has all come to exist through the purely mechanical inevitable weeding out and selecting by nature
(by the environmental deternining of what may and what may not live) through uncounted gencrations of unneckonable time.
selectioniated with this theory of natural count for the often marked differences between the sexes of a species, involving the possession by one sex, usually the male, of special outgrowths of the body, bright and heavy plumage, or conspicuons colors and pattern, etc.,
noost of which would scem to be elements of disadvantage rather than advantage in the struggle for life. Darwin's cxplanation of this, called the theory of scxual selcetion, was that hese characters are of advantage in the rivalry a kind to attract and excite individuals of the opposite sex. Hence they might help their opposite sex. Hence they might help their
possessors win in the struggle to find mates and consequently to leave progcny. It is a
selection, not involving a determination between life and death, but one between going child the essential determination in natural sclection But the assumcel fact of choice in this theory of sexual selection involves various unproved and hardly probable assumptions regarding the
esthetic development of birds, butterflics, spiders, etc., and has been strongly attacked both on the basis of actual opposing observation and experiment as well as on the basis of genera improbalility. On the whole, Darwin's theory of sexual selection has been largely discredited althotgh it must be said that no very satisfactory substitute explanation has been offered
for it. But this discrediting of sexulal selection throws a heavier strain on the theory of natural selection, for it was to relieve the lat ter theory of the difficulty of facing these ap parently existing disadvantageous characters of the males of many species of birds and insects Nevertheless it is truc that Darwin's natural selection explanation of evolution has been, ever since its announcement, more widely and authoritatively accepted as the needed revelation of the causes and methods of species-forming and adaptation than any other explaining Neo-Darwinia
claimed for natural seoction.- Darwin neve only influence capable of modifying species and cxplaining descent. But some of his followers have practically made that claim. Most notahle among these Neo-Darwinians was August Weis mann, professor of zoology at Freiburg in ception of the inheritance of acquired characters did so much to discredit the Lamarckian explanation of evolution. Weismann's theories of heredity led him to a belief in the almost absolute isolation in the loody, and hence inde-perm-cclls, and the consequent belicf that the only variations that could be possibly inherited were the minute germinal ones that served Darwin as the basis for the working of natural selection. From this to a belief in the All-Macht of natural sclection in determining speciesnatural step. Alfred Russell Wallace and some other promincht English naturalists ranged themselves with Wcismann as Neo-Darwinians. Most American naturalists, however, held aloof from this extremist attitude, while the Germans
were divided. In the later years of his life, were divided. In the later years of his life,
Weismann withdrew from his original most advanced position, and was inclined to admit the inadequacy of natural selection as an allsufficient explanation of descent.
Isolation Theories.-Onc of the most valid criticisms of the natural sclection theory has
been that it makes it necessary to ascribic a been that it makes it necessary to ascribe a life-
and-death determining value to the small germinal variations which are the basis of the selective working of the struggle for existence, and it has always seemed hard in the face of the very trivial character of many of these little differences to admit this value for them. But little differences misht be heaped that these little differences might be heaped up and de-
veloned into larger ones in the course of successive generations, and that is by the isolation
from the main body of the species of a group of individuals more or less similar in germinal characters. This isolation could be effected by a migration and later geographic segregation of breeding and an elimination of the swamping effects of unrestricted wider crossing. The reepresented in the group by originally minute germinal variations
Beginning with Moritz Wagner (1868) energetically supported by Romanes (1897), and now most conspicuously urged by David Starr ordan, this "isolation theory" has been much
in favor with some biologists, especially those who pay especial attention to the relation of geographic distribution of plants and animals to evolution.
Theories of Orthogenesis.-As the character of the original small germinal variations necessarily first determines the possible lines ceed; and as it is evident from carcful study of the actual lines of descent exhibited both by the many living groups of animals and plants and also the many extinct ones (made visible to us by their fossils) that descent has actually proceeded acong certain distinct lines and has in all directions, it is plain that the discovery of any cause or form of control which would direct variation in certain more or less definite directions would help very much in solving the great problem of the cause and control of evolu-
From the beginning, therefore; the existence of such means, and its character, have been that the phenomenon of evolution can only b explained by the assumption of such a means. Cope, an American paleontologist - and it may be noted that paleontologists, from their many millions of years seem especially inclined o this belief - about 1870, attributed to the simplest life-stuff a sort of primitive consciousness which gives it a capacity for adaptation and modification that result anst orthogenetic evolutionary advance. Naegeli, a grea posed in 1884 a theory of orthogenesis (evoluion in fixed lines) by assuming the existence of on inner perfecting principle, inherent in a organisms, which determine the general lines of variation and makes steadily toward evolutionary progress
Both these theories are essentially vitalistic in character in that they assume an inne acteristic of it that can direct its cvolution which makes it unnecessary and futile to try to find a more mechanical or physico-chemical explanation of this capacity of living matter More modern exponents of this vitalistic be lief are such men as Driesch
who may be called Neo-Vitalists.

Eimer, a German zoologist, in 1888 denied the vitalistic, automatic inner perfecting principle of Naegeli, but upheld the assumption o orthogenetic evolution, attributing its cause to the direct influence of extrinsic and environmental conditions. A number of English biologists, as Henslow and Lloyd Morgan, have
in orthogenesis, but they have not cared to admit the existence of any peculiar vitalistic factor as its explanation. The present dean of American paleontologists and evolutionists, H. F. Osborn, is also, on the basis of his extensive studies of evolutionary progress among extinct
animals, especially the mammals, a believer in orthogenesis, but he is content to attribute its cause to some as yet "unknown factors of Evolution." It is also true that under the influence of modern discoveries in connection with the mechanism and methods of heredity there is a strong tendency among many moder assumption of an internal cause and control of variation concerning the action of which little can be prophesied and about the character of which little is known.
Theories of Heterogenesis and Mutations. -All of the theories of the causes of evolution mostly by small, continuous change, so that species form series of perfect gradations. But there have always been naturalists to deny this as sumption and to claim that change comes ofte by definite leaps, so that even the original differences may be fairly large and fixed from the beginning. Such naturalists have formumutancy. Vor Koelliker, a German zoologist proposed, in 1864, such a theory, but only in most general terms. The American naturalist Dall, in 1877, expressed his conviction tha sudden changes of species-forming characte sometimes occur in animals, and Francis Galton, of Charles Darwin and in most of his belief a thorough Darwinian, nevertheless denied that the original germinal variations must necessarily be small, referring to the many known case of "sports" among animals and plants as ex amples of original differences appearing as leaps.
advocate Korschinsky, a Russian botanist advocated an explanation of species-forming by win's selection theory, which he strongly opposed. However he presented few new facts bearing on the subject and made no particular impression on biologists. In 1901, however, the the first volume of a large work called 'The Mutations Theory,' in which he described his observations and experiments, extending over many years, on certain plant species, especially the evening primrosc, Oenothera lamarckiana, and definitely proposed a theory of the origin
of species by mutations, or sudden new fixed of species by mutations, or sudden new fixed changes, the new forms thus formed having to spaptation or the struggle for existence. He backed up his theory with a description of many such new "elementary species" which had arisen suddenly under his eyes from the evening primrose.
De Vriess' theory has had a large attention and a considerable acceptance from naturalists the Darwinian explanation. However, despit much observation and experimentation by othe men, few other "mutations" besides those de scribed by De Vries have been recorded, while as a general explaining theory of evolution the

It is especially helpless in the face of the neccssity of explaining adaptation, and adap species-change.
Influence of the Modern Knowledge Heredity on Theories of Evolution. - In 1900 three European botanists working independ ently at problems of inheritance in plants dis of a ced that certain similar work done a thirc tinian cloister in Brunn gardens of an Augusnamed Gregor Mendel, had been quite overlooked by naturalists and yet was of the utmos importance. This discovery of Mendel's wor by the botanists De Vries, Correns and Tschermak, and their independent discoveries at the same time, of facts confirming Mendel's carlier results, marks the beginning of the sults alrcady amount to more than had bee learned in all time before.

A general summation of these results and of the varion of their bearing on the validity of the various theories for the explanation o theory that assumes the original the type of be the result of influences working variations to rather than without. The modern knowledg of heredity also is strongly opposed to any assumption of the inheritance of acquired characters and emphasizes the strictly germinal character of all variations that really count in species-making. As has recently been said by Mendelism, "a theory of Evolution that assumes internal changes chiefly independent of ternal conditions, i.e., spontancously arising our knowledge") [of heret the present state of that the thorough-going accepters of Mendel driven the new heredity generally are driven to a position as regards the causes is essentially like Nacgeli's vitalistic theory of evolution from within by virtuc of a perfecting or progressive tendency; which is ndea that goes back to Aristotle and includes luxley and Bergson in its roll of adherents. In other words the most modern theory in explanation of evolution is essentially both antiwith that type of explanation which may be called orthogenetic and vitalistic
Bibliography.-Kcllogg, V. L., 'Darwinism
Ioday' (New York 1907); Morgan, T. H., Evolution and Adaptation' ; (New York 1903). Morgan, T. H., 'A Critique of Evolution' (New York 1917); Osborn, H. F., 'The Origin
and Evolution of Life' (New York 1917); and Evolution of Life' (New York 1917);
Packard, A. S., 'Lamarck, His Life and His 'Work' (New York 1901); de Vrics, H., Weismann, August, 'The Evolution Theory; (2 vols., London 1904). Evolution Theory,
Professor of Entomology, Lernon Keland Stanford ninior University, California
EVOLUTION IN MATHEMATICS. See ivolution and Evolution.
EVOLUTIONS, Military, the movements by which troops change formation, position
or order Sec TActics. Milmtary

EVONYMUS, êv-ŏn'ĩ-mŭs, a genus of the staff-trce family (Celastracea), comprising about 120 species of shrubs, natives of the north America. The best known are are found in bush (E. americanus), the burning-bush or wahoo (E. atropurpureus), and the spindle tree (E, curopieus). (See Síindle-tree). From the bark of the wahoo or burning-bush an ex tract known in medicine as elonymin is ob tained, liver lic, and for its stimulant action on th
EV
EVORA, ä'voo-rä (ancient Ebora), city 75 miles cast by south of Lisbon. It is a very ancient city; Quintus Sertorius took it in 80 b.C and it was also conquered by the Moors in 715 but recovered from them in 1139 . Among the famous Roman antiquities of Evora are the temple of Diana, with fine Corinthian columns; an aqueduct erected by Quintus Sertorius and
restored in the 16 th century, which still supplies the city with water; and the bcautiful tower, surrounded by Ionic columns, at the extremity of the aqueduct, and which, although it has existed since 70 s.c., is in almost perfect preservation. It has an archiepiscopal library, containing, besides some 25,000 volumes, several pictures of great merit. There are iron furand hats, and a considerable trade in wine Pop. 17,901.
EVREMOND, āvr-môn. See Saini Evre-
REUX, à-vré (ancicnt Civitas EnUrovi(UM), France, the capital of the department of Eure, on the Iton, 57 miles west by north-
west of Paris. It is one of the oldest towns of Fest of Paris. It is one of the oldest towns of France and its ruins and cxisting ancient Nornoted of the buildings are the church of most Taurin; the bishop's palace, dating back to 1484 ; the Tour de l'Horloge, built in the same century. The history of the town has been of he same tumultuous order as that of many other towns in that section of France, having been taken from the Romans by Clovis; the Normans under Rollo pillaged the town in 892; it in waste by fire; Philip Augustus of France took it in 1194 and in 1199. and during the wars of the 15 th century between the French and English it was the scene of many bloody conficts, being passed from the control of one to he other many times. The principal manufactures are machinery, linen, hosiery, leather,
EWALD, ä́väl, Carl, Danish novelist: b. schleswig 1856; d. 1908. He was educated at family had removed after his native province had fallen to the Germans in 1864. After spending some years as a forester, he turned to iterature in 1887, at first issuing school texts and translations. His principal original works are 'Singleton's Udenlandsrejse' (1894) 'Glacde over Danmark' (1898); 'Sulasmiths Have' Kleiner Junge' (1899): 'Crumlin'), (1900) Several of his works have been transiated into English.

EWALD, Georg Heinrich August, as he had been promised, he deserted the Prus-
-org hin'rì ow'goost àvalt, German Orien- sian standard in the Seven Years' War, and gā-ōrg hin'ríh ow'goost ā'valt, German Orien1803: a there 4 May 1875 . As published his first critical work, 'Die Komposition der Genesis.' He became professor of theology at Gottingen in 1831, and in 1835 professor of Oriental languages. As one of the seven professors of Gottingen who signed the protest against the abrogation by King Ernest
Augustus of the Hanoverian constitution, he was dcposed from his chair and accepted, in 1838, a call to Tubingen as professor of philosophy. In 1841 he was ennobled by the king of Würtemberg and returned in 1848 to Gōttingen, and resumed his old position. When Hanover was annexed by Prussia in 1866 he ex-king and this led to his removal from his university chair, though his salary was continued. He was elected several times a member of the Diet, where he spoke strongly in favor of the restoration of the Hanoverian monarchy. H His 'Kritische Grammatik der hebraischen
Sprache' (Critical Grammar of the Hebrew Sprache' (Critical Grammar of the Hebrew
Language) (1827), afterward merged in his (Ausfunhrliches Lehrbuch der hebräischen Sprache, and continually enlarged (8th ed., 1870), formed an epoch in the study of Hebrew and placed Ewald in the first rank among scholars. 'Das Hohe Lied Salomos' (The Song of Solomon); 'Die poetischen Bucher des
Alten Bundes' (The Poetical Books of the Old Testament): 'Die Propheten des Alten Bundes,' containing a translation and interpretation of all the prophets in chronological order; together with his 'Geschichte des. Volkes Israel' (History of the People of Israel); and 'Dic Alterthe Pcople of Isracl), are his principal woiks on the Old Testament.
The 'History of Israel' is considered his greatest work, entailed a labor of 30 years and is a work of rarc, genius stamped with the impress of its author's individuality. Like others of his more important writings, it has been transwrote, among other works, 'Ucbersetzung und Wrkle, among other works, Neversetzung Testaments' (Translation and Explanation of all the Books of the New Testament). Another important work is 'Die Lehre der Bibel von Gott, oder
Theologie des Alten und Neuen Bundes' (the Theologie des Alten und Neuen Bundes (the ogy: of the Old and New Testaments). He also wrote philological treatises on various Eastern languages and on subjects connected with them, among which may be mentioned works on the hook of Enoch, on Phcenician inscriptions, on Phoenician views regarding the creation of the
world, on Arabic Grammar, and 'Linguistic Studies.) From 1849-65 he issuted a scrial almost entirely written hy himself called 'Die Jahrbücher der biblischen Wissenschaft) (Year Books of Biblical Science). Ewald has heen called the "second founder of the science of the Hebrew language." Consult Cheyne, 'Founders
of Old Testament Criticism) (London 1893).

EWALD, or EVALD, Johannes, yō-hän'ness, Danish poet b. Copenhagen, 18 Nov. 1743 : d. there, 17 March 1781. At 15 he ran away and enlisted in the Prussian service. Being compurg, instead of being attached to the hussars
sian standard in the Seven Years War, and months he again deserted, returned home and began to apply himself seriously to theology. On the death of Frederick V of Denmark
was requested to compose an elegy (1766) ; and the gencral admiration with which it was received roused his ambition and he soon bepocts of his nation. His opera the (Death of Balder) (1774), the subject of which is taken from the northern mythology and his 'Roll Krage) (1770), a tragedy taken from the ancient history of Denmark, are works which, notwithstanding mally defects, bear the impress of 'The Fishers') (1779), in which is included the Danish national hymn, is ranked as the finest of all his works. As a lyric poct he is most popular at the present day, and several of his odes and clegies are among the best that modern times have produced.
hannes Ewald) (1888).
EWART, üart, David, Canadian architect: b. Scotland, 1843. He received his education to Canada in 1871 and became assistant engineer and architect in the Department of Public Works at Ottawa, rising to the post of chief architect in 1897. He completed the central tower of the Parliament buildings at Ottawa and erected the Canadian buildings at the Chicago world of 1900 He is a member of the board of assessors of the departmental buildings at Ottawa since 1906 and since 1909 is councillor of the Royal Architectural Institute of Canada

EWART, James Cossar, British zoologist: b. Penicuik, near Edinhurgh, 26 Nov. 1851. He was educated at Edinburgh University, where he graduated M.D., and was appointed demon-
strator of anatomy 1874 . In 1875 he hecame strator of anatomy 1874 . In 1875 he hocame,
conservator of the muscum, University College, London; in 1878 professor of natural history, Aberdeen University; and in 1882 professor of the same, Edinhurgh University, when he was also appointed member of the Scottish Fishery Board. In London he made researches into the hacillus of splenic fever, etc., and at Aberdeet founded the first marine lahoratory in Britain,
where, with the late Dr. Romanes, he made researches into the locomotor system of the echinoderms, which was the subject of the Croonian lecture of the Royal Society 1881. He conducts the fishery investigations into the ferilization and life history of the herring, white bait and other food-fishes and directs a large corps tions established lectureships in his university in embryology and the philosophy of natural history and organized, for the students, a union. At Penicuik he has conducted the costly experiments, with which his name is widely known, into the development of horse, and hybridizing of equine species, indifferent ways; and disproved the hoary theory as to the influence of previous impregnation (telcgony). Among his publications are The Electric Organs of Skate) (1888-89) ;'The Cranial Nerves and Iateral Sense Organs of
Elasmobranchs' (1889); 'The Development of
the Horse' (1894) : 'Telegony and Reversion' (1887); A Critical Period in the Development (1000) : 'Therse) (1889); 'Guide to Hybrids' (1900); 'The Multiple Origin of Horses and
Ponies' (1904); 'Horse Skulls from the Roman Fort, ncar 'Melrose' (1906) ; 'On a Prejcar Melrose
EWART, John Skirving, Canadian lawyer: b. Toronto, 1849. He received his educato practice in 1871 . He practised in Toronto until 1882, when he removed to Winnipeg. He came to Ottawa in 1904 and was now recognized as a leader in his profession. During the represented separate shools in Manitoba he terested in political questions after became inopposed the aims of the imperialists. At The Hague court in 1910 he was chief counsel for Canada. He published reports of cases in the courts of Manitoba from 1883 to 1890 and also (1908): 'Sir John Macdonald and the Cessays' Flag) (1908): 'Canadian Independence) (1911). The Kingdom Papers' (1912)
EWART, William, English physician: b. the University of Cambridge and also at Paris and Berlin. He became consulting physician to many hospitals and examiner and lecturer to the Royal College of Physicians. He was Consumption. He became apton Fospital for thority on the diseases of the heart and lungs. His works include 'Pulmonary Cavities) (1882); ‘Cardiac Outlines' (1892); 'Heart and "Bronchiectasis" (in Allbutt and Rolleston's portion of (Report on Climates and Baths a Great Britain' (issued by the Royal Medical and Chirurgical Society, Vol. II, 1902).
EWBANK, ùbank, Thomas, American sci entist : b. England, 11 March 1792; d. New York, Sept. 1870 . He came to America about and engaged in manufacturing metallic tubing
$(1820-36)$. He was United States commis (1820-36). He was United States commis
sioner of patents $1849-52$. His publications in clude 'The World a Workshop) (1855); 'Life in Brazil,' with an appendix on a collection American antiquities (1857); 'Reminiscences in the Patent Office' (1859) ; 'Thoughts on Matter and Force' (1858); and 'Inorganic Forces Ordained to Supersede Human Slavery,' an say.
EWE, a linguistic negro stock, inhabiting the coasts of Dahomey and Togoland. It is only a few centuries from Borgu or Gurma turists and possess a highly developed are juricicical system. They comprise the Awne Ataklit Agbosimi, Aflao, Geng, Togo, Krikor, Ewemi Fra, Dahoman, Mahi, Aja, Affakpami and others. Consult Ellis, 'The Ewe-Speaking Peoples of the Slave Coast of West Africa) (Lonn 1890) ; Stanford 'Africa' (ib. 1895)
EWELL, ${ }^{1} \times \mathrm{e}$, Arthur Woolsey, American physicist: b. Bradford, Mass., 1873. He was educated at Yale where he was graduated in Johns and also studied at the universities of he was instructor in physics and assistant pro
fessor at the Worcester Polytechnic Institute the American Acadenyy of Arts a Fellow of and has published 'A Textbook of Physical Chemistry' (1909); 'Physical Measurements) (1910; 2d cd., 1913); 'Artificial Rotatory Poarization' (1911).
EWELL, Benjamin Stoddert, American educator: b. Washington, D. C., 10 June 1810; d. James City, Va., 19 June 1894. He was grad there until 1836, and later served as assistant engineer of the Baltimore and Susquehanna Railroad, becoming professor of mathematics at Hampden-Sidney College 1839, where he remained till 1846. He filled a similar chair a Washington University, Lexington, Va., 1846 -
48 , when he went in the same capacity to William and Mary College, becoming its to Wir 1854, and president emeritus 1888 . He was in command of the 32d Regiment, Virginia Volunecrs, from $1861-62$ and adjutant-general of the Confederate army on the staff of Gen. Joseph E. Johnston, when he was commander of th departments of Tennessce and Mississippi 1862

EWELL, Marshall Davis, American lawyer: b. Oxford, Mich., 18 Aug. 1844 . He was School (1868), and was professor of common aw in the Union College of Law, Chicago rom 1877 until the founding of the Kent Col lege of Law, in which he became professor of common law, dean and president. He is well pert, and was elected a Fellow of the Roya Microscopical Society of London (1886), and president of the American Microscopical Society (1893) He has edited 'Blackwell on Tax Titles' (1875); (Illinois Reports) (Vols burn's Manual of Criminal Law' (1878). (Evans on Agency' (1879) ; 'Lindley on Part nership' (1881) ; and written 'Leading Cases in Disabilities' (1876); 'Treatise on the Law of Fixtures' (1877); 'Student's Manual of Medical Jurisprudence) (1887 ; 2d ed, 1909)

EWELL, Richard Stoddert, American sol dier: b. Georgetown, D. C. ${ }^{8}$ Feb. 1817 ; d uated at the United States Military Academy in 1840, and served during the Mexican War with Scott from Vera Cruz to the City of Mexico At the outbreak of the Civil War he resigned his commission in the National army; joined throughout the war and attained the rank lieutenant-general. He was at the battles of the first and second Manassas, where he los a leg, Front Royal, Cross Keys, Port Republic and Cedar Mountain; and was later placed in command of the Second Corps of General Jackson. In this capacity he was in personal command and led the charges of the corps at command and Winchester at Gettyshurg a Wilderness, and Spottsylvania Court House but was transferred to the Department of Richmond after these engagements, owing to his inability, on account of his wounds, to withstand the hardships of another campaign. He was later captured by Sheridan at Sailor's Creek
with his forces (6 April 1865). After the war he retired to private life.
EWER, ưer, Ferdinand Cartwright, American Episcopal clergyman: b. Nantucket, Mass., 22 May 1826; d. Montreal, Canada, 10
Oct. 1883. He was graduated at Harvard 1848 Oct. 1883. He was graduated at Harvard 1848.
After several years devoted to journalism he After several years devoted to journalism he
entered the Episcopal ministry and became rector of Grace Church, San Francisco, 1858. In 1862 he was chosen rector of Christ Church, New York, but his belief in the doctrine of the Real Prescnce and his introduction of ceremo-
nies and practices not usual in Episcopal ies and practices not usual in Episcopal churches caused him to be charged with Romanism and he resigned. The majority of his Saint Ignatius, New York, which was organized for him, and of which he continued rector til his death. He was an alle controversialist, and wrote 'Two Eventful Nights, or the Fallacies of Spiritualism Exposed' (1856); 'Sermons on olicity in its Relations to Protestantism and Romanism' (1878); 'The Operation of th Holy Spirit' (1880); 'Grammar of Theology' (1880).

EWING, ī̀ìng, Finis, American clergyman b. Bedford County, Va., 1773; d 1841. He received his license to preach in the Cumberland presbytery in 1802 and for many years was a he formed the presbytery which later becam he Cumberland Presbyterian Church. In 1820 36 he held a pastorate at New Lebanon, Mo and after 1836 at Lexington, Mo. He publishe Lectures on Important Subjects in Divinity' 1824). Consult Cossit, '(Life and Times of

EWING, Hugh Boyle, American soldier:
Lancaster, Ohio, 31 Oct. 1826; d. there, 30 June 1905. He was educated at the United States Military Academy; in 1849 went to Caliornia in charge of an expedition sent out by his father, then Secretary of the Interior, to rescue emigrants from the snow-bound Sierras, Saince he returned in 1852 ; practised law in Saint Louis $1854-56$ and in Leavenworth, Kan.,
$1856-58$. He served through the Civil War hecoming a brevet major-general; was United States Minister to The Hague $1866-70$, and wrote 'A Castle in the Air' (1887) ; 'The Black List' (1893), etc.
EWING, James, American pathologist: 1 Pittsburgh, Pa., 1866. In 1888 he was graduated at Amherst College and three ycars later at the College of Physicians and Surgeons of
Columbia University. He also studied at Vienna and after his return was successively 1utor, Fellow and instructor at Columbia from 1893 to 1899 . In the latter year he was appointed professor of pathology at Cornell. He is an ex-president of the Association for Cancer Research and of the Harvey Society. His pub(2d cd., 1903) ; and articles in 'Textbook of Legal Medicine and Toxicology' (1903)

EWING, Sir (James) Alfred, Scottish physicist and engineer: b. Dundec, 27 March 1855. He was educated at the Dundee high school and the University of Edinburgh. For several years he was engaged in engineering
work and was assistant to Lord Kelvin and

Prof. Fleeming Jenkin. He was professo of mechanical engineering at the Imperial Uni-
versity of Tokio 1878-83. While in Japan he versity of Tokio $1878-83$. While in Japan he
devoted himsclf assiduously to the study of devoted himsclf assiduously to the study of
earthquakes, devising seismographs to record earthquakes, devising seismographs to record
the earth's vibrations during such disturbances. Ine earth's vibrations during such disturbance,
In 1883 he became professor of engineering at University College, Dundec, and from 1890 to 1903 he was professor of mechanism and applied mechanics in the University of Cambridge. From 1903 to 1906 he was a member of the Explosives Commission and a member of the Ordnance Research Board 1906-08. In 1907 he was made C.B., and K.C.B. in 1911. In 1916 burgh. He was awarded the royal medal for rescarches in magnetism in 1895. He has published many papers on scientific subjects, especially on magnetism and the physics of metals in 'Transactions of the Royal Society' and elsewhere ; also 'Treatise on Earthquake Mras
urement'
(1883) ; 'Magnetic Induction in Iron and Other Metals') (1891): 'The Stion in Iro and Other Heat Engines' (1894); 'The Strength of Materials' (1899); 'The Mechanical Production of Cold' (1908).

EWING, John, American Presbyterian minister and mathematician: b . Nottingham M802. As a youth he exhibited marked ability in mathematics and later took a course of study in Princeton College. Upon graduating in 175 he was appointed instructor in the college. He then became intercsted in theology and after finishing his course in divinity was licensed to preach by the presbytery of Newcastle, Del. In
1758 he received his appointment as instructor of the philosophical department in the College of Philadelphia and in 1759 became pastor of the First Presbyterian Church in that city, re maining such until 1773 when he was sent to England to solicit pecuniary aid in the establishment of an academy. In 1775 he returncd lege of Philadelphia was changed to the University of Pennsylvania, he was placed in the station of provost, and officiated in that capacity until his death. He was also selected to serve 'Lectures on one boundary commission. His 1809), and a collection of sermons were pub-
ished ander a collection of sermons were pub-
EWING, Juliana Horatia Gatty, English writer for young people: b. Ecclesfield, York-
shire, 3 Aug. 1841; d. Bath, Somerset, 13 May 1885. She contributed largely to a magazine started by her mother (Mrs. Gatty). On her mother's death the magazine was edited by her and her sister conjointly, and many of her hest tales of child-life we in it. Of her delightful the-Way's Remembrances' (1869); 'The Land of Lost Toys' (1869) ; 'The Brownies) (1870); (A Flat-iron for a Farthing' (1873) ; 'Lob-lie-by-the-Fire') (1874); 'Six to Sixteen'; 'Jan of the Windmill' (1876) ; 'A Great Emergency'
(1877): 'We and the World) (1881). (Old (1877); 'We and the World' (1881); 'Old
Fashioned Fairy Tales). 'Brothers of Pity' (1882) : 'The Doll's Wash'; 'Three Little Nest Birds' ; (A Week Spent in a Glass House) ; (A Sweet Little Dear'; and 'Blue Red' (1883); and 'Jackanapes' (1884). A biography hy her
sister, Horatia K. T. Gatty, was published in

1885 under the title 'Juliana Horatia Ewing Her Books.'
EWear West Liberty, Va, American statesman: caster, Ohio, 26 Oct. 1871. He was graduated at the Ohio University in Athens in 1815; admitted to the bar in 1816 ; and practised law for 15 years. He was a United States senator the Treasury under President Harrison in 1841 . and Secretary of the Interior under President Taylor in 1849-50. In the United States Supreme Court he ranked among the foremost hawyers of the nation. During the Civil War his judgment in matters of state was frequently ourght by President Lincoln. When the capthe United States to the very point of hostilities, Ewing sent the famous telegram that was really decisive of the whole trouble: "There can be no contraband of war between neutral ports" - and it was his advice that finally prevailcd over
free.

EX CATHEDRA (Lat. "from out the sions given by the Pope in the discharge of his spiritual office as pastor and bishop of all Christians. Hence it is applied to every decision pronounced by any one in the exercise of phepe authority, as a bishop in the spiritual
phere, a judge on the bench, etc.
EX PARTE, ěks par'tē (Lat. "from a an action taken by either party to a suit or other legal proceeding, or on behalf of such party, without notice to the other. Ex parte evidence or hearings are frequently made use of without eing regarded as an inf ringement of the rights of the opponent. In a derived sense the term a statement. a statement.
EX POST FACTO (Cks pōst fàk tō) one made after an offense and taking effect retroactively. The provision in the Constitu tion of the United States, Art. I, sec. 9, claus , that "no ex post facto law shall be passed," has been interpreted to refer only to
crimes, and in that sense the words are com crimes, and in that sense the words are com-
monly used. The following have been decided to come within the scope of the phrase: Every law that makes an action done before its passage, and innocent when donc, criminal, and punishes such action; every law that aggravates a crime, or makes it greater than when committed; every law that changes the nature of time the act was committed; every law the alters the rules of cvidence so as to make i easier to convict the offenders; cvery law that while not avowedly relating to crimes, in effect imposes a penalty or the deprivation of a right
every law that deprives persons accused crime of some lawful protection to which they crime of some lawful protection to which they
have become cntitled, as a former acquittal. Such laws are therefore contrary to the Consti tution. Consult Cooley, 'General Principles of
Constitutional Law in the United States' (3d Constitutio

EXACTIONS (from Lat. exactio act of driving out, forcing out, a forced contribution),
a legal term of ecclesiastical jurisprudence, used in the Middle Ages to denote such dutics or contributions, demanded by the clergy of because they were new and against custom or because their amount was unduly increased. They were illicit, and it was found necessary repeatedly to denounce their unlawfulness. The of the bishops over over the subordinate clergy so great that it was easy for them to make the most outrageous exactions. They were dc-
nounced at the third Council of Toledo (589)
EXAMINERS, Medical, in some States, as Massachusetts and New York, county official whose duties are practically those formerly dis
charged by coroners, whom they have super charged by coroners
seded. See Coroner.

EXANTHEMATA, èk-sản-thē'ma-ta, lume formerly widely employed to designate ized by an eruption - the eruptive fevers most important of these are measles, scarle feyer, chickenpox, smallpox, typhoid fever, and typhus fever (qq.v.). The term is also used botany for blotches and eruptive excrescence the surface of leavcs.
EXARCH, éks'ark (Gr. ${ }^{\text {EFapxos, exarchos }}$ leader), a title equivalent to governor (Lat after the seat of empire was transferred to Con stantinople. But already in the 4th century acquired the signification of archbishop, metropolitan or patriarch. In the acts of the first Council of Constantinopie (381) the bishops of styled exarchs; and the field of jurisdiction ar an exarchos is exarchia. In the same perio exarchos, exarchia were in nise as designations of civil magistrates and their jurisdictions, the terms diocese (dooiknors, diôecesis) was also used. In ecclesiastical usage exarch came in time to be a title of honor apart from jurisdic-
tion; thus, by the Council of Chalcedon (451) the bishops of Ephesus, Heraclea and Cappado cian Cæsarea, though deprived of their jurisdiction over the metropolitans previously suf fragan to them, were permitted to be called by the title exarch

EXAUVILLIEZ, Philippe Irênée Boistel
 30 March 1862. His essay, 'The Saint Gervai Library' (1831), gave the first impulse to the establishment of small libraries all over France He translated Walter Scott's novels, from which he climinated every passage which could be in terpreted as telling against the Roman Catholic religion,
EXCALIBUR, the famons mystic sword of King Arthur (q.v.) which, in accordancc with the promise of Merlin, was given him by the Lady of the Lake. At Arthur's death it was hurled by Sir Bedivere into the lake, where it was seized and conveyed from sight hy a mys-
terious hand. Consult Temnyson, 'Idylls of the King.'

EXCAVATION, the removal of material in engineering operations in order to make wide variety of such work and the special proc-
esses are described under Canals, Dams, Foundation, Tunnels, etc.

EXCAVATOR, a machine for digging moving and transporting gravel, soil, etc. Ex cavators are made of two kinds, each adapted
for different kinds of work. In making a long utting, the first to come into operation is operated on rails, and employs a large "scoop" or bucket, with a lever heavy enough to counteralance the bucket when filled with clay. The full. It is then raised by the suspension chain, and dumped by the chain on the lever. The second class of excavator is employed to make the cutting wider. Its sides are made sloping to an angle of 45 degrees, and on the top of the bank a temporary line of rails is laid a on the rails at the end of the cutting; the jib is owered until the row of buckets it carries can cut into the clay; these scrape up the bank eaching the top of it full of soil; they nex pass over the machine, and are emptied into he wagons beyond it. Excavators were cx ensively employed in the digging of trenche ront during the Great War. Consult McDaniel, Excavating Machinery) (New York 1913).

EXCELL, Edwin Othello, American song riter: b. Uniontown, Stark County, Ohio, 13 Dec. 1851. He received his education in the pub lic schools of the states of Ohio and Pennsyl vania, and gave special attention to the study of music. For over 20 ycars he was associated Sam P. Jones, as gospel singer. After 1881 h engaged in the publication of church and Sun day school music books. He composed many ospel songs which have attained wide popularity He also took a prominent part in the Prohibitio ovement. He died 10 June 1921.
EXCELLENCY (from Lat. excellentia superiority), a title of honor given to ambas British colonies and their wives and the cov ernor of Massachusetts. The President of the United States and the governors of many of the States have the sanic title by courtesy. For thetly it was limited to soverim prince

EXCELSIOR (Lat. "higher") (1) the motto of New W poem by H. W. Longfellow, published in 1841 of night were falling fast." The poem in it musical setting became in America a favorite

academic song.

EXCELSIOR, the trade name of a ma terial invented in America and widely used fo packing and as stuffing in mattresses and up. holstery. It is made from logs of wood which have first been divided into 18 inch blocks. The rapidity by knife-points, and packed in hales rapidity by knife-points, and packed in halcs
of 250 pounds weight. Not far from 140,000 tons are annually manufactured in the United States, and of this output large quantitics are exported.
EXCELSIOR SPRINGS, Mo., city of Clay County, 25 miles northeast of Kansas City on the Chicago, Milwaukec and Saint Paul, the mincral springs it is widely known as a summer
resort; it has fine hotels, a Carnegie library, an resort; it has fine hotels, a Carnegie library, and auditorium, a government its industrial establishments arc limited to bottling works and an ice factory Pop. (1920) 4,165.

EXCEPTION, an objection taken to testimony or any relevant matter in a legal procced ing, also to an adverse ruling of the court upon a point of law. In general, it must be take
within a prescribed period and must be entered on the record. The term is also given to the exclusion of some part of an instrument, o statement. It may mean also the part so ex cluded. See Plea and Pleading.

EXCESS. In spherical and Riemannian non-Euclidean geometry, the excess of a tri angle is the amount by which the sum of it
angles exceeds 180°. Thus the spherical angles exceeds 180°. Thus the spherical cxces
of a spherical triangle with angles of $70^{\circ}, 60^{\circ}$ and 65° is 15°. Similarly, the excess of a polygon is the amount by which the sum of its angles exceeds the sum of the angles of a plan Enclidean polygon with the same number of sides. The spherical excess of a triangle or
polygon, if measured in radian, is equal to the area of the figure divided by the square of the radius of the sphere. In lobachevskian geometry the defect, or the amount hy which the sum of the angles of a polygon falls shor of that of a plane Euclidean polygon with the same number of sides, plays a part quite analcess is also used to indicate the remainder when one number is divided by another. Sce Trigonometry

EXCHANGE, the act of exchanging or giving one thing for another. The term also signifies that which is so given. In commerce it is applied to a place where merchants, brokers, etc., meet to transact business; it is generally
contracted into 'Change. The institution of the contracted into Change. The institution of the Those institutions originated in the important trading cities of Italy, Germany and the Netherlands, from which last-named country they were introduced into Fngland. The most celebrated are the Royal Exchange of London, the Bourses
of Paris and Amsterdam, the Börse of Hamburg and the New York Stock Exchange in burg and the Now York Stock Exchange in class of business is transacted. Thus there are stock exchanges, corn exchanges, coal ex changes, cotton exchanges, etc. For Bill of Ex change, sec Bill.
Course of exchange is the current price o a bill of exchange at any one place as compared withe exat it is at another. If for $\$ 500$ at one then the course of exchange between the two places is at par; if more must be paid at the second place, then it is above par at the other: if less, it is below it. Arbitration of exchange signifies the operation of converting the currency of any country into that of a sccond one
by means of other currencies intervening between the two. Consult Goschen's standard work, 'The Theory of Foreign Exchange'; and Withers, 'Money Changing' (1913).
In arithmetic exchange is a rule for asccrtaining how much of the money of one country is equivalent in value to a given amount of that
of another. In law, a mutual grant of equal interests, in consideration the one for the other,
is termed exchange. In plysics the theory of exchange is a hypothesis with regard to radi since generally accepted. All bodics radiat heat. If two of different temperatures be placed other, but the oach will radiate heat to the receive less than it emits. Finally, both will be of the same temperature, each recciving from the other, precisely as much heat as it sends it in librium this scale is called the molile equi-
EXCHANGES, Government Regulation controlling other associations, corporations that banking institutions, exchanges having no dif ferent or special relations with governments They may be held liable for restraint of trad subject fix prices; their transactions may be sidered to special taxes, or they may be conSidered as gambling under some circumstances.
FxCurnurd

EXCHEQUER, ěks-chěk'èr, in Great Britain, the department which deals with the lic services of the country. The public revenues are paid into the Bank of England, or the Bank of Ireland, to account of the Exchequer, and thesc reccipts as well as the necessary payments of an important official called the controller and auditor-general. The puiblic accounts are also atdited in his department.
EXCHEQUER, Chancellor of the. See Chancellor.

EXCHEQUER, Court of, Sce Court EXCHEQUER BILLS, bills of credit a mined by authority of the British Parliament as a means of raising money for temporary pur-
poses. They are of various sums and bear daily interest. Gencrally paid off, or renewed annually they were much in demand and usually payment of premium, and were receivab ind o hand as moncy, and form a principal part of the public unlunded delt of Great Britain. seded them in recent years, are similar, but they run for a definite number of years at a someadopted as a financial expedient in the United tates before the Civil War.
EXCHEQUER TALLIES,
wands of ash, hazel or willow, formerly used for checking accounts in the English Exchequer. hotches cut on the tally indicated by their form
FYCIDPENT (fram Iat ais

EXCIPIENT (from Lat. exipere, take up, ctive sulstance used to pive form and cont sistence to solid preparations, such as pills, or to give palatability and the necessary qualitics or administration to any medicine. The various conserves, also honcy, treacle, simple syrups, are among the most among the most useful excipients.
EXCISE, an inland duty or impost laid on commodities produced and consumed in the a Dutch term of similar meaning, which in turn may be of same origin as assize, its present
form being influenced by a supposed derivation from Latin c.rcisus. It must be differcntiated from customs duty, imposed on goods enwere estahlished in In England excise duties the duty was at first only a few pence per proof gallon; in 1915 it was 14s. 9d. In the United States the internal revenue duties are analogous
to the British excise. For a more detailed explanation of excise, see Customs; Internal
Rfyenue.
EXCISE LAWS IN THE UNITED STATES. The struggle of the English people against excise was not due to any intrinsic iniquity in the tax, but partly to popular dislike of to the inquisitorial methods involved, partly to their use as a means of strengthening the royal power against popular control. At any rate, the colonists inherited this unreasoned dislike, even necticr totally different conditions; though Connecticut had laid an excise on spirits and all Pennsylvania on spirits, before the Rcvolution But all shrank from giving the national government such power, and several States proposed amendments to the Constitution forbidding the United States ever to lay excises. Hamilton, however, recommended to Congress in 1790 an exn grounds - that it would not only produce revenue without burdening any worthy industry or person, but would check the consumption, to the great advantage of the community. With great opposition the law was passed, imposing a duty of 25 cents a gallon (according to on imported. In 1792 the tax was a nered somehat. Later, under Hamilton's advisement the cope was extended to other articles of luxury auction sales, stamp duties on instruments of exchange, etc. But it was nullified in some sections by passive resistance; at last in 1794 a furious open defiance began in Pennsylvania quelled by the regular army. There was urther resistance, but no cessation of the disike, which was naturally a Democratic tenet, from the power it gave the general government; and when Jefferson became President, on tire system, which was possible from the enincrease in customs reccipts. The War of 1812 , however, necessitated a fresh resort to it; and duties were laid on spirits (license tax), and he same articles Hamilton had chosen - sugar, arriages, auctions and exchanges - with salt and no further excises were levied till the sysem of internal revenue taxes (q.v.) was adopted in 1862 .

XCITANT. Sce Stimulant.

EXCITO-MOTOR ACTION, the action of nerves distributed to muscular organs the stimulation of which leads to movement. Thus, lead to contraction of the muscle by cxcitomotor action, and irritation of certain nerves distributed to blood vessels will lead to conraction of the vessel by acting on its muscular EXCLUSION Bill of a bill introduced into the British Parliament (1679) during the
reign of Charles II for the purpose of excluding the Duke of York, he being a Roman Catholic,
James II.

EXCOMMUNICATION, an act of cccle-

 siastical jurisdiction whereby a Christian is separated from the communion of the Church. It is not, however, peculiar to biblical religion, a the ancient Romans. The clearest analogy to the Christian discipline is that furnished by the rabbinical code, whereby offenders were excluded from civil and religious fellowship. Under the Christian dispensation this power was exercised by the Apostle Paul when inhis first letter to the Corinthians, ch. v, he writes concerning a man guilty of, ch. v, he writes concerning a man guilty of
he "delivers such a one to Satan." Authority for excommunication is found in the words of
Christ reported in Matt. xviii. "If he will not Christ reported in Matt. xviii. "If he will not
hear the church let him be to thee as the gentile hear the church let him be to thee as the gentile
and the pubican." In the Roman Catholic Church there are two degrees of excommunicaoffender is deprived of the use of the sacraments; by the major one he is deprived of all manner of communion or communication with the faithful. In the times when the laws of the Church were enforced in their primitive rigor with the faithful not only in sacred things but in the common life; and if a monarch, his subjects were absolved from all allegiance. This is greatly modified now, and persons who have incurred the uttermost ecclesiastical censures
suffer only the spiritual penalties attached to suffer only the spiritual penalties attached to communication has in the present time lost all its civil effects, a brief notice of these effects is necessary for an appreciation of the condition of an excommunicatus vitandus, that is, of a person under the major excommunication, who must be avoided by the faithful, under penalty of the
A person who is under the major excommunication is disqualificd for acting as judge or juror, notary, witness in courts of law, advocate, attorncy; but he is competent to plead his own cause and to sue others on his own behalf. He cannot be a gutardian of a minor, nor curator, nor executor of a last will, nor can ator. After death his body is deprived of Christian burial: and if it does get burial in consecrated ground in whatever way, it is to be dug up and cast out. The excommunicate under major excommunication must be shunned
by all the faithful: they must not, under pain by all the faithful: they must not, under pain
of excommunication (minor), communicate of excommunication (minor), communicate ing; must not greet him, nor have exchange of gifts with him. If an excommunicatus vitandus happens to enter a church while the Mass is proceeding, he must forthwith be put out; if that cannot be, then the service must be suspended.
Such is the letter of the laws; but long before these stern prescriptions went into desuetude through the interpretations of moralists. To illustrate this hy one example only: The serfs and servants and the children, grandchildren and other relatives (even by affinity only) were
permitted to continue their relations of obedience and respect to their head even after he was excommunicated. Sce Bell, Book and Cannle.
The Reformers claimed and exercised the same rights in regard to excommunication as
did the Roman Church. In England the excommunicated person was subjected to various disabilities; he could not hold a benefice, or practise as a barrister or attorney in the courts; and could not be admitted as a witness. These were removed by Act of Parliament in England In the Presbyterian churches of Scotland the lesser excommunication involved deprivation of
"sealing ordinances" : the greater excommunica"sealing ordinances"; the greater excommunica-
tion is now unheard of, and since the Revolution is now unheard of, and since the Revolu-
tion of 1688 has carried no civil consequences tion of
with it.
exCretion. Sce Feces; Sweat; Urine. EXCRETORY SYSTEM, Comparative Anatomy of the. See Anatomy.

EXCURSION, The. 'The Excursion' (1814), Wordsworth's longest poem, was orig. inally designed as the second part of a still vaster work, 'The Recluse,' in which the poet intended to embody in monumental fashion his ripest reflections on man and nature. Of this constituted an introduction, 'The Excursion,' in nine books, and one other fragment wer completed. Less interesting, on the whole, than 'The Prelude' and the best of the shorter poems, 'The Excursion' is yet a rich and noble Work of genius, not to be neglected by those
who would master Wordsworth's who would master Wordsworth's philosophy or appreciate the full compass of his powers. the protagonist is, The Wanderer, a venerable riend of the poet's, who from long and loving contact with nature and a deeply sympathetic knowledge of human life, has reached the heights of optimism and philosophic calm. he tells in the first book the pathetic story of Margaret, its last inhalitant. They then pass to the secluded abode of The Solitary, a per son in whom Wordsworth has embodied the isillusionment and despondency characteristic of the age, a reflection of what Wordsworth Revolution had not the malady been checked by a timely return to the tranquillizing influences of his early years. (Sce Prelude, Tife). The conversation of The Wanderer and the subsequent discourses of a good Pastor, visited by he party in his parish, are directed toward a Standing amid the graves of a country churchyard, The Pastor tells the simple but affecting stories of the lives of those who lie buried there. In Books VIII and IX The Wandercr dis courses of socicty and government, deploring he industrial exploitation of the poor, advocat ing a system of universal education and exalting morality as the true basis of national Despite some tediousness inseparable from the didactic character of the theme, the poem is moving record of a mature and sobered ideal ism, firmly held in the face of all the influences which work against it -an impressive memorial
of the strength and comfort which Wordsworth
found
\qquad
In the primal sympathy
Which having been must ever be;
In the soothing thouhts which spring
Out of human suffring
In the faith that looks through death
For reference, see article on 'Tire Prelude.' James H. Hanford.
EXE, a river of England, rising in Somer setshire and flowing southeast to the Devonshire border, thence south through Devon and length is about 54 miles. Tiverton and Exeter are situated on the banks of the Exe.
EXECUTION, in law, the carrying int effect of the final judgment, decree or order of the court. Execution is effected by a writ o order directed to the proper officer and com manding him to do a certain thing. In civil court ordered to be done by one of the parties Execution may be had for either plaintiff defendant. When taken out by the plaintif depends on the cause of action as to what is to be recovered under the writ; generally it is for the debt and costs or for the goods, dam ages and costs. When taken out by the defend and in some cases it may be only for costs. As soon as final judgment has been entered the party entitled to it may take out his writ of execution, and he is entitled to this writ until the other party has taken some step whic is a supersedeas, such as an appeal or writ of
error. The writ issues from the court which last passed on the judgment on which the writ of execution is taken out. Execution may be against personal property, taking and selling it or it may be against real estate, either holding it until the judgment is paid or selling it, or in defendant byd the semzure of the person of the is satisfied or until he is declared insolvent If the property is sold the fund derived from the sale is applied to paying the judgment and costs, and the surplus, if any, is returned to the former owner of the goods. At common law ecution excent froperty was not subject to exking. By statute of 5 George state or the estate in the colonies became subject to sale linder execution the same as personal property. A writ of execution, although issued at the instance of the party in whose favor the judgment is, must be directed to the sheriff, who he fails to do so he must answer in damages 1o the injured party.

Originally, at common law, when the execution was against personal property, such as goods and chattels, the writ of ficri facias was used, hut to-day this writ may be used against land also. When the personal property consisted of attachment. If the execution was against real estate a writ of scire facias was used (now usually elegit or fieri facias), and it was sold under a writ of venditioni exponas. In some cases, when the judgment was confined to particular piece of real estate, the writ of under a writ of venditioni exponas. In moder
usage, if the execution is against the person of the defendant a writ of capias ad satisfaci under which the defendant is arrested and his person held until the judgment is satisfied or until the defendant is declared insolvent Sometimes the defendant is released if security is given that the defendant will abide by the order of the court. Nearly all these writs and other old forms are obsolete or modified in use cxcept fieri facias and, to a less extent,
elegit and capias ad satisfaciendum. See ATtachment; Fieri Facias; Scire Facias.
A general judgment binds all property owned by the person against whom the judgment is recovered at the time the judgment is entered and it also attaches to all property he acquires up to the time the judgment is satisfied, and if
the debtor sells any real estate before the judgment is satisfied, the property is not released from the lien of the judgment. When propert is sold under an execution the purchaser buys only the title of the debtor, and all equities under which he held it still attach to the property.
into effect of the judgment of the court in rela tion to the person convicted. It consists in putting the convict to death according to his sentence. See Capital Punishment
EXECUTION, Military, in drill regula tions, the command following the preparatory command and causing the execution of the lat ter. Legally, a military exccution is the putting Military Law.
EXECUTIONER, the official who carries into effect a sentence of death or inflicts carrita punishment in pursuance of a legal warrant In England it is the province of the sheriff to execute the extreme sentence of the law, but in practice the disagreeable duty is performed purpose. In Scotland the duty devolves upon the civic magistracy, but the strict letter of the law is avoided as in England by the attend ance of a magistrate to witness the proceedings. Scveral executioners have become famous from their names being dragged into literature ; sucl as Richard Brandon, the supposed headsman Dryden (Epilogue to the Duke of Guise) whose name was long vulgarly given to all who succeeded him (in London) in this odious office. In America, the title and duties of the public executioner differ in the various States, In some States the sheriff of the county becomes
the executioner, but in the executioner, but in Now York State the executioner. The duties are usually performed by one of his subordinates. In the army the provost-marshal is the military executioner. Sce Capital Punishment; Electrocution Guillotine; Hanging.
EXECUTIVE, in the United States, properly, though in the narrow and restricted sense, ecution of the laws, but popularly the chief officer, as President (of the United States) governor (of a State), mayor (of a city) etc Executive Power.-The exccutive functions in the modern state are much more diversified
word "executive" would indicate, since, besides euforcing the laws enacted by the legislative department of government, the exccutive, in the constructive policies, direct the public life of the state, act as its representative in its relations with foreign states, render many highlyimportant decisions and exercise wide discretion and judgment. Hence the exccutive power covers a range of official activitics wider and more sommands of the legislature. The organiza tion of the legislative and exccutive branches of government necessarily must differ because the former is the body which deliberates upon the needs of the state and enacts the legislation required to meet such demands, while the
latter's primary, though not its sole, function latter's primary, though not its sole, function energy and efficiency the will of the state as formulated by the legislative body. To attain such results a single executive is most desirable, since the division of exccutive power between several co-equal authorities would
create confusion in times of stress, would enable the responsibility for action easily to be shifted from one shoulder to another, and would result in a lack of unity and efficiency in government so essential to its success. In ancient Athens executive power was divided between generals and archons; in Rome hetween two consuls, and in sparta for many years betwecn two kings, while in France bepersons was in office and later three consuls held the excentive power. The general executive of the American colonies was the king; their individual executives, the governors, appointed by the Crown or (in Rhode Island and Connecticut, and for a few years in Massasucceeded de facto by the committces or councils of safety; then by officials usually called governor, sometimes president, and sometimes not by single persons, but by executive councils, as in Switzertand. (See also Colonial Governmen's, Proprietary). The general gov-
ernment had no cxccutive till the adoption of ernment had no exccutive till the adoption of
the Constitution (q.v.). The Continental Congress (q.v.) had only such functions as the gress (q.v.) had only such functions as the
State legislatures allowed it, which were to debate and ask for supplies and make recommendations; and the Articles of Confederation provided for no executive. (Sce United States present time exccutive power is organized on the single person plan in all countries save Switzerland which has an executive council of seven members.
In general executive power may be said to include the execution of the laws and treaties; the conduct of foreign relations either with or
without the aid or consent of the legislature without the aid or consent of the legislature
or one of its branches; the command and disposition of the military and naval forces; the power to approve or disapprove acts of the legislature, to recommend subjects and measures for its consideration, and in some countries to summon, open and prorogue its sessions; the power of appointing and dismissing the more important administrative officials; fended against the laws, save in impeachment cases. The executive branch of the government
in nearly all states, in a greater or lesser degree, is empowered to issue ordinances, regulations or decrecs establishing rules for the con-
duct of governmental officials and affairs, to interpret statutes for the guidance of officials and to supplement laws respecting numerous matters that have been left to the discretion of the executive. In England such executive legislation is accomplished by the "statutory rules and orders" issucd by the departments of state, especially the home office and the local
government board. In France the legislaturc enacts laws on broad, general principles and allows the executive to insert the details ly means of ordinances. The undefined and now greatly restricted "royal prerogative" of the executive in monarchical states has no statutory nuthority and may be considered the remnan
of the king's common-law powers. Sce the articles or paragraphs on "Government" under articles or paragraphs on "Govern
the titles of the varions nations.
relations of tife national executive and
Separation of Powers.- When the Constution was ments of government should be scparate and independent, but nevertheless this separation was sullject to some modifications in the Constitution as adopted and has been considerably changed by the practices which have deycloped tain amount of executive power in that it was entrusted with the confirming of apoointments: Congress was given a considerablc degree of control over the administration through its right to establish, regulate and maintain the various departments; and the President could participate in legislation through his right to hhrough his power of yeto. In recent years the contest for domination between the executive and legislative branches has resulted in a struggle in which each has endeavored to strengthen s own position at the other's expense.
Patronage.- Under Λ rlicle II, § II, 介 2 of the Constitution the President has power, "by
and with the advice and conscnt of the Scnate, to make treaties, provided two-thirds of the Scnators present concur; and he slall nominate, and by and with the advice and consent of the Senate, shall appoint ambassadors, other pubpreme Court, and consulls, judges of the Su preme Court, and all oher officers of the United otherwise provided for and which shall be cstablished by law; but the Congress may by law vest the appointment of sucla inferior officers, as they think proper, in the P'resident alone, in the courts of law, or in the heads of departments." Though the fathers of the Con-
stitution probably intended that the Scnate stitution probably intended that the Senate
should refuse to confirm Presidential nominaions because of unfitness only, the Senate has not hesitated to use its power in this respect for partisan purposes, chiefly to coerce the President. Under this senatorial power has arisen the practice known as "Senatorial courtesy" (q.v.), the extent and importance to
which this practice may attain depending which this practice may attain depending
largcly on the President's character and forcefulness. The Constitution makes no provision respecting removals from office, but in 1867, at
the time of the dispute between Presiden passed the Tenure-of-Ofice Act ($q . v$.), providing that persons appointed with the consent of the Senate should hold office until their suc cessors were appointed in like manner; in othe words, the incumbent could be removed only wirality consent of the Sederial alterations in 1869) and its final repeal in 1887. (Sec also De Facto Government). Impeachments are rarely uscd, though all branches of the government have had occasion to employ this cumbersome procedure (President Johnson, Judges Pickering Chasc, Humplireys, Peck, Swayne and Archi in the nine cascs only thrce convictions and resulted (Pickering Humphreys and Archibald), while Blount and Belknap were out of office when their cascs came up for consideration. Save by the method of impeachmen Congress cannot remove objectionable officials, though it may investigate and discredit them Sce Appointments; United States-Tie New Democracy and the Spoils System; United Statrs - Impeachments.

Treaty-Making.-The legislature is seldom allowed to participate in the negotiations of treatics, but to exclude errors and to prevent the possibility of abuse by an unwise, ambitious one branch thercof, usually possesses power of ratification before treatics negotiated by the executive may become the law of the land hence the treaty-making power is neither purely exceutive nor legislative in character. The Senate practically controls the power of making previously stated, that two-thirds of the Scnators must approve the treaty; as a result of the encroachment of the legislature on the executive the Senate now to a certain degree participates in the negotiations through its committec on forcign relations. The House has often en course of ne exotiations but the President is not obliged to heed the advice of the Housc it concurrence being necessary only when legisla tion is required to render treatics effective Sometimes, to circumvent the certain defeat of a treaty in the Scnate, the President has entere into an "executive agreement" with the country the chief provisions of the proposed treaty were carried out. See Treaties.

Departmental Affairs.- The President's power and influence over the exceutive depart ments vary and in many respects are subject to Congressional limitation. He is the head of the National administration, is obliged to enforce the faithful execution of all laws, and
under Article II, § II, I1 of the Constitution "may require the opinion, in writing, of the principal officer in each of the executive depart ments, upon any subject relating to the duties of their respective offices"; yet the departments, being organized by Congress, are subject to the which of Congress under statutory regulation power over departmental heads and their subordinates. From a strictly legal standpoint, the President doee not possess full althority in re spect to the control and direction of adminis-
trative affairs but he can establish himself as the chief executive and administrative office of the government and can make his will ef-
fective by removing an officer who refuses to comply with his wishes and appoint one who will do so - as was the casc when President Jackson compelled the removal of government funds from the United States Bank. However potent this power may be, it, could not be said control over administrative affairs since his authority has been strengthened constantly by an ever-broadening construction of the constitutional provisions requiring him to executc the laws. His power to issuc and enforce executive
orders pertaining to administrative affairs has orders pertaining to administrative affairs has courts scldom interfere to upsct firmly estab lished precedents. When clothing the President with executive power the framers of the Constitution primarily intended that, besides en-
forcing the laws, he should perform acts of a forcing the laws, he should perform acts of a
political nature, such as conducting foreign afpolitical nature, such as conducting forcign af
fairs, which are not subject to judicial review. Hence Congress seldom hampers the President in his conduct of foreign affairs through the State Department, and the extent of his personal supervision of such affairs depends largely upon the personality (and of course the respect to vesting authority for the administration of affairs (other than political), the intent of the framers was not clearly indicated in the Constitution, since one or more of the secreta ries is required to report annually dircet to Congress instcad of to the President; furthermore,
when it deems necessary or wise, Congress may provide for the management of certain services by joint committces of the two Houses, and may authorize subordinate officials to perform certain acts without the consent, approval or intervention of their superiors or the President (Among the administrative services outside the jurisdiction of the exccutive departments are
the Interstate Commerce Commission, the Civil Service Commission, the Government Printing Office, the Commission of Fine Arts, the Smith sonian Institution, ctc.). Congress maintains close control and regulation over the Treasury Department and the administracion of the finan cial needs of all deparmitsts. Althoug each department's necds, Congress not only disregards the secretary's recommendations but, i in the mood, appropriates vast sums which are not only not requested, but which are deemed by the secretaries and the President to be un necessary and wasteful. Such oftentimes are appropriations for rivers and harbors and pub
lic buildings, popularly known as the "pork barrel." Sec Budget System, American

The executive endeavors to cultivate har monious relations with Congress by complying with requests for opinions and advice, informa tion, documents, etc., partly because the succes of the administration's legislative program de pends upon such harmony and partly becaus This has resulted in bringing the exccutive and legislature together by devious and extra-legal methods, but in one instance an opposite devel opment has occurred. In our carly histor Cabinet menbers sometimes appeared in per son before Congress to give information or to
outline and advocate or oppose policies and this cannot be members of either Department heads are not excluded from the sessions, carly practice was discontinued and secms unlikely to be revived, though this course was advocated by a Senate committce in 1881 and by resident Taft in a message 19 Dec. 1912 See United States - The President's Office;
United States - Tile Cabinet of the; Unite States - Beginninge of Executive; Depart ments of the; Cabinet and Cabinet Gov Constitutional Geve federal Government; departments by name.
Presidential Influence over Legislation.-
Under Article I § VII, I 2 of the Constitution Under Article I, § VII, IT 2 of the Constitution the President may veto an act of Congress and uch act cannot become law unless repassed Ve a two-thirds vote of both Houses. (Se This fact is important not because of the fre quency of Presidential vetoes, but because enables the President to dominate Congress in a large measure; by a threat to wicld this weapon he may prevent the passage of bad laws and compel the elimination of objectionable § III provides that the President "shall from ime to time give to the Congress informatio of the state of the Union, and recommend to their consideration such measures as he shall judge necessary and expedient." No method of communicating with Congress is suggested o prescribed and both the written message and gress is not compelled to act upon the President's recommendations and seldom the Presi plete the suggested legislative program, but as the legislation advocated by the President presumably coincides with the policy of the party of the members of Congress usually majority same political affiliations, and as the outcome of future elections is much influenced by the char acter of the legislation and the manner of its execution, the President's recommendations rarely are refused serious consideration and
generally are enacted into law. Morcover Congress can ill afford to ignore public opinion and if the President be a capable party leader and can arouse public interest sufficiently to constitute a public demand he is quite sure to obtain the desired results. In recent years the President's influence has depended largely upon his force or persuasion.
relations of the national executive and the Judrciary.
Conflicts often arise in the relations of the exccutive and judiciary, due chiefly to the adopand the fact that unconstitutional actions and laws are referred to the courts for determination. This conflict of relations is most noted as regards the State exceutives and the Federal courts. Amendment XI of the Constitution provides that "the judicial power of the United States shall not be construed to extend to any suit in law or equity, commenced or
prosccuted against one of the United States by citizens of another State, or by citizens or subjects of any forcign State." Nevertheless the
courts have decided that this amendment doe not apply to an injunction or mandamus suit statute or Young, 209 U . S. 123). On the other hand suits against Federal officers in the State courts have been rare and never successful (see, for Tarblc's Case, 13 Wallace 397) Howard 500 in 1793 Congress passed an act prohibiting Federal courts to issue writs of injunction in order to stay proceedings in State courts, save in matters of bankruptcy ('Rev. Stat.') 720) Broadly speaking, the executive is not subject to judicial control in cases of discretion nor order which is unconstitutional is null and void cven though it be issued by the President himself; and any officer or other person executing such unconstitutional order is liable in dam ages (Little $v s$. Barreme, 2 Cranch 170). In
the case of Marbury vs. Madison (consult also the case of Marbury vs. Madison (consult also
Cranch 137) Chief Justice Marshall enunciated the doctrine that although the court could not interfere with the prerogatives of the execu-
tive it could and would command a head of a tive it could and would command a head of a department to perform a duty not dependent on executive discretion; but the question of to the President. Furthermore, so extended President and Secretary of War are concerned, the court has decided that purely political ac tions by an executive are not subject to judicial review or injunction (4 Wall. 475; 6 Wall. 50) But while unanthorized and unconstitutional
executive orders are null parties have the right to sue for damages those executing such orders, the mere allegation of unconstitutionality is not sufficient ground for the courts to enjoin the enforcement of a statute by the executive. In Wilson vs. Shaw (204 since Congress had ratified the exed the opinion, since Colngress had ratified the exccutive action,
that the courts "have no supervising control over the political branch of the government in its action within the limits of the Constitution." Indirectly through the appointing power the executive has considerable influence over the judiSurreme See uited States - Judiciary of the Surreme Court; Court.
powers and influences of the state
Organization of the State Executive. Unlike the National Government, where the chicf responsibility is concentrated in the hands of a single individual, the executive power and
responsibility in the States are divided between the chief exccutive and a number of other State officers, virtually his colleagues, over whom he has little or no control, and who, save in rare instances, are elected by the people, to whom alone they are responsible. Sometimes the chief executive may belong to one political
party and his subordinates or part of them to another, which renders difficult any operation among departments or between departments and the chief executive. Under early State constitutional provisions these State officers were either appointed by the
governor or chosen by the legislature and governor or chosen by the legislature and control over the conduct of certain measure of in late years these officers have been elected by
the people, as a result of which the governo as the head of compared with the Presiden been placed in power, having no general ant thority to direct, remove or discipline such elective officers; his only power of supervisio is the right to examine the administration o move the incumbents if in some cases to re feasance, corruptionts if found guilty of mal few States (New York for instance) the treasurer, if found to have violated his duty, may be suspended from office but not removed by the governor. As a rule the governor may remove son removed must be good cause, but the per and be afforded ample opportunity to reasons the charges. In Massachusetts and a few other states the governor at first appointed all judges sheriffs, court clerks, registers of probate and the attorney-gencral, but in most States all judges) are clected by the people. In save the few of the department heads are. In Maine a the legislature, and in New Hampshire a few are elected on joint ballot of the general court. is Delaware and Texas the secretary of state is appointed by the governor, while in Maryland mission of law sface, state librarian and comtary of state and the attorney-general secrePennsylvania the sccretary of state the and in ney-general and the superintendent of public instruction are appointed by the respective governors with the advice and consent of the senate. In New Jersey the treasurer and in by the general asscmblics of state are appointed the attorney-general is appointed by the judges. Governors still possess the pardoning power (in most States without restriction), but in a few vithout England States the pardon is incomplete cil. The concurrence of the executive counSate military forces and may-chief of the military slaff, but as a rule the other militi off eers are elected by the votes of the military organizations.
delation to Legislation.-Like the Presilenislature governor is anthorized to convene the and again like the President regular sessions, consideration of that body his views respectine natters of public policy and importance and his ecommendations of lcgislation to be enacted Cor the good of the State. As is the case with his advice and legislature is not obliged to heed sovernors have made direct and in many cases peals to the pcople to arouse public sentiment favor of their plans. All the States save Torth Carolina empower their governors to eto legislative enactments with the excepreturning constitutional amendments, but when State the such rejected measures they must ruicd by a two-thirds vote of both branches of the legislature the veto is absolute, but if repassed by the necessary vote the enactment II mes law without the governor's signature signature acts approved by him bear his isnature.
Administrative Powers.- From the fore-
vou $10-40$ sowers may be surmised as,
vol. $10-40$
lying not so much in his constitutional rights
or privileges as in the moral atmosphere and or privileges as in the moral atmosphere and prestige of his office, since he represents the casions he is the first citizen of all public oc representative of its political, civil and military authority. As the official head of the State he sends and receives communications in its name ; issues proclamations to its people; and owing to a varicty of powers, including the bestowal of public eye and his relation to the legislature he has an influence in shaping legislation far exceeding a strict interpretation of his constitutional prerogatives. He is the official and natural exponent of the State in National affairs and in its relations to the Federal Government, of clections to fill vacancies in Congress and even under Amendment XVII to the National Constitution may make temporary appointments of senators in case of vacancies until the people fill such vacancies by elections; he transand other acts of constitutional amendments relate to National matters
Tendencies and Proposed Reforms. The evils of the subdivision of executive power have not only been recognized but in many States the tendency is to remedy such defects by strengthening the governor's control over the administration through a wider appointing power; by officials; by relieving him of the confirmation of his appointment, by the State senate; by recognizing his unrestricted removal power; by authorizing him to make special inquiries into the several executive departments and during the
legislative recess to suspend officers who have violated the law; by empowering him who have from department heads written statements pertaining to anything connected with their respcctive duties; in some cases by allowing him, at stated intcrvals, to examine the accounts of in some States by treasurer and auditor; and in some States by requiring the principal State officers to render to the governor periodic rements, although such reports, even if convincing as to the official's incompetency, neglect of duty or violation of the law, in no way augment the governor's power of supervision over the ad-
ministration because of his greatly restricted ministration because of his greatly restricted
power of removal. Although responsible for the faith ful execution of the laws, the governor is often powerless, without the co-operation of the department heads, to carry out the constitutonal injunction owing to the manner in which the executive power is divided; as an example, he cannot compel the attorney-general unwillcorporation chiefly because he has neither the power of direction or removal, and this same wcakness characterizes his relations with other State officers. The enforcement of responsibility is impossible owing to the multiplication of departments excrcising administrative powers, and this is particularly noticeable in members of which are often elected by the people, though even if they are appointed by the governor he has little power of control or supervision over the administration of affairs entrusted to them. New York, Pennsylvania
and Massachusetts each have nearly 100 such boards and commissions, but a movement is going forward to consolidate most of thes affairs The creation of the office of "state business. manager") to organize and manag business manager,' to organize and manage
State busincss affairs under the governor's direction, has also been proposed. One governor has even recommended a system of State rule by commission, similar to the commission system of city government (q.v.). Another pro-
posal is to authorize the governor to appoint posal is to authorize the governor collectively, shall constitute a cabinet or conncil, and to give the governor a large power of initiating legislation. In this way the State executive would resemble the President and his Cabinet; thus the power and responsibility would be centralcould be introduced into the administration of State affairs.
pOWERS AND INFLUENCE OF THE MUNICIPAL

EXECUTIVE.

Growth of the Mayor's Powers. - In the government of the borough during colonial imes the executive and legislative functions governing body and the council was the sole called mayor. He was merely a member of the council, possessed no powers other than hose of a presiding officer, could not veto en actments of the council and could make no aphe did have some minor responsibilities, such as regulating taverns, supervising markets, holding coroners' inquests and hearing petty contesta ions at law. After the Revolution and with he advent of the Federal Government, the materially, owing to the influence of the senara ion of powers which was put in vogue in the National and State governments. For the first ime in the history of American cities, Balt more in 1796 empowered the mayor to veto esolutions of the city council, though vctoch ote; the mayor's powers of appointment to city offices were also much enlarged. In 1822 Boston authorized the mayor to appoint whom he chose, subject to aldermanic approbation But not until the middle of the 19th century did he municipal executive make much hcad way. eloped inefficiency, waste, extravagance and onsiderable corruption, whereupon the Stat governments intervened, transferring variou unctions from the councils to State-appointe and controlled boards, as, for example, in 186 the Baltimore police department was placed the Chicago police suffered the same interven ion; and in 1865 the New York legislature ssumed control of police, fire protection, puh ic health and licensing in New York city Subsequently the legislatures restored a larg measure of local control, but instead of reintating the city conncil in power, they placed ors of blich were appointed ly the mayor clected by the people. Hence the power of ppointment substantially increased the power f the mayor's office and in time even the confirmation of the mayor's appointees by the al
dermen was eliminated from city charters, as was the case in Brooklyn in 1882. Many other cities followed Brooklyn's lead and though is large number still retain the practice, it membered, however, that in no two cities of the United States are the mayor's powers alike and in describing the position and powers of the American mayor even the most important statements must be made with large rescryations; in New York and Boston the authorts
of the municipal councils is insignificant when compared with the powers of the mayors, whereas in Philadelphia and Chicago the reverse is true, the councils still maintaining a strong grip on local governmental affiairs
The Mayor's Influence upon Legislation - Theoretically the mayor's office is administhe mayor cxerts a strong influence upon loca legislation. In some cities, like Chicago, he presides over the sessions of the city counci but in most cities he not only is deprived of this privege but may communicate wike the body only through a written message, Like the may and often does suggest new legislation fo the consideration of the council and to a cer tain degree the deference shown to his sugges tions depends upon his personal character and political influence. Like the President, howcver, the mayor has an effective weapon in
veto power (but not the privilege of the "pockveto power (but not the privilege of the "pock
et veto"), since under most city charters he must pass upon every ordinance or resolution of the council, and in many cases mayors have used this privilege without scruple to enforct aldermanic submission. A prescribed majority
must be obtained to override the mayor's veto must be ontaincd to override the mayor's whether the council consists of one or of two chambers, but though the usual practice is a two-thirds vote, the requirement is more rigia in some cities, being three-fif ths in Philadelphia three-fourths in Baltimore and seven-ninths in San Francisco.

The Mayor's Appointing Power. - In mos cities the people clect a few heads of the city appointed by the council; and in isolated cases important city officials may be appointed by the State executive or by the higher State courts But in the majority of citics the mayor appoints
the departmental heads, subject to the approval of the council or board of aldermen; sometimes, as in New York city, Denver and San Fran cisco, these appointments need not be confirmed by any municipal or State authority, but in fow cases, as in Boston, such appointments, to he effective, must be aproved by a State civil service commission. Recently the system of favor and the latest city charters omit the cont firmation feature. See Appointments, Finerat. State, and locat

Miscellaneous Functions.-As regards mil nicipal finance, the mayor's powers have her largely increased; the preparation of the eit hudget, which formerly was under the super
vision of the council has been transferred to the city executive owing, in a large measure, the inordinate amount of logrolling in whi the councilmen indulge. In some cities, lin Now York, the preparation of the budget an
the determining of the tax rate are supervis
by the board of esti,nate and apportionment and in other cities, like Boston, the mayor has direc charge of the work, but in all cases the city appropriations, this being vested in the council, which, under certain restrictions, may also increase or reduce the various items. (See Bunget System, American). Some charters cm power the mayor to obtain reports from city and to conduct investigations ; and accounts quire the mayor's approval to validate contracts In a few cities, when necessary, the militia may be called out by the mayor and in some cities persons convicted and fined in municipal courts may be pardoned by the mayor and he may also erniment f: Mee Cities, American, Govnet and Cibinet Goympnment: Compission Form of Government; City Manager Plan of Government.
Bibliography.-Beard, C. A., 'American Government and Politics (rev. ed., New York ment and Politics) (New York ment and Politics) (New York 1909) ; Bayles, States' (New York 1895) ; Bondy, W., 'The Separation of Governmental Powers' (in 'Columbia University Studies,' Vol. V, No. 2, New York 1896) ; Blue, L. A., Relation of the Govin the United States) (Philadelphia Power Bryce, James, (American Commonwealih) (rev. cd., New York 1914) ; Belmont, Perry, 'Cabinct Officers in Congress' (iin North Ancrican Review, Vol. CXCVII, pp. 22-30, January
1913) ; Bradford, G., 'The Lesson of Popular 1913) ; Bradford, G., 'The Lesson of Popular 'Promise of American Life) (New York 1912); Durand, E. D., 'Council vs. Mayor' (in Political Science Quarterly, Vol. XV, pp. 426-51, 675709,1900); Eaton, D. B., 'The Government of (The Civil Service and the Patronage) C. R., York 1905) ; Finley, J. H., and Sanderson, J. F., Mcthods) (New York 1908) : Ford 'Cost of Our National Government' (New York 1910) ; Fairlic, J. A., 'The National Administration of the United States) (New York 1905), 'Municipal Administration' (New York Law Revieze V X 1912). (The Office of Mayor in the United States) (in Municipal Affairs, Vol. III, po. 33-60, New York 1899); Gauss, H. C., 'The American Government' (New York 1908) ; Garner, J. W., Introduction to Political Science) (New York 1910), and 'Government in the United States, Grant, A. H., (The Office of Mayor) (in The American City, Vol. IV, pp. 25-26, New York 911) ; Gettell, R. G.. (Readings in Political Science) (Boston 1911) ; Goodnow, F. J., 'Mut nicipal Government' (New York 1910), 'City
Government' (New York 1904), and' (PrinGovernment' (New York 1904), and '(Prin-
ciples of American Administrative Law' (New ciples of American Administrative Law' (New Charters' (Chicago, 1906) ; Hart, A. B., 'Actual Government' (rev. ed., New York 1009) ; McLaughlin and Hart (cds.), 'Cyclonxdia of American Government) (New York 1914):
Mason, E. C., 'The Veto Power) (Boston Mason, E. C., 'The Veto Power' (Boston
1890); Munro, W. B., 'Government of Amer-
ican Cities' (New York 1913), and (Bibliography of Municipal Government') (Cambridge,
Mass. 1915) ; Powell, T. R., 'Scparation of Mass. 1915); Powell, T. R., 'Scparation of and Judicial Power' (in Political Science Quarterly, Vol. XXVII, pp. 215-238, June 1912, and Vol. XXVIII, pp. 34-48, March 1913) ; Reinsch, P. S., (Readings in American State Government') (Boston 1911); Salmon, L. M., 'History of the Appointing Power of the President' (New York 1886) ; Story, J., 'Commentaries Taft, W. H., 'Four Aspects of Civic 1890); (new ed., New York 1906) ; White, F. H 'Growth and Future of State Boards and Commissions (in Political Science Quarterly, Vol. XVIII, pp. 631-656, 1903); Wooisey, T. D., (Political Science) (2d ed., New York 1893);
Wilson, Woodrow, (Congressional Government (15th cd., Boston 1900), and 'Constitutional Government' (New York 1908): Willoughby W. W., Constitutional Law of the United States)" (New York 1910)

Irving E. Rines.

EXECUTIVE AND JUDICIARY, those

 branches of government which, respectively, are that judge or determine the applications, and laws to particular cases, their constitutionality, etc. See Court; Executive; State.EXECUTIVE OFFICER, in the navy of the United States the officer of the line next in rank to the captain. His appointment is usually direct from the Navy Department, but in some cases a senior officer is dctailed as vessels this officer is generally of the rank of commander, but in the smaller vessels is of lower rank. He is the aide and executive of the captain in all matters and is responsible or all drills and routine work. He has charge In battle isted force and keeps their records. pervision of the battery and of everything in regard to the safety of the ship except navigation. While on board he has general supervision of the organization, discipline, exercise, etc., of he cre

EXECUTIVE POWER, narrowly defined, is that power which enforces law. In its larger cretion and judgment, the rendering of important decisions, and the formulation and carrying out of constructive policies. The executive directs the public life of the state, and in all elations with foreign states is its representative. dminister and enforce the will of the is to as formilated by the icrislature. The exccitive should be characterized by prompt deision, singleness of purpose and energetic action, objects which are only obtained by vesting the executive power in the hands of a single person. Sce Executive; Government;

EXECUTIVE REFORM

REFORM. See Execu
EXECUTOR (Lat. "performer") A Eecutor is one to whom another man commits his last will and testament for execution of hat last will and testament (2 Black. Comm. 503). A person to whom a testator by his will commits the execution or putting in force of
that instrument and its codicils. The following is a brief summary of an executor's duties: (1) He must bury the deceased in a manner suitable to the estate left behind. But no
unreasonable expenses will be allowed, nor any unnecessary expenses if there is risk of the estate's proving insolvent. (2) Within a convenient time after the testator's death, he should collect the goods of the deceased, if he can do so peaceably; if resisted he must apply to the courts for relief. (3) He must papers. (4) Ordinarily, he must make an inventory of personal property, and in some States of real estate also. (5) He must next collect the goods and chattels, and have the claims inventoried, with reasonable diligence. And he is liable for a loss by the insolvency of a debtor, must give notice of his appointment in the statutory form and should advertise for debts and credits. (7) The personal effects he must deal with as the will directs, and the surplus must be turned into money and divided as if there was no will. An administrator must at
once collect, appraise and sell the whole. The safest method of sale is a public auction. (8) safest method of sale is a public auction. (8) but not mixed with his own, or he may be charged interest on it. (9) He must be at all times ready to actually file an account within the year generally prescribed by statute. (10) He must pay the debts and legacies in the order required by law. Func
EXECUTORY DEVISE, a bequest by EStament of a future interest of real or personal property, which is such that it may not be described as a residuary estate. It must take effect within a life or lives in being and 1 years after. See Devise; Future Estate.
EXEDRA, a seat built out from a portico in Greek and Roman buildings. Such scats times were provided with a roof. Famous examples of exedras built out of doors were those in the Street of Tombs, Pompeii. The SiegesAllee, Berlin, contains modern examples of this kind.

EXEGESIS, Biblical. The word "exegesis" is from the Greek $\{\xi$ 方rodrs, primarily a leading out, and coming to mean, an interpreta-
tion, an explanation, a making clear. The verb E ξ yytoual occurs six times in the New Testament, always in the sense of revealing a fact or of making clear a truth, Luke xxiv, 35; John $i, 18$; Acts x , 8 ; Acts $\mathrm{xy}, 12,14$; Acts xxi, 19. In John i, 18, we read, "No man hath scen God at any time; the only-begotten Son, who
is in the bosom of the Father, that one became is in the bosom of the Father, that one hecame say, Jesus revealed the inmost character of Gay. He made manifest what otherwise would have remained hidden. He interpreted God's being. He made clear the Divine providence and plan. His person and his whole teaching and life were an exegesis of the invisible and previously incomprehensible Godhead. What exegete endeavors to do for the Bible. He searches for its inmost meaning, explains what is obscure, leads out to the light what is less manifest, makes clear all its implications and

Sets its complete import before the mind's eye. The task of Biblical exegesis, therefore, is to clear up all difficulties and to make plain the
meaning of the Bible text. It might seem a meaning of the Bible text. It might seem turics of endeavor have shown that while all the essentials of the revelation in the Bible are reasonably clear there are problems connected with all of the Bible books. which tax the hitmost powers of the greatest minds to master interpreters of Bible truth. One of these is apparent in those exegetes who
"Each dark passage shun
And hold their farthing candle to the sun."
What is clear in itself needs no further explanation. The office of the exegete becomes scurc. Another danger in exegesis is that of bringing a meaning to the text instead of drawing the meaning from it. The text is forced into agreement with previous prejudice or opin-
ion. This is nearly always fatal to the truth. ion. This is nearly always fatal to the truth. As an old monk said, "Whosoever seeketh an from God; whosoevcr bringeth an interpretation to this book shall get an answer from the devil." Jerome put the same truth more mildly when he said, "He is the best teacher who does not bring his doctrine into the Scripture but ut of the Scripture." Sometimes the obvious meaning of the text is unpalatable to the exehe is tempted to explain the meaning away. This is rankest treason to his calling. He is expected to be loyal to the truth and nothing but the truth. If he betray the truth in behal of a political party or a church organization or office or name. A fourth temptation is that of adding to that which is written, improving upon the text by the addition of unwarrantable inferences and subjective fancies and unjustifiable subtlecties of every sort. It represents the presumption of the apostle Peter at Cæsarca Lord what ought to be said and done. These are four fundamental faults of all exegresis; a are four fundamental faults of all exegesis;
failure to explain the meaning that is obscure, a distorting of the meaning that seems obvious, an utter perversion of the plain truth, and a supplanting of the truth with merely human verburder and the substitution of a changeling for the true child are crimes in the realm of interpretation, as well as under the civil law. The science of exegesis has sought from the first to ree itself from these faults. If it has not wholly succeeded as yet, that is simply to acknow edge that like all other science its development has been entrusted to fallible men. We may history of the Church, and in all of them some one or other of these fundamental faults is ikely to be manifest.
The first important school of exegesis was founded at Alexandria, and it flourished from 150 to 400 A.D. Its most distinguished repreSentatives were Clement, Origen, Athanasi11s, peerless prince was Origen, the greatest scholar and saint the Christian Church has produced since apostolic times. A great injustice has
been done both him and the Alexandrian school
by associating their names almost exclusively with the allegorical interpretation of the Scripthough this method were their only method or were peculiar to them alone. Neither of these things were true. The allegorical interpretation
was much older than the Alexandrian school and has persisted in drageing out its pernicious existence to this day. It was prevalent and predominant in the Rabbinical schools of exegesis before the Christian era began. The Tal mudists finally found a watch-word for their mystical exegesis in Pardes, or Paradise. The S, were made to indicate the four words, Peshat or explanation, Remes or hint, Darush or homily, and Sod or mystery; and these in turn represented the fourfold interpretation of which every passage in Scripture was capable any Scripture could the by means of these ways and the expositor could break in 49 into fragments even as a rock is broken by a hammer (Sanhedrin, 34). The apostle Paul carried at least one example of allegorical treatment into our New Testament, probably sugGamaliel Gal iv 22-31. This introduced into Alexandria by Aristobulus and pseudo-Aristeas, and it became authoritative as a method of exegesis under Philo, the foremost writer among the Alexandrian Jews contemporaiy with the Christ. Philo found the method ready made to his hand, not only by phers who had allegorized Homer and Hesiod and the ancient Greek myths into conformity with their more advanced ethics and faith. The Alexandrian Church fathers thus found the allegorical interpretation in vogue among their They believed it had a Scriptural sanction. They accepted it without question. Their genius and wide influence gave it a standing in the Christian Church for centuries; but the Alexandrian school never had a monopoly of its use. It is unfair, therefore, to hold them responsible, either for the origination or for the promulgaOrigen did teach that there was a threefold sense in Scripture, corresponding to the hody, soul and spirit in man-a literal and a moral and a mystical sense. But Jerome also made it a rule that the Scripture should be interpreted
in three ways, historically, tropologically and in three ways, historically, tropologically and
spiritually; and he related this threefold divispiritualy; and to doctrine of the Trinity. And Augustine formulated one principle of his exegesis in these words, "Whatever there is in the word of God that cannot, when taken literally, be referred either to purity of life or soundness ('De Doctr. Christ. III, ch. 10, sect. 14). He wrote to Honoratus, "All that Scripture, therehanded down fourfold to them who desire to know it, according to history, according to xtiology, according to analogy, according to
allegory" ('De util. credendi,') 5). This fourallegory" ('De util. credendi,' 5). This four-
fold division was adopted ly many of the church famous couplet of Nicholas of Lyra the amous couplet of Nicholas of Lyra

Littera gesta docet, quid credas Allegoria,
Moralis quid agas, quo tendas Anagogia

A good example of this fourfold sense was rally it stural use of the word, Jerusalem. Litmorally, the individual believer; anagogically, the heavenly state.
Thool in connection be said for the Alexandrian school in connection with the allegorical interpretation of the Scripture. (1) It did not
originate this method. (2) It never exercised any monopoly in its use. (3) It found what seemed to be a sufficient sanction in the typology and allegory of the Apocalypse, the Pauline epistles, and the epistle to the Hebrews. (4) No other method of interpretation would have availcd them, in their stage of Biblical knowl-
edge and in their environment, for the defense of many portions of the Old Testament. Their adequate apology for yielding to the fourth temptation mentioned above is to be found in the necessities of their case. (5) Their use of this method grew out of their very piety and
spirituality. These simply joined forces with their poetical imagination and philosophical insight in the endeavor to save the Scripture from contemporary disrepute. (6) They never used the allegorical method dogmatically and they "They are always excesses of the later day. "They are always intelligent and reasonable. They evaporated the letter; they did not stereo-
type the spirit" (Bigg, 'Christian Platonists of type the spirit" (Bigg, 'Christian Platonists of
Alexandria,' pp. 149-150). Making all allowance for fault at this point, the fact remains that "Origen was the greatest Biblical critic and exegete of the ancient church" (Terry, 'Biblical Hermeneutics, p. 639). His one object was to nd and set forth the edifying truth in the true in their historical meaning are much more numerous than those which are interspersed with a purely spiritual signification." Having adduced many passages in which a literal meanthe exact reader must, in obedience to Savior's injunction to search the Scriptures carefully ascertain in how far the literal meaning is true, and in how far impossible; and so far as he can, trace out, by means of similar tatements, the meaning everywhere scattered through Scripture of that which camnot be uncipiis,' IV, $1 ; 19$). This is seen at once to be, as Davidson said, "not so absurd or injurious as many represent" ('Sacred Hermencutics') p. 68). Bishop Lightfoot is fully justified in saying of Origen, " Λ very considerable part of whether ancient or modern, is due to him A decp thinker, an accurate grammarian a aborious worker, and a most earnest Christian, he not only laid the foundation, but to a very great extent huilt up the fabric of Biblical interpretation" ('Commentary on Galatians,' p. Bible Farrar heclares, His knowledge of the were absolutely unrivaled" ('History of Interpretation,' p. 188). Fairweather adds, "Properly speaking, Origen was the first exegete. Everything done in this direction previously had been merely preparatory to a scientific interpretation of Scripture. One of the great merits Origen is that he never shirks a difficulty. Nothing colld exceed his passion for tic and critical insight, while his knowledge of
the ancient theology is unique" ('Origen,' p.
120). Harnack calls Origen "the father of ec120). Harnack calls Origen the father of ecword," and says that he "was an exegete who believed in the Holy Scriptures and indeed, at
bottom, he viewed all theology as a methodical bottom, he viewed all theology as a methodical
exegesis of Holy Writ" ('History of Dogma,' II, pp. 332, 335). In Origen, therefore, we find master in this field. His faults were those of his age; his excellences have been an abiding blessing to the Church. Our age is coming to agree with Gregory Thaumaturgus in his Panegyric, when he says of Origen as an exegete,
"That greatest gift that man has received from God, and that noblest of all endowments, he has had bestowed unon him from heaven, that he should lee an interpreter of the oracles of God to men, and that he might understand the words of God, even as if God spake them to him, and that he might recount them to men in such wise as that they may hear them with intelli-
gence. gence. . He explained whatsoever was light, as being himself a skilled and most discerning hearer of God. . . He alone of all men with whom I have mysclf been acquainted, or of whom I have heard hy the reof God, as to be able at once to receive their meaning into his own mind, and to convey it to others. For that leader of all men, who inspires God's dear prophcts, and suggests all their prophecies and their mystic and heavenly words, has honored this man as He would a
friend, and has constituted him an expositor of friend, and has constituted him an expositor of
these same oracles; the things of which He only gave a hint by others He made matters of full instruction by this man's instrumentality; and in things which He, who is worthy of all trust, either enjoincd in regal fashion, or simply enunciated, He imparted to this man the gift them; so that, if there chanced to be anyone of obtuse and incredulous mind, or onc again thirsting for instruction, he might learn from this man, and in some manner be constrained to
understand" (Argument, XV). It is the picunderstand" (Argument, XV). It is the pic-
ture of the perfect pattern of the union of scienture of the perfect pattern of the union of scien-
tific investigation and spiritual insight which tific investigation and spiritual insight which
makes the model exegete. The transcendent makes the model exegete. The transcendent
genius of Origen lifted him above his age at many points, and the 20th century is beginning to see that his conception of revealed ruth is far superior to that of most of his successors in the history of the Church.

It has been customary to denounce Origen gence in allegory and to contrast with them most favorably the next great school of exegetes at Antioch. The most distinguished names here were those of Lucian, Diodorus, Theothat these men were literalists tather than allegorists. They held rigidly to the historical and grammatical sense and it is but natural that the historical and grammatical critics of the 19th century should applaud their opposition to
the allegorical flights of the Alexandrians. the allegorical flights of the Alexandrians. However, it is well for us to remember that this school has its dangers and faults as well
as the Alexandrian. Its literalism resulted in a rationalism which was like a dry rot in the Church. Historically, it led directly to Arianism,
which threatened to cut the tap-root of the Christian faith; and against this the orthodox exegesis of Athanasius the Alexandrian, proved
to be the only safeguard of the Church at the to be the only safeguard of the Church at
last. Its tendency was to narrowness, rather last. Its tendency was to narrowness, rather
than to richness. What it gained in straitness, than to richness. What it gained in straitness,
it lost in breadth. However, among all the it lost in breadth. However, among all to Origen in uniting the best characteristics of both schools. "Through a rich inward experience he lived into an understanding of the
Holy Scriptures; and a prudent method of Holy Scriptures; and a prudent method of interpretation, on logical and grammatical (Neander, 'History of the Christian Religion and Church,' II, p. 693). Crigen and Chrysostom had no worthy successors in the next millennium of church history Jerome has heen called the Origen of the Western Church but he was too hasty in composition, too much in-
fluenced by his personal prejudice, and ton vacillating and uncertain in his own opinions to deserve this name as an exegete. His scrv-
ices in other directions were irvaluable. He ices in other directions were irtvaluable. He
was the greatest scholar in the West as Orimen was the greatest scholar in the West as he lacked the depth of character, the consistency of principle, and the consequent spiritual intuch
tion of that greatest master in the early Church. Augustine has exerted a wider influence upon the Christian Church than any other of the church fathers. He was the chief authority through the whole of the medieval age. Martin Luther was an Augustinian monk at the and Calvin and Bucer all built upon the foundations which Augustine had laid down. The works of the great Latin father have been read and reverenced by Protestant and Ronian Catholic alike, and it is only in outr day that serious question has ariscn as to his right to continued supremacy. In the present reaction from the
theology of the Latin Cathers to the older and purer theology of the Greek fathers, it is in the field of scholarly exegesis that the inferiority of Augustine becomes most apparcnt. He was not even equal to Jerome in scholarship. He knew no Hebrew. He was very deficient
in his knowledge of the Greek. He preferred a in his knowledge of the Greek. He preferred a
translation to the original text. Hc was continually making mistakes as to the meaning of words. He had all the defects of his predecessors, without their excuse for them. The Alexandrians had been driven into the use of allegory to harmonize the Gospel teaching with the truth of Greck philosophy and to command
the hearing and respect of their Jcwish conthe hearing and respect of their Jcwish con-
temporaries. But Augustine was an allegorist temporaries. But Allgustine was an allegorist
of the allegorists when no necessity was laid upon him and when allegory had degenerated into mere imaginative ingenuities. Augustine had genius and a genuine Christian expericnce and consequently flashes of illuminative internot compensate for the lack of the critical faculty and a sound hasis of linguistic scholarship in exegesis. "Spiritual insight though a far diviner gift than the critical faculty, will not supply its place. In this faculty Augustine
was wanting, and owing to this defect, as a conwas wanting, and owing to this defect, as a con-
tinuous expositor he is disappointing) (Lightfoot, 'Commentary on Galatians,' p. 233). His total influence has been an immeasurable bane
to Christendom. He was chicfly responsible for subordinating exegesis to ceclesiastical authority. He said, "For my part, 1 should not believe the gospel except as moved by the authority of the Catholic Church" ('Ep. c. Manich.,' ch. 5 .
sect. 6). He declared, "Now Scripture asserts sect. 6). He declared, "Now Scripture asserts nothing hut the Catholic faith" (De Doctr.
Christ. exegesis to make good that declaration. He fastened upon the Christian Church the dogma es for 1,00 cars; the exaggerated do trine of total human depravity," the guilt o nnocent infancy, arbitrary clection involving will, atonement by quantitative equivalcnce in suffering, the sulttle systematization of divine counsels and schemes, the imperious necessity o sacerdotalism and sacramentarianism, intoler ance of opinion contrary to churchly authority, gent study of the revealed Word Following his lead the Church has floundered for centuries through sloughs of despond and has almost for gotten the broader horizon and the fresher ai of the high table-lands of the carlier theology Among the Greek fathers no one of these questianity found an atmosphere congenial cnough in which to thrive we awe congenial co tine but it is hard for us to believe that his good influence can hegin to equal his evil influence upon the Christian Church. His is the last great name among the church fathers. Fo a thousand years little or no progress was mad The Schoolmen contented themselves most part with conying and compiling the work of their predecessors in this field. It hocame a proverb among them, Si Augustinus adest sufhicit ipse tibe. One of them stated plainly that which ran counter to the authority of the Church, "however much such a sense may be in conformity with the literal meaning. Indeed that ought not to be called the literal sense which is repugnant to ecclesiastical authority Fven Gerson declares, "The literal ditiones") Even Gerson declares, "The literal sense mus mined" (Propp. de sens., lit. 3). With no independence of thought and with no fresh scholarship the schoolmen added no new principle of exegesis in a thousand years of commentary writing. They were expending their energies posed subtle and futile spect1ations. They cominal and arrived nowhere in particular. They labored hard in a treadmill. They wers weakes in exegesis. Only two or three of them knew any Hebrew, and most of them knew very little if any Greek. They were nnoriginal, un a wrong concention of inspiration, and it naturally followed that they had a wrong method of exegesis. They had their merits too, but not as

With the Protestant Reformation we come to a new cra in Scriptural exegesis. Coleridge not inferior to Augustine and worth a lorigade of Cyprians, Firmilians, and the like" ('Re-
mains,' III, p. 276). Calvin sweepingly asserts,
"Modesty will not allow me to speak of our selves as fact would justify; and yct I wil most truly declare that we have thrown more who upon the Scriptures than all the doctors commencement. selyes dare not deny us" ("Antid. in Conc fresh discovery to the Church of that day For the first time it became the property of the common pcople; and the printing press made it possible for it to become a common possession. It had been locked up in the Latin tongue and was supposed to be the peculiar property of the priests. Translations now made constantly appealed to its authority in their opposition to the usurpations and the abuses of the hierarchy. That necessitated a renewed study of the sacred text on both sides. It soon became impossible for a man to be a doctor
of divinity for eight years, as Carolstadt conof divinity for eight years, as Carolstadt con-
fessed that he had heen, before he had read his New Testament. The Protestants delighted to circulate such stories as that of Sixtus of Amana concerning Albert, archbishop of May ence, who read a few pages in the New Testa ment and then put it down, saying, "I know contained in it are hostile to us" (Antibarb Bibl.) II, 7). The churchmen and schoolmen had always based their doctrinal systems upon the Bible, but the stercotyped interpretation of the Scriptures had come to claim the authority said to Martin Luther in the convent Nathin (Brother Martin, let the Bible alone; read the old teachers; they give you the whole marrow of the Bible; reading the Bible simply breeds unrest') (Lindsay, 'History of the Reformation in Germany.' p. 200). Hereshach the friend of original Greek was the prolific source of all heresies, while the study of Heloce source of al into Jews at once. (D'Aubigne, I, ch. 3). It was decmed dangerous for the layman to at tempt to understand the Scripture for himself it was his duty to accept the interprctation of that the protest was made; and all the Reformers insisted that the Bible ought to be onen to cvery man and that the Spirit of God would help every man to a sale and sufficient understanding of its contents. Luther came to take the position that no external authority could
decide what was Scripture or what was the decide what was Scripture or what was the
meaning of Scripture. He said, "How can we know what is God's Word and what is true or false? . Who decides me there? No man, but only the truth which is so perfectly cortain that nohody can deny it') (Dods, 'The Bible, Its Origin and Nature,' pp. 38-40). Cal-
vin said, "Scripture is self-authenticated, vin said, "Scripture is sclf-authenticated, carrythe credit which it deserves with us by the testimony of the Spirit") ('Institutio.) I; 7;5) Over against this position may be put the words of Lacordaire, "What kind of a religion is that which saves men by aid of a book? God has given the book, but He has not guaranteed your private interprctation of it. . If there most serene and unmistakable authority" (cf. Lindsay op. cit., p. 457). That authority is not,
according to Lacordaire, found in private judgment but in the infalible decree of Pope or Reformation Such was the issue drawn by the of the Scriptures, the one as interpreted by the Church for all, and the other as interpreted by the Spirit to each man. It was equally ininterpretation was a true one. This battle over the Book led to such searching of the Scriptures as had not been seen in the Church
in any period of its history.
The way was opened for an intelligent discussion of the Scripture text largely by the
labors of Erasmus of Rotterdann. His edition of the Greek Testament became the standard lext among the reformers. His translations annotations and paraphrases entitle him to high rank as an exegete. He was independent in judgment, characterized by good sense, and a philologist without a peer. His aim was to
make the meaning of the Word perfectly clear to all. He said, "I do not see why the unlearned are to be kept away, especially from the evangelical writings, which were proclaimed alike to learned and unlearned, equally to Greeks and Scythians, as much for slaves as for the free, at the same time to men and to women, not less in Matt.'). Erasmus still clung to the mystical or allegorical interpretation of certain Scriptures and thought that the Holy Spirit had intended that some words should carry multiple meanings. It was Martin Luther who broke finally and conclusively with this ancicnt error.
$H e$ deserves highest honor as an excgete as well as a reformer by the enunciation of this principle, "Each passage has one clear, definite and true sense of its own. All others are but doubtful and uncertain opinions." He added, "The literal sense of Scripture alone is the whole essence of faith and of Christian the-
ology. . . Allegories are empty speculations. . An interpreter must as much as possible avoid allegory that he may not wander into idle dreams. . . To allegorize is to juggle with Scripture. our one effort will be to attain unum, simplicem, germanum, et certum sensum literalem" ('Commentary on Genesis') ecognizerome and so many others who true to these principles in his own exegesis. He published 'Notes' on many portions of the Scripture, and a complete 'Commentary on Galatians. His exegetical works were published in German, and were of paramount influence in introducing better methods of exegesis in the Reformed Churches. Melanchthon, Bucer. Zwingli, Beza and many others did notable work in exegeses in the Reformation period; to-day. The greatest exegete among the reformers was John Calvin. He wrote complete commentaries on ncarly the whole of the Bible. The single exception in the New Testament was the book of the Apocalypse; and Judges, Ruth, Kings, Esther, Ezra, Nehemiah, Proverbs, Ecclesiastes, and Song of Solomon were the
only books left untouched in the Old Testament. His commentary on the Psalms was ustly celebrated for its religious insight; and in the Pauline epistles and the book of Acts he is
at his best in the New Testament. He wrote of this mind, that the principal point of an interpreter did consist in a plain briefness.
We wished that there might be some one who gave his diligence not to trouble those who are desirous of learning with long comone chief excellence of Calvin's exegetical work. It is clear and concise and not loaded down with references to a host of other authorities. Calvin has the learning necessary for his task, but he makes no needless display of it. He uses simply to present plainly the meaning of his
text. He was honest and independent in comment, intelligent in his method and comparatively free from the worst faults of all his predecessors in this line. He never agreed with Luther as to the adequacy of the private judgment ; and yet he was a persecutor of tho who did not agree with his own views. The throughout his commentaries, and the repudiation of his conception of the decree as the central idea of Christianity has gone far to detract from his use and uscfulness in the America of the 20 th century. However he is
still worth consulting for his good sense in most things and his good style in all.
It seemed a necessity of the age that all Christians should be dogmatists, and Protestant dogmatism soon became as deadly an influence in the field of exegesis as Roman Catholic tradition had ever been. The successors of the succeeded the great Fathers of the earlv Church. They were subservient to authority and fettered by dogma; and in the 17th and 18th centuries very few exegetes appeared whose works are read to-day. The scholarship of the elder Lightert Leighton on First Peter are still enioyed. John Owen's Exercitations on the Epistle to the Hebrews is a monument of erudition and pious reflection; but, like Caryl on Job, it is too voluminous to hord attention in this modern age. Robert Hall said of Owen, "He always takes for granted what he ought to prove, wher granted; and after a long digression, he concludes very properly with. This is not our concernment; and returns to enter upon something still farther from the point." Adam Clarke added, "To me he is one of the most unsatisdrowns in a world of words. He cannot condense his meaning, and never comes to the point, but by the most intolerable circumloculion') (Etheridge, 'Life of Adam Clarke,' pp. 17-318). He may stand as probably the last ex ample the world will ever see of such intolerable prolixity. Arminius and Crotius intro
duced the reaction from Calvinistic and Lutheran and Augustinian exegesis, which has been gathering force ever since and which has about come to its triumph in America. Cocceius and Vitringa in their opposition to
scholasticism and dogmatical bias furnished a scholasticism and dogmatical bias furnished a series of commentaries with many excellen of the mystical or allegorical interpretatioll. Bengel's Gnomon is a model of brevity and learning in exegesis. Philip Schaff calls it "a marvel of multum in parvo." Henry, Scoti
and Adam Clarke wrote devotional commen tries which are still in use. Ernesti has been
regarded as the founder of a new exegetical school, attempting to hold the via media hetween the allegorists and the dogmatists. Hi exegesis was predominantly grammatical. Sem ler, pietist and rationalist, introduced the his toric method of exegesis, and prepared th the 19 th century. The most dominant influcnce in the 19th century in the whole field of theology was that of Schleiermacher. He was the founder of what has been called the psycho logical school of exegesis. He was both rationalistic and supernaturalistic in his interpretation classes and did much to bring all Germany back to a central emphasis upon the person and teach ing and influence of Christ. In Germany and through Coleridge and Maurice, in England and America his spirit and methods have been fruithistory offers no parallel to him study. "Church of Origen" (Farrar, 'History of Free Thought,' p. 244). He was the "Plato and Origen of Germany in the 19th Century" (Philip Schaff). He based his religion upon faith and feeling, and he made the Christian consciousof his Scriptural interpretation. He claimed a Divine compulsion in his teaching and spoke and wrote with prophetic fervor and authority. necessity within me, I fecl myself compelled speak. . Nor is it done from any caprice (${ }^{\text {or accident. Rather. }}$. it is a divine call" magnetism and pronounced genius, his eloquence and earnestness, the genuineness of his Christian experience, the remarkable breadth of his vision zeal gave him a most extraordinary influence upon his own and succeeding genery influence vindicated the right of Christian experience to an equal hearing with the results of any purely scientific rescarch. His spirit pervades the Christian world to-day and will maintain its Wermanent place in Christian thought. De Wette was the greatest exegete among the disprodigious learning and "perfect loyalty in the search for truth" (Godet). He expresses himelif clearly, but does not always come to a deirably definite conclusion. Credner occupied practically the same standpoint.
cientific Bible study (Plled a new era in all of Theology, p. 209). In that year Strauss published his 'Life of Jesus,' Baur, his work on the 'Pastoral Epistles,' and Vatke, his 'History of the Religion of the Old Testament.' Each
of these books may be regarded as epochof these
Eichhorn has reduced the rationalistic treatment of the Scriptures to a scientific system. Concrete and popular form. Baur was the ounder of the Tubingen or Tendency school, wich probably represented in Germany the greatest theological movement of the century. the bar of historical investigation exegesis to aii traditional exegesis critically. He examined ne New Testament books to a more thorough
going analysis than they had ever known. He emphasized the theological standpoint of each writer, and he thought he detected an irreconcilable antagonism betwcen the Pauline and the
Petrine wings of the Christian Church. He stimulated Bible study to an astonishing degree His personal power was manifest in the remarkable group of disciples he gathered about him. Among these we may mention Zeller. Schwegler, Hilgenfeld, Holsten, Pfleiderer and Baur has been characterized by comprchensive and accurate scholarship, the value of which has been somewhat impaired by the critical presuppositions upon which it was based. Strauss came over into this school in the second edition of in tifer began his career in it, but later swung clear of it and thought, to which Harnack Jülicher, Kaftan Hermann and Von Soden adhere.
Ritschl claimed to repudiate all metaphysical presuppositions and to found his system on the religious consciousness alone. He believed that word of Jesus, with no from the person and the beginning. He held that experience limits the domain of knowledge. The Scriptures are sufficient in themselves to reveal the spiritual and moral worth of the kingdom of God, whose end is realized in love. Dogmatics and ethics unite in the higher synthesis of the
revelation of the New Testament. Frank was the most determined opponent of Ritschlianism in Germany. He pointed out the lack of a true and deep conception of sin in this system of thought, and its consequently inadequate notion of atonement and conversion; and he claimed system was based incting metaphysics, the whole ystem was and contradictory a highly developed but Vatke in 1835 outlined the revolution which has since taken place in the conception of Old Testament history. His book, however, wa verloaded with philosophical terminology and met with no general appreciation and soon the same lines pupils, Graf and Wellhausen, published the hew hypothesis of the development of Old Testament ritual and literature. It was Vatke hoory brought to life again, and it has exer ill the Old Testament ince upon the exegesis of century. The prophets have for the last hal prominence as a result of this study. new re recognized as the founders of the Hebrew religion. The Law in its present form was of later growth in the Jewish Church. The Pentateuch has been resolved into a number of documents. Deuteronomy is believed to belong to he times of Josiah. Isaiah and other prophetic The Psalms come be of multiple authorship literature. Stade, Budde Smend Schultz and others have represented this school of though Germany has been the great battle-ground of the Higher Criticism through the last cen tury; and the exegetes have enrolled themselve among the critical and the traditional, the more radical and the more conservativc camps. Ne ander the champion of spirituality, Hengsten-
pre-eminent scholar, did valiant service for wha they deemed the traditional truth. Just before inta the critical ranks. Dillmann and Gunke have adopted the newer views. The indispen sable commentary in the New Testament field has been that of H. A. W. Meyer. Characterized hy grammatical rigor and literary freedom, and brought up to date by frequent revisions, it has maintained itself as a standard authority for the later editions has bcen Bernard Weiss, the present prince of all laborers in the exegetical field. Having completed more than 50 years of University service he stands to-day without a peer in his record of worthy achicvement as a textual critic and commentator. He is incomparable for minute and searching investigation, sociates in the Meyer Commentary series have been Wendt, Heinrici, Sieffert, Schmidt, Düsterdieck and Beyschlag. Lipsi11s, Weizsäcker Schmiedel and Holtzmann have represented the more advanced school of commentators. Bleek the century. and Luthardt and Hofmann have been conservative leaders in the latter days. Among the Dutch theologians the dominant tendency in the last century has lieen toward extreme radicalism. Scholten and Kuenen have represented advance thought in the Old Testament field, while Loman, Pierson, Naber, Volter hypercritical in the discussion of New Testament questions. Steck has represented the latter school in Switzerland; while Godet has nobly upheld the traditions of orthodoxy in this land Godet combines a French felicity of style with a German thoroughness of scholarship and adds to these a genuine spiritual fervor which makes veritalle masterpieces of exegesis. It may well be doubted if the century has produced more luminous and interesting contributions to this field.
France has furnished the brilliant and versatile and radical Renan, and the more profound and philosophical De Pressense; and it is mak-
ing its influence felt to-day through the writing its infuence felt to-day through the writfer, Sabatier and Ménégoz being the chicf theological representatives. This school cm phatically repudiates the infallibility of Pope or Church and just as emphatically renounces the infallibility of Scripture or the Christ recorded in Scripture. It belicves that philosophy can ises, and so repudiates rationalism as a foundation for faith. It believes in a Divine revclation through the immanent Spirit of God. It identifies prayer and religion. All expression of rejigious impression must he throngh images of symbols. "All religious formulas are symbolic formulas; and Dogmatic itself is a great system gospel is to be distinguished from what is merely contingent. Jesus is the perfect manifestation of God in man. Salvation is by faith and faith consists in repentance and heart-surrender to God. The advocates of this school confantly that the future belongs to them.
some masterly exegetical work. Cambridge University has easily taken the honors in this Geld. Dean Alford in his 'Commentary on the of German exegesis to English readers. Bishop Ellicott gave splendid examples of painstaking investigation of the Scriptural text. The great trio of later Cambridge scholars, Lightfoot, Westcott and Hort, have reached the highwater mark of English scholarship in their
field. Bishop Liehtfoot's commentarics upon he Pauline Epistles have been standard auhorities ever since their publication. Westcott did equally fine work upon the writings of John and the Epistle to the Hebrews. Hort was generally reputed to be the greatest scholar of the hrec, but his extreme modesty and his rcalizing sense of the yet unattained perfection posion of any but fragmentary treatises. His induence lives among his students and associates. Mayor on James and Second Peter and Jude, and Swete on Mark and the Apocalypse are worthy companions of the other Cambridge University commentaries. Professor wavidson of the leading Hebrew scholar of Great Britain in the century, and his pupils, W. Robcrtson Smith and George Adam Smith and thers, have done yeoman service in revolutionizing and revitalizing the exegesis of the Old Testament. Sanday, Driver, Plummer, Beet, Findlay, Bruce and Dods have done excellent interpretative work. The 'International Critical ament,' bid fair to continue the best traditions
in English exegesis. America has had a share in the exegetical
labor of the century. Moses Stuart, J. A. Alexlabor of the century. Moses Stuart, J. A. Alcx-
ander, Hackett, Hodge, Shedd, Harper, Mitchander, Hackett, Hodge, Shedd, Harper, Mitchduced exegetical studies of acknowledged merit. Albert Barnes, Henry Cowles, J. A. Broadus and D. D. Whedon have published series of helpful and devotional commentaries. Ezra Abbott, Edward Robinson, McGiffert, Mathews, Burton, Briggs, Bacon, Gilbert, Stevens, Allen special fields.

The Rom

The Roman Catholic Church began the century with two most worthy representatives of rationalistic tenden. Hug ably combated the he traditional views of the origin of the New Testament writings. Herbst performed the same scrvice for the Old 'Testament. During the quiry has been more or less stifled liy the authority of "the usual exegesis of Scrinture." Scientific research has been systematically discoturaged and any tendency toward a new or modificd interpretation of the Scriptural text and any originality of conclusions, such as may Fathers and the Councils of authority of the Fathers and the Councils of the Church, hav power. A better condition of affairs scems to be on the point of realization now. A growing hody of students within the pale of the Church have felt the influcnce of the great onward movements in the Protestant world and are beginning to demand the privilege of free inexegesis. They point to the critical work
the writings of Origen and Jerome and Euse bius and other Christian scholars and saints as proof that scientific research is no novelty in to follow in the footsteps of these illustrious critics of antiquity. A measure of frecdom would seem to be already granted them sinc Pope Pius X wrote to Bishop Le Camus,
"We should not approve the attitude of those who in no way dare to depart from the usual exegesis of Scripture even when fait being at stake the real advancement of learn ing requires such departure. You follow a wise middle course, and by your example show tha there is nothing to be feared for the sacred books from the true progress of the art o criticism, nay that a beneficial light may bo with a wise and provident its use be coupled 11 Jan. 1906) What this "wise and pruden discernment") may be is probably best illustrated in the decisions of the Biblical Commission ap pointed by Leo XII, in its report upon the Pentateuch, published in the Revue Biblique and dated 27 June 1906 . The report is presented in the form of questions and answers in catechism style. They may be summarized as folauthor of the Pentateuch, but that it was made up largely of later clements? No. Must Moses then have written the whole of the Pentateuch with his own hand, or dictated it to secretaries? No. May Moses have committed the editing of it in whole or in part to secretaries and have Yes. May he have used sources documents o oral traditions, borrowing sometimes the words sometimes the sense? Ycs. May the Pentatench have undergone modifications, "alditions madc after Moses' death ly an inspired author glosses and parenthetical explanations, ancient language, false readings to be attributed to errors of copyists, which criticism may examine and weigh according to its principles? Yes, the Church reserving judgment." The rights of the newer criticism to a hearing and standing in the Church are clearly allowed in this report to what extent the findings of the critics maybe compatille with its authority and peace
Historical criticism has now come to the fore. The allegorical interpretation is discredited, it is to be hoped, finally and permanently A vaster knowledge is at the service of the excgete than has becn possible in any preceding age. The bates of the giants would seem to of the smoke of conflict has cleared away. What ought the 20th century exegesis to be? It ought to be capable of the production of both popular and critical work. It ought to meet the demand for edification on the part of same time it ought to unlearned; and at the Same time it ought to be proficient in the most the accumulated wealth of material collected in the preceding conturies; and it may profit by the defects as well as the excellences of the masters who have gone before. Biblical knowlelge was never more profound or more prevadetermined within approximal tecuracy been

Bible has been freed from multiplied errors of manuscript transcription and restored to some The rike its original form and revelation The original languages are better understood ments of newly discovered papyri have thrown a flood of light upon many new points. Modern travel and exploration and excavation in the Orient have taught us many things concerning the manners and customs of the ancient times The marvelous advance made in the last cen-
tury along the lincs of scientific investigation and metaphysical rescarch and literary criticism has had its beneficial influcnce upon the interpretation of the Bible. The exegete of to-day has an unprecedented equipment, and his task is comparatively clear. To-day, "the great body of evangelical expositors are united on the fundamental principles of interpretation. They or on any part of it should clearly set forth the true meaning of the words and the train of thought intended lyy the sacred writer; and it should point out the grammatico-historical sense of every passage, giving careful atten'Biblical Hermeneutics,' exegetical works of the present 738). The great ized by directness, accuracy, learning, independence of research, a careful consideration of the context and all the light that historical and literacy criticism can hrow upon the theme. There is a better conception of the nature of inspiration and more frecdom in the exercise of the critical faculties of the commentator with a recognition of the due restraint laid upon the student of a divine revelation. Having cscaped from the tradition of an absolutely inerrant text and a form of revelation infallibly fixed for all time, the excgete of to-day is freer to turn from the letter that killecth to the times seems to be away from the dominance of the Latin and the Reformation theology to the purer exegesis of the primitive faith. With the broader spirit of the Greek fathers and the better critical apparatus of the present day the promise of work in this field was neve

Bibliography.
Biblography.- Rosenmüller, 'Historia in terpretationis lihrorum sacrorum in ecclesia
Christiana) (5 vols. 1795-1814) ; Meyer G W Christiana' (5 vols.,
1795-1814) ; Meyer, G. W.
(5 1802-08) ; Ernesti, 'Institutio Interpretis Novi Testamenti' (5th ed., 1809) ; Marsh, 'Lectures on the Criticism and Interpretation of the mentlichen Hermencutik' (1817) : Schleiermacher, 'Hermeneutik und Kritik' (1838), Klausen, 'Hermencutik. German translation from Danish' (1841); Immer, 'Hermeneutik des nenen Testaments' (1873); English translation (3 d cd., 1890) ; Docdes, 'Manual of Hermencutics) (translated from the Dutch, 1867); (1843); Fairlairn, 'Sacred Hermeneutics' (1858) ; Cellêrier, 'Manuel D' Herméneutique Biblique' (1852); Elliott and Harsha, 'Biblical Hermencutics' (chielly a translation of the (oregoing, 1881) ; Lange, 'Grundriss der Biblischen Merment (188), Hormann, Bib-
of Interpretation' (1886); Terry, (Biblical Hermeneutics' (3 d ed., 1890), probably the best book on the subject in English

D. A. Hayes,

Professor of New Testanent Exegesis, Garrett Biblical Institute, Evanston, Ill.
EXELMANS, êks-èl-mǒng, Remy Joseph Isidore, ComTE, French soldier, Marshal of France: b. Bar-lc-duc, 13 Nov. 1775; d. 22 July 16 years of age, and by 1799 had reached the rank of captain. He subsequently served with ponnet in the campaign of Naples, and in 1801 was appointed to the staff of Murat as aide-decamp. He was arrested in 1808 while serving with Murat in Spain, and sent to England, but after three years of confinement there effected his escape and in 1812 joined Napoleon in his ing this campaign he was appointed gencral of division by Napoleon but upon the emperor's fall was banished from France owing to his Napoleonic inclinations. He was, however, permitted to return in 1819 and seems to have been highly esteemed under every successive government. He was restored to the Chamber Napoleon appointed him grand chancellor of the Legion of Honor, and on 11 March 1851 created him Maréchal de France. He was subsequently thrown from his horse which resulted in his death

EXEMPLARY NOVELS. Second only in importance to 'Don Quixote' among the ictions of Cervantes are his tales, published in 1613 as 'Novelas Exemplares,' or 'Exemplary Novels.' Although the preface spoke of 13
stories, but 12 were first included, the 13 th stories, but 12 were first included, the the last moment. This was not printed until 1814, when Agustin Garcia Arrieta found it in manuscript among other matters of entertainment of an archbishop of Seville. Published at first in expurgated form, 'La Tía fingida,' or 'The Pretended Aunt,' it was scoon presented in full, and now forms part of all modern editions of he 'Novelas Exemplares.'
The 13 stories were written at various times, one as early as 1605 , since it is referred to in who had spent six years in Italy, sought to compete with Boccaccio in tale-telling, although expressly distinguishing his productions from the novelle of the 'Decameron' as being moral and instructive. Unlike his contemporaries, Cervantes drew less upon Italian sources than upon his own invention. He endeavored to reflect tionalism of Bandello and Cinthio. Such sensationalism appears only in 'La Fuerza de la sangre,' where, however, he carefully reconciles the ravished heroine to her lover. The exotic adventures so common in early fiction are reluced in this collection. Although an is shown in 'La Española Inglesa) the heroine is a Spanish girl carried off by the English in their sack of Cadiz; and, although the island of Cyprus is the scene in 'El Amante liberal,' the story contains recollections of Cervantes own experience among the Moham-
medans of Algiers, If the setting of 'La

Señora Cornelia' is Italian, that of most of the lales is native, and in the best it is strongly (Rinconete y Cortadillo, ase, above all, with of roguery among the professional thieves of Sevilic, organized in a band astutely governed Inn life is smartly shown in 'La ilustre Fregona,' and life among the gullible students of Salamanca in 'La Tía fingida.' Humor and satire unite in 'El Casamiento engañoso,' with its account of the marriage of two knaves, each
thinking to deceive the other, and, more ad mirably still, in 'El Coloquio de los perros, with its dialogue between two dogs of Valladolid, one of them a canine Sancho Panza, who describes to the other his griefs in the servic of various masters. Cervantes' imaginatio whose hero suffers from the delusion that he is made of glass, and in 'La Gitanilla,' with its gypsy heroine who proves to be well born, after noble youth for love of her has turned Bohemian. This story in particular has exertel wide influence, Preciosa's adventures being' copied by Hugo in France and Longfellow in Antonio de Solis in Spain, by Moeller and Wolff in Germany, and by Middleton and Row cy in England. Middlcton, also, drew upon La Fuerza de la sangre,' as did Florian in his 'Léocadie,' and Fletcher in four plays borrowe from four tales of Cervantes-in 'Love's Pil by Rotron) in (The Fair Maid of the Inn' from 'La ilustre Fregona,' in 'The Chances' from 'La Scñora Cornelia,' and in 'Rule a Wife and Have a Wife' from 'El Casamiento engañoso.' The last-named tale was drama by Schroder; and in Denmark by Holberg. Th (Novelas Exemplares) were early translated into French, Italian, English and German. They are most fully discussed in the Spanish volume of Luis Orellana y Rincón, entitled 'Ensayo Critico sobre las Novelas Exemplares' (1890)

EXEMPTION, the right to be excused from rendering certain scrvices, or retain propare established by positive law. For example the laws designating certain classes of person not liable to military service nor to jury duty Such also are the laws exempting church and school properties from taxation. Exemption from debt claims is also granted in many casss hold furniture, the tools of a workman, domestic animals and a limited supply of food are exempted from seizure under execution. For the various State exemptions it is necessary to con sult the codes of the State in question. Consult Hubbell, 'Legal Directory for Lawyers and Business Men) (New York, annually)

EXEQUATUR, the document issued by the executive department of a government rebeen formally notified of his appointment by the latter. The effect of the exequatur is to grant all the privileges, immunities and advantages to a consular officer in the country to which he has been appointed, with althority to discharge all the functions of his office and to constitute him the legitimate representative of
his state in the locality mentioned in the document. The following is the form of exequatur countries by the government of the United States:
To all wisident of the United States of America
To all whom it may concern:
Satisfactory evidence having been exhibited to me that of such, and declare him free to it exercise and enjoy such as such, and declare him free to exercise and enjoy such
functions, powers. and privileges as are allowed to.
by the Law of Nations (or ". the.of the most favore Nations in the United States "").
In testimony whereof. Iave these letters to be
made Patent, and the Seal of the United States to be here In estimony hhereot
unte Patent, and the Seal of the United States to be here-
Givened. uncler my hand, at the City of Washington, the

Beal Beal the President

Secreiary of State.
To * subordinate consular officers an almos identical form is issucd by the Secretary of State. When a state of war supervenes or even
when diplomatic relations are broken between two states it is usual to cancel all exequalurs of consular officers of the country with which war has been declared or diplomatic relation broken. Consult Moore, John Basset, 'Digest ' of International Law' (1006); Stowell, E. C.,
EXERCISE, Physical. The upbuilding of importance in preserving the palth prime ruring of disease, and whether by passive mo tion or volitional activity is now rccognized as necessary to keep the various functions of the body in normal condition. Artificially devised methods have been brought into use, but regular daily ont-of-doors exercise is preferable. In struction in gymnastics is now given in many appointed gymnasiums being maintained for that purpose. In these gymnasiums outdoor sports are often practised, but the chief courses of excrcise consist of a systematic use of dumb-bells, wands, Indian clubs, horizontal and other specialties. In many gymnasiums there are running tracks, baseball cages, swimming tanks, bowling alleys, etc. The chicf outside sports are tennis, golfing, bicycling, baseball, tootball, rowing, walking, running, skating, swimming and the various forms of track athTrics. See Gymnasium; Hygiene; Ph

EXERCISES, Spiritual. Sce Spiritual Exercises.
EXETER, or Exon, Domesday. See Doomsday Book.
EXETER, England, city, seaport and County, parliamentary and municipal borough, Exe, 10 miles nothwest from its outlet in the English Channel, on the Great Western and London and Southwestern railways and 171 miles by rail sonthwest of London. Thongh shl presenting many indications of antiquity, The city can now boast of as handsome squares, tion Dal as any other in the kingdom. The princi-
edifice founded in 1112. It is cruciform, 408 feet in length, and consists of a nave, with two side aisles, two short transepts formed out of height; a choir of the same width as the nave and 128 feet in length; 10 chapels or oratories and a chapter-house. The west front, erected in the 14th century, is richly decorated, presenting one of the most picturesque façades of any Sir Gillert Scott in 1877, is magnificent. Its perfect symmetry and the grand unbroken line of vaulting are remarkable features. The epis copal throne dates from 1320. The Great Pete Bell weighs 12,500 pounds. The chapter-hous contains a valuable library of manuscripts and
early books. Other architectural antiquities are the remains of the castle of Rougemont ar tions of the ancient city walls of Athelstan, Norman work in some of the churches and the noble guild-hall, tastefully restored. Among several fine modern churches Saint Michacl's may be mentioned. Among the numerous edufounded by the citizens in the Exeter School founded by the citizens in the time of Charles ships. It has 16 exhibitions to either of the universitics of Oxford or Cambridge. The Exeter Diocesan Training College is also situated in the city. The charitable instilutions o various kinds are numerous. The principal and Exeter Institution for the Promotion Science, Literature and Arts, established in 1817, and possessing a valuable library; the Exeter Literary Society, established in 1835 and the Royal Albert Memorial College, Musellm and Free Library. The college has over
1,000 students. Exeter is town, its woolen manufacture, once industria largest in England, being extinct; but it has iron foundries, manufactories of agricultural implements, paper mills, corn mills, tannerics ctc. Glove-making and lace-making are also carried on. By means of a canal, 5 miles in can reach the city and there is a large floating basin. The Exe itsclf is not navigable to the city. Exeter is a place of remote antiquity, having been a British settlement long prior to the invasion of the Romans, by whom it was called Isca Damnoniorum. The city returns one member to Parliament. Pop. 48,664.
EXETER, N. H., town, one of the county seats of Rockingham County, on the Squam miles east of Manchester and and 13 mile southwest of Portsmouth. Exeter was founde. in 1638 by John Wheelwright, a Congregational ist clergyman, who was banished from Massachusetts. Massachusetts claimed control over the place until 1680. It was the capital of New Hampshire and the centre of military movements of the colony during the Revolution. The Exeter Academy ($q . v$.) established in 1781 Exeter Academy (q.v.), established in 1781 Exeter. The town contains a large public library and a number of manufacturing establish ments, cotton mills, iron, brass and machinery factories; also manufactories of boxes, umbrellas, automobile tubes, asbestos and rubber
novelties, casings and shoes.

Consult Fassett, 'Colonial Life in New Hampshire’; Bell, '(Exeter 1888).

EXETER, Pa., borough of Luzerne County 10 miles west of Scranton, on the Lchigh Valley Railroad. It has extensive agricultural, coal nearby is the principal object of interest. Pop.
,33.
EXETER BOOK, or CODEX EXONIENSIS, a manuscript anthology of Anglo-Saxon poctry in the library of Exeter Cathedral. It was presented to the chapter by Lcofric, first
bishop of Exeter $(1050-72)$, contains 246 pages of vellum, and is the extant original copy of some valuable remains of Anglo-Saxon literature. The text with a translation is to be found
in Gollancz, 'The Exeter Book' (1895). Conin Gollancz, 'The Exeter Book' (1895). Con-
sult Tupper (ed.), (Riddles of the Exeter sult Tupper
Book'
(1910).
EXETER COLLEGE, Oxford. This college, originally called Stapledon Hall, was of Excter, sometime Lord High Treasurer of England, who removed to this place his scholars from Hart Hall and made a foundation for a rector and 12 fellows. In 1404 Edmund Staf-
ford, bishop of Exeter, added two fellowships and obtained leave to give the college its pres-
ent name. In 1565 Sir William Petre, Secretary ent name. In 1565 Sir William Petre, Secretary
of State, added eight; in 1636 Charles I annexed of State, added eight; in 1636 Charles I annexed one for the Channel Islands, and, lastly, Mrs.
Shiers left certain rents in 1770 , out of which two fellowships were founded. Under the autho rity of 17 and 18 Vict., cap. lxxxi, the fellowships (a number of which were appropriated to various archdeaconries or counties) were reduced from 25 to 15 , and were thrown open; suspense. From the revenues of suppressed felsuspense. From the revenues of suppressed founded, eight of which (called Stapledon scholarships), are limited to persons born or educated in the diocese of Exeter, and one or more to persons Uorn Victoria Collcge, Jersey, or Elizabeth Colat Victoria College, Jersey, or Elizabeth College, Guernsey. 181 undergraduates.
EXETER HALL, a large building formerly on the north side of the Strand, ILondon, opened in 1831. It was capable of containing over 5,000 persons. In it the "May Mectings" of the several religious societics were held. It became in 1880 the property of the Young Men's Christian Association. In 1907 it was sold
and demolished. "Exeter Hall" became by metonomy a term of opprobrium, to indicate the views of aggressive evangelists in their relation to public questions.

EXFOLIATION, a process of concentric or spheroidal weathering, whereby the rock tends to scale of in thin and often curved plates. It is usually explained as follows: day a boulder or ledge becomes heated for a few inches from the surface, while the interior remains unaffected. The consequent expansion causes the surface to spall. At night the surface cools quickly over an interior that may still be warm and the shrinkage again tends to of several minerals, like a granite, this process
is intensified by the fact that each different mineral has a different rate of expansion and hence tends to tear away from its neighbormg minerals. The process is particularly character istic of deserts, wher
EXHAUSTIONS, Method of. The ancient geometricians employed the method of
exhaustion for determining the areas of curves exhaustion for determining the areas of curve and for the solution of similar problems. be determined with rectilinear magnitudes, thus, the arca of a curve with an arca of a polygon constructed so as to be comparable with the curve in question. The use of the metho is excmplified in the second proposition of plied with all the rigorous logical exactness for which the Greek geometricians are so famous. See Geometry ; Mathematics.
EXHIBITION, Industrial. Sec Exposition, Industrial.

EXILARCH. The title of an officer in Jewish communities in Persia. In 624 the Jews rendered the Mohammedans considerable as sistance in their campaign and in consegue of the Jews. His functions were civil and judicial. Later the gaon of Sora and the head of the College of Pumbedetha shared his authority, the gaon being of equal rank, and when the office of exilarch was vacant performed the duties of the office. The exilarch assumed al the pomp of a prince. His induction into ot office was in existence for seven centuries and ceased with the death of Saadiah who was assassinated in 942 . It was revived again for a few years about the middle of the 12 th century. EXILE, voluntary or involuntary prolonged absence from one's country; also, a per-
son long absent from his country. Involuntary exile or expulsion for crime, particularly for murder and other serious offenses, can be traced back 10 a very ancient period. It was known among the carly Grceks and was the penalty not only for murder but for offenses affecting the general interests, chiefly the for-
mer. Exile often took the form of expulsion, mer. Exile often took the form of expulsiternative or of simple transportation, as to a foreign land. Sometimes confiscation of property was an added penalty. In Rome under the empirc, cxile or expulsion was known in two forms: deportatio and relegatio. The first was often punishment for political crimi-
nals, but later its use was extended. It involved hanishment, use wally to an island, with forfeiture of civic rights and usually of property. Relegatio was a much less severe form of punishment, involving no loss of civic rights by the offender.
The rights of aliens who are voluntary exiles in the country to which they flee after com-
mitting political or other crimes is usually fixed by treaty. Generally those guilty of political crimes only are not subject to extradition. They are, however, subject to the laws of the country in which they reside. See Aliens; CitizenShip.
Tran
Englansportation for crime was abolished in 1857 , but it still survives among some nations, as Russia, this country maintain-
ing penal settlements in Siberia. The tendency to-day, in keeping with advancing civilization, is toward its utter abolition.
EXMOOR, a wild and hilly district in the extreme southwest of Somersetshire, extending also into Devonshire, England. It was formerly a forest, but, with exception of a considerable portion lately cultivated, it is now mostly heath and marsh. It embraces ranges of hills of considerable elevation (the loftiest being Dunkerry
Beacon, 1,707 feet), and in the time of the Druids was a favorite spot for the celcbration of their religious rites. Red deer still exist here in a wild state. Good descriptions of Exmoor may be found in Blackmore's 'Lorna
Doone,' and Sir Conan Doyle's 'Micah Clark.'

EXMOUTH, čks'munth, Edward Pellew, ISCount, English naval officer: b. Dover, Engas midshipman in the Blonde frigate during the American Revolution, and greatly distingsuished himself at Lake Champlain. In 1808 he had attained the rank of vice-admiral, and in 1814 he was made Baron Exmouth. In 1816 he procecded to Alpiers in command of a comforce the terms of a trealy which ships to enviolared. He bombarded the city for seven hours and inflicted such immense damage that the dey conscnted to every demand. Twelve hundred Christian slaves were by this exploit restored to liberty. Lord Exmouth was raised He was commander-in-chief at Plymouth He was
$1817-21$.

EXMOUTH, England, seaport, market own in the county of Devon, on the English Channel at the entrance to the estuary of the Exc. It is one of the favorite resorts on the coast of Devon, for sea-bathing and, owing to
its sheltered situation and salubrious climate, its sheltered situation and salubrious climate,
has risen into favor as a winter resort. The chicf risen into favor as a winter resort. The
chery is fishing, and the shipping trade is considerable; the new docks are commodious. Exmouth was one of the principal ports of the Country in the reign of Edward III; but subyears it has increased steadily in population and ycars it has increased
EXNER, Karl, Austrian physicist: b. rague, 1842. Hc reccived his education at president of the Chemico-Physical Society of Vienna and seven years later became lecturer at the University of Innsbruck and from 1894 to 1904 held the chair of mathematical physics there. He retired in 1904. He has written
'Ueber die Frauenhoferschen Ringe' (1877);
 'Ueber das Funkeln der Sternc' ber die polarisierende Wirkung der LichtbeuSung'
Scintillation'
(1892) ; 'Gene
EXNER, Siegmund, Austrian physiologist: b. Vienna, 1846. He was educated at the uniVersities of Vienna and Heidellorg and in 1875 Was named to the chair of physiology at the
former institution. In 1891 he became a ditormer institution. In 1891 he became a di-
rector of the Physiological Institute. For original researches on the physiology of the nervous system he was twice awarded a prize by

Written 'Leitfaden bei der mikroskopischen 1878): 'Untersuchungen über die Lokalisation der Funktionen in der Grosshirnrinde des Menschen) (1881); (Die Innervation des Kchlkopfes) (1884); 'Die Physiologic der facetticrten Augen von Krcbsen und Insekten) (1891); 'Entwurf zu ciner physiologischen (1894). With Gad he was joint editor of the Centralblatt fur Physiologie after 1887 .

EXNER, Wilhelm Franz, Anstrian technical expert: b. Gänserndorf, 1840. He received his education at the Vienna Polytechnic
Institute and in 1874 became industrial-school inspector in the Ministry of Commerce. He was one of the founders of the Vienna Industrial
Museum in 1879 and hecame its first director In 1882, 1885 and in 1891 he was elected to the Chamber of Deputies. He has puhlished (Das moderne Transportwesen im Dienste der Land-und Forstwirtschaft) (2d ed., 1880); Werkzeuge und Maschinen zur Holzhearbeireichs' (1890); ' 'Das K. K. Techic Ocster-Gewerbe-Muscum in Wian im ersten vierteljahrhundert seines Beistandes' (1904)

EXODUS, Book of. The hook of Exodus is the second book in the Old Testament; and, collection known as the "Five Books of Moses" or the "Pentatcuch," which constitutes the first division of the Hebrew Bible. Its Hebrew name is Weillch shemoth, "And these are the "Names," or, in abbreviated form, shemoth, The designation Exodus, which means, Coning out, that is, from Egypt, originated with the carly Greck translation known as the Scptuagint, and is meant to be descriptive of the contents of the book.
Contents. - The book falls naturally into four divisions of unequal length: (1) Oppres-
sion of Isracl in Egypt (i, 1-ii, 22): (2) Preparations for the departure (ii, 23-xii, 29) ; (3) Exodus and march to Mount Sinai (xii, 30 -xix, 2); (4) Giving of the Law and building of the tabernacle (xix, 3 -xl, 38). The closing chapters of the book of Genesis record how the
Hebrew nomads, after living in Canaan for several generations, were driven by famine to Egypt, where they were assigned to a district in the castern portion of the Delta. There they remained for many gencrations (i, 7). In the course of time a new dynasty ascended the pression set in, from which the Hebrews were delivered under the leadership of Moses. After some wanderings in the desert, the fugitives encamped at the foot of Mount Sinai, where a covenant was established between the local God Yahweh and Israel, a law was given for the purpose of regulating the life of the cove-
nant people in harmony with the will of their God; and a tabernacle, in which the people or their representatives might meet with their God, was built.
Composition.- In its present form the book is a compilation of material taken from thre originally separate sources, commonly desigthis assertion and for the significance of the symbols see article Pentateucid). The P sec-
tions can easily be separated from the rest to distinguish E from J is more difficult, espe cially after chapter iii. The J and E narratives
were written first, and the combination of the were written irst, ang before P was written. The two earlier documents contained a full accoun of all the important events connected with Israel's stay in Egypt and with the exodus, also at least a brief record of the journey from
the Red Sea to Mount Sinai. There followed the Red Sea to Mount Sinai. There followed of the people, Yahweh's anger, Moses' intercession and the divine response. The P ac count was written by one who shared the common postexilic conception that the age of Moses was the period during which Yahweh was nearer to Israel than at any subsequent time consequently his history, and attempted to trace ulous in his history, and atoumptertices an institutions of his day to that unique period in Israel's history. The latter tendency manifests itself especially in the priestly sections xxv, $1-x x x i, 18$ and chapters xxxv-xl. For an analysis of the book of Exodus according to the sources used in its compilation consunt any
modern Commentary on Exodus, or any Ol Testament Introduction. The contents of each source are printed consecutively in Kent, C. F. 'The Student's Old Testament'; Carpenter and Battersby, 'The Hextateuch'; Brightman, E. S Hexateuch.
Legal Sections.- In addition to the historical material derived from the three source
indicated, Exodus contains three groups o laws, which at first existed independently but later were embodied in E or the combined JE (1) The Ten Words, commonly called the Decalogue, xx, 1-17; found, with few varia tions, also in Deuteronomy v. In both cases certain hortatory additions, but the origina form can easily be restored. (2) A sccond Decalogue, xxxiv, 10-28; which bears more primitive aspect than the other and lacks the ethical emphasis. Most scholar hold that the decalogue in xxxiv is earlie by many a compendium of the teaching of the 8th century prophets, while the other is generally assigned to the period of the Judges or of the carly monarchy. (For a fuller dis cussion of the two decalogues and of their 'The Books of the Pentateuch,' chap. xvii). (3) The Book of the Covenant, xx, 22-xxiii, 19 The laws in this code deal with a great variety of subjects, and it requires considerable adjust ment to make any systematic arrangement pos sible. Originally the arrangement may have been on the principle of the decalogue, in the
sense that it contained 10 separate decalogues each containing two groups of five laws. Corre sponding to the two divisions of the decalogue the Book of the Covenant may be divided int two groups of laws, each consisting of five decalogues. (1) Judgments, dealing with civi and criminal cases; (2) Religious and humane laws. The five decalogues of the first group group only four exist, though traces of the fifth appear. The Judgments deal with the following subjects: (1) The rights of slaves,
xxi, 2-11; (2) Assaults, xxi, 12-27; (3) Domes-
tic animals, xxi, 28-36; xxii, 1,4 ; (4) Responsibility for property, xxii, 5-15; (5) Social
purity, xxii, $16-20$ ples Dcut. xxii, 13-27. The religiots and humane laws deal with: (1) Kindness, xxii, $2,3,6,7,21-27$; xxiii, 4,5 ; (2) Justice, xxiii, $1-3,6-8$; (3) Duties to God, xx, 23-26; xxii, 28-31; (4) Sacred seasons, xxil1, 10-19.
Many of the laws in the Book of the Covenant are strikingly similar to Babylonian laws, murani (q.v), king of Babylon abont 2100 B.C (Consult Johns, C. H. W., 'The Relation between the Laws of Babylonia and the Laws of the Hebrew Pcople'). This similarity las an important bearing on the question of the widely accepted vicw is that the Book of the Covenant is essentially a collection of Mosaic decisions, expanded and modified to meet the needs of the Hebrews in Canaan during the period of the Judges or of the early monarchy However, there is much to be said in favor o based on the Babylonian legal system, and that it came to the Israelites from the Canaanites (Luckenbill, D. D., 'Israel's Origins' in Amer can Journal of Theology, XXII, p. 44).

The Song of Moses.- This pocm, in chapter $x v$, was originally independent of its present
context. From verse 17 it is context. From verse 17 it is clear that than poem reign of David or even that of Solomon (compare also verses 13 and 15). It is not improbable, however, that it is the expansion of a shorter poem composed at the time the events commemorated took place (compar rse 21)
Bibliography.- In addition to the discussions already mentioned the following work Tradition of the Exodus' (Hartford 1894) Bennett, W. H., 'Exodus' (New Century Bible,' Edinburgh no date) ; Cornill, C. H. 'Introduction' (London 1907); Driver, S. R.
(Exodus) ('Cambridge Bible) 1911) ; and 'Introduction' (1891) : new ed, (1910) ; Gray, G. B., 'Introduction' '(New York 1903) ; McFadyen, J. E., (Introduction) (New York 1905) ; McNeile, A.' H., 'Exodus' ('Westminster Commentaries,' London 1908). Also articles on "Exodus" in Hastings, 'Dictiona'
of the Bible) and in (Encyclopedia Biblica.) Frederick Carl Eiselen,
Professor of Old Testament Interpretation
Garrett Biblical Institute.
EXOGAMY, the usage by which in many primitive races a man is forbidden to marry woman of his own stock or tribe. See MAR riage; Tribe.

EXOGENOUS (ěks-ōj'ě-nŭs), PLANTS an old and now disused name for dicotyledons Monocotyledons were similarly known as en
dogenous plants, or endogens. See Botany.
dogenous plants, or endogens. See BOTANY,
EXONERATION, in a general sense, the discharging from some liability or obligation In a cimited sense it is how applied mostly debtor to pay the guaranted debt and relievt the surety from his liahility. Consult De Col yar, 'Treatise on the Law of Guarantees an of Principal and Surcty' (London 1900): Red'
field, 'Law and Practice of Surrogate's Courts'
(7th ed., New York 1910); Williams, 'Prin-
Toronto 1914).
EXOPHTHALMIC GOITRE, cnlargement with turgescence of the thyroid gland, accompanied by protrusion of the eyeballs,
breathlessness, palpitation and anæmia. Also breathlessness, palpitation and anæmia. A
called Basedow's (q.v.) or Graves' disease.

EXORCISM, the act of expelling evil spirits by adjuration. The word is of Greek origin, exorkismos, from the verb exorkizo,
which in classic Greek means to put one on oath, but in the New Testament to drive out by adjuration. Demonic possession was a notion gencrally entertained by the Jews in the Jesus of Christ; and that it was entertained by any fact recorded in the Scripture. (Matt. xii, 27; Acts xix, 13). Hence, till modern times it was believed by all Christians, or is explained in a naturalistic sense, or at least ignored by very many who profess belief in the gospels as a divine revelation and the very word of God. The Catholic Church, while it does not stand committed to the popular the views even of her most eminent doctors, except so far as she may have formally adopted them in her authoritative symbols, claims to possess and to excrcise in these days no less than in apostolic times the power to expel evil spirits from the obsessed or possessed, and exorcism is formally pronounced prior to the chrism (or holy oil) and of holy water. One of the minor orders of clergy in the Catholic Church is that of the "exorcist," and the ritual of the Church to this day has an official formula of prayers and adjuration for driving out demons. Pope Innocent I (d. 417) forbade the express permission of the bishop, and that rule is still in force.

EXORCIST, the name of one of the minor orders of the clergy in the Roman Catholic Church. Sce Holy Orders; Exorcism.

EXOSMOSIS. See Osmosis.
EXOSTEMMA, a genus of American shrubs and trees of the natural order Rubiacea several species of which yield barks sometimes used in medicine. Though closely related to the genus Cinchona (q.v.) which yields quinine, alkaloids of this genus are lacking in simila obtained from West Indian species, are bark, ably the best known.

EXOSTOSIS
OSseous structure, a hony excrescence from the
EXOTERIC. Se Fsoric.
LXOTERIC. See Esoteric
eign platic, an appellation applied to a foreign plant not acclimated or naturalized. It is or tropical character and can be preserved only in greenhouses.

EXPANSION. See American ExpanSion Policy; Territorial Expansion of the
United States.
EXPANSION, in physics, is the increase in their temperature. This is one of the
val. $10-41$
most general effects of heat, being common to all forms of matter, whether solid, kiquid or gaseous. Expansion of thrce ficial; and (3) cubical. The last only is applicable to liquids and gases, as they have pand uniformly as their temperature increases, each substance having its own peculiar rate of expansion. This statement is truc, however, that as temperatures are increased beyond normal limits the rate of expansion also increascs. The ratio of increase in bulk for each degree rise in temperature as referred to the original volume at a temperature of zero is called the coefficient of expansion. Solids expand equally expansion for solids is three times the of cubica efficient. Liquids expand much more for the same rise in temperature than do solids, and gases still more proportionally. With gases moreover, the bulk depends very largely upon the pressure acting upon it, gases being readily compressible. However, gases do not differ mafound that under a constant pressure it co-efficient of cubical expansion fer all gases is about $1 / 490$. The expansion of riquids varies considerably, but, in general the denser the fluid the less the expan sion; thus water expands more than mer monly, the greater the heat the greater the ex pansion; but this is not universal, for there are cases in which expansion is produced, not by an increasc, but by a diminution of temperature Water furnishes us with the most remarkable instance of this kind. Its maximum of density corresponds with $39.2^{\circ} \mathrm{F}$. This fact is of the
utmost importance in the economy of nature When the surface of rivers and lakes is cooled the upper or surface layer of water sinks and warmer water from below takes its place till the whole mass is cooled to 40°. After this the circulation ceases; the colder layer being less dense remains at the top until it freezes. The ably lower than that of fresh water, and varies with the quantities of the salt contained in it The expansion of water is about the same for any number of degrees above or below the max imum density point. Thus, if we heat wate 5° above 39.2° it occupies the same bulk as 39.2° when cooled down to 5° below pands in the act of freezing is shown when glass bottles are filled with water and sealed the glass is broken in picces when the water freezes. A brass globe, whose cavity is an inch in diameter, may be burst by filling it with water and freezing it; and the force necessary for this effect is 27,720 pounds. The expansive which water in solidifying is observed to have to arrange its particles so as to form prismatic crystals, crossing each other at angles of 60 degrees and 120 degrees. Various methods have been tried to ascertain the specific gravity of ice
at 32°; that which succeeded best was to dilute at 32°; that which succeeded best was to dilute into it remained in any part of the liquid without either sinking or rising. The specific gravity of such a liquid is 0.92 , which, of course, is the
specific gravity of ice, supposing the specific gravity of water at 60° to be 1 . This is an expansion much greater than watcr experience Ve see from this that water at the instant 0 solidification rceives a sudden and considerable augmentation of bulk. Sce Heat.
The coefficients of expansion of some of the commoner solids and liquids on the Fahrenheit scale are approximately as follows:
Glass, $1 / 75,000$; silver and brass, $1 / 33,000$; copper, $1 / 30,000$; silver and brass, $1 / 31,000$; lead and zinc, $1 / 23,000$; mercury, $1 / 11,700$; water, $1 / 3,870$; ether, $1 / 2,570$; chlooform, $1 / 1,150$.
Economically the importance of expansion is very large, particularly in the temperate zone. Here the variation of natural temperaturcs bcall buildings, bridges, concrete constructions, etc., expansion joints are inserted to take up the variation due to the changes in temperature. In instruments of precision this variation becomes of the utmost importance, requiring delicate adjustments, as in

EXPATRIATION, the voluntary renunciation of the rights and liabilities of citizenship in one country, in order to become the cilizen one country to renounce his allegiance in order to adopt another country as his own has and is still much disputed. It seems most reasonable that the mother country and not the individual should decide the question. In the early part of the 19th century the United States was almost uals the right of expatriation without the consent of the government of which they were citizens or subjects. The Europcan nations, as a rule, maintained that the permission of the sovereign was necessary; and the enforcement by England of the claim was one of the causes
of the War of 1812 . The right of voluntary reof the War of 1812. The right of voluntary reone of our citizens was unsettled, so far as legislation was concerned, till the Act of Congress of 27 July 1868 asscrted that expatriation "is a natural and inherent right of all pcople," but the action of the Department of State had previously seemed practically to admit the right.
The first formal recognition of this principle was secured in an expatriation treaty with the North German Confedcration, signed 22 Feb. 1868. The position of Germans with regard to naturalization has been somewhat altered by the German law of 1913, which declares that "a person does not lose his nationality if, before acquiring a foreign nationality, he has apof the competent authority of his home State to retain his nationality." England first recognized the right of voluntary expatriation by act of Parliament in 1870, and immediately concluded an expatriation treaty with the United States. This act was amended in 1914 with the intention of making the status of naturalized citizens ing nations of Europe now recognize the right, ing nations besides those mentioned, France, Austria, Russia, Italy and Spain.
The right of the individual to expatriatc him-

American statesmen. The whole subject of expatriation is regulated by the law of 2 March
1907. Under this statute an American citizen is assumed to have changed his citizenship when he becomes naturalized in any forcign state. When an individual who has been naturalized in he United Statcs has resided for a period of wo years in the forcign state from whence he came, or five years in any foreign state, he is American citizenship. An American woman ho marries a forcigner assumes the nationality f her husband. If a resident of the United States on the termination of the matrimonia bond, she may reassume her citizenship, or if in a forcign state, by registration within a twelve
month with the Amcrican consul. A foreign voman who acquires through marriage with an American citizenship in the United States re ains her status if she continues to reside in the country. The problem of assimilation has in he United States assumed an aspect of extreme gravity since the outbreak of the Great European war. on questions growing out of there has been maintained a persistent agitation by the representatives of foreign gov crnments, with the object of influencing Ameri can citizens of their respective races and hrough them stimulating loyalty to these for cign governments so as to influence Amcrica ment of American ncutrality. Pressure ha been brought to bear on legislators and throug them on the national administration. Unwar rantable interfcrence with the internal concern of the United States led to the dismissal of Dr. Dumba (q.v.), the Austrian Ambassador. Natizenship in
expectation. See Psychorogy
EXPECTATION SUNDAY, the Sunday before Whitsunday. Acts i, 4, Christ commanded the disciples "that they should not epart from Jerusalem, but wait for the promis Pentecost and the promise was fulfilled.

EXPECTATION WEEK, the week, or rather the nine days, which elapsed between the ascension of Jesus and the Pentecostal effusion of the Spirit, because during that interval the apostles and eary Church waited in expec

EXPECTORANT, a remedy used to inrease the amount of secretion of the lowch. Such remedies act: (1) Through nervous influences, like those of ipccac, antimony, senega; or (2) they increase the amount of blood flowing around the bronchi; or else (3) they stimulate the mucous membranes of the bronchi as them iodide, chloride of ammonium, the aromatic balsams and squills belong. They are useful 111 chronic stages of catarrhal bronchitis. Sec Bronchitis.

EXPECTORATION, technically termed sputum, is a physiological secretion, but when there is an excess of secretion of mucus in the hronchi and trachea, which is expelled by hawking or coughing, it becomes a diseased condition. Its examination and determination are essen-
tials in the diagnosis of chest ailments. EX-
cessive expectoration is found in bronchitis, in pneumonia, in tuberculosis, in gangrene of the tions the sputum carries the germ of the disease and should be disinfected. Miscellaneous expectoration in the street and public places should be prohibited by law. To properly disinfect the sputum it should be received in a paper spit-cup or appropriate pocket-flask, and later
destroyed. A mixture of carbolic acid 1 to 25 of water, or of chlorinated lime, a teaspoonful to a pint of water, should be used in spittoons if these are essential. In cases of tuberculosis and influenza particularly, great care should be taken of the sputum and of all handkerchiefs, conels, napkins and other linen that come in nfluenza; Tuberculosis.
EX PEDE HERCULEM, ([know] Hercules from his foot), a proverb meaning that from a part we may be enabled to test the whole structure of a thing. The proverb is mined the stature of Hercules on the basis that the Olympic stadium measured exactly 600 times the length of Herculcs' foot. In prowere 600 times the length of a normal foot, so much larger was Hercules than the normal man. Kindred "are the expressions, "Ab uno disce he whole (race)" (Viracherous Greek) know nd "Ex ungue lconem") "(know) the lion fro), his claw." EXPEDITIONS TO LATIN AMERA. See Discovery of America.

EXPERIENCE MEETING, a religious gathering whereat some of those present recount their spiritual experiences. Such mectings are
common in the Methodist denomination and common in the Methodist denomination and
other sects hold such meetings at stated intervals.
EXPERIMENT, an operation designed to discover some truth, principle or effect, or to difcers from observation in the fact that phenomena observed are, to a greater or less extent, controlled by human agency. Experi ment distinguishes the modern method of in strides made in chemistry, owe to it the rapic sciences.
EXPERIMENT STATIONS. See Agri-
ultural Experiment Stations.
EXPERIMENTAL PSYCHOLOGY.
Psychological Apparatus.
EXPERT. One having special knowledge or skill in a particular subject; a specialist; specifically, in law, one qualifice to give expert
testimony in a judicial procceding. Sce Evitestimo

EXPERT TESTIMONY. A branch o the law of legal evidence which may be defined upon facts proved in an action by other witnesses, or upon facts assumed to have been proved, concerning matters involving scientific or technical knowledge.
The value of expert testimony was recog-
nized in the Roman law and was incorporated in that system of jurisprudence. In the law of some continental countries the system has al-
ways been firmly established. Indeed, in those countries, all forms of opinion evidence was such stil is reely accepted: the courts giving it In the very earliest period
aw, however, expert testimony was unknown At that time a jury was selected from among persons already possessing knowledge of the facts of the case to be tried. In other words, during the early development of English law, the witnesses composed the jury and their ver-
dict was based upon the facts within their own knowledge, and no effort was made to assist them. Gradually, however, the practice of aking testimony in open court came into vogue and it was later seen, in order that an impartial verdict might be rendered, that the jury should e composed of unbiased persons, whose minds formed.
As a general rule in the English common law, which is, with slight modifications, the law of the United States, testimony of opinions has never been admitted as evidence. Our courts require and allow testimony as to facts only jury to draw conclusions and form court an from the facts proved. An exception to this rule is found in expert testimony. Since a jur represents only the average intelligence of the community, cases were early encountered where it was difficult or impossible for the jury to proved before them, and to obviate the fact in the trial system, the courts gradually brough to its assistance expert witnesses, to aid in cor rectly determining questions presented. At tha stage expert testimony was confined almost en tirely to that of physicians. Catses of death o effects of physical injuries were then and stil
are the most common questions with juries must deal, and the determination of such issues is dependent largely upon the opinions of skiled physicians, familiar with the conditions testifying as experts. In later years in England and in the United States, expert testimony has classes of cases. The theory of the courts in allowing such testimony is, that the jury, or where the action is tried without a jury, the trial judge, is not competent to draw its own conclusion from the facts proved, without the and of such testimony. In that event witnesses the subject are allowed to give their opinions as evidence for the enlightenment of judge or jury.
ploying ploying expert testimony has grown rapidly and has resulted in the creation of a class of witnests, and who command large fees for exservices. This has conduced to a result which has brought about much criticism, adverse to the system, based largely upon the fact that the testimony of expert witnesses involving lengthy technical discussions is one if not the principal cause of the unrcasonable length of modern trials; upon the further fact that the nicalities and extreme length, tends rather to obscure than to enlighten the minds of a jury; but principally upon the fact that such testimony
tisan as to be wholly unreliable. This criticism s not unmerited.
The creation of the class of so-called professional experts whose services demand large opposite opinions may be obtained in any number. Some of the recent prominent murder rials have hence afforded an interesting spectacle of arrays of experts with conflicting opinons retained by the respective parties, at great expense, whose examination and cross-examination has consumed days and even weeks, exhausting of the courts, perplexing instead of clearing the issues, and weakening the confidence of the public in its system of justice. Before the testimony of an expert witness is admitted, he must be qualified as an expert; in mony that he has a knowledge derived from experience or study not possessed by the ordinary persons in regard to the particular subject to which he intends to testify. Whether or not the witness has proved himself an expert is determined by the trial judge in his discretion.
The method usually adopted to get the tesafter his qualification, is through the form of a hypothetical question. A question is put to the witness by the counsel of the party calling him, the question containing in detail the facts which the counsel believes have been proved and the witness is asked his opinion upon the assump-
tion that the facts assumed are true. Such hypothetical question is often of great length, containing, as it does, a statement of facts that may have required days to prove. After the question is answered by the expert, he is usually subjected to a long cross-examination by the opposing counsel to test his skill and knowledge ordinary jury places little weight upon the conclusions of an expert based upon the facts contained in a hypothetical question may be inferred from the fact that the counsel putting the question may assume facts which have not bcen proved to the satisfaction of the jury. Again
the question is often so long and involved that its meaning is soon lost.
In other cases, however, where the witness has knowledge of the facts, the hypothetical question is not necessary. For instance, the opinion of an expert in handwriting may be given after his comparison of the disputed writused as a standard of comparison; and the physician who has examined a physical injury, or the alienist who has examined a person
claimed to be insane, may testify as to his opinion based upon the knowledge acquired by him through such examination
The courts do not consider expert testimony of great importance, or in any case binding on of great importance, or in any case binding on of assisting the jury and the courts take occasion to instruct a jury to attach such weight to expert testimony as in their minds it seems entitled or to disregard it altogether if they deem fit so to do. Such anflict in the expert testimony introduced.
In spite of the just criticism to which the modern fevelopment of expert testimony has
been subjected, the doctrine has its uses and is necessary to our system of jurisprudence. Thus, such testimony is absolutely indispen sable to prove the custom in a trade; to prove
the tensile strength of materials; the probable cost of buildings or works; the chemical com position of materials; the presence of disease and the cause and effects of disease or physical injury and the cause of death; the seaworthines of vessels and other nautical matters; and to assist the jury in various other matters
within the knowledge of the average judge or juryman.
Various remedies through legislation have heen suggested to remedy the abuses to which expert testimony has been subjected, such as limiting the number of such witnesses to be called upon a trial; limiting the length of ing any compensation beyond the ordinary fees of witnesses and even to the extent of forbidding expert testimony in some classes of cases, the most recent suggestion in connection with criminal cases being the creation of a board of experts retained and compensated solely by the State whose services may
the people or the accused
It may be suggested that the evil will, in It may be suggested that the evil will, in of the courts without the aid of legislation. The judge presiding at the trial of an action has a wide discretion in allowing or disallowing the testimony of experts, and it may be said hat a too liberal poncy of allowing expert the timony
abuse.

Henry M. Earle,
Attorney, New York City.
EXPIATION, Day of. See Atonement.
EXPLANATION. An event is explained when it is exhibited as an instance of a law, or true universal proposition. For example, the regarded as an example of the tendency of water to fall to the earth, and it is still further explained if it is regarded as an example of the gravitational attraction which each body has for every other. The explanation becomes even more satisfactory if the velocity and course of the raindrop are found to motion in a retarding medium. In other words, the function of physical explanation is to reduce the world of physics from an incoherent mass of particular, disconnected facts, to the far more manageable domain of a few reasonable simple laws, even though these laws ${ }^{\circ}$ basis. the particular facts which form the everywhere, thourh but seldom can the perfection of physical explanation be attained. Even telcological explanation, or explanation, not by the causes of natural science, but by purposes, attempts to reduce what it regards as the complex of deeds of some agent to the performancts of some more or less which acts in a more or less uniform manner. The criteria of a good explanation are largely dependent on the particular field withil which the explanation is made. There arc certain general methods of explanation which
have been found especially adapted to the facts of physics, others with a peculiarly psychologi-
cal ficld of usefulness, others again which serve best in the discussion of moral conduct. The good new explanation, though like every innovaion, it must in some way conflict with established traditions, will almost invariably follow in a general way the explanatory traditions o planation, however, which is almost never service. This is the explanation that goes back to some more or less occult force, principle or faculty. See Induction.

EXPLOITS RIVER, a river of Newfoundland, rising in the southwest part of the island and flowing in a northeastern direction through Red Indian Lake and emptying into th Bay of Exploits after a course of 160 miles light draught vessels for over 100 miles. almost divides the island into two equal parts.

EXPLORATION IN AMERICA. As the routes followed by explorers of North America were determined by its plysical contour, a brief geographical survey is necessary to understand the progress of its exploration Thus, considered, the continent divides itsel into four geographic provinces: the Atlantic region and the western mountains. The firs embraces the coastal plain and Piedmont pla teau lying east of the Appalachians; the secon the Appalachian Mountains and their northern extension to the Gulf of Saint Lawrence; the Lake region and he Hudson Basin, the Grea last province is the great cordillera of western North America, which lies west of the Mis Sissippi Basin and includes the Rocky Mountain system, Pacific Mountain system and the Great Basin region lying in between.
of the Aarliest exploration and scttlement separated from the central region by the Appa lachian barrier. Hence the Saint Lawrence lying beyond the northern terminus of this bat ier, is the only easterly flowing river which drains any part of the central province; and as in an unexplored wilderness watercourses natby its valley that explorers first penetrated the continent. A way through the barrier was found by following the Hudson and its westerly tributary, the Mohawk, which is connected with Lake Ontario by a lowland area.
The central province is covered by a network of waterways extending nearly two-thirds of land margin of the Appalachians on the eas to the front of the Rocky Mountains on the west. It is separated by low divides into three distinct drainage systems: the rivers emptying into the Gulf of Mexico through the Missis sippi; the waters which feed the Saint Law

The western mountain belt stretches north
The western mountain belt stretches northand Canada to the Arctic Ocean. Its southern section is interlaced by a series of rivers tributary in part to the Rio Grande, flowing into Ric Gult of Mexico; and part to the Colorado River, flowing into the Gulf of California

The casiest route across the continent lay
near the present northern boundary of the Missouri reach far into the western mountaine only 500 miles from the Pacific, and separated by but one divide from the Columbia Rive Basin, which leads directly to the Pacific Geographically, then, the explorations of ou country fall into four groups: (1) those along various nationalities; (2) those along the Mis sissippi, made by the Spaniards from the south the French from the north and pioneers break ing through the passes of the Appalachian from the the Atlantic seaboard; (3) those mad by the Spaniards northward from the Mexican made by Americans and of comparatively recent

Though the Cabots discovered North America in 1497 and claimed it for England, it was Spain who first attempted its exploration Ponce de Leon, who had sailed with Columbus on his second voyage and subsequently becom in search of the "Fountain of Youth." Sighting an unknown coast at lat. $30^{\circ} 8^{\prime}$ he named the land "Florida," and turning south explored both sides of the to plant a colony on these shores, he was driven off by Indians.
But Spanish interest was aroused. In 1519 Cortes achieved his infamous conquest of Mexico, and the fame of its wealth inspired others to seek the New World. Panfilo de Narvaez ob tained a grant to conquer and govern Florida tinent stretching indefinitely northe of the conGulf of Mexico. With 300 men he landed a Tampa Bay in 1528 and marched northward suffcring terrible hardships. Disappointed at no finding the gold they sought, they returned to the coast near Appalachee Bay and set out for by the way. Of the whole party Cabeza de Vaca and three others were the only survivors. For six years they wandered: up through Mis sissippi, across the Mississippi River near Memphis, along the Arkansas and Red rivers to Ninal Mexico and Chihuahua; at last reaching Sinal on the Gulf of Califorma, where they (1536).

Cabeza's written account of their experi ences, published after his return to Spain falsely attributed great wealth to Ficrida. So when Hernando de Soto, fresh from the conquests in South America, which had given him quer Florida, many flocked to join him. He sailed in nine ships with 620 men, maintaining great display. Landing at Tampa Bay in 1539 the procession wandered westward, ill-treating the natives, for three years in pursuit of gold through the wilderness of the present Georgia, Alabama, Tennessee and Mississippi to the banks of the Mississippi River. They crossed frightened back by the roving prairie tribes, and returned to the Mississippi, where De Soto died and was buried in its waters at the mouth of the Red River (1542). His followers under Moscoso built seven brigantines, descended to
the Gulf and reached the Spanish settlement on
the river Panuco, 311 survivors all told. Thus it was De Soto who first attracted attention to the Mississippi. Alonso de Pineda had dis"covered its mouth in 1519, and named it "Espiritu Santo," and Caheza de Vaca crosse it about 1530; but The fa coastal explorations for a time. But the Spaniards in Mexico were already pushing their way up into the heart of the continent. In 1539 Marcos de Niza, a priest, penetrated New Mex ico and came back with reports of the wealth of
Cibola, a name which he applied to seven cities somewhere to the north. These were long supposed to be mythical, but lave since been identified as the seven Zuñi villages in New Mexico.
The tale led Vasquez de Coronado to set out in 1540. Part of his expedition he sent by water up the Gulf of California under Her-
nando d'Alarcon, who discovered the Colorado River and ascended it for 85 leagues. The other part he led overland in the direction of Cibola, which he found and conquered (about lat. 35°) ; and then on into Kansas to about The

The belt of country bounding Mexico on the north received the name "New Mexico" from Antonio Espejo, an explorer who started north
in 1582 with Indian guides to the rescue of three missionaries who had been deserted the previous year. Following the Rio Grande del Norte, he came to Cibola and, after learning that the missionaries had been killed, conthe river Pecos.
Onate colonizer of New Mexico was Juan de Onate. He entered the country in 1597 with 130 families and founded the first capital, San Gabriel (second oldest town in the United States), near Santa Fe. In succeeding years he
carried his explorations westward through Arizona, in 1604 following the Gila River to the Gulf of California. The following year he founded Santa Fé.
While this was going on in the interior other nations were interested in the coast. It must be remembered that Columbus was in
search of a western passage to Asia when he came upon America. But the idea did not die. A similar quest brought the Cabots to the shores of North America; and later, as the vast extent of the new country began to be realized, one explorer after another searched the coast for a water route by which to pierce the
continent. When at last the waters of the Saint Lawrence were found to lead no farther than the Great Lakes, explorers still pushed westward along the tributaries of the Mississippi or attempted to round the continent on the north through the ice-blocked seas.
In 1524 Giovanni da Verrazzano, sent by Francis I of France, examined the shores from the king the first known description of them He brought back a theory of an inland sea approaching the Atlantic coast about the mid"le of the continent; and it was to find this "Sea of Verrazzano," as a possible route to Asia, that the king sent Jacques Cartier in 1534
to the Gulf of Saint Lawrence (previously discovered by Jean Denys of Honfleur). In the course of three voyages he explored the Saint

Lawrence as far as Montreal, believing that Cartier attempted to plant a colony near the site of Quebec; but for many years France's efforts in that line were doomed to failure. Equally unsuccessful were Jean Ribaut, who in
1562 brought over a band of Huguenot colonists to the site of Beaufort, S. C. ; and Rene de Laudonnière, who founded Fort Caroline two years later at the mouth of the Saint John's River, Florida. In 1565 Pedro Menendez de Avilés came to colonize Florida for Spain, and mas-
sacred the inhabitants of Fort Caroline sacred the inhabitants of Fort Caroline. Lauhad just arrived from his second voyage with reinforcements for the colony) was killed while attempting to escape along the coast.
Menendez was the first to establish Spanish rule firmly in Florida. He founded Saint Augustine (oldest town in the United States) in
1565 , sent a mission to the Rappahannock in 1570, and explored Chesapeake Bay and the Potomac.
England sent out her first colonists to Jamestown, Va., in 1607. Among the number was Capt. John Smith, an indefatigable explorer of the neighboring rivers and Chesapeake Bay.
Another Englishman, Henry Hudson, se out in 1609 by the Dutch East India Company, explored the coast from Nova Scotia to Chesapeake Bay, and then ascended the Hudson River to Albany. It was during the following year that, in the search for a northwest passage, he
France first gained a foothold in North America through the efforts of Samucl de Champlain. The years $1603-07$ he spent in exploring the Saint Lawrence and the shores of New England, making the first accurate map of that coast. After he founded Quebec in 1608 , he became interested in inland exploration,
which twice led him into the United States. In 1609 he set out with 11 men to aid the Hurons against the Iroquois, descended the Richelicu in canoes, wortaging part of the way, and pushed on through Lake Champlain to about Crown Point; and again in 1615 he accompanicd a great war party of Indians by way of the New
York lakes into the heart of the Iroquois country, south of Lake Oncida
From this time fur-traders and missionaries spread over the country bordering the Saint Lawrence and its tributaries, gradually approaching the Mississippi. The Spaniards had not folowed up their discovery, failing to understand
its importance. Nearly a century after De its importance. Nearly a century after De
Soto's journcy the French at the north began to have an intercst in the Indian traditions regarding the "Great River." About 1635 a trader, Jean Nicollet, was sent to a tribe near the head of Green Bay, Wisconsin. From there he went with Indian guides up the Fox River, portaged to the Wisconsin and descended that
until he came "near the sea," as he reported; until he came "near the sea," as he reported;
probably mistaking the "Great Water" described by the Indians for the sea. By 1658 two other French traders, Radisson and Groseilliers, reached the head of Lake Superior and explored the surrounding country.

When these rumors of a great river to the west reached Frontenac, the governor of company with Jacques Marquette, a Tesuit Meeting at Saint Ignace, they set out with five
men and two canoes, skirted the north shore of Lake Michigan and Green Bay, and ascending the portage to the Wisconsin by Indians across passed, reaching the Mississippi 17 June. For one month they floated down the great stream, noting the mouths of its tributaries as they passed, until they came to an Indian village opposite the mouth of the Arkansas. By this Gulf they knew that the river emptied into the Gulf of Mexico, and supposing themselves turned back through fear of Spaniards, returnng by way of the Illinois and the wester hore of Lake Michigan, which they reached portage. Two years later Marquette met his the while attempting to establish a mission on taken up by Father Claude Allouez, also esuit, who established several missions and raversed much of the country around lake Superior and Michigan between 1665 and 1680 Already another explorer was searching fo was one of in pursuit of the passage to China and cuessed that it lay by way of the Mississippi, which h supposed emptied into the Gulf of California In 1669 he crossed from Lake Ontario to branch of the Ohio, and followed that rive as far as Louisville. The next year he reached explored it for some distance Michigan an went back and forth through the region and established trade with the western Indians. In 1680 he sent Louis Hennepin, another Jesuit Mississippi. ers by he Siour to the Falls of Saint up the great rive Hennepin named. There they were joined by the famous trader Daniel Greysolon Du Lhut who for two years had fearlessly explored the the by way of the Saint Croix. Rive had just come on the site of Duluth and now foined Hennepin on his return journcy by the Wisconsin At last, in 1682, I. a Salle attained his goal With Henri de Tonty and a large party h reached the Mississippi from the foot of Lake Michigan by way of the Chicago and the IlliLa Salle took possession in the name of King Louis of France and gave the name Louisiana to all territory drained by the Mississippi Afte his return he sailed for France and obtained permission to transport colonists to the new
province. He reached the Gulf of Mexico, but province. He reached the Gulf of Mexico, but and put in at Matagorda Bay. There he built Fort Saint Louis, and then started overland to find the Mississippi and reach Canada to obtain supplies for the colonists, but was murdered by one of
Where La Salle had failed, Pierre Le Moyne the Gulf was to succeed. In 1699 he entered around the mouth of the Mississippi, leaving a colony at Biloxi, which was afterward transferred to Mobile. With him was one already known as an explorer of the northern region,
Pierre Le Sucur. He in 1695 had discovered
and named the Saint Peter (the Minnesota) River and observed a quantity of green eart near it; and now, in the belief that it was copper, he led a party of men up the river to work (Green) establish a fort on the Blue Earth
Just at this ti

Just at this time (1703) Baron La Hontan a man who participated in many explorations in the north of the Valley, published an account of his wanderings which contains some valuabl information with much that is false. He claimed to have discovered a river (La Riviere Longue) entering the Mississippi from the west nea in a large lake at the foot of mountains on the other side of which was another river which emptied into the Pacific. This figured on maps for ycars bcfore it was found to be fictitious. of Lhe right to "farm out" this great country in 1714 and agents were immediately dispatched to explore the tributaries of the Mississippi Before the year was out St. Denis followed the Red River and crossed to the Rio Grande, where he came upon a Spanish mission and was imprisoned, sent to Mexico and ordered to return
La Harpe in 1719 La Harpe in 1719 pushed up the Red River and across to the Arkansas, reaching lat, $37^{\circ} 21^{\prime}$ claimed all this country for France and defied the Spaniards in a letter to the Spanish gov ernor. The exploration of the Missouri was attempted in 1719 by Du Tisné and followed up to six leagues above Grand River, at the peril
of his life among hostile Indians, who attempted in vain to bar his passage.
In this southwestern section of the Valle French intrusion was resented by the Spaniards Their claim to Texas rested on the exploration of its rivers by Francisco de Urdinola in 1575 and an expedition led across its borders by their control was assured by the work of missionaries. Father Kino, a Jesuit, had entered Arizona as early as 1658 and by 1679 had es tablished five missions and become well acquainted with the country. On one of his expeand discovered that mour California corado peninsula, not an island, as was supposed.
With the expulsion of the Jesuits in 1767 the missions passed into the hands of the Franciscans, who inaugurated the era of Spanish exploration and settlement in California by a pioncers from the East broke through the mountains and seized upon the country, these missionaries had permeated it and stamped their influence upon it

Meanwhile the French at the north were every year sending traders and explorers into the interior. For some time they continucd to Green Bay and by La Salle up the Chicago but in 1716 they opened a new one by way of the Wabash and another in 1720 by way of the Miami. A dispute over houndaries arose be tween the English and the French. Governor Spotswood of Virginia urged upon the English the necessity of colonizing the Ohio Valley and "Knights of the Golden Horseshoe") to see if a way through the mountains could he found.
He crossed the Blue Ridge and the Shenandoah

Valley, but it was not until 1732 that the first settler, Joist Hite, entered the region.
Other efforts were being made to cross the mountains. When it was learned that the French were winning the allegiance of the Cherokees from the English, Sir Alexander Cuming, a Scotchman, set out in 1730 with a 500 miles across the mountains, bringing back several Indians in token of renewed failh. In 1736 Col. William Mayo and a party of surveyors followed the Potomac to its springs and discovered a portage to waters flowing into the Monongahela. Another route was opened to the
Kanawha, an affluent of the Ohio in 1744 by Col. James Wood, a well-known frontiersman and explorer. Dr. Thomas Walker in 1748 led an expedition across the Virginia mountains, named Cumberland Gap and River and made a circuit through West Virginia.

As the country became better known public interest awakened and in 1748 a number of
Virginians formed themselves into the "Ohio Company" formed the purpose of colonizing the Ohio Valley. To anticipate them, the governor of Montreal dispatched Bienville de Céleron down the Ohio to bury at the mouths of its tributaries plates inscribed with the declaration longed to France. In spite of this, the Ohio Company sent out Walker in 1750 to survey lands for settlement. He explored Kentucky and built the first house in the region now comprised in that State. Christopher Gist was also sent to explore routes to the north, select lands for settlement and investigate the Indian tribes.
He made a circuit of 1,200 miles north to the He made a circuit of 1,200 miles north to the
Scioto and Miami and then south of the Ohio, visiting all the Ohio tribes and returning by way of the Licking, Kentucky and Roanoke rivers. On a second mission in 1751, he discovered a new gap from the Potomac to
Monongahela and explored the Kanawha.
The next year Gist acted as guide to Geo
Washington when he went as emissary from the governor of Virginia to the French fort at the head of the Ohio to protest against the French occupation of the valley. His mission was fruitless, but he brought back a map of his route: up the Potomac, across the divide and along fort near Lake Erie.
A most prominent figure in English exploration was George Croghan. Sent out by Pennsylvania in 1750 with the half-breed Montour o win over the Indians through the Ohio Valley to the English, he went far and wide,
from tribe to tribe, attaining an influence over the Indians which was of invaluable service to the English during the French and Indian War. When peace was declared he was delegated to prepare the Indians for English occupation. Starting from Pittshurgh, he followed the Ohio Wabash and Maumee to Detroit and reported that the way was open; whereupon the English
troops, under Capt. Thomas Stirling, advanced to Fort Chartres and took possession of the country east of the Mississippi
And now, with English control assured, settlement spread rapidly beyond the Appalachians. Much of the preliminary exploration was made
by hunters, trappers and traders too numerous by hunters, trappers and traders too numerous
to mention, were they known. North of the Ohio the country was first settled by Moravian
missionaries. Among the southern pioncers, James Smith followed the Kentucky and Tennessee rivers in 1766 and John Finlay explored
northern Kentucky in 1767; but most prominent northern Kentucky in 1767; but most prominent was Daniel Boone. His first venture was made with James Robertson and spent two years exploring eastern Kentucky and Tennessee. Subsequently these two men took a prominent part in the settlement of this region.
With the advent of the American Revolution exploration received a check; but the expeditions of troops led by George Rodgers Clark into the
Ohio Basin $1778-79$ and by Gen. John Sullivan into western New York were not without geographical value. And in the Indian wars which followed (1790-94) the American expeditions under Harmar, Clark, St. Clair and Wayne added to knowledge of the Ohio Valley.
During the 17 th and 18 th centuries, while ex-
ploration and settlement had been pushed westploration and settlement had been pushed west-
ward from the Atlantic seaboard over half way across the continent, the Pacific coast was almost unknown. Balboa had discovered the
Pacific at the Isthmus of Panama in 1513 and Pacific at the Isthmus of Panama in 1513 and Cortes had sent several expeditions to the west coast of Mexico (1522-24). The first white Spaniard Juan Cabrillo, who in 1542 traced it north as far as Monterey; and after his death the following year his pilot continued to Cape Mendocino. In 1576 the English scaman Drake reached lat. 43° in his coastal exploration. To the north the coast was unknown until Vitus
Bering (1741), commanding a Russian expediBering (1741), commanding a Russian expedi-
tion, visited it in lat. 60°. His voyage was followed by a swarm of Russian fur-traders, who, following the chain of Aleutian Islands during the latter part of the 18th century, gradually worked their way eastward and eventually reached the mainland of what is now Alaska.
In 1778 came Capt. James Cook, the famous English navigator, surveying the coast from search for a northeast passage. When the published account of this voyage called attention to the rich fur-trade in the northwest, Americans were among the first to take advantage of the
In 1789 Capt. Robert Gray, of Boston in the ship Columbia, cruised around the Horn and visited the northwest coast, carried a cargo of furs to China and returned to Boston by way of the Cape of Good Hope. Thus was the American flag first carried around the world. On a second voyage in 1792 he discovered and
explored the lower reaches of the Columbia River. This all-important achievement, besides disclosing an easy route from the western mountains to the sea - thus paving the way for transcontinental exploration - formed the chict hasis of our territorial claim to Oregon. When George Vancouver, who was exploring the west of the Columb British vessels (1792), learned a boat expedition to investigate it. Afterward he continued northward to extend Cook's explorations on the coast of Alaska and British Columbia.
As yet none had succeeded in finding an Cabera de route to the Pacific north of Mexico. ings, had turned to the south when he reached the motmtains. A Canadian, Varennes de la

Verendrye, spent many years (1731-49) in the carch for a route; an how expense, for hi sons he made extensive explorations west of Hudson Bay, in the course of which he discovered (1731) the Red River and Lake Winnipeg, and his son Pierre penetrated to the forks the two sons made a perilous journey to the the two sons made a perilous journey to the
southwest, across the Missouri and on to the Black Hills in western South Dakota.
In the struggle for the Ohio Valley the western route was forgotten for a time. But when that contest was settled the quest was renewed made his way westward by canoe through the Great Lakes and by Marquette's route to the Mississippi, which he ascended to the Falls of Saint Anthony. He explored the Minnesota River, spent a winter among the Sioux and in nd returned by ascending the Chippewa River While his journey added little to by portag knowledge, yet it served to awaken interest and led Richard Whitworth to join Carver in planning a transcontinental expedition, which wa unfortunately prevented by the outbreak of the
evolution.
Meanwhile the English fur-trading compa nies, through the journeys of their agents, ha not only of Canada but of the United States The Hudson Bay Company, since it obtained it charter in 1670 and established its first post Fort Rupert) on the great bay from which took its name, had, in spite of French interfer ence, extended along the shores of the bay an Canada in 1763 it had a clear field until the ap pearance in 1783 of a rival "Northwestern Company," made up of Canadian merchants, which operated by the direct route from Mon treal to the Great Lakes and rapidly pushed its Control throughout the north and west. Its Alexander Mackenzie in a journey (1792-93) from Lake Athabasca up the Pcace River and across the Rocky Mountains, the head waters of the Fraser River and the Coast Range to the Oust of British Columbia in the latitude o Queen Charlotte Sound. This was the first time Thomas Jefferson in 1803 induced Congres to make an appropriation for the expenses of a transcontinental exploring expedition, a project that he had entertained for some 20 years Nominally, Capt. Meriwether Lewis was leade of the party, with Lieut. (generally known as in point of fact all action was taken jointly and the expedition is always known as that of Lewis and Clark. While preparations werc under way Fe purchase of the territory of Louisiana from prise gave additional importance to the enter prise. Lewis and Clark, with 43 men, left Saint large boats, pushed their way 11 p the Missour and built a fort at the Mandan Village, about 50 miles ahove the present town of Bismarck, N. D From this point some of the party were sent tinued their voyage up the Missouri with 32 men. At the falls the heavy boats were left and canoe were constructed to continue the ascent of the
iver. Near the head of what they named th Jefferson (the western fork of the Missouri) from the Indians crossed the Rocky Mountain to the Columbia, which they descended to the mouth, reaching the Pacific in November 1805 After wintering here the party retraced thei steps to the east side of the Rocky Mountain souri while Clark traced the course of the Yellowstone. At the junction the reunited force continued their rapid down-stream journey reaching Saint Lewis in Scptember 1806. Thi was not only the most notable exploration eve undertaken by the United States government but its complete success led to the many other The have followed up to the present day. plored by Lieut. Zebulon Montgomery Pike who ascended the river with a party of 20 soldiers in 1805 . He reached Leach Lake drainage system and found the region already occu
pied by the agents of the Northwestern pany. Upon his return in 1806 Pike set out again with 23 men, with the idea of winning the allegiance of the Indians from the Spaniards and establishing an American claim to the region which had long been in dispute between the French and Spaniards. He ascended the Osage River in boats and crossed overland with up the trail of the Spaniard Malgares, who in the previous year had made an excursion into this region from Mexico at the head of severa hundred troops. At the Arkansas Pike detailed Lieut. James Wilkinson to explore that stream to the Mississippi and continued west with the ber at that high peak of the Rockies which now bears his name. During the winter, after ter rible suffering from cold and hunger, he reached the Rio Grande. The Spanish authorities sen out a large force to capture the little band o explorers and they were conducted back through as Texas.
The roving fur-traders were quick to penetrate the regions pioneered by Lewis and Clark and Pike. During the ycars 1806-09 they extended their excursions well into the Rocky Mountains from the east. In Canada the North western Company, ever active, pushed its out-
posts westward; and in 1808 one of its agents posts westward; and in 1808 one of its agents, of the Fraser River.

In 1810 John Jacob Astor, a New York fur trader, organized a company for the purpose of exploiting the trade on the Pacific slope. A vessel was dispatched to the mouth of the pedition sent overland to follow the Lewis and Clark route. This was the second party to cross the United States to the Pacific. Numbering three boats and 60 men under the leadership of one of the partners, Wilson Price Hunt, it left Saint Louis in the late summer of 1810
and pushed its way up the Missouri and pushed its way up the Missouri about 450
miles. Here the party wintered miles. Here the party wintered and in the Missouri; then with horses purchased from the Sioux proceeded overland in a southwesterly ditection, crossed the Rockies near the head of the Big Horn River and followed the Snake fraction of his large party and after only a
terrible suffering, Hunt reached the mouth of the Colu sca. The American company was only just in sca. The American company Thompson of the Northwestern Company had portaged across the Rockies from the Saskatchewan to the head waters of the Columbia and followed it to the Pacific, where, much to his disgust,
In 1812 David Stuart, with a small party, started eastward from Astoria to make the difficult and hazardous journcy to Saint Louis. He chose a route to the head waters of the Snake, arross the divide to the Grecn River, a tributary of the Colorado, and across a second
divide to the Platte, which he followed to its junction with the Missouri and continued down stream to Saint Louis, arriving in April 18i.3, after a journey full of peril and hardship.
In 1814 Astoria passed into the hands of the Northwestern Company, which extended its trade over the entire Columbia River basin and slope of the Rockies was occupied by American traders, with headquarters at Saint Louis and posts on the upper Missouri in the Green River Valley.

The government began to realize the importance of exploration. In the hope of discovering the sources of the Red River, a large cx burgh on a small steamer in April 1819, wintered on the lower Missouri and during the following year made explorations and surveys in the country now included in Arkansas and Mis souri. Long was sent again in 1828 to explore the head waters of the Mississippi, which he approached through the widerness from the to Lake Michigan, thence to the unction of the Wisconsin and Mississippi and on to the Minnesota; a difficult route, but lying in a region which had been explored pioneers more than a century before. een discovered. The head water recion no veen discovered. visited by Pike and long the stamping ground of the fur-trader, had been again ex plored in 1820 by Gcn. Lewis Cass, governor f Michigan, in company with Henry R. School raft. It was not until 1832 that the source was finally discovered in
Capt. B. L. E. Bonneville, an officer of
the United States army, in 1832 organized the party of trappers and hunters for the ostensible purpose of taking part in the fur-trade, but more to gratify his own Fort Osage on the Missouri with 110 men ransporting his supplies by means of wagons, nstead of using pack-animals, as all previous parties had done. Following Stuart's route o 20 years before along the valley of the Platte River, he crossed the mountains with his wagonGreen River. From this point as rendezvous is party scattered out in various directions he himself exploring the Big Horn and Wind River mountains and extending one journey to the English trading-post on the Columbia. A party sent out by him visited Salt Lake and con-
tinued through to the Spanish settlement of Monterey on the Pacific.

During the ycars 1833-35 the Rev. Samuel Parker, a zealous missionary, made several hazardous journeys from the Mississippi waters to son Bay Company, which had absorbed its rival the Northwestern Company, controlled the enEngland, in spite of the protest of the few England, in spite of the protest of the few
American settlers. In 1842 it came to the knowledge of the Americans that the English werc making preparations to colonize the region and it was necessary that the authorities a Washington should be informed at once. For this purpose Dr . Marcus Whitman and A. Lovejoy set out in the dead of winter on 4,000 miles across the continent. They took a southerly route through New Mexico to the Arkansas, and Whitman reached Washing ton. 1841 Lieut. R. E. Johnson of the United States Exploring Expedition, commanded by Charles M intains near Mount Rainier and, after making an extended journey in the Columbia River Valley, recrossed the Cascades to the coast. A detachment ascended the Willamette and crossed to the Sacramento Valley, which they
followed to San Francisco.
With the exception of the Lewis and Clark expedition, the most important exploration of the century was done by Lieut. John C. Fremont, who had gained his first experience while assist ing J. N. Nicollet, a French geodesist, employcu by the United States government 1836-40, for making surveys in the upper Mississippi Basin
In 1842 Fremont, with 25 men, among whom was the famous scout, Kit Carson made sur veys of a region lying between the Missour River and the Rocky Mountains, along the valiey of the Kansas and Great Platte rivers. In 1843 he was instructed to carry his surveys to the Pacific Coast. With a party of 40 men he made
his way westward from the junction of the his way westward from the junction of the of the North Platte, crossed to Green River, and traversing a region long known through the explorations of Bonneville and others crossed another divide and descended Bcar River to Salt Lake, which he explored. From
there he went westward to the Snake River and on to the mouth of the Columbia. After renewing the supply of provisions, Fremon retraced his steps to the Dalles of the Columbia then turned southward to Klamath Lake, and made a hazardous journey through the Sierras which brought him into California along the of the Sacramento. Traveling southward, he once more crossed the Sicrras in lat. 35°, and returned to Saint Louis across the Great Basin region and the Rockies. On his thir journcy Fremont crossed the Rockies from the head of the Arkansas to the Green Rive Valley, then continued westward around the
southern end of Sall Lake across the Sierras, near where he previously traversed them, and then turned northward along the Sacramento Valley and across the mountains to Klamath Lake. Here he was impelled to turn back by the news of the uprising in California, and converted
expedition.
The southwest became better known through military operations during the Mexican War,
and after its close many expeditions were sen out by the government, under both military and civilian leadership, most of them, however, in regions already explored

Public interest in the construction of a transcontinental railway led to five extensive expedilons during he 3 dars 181; the second explor35 th ; the third near the 38th and 30 th: the ourth near the 41 st and 42 d ; and the fifth near the 47th and 49th. Various military exploraions and surveys were carried on west of the Mississippi up to the outbreak of the Civil War. In 1869 Maj. J. W. Powell made a daring rado. With only a few men in small boats he ollowed the Green and Colorado rivers from Green River Station to the mouth of the Virgin River. In the next two years he extended this exploration in the Colorado basin under gov The Pacific
cted the purely explorveys practically com Pleted the purely exploratory work of the directed to minor details. During the years 1867-79 this work was carried on by various organizations which were created for both eographic and geologic research. Four o Exploration of the 40th Parall") " ence King (King Survey); "United State Geographical and Gcological Survey West the 100th Meridian," under Capt. Geo. M Wheeler, U. S. A. (Wheeler Survey); "Unite States Geological and Geographical Survey of
Territories," under F. V. Hayden (Hayden Territories," under F. V. Hayden (Hayden
Survey) : "Gcological and Geographical Survey of the Rocky Mountain Region,") under J. W PoweII. In 1879 the United States Geologica Survey was created for this purpose and the other organizations discontinued. The acqui-
sition of Alaska in 1867 gave American exsition of Alaska in 1867 gave American ex-
plorers a new field. Sce Alaskan Exploraplorers

EXPLOSION, a sudden bursting, generall ue to the rapid production of gascous matter gunpowder is due to the sudden formation and expansion of gases into which the powder is converted by chemical agency. Explosions are often caused by the elastic force of sieam con fined in boilers, and by spontaneous combustion

EXPLOSION CRATERS. Althoug many of the great craters on volcanic peak holes not connected with lava outfows. Mos of these holes are in plains and they are rimme by a ridge of fragmental materials evidently blown out of the hole by an explosion. Crater of this class are the "maars" of the Rhine chio, Albani, Nemi, Astromi and Faifa in south ern Europe of Nassibe in Madagascar and Lonar, India. The latter, as Madagascar and Blandford, is a hole about a mile in diameter 300 to 400 feet deep, in a great plain of old lava, similar to the rocks on the sides of the hole. The latter are bent up slightly. There are several notable explosion craters in Mexico, in Valle Santiago at Xico, Tacamharo, and on the northern part of Sonora. The Afton craters
in New Mexico, 31 miles northwest of El Paso the crater of Zuñi Salt Lake, New Mexico Arizona are also believed by some geologist to have been caused by the explosion of vol canic steam. As to the competency of this agent to cause a crater there are some notable Bandai Sai eruption in Japan in 1888 which made a vast crater on a mountain where ther had been no volcanic activity for many centuries. It was not attended by lava flow. The eruption of Krakatoa in 1883 is another impressive instance. Consult Darton, N. H ber 1916).
N. H. Darton.

EXPLOSION ENGINE. See Internal Combustion Engine
EXPLOSIVE GELATINE, blasting gela tine or gum dynamite, an explosive materia resembling wine jelly in appearance. It was
invented by Nobel in 1878, and consists of soluble cellulose nitrate dissolved in nitrogly cerin. Originally, the solution was effected by warming the nitroglycerin and adding the percotton, little by little, with stirring, whereby the nitroglycerin was made to dissolve from 4 to 10 per cent of the nitro-cotton: Then the solution was effected by the aid of a solven like acetone, which was afterward evaporated
off. All of these processes of manufacture were off. All of these processes of manufacture wer
dangerous. In 1889 , Lundholm and Sayer discovered that if the nitroglycerin and nitro-cot ton are mixed with warm water and stirred u by compressed air, gelatinization sets in, and may be completed by pressing out the wate and working the mass in malaxating machines Explosive gelatine is a gelatinous mass, looking ing in consistency from a tough leather-lik material to a soft jelly, in accordance with variety of circumstances, such as the quantity and chemical composition of the nitro-cotton used, and the methods of manufacture. In general, the thinner the gelatine, the more sen-
sitive it is to detonation; but, on the other hand, a thin gelatine is subject to liquefaction and possibly also to exudation, which would make it dangerous in storage, transportation and use. Specially strong detonators are re quired to explode blasting gelatine; or ordinary detonators may be used with primers of dynashould be transmitted through a mass of explosive gelatine it must be confined; for, unlike dynamite, a train of it cannot be exploded in the open, except by means of an extremely powerful initial detonation. The sensitivenes of the material is still further diminished by the solution in it of camphor, or other substances rich in carbon and hydrogen, like ben-
zine or nitro-benzine. While dynamite and nitroglycerin are much less liable to be exploded by a blow when frozen, the reverse i true of frozen explosive gelatine. Though while in the unfrozen condition explosive gela tine is less sensitive to shock or blows than exploded, a more powerful explosive, it is, when of them. This is due to the fact that when nitroglycerin is detonated, there are unused oxi-
izing materials in the gaseous products; and when cellulose nitrate When, therefore, these bodics are mixed in th right proportions, the products will be those of complete combustion. Explosive gelatine has the advantage over dynamite in that it is pracically unaffected by water and therefore can liable to freeze than dynamite. It possesses an dvantage over guncotton in being plastic and can, therefore, better adapt itself to the irregu aritics of the bore-holes in loading. The spe ific gravity of explosive gelatine is from 1.5 to 6. If heated slowly, beginning at $60^{\circ} \mathrm{C}$., it heating it explodes at $240^{\circ} \mathrm{C}$. ($464^{\circ} \mathrm{F}$.). I gnited when frozen even small quantities may explode. Pure explosive gelatine is used for basting in unusually tough rock or for blasting under water, or for military purposes. It is put up in cylindrical "sticks use in wrappe ike dynamite. For general use in blasting it are made by mixing this costly and powerful material with diluents. A great many different opes are used, but a good example of a gela ine dynamite is "gelignite," which is made by mixing 65 per cent of explosive gelatine with per cent of an explosive wood-pulp dope, 2.5 per cent, nitro-cotton 2.5 per cent, sodium itrate 26.25 per cent, wood pulp 8.4 per cent nd sodium carbonate 0.35 per cent. "Forcite s a similar modification of explosive gelatine ontaining 50 per cent of wood pulp.

EXPLOSIVES (from Lat. explosus, p.p. explodere, to drive out, to drive out a player with clapping, to explode; from ex, out plandere, plodere, to clap, strike, applaud), ar low temperatures with the formation of a con iderable volume of highly expanded gas, the volution of heat and light and the production f sound. At ordinary temperatures they may be solid bodies like gunpowder or liquid lik itroglycerin or gaseous like fire damp mix hemical compound like mercuric fulminate, or f mixtures of combustible substances with supporters of combustion or oxidizing agents like lasting powder, which is a mixture of char coal, sulphur and sodium nitrate. Though th emperature is different for each explosive they an all be caused to explode if heated to the cumstances are for nitrogen chloride, $93^{\circ} \mathrm{C}$. nercuric fulminate, $152^{\circ} \mathrm{C}$.; emmensite, 165 C.; nitrostarch, $175^{\circ} \mathrm{C}$; dynamite and guncotton, each $180^{\circ} \mathrm{C}$.; and hlasting gelatine $204^{\circ} \mathrm{C}$. ; nitroglyccrin, $218^{\circ} \mathrm{C}$. i $^{\circ}$ blasting powder, $270^{\circ} \mathrm{C}$.; picric powder, $273^{\circ} \mathrm{C}$. ; rifle

History. - The inventor of gunpowder, the dest of explosives, and the place where it riginated, are not known. The invention has been ascribed by different authors to Marcus Græcus, Albertus Magnus, Roger Bacon and Berthold Schwarz; to the Arabians, whos works were largely used by Marcus Grecus in in passages occurring in the code of Gento laws prepared by Indian savants by order of

Warren Hastings in the 18th century; and to the Chinese because of certain statements made by Marco Polo. There seems to be little doub that this confusion exists (1) because modern meanings have been given to words and phrases used in the old manuscripts; (2) because of the intentionally confusing methods employed by the writers of the Middle. Ages; and (3) be
cause gunpowder for use in guns was not th cause gunpowder for use in guns was not the
invention of any one person, but was really the result of a progressive development
It is recorded that what moderns call. "Greek fire," and the ancients called "naphtha," wa employed in the defense of Constantinople
the 7 th century and that these fiery compositions were propelled against the enemy by mean of arrows from bows, or in hollow vessels of stone or iron thrown by war engines. Though consisting at first of pitch, rosin, sulphur and similar easily inflammable and highly combustible substances, it is easy to imagine that in th tentative development of these materials of was and that there was thus produced a dellagratin composition for use as bursting charges in bombs and grenades and for the manufactur of devices analogous to modern firecracker and rockets their foes

The supposition that gunpowder was known ported by the applied for use in guns is sup ponents and mixtures for Greek fire similar to gunpowder were already known in the time of Hassan-al-Rammah (1290). From an exhaustive search of the literature Guttmann arrives at the veloped from Greek fire, and that it was known for years before cannons and guns were though of. The use of purer materials in making it developed its propulsive power, and led to the subsequent invention of cannons and guns. The Arabians were the first to make gunpowder-like idea of utilizing their propulsive force, that is the invention of guns and cannons, belongs to the monk, Berthold Schwarz, of Freiburg, Sax ony; the date of the latter invention being probably 1313 A.D." It is accepted as indisputable that gunpowder mills existed at Augslurg, Ger and that the English used gunpowder in guns a the battle of Crecy, 1346
Though many improvements were made in the manufacture of gunpowder, such as in the preparation and purification of the raw materials from which it was produced; the methods of in-
corporation; and its granulation to adapt it to corporation; and its granulation to adapt it until the end of the 18th century, when the French chemist Berthollet proposed the substi tution of potassium chlorate for the potassium nitrate and produced by this means a much stronger and quicker powder, but one which was
also much more dangerous than gunpowder Beginning with the discovery of mercuric fulminate by Howard, an English chemist, 1800 there was added to the achievements of the 19 th century the discovery of nitrogen chloride by the French chemist Dulong, 1812; nitrostarch by Braconnot, 1832; guncotton by Schoenbeip
of Basel, Switzerland, 1845 . nitroglycerin by Sobrero at Turin Italy 1846; the invention of blasting powder by L. DuPont of Wilmington

Del., 1856; the discovery of diazo compounds by the German chemist, Griess, 1860; the in1866: smokeless sparting A. Nobel of Sweden, of Potsdam, Germany, 1867; blasting gelatine by Nobel, 1878; military smokeless powder by sporting powder by Richard von Freeden Walsrode, Germany, 1889 ; homogeneous smokeless powder composed of a single chemical substance in a state of chemical purity by Charle E. Munroe of Newport, R. I., 1890; and the Germany 1890 , while acid by Curtius of Kiel acid, which was discovered by Woulfe 1771 was shown to possess explosive properties and adapted for use in shell, it having been pointed out by Sprengel, 1873, that it contains a sufficient amount of available oxygen to render it, ful explosive when fored with a detonator
This growth has been coincident with development of the chemical and physical sciences and has been the more rapid, the more completely experimental methods of research have becn perfecteci and applied. In addition to hose enumerated above this advance in the scito the labors and intelligence of Hess, I auer Trauzl and von Lenk in Austria: Abel, Cundill Debus, Dewar, Dixon, Dupré, Majendie and Noble in England; Berthelot, Chalon, Daniel, Desortiaux, Gay-Lussac, Lavoisier, Le Chatelier, Violette in France, Roux, Sarrau, Turpin and mann, Liebig, Mcyer, Schischkoff Ur, GuttWill, von Forster and von Romocki in GerMany ; Abbot, Barnard, Craig, Emmens, Judson, Rodman, Count Rumford and Woodbridge in the United States: Mendeléeff in Russia; CronSwitzerland Sweden and Hebler and Lunge in Abcl and Berthelot who were especially promnent in this science.
Theory of Explosives.- When wood or ther combustible substances containing hydrogen and carbon are ignited in contact with air converted into water and carbon dioxide, which pass off as invisible and highly expanded gases. As the wood is subdivided so as to expose a continually increased surface to the air the rapidity of the combustion is increased until, dust the wood is reduced to dust like sawmately mixed with it the velocity of the combustion is so great and the evolution of the gases so rapid that the reaction becomes an explosive one and such a mixture of sawdust bustible substances can, when finely divided and intimately mixed with air, form explosives and
int volatile liquids and gases are especially likely to do so. Many accidents have arisen from the ignition of mixtures of air with the dust of charcoal, coal, flour, malt, soap, starch, sugar, zinc, ol, ether, gasoline and other naphthas, spirits of urpentine and other liquids, or gases like cthy cach of these substances, though in themselves non-cxplosive, form explosive mixtures with air if they be mixed with it in the right pro-
portions. The best proportions are those in which the volume of oxygen in the air present is just sufficient to convert all of the hydrogen in the combustible into water and all of the to produce complete combustion. Less wiolent explosions may occur when the proportion of air is greater or less than the "best proportion," cter of being fixed in each case by the character of the combustible substance, the quantity which it is subjected and it is ignited. Mixtures of these substances whose proportions are outside of these limits may be ignited and may burn, but do not ex-
If pure oxygen in the proper proportions be substituted for air in the above mixture the velocity of the reactions will be still greater, and the energy set free in unit of time and congreatly increased Besides the proportions be determine the limits between explosion and combustion will be extended. Such mixtures if confined and out of contact with the air will still take fire and explode. Oxygen may be supplied either in the frce state or in solid bodies which comparatively low temperatures solids are the nitrates of metallic radicles, like ammonium nitrate, potassium nitrate (India saltpetre), and sodium nitrate (Chile saltpetre) ; chlorates such as potassium chlorate; peroxides ike sodium peroxide, and many others. If mately mixed with a combustive in and intiproportions, a solid explosive is produced. Often, as in the case of mixtures of charcoal and saltpetre the temperature to which they must be heated in order that combustion shall begin, called the point of ignition, is so high small portion of to ignite and in such cases which has a low point of ignition is incor porated in the mixture.
Another method by which oxygen may be brought into intimate contact with combustible bodies so as to form an explosive is through the action of nitric acid upon them by which duced into the molecule. Three cases present hemselves. First, when the combustible body is a simple or mixed primary alcohol and the nitric acid reacts with the acidic hydrogen. Second, when or its derivative sunstance is a cid reacts ith derivative and the nitric bon or the hydrocarbon nucleus. Third, when the reaction leads to the union in the hydrocarbon of NO_{2} through the intervention of a nitrogen atom. The products of the first case are organic nitrates called also nitric esters. The products of the second case are nitroare called nitroamines. Examples of the frit case are ethyl nitrate from ethyl or prain alcohol, glycol nitrate from ethylene glycol glyceryl nitrate (nitroglycerin) from glycerol (glycerin), mannitol nitrate from mannito (mannite), starch nitrate (nitrostarch) from starch, and cellulose nitrates (guncetton and ond case are mono and di nitro benzene from benzenc, tri nitro phenol (picric acid) from
carbolic acid (phenol), nitrotoluenes from tolucne, and nitro-raphthalenes from naphthalene. An example of the third is ethyl. These explosives differ markedly from mixtures like gunpowder, for, whereas in the mixtures the arents are in different masses, in the explosive compounds like nitroglycerin, they are both in the same molecule. Therefore in the latter the contact is more intimate and the eaction takes place with greater velocity. In addition to the explosives of the characters described above is another class of
chemical compounds, of which nercuric fulminate, silver amine (fulminating silver), acetylene, the azides and diazo benzene nitrate are notable examples, whose explosive properties are due to a phenomenon (namely, a molecular disruption), which is quite unlike that of combustion ascribed to those of the previous
classes. This case of disruption arises from the fact that these substances are endothermous compounds, or in other words, that they absorb heat during their formation and are therefore reservoirs of energy.
he foregoing theorics of their constitution ang he foregoing theorics of their constitution and (1) Nitrate mixtures.- Amide (charcoal, potassium nitrate, and ammonium nitrate); amidogene (bran or starch, charcoal, magnesium sulphate, potassium nitrate and sulphur); ammonal (metallic aluminum and amsodium nitrate and sulphur) ; blasting powder (charcoal, sodium nitrate and sulphur); carbazotine (bark or wood pulp, lampblack, ferrous sulphate, potassium nitrate and sulphur); Courteille's triumph safety powder (charcoal, peat, coal, oleaginous matters [animal or vegetable], metalic sulphates, sodium nitrate and
sulphur) ; diorrexine (sawdust, sodium nitrate potassium nitrate and sulphur) ; fractorite (rosin, dextrine, potassium dichromate, ammonium nitrate); gunpowder (charcoal, potassium nitrate and sulphur) ; haloxyline (charcoal, sawdust, potassium, ferrocyanide and potassium nitrate) and Meurling's powder (hydrocellulose, potas sium nitrate and sulphur) ; pyrolithe (charcoal sawdust, sodium carbonate or sulphate, potassium nitrate, sodium nitrate and sulphur) ; saxiragine (charcoal, barium nitrate and sulphur) monium nitrate).
(2) Chlorate mixtures.-Asphaline (hydrocarbons, potassium sulphate, potassium nitrate potassium chlorate) : Berthollet's powder (char coal, potassium chlorate and sulphur) ; bri tainite (naphthalene, potassium nitrate, ammonium nitrate, potassium chlorate) ; Callow's potassium chlorate) ; carlsonites (naphthalene, or dinitrobenzene and other combustille sub stances with ammonium perchlorate) ; cheddite, (nitro body, oil and potassium chlorate) ; comet powder (rosin and potassium chlorate) ; cycene (cane sugar, paraffin oil or coal dust, potassium powder (tannic acid, charcoal, rosin, potassium nitrate and potassium chlorate) ; Hahn's powder (charcoal, spermaceti, antimony sulphide and potassium chlorate); Himly and von

Trutschler-Falkenstein's powder (coal tar, po tassium nitrate and potassium chlorate) ; Hors ley's powder (nutgalls and potassium chlorate) sawdust, potassium nitrate sodium nitrate potassium potassium nitrate, sochium , itrate der (ammonium ulmate potassium nitrate potassium chlorate and sulphur). Melland's paper powder (porous paper which has heen soaked in a paste composed of starch, char coal, potassium ferrocyanide, potassium chro-
mate, potassium nitrate, potassium chlorate and mate, potassium nitrate, potassium chlorate and gambier and potassium chlorate): Parone's cx plosive (carbon disulphide and potassium chlorate); Pertuiset's powder (sulphur and potassium chlorate) ; pyrodialites (mixtures o coal tar with chlorates or perchlorates and with or without nitrates, nitrosubstitution com pounds, charcoal and oxidizing salts); pyronome
(rye flour, charcoal, metallic antimony, sulphur potassium chromate and potassium chlorate) ; rossellite (asphalt oil and potassium chlorate); Siemen's powder (a solid hyciro carbon, potassium nitrate and potassium chlorate) ; thorite (cane sugar and potassium and potassium chlorate) ; and white powders of Angendre and Pohl (cane sugar, potassium ferrocyanide and potassium chlorate)
(3) Oxidizing mixtures.-These are mix tures of combustible substances with oxidizer other than the nitrates, chlorates or perchlorates. Among such bodies may be named tassium dichromate, liquid air and liquid nitrogen tetroxide. As examples we have mixture of sodium thiosulphate with sodium peroxide metallic aluminum with sodium peroxide; cot ton wool with liquid air, and panclastite, whic is a mixture of ca
nitrogen tetroxide.
(4) Organic nitrates or nitric esters and mixtures containing them.- Esters: Guncotton which is a cellulose nitrate of high nitration and practically insoluble in a mixture of ethe and alcohol at ordinary temperatures; nitro cellulose, a term applied to all cellulose nitrates erythrite (erythrol nitrate) ; nitrocthyl (ethy nitrate) ; nitroglucose. a nitrate produced from grape sugar; nitroglycerin, pyroglycerin or glonoin oil (glyceryl trinitrate) ; nitrolactose (nitrated sugar of milk) ; nitrolignin (nitratcd wood) ; nitromannite (mannitol nitrate); nitro dine (starch nitrate) ; nitrosugar or nitrosac charose, a mitrate produced from canc sugar pyroxylin, collodion cotton, nitrocotton o pyrocellulose, are cellulose nitrates of medium nitration and practically completely soluble in
a mixture of ether and alcohol at ordinary a mixture of ether and alcohol at ordinary
temperatures. In this class is also to be included the explosive mixtures into which these esters enter as essential components and of which the dynamites are conspicuous examples These are classified, according to the nature of the dope or absorbent, into
A. Dynamites with an inert base.- Nobel's dynamite No. 1, giant powder No. 1 ; dynamite C. dynamite; S. 1, dynamite; Rutenberg's explosive; dynamite rouge, all consist of nitro-
glycerin with kieselguhr; Hill's powder (nitro-
glycerin with precipitated silica); Mowbray mica powder (nitroglycerin with asbestos) Hercules powder (Extra No. 1); (magnesia powder, nitro-magnite; dynamagnite; fulgurmite de loghead (nitroglycerin with ashes from Boghead coal) : selenitic powder (nitro glycerin with plaster of Paris); Horsley's powder No. 1 (nitroglycerin, alum and mag nesium sulphate); metalline nitroleum (nitroglycerin, red lead and plaster of Paris) ; renish dynamite (nitroglycerin, kieselguhr and naph
thalene): dynamite noire (nitroclycerin, sand and coke); mataziette (nitroglycerin, sand ochre, charcoal and resinous matter); pori fera nitrolcum (nitroglycerin, sponge or vegetable fibre and plaster of Paris) ; Burstenvegetable substances with glycocoll or spongy drin) : Morse's explosive (nitroglycerin with rosin) ; Borland's carbo-dynamite (nitroglycerin with charcoal from cork) ; white dynamite (nitroglycerin with lime-guhr); boritine (nitroglycerin, kieselguhr and boric acid) lluorine (nitrogly B oride)
B. Dynamites with an active base.-a. Con sisting of nitroglycerin absorbed by a gunpowder like dope-Ammonia dynamite; amplosive; Champion's powder; colonia powder Dittmar's powder; dynamite No. 2; dynamite au charbon; dynamite d'ammoniaque; dynamite explosive: giant powder No. 2; Gotham's powder; Hercules powder; Horsley's powder No. 2; Judson's powder; Jupiter powder, lithofracteur; 'Monakay's explosive; miner's powder Co. dynamite, Neptune powder bolt powder. Titan powder; virite powder Vulcan powder
b. Consisting of nitroglycerin absorbed by or gelatinized with a cellulose or ligno-cellulose nitrate - Blasting gelatinc; cellulose dynamite explosive ; extra dynamite; cxplosive pelatine glyoxyline. grisoutine. gum dynamite. nitro gelatine; palcine; Punshon's explosive Schultzc's dynamite; straw dynamite; Trauzl's dynamite.
c. Consisting of nitroglycerin or an explosive gelatine incorporated with wood pulp or sawSuch dynamites are styled lignin-dynannites Atna powder: amidogene; Atlas powder Brain's powder; carbonite; diaspon, dualin dynamite de Krummel ; dynamite de Lanky forcite; gelatine dynamite; gelignite; giant powder, Hecla powder; meganite; miner friend powder; grisoutite; kadmite; petralithe; Schultze dynamite; stonite: stowite; vigorite d. Other dynamites.- Americanite (nitrol glycerin and methyl alcohol) ; Castellano's powder (nitroglycerin, fibrous material, earth and nitrobenzine); cerberite (nitroglycerin, wood nitrate) : Engle's powder (nitroglycerin, ammoniacal salts, saltpetre, pyroxyline, nitrostarch, nitromannite, nitrobenzine, and water glass); glukodine (nitroglycerin and nitrosaccharose); perunite or terrorite (nitrogly-
cerin, nitromethyl, nilrocthyl and pyroxylin)
thunder powder (nitroglycerin and nitroglucose).
c.
namites Low freezing dynamites.- Ordinary dynamites freeze at temperatures prevailing in October to May. When frozen they are diffcult to detonate and are therefore not only inefficient but dangerous and particularly when being thawed. To overcome this defect nitrosubstitution compounds such as some of the nitrotolnenes and, more recently, esters such as nitrated di- and polyglyccrins are introduced
as components of dynamite. These are styled L. F. dynamites and put upon the market with designating term of this kind.
C. Organic nitrate mixtures other than dynamites.- Casteau's explosive (nitrodextrine and ammonium nitrate); Cooppal's powders (resinous); diflamyr (metallic nitrates and nitrocellulose) ; flamminore (collodion cotton, ammonium sulphate and ammonium nitrate) ; grenee powder (paraffin; agar-agar, nitorcellulose, potassium nitrate, and barium nitrate) ; explosive P, (nitrocellulose and ammonium barium nitrate)
(5.) Nitrosubstitution compounds and mixurcs containing them.-Compounds: Nitrobenzenes; nitrocresols; nitrocumenes; nitronaphthalenes; nitronaphthols; nitrophenols; nitroresorcinols; nitrotolucnes; picric acid or caroazotic acid (trinitrophenol) ; picramic acid;
styphnic acid or oxypicric acid (nitroresorcinol) - trinitrotoluene (T. N. T.) : trotyl ; tetranitrantine; tetranitronuthyl-aniline (tetryl, tetralite)
A. Mixtures containing nitrosubstitution compounds.-Abel's powder; ammonite: amvis; powder; bronolithe; Brugere's powd Boyd's plosive A; explosive C; explosive N; cremonites; Du Bois-Raymond's powders; duplexite; ecrasite; emmensite; Faversham powders, Favicr explosives, ferrifractor; Fontaine's powder: Gathurst powder'; gelbite; Geserick's powder; Jóhnite; joveite; kinctite; lyddite; macarite; melinite; oxonite; plastrotyl; rackarock; roburite; romite; securite; strcetites; triplastite; Volncy powders.
(6) Fulminatcs.-Compounds: Copper and silver, acctylides; diazonbenzine nitrate; fulmi(argentamine) : mercuric fulminate: mercuric triazotate: lead and nitrogen chloride (chloramide) ; nitrogen iodide (iodamide); silver fulminate; and triazoic acid, also called hydrazoic acid and azoimide.
In addition to these classes there are seven groups of explosives which have received such here, though the members of each may all be and many of them are included in the classes given above. These groups are Sprengel explosives, safety or flameless explosives, permitted explosives, and smokeless powders, shell explosives and grenade and bomb explosives. were invented by Dr. Hermann Sprengel, 1873 and he advocated their use because of their safety, as they are non-cxplosive during mantfacture, storage and transportation, but are fery powerful explosives when prepared and de-
tonated. His plan was to employ mixtures of combustible and oxidizing substances, which should be kept separate until needed for use, the the explosives being either all liquid or part liquid and part solid, for by taking advantage of the liquid state speedy and intimate mixing could be realized and the explosives could be compounded on the spot and at the time they
were wanted for use. Among the oxidizing agents proposed were the nitrates and chlorates, tetroxide, which are liquids. Among the comtetroxide, which are liquids. Among the com-
bustible substances were the nitrosubstitution bodies, carbon disulphite and petroleum. A conspicuous example of a Sprengel explosive is rackarock, which was used in blowing up Flood Rock in Hell Gate, N. Y., and which may be made by pouring mononitrobenzine upon potsome forms of emmensite; explosive A; hellhoffite; oxonite; panclasite; and Parone's explosive.
Safety or Flameless Explosives.- These explosives are for use in fiery mines, particularly coal mines, where there is a chance of an accident arising through the ignition of the firc given off by the explosive as the blast is fired. Among the earlier devices employed to prevent this was the mixing in the dope of the dynamite or with the powder of a quantity of washing soda, alum, Epsom salts or other salt zation that would be set free when the mixzation that would be set free when the mix-
ture was fired. In 1883 Mallard and Le Chatelier discovered that when explosives were detonated unconfined in air containing 10 per cent of methane (marsh-gas), the fire damp could not be ignited if the temperature of detonation was below 2200° C., owing to the cooland to the retardation of the inflammation of the firc-damp. An investigation by the French Fire Damp Commission showed that, among others, certain salts of ammonia and especially ammonium nitrate, were capable of reducing the temperature of the gases produced by deto-
nation very materially, the temperature of the gases from explosive gelatine being reduced gases from explosive gelatine being reduced
from $3090^{\circ} \mathrm{C}$., when detonated alone, to 1493° C., if detonated when mixed with 88 per cent of ammonium nitrate. In August 1890 the French government prohibited the use of black powder in fiery or dusty mines and permitted the use in them of explosives whose gases are ture of which does not exceed $1900^{\circ} \mathrm{C}$., where blasting is to be done in the rock, nor $1500^{\circ} \mathrm{C}$., where the work is to be done in the coal seam. Among the explosives designed to meet such conditions and styled abroad safety or flameless explosives are: Ammonite; amvis, aphosite; bonite; Casteau's explosives; dahmenite; Favier's explosive; fractorite; Geserick's powder ; grisoutine; grisoutite; nitroferrite; progressite; roburite; securite; westphalite; wetterdynamite.

Permissible Explosives are those which have passed the tests by the United States Bureau the Permissible List of Explosives for Use in the Permissible List of Explosives for Use in
Coal-Mines, established in 1908. There were

137 explosives on the permissible list 15 April 1916 classified as "ammonium nitrate," "hydrated," "organic nitrate" and "nitroglycerin"
explosives. Rules for testing and regulations for use of these explosives are supplied in free publications of this Bureau. By the use of these ex
Smokeless Powders are high powered propellents used as substitutes for gunpowder in
firearms and cannon. They are formed of the firearms and cannon. They are formed of the highest grade of cellulose nitrate only, like pyrocellulose powder, or they may be mixtures of different grades together with metallic nitrates like the B. N. powders. Another class are mixtures of cellulose nitrates with nitroglycerin and a restrainer, like vaseline; ballistite, cordite and filite being examples of this we have examples of such powders made from nitrosubstitution compounds and oxidizing agents. Other smokeless powders are amberite; Erackett's powder; cannonite; Curtis and Andre's powder; Du Pont powder ; E. C. powder; fulgor; granulite; hornite; J. B. powder kolfite; poudre J; poudre S; pyrocollodion
rifleite; Schultze powder and Walsrode powder rifieite; Schultze powder and Walsrode powde piercing and other high explosives shell very stable, insensitive, detonating explosives are required. Nitroglycerin, dynamite, guncotton and explosive gelatin were tried but found too dangerous. Picric acid was known to be insensitive that it could be safely fusion, from modern guns, but it was found difficult to detonate it when it was compressed in the shell Turpin in France in 1886 solved the problem by causing a mercury fulminate detonator to act on pulverulent picric acid contained in a cavity warships shells are required that will pass through the armor and cxplode when on the inside. According to Marshall nitroaromatic explosives, such as picric acid, generally deto nate on the face of the armor. This is accomplished by ammonium nitrate explosives. The United States Naval Proving Ground, Indian Head, Md., in 1897 under Capt. W. Г. Sampson U. S. N., when a shell containing 8.25 pound of Joveite (moronitronaphthalene, picric acid and ammonium nitrate) penetrated a shect of the harveyized armor of the United States Steamship Kentucky 14.5 inches in thickness
and burst on the other side of the plate. Comand burst on the other side of the plate. Commelinite; in England as lyddite; Germany granatfüllung 88 ; Italy, pertite; Japan, shimosite; Sweden, coronite; Spain, picrinite; and Austria, ecrasite. In many instances other sub stances are mixed with the picric acid. Thus
in France to reduce the melting point and avoid the formation of cavities from crystallization or "piping" trinitrocresol is mixed with the pic ric acid. A mixture of 60 per cent trinitrocre sol and 40 per cent picric acid is known as cresylite $60 / 40$. It melts at $85^{\circ} \mathrm{C}$., but at 65° is sufficiently plastic to permit of its being compressed into charges which, on cooling, are comAustria ammonium cresylate is mixed with the picric acid. Since picric acid is corrosive, and
may, by action on the metal of its containers produce dangerously sensitive compounds, and also because the supply of it is limited, trinitrotoluene has come to be largely used as the bursting charge for detonating shells. Schneiderite (mononitronaphthalene 10 per cent and sot for this purpose also. Macarite (T. N. T and lead nitrate) is also used.
Grenade and Bomb Explosives. Ammonal, cheddite, compressed gun cotton, picric acid, smokeless powder, T. N. T., and tonite are used for charging hand grenades and bombs.
Methods of Firing Explosives.- Explosives may be made to explode by heating them
to their explosion temperatures. This may be to their explosion temperatures. This may be cent body, friction, percussion, concussion, pressure or chemical action, provided the resulting temperature is sufficiently high. Gunpowder was originally ignited in muskets, guns and horeholes by the application of a torch, a glowkets were fired by the sparks from a flint striking steel. Joseph Egg, an English gunmaker, 1815, invented percussion caps and to-day all while the charges in very large guns are fired y friction primers or by electric primers. In the mine to a safe distance by which to convey the inflammation. Later quills, straws or paper or wooden tubes were used to hold the train and permit of the charge being tamped so as to secure the advantage which comes from con-
fining an explosive. Bickford of Tuckingwall England, 1831, invented the "running" or "tape" or "safcty" fuse, in which a core of gunpowder with a watcrproof composition, and this is to-day largely used in firing blasts. Dr. Watson of England, 1745 , succeeded in igniting gunpowder by means of electric sparks, and in 1749 a bat-
tery of 11 guns was fired by means of a frictional electric machine 11 guns was fired means of a fricDr. Robert Hare of Philadelphia, 1832 invented the method of firing gunpowder charges by means of the electric current, using low tension fuses, and he had for some time prior to this exployed the voltaic battery, in eudiometrical experiments, for igniting explosive mixtures of duced the magneto-exploder in blasting and Moses G. Farmer of Newport, R. I., 1871 , invented the dynamo-electric machine with which to generate the current and applied it to firing ectric ignitors or detonators, and to-day great guns, military and naval mines, and torpedoes and many blasts, especially those in which sevwhere the blast is under water, are fired by this means.
It has long been known that when a notable quantity of a mixture of two volumes of hydropoint, the inflammation exygends almost instanancously inflammation extends almost instannt explosion ensues. This phenomenon is been detonation, and this mixture has long Certain chemical compounds such as nitrogen chloride, nitrogen iodide and mercuric fulminate undergo an almost instantaneous decomposition, voL. 10-42
giving rise to violent explosive effects, if heated struck or rubbed, and they are known as detonating explosives. At first guncotton, nitroglycerin and dynamite were fired by ignition, as gunpowder had been, but Nobel, 1866 , discovwas detonat a quantity of mercuric fulminate dynamite they contact with nitroglycerin or explosion also. E. O. Brown of the chemical department at Woolwich, England, 1868, discovered that not only could dry compressed military guncotton be detonated in this way, but that if the dry charge, called a primer, was in contact with wet guncotton, the latter was deor submerged under and in was saturated with There are then two kinds of explosion, namely, explosion by simple combustion and explosion by detonation. Explosives of the gunpowder class undergo only the first kind of explosion. Explosives of the nitric ester or nitrosubstituExplosives of the fulminate class explosions. undergo only the second kind of explosion. A marked difference between the two kinds of explosion is found in the velocity with which the explosive reaction is propagated within the mass of the explosive. This in detonating gas, which can undergo both kinds of explosion, Bunsen found, when using very narrow tubes where only combustion could take place, that the
velocity of the reaction was 34 metres per second, while Berthelot, using long and wide tubes in which detonation could take place, found that the velocity of the reaction was 2,810 metres per second. Experiments made by laying trains of the materials and firing them showed that while the velocity of combustion of metres per second, the velocity of detonation of dynamite and of guncotton is about 6,000 metres per second. Provided each explosive gave the same volume of gases, having the same temperature and that the conditions were in all other respects alike, it is evident that the explosion in which the reaction velocity was they are not alike, since guncotton, nitroglycerin and mercuric fulminate, besides being endothermos compounds, are completely resolved into gases, while gunpowder, besides being a mixture, yields but about 44 per cent of gaseous products. The pressure developed by gunpowder when fired in a space complctely filled by it
is, from Noble and Abel's experiments, 6,150 atmospheres. The theoretical pressure developed by guncotton, notroglycerin and mercuric fulminate when detonated in contact with bodics, are respectively 24,000 atmospheres, 25,000 atmospheres and 28,000 atmospheres. Inknown will give in contact an instantancous pressure at all comparable with that of mercuric fulminate.

Owing to these differences in behavior explosives have been distinguished as high explosives and low explosives. Gumpowder and explosives of the nitrate class, together with smokeless powder are low explosives. They act it is desired to lift or push a load without cracking it or in propelling projectiles. Nitroglycerin and explosives of the class of nitric
esters or nitrosubstitution bodies are high ex plosives. They are shattering and crushing in ulminatect. Detonators containing mercuric detonators being themselves fired by means of a Bickford fuse or by an electric current. The hish explosives are usually put up for use in paper cylinders, and, when loaded for shipment,
these are called cartridges or "sticks." Usually several sticks are required for one borehole. In this case the detonator is inserted in one o hese sticks, usually the last one inserted in th hole, and this stick is then called the primin cartridge or "primer.

- There is a very common but erroneous belic that gunpowder explodes upward and that hig explosives explode downward. It arises from the fact that if a quantity of dynamite be laid unconfined upon the surface of the rock on de tonating it the rock will often be fractured
whereas if gunpowder is thus placed and fired it produces no effect whatever upon the rock The facts are that each explosive tends to ac in all directions about the centre of explosion As exposed in air they are subjected to th weight of the air above them and are to that plosive is detonated the gases are set free so fast that the air acts as a tamping agent; when he gunpowder explodes the gases are generate so slowly that they have time to move the air Besides the "pressure in contact" exerted by the high explosives is enormously greater than losives exert pressure in all directions was demonstrated by Munroe by fastening blocks of guncotton of equal size and weight on opposite sides of a plate of iron, but at some distance apart, by means of light cords or wires, sus pending the plate in any position and detonatwere blown through the plate a way from each of the charges. Although high explosives usually produce a shattering effect when fired unconfined upon a body the effect is markedly ncreased by increasing the confinement. Thu in the method of breaking boulders and larg charge is laid upon the stone and fused, one o wo shovelfuls of earth are placed over it be fore firing. In "blockholing," when it is de sired to break the rock into fragments of definite size, a small hole is bored in the rock and the explosive inserted in this cavity whereby Explosions by Influence- In
osive substances it has been found detonating influence of the detonation is exerted to a disance all about the mass depending on the kind and the amount of the explosive used and it environment and that a sccond charge of ex detonated by the detonation of the first charg without being in contact with it. Thus in accidental explosions in explosive works the initia explosion occurring in one building may detonate the explosives in other buildings unles are is taken in the construction of the work from one another. Care, too, must be taken in orming fixed ammunition that the primers ar not heavily charged with fulminate, and tha the cartridge's arc so packed that the accidental
explosion of one cannot explode the others by in military engineering in the operation of countermining, the enemy's submarine mines being blown up by firing a heavy torpedo charged with guncotton in the vicinity of them. To-day used in big blasts. According to Eissler, it is an almost daily occurrence in California for 20,000, 30,000 and even 50,000 pounds of explosives to be used in a single charge. The system of large blasts has even become common in hard rock excavations, such as quarries and rairoad cut
tings, and in these large blasts it is common practice to dispose the larger part of the mass of explosive so that it may be exploded by influence and not by contact or by propagation of flame or fire.
The largest single blast ever fired was that used in the blowing up of Flood Rock at Hell
Gate in the East River N. Y 10 Oct. 1885 There was used in the blast 240,399 pounds of rackarock and 42,331 pounds of dynamite, or 283,000 pounds of explosive. There were 13,000 separate charges of rackarock embedded in drill holes with a dynamite cartridge on top of each, and there were 591 primary charges of dynamite When all the charges had been placed in the excavation and the primary charges connected with the firing batteries, the mine was filled with water, the primary charges were exploded by the electric current and these exploded the intervening water. Munroe founded on this
ing principle a method of testing the relative sensitiveness of explosive substances.

Uses of Explosives.- The uses of explosives as propellents in war and in the chase; as rupturing agents in mining, quarrying and engineering operations, and as an essential compogenerally known that they are cmployed for sav ing life and property in signal lights, rockets and guns; in projecting lines from the shore to stranded ships, and, in case of fire, to the upper stories of high buildings; in casting oil upon the water to quell a raging sea; and in railroad guns are also used in bridge building to project a line across a chasm which is to be bridged and they are used in the whale fishery to project the harpoons, while the latter may carry an explosive charge with which to stun or destroy the properly used in taking fish, in burglarious operations against safes and vaults and in anarchistic outrages. Dynamitc has been used to knock the blocking from the ways when launching ships. Fired on an iron plate placed on the top of a pile and covered with a tamping of earth or clay, it has successfully replaced the pile driver. It has been found efficient in ex
cavating holes in which to plant telegraph and telephone poles and fence posts; in driving water out of quicksands in which foundation are to be laid or shafts to be driven; in slaughtering cattle; in breaking down ice dams to prevent inundations; in blowing up buildings to unsafe walls of burned buildings; in destroy ing wrecks which endanger navigation, and in frecing vessels which are hard aground on shoals. The farmer wses them in breaking
boulders, grubbing stumps and felling trees in shaking the soil to fit it for deep-soil cultithe soils from the phylloxera: while their aid as been sought in breaking droughts and iverting hailstorms from their courses. Th ron founder uses them in breaking large castut obstructions in blast furnaces while the lat are still in operation. Munroe proposed using detonating explosives as a means of test ing the integrity of large masses of metal and Transportation of
Try that the explosives.- It is well a necessary menace. Munroe pointed out that in 1904 there was not less than 600 cars of explosives on the railroads of the United States each day. In 1905 the matter of regulating the ransportation of these and other dangerous substances was taken up by the American Railwas created. Later the matter was taken up by the United States Congress and by its acts of 4 March 1909 and 18 June 1910, this supervision and regulation was entrusted to the Inturstate Commerce Commission which, on 2 uly 1914, issued a pamphlet of 196 pages contion of rebloives in the safe transportadangerous substances, and these now control Explosives Industry in the United States. The reports of the United States census for 1900, 1905 and 1909 contain much descriptive and historical besides statistical matter regarding this industry. From the reports of the census for 1914 it appcars that in that year
there was produced $7,685,036$ pounds of gunpowder; 208,316,125 pounds of blasting of gun3,560,581 pounds of nitroglycerin. $223,000,073$ pounds of dynamite and $18,113,601$ pounds of permissible explosives. The comparative condiin of the industry from 1840 to 1914 is shown in the following table:
total production and value of explosives in tie United states by decades, 1840-1914.

This value is for the explosive substances only. When
materals of all kind produced in these establishments are
included, the value is $\$ 17,125,418$.
The establishments reported for 1914 were most numerous in the sections where mining or engineering operations were carried on most extensively. Pennsylvania had 33 factories, Ohio 11 , Illinois 9 , New Jersey 8 , West Virginia 7, Oklahoma 6 and California 5. The produc-
tion is largest in the East. See Dynamite; Fiee-damp; Guncotton; Gunpowder; NitroGlycerin; Maximite; Picric Acid; Stabilite; Trinitrotoluene, "T.' N. T."
Bibl:ography-Abbot, H. L., 'Report Upon Experiments and Investigations to Develop a System of Submarine Mines' (Washington
1881) ; Berthelot, M., 'Les feu et les origines de la poudre à canon), ${ }^{\text {gregois }}$ 1891) ; Brunswig, H., 'Explosives,' trans. from German by Munroc and Kibler (New York 1912); Chalon, P. F., (Les explosifs
modernes) (Paris 1886) : Cundill, I P and modernes' ('Paris 1886); Cundill, J. P., and Thomson, J. H., 'A Dictionary of Explosives' (London 1895); Daniel, E., (Dictionnaire des (Manual of Explosives) (Toronto 1000). De. sortiaux, E., 'Dictionnaire des explosifs' (Paris 1892); Drinker, H. S., 'Tunneling, Explosive Compounds and Rock Drills' (New
York 1882) ; Eissler, M., 'A Handbook on York 1882); Eissler, M., 'A Handbook on Modern Explosives' (London 1890); 'The Gody, L., 'Traite matieres explosives' (Namer 1896); ; Guttmann, O., 'The Manufacture of Explosives' (London 1895) ; Hill, W. N., 'Notes on Certain Explosive Agents), (Boston 1875); Macruct, A., 'Explosifs de surete') (Paris 1893); Marshall, A., 'Explosives, Their Manufacture, Properties, Tests and History' (Philadelphia
1915) ; Mowbray, G. M., 'Tri-nitro-glycerin as Applied in the Hoosac Tunnel) (New York 1874) ; Munroe, Charles E., (Lectures on Chemistry and Explosives) (Newport 1888); 'Index to the Literature of Explosives) (Baltimore 1893); 'Chemicals and Allied Products, (Washington 1908) and (Chemicals and Allis Products, Vol. X, pp. 527-624, Report United States Census) (Washington 1911): Munroe, C. E., and Chatard, T. M., 'Chemicals and Allied Products, Bulletin 210 of 12 th United States Census' (Washington 1902) ; Munroe and Hall, 'A Primer on Explosives for
Coal Miners, Bulletin 17 , United States Bureau (Mines) (Washington 1911); (A Primer on Explosives for Metal Miners and Quarrymen Bulletin 80, United States Bureau of Mines (Washington 1915) ; Nobel, A., 'Les Explosifs modernes' (Paris 1876) ; Walke, W., 'Lectures
on Explosives' (New York 1897): Wisser, J. on Explosives'
P., 'Compressed Gun Cotton for Military Úse' (N̉ew York 1886).
Charles E. Munroe,
The George Washington University, Washing ton, D. C.
EXPONENTS AND EXPONENTIALS The symbol x^{n} is used in elementary algebra to denote the result of multiplying x by x, the result by x, and so on, till $n-1$ multiplications have or simply " x to the n th." n is said to be the exponent of x. Clearly this manner of be the exponents only applies to real integers. While the generalization of the notion of exponents has proceeded step by step, it is perhaps best to give directly the widest extension of the notion x the so-called exponential function algebra. as $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots$, which always converges when x is finite, be it real
or complex. Log x is defined as a value of y for which $e=y x$ is then defined as $e y \log x$. It will in gencral be many valued. By the selle principal value, the following laws may be established.

$$
\begin{aligned}
& x^{m} \cdot x^{n}=x^{m}+n \\
& \left(x^{m}\right)^{n}=x^{m n} \\
& x^{m} \cdot y^{m}=(x y) \cdot{ }^{m}
\end{aligned}
$$

It will be found that when m is an integer, m $x \frac{m}{n}$ will stand for $n \sqrt{x}{ }^{m}$ where $n \sqrt{x}$ is a number which, when raised to the nth power, will yield x.
While e^{x} is the exponential function, functions the argument of which appears in an exponent are often
ponential functions.
EXPOSITION, Industrial. The promotion of trade and manufactures by means of claim to the merit of novelty. In modern times, however, the idea has been more systematically carried out, and was probably suggested by the good effects produced by two institutions of a like nature - the galleries of rare productions of art or nature collected by the wealthy and
educated, and the exposure for sale of ornamental and useful articles in the stores of individuals, and more particularly on a large scale at the great fairs which in former times were more important features of commercial enterprise than they now are. The beneficial effect thus derived from the exhibition and comparison of the manufactured products of notice. In England this knowledge was brought to practical purposes in the 18th century, when
the Society of Arts in $1756-57$ not only offered prizes for specimens of manufactures, but exhibited the works of the competitors. In France an exhibition embracing all kinds of manufacunder the consulate of Bonaparte in 1802, and the gratifying results attained led to the idea of holding them every three years, which was carried out as far as the political troubles of the country would allow. Many exhibitions the continent of Europe, and in the British Islands exhibitions of a more or less local nature were held in Dublin, Manchester, Liverpool and Birmingham, as well as in London in the premises of the Society of Arts. All these had been generally successtul, but the necessity of having an exhibition on an international
scale had become with some a fixed idea. This scale had become with some a fixed idea. This
was first brought fairly before the British was first broulght rairly before the British of the Society of Arts. In 1849 the project for an exhibition in which all nations might at last determined by government to issuc a at last determined by government to issue a
royal commission to deal with the matter, which was gazetted 3 Jan. 1850. The better to enable the commissioners to enter into contracts and otherwise incur obligations, subscriptions were
procured to a guarantee fund, the queen leadprocured to a guarantee fund, the queen leading the list with $\$ 5,000$ A vast structure of Palace, built from the design of Joseph Paxton,
was erected in an incredibly short space of time in Hyde Park, London, and was opened by Her of the building was 1,851 The extreme le width 408 of the building was 1,851 fect, the width
and the height about 64 fect . The entire area was about 19 acres. In the ground floor and set apart for the exhibitors The articles sent for exhibition were divided into four great sections: Raw materials, machinery, manufactures and fine arts. The number of exhibitors was about 15,000 . The exhibition remained open until 11 October, and the number of visitors during the 144 days amounted to about $6,170,000$. After all expernses were defrayed there was
balance of $\$ 700,000$ left. The immense succes. of the undertaking encouraged the local and national exhibitions of Dublin and New York in 1853 and of Munich in 1854 ; and the French nation in 1855 opencd its first Exposition Uni verselle. The main building was an imposing ture. The buildings were erected in the Champ Elysécs, and covered about 24 acres. There were in all about 24,000 exhibitors, and the contents were pronounced greatly in advance of those exhibited in London in 1851. It was said tha continental manufacturers had taken lessons
from the British exhibition which the British had failed in fully profiting by, and so exhibited a vast improvement in works in which the latter considered themselves unrivaled. This was fol owed by the national exhibitions of the Dutch a Haarlem and the Belgians at Brussels, both in 1861, and the following ycar by the second grea cupied a vast brick building, lighted by a roo and two immense cupolas of glass, and erecte in the garden of the Horticultural Socicty a South Kensington. The space covered was about 17 acres. There were 26,348 exhibitors in ish, and in the fine art division 2,305 , of whom 990 were British. The aggregate number of visitors from 1 May to 31 October was $6,211,103$ giving an average of 36,328 per day. The pro ductions, which came from almost all parts o the globe, were divided into 40 classes, and in chemical products, railway plant and ordinary vehicles, animal and vegetable products used in food or manufacture, architecture, painting sculpture, engraving, etc. This exhibition wa also eminently successful and enabled the public to judge of the progress or shortcomings of British home manufactures and art as com pared with others. In 1865 a rather importan pecuniary failure. The second French Interna ional Exhibition was opened on 1 April 1867 and closed on 3 November. On 1 May 1871 the first of the British annual international exhibitions of fine arts and industry was opened
by the Prince of Wales. On 1 May 1873 the first Austrian international exhibition was opened by the Emperor Franz Joscf with grea pomp and ceremony. The building was situated in the Prater, or, as it may be called, the par of Vienna and was 2,940 fect in length, with an average breadth of 570 feet. A great exhibition was opened by President Grant at Fairmoun Park, Philadelphia, "1pon the occasion of the of Independence. It occupied 60 acres and had
hearly $10,000,000$ visitors. A third French In ternational Exhibition was held at Paris in 1878; arca occupied 140 acres; visitors 17,000, was opened by President Carnot in 1889 commemorate the centenary of the Revolution One of its chief features was the Eiffel tower, of iron, 984 fect high. The series of exhibitions which were held at South Kensington, London, included The Fisheries (1883), The Health (1884), The Inventions (1885) and the (1886) : the latter of which was visited by (1880); the latter of which was visited by
$5,550,749$ visitors. Besides these exhibitions have been held in Edinburgh (1886), at which there were 2,769,632 visitors; Manchester (1887) at which there were $4,765,000$ visitors and Glasgow (1888), with $5,748,379$ visitors. In held at Paris, but, though visited by about $47,000,000$ persons, was not a financial success It occupied the Champ de Mars and extensive areas on both sides of the Scine.
In 1893 the fourth centenary of the discovery of America by Columbus was celebrated by th excelled all predecessors in conception, scope and grandeur. Every nationality contributed to the exhibits and many countries possessed their own buildings. The "White City," as it was called, was opened by President Cleveland 600 and closed at Jackson Park on the shore about 600 acres, at Jackson Park, on the shore of Lake Nearly every State in the Union was represented by its own edifice. The principal buildings wer Machinery Hall, the Art Palace and those devoted to transportation, mining, electricity, agriing 44 acres) government, administration, fish eries, horticulture and anthropology. The total admissions for the period named were 27 , 39,521, and the receipts from this source $10,317,814$. The largest attendance on any one Other notable exhibitions in the United States were the California Mid-Winter Exhibition, held in San Francisco in 1894; the Cotton States and Industrial Exposition held in Atlanta, Ga., September to December 1895; the Tennessec Centennial Exposition, held in Nashville, Menn., 1 May to 31 Oct. 1897 ; the Trans o 1 Nov. 1898; the Pan-Amcrican Exposition, n Buffalo, N. Y., from 1 May to 2 Nov. 1901 he South Carolina Inter-State and West Indian 1001 exposition, held in Charleston, from 1. Dec. Saint Louis Mo, in 1904 in world's Fair at Louisiana Purchase drew 19,694,855 attendance and cost $\$ 15,000,000$; the Lewis and Clark Exposition in Portland, Ore., 1 June to 15 Oct 905; the Jamestown Tercentenary Exposition at Hampton Roads, Va., 26 April to 30 Nov at Seattle Wash. 1 June to 30 Nov. 1909 ; the Panama-Pacific Exposition, to celcbrate the opening of the Panama Canal, held at San Francisco, 20 Feb . to 4 Dec. 1915, drawing a total attendance of $18,871,957$; the PanamaCalifornia Exposition, at San Diego, Cal.,
Jan, to 31 Dec 1915, Jan, to 31 Dec. 1915. April to 14 Nov. 1910, drew $13,000,000$ people
the Turin Exposition, 30 April to 31 Oct. 1911 celebrated the 50 th anniversary of Italy as a gdom. See Fairs and Shows.
EXPOSITION OF ORACLES OF THE LORD by Papias of Hierapolis, an important Greek work in five books to which the date as "among the earliest forerunners Lightfoot mentaries, partly explanatory, partly illustrative on portions of the New Testament," and is a connecting link between the Apostolic and the Apologetic ages, explaining the less understood tolic traditions concerning them. No complete copy of the work has been discovered, but it is known through the excerpts quoted by the early Christian Fathers Irenæus and Eusebius. See Parins.

EXPOSITION OF THE SACRAMENT, in the Roman Catholic ritual, the public showing certain ceremonies, for the veneration of the faithful. Until the 16th century the practice was not general, taking place only on the feast of Corpus Christi, but within the last 300 years the practice has become general. Formerly exposition. The 40 -hour adoration is now a common practice in the larger Catholic centres even in the United States. The ceremony is begun and ended with a mass. Consult Maier, 'Die liturgische Behandlung des Allerheiligsten ausser dem Opfer der heiligen Messe) (Ratis-
bon 1860) and Raible, (Der und jetzt) (Frciburg 1908).

EXPRESS SERVICE. A transportation system for parcels which require a safer and quicker delivery than can be had through the common freight service.

The creation and development of express service in the United States and the extension of the American express system, under Ameri-
can control, throughout the length and breadth of the civilized world and beyond, affords convincing proof of unique constructive and administrative genius along the lines of greatest utility to mankind.
One of the most prominent, successful and progressive express companies, now operatago with a simple service for delivery of packages between a few Eastern and Western points. To-day, the same organization has, in addition to traffic in the United States, British North America and the Latin-American republics, at cast a dozers on leading thorourt commodious European cities, each fully equipped with men wagons and horses for the most rapid and effective express service.

As part of its rontinc business, the company is in touch with 30 of the world's largest hanking institutions and has shipping and banking correspondents at an large cities and ports with express conditions of half a century ago, when the system was merely an adjunct to the railroads, a brief outline of the work now heing carried on in progressive express companies will be of interest. since the express the railroads toward the express companies have, by mutual consent and to meet ever-
growing demands, been reversed. The railroads, ill their own interests, so far as carriage juncts of the express companies.
The most modern American express service, when conducted on a large scale, is conducted under five divisions: (1) The transportation of merchandise; (2) transfer of money,
precious stones and other valuables, securities, precious stones and other (3) purchasing and selling merchandise; (4) forwarding of imports and exports; (5)' issuance of money orders, letters of credit,
travelers' checks and the transmission of money travelers' checks and the transmission of money
by telegraph. that travelers in foreign countries save time and avoid delay by their use, as they are promptly recognized and cheerfully cashed or accepted by the principal hotels, steamship and sleepingcar companies, by many railroad companies and by merchants, shopkeepers and others, in settlement of accounts. $\$ 20, \$ 50$, $\$ 100$ and $\$ 200$. For those traveling in the United States, Canada, Mexico, Central and South America, these checks afford the advantages of a secure and convenient means of carrying funds immeof the risk of loss of moncy by fire or destruction and of annoyance of negotiating personal checks in places where such may be unaccept-
able. Being cashed by agents of the companies able. Being cashed by agents of the companies
and by banks in all the principal cities and and by banks in all the principal cities and
pleasure resorts of the United States, the pleasure resorts of the United States, the
Canadas, Mexico, Cuba, Central and South Canadas, Mexico, Cuba, Central and South Ame principal steamship companies and many the principal steamship companies and many States and received as cash by agents and conductors of the Pullman Palace Car Company and by many hotels in settlement of account, factory form of credit for use during a tour. "Letters of Credit" now form a usual express office specialty. These documents are drawn in sterling and are available in all parts of the world. Through the Letters of press agencies at all important points. Every press agencies at all important points. Every address, also every express agency.
The "C. O. D." system and bank of account collection are among the useful develop-
ments of express service. "C. O. D." shipments ments of express service. "C. O. D." shipments the goods, with prompt return of proceeds made at a small charge for such service. C. O. D. at a smants to foreign countrics are usually madc under the same system as applies to domestic points.
Several of the big express companies attend to the collection of accounts, bills, notes,
drafts, etc., in any part of the commercial world. Collections in United States and Canada are effected with unusual promptness and at less risk and cost to payee than by other methods. Collections in foreign countries of drafts or deposits, or by powers of attorney, are
undertaken by express companies through their own organizations in Europe or through banking correspondents. The proceeds of C. O. D.'s or collections are transferred by cable when patrons desire, with a charge for collecting,
plus only the cost of cablegrams.

The transfer of money is another useful and much appreciated feature of express servexecuted for patrons, in the quickest possible time, at places in United States, Canada and Europe, by a special department. Besides attending to orders for the purchase or sale
of goods and property, including houschold of goods and property, including houschold
supplies, this department pays tax bills, rc deems articles pawned, collects baggage a railroad stations, secures seats at theatres, berths on slecping cars, staterooms on steam boats, baggage and staterooms on European
steamers. Rare goods or books or articles requiring exact matching, or the maker or requiring exact matching, or the maker of without annoyance or loss of time to patrons Imports and exports of cvery class and size are handled by express companies as a part
of their regular busincss. Bills of lading, bills of their regular business. Bills of lading, character are prepared and attended to from first to last.
Money orders and drafts are issued by several express companies for any amount, at the posted rate of exchange, in sterling, francs, lire marks, Turkish pounds, Mexican dollars, loca dollars, pesos, rupees, yen and United State dollars on all parts of the commercial world. The regular transportation service of ex press companies includes merchandise, par-
cels, produce moncy, bonds, valuables and cels, produce, moncy, bonds, valuables and
baggage. The routes extend over 250,000 miles of railroads in the United States alone. Shipments are frequently made in through express cars with burglar and fire-proof safe or valuables and iron express trunks for par cels, all in charge of special armed messengers for express service. The aim of the com panies is to cover the ground in the least time at the lowest rates. They accept entire responsibility for loss or damage. Some express com panies run special express trains to facilitat panies have this feature as a permanent arrangepanies
Novel and highly useful features of the most modern express service are the securing o ocean passages, European railroad tickets and passports for patrons at a nominal charge. It express companies in this way to state their wishes - the companics do the rest rapidly, perfectly and inexpensively.
So much for the work-scope of express companies to-day as compared with that of earlier periods. Before reviewing briefly the evolu ice devclopments it may be well to mention what has been brought about through the use of express enterprise and by such methods as are peculiar to the service.

1. The creation of wagon service, and, in connection with this, special cars and trains fo 2. The creation of transportation business for carriage to and from all advantageous producing points of game, poultry, fish, oysters and fruit to localities wh
are not casily obtainable.
2. The creation of a novel method of selling 3. The creation of a novel method of selling
the amount of invoice and returning cash to
the amount
the shipper.
3. The creation of a method of collecting the procecds of negotiable paper and assuming or the time being, responsibility of endorsers. 5. The creation of an efficient means of safe transportation of moneys and valuables shipped oads and the government. As much as $\$ 4,000$,000,000 have been shipped in the United States through the express companies in a single yea this manner.
4. The creation of a vast and perfect network of money-order agencies. The presen 7. The creation of improved facilities fo immediate transportation of forcign goods from ports of entry to destination. Heavy bonds are demanded by the government and given for roper execution of this service.
Commonly, the express company owns it the cars on which its traffic is carried. Thes cars are usually attached to the regular passener trains, and the employees of the expres ompany accompany the shipments, and attend The contract with the railroad company secure to the express company exclusive rights to oper ate over that line. For the privileges convcyed the railroad company receives from 45 th 5 per cent of the gross collections on the merhandise trafic. In some instances, however, and cven 70 per cent and in a few exceptiona cases all of the express earnings in excess o the actual expenses are paid to the railroad. Under the law the express company is a
common carrier; and its rates are under the common carrier; and its rates are inder the
supervision and control of the Interstate Comupervision and control of the Interstate Com risdiction of State Railway Commissions in most of the States. For the purpose of fixing rates the Interstate Commerce Commission has
divided the area of the United States into five reat zones : (1) The country lying east of the in this zone the minimum rate per 100 pound has been fixed at 60 cents. (2) The country ying south of the Ohio River and east of the Mississippi, together with a small section wes of this river: in this zone the minimum rat Mer 100 pounds is 65 cents. (3) The trans ain section: in this zone the minimum rate per 00 pounds is 70 cents. (4) The intermountain Country: in this zone the minimum rate per
100 pounds is $\$ 1.05$. (5) The Pacific Coast 100 pounds is $\$ 1.05$. (5) The Pacific Coast States, in which the minimum rate per divided into 950 "blocks" having a uniform ength of 69 miles, and widths which vary from long the southern border; in about 100 of thes locks there are no express offices. The block The subdivided into "squares" or sub-blocks in series from designated hy numbers running northernmost row beginning with 101 the nex row toward the south beginning with 201, th next southerly row beginning with 301, and so on. Transportation is then designated as from 403 F (Portland, Oregon) to 952A (New York

Express charges are based on a classification into threc divisions: (1) ordinary merchandise; (2) specials; and (3) what is commonly called ter, seeds and scions, etc. Bulky and fragile merchandise is charged multiples of the firsttimes first-clas, for example, carriages at six cight times the first-class rates. As is the case with freight traffic on railroads there has been established by the express companies a schedule
of "commodity rates" which allows the transof "commodity rates", which allows the transportation of merchandise of relatively low value would be prohibitive) - a lower class rate on carload lots, or a first-class rate on goods which would regularly take several times that rate. On the regular tariff the limit of liability on the part of the express company is $\$ 50$ on a ship-
ment not exceeding 100 pounds in weight. If ment property shipped is valued at weight. If the property shipped is valued at more than
this figure the rate is higher, and the higher rate must be paid to sccure the full value of the package in case of loss or damage. The express company is liable only to the extent of the valuation declared by the shipper, and when the full charges have been paid or charged on that valuation.

The "Express" of sending "Exes") idea sprang from the system of sending parcels in care of coach-drivers, by stage-coach, and from the shipping of such par-
cels in care of captains, by coasting vessels When the railroads took the place, gradually, of the coaches, much parcel traffic was perconductors of these the stcam cars. Then the sibility for safe-keeping. Eventually, this transfer overcrowded them with work. A division of duties naturally followed. Finally, the railroads insisted that their employees shonld delivery traffic. The principal events following this decision

1838-39. The starting of an express company to operate in New England. Alvin Adams, who later began business for himself in New York, was with this company.
183. "Harnden's Express" started between 1840. "Adams' Express" began operations between the same points.
1840-45. Other expresses opened up business, extending service to Philadelphia, Baltimore, Washington, Bufalo, New Orleans.
The men most active in the new field at this time were William F. Harnden, William B. Dunsmore, Henry Wells, Edward P. Sanford, Samuel M. Shoemaker, Johnston Livingston, and William G. Fargo.
Almost all of the western transportation was
carried on over the Ohio, Mississippi and Miscarried on over the Ohio, Mississippi and Mis-
souri rivers, with their tributaries, which insouri rivers, with their tributaries, which in-
cluded canals then recently completed in several of the States to connect those rivers with the of the

From 1840 the construction of railroads continued uninterruptedly, express business ex ration of express "continuous lines," enabling
goods to be carried quickly between many poods without transfers
At this period people sent their letters by express as being safer than the government's mail service. In course of time the authorities at Washington protested, and finally prohibited by law the private conveyance,
States contract, of private letters
1848. The stampede of gold-seekers, 184849, to California, brought out a great extension of the express system. Money and gold-dust were transmitted direct from the coast to eastern points through the express companies, many 1854. In this year a consolidation of express interests took place. "Adams \& Co." bought up Harnden's business and worked several minor Eastern routes and secured the right to much Southern traffic.
During the same year the "American Ex-
press Co." first established in 1841 was formally organized, to operate from the East to the Far organize
West.
The

Thest. "United States" express also came into existence in 1854 to operate along the New York and Erie Raiload 1854-55. About this time "Wells, Fargo \& Co." were organized. They started the famous
"Pony Express" and several stage lines Other "Pony Express" and several stage lines Other firms competed in these special forms of rapid transportation.
gan operations in this year, with routes between gan operations in this year, with routes between
New York, Albany, Troy, Saratoga, Whitehall, Rutland and Montreal.
1858. Wells, Fargo and Company and the
Pony Express lines organized the "Overtand Pony Express lines organized the "Overland Mail Co.," which, until the completion of the
Union Pacific Railroad, carried the whole of Union Pacific Railroad, carried the whole of
the United States mails between the Missouri the United States mails between the Missouri
River and the Pacific Coast. By this time the express had become a recognized necessity in
the commercial and individual transactions of the commercial and individual transactions of
the country. Its lines had amplified in every the country. Its lines had amplified in every capital to place it on a firm financial basis. capital to place it on a he safe and speedy transmission of merchandise, valuables and
money were readily assumed. When loss or money were readily assumed. When loss or made. Thieves were and are, tci-day, for
1861. Henry S. Plant and associates organized the "Southern Express Co.," which
operated principally in the Southern States. 1861-65. Upon the breaking cut of hostilities, the express was the only means of communication between soldiers in the field and their
friends at home. Government securitics, being purchased largely by the people, were sent by government through the express, it being offi-
cially recognized that, during that critical cially recognized that, during that critical period, the express
official mail service.

After the war a contract was made by the United States government with the Adams Express Company, acting for itself and other companies, to transmit all securities and moncys
of the government by express. of the government by express.
1865-1918. This period represents a phe-
nomenal growth of the express movement. The present organization of the great companies, each with experience of over half a century to
guide it, is practically perfect in its workings, ven pace with calls which increase day by day The establishment of the parcel post in 1913 and its subsequent extension to larger packages press companies. A scaling down of rates by press companies. A scaling down of rates by seemed likely to affect the financial condition of the companies. The United States Express Company retired from business on 30 June 1914. But the later years have witnessed but little diminution of the bulk of the trafic and
the profits. For valuable packages and fo promptness in transmission and delivery the express company is an unequalled public utility The first statistics of the express business were gathered in 1890 . In that year 18 comgated 174,060 miles. At the close of the fiscal year which ended 30 June 1916, the general business was in the hands of cight companie operating over a total of 297,139 miles: of this 43,389 miles on other routes - clectric railways, steamboats and stage routes. The mileage served was divided among the companies as follows: Wells, Fargo and Company, 107,529 miles ; American, 74,280 miles; Adams, 45,153 miles; Southern, 34,765 miles; Canadian, 12,050 miles; Great Northern, 9,838 miles; Northern, combined revenues of all the companies for the fiscal year were $\$ 173,709,411$, of which sum $\$ 172,655,204$ was from the ordinary domestic express transportation business. Out of thes evenues the express companies paid for ex clusive privileges and transportation of merchandise to the carrying companies, $\$ 7,971$,136. To this was added an income of $\$ 5,497,23$ from the money-order and similar non-trans portation business. Out of the net revenues
$\$ 68,020,529$ was paid out in expenses, and $\$ 4$ $\$ 68,020,529$ was paid out in expenses, and $\$ 4$, $\$ 1,548,761$, and the total net profit on the year's business was $\$ 10,560,650$.

The largest carrying business was done by the American Express Company, amounting to \$57,039,124; Wells, Fargo and Company were second, with $\$ 45,366,216 ;$ and Adams Expres
Company third, with $\$ 42,018,735$. The larges net profit was made by the Southern Expres Company, 9.5 per cent on the year's business as compared with 6.3 per cent by Wells, Fargo and Company; 5.8 per cent by the Americal Express Company; and 5 per cent by Adam The latest available official statistics, as to the capital, property and equipment of expres companies in the United States are those for the fiscal year ended 30 June 1914. In tha year the combined working capital of all the large companies amounted to $\$ 186,815,717$,
which sum $\$ 75,760,300$ was stock. The real estate owned was valued at $\$ 16,446,269$, and the equipment at $\$ 17,547,845$: the latter sum in-
cluded 155 railroad cars valued at $\$ 603,787$. cluded 155 railroad cars valued at $\$ 603,78 \%$. The number of money orders, travelers' checks, letters of credit, telegraphic transfers of aggregate sum of $\$ 537,099,796$. Consult Chandler ${ }^{\text {W. C., 'The Express }}$
Service and Rates' ${ }^{\text {(Chicago 1914) ; Interstate }}$

Commerce Commission, Document 4198, 'Express Rates, Practices, Accounts and Revenues'
(Washington 1913); and the annual reports of that commission.

EXPRESSED OILS, in chemistry, oils obtainable from bodies by pressing, to distin guish them from mineral and essent
EXPRESSION. Our mental states, and particularly our emotions, are closely linked with certain muscular and physiological asso-
ciates, which are exhibited in perhaps the greatciates, which are exhibited in perhaps the great-
est detail and variety by the muscles and blood est detail and variety by the muscles and blood
vessels of the face. These associates are deominated expressions; they include which have already been indicated, but also a vast number of more or less obscure respiratory,
circulatory and secretory changes. These chrculatory and secretory changes. Thes in their apparent inutility so the times striking has been spent in the effort to elucidate their reason for being. The first explanation of the expressions which possess much interest at the present day is that of Darwin. In accordance with his evolutionism, he regards many emohave been useful to the animal either in its individual history or in the history of the race. An acquired example of this sort is the pointAng of the pointer dog. Other expressions are held to be the result of tendencies opposing hose which would be called into play by the opposing emotion. A dog approaching its muscles, in its bent back, in its flexed limbs, in its wagging tail and ears laid back, actions exactly the opposite of the tense sinews, the traight back and forward pointed head, the which extended limbs, the uplifted tail and car and serve to frighten its antagonist or to facilitate its attack. The third factor in the production of emotional expression, according to Darwin, is the direct overflow of the excited nervous system into motor channels, as in th case of trembling from fear.
ression, but replaces the third principle of expression, but replaces the other two by the perience to assume the physical correlates of related experience, and the principle of the connection of movement with sense-ideas, which or symbolise the object of the emotion or its desired result. The facial expression of dislike is an example of the former of these principles; it represents an attempt to eliminate a bitter-tasting substance from those parts of the mouth where it will be tasted most. Exemples or the clenching of the fist in anger James retains Darwin's first pri many expressions are rudimentary purposeful actions, and Darwin's third principle of nervous overflow. He adds to these what is equivalent to Wundt's principle of the association of analogous sensations, and two new explana that not only are formerly useful emotional expressions retained as rudiments, but that their physiological consequences and concomitants
undergo a like atrophy and schematisation. Be-
sides all these, there is a class of reactions susceptible to no very simple explanation. These
have been perpctuated in a more or less mechanical manner independently of their mode of origin. Perhaps the greater number of facial expressions belong to this class.
In accordance with the James-Lange theory of the emotions, which holds that they are con-
stituted by their expressions, stituted by their expressions, James maintains of cvery emotion. This has been denied by Cannon, who has made perhaps the most thorough physiological investigation into the actual nature of emotional expression. He by the increased secretion of adrenalin and the liberation of the carbohydrates stored in the lo ther. These reactions are directly serviceable cause they cause the blood to be driven from the abdominal viscera to the muscles, heart, brain and lungs, where it is more needed in any sudden action; (2) because they release an imthey catise the heart to act more vigorouse and more rapidly; (4) because they increase the clotting power of the blood and decrease hæmorrhage in case of injury. The milder emotions, on the other hand, are characterized by a directly antithetical physiological process, system and other abdominal vicera is helped rather than hindered. The milder emotions are associated with a preponderant activity of the cerebro-spinal nervous system, while the violent ones helong rather to the sympathetic system.

Bibliography.-Cannon, W. B.,
ange in Pain, Hunger, Fear and Rage) Change in Pain, Hunger, Fear and Rage' (New
York 1915) ; Darwin, 'The Expression of the Emotions in 'Man and Animals' (London 1873); James, W., 'Principles of Psychology' (New York 1890); Mantegazza, $\mathrm{P}_{\text {,' }}$ 'Physiognomy and Expression) (3d ed., London 1904); Warner, Wundt, 'Grundzuige der Physiologischen Psychologie) (Leipzig 1911) ; (Volkerpsychologie)

(Leipzig 1900).

EXPULSION. Usually this word is used to describe the act of depriving one or more members of a political or corporate organization, or of a society, of their right of membervote of the organization or society after the submission of a committee report, for some violation of duty or some other offense rendering such member or members, in the opinion of their associates, unfit or unworthy.
It is provided in the Constitution of the United States that the members of the Senate
or House of Representatives may expel members of their respective bodies, by a two-thirds vote, for disorderly conduct.
Corporations have the right of expulsion in cases where good order and proper control make the exercise of such nower essential as,
for example, (1) when the offense is not within for example, (1) when the offense is not within or infamous, or (2) when the offense is against his duty as a corporation member or officer or director, or (3) when the offense is of such a character as to infringe corporation rules and
the statutes at the same time.

Before a person can be expelled from a corporation or society for disgraceful conduct outside of the jurisdiction of such organizations, a previous conviction by jury is necessary. If the offense is against or in violation of corporation or society rules or duties, a trial and the organization.
The word "expulsion" is also used to describe the ejection of people from meetings when they create a disturbance or otherwise make their presence obnoxious. Those who
convene meetings have, under the law, the right to expel objectionable persons, providing they use only as much force as is necessary for the purpose.
Club members are liable to expulsion under the rules of the club to which they belong. ment on the ground that membership in a club is a form of property.
Non-members of any organization, if present at any meeting of such organizations, are liable to expulsion.
The Constitution of the United States pro-
vides that Federal judges cannot be expelled from their posts during good behavior. See Disfranchisement.
EXPUNGING RESOLUTION. See Censure, Congressional.
EXTENDED ORDER. See Infantry; Tactics, Military.
EXTENSION, in physics and metaphysics, that property of a body by which it occupies a portion of space. Extension is an essential as well as a general property of matter, for it however minute may be the particle, without connecting with it the idea of its having a certain bulk and occupying a certain quantity of space. Every body, however small, must have
length, breadth and thickness; that is, it must length, breadth and thickness; that is, it must form is the result of extension, for we cannot conccive that a body has length, breadth and thickness without its having some kind of figure, however irregular. In logic, extension is the extent of the application of a general
term, that is, the objects collectively which are included under it; thus Europian is more extensive than French, Frenchman, German, etc. Matter and mind are the most extensive terms of which any definite conception can be formed. Extenstion is contrasted with comprehension or ysics.
EXTENSION. While our spatial experiences undoubtedly contain many elements which are noted for a peculiarly spatial nature, the certain experiences possess the unanalyzable primitive attribute of extension. Though the existence of this attributc is denied by Wundt and is attributed to all sensations by James, it cutancous, visual and possibly to kinæsthetic sensations. The "vastness" which James mentions as pertaining to such experiences as those of hearing is in all probability a complex of various degrees of intensity, clearness and other sensory attributes.
the attribute of extension, this extension is only two-dimensional. Everything which wc
see is stretched out over the surface of the ret ina, and everywhere we feel is stretched out over the surface of the skin. The transition from two to three dimensions involves an ap-
peal to experiences which are neither visual nor peal to experiences which are neither visual nor
cutaneous, and which, in a large measure, are cutaneous, and which, in a large measure, are
not specifically spatial. In the case of vision these are (1) The difference between the images on the two retine. (2) The experience of strain in the muscles which make the two lines of vision converge. (3) The experience of strain in the muscles of accommodation the eye is focused on an object, and of blurredness when it is not. (5) Geometrical perspec-
tive. (6) Atmospheric perspective. (7) The partial obliteration of more remote objects by nearer ones. (8) The parallax of the variou objects of vision, consequent upon motion of
the head or of the entire body. (9) The visual angle subtended by known objects. (10) The angle subtended by know.
effect of light and shade.
In the case of touch, the muscle and joint sensations indicating the position of the various parts of the body are of the utmost importanc in giving knowledge of the third dimension. of extension are discussed under Locality (q.v.). At the fovea of the eye, the lower limen of visibility, or "minimum visibile," is probably the angle subtending a single cone or from half to a whole minute of arc. Ob jects subtending smaller angles can be per pears that this is due to the differences in the intensity of the stimulus exert and the sensation they cause, quite apart from the extensity o the latter, and that the real area stimulated is at least an entire cone. The least distance at a minute of arc at the fovea, but near the periphery of the retina it is as great as two degrees or thercabouts. The sensation experienced when a small point of light is seen often lacks all colors. It takes a larger area o stimulus to evoke color, and often a still larger area to evoke the color which we should nor
mally associate with the source of light Extension obeys Weber's law (q.v.). The least noticeable increment of a linear visual ob ject is about one-fiftieth the length of the latter, if movement of the eye is allowed. It is considerably larger when the eye is kept at rest;
but as is obvious, measurements with the eyc but as is obvious, measurements with the eyc at rest are by no means easy. The ficld of
vision is rather irregular in oulline. It extends (from a line connecting the centre of the pupil to the macula lutca) about 80 degrees outward, 65 degrees inward and 65 degrees downward Of this, about two-thirds can be seen by both eyes. (Sce Space). Consult James W., 'Principles of Psychology' (New York 1890) 1909) : Titchener E. B 'Text-Book of Psendol ogy) '(New York 1910) ; Wundt, W., 'Grundzugge der physiologischen Psychologie) (Leip zig 1908-11); (Introduction to Psychology' (London 1912).
EXTENSION, University. See Education; Universiry Extension.

EXTENSION TEACHING. See Home Economics; University Extension.

EXTENUATING CIRCUMSTANCES, in legal practice, those circumstances, in connection either with the position of the prisoner or with the act alone, which are taken into consideration by the court in mitigation of the
punishment. The previous good character of the person convicted may always be proved as a circumstance giving him some claim to leniency of punishment. Besides character, there are other circumstances, the presence of which in a case sometimes scres to mitigate out of the categry of crime altogether One is youth. Thus, no act done by any person under seven years of age is a crime. Defective mental power in the person convicted will
always be considered in determining the severalways be considered in determining the severprevents a man from knowing that the as he does is wrong will excrise him from the consequences of an act otherwise criminal. Drunkenness, when voluntary, is not held an extenuating circumstance, but if a man is made drunk by the fraudulent administration of drugs, and while under their infuence kills another, not knowing what he does, the act is charged with crime that they have been compelled by others by threats of death or great violence to do the criminal act; and the acts of a married woman in presence of her hushand are presumed to be done under his coercion,
and so, unless the presumption is rebutted, will be excused. Ignorance of the law is no excuse for an offense. Nor, in general, will ignorance of facts be a good excuse, though in particular circumstances it might form a valid defense. guage purposely vague to represent the guage purposely vague, to represent the vague-
ness of the law, a principle under which the stress of necessity is held to excuse acts otherwise criminal: "An act which would otherwise be a crime may in some cases be excused if the person accused can show that it was could only in order to avoid consequences which if they had been followed, would have inflicted on him or on others whom he was bound to protect inevitable and irrcparable evil, that no more was done than was reasonably necessary for that purpose, and that the evil inflicted
by it was not disproportionate to the evil by it was

EXTERIOR BALLISTICS. Sce GunNery
EXTERIOR BOUNDARIES. See EXTERIOR MURAL PAINTING. See Murai Painting.
EXTINCT ANIMALS. Many animals Which inhabited the earth in bygone periods modern representative of their race. Others, no doubt, were known to prehistoric peoples, conCerning which no record has come down to us. But within the period of recorded observations,
many animals have lived and died out; various many animals have lived and died out; various
causes contributing to their extermination, not least among these being the presence of manto suit his needs: he cuts down forests, plows or burns over prairic lands, changes the course
of rivers, drains the swamps and thus destroy the natural environment of many of nature's wild children. Then, too, he destroys crea
tures directly; he kills them for food, for tures directly; he kills them for food, for
clothing or for other utilitarian purposes; he clothing or for other utilitarian purposes; foes to himself or to his agricultural pursuits he destroys them for his sport; and, finally, he ion. Not only thus does man directly injur the wild creatures, but his coming, accompanied by exterminating influences, kills out certain their natural prey, practically die of starvation before they can adapt themselves to changed conditions. Then the domestic dogs, cats, etc. help on the work of slaughter in certain ways, y preying upon wild life.
ible for the extinction of certain responscientists are agreed; but they are also assured that except in the cases of the horse, the came and perhaps the domestic dog, the extinction was due more to their inability to adapt themelves readily to the changes of climate of tha progenitors of the horse and camel The wild been known in historic times. That aboriginal man in Europe aided the elemental forces in their work of destruction, by hunting to death the mastodon and the great cave-hunting lions bears and hyenas, and other huge creatures of his time, is mot at all likely to have been America Since the carliest records were made how ver, various species have been eliminated from the European fauna; many from that of the ther continents as well. In the days when the Romans fought the Dacians, various member of the cat family were common along the Rhine leopards and wild-cats. They found also the great herds of wild cattle, which have entirely vanished. The ibex, too, is gone, and, but for he protective legislation, the chamois and the deer would have been exterminated as well The bear, the beaver, the wolf and the wild from Britain, the wild-boar, which was hunted by royal cavalcades, disappearing at the close of the 17 th century.
Records concerning Asiatic animals show few cases of extinction except those of a few Commander Islands, off the Kamchatkan coast This animal, the rhytina, was pursued for it flesh, chiefly, and, so far as is known, the last survivor was killed in 1768. Among the same slands lived the now extinct Pallas's cormorant a great bird also exterminated because of it
Animals wh
Animals which are restricted in habitat to roads of man, more surely and swiftly, because they have no adequate means of escape, many such examples being furnished of birds whose power of flight is limited. Such species, espe ially in the Australasian and South Sea islands, ably several representatives of the moa tribe in New Zealand, the dodo, the solitaire and certain parrots, rails and fowls. The disappearance
of the Indian Ocean and from the Galapagos presents another striking instance of the extermination of animals owing to man's depredations.
Both Africa and America have presented felds for indiscriminate slaughter. In the former continent, where once there roamed elephants the slaughter has been so great since the middle of the 19th century as to leave many of these denizens of plain and forest extremcly rare if not altogether extinct. The search for hides was perhaps the strongest destructive
force; but the European hunters for "big game" force; but the European hunters for "big game" same direction. The mountain zebra, the quagga and various species of antelope are examples of this; while the giraffe to escape entire extinction has retired to almost inaccessible regions in the Kalahari Desert and northward. As for America, with her long list of lost
species, most people are more or less acquainted with the efforts that have been made (and sometimes with signal success), within the past few years, to save, by protective legislation, such of her native birds as are still found, and to prevent the wholesale slaughter of her
wild denizens of field and forest. The bestknown example of extinction is furnished by the bison (q.v.), which roamed in vast herds over the grass lands, until it was destroyed by over the grass hide-gatherers; so that now there are no wild bison except one small herd, carcfully protected by law, dwelling beyond the North Saskatchewan River. In 1903 it was estimated that States, and about 600 in Canada; and cven these remnants had more or less degenerated from the superb original type of the plains. Such large animal species living under strenuous conditions and necessarily brecding slowly, urgently require protection at all the animal kind that began with the destruction of the great land turtles and moas in prehistoric times, now extends to the remotest places of the earth. With the arming of every savage tribe, and with shooting expedi-
tions often organized on a large scale and even carried out under the guise of scientific exploration, all large animal types are to-day threatened with a speedy extinction. A typical case
of natural restriction accelerated by man is of natural restriction accelerated by man is that of the muskox (y.v.). Circumarctic in the Pleistocene this curious animal, yielding in quantity a strong underwool with a texture as
fine as silk, is now confined solely to the treeless arctic wastes of North America and the islands to the north. Cut off by the white hunter everywhere to the south, the Eskimo rabbit-catchers of the far north, always hard on the muskox, are now killing with modern
riffes the northern remnants of the original riffes the northern remnants of the original
herd. The American sea-elephant and the monk-scal are also practically gone. The long lists of birds, from the great auk
and the "passenger-pigeon" to the California and the "passenger-pigcon" to the California
condor, give evidence how much this continent condor, give evidence how much this continent
has been depleted as to its wild life. Many has been depleted as to its wild life. Many
fishes, too, have decreased or wholly disaptimely protection, many species, now small, would soon follow these vanished representa-
tives of the earlier fauna and swell the already lamentably long list of extinct animals. On the high seas the rcckless killing of larger animals goes on as relentlessly as on land. The great Cetaceans were abundant
down both coasts when America was discovdown both coasts when America was discov-
ered. Since then the Biscayan whale, Ba!aena glacialis, the Greenland whale, Balaena mysticetus, and the much wilder Balacnoptera physalis have in turn been brought to the verge of "xtinction. No less the widely distributed "cachalot," Physeter macrocephalus; while
lengthening list of lesser marine forms is being rengthening hist of lesser marine forms is being has taken place since the invention of the "shot harpoon" by Sven Foyn (at first a sealer), about 1870. By that time owing to wildness and scarcity the older methods of whale capprofit. With the introduction of power launches few forms can now escape. The monetary loss resulting from this indiscriminatc slaughter has been cnormous. From 1835 to the wane of the fisheries about 1872 , in 19,943
American voyages some 300,000 whalcs were American voyages some 300,000 whales were 000,000 . At the mecting of the American Association for the Advancement of Science in Chicago, 1907, a resolution was passed to aid "in any way practicable those measures legislative, international and local which will prevent the
now imminent extermination of the great marine vertebrates, especially the cetaceans and manatees, scals, green and other turtles on the coasts of the United States, or on the high seas." (See Extinction of Sprecies). Consilt Dawkins, Boyd, 'Cave Hunting)' (London (frica) (ib. 1897); Dixon, 'Lost and Vanish Arica'
ing Birds'
(ib. 1898) ; Dixon, 'Lost ander, 'Birds of
 'The Great Auk' (ib., 1885); Finn, 'Wild Animals of Yesterday and 'To-day' (ib 1913); Harting, 'British Animals Extinct within Historic Times' (ib. Cxinct); Hutchinson, Days' (New York 1911) ; Lankester, (Extinct Animals' (ib. 1905) ; Loomis, 'Hunting Extinc Animals in the Patagonian Pampas' (ib) 1913); Nathorst, 'Hafva djuren rāttighet att lefva (Stockholm 1907) ; Newton, 'Dictionary of
Birds' (ib. 1896); Rothschild, (Extinct Birds' (London 1907); Wieland, "Conservation of the (London 1907); Wieland, "Conservation of th! 1908) ; Wallace, (Island Life)' (London and New York 1880); 'Annual Report of the Smithsonian Institution for 1888) (Washing ton 1889).

Revised by G. R. Wielann.

EXTINCT RACES. See Man, Prehis-

oric Races of.

EXTINCTION, Tribal. Certain broader and cxtinction the nature of arrested evolution species, can be drawn only from a systematic examination of the geologic-paleontologic record. It is now clearly recognized that periodic emergence and subsidence of the continents has been going on as far back as the fossa
records extend, with resultant biologic diastrophism. It is also recognized that the initial expansion or climacteric of groups mainly occurs soon after their first appearance.

As a consequence the inadaptive and unfit species are crowded out, not alone by those nearly of their own kind, but by the successfu. forms of other groups. Earth, sea, and air, as cuggested, must tend to hold to some numerical mean of population. But the higher a group
in the scale of organization, the more delicate in the scale of organization, the more delicate
is the adjustment to environment. Rapid adaptive change, like over-specialization, much increases liability to extinction by cataclysm. The relatively successful forms are swept away by renewed environmental disturbance if too rapid to neutralize by a further course of direct evolution, or by catagenetic change. For this
reason alone the relative tenure of races as such is longest in the lower forms. The higher groups such as Limulids may show a remarkable persistence, or, like the Testudinata, a relatively long life; but "immortal types" are mainly inconspicuous like the Foraminifers. That such so often occupy abysmal oceanic or other zones least subject to change, sets a further visible another is set by the fact that higher type also tend to persist in the zones and regions of least change - "asylums."
The inherent organic quality which as fixedly as gravity sets and holds evolution in its course is the force that coolves, and also kills; but the bathmic causes of extinction are even harder to scan than are direct bathmic factors. Reduced to its simplest elements, life must be regarded as a property of matter, and plasm certainly exhibits in closed environments a high degree of stability. It may also exhibit charorganic substances (Chunder-Bose); although wholly senescent or absolutely unchanging types are not theoretically indicated - that is, taking the entire duration of the rock succession as a time unit. However, when the common fac tors of change, bat mism (or ontogeny), en the organism shows little progression; and this indicates climatic change, taken in its very broadest sense, as the chief evolutionary stimulus. There is a further inference of primary value gained from the study of devolution or catagenesis as opposed to anagenesis. No races The precision of the phenomena of plant succession would alone warrant this statement It follows that while surprising modifications may take place when races decline, there is, during the anagenetic movement, a melior mean of form toward which all types strive - each according to its capacity, and in delicate adjustthat lines of descent take the form of the "palcontologic trec," and lead back continually to main primitive stems, must as a rule express too much. A far simpler course of paralle development and parallel decline is indicated. As to when, in the course of this universal parallelism, direct evolution or ascendancy
reached its high noon would at present be only a subject of speculation. But from a physical point of view there must be such a point of time, probably denoted lyy the appearance of persistent bipolar ice caps. Morphologically the appearance of the oak in the lowermost Cre
taceous may denote the evolutionary crest. Beyond are palms and grasses.

Bibliography.- Patten, 'Evolution of Vertebrates and their Kin' (1912) ; Scott, W. B., 'History of Land Mammals on the Western
Hemisphere' (1913): Wieland, 'American Fossil Cycads' (Vol. II, 1916); Clements, 'Plant Succession, an Analysis of the Development of Vegetation' (1916) ; Lull, 'Organic Evolution' (1917); Oshorn, 'Origin and Evolution of of Arrested Évolution' (1918).
G. R. WIELAND,

EXTINCTION OF SPECIES. The antithesis of cuolution is extinction. Direct evolution leads by insensible degrees to replacecadence and ded descendants or to actual dethe phenomena of elimination sheds much light on the nature of life and the general evolutionary course. Also, the fossil record peculiarly
lends itself to such a study, being so largely a record of extinctions.
The particular reasons for the extinction of animals and plants are not always obvious and some factors to be mentioned later, the same variations of environment and most of the forces of selection considered as necessary to the production of new species are also powerful agents in the extermination of established forms. The history of many species may be birth its growth, its decline, its death Also, the laws of evolution show that many other species undergo modifications or changes which ultimately transgress or supplant the original assemblage of specific characters, so that a new species results by a process of mutation. Furtheir strictly specific characters, may be translated into different genera through modifications of their generic characters.
The continuance of a species depends upon its harmony with its environment. A perfectly
stable and continuous environment is obviously a natural impossibility. The physical conditions of any region of the earth are in a state of constant change, sometimes very gradual and extending over long periods of time, sometimes sufficiently rapid to be measured by ordinary standards. The organic agencies surrounding are continually going on; the arcas occupied by various organisms are being extended or reduced; periods of excessive or repressed fecundity often occur; there are times of abundance and scarcity of food, increase and diminution in terial change in the physical or organic environment must produce a readjustment among the individuals composing a species; their number may be lessened or increased, or they may be forced into conditions of life which produce changes in habits, place or abode, food, function, structure or organs.
he study of a gcographic life-province shows that ine organisms inhabiting it are in changes in the physical equilibrium. Minor differences in temperature, moisture, elevations, etc., may be compensated for by a readjustment
among the organisms themselves. In some cases this readjustment may be favorable to
many of the species while in others it may many of changes which ultimately result in extinction. More profound changes in the physical environment necessarily produce a may rosult in the extermination of many and the considerable modification of others, so that a distinctly transm
occupy the region.
The forces already mentioned, though operative to a greater or less degree, are not believed
to affect so immediately the equilibrium of a to affect so immediately the equilibrium of a
species or the general equilibrium of a biotic species or the general equilibrium of a biotic province as extension, migration or evolution. The struggle for existence amid gradually changing physical conditions alone is not so aggressive as the invasion of a new assemblage of plants and animals; for thermal result of the physical and organic forces of an environment in which the adjustments have been made and an equilibrium reached; in the other there is the direct addition of a new set of opposing forces, requiring and invaded organisms.
A census of the animals and plants of any region will show a great variation in the number of individuals representing the various species. Some are abundant, some common, while others are rare. Now, since the normal im-
pulse of the individuals of each species is to increase inordinately, the fact that some are of rare occurrence shows that forces are at work tending to check their multiplication, and the relative rarity of a species, as compared with others of the same genus, is taken as an indication of approaching extinction.

The development of spines, thorns, prickles or horns on the to represent an advanced stage of evolution within the type, as well as the degree of differentiation of the organism, the ratio of its adaptability to the environment and the measure of its vital power. The study of the life histories of spinose forms shows that they
are simple and inornate during their young stages, and their phylogeny shows that they were stages, and their phylogeny derived from non-spinous ancestors. It is further believed that spines represent an extreme of superficial differentiation which may become
fixed in ontogeny, and also that spinosity reprefixed in ontogeny, and also that spinosity reprevariation. Therefore, after attaining the limit of spine differentiation, spinose organisms leave no descendants, and out of spinose types no new types are developed.
The factors as above partly noted affecting the continuance or life of a species may be di-
vided into two classes: (1) those residing within the individuals of a species itself (intrinsic), and (2) those extraneous to the species (extrinsic). The action of either the intrinsic or extrinsic factors tends to result either in extinction or in the mutation of a species into another form. In both cases a specific type disappears or is eliminated, although only in the
first instance is the species exterminated in the sense that it has left no descendants. Within the limits of this article but little more than a descriptive statement of these principal factors
can be attempted. It should also be borne in
mind that there is an overlapping and interdependency among the factors, causing them to react upon each other. Thus, an unfavorable environment due to change of climate may
affect the food (extrinsic), which in turn may affect the food (extrinsic), which in turn may
affect the vitality of the species, possibly re affect the vitality of the species, possibly re-
sulting in degeneracy (intrinsic). Likewise, parasitism and disturbances in symbiotic relationships produce far-reaching, complex effects. Intrinsic Factors of Extinction.- Under this head may be considered such factors as (1) lack of power of adaptation; (2) lack of
vitality; (3) overspecialization; (4) old age (gerontic stage of evolution); (5) pathologic condition; (6) degeneracy; (7) inbreeding; (8) mutation. When a species cannot accom modate itself to changes of climate, food, etc.,
or in any way becomes fixed, it must perish unor in any way becomes flxed, it must perish un-
less it can find a suitable and constant environless it can find a suitable and constant environ-ment-a physical impossibility. The waning
vitality so plainly expressed by many species vitality so plainly expressed by many species extinction. Such species usually occupy restricted geographic provinces, they are generally not numerically abundant, and their powers of
reproduction are more or less retarded or repressed. An animal or plant which becomes so specialized that it can live only under certain peculiar conditions stands a chance of extermination whenever the harmony of these cond1-
tions is disturbed. Thus a plant which depends tions is disturbed. Thus a plant which depend upon a certain species of insect for its fertiliza-
tion will succumb if the insect seeks other food or is itself extirpated from any cause. Also, an animal depending solcly upon a species of plant for food, or requiring a certain elevation or range of temperature for its continuance, will be exterminated when these are disturbe cialization in general is manifested by the de parture of organs or sets of organs from what is normal to the class. It results in the extreme differentiation of previous structures, or in their suppression, generally due to disuse or restraint, and also in a perversion of their orig
inal function. It has been shown by the study of many instances of extinct species preserved in the rocks of past geological periods, that each species has its period of birth, youth, maturity and old age, which often may be recognized by distinctive individual or numerical characters so that whenever a species can be shown characters it can be safcly predicated that its extinction is near at hand. Pathologic char acters in a species indicate the same conditions as disease in an individual, and point clearly oward extermination. Adverse conditions mion, producing dwarfed, depauperate and pathologic species. Their history is usually very brief and their places are taken by organisms in accor with the environment. Retrogressive evolution indicates that the race has not only ceased to advance, but is declining. The history of any
genetic line of species shows that whenever genetic line of species shows that wheneve
retrogressive characters appear and constitute dominant features the rapid decline and ex tinction of forms possessing them is imminent The reduction of species numerically, and it restriction within narrow geographic limits, ment of virility. The small herds of European bison preserved by the Russian government in
the forests of Lithuania and the Caucasus are rapidly declining, both numerically and in vitality, due almost wholly, according to recent reports, to inbreeding. Each species now existhas been derived through one or more of the many processes of evolution. Some of these ancestral types may be still living, while others are extinct. Going back to past geologic times (for example, to the Carboniferous) each spespecies. Both the ancestors and all the species once living in the Carboniferous are now extinct. Life, however, was continued on into the next age through modified descendants of a percentage of true Carboniferous species. The rest were extermina it is extinction dy mutation and in the second extinction by extermination. It seems probable that ever since the carth has been fully tenanted with a varied life there has been a farrly constant ratio at all times between the number of species just exterminated, the
number of primary species originating by the number of primary species originating by the
mutation of ancestral forms, the number of species arising by the special differentiation of the primary species, and the number of species adapting themselves to the changes which are dominant
period.

Extrinsic Factors.-Agencies outside of the organism itself which in their operation may under the following heads: (1) Unfavorable physical environment; (2) changes affecting the food-supply; (3) preponderance of enemies; (4) the agency of man; (5) cataclysms. A physical environment which can properly be
considered unfavorable must act on the individuals of a species in an adverse manner, and necessarily the result is deleterious to its continuance. The unfavorable characters of the environment may be various, as too high or too
low temperatures, excessive moisture or drylow temperatures, excessive moisture or dry-
ness, unsuitable altitude, storms, winds, polluted and sediment-laden waters, etc., any of which if not normal to the requirements of the organisms will have a repressive effect on their growth and multiplication. The persistence of
these inhibitory conditions will generally cause these inhibitory conditions will generally cause the speedy extinction of the species. The life bility of the food-supply that any change which seriously affects the kind and amount of food reacts immediatcly upon the species which rely upon it for sustenance. The extinction of a species from any cause involves either the exupor it or their adaptation to new conditions. Such of these as have lost their plasticity, either from high specialization or gerontic development, will perish. The invasion of any province by a new fauna or by a new flora or by hoth combined will initiate a struggle for supremacy of occupation which will drive out still others. In these changes the food is an important clement in determining the success or failure of a species to maintain itself. On the other hand, abundance of food leads to sluggish habits and tends to produce increase in
size. In this way may be explained the prevalence of many large contemporancous species of reptiles in the Mesozoic, and of large mam-
mals at different epochs in the Tertiary. This increase in size exposed them to increasin danger from starvation, from changes in cliand more numerous animals. It is difficult to estimate how far in some cases the extinction of a species may have been due to the invasion of noxious bacteria or other parasitic organisnis. It can only be predicated that their ravages are sometimes of such a nature that the of extinction, and it is quite possible that actual extermination occasionally has occurred through this cause. Dr. Falconer believed tha insect enemies have prevented the increase and extension of the elephant in India, and Darwin likewise stated that the increase of large quad-
rupeds in some parts of South America was prevented by insects and blood-sucking bats. It is doubtful, however, whether these agents were ever the primary, and sole causes of the extinction of any large animal. The most vulnerable point of attack in the extermination of mals of large size usually lay few eggs or bring forth very few young, and usually at infrequen intervals. The eggs or the young are casily destroyed by small creatures that would be powerless before the full-grown animals. The downfall of the great reptiles at the end of the
Mesozoic has been explained by Morris as due (1) to the lack of care reptiles in general take of their eggs or young; (2) to the smaller num ber of eggs laid by the large species as com pared with the smaller, whose continued exist ence in some measure is owing to their fecunof the and (3) into cgr-eating and predaccous placental forms of higher intelligence, at the close of the Mesozoic.
Agency of Man.- Man, bcing the dominan organism of the existing fauna and fora, has since his establishment had an increasing effect in the restriction and extension of contempoordinary forces of nature, which in genera work in an almost imperceptible manner when measured by human standards, man's influence has been incisive, profound and very rapid to conquer nature in an intelligent manner for his own ends. Noxious animals and plants have been persistently attacked until many of them hrough reduction in numbers or by extinction have ceased to be a menace to his well-being His inordinate greed has also led him to exterminate harmless useful animals by wholesal no resistance, and also from a false notion that nature's resources are inexhaustible. (Se Extinct Animals). Along with man's con scious destruction of life, he has indirectly and without purpose accomplished the extermina ent. This fact necessitates the division of this topic into two parts: (1) organisms directly exterminated by man, and (2) organisms indirectly exterminated by man. It is well known that the remains of early prehistoric man are found associated with the bones of extinct ani moth, mastodon, cave-bear, cave-hyena, sabrenothed tiger, Jrish elk, woolly rhinoceros, the giant birds of Madagascar and New Zealand,
and many others. While it is impossible to assert positively that their extermination was due wholly to man, yet undoubtedly man was one of the most powerful agents. Otherwise if is animal from a continent that in some parts, at least, would furnish the proper climate and food for its continuous existence, from the time of primitive man down to the historic man with his superior cunning and intellect could successfully wage a war of extermination on such animals as the mammoth and mastodon by a method alread

Coming now to within the historical period, there are quite a number of well-authenticated cases of the extermination of species that can be traced directly to man as cither the principal or sole agent. A few instances will be men-
tioned in this connection, and the list could tioned in this connection, and the list could example of an animal exterminated by man example of an animal exterminated by mand related to the dove, formerly living on the island of Mauritius. Its clumsy helpless condition made it an easy prey, and the introduction of cats, dogs and pigs into the island hastened its extermination. On the islands of Rourbon of the same group were found the solitaire (q.v.) and at least two other species of birds related to the dodo. They also soon disappeared after man's occupation of the islands. The great auk (q.v.) formerly ranged from the northeastern coast of the United States northward to the Arctic regions,
and thence along the shores of northern Europe. It was at one time extremely abundant, but the last two individuals scen were taken near Iceland in 1844 . The great northern seacow (q.v.) and Pallas cormorant, natives of the Commander Islands, became extinct near the close of the 18th century. The is also well known. When the Bermudas were first settled in 1612, a food-bird known as the cahow bred in almost incredible numbers on several of the smaller islands. By 1616 it was almost exterminated, and a reference to the bird in 1629 states that it no longer existed. Singularly ered until about 1913 when several cahow skeletons were found in the Bermudas by the naturalist, A. E. Verrill. The sickle-bill, a bird formerly used for making the royal robe in the Sandwich lslands, is now no lon
ing, having been hunted the introduction by man of various species of plants and animals into a region where they formerly did not exist has in some cases pro foundly changed the native fauna and flora. A single well-authenticated illustration will suffice, though many more could be adduced. The is-
land of Saint Helena was discovered about the year 1506 and at that time was densely covyear with forests. In a little more than 300 years, fully five-sixths of the island had become years, fully five-sixths of reperted by Dr. Hooker, most of the existing vegetation was not indigenous but consisted of plants introduced from Europe, Africa, America and Australa. carried to the island through the agency of man.

The goats destroyed the forests by eating the young plants, and the native vegetation could species. It is estimated that 100 peculiar an indigenous species were extirpated in this mat few, and anecies preserved in the Kew herbarium. Besides the species already exterminated by man, it should be noted that many others wer once abundant and widespread that are now re duced in numbers and restricted in range. The final extinction seems to be a matter of a American buffalo, the fur-seal, the beaver, the elephant and the big-tree of California.
The violent catastrophes of nature seldom affect more than a very limited area of the globe, and species that are cosmopolitan or wide geographic distribution would noter it is realized that some species are so restricted in their province as to occupy a single valley or a small island, then it is easy to believe tha at rare intervals some great and sudden up heaval, subsidence, hurricane or volcanic out
break may have destroyed all the individuals of certain localized species, if any such were within the area of disturbance. A West Indian hurri cane in 1898 is believed to have totally destroye a species of humming-bird peculiar to the 1 land of Saint Vincent, though it is doubtt whether Mof Peléc in 1902 exterminated a single species of animal or plant.
A review of the various causes of extermina tion shows that on account of their diversity and often extremely slow action it is difficuit any particular case to explain the total disapedge can be obtained of the principal agencies affecting in any way the harmony of its surroundings or its ability to maintain its numbers in its natural province.
Bibliography- Bailey, 'The Survival of the Unlike' (1896); Beecher, 'The Origin an nal of Science, 1898): Cope, 'The Primary Factors of Organic Evolution'' (1896) ; Crampton, 'A Suggestion on Extinction' (in Proceed ings of the Royal Physiological Socicty, Edin burgh, 1901); Darwin, 'Origin of Species' (1866) and 'Journal' (1872); Hutchinson, Days) (1894): Lucas, 'Animals of the Pas (1901) ; Lycll,' 'Principles of Geology') (10̂ ed. 1868); Morris, 'The Extinction o Species) (Proceedings of the Academy o Natural Science, Philadelphia, 1895) ; Topina
(Anthropology)
(1878) 'Anthropology' (Transactions of the Connecticut Academy of Arts and Sciences, $1901-02$); Wallace, 'The Geographical Distribution of An mals' (1876).

Charles Emerson Beecher (1856-1904).
Revised by G. R. Wieland.
EXTORTION, in general, the taking from another of something through illegal compu sion. It has been defined as a technical term
the common law to be "a crime committed the common law to be crime color of his office corruptly and unlawfully takes any money or thing of value that is not due to him, uf more than is due, or before it is due." At
common law, the offense is a misdemeanor munishable by fine and imprisonment, and subjecting the guilty person to removal from office. fined as "the obtaining of property fortion is deother, with his consent, induced by a wrongful use of force or fear, or under cover of official Practice) (Vol. VIII, 23 vols., Northport, N. Y 1894-1909).
EXTRA-UTERINE GESTATION. Sec Pregnancy

EXTRACT, a term to denote all that can be dissolved out of a substance by a specified menstruum, such as water, alcohol, ether, etc. In modern pharmacy the term is applied to two obtained by digesting the plant in water or other solvent, and evaporating or distilling away the excess of solvent till the extracted matter is sufficiently inspissated. The other is obtained by bruising the plant in a mortar, separating the juice, warming it till the green
coloring matter separates, and filtering it off. The juice is next heated till the allumen coagulates, and again filtered. The juice is now evaporated to a syrup, the green coloring matter added and well mixed, and the evaporation is thereafter continued till the required concentration is attained. Extracts must be capable of that from which they were derived. Extracts are used in cookery, medicine and the manufacture of perfumery
EXTRACT OF MEAT is a soft, yellow-sh-brown, solid or very thick syrup, which is emplured as a portable soup. It is now manuposed by Liehig. Finely chopped Hesh is pro hansted with water, the extract is heated, when, at 133° F., albumen coagulates; afterward the blood coloring matter also separates, and when these are removed and the clear liquid is evaporated at a low temperature, the extract is ready. This sulbstance has a characteristic odor water, and forms a not unpalatable soup, without, however, nutritive value. It contains no fibrin, gelatine, albumen or fat, but creatine,
inosic acid and other organic bodies are present, inosic acid and other organic bodies are present, and it is especially rich in potassic salts and in of not spoiling by keeping; and has been exten sively used by travelers, explorers and by ex peditionary forces. Consult 'Meat Extracts and Similar Preparations' in Bulletin 114, Bueau of Chemistry, United States Department Agriculture.
EXTRADITION is the surrender of a der one who has escaped from a territory under one government and taken refuge in a terrihas two specific meanings in the United States In the first place it refers to the surrender by ne State government of a criminal who seck sylum from another State of the Union in which he is held to be guilty of a heinous crime Sce Extradition, Interstate). In the second by one nation to another. The demand for extradition made by one nation of another is matter of international law, and implies merely voL. $10-43$

The control to be exercised by one nation ove the right of affording asylum claimed by air other. The Jay Treaty of 19 Nov. 1794 with Great Britain specified for powers of extradition during a period of 12 years. After its expiration in 1807 no provisions for international ex tradition were renewed until 1842 when the
Ashburton treaty of 9 August of that year with Great Britain was concluded, in which extradi table offenses were enumerated. France on 9 November was the next country to enter into a treaty of extradition with the United States, ince when treaties have been arranged with ome 24 foreign governments providing for the ustice, charged with heinous crimes among which are enumerated robbery, burglary, arson, ape, embezzlement and the making and cir culation of counterfeit money. In order to justify a claim for extradition, it is necessary in the country where the crime has been committed has made a demand for the criminal's surrender; that an inquiry has been made into the facts of the case by a judge or United States commissioner, under direction of the
President in cases where the demand the United States government from abroad tha a complaint be made on oath before the judig or commissioner; that a warrant be issued by the judge or commissioner for the apprehension of the party charged; that the charge be sup ported by suitable evidence; that a certificate be sent to the President of the United States signed by the commissioner, and stating tha the charges are sufficienty well grounded to satisfy the President that he grant the writ of surrender
The British extradition act of 1870 make special provision that no criminal shall be sur-
rendered for a political offense, and that the criminal shall not be tried for any but the crime of which he was demanded. In 1890 an ex tradition treaty was ratified between Great Britain and the United States extending somewhat the list of extraditable offenses in the direction
of the commercial crimes of fraud and of the commercial crimes of fraud and emtradition and Interstate Rendition' (1891)
ter Clark, E., 'Treatise upon the Law of Extradition' (1904); Biron and Chambers, 'Law Practice of Extradition' (1003); Hawley, 'Interstate Extraditions' (1890); Spear, 'Law of Ex-

EXTRADITION, Interstate. The New England Confcderation of 1643 provided for mutual extradition of criminals hetween the different provinces; the Articles of Confederation did likewise; and the Constitution pro vides for it between the States, which are independent countries in all save the functions they have resigned to the general government.
But the wording of the provision definite as it can safely be made though as for the widest difference in construction, and the evasion of the mandate in a large share of the cases that arise. It is: "A person charged in any State with treason, felony, or other crinue, who shal flee from justice and be found in authority of the State from of the executive delivered up, to be removed to the Ste having
urisdiction of the crime." But mist the offense be a crime by the law of the State requisitioned as well as of the State demanding? The "u-
dicial decisions say decidedly no-- that "he bligation to surrender the fugitive he same as if the alleged act was a crime by he laws of both." On the other hand, the State executives, for obvious reasons, have stubbornly refused to tie their hands from cxercising discretion, and have again and again acted by the law of their own State. Thus, in the Dorr Rebellion (q.v.), Governor Cleveland of Connecticut refused to extradite Dorr hough Dorr was actually using Connecticut soil organize an attack on Rhode slaws - were no alid outside itself; and Governor Seward of New York refused to surrender persons charged with stealing slaves (though his predecessor had done so), on the ground that it was not crime by New York law, by connons. Even he common conses of decision are not agreed upon In some States the courts hold that the court of the State making the demand are entitled decide as to the sufficiency of the cause; in others their own courts make their own law without regard to that of the other States has any liscretion in the matter, supposing his State law to demand extradition. The answe s somewhat startling; it is, that the governo legally has no discretion, that he is imperatively bound to issue the warrant, but if he does refuse, there is no power to compel him and no punishment for the issued an imperative mandate with no provision for its enforcement. Indeed, it is difficult to see how there could be any; the only remedy being a State impeachment of its executive for malfeasance, which
is out of the question in such cascs. The forms is out of the question intate extradition are provided in the of interstate extradition are provided incted in the State where the offense is committed; if the magistrate before whom the charge is brought is satisfied of its truth, he issues a warrant for the arrest of the criminal, and a
copy is forwarded to the executive of the copy is forwarded to the executive of the
State, who makes requisition for the fugitive's surrender on the executive of the State to surrender on the executive of the stisfied of
which he has fled. If the latter is satisfien the legality of the process and the sufficiency of the evidence of guilt, he is to issue a warrant for surrender; but habeas corpus proceed-
ings may always be interposed. The expense ings may always be interposed. The expense by the State making the demand.

EXTRAORDINARY RAY. See Light.
EXTRATERRITORIALITY, in international law, the privilege granted to citizens of foreign powers of bcing exempt from the laws
of the land of their abode and, in general, of enjoying the rights and privileges of their country of origin. In general, the right to exercise state authority and state law is limited
to the territory of the state in question and to the territory of the state in questonace all persons within a state under the laws of that state, to the exclusion of all other laws. In the common intercourse between nations and peoples there have grown up certain well-rec-
ognized and elearly-defined exceptions to the exclusive excreise of state authority. These exceptions are ins avor of sovercigns or head officials performing certain duties by authority of a foreign state and with the consent of the state in which they operate, public vessels and their crews, citizens of Europe or America in
certain Oriental countries, and public armed forces passing through a forcign territory. Exforces passing through a forcign territory. designate the immunity from local jurisdiction enjoyed by these classes, such immunity vary-
ing according to the official character, or acing according to the official character, or act ary when granted to certain official personages in any foreign state and conventional in the case of other persons, whose treatment is regulated by agreement.

The head of a foreign state is accorded complete exemption from local jurisdiction
His person is inviolable, nor is he liable to any His person is inviolable, nor is he lable to any Should he or members of his suite abuse these privileges the remedy is to request him or them to leave the country, or to expel them in ex treme cases.

Official representatives of a forcign state such as ambassadors, are granted immunitics similar to those accorded the head of thel criminal jurisdiction, enjoy freedom of wor ship, right of asylum and jurisdiction over thei official personnel.
Consuls are usually granted such immunity as enables them to perform their functions, including limited excmption from taxation, ex emption from military service and
inviolability of office and archives.

Public vessels, when in the territorial waters of another state, are subject only to the waters sary harbor regulations for safety, anchorage ctc. The personnel are exempt from local jurisdiction while in the performance of their dutics Citizens of European and American states have been granted special exemptions in cer tain Asiatic countries. Turkey after 1535 granted almost total exemption from ocal juris pean powers. (See Capitulations, Turkish) In other states of non-European civilization such as China, Persia, Siam, Morocco and Japan, the same principles were applied as to Turkey. In 1899 Japan became a member in full of the family of nations when extraterritorial rights other than those of officials wer of the European states have developed clahorate judicial systems with jurisdiction over the persons and places exempt from local jurisdic tion. (Sec International. Law; Nationality;
Sovereignty). Consult Moore, J. B., Digest on International Law (1006) Mctang and Hart, 'Cyclopedia of American Government' (New York 1914).

EXTRAVAGANTES, two collections of decretals and constitutions of popes which were made up subsequent to 1317. Before the $E x$ travagantes the Canon Law comprised the
Decretum of Gratian (about 1150), the Liver Sextus (1298), the Clementince (1317) and sevNo further collections were made by papal com-
mand, nor were any further collections officially promulgated; neveriheless, two collections werc made by jurists, the Extravagantes of and these, though lacking official promulgation, came in time to be recognized as part of the
Canon Law. The Extravagantes of John XXI Canon Law. The Extravagantes of John XXI consist of constitutions of that Pope only; the
E. Communes comprise decretals of several popes between 1281 and 1484 . The Extravi gantes are so called because they wander beyond (extravagantur) the limits of previous collections. Consult Bickell, J. W., 'Uber die Entstehung und den Heutigen Gebrauch der pus Juris Canonici) (Marburg 1825)

EXTRAVAGANZA, èks-trăv-a-gãn'za, in music and the drama, a species of composition designed to produce effect by its wild irregular in being an original composition and not a mer
EXTRAVASATION, in contusions an ther accidents, occurs when blood vessels ar way into the neiphboring tissues. A good illus ration may be found in an ordinary bruis when the part becomes bluc in consequence o he vessels having been ruptured and blood hav ing escaped into the tissues. Extravasation in pressure on the a most serious accident, as the produces death very rapidly. The term is thow ever, applied to the escape of any fluid into th issues from the vessels or cavity containing it

EXTREME UNCTION, a sacrament o the Roman Catholic Church for the bodily and spiritual comfort of the sick whose death is deemed to be imminent. The words of the "Is any among you sick," etc., are interpreted as relating to this sacrament. The unction herefore is administered to the sick and to hose only who are in danger of death from ickness or from injury or accident; hence, not administered to persons under sentenc erous surgical operation, or the like a nor to persons bereft of their reason; neither is administered to children who have not reached he age of reason; for the principal end of this acrament is, not restoration of bodily health ins forgiveness of sins. "If he has committe age from Saint James are found all the essen ial conditions of a sacrament, namely, the outward sign," to wit: the anointing and the Prayer of faith; and the "inward grace," typified by the outward sign, namely, forgivenes ment is implied in the words of this sacra aint James where it recommends its use and leclares its efficacy for the remission of sins. evertheless extreme unction is not adminis ered save after the person has made confession his sins and received absolution in the sacra ment of penance. In administering extrem must use olive priest per forming the ceremony ne bishop; he dips the thumb of his righ sign of the cross, anoints the organs of the the sign of the cross, anoints the organs of the five
senses, pronouncing at each anointing the
words, "By this holy unction and by his mos tender mercy may the Lord forgive thec what visum) or "by hearing" (per auditum), etc The origin and history of extreme unction have been subjects of extended and violent discussion and, as a result, a large controversial litera ture has come into existence. Extreme unction was practised in the early Church, but not until
the 11th century was it called a sacrament. Such it was decreed by Pope Eugenius IV at the Council of Florence (A.D. 1439). Its ccremo nial, etc., was definitely established by the Council of Trent (A.D. 1551). The English Lutheran and other evangelical churches do not Greek Church includes it among its sacraments; the application, however, differs in som respect from that practised by the Roman Church and is not limited to cases of supposed Buckl in a (Sansl (The Cate hensul Buckley, T. A., transl., 'The Catechism of the
Council of Trent) (London 1852) ; Puller, F W. 'The Anointing of the Sick in Scriptur and Tradition) (London 1904); Toner, P. J. 'Extreme Unction' (in 'The Catholic Encyclopedia,' Vol. V, New York 1909)
EXTRUSION. See Volcanism; and scction on Volcanism in article on Geology
EXUMA, ěks-oo'mä, Great and Little two of the Bahama Islands. The Great Exuma is 30 miles long and 3 miles wide and has a good harbor. Little Exuma has also a good Keys have an area of about 150 square miles Pop. 3,465.

EYAS, i'as, in falconry (q.v.), a hawk cared from the nest.

EYB, ib, Albrecht von, German author b. Franconia 1420 ; d. 1475 . He was educated at Pavia and was made archdeacon of Wurzburg at the age of 29. H.e afterward was in the service of Pius II. In 1472 appeared hi which there have been frequent reprints. A recent edition is that of Hermann (Berlin 1890) Consult Hermann, 'Albrecht von Eyb und die Frühzeit des deutschen Humanismus' (1893)

EYCK, ik, Hubert van, Flemish painter: 18 Sept. 1426 . It has been claimed 1365 ; d. Ghent 18 Sept. 1426 . It has been claimed that he and ing. For transparent and brilliant coloring and minute finish their works have never been surpassed. Their masterpieces are for the most part in Ghent, Bruges, Antwerp, Berlin, Munich and Paris. The only painting that can now certainly be assigned to Hubert is the altarLamb,' begun by him and finished by Jan the afterward presented to the cathedral of Saint Bavon, Ghent, where only the two central divisions now remain, the wings being in the gallery at Berlin, with the exception of those representing Adam and Eve, which are in the
Brusscls Muscum. The number of authentic works painted by the brothers is 24 , but the number of attributions at auctions between 1662 and 1912 is over 400. Consult Weale, 'John and Hubert Van Eyck' (1908 and 1912). EYCK, Jan van (also called Jan van
Brugge, or John of Bruges), Flemish painter:
b. Maaseyck about 1381 ; d. Bruges, 9 July 1441. Hubert (q.v.) gave him his first instruction in the principles of the art, and his talents were so rapidly and vigorously developed that he Bruges, then much frequented by the noble and the wealthy on account of its flourishing comthe wealthy on 1420 , or soon after, they went to Ghent for a considerable time, to execute together a work which Jodocus Vydt, a Flemish noble, had engaged them to do. 'Adoration of the Lamb' for the cathedral of Ghent; a painting which contains cathedra of 300 figures, and is a masterpiece. It is painted on wood, with side panels which contain the portraits of the two artists and also of their sister Margaret, who it
never had a corporeal existence. ame very notable, even during his lifetime, by his great share in the introduction of oil paint ing; the original invention of which has been ncorrectly ascribed to him by many. It was a general custom, before his time, to have for ground, from which the figure stood out with out perspective, as may still be seen in number less works of earlier date. Van Eyck followe this practice in his earlier efforts, but, as he made further advances in his art, conceived th some distant advances of giving a more natura grouping and perspective to his figures by natural background. In this he succeeded so eminently, as many of his still remaining works prove, that he may be called in this respect the father of modern painting, since he gave the art of that high degree of improvement which it afterward attained in the brightest era of th great masters who succeeded him in the Nether ands and in Italy. In the art of painting on glass he is considered as the author of the mod of painting with colors delicately blended and sible - an object before attained only by joinin ogether (in mosaic) several small panes of dif ferent colors. The school of which he was, in some measure, the founder, does not yield in celebrity to the best contemporary or succeeding defective in the representation of the extremities of the human body-a fault occasioned by that excessive delicacy which prevented the study of naked forms, and of anatomy in general. On the other hand, the face, dresses, grouping, distribution of light and shade are always superiant and splendid, in the works of the painter and most of his scholars. Many of his paintings are still preserved, either in churches and muscums, or in private collections.

EYDE, Samuel, Norwegian chemist and nentor: 1 . Arendal 1860. He was educated in his native country and also in Berlin. He was a practising enginecr in Norway, Sweden
and Germany. With Dr. Christian Birkeland of Christiana, he set about producing fertilizers from the air (nitrogen) and limestone by electricity. After a long cxperimental stage the idea was reduced to practice in 1903, when they began to manufacture Within the following 10 years Eyde had plants aggregating 200.000
horse power, employed 400 chemists, engineers etc., and about 14,000 other employees.
output of his works reached 2,000 barrels of Norway saltpetre per day. In 1914 he acquired another plant with 200,000 horse power. Notodden, Saaheim and Eydehavn are now towns supported entirely by these new industries. The war of 1914 hindered development along the lines mapped out by Eyde but gave a great which much of the capacity of the plants was diverted as early as May 1915.

EYE, the peripheral organ of vision. It receives light-energy, transforming it into nerve stimulus, which latter is transferred to the brain ly means of nerve fibres.
Anatomy and Physiology.- The human eye has in general a spherical form, with a riorly. The average antero posterior diameter is 24.26 mm . ; transyerse diameter 23.7 mm . The eyeball of a man is slightly larger than that of a woman. The middle point of the cornea is called the anterior pole, diametrically oppole. The line of union between the two poles is the geometric axis. The equator of the eye is a circle equidistant from the poles. (Fig. 1).

A shallow, circular furrow (sulcus sclera A shallow, circular furrow (culcus scleræ externus), filled out with conjunctiva, supa sclera. The cornea is elliptical in shape, the horizonta diameter of 12 mm . being slightly greater than the vertical diameter. Between the margin of the cornea and the equator are the insertion of the recti muscles. (Fig. 2).
Posteriorly the optic nerve, with its sheath forms a cord, 5 mm . in diameter. Around
nerve some 20 arteries (short posterior ciliary arteries) enter the sclera to supply the chorioid. (Fig. 6). On either side of the nerve, in the horizontal meridan, the long posterior ciliary artery with its nerve pierce The posterior part of the globe has been called The posterior part of the globe has been cal the
the arterial half, because here nearly all
nutrient blood enters the eveball The vfunt
blood leaves by way of the venae vorticosxtwo superior and
The eye is composed of a variety of tissucs, and is divided into three main zones according to its development. The posterior zone, the nerve to the insertion lines of the recti muscles. Here begins the middle zone, the anterior limits of which are marked by the sulcus sceere externus. The narrow anterior zone embraces cornea and iris. The cornea and sclera make up the firm, fibrous capsule of the eye, lending layers from injury
There are four principal coats to the eyccapsule); (2) chorioid (vascular layer); (3) pigment cpithelium; (4) retina. (Fig. 7). In scparated from zone all four coats are casily zone the sclera undergoes no change, but the other three coats arc transformed into one organ, the ciliary body. In the anterior zone the sclera becomes tifferentiated into the ment epithelium and retina form the iris The contents of the eyeball are the vitreous, the lens and the aqueous. In that part of the eye occupied by the aqueous the iris is suspendled, dividing it into an anterior and a posterior chamber. (Fig. 1).
from the chorioid and ciliary body separated perichorioidal space. All the hlood vessels and nerves supplying the uvea (that is chorioid, ciliary body and iris) pass through the selera in canals - emissaria. The sclera is divided into three layers - episclera, containing hlood
vessels of its own and having more loosely arranged bundles; sclera proper, with its dense texture and the absence of vessels, and the lamina fusca, characterized by the appearance of chromatophores - branched connective tissue in general, the scleral tissue is that of a tendon. In the sclera the bundles run in every direction, while in a tendon the bundles are parallel with one another. The fixed cells lie belween the bundles. Posteriorly the sclera is continuous with the sheath of the optic nerve; anteriorly narrow gore of transition hetwcen the cornea and sclera is spoken of as the limbus. The cornea occupies about one-sixth of the circumference of the eyehall. (Fig. 1). It contains no hood vessels, hut is nourished hy The cornea is strongly curved and has a weak refractive power becaluse it is thinner in the centre than at the periphery. It has five layers (from without inward) - (1) Epithelium; (2) Bowman's Membrane; (3) Stroma; (4) Descemet's Membrane ; (5) Endothelium.

The epithelium of the cornea is a stratified The basal cells lying on Bowman's membrane are tall cylindrical cells. In the second layer the cells become rather cuboid in shape. From the third layer on they grow flatter, until those sunerficial flat cclls present a perfectly smooth Suncrficial flat cells present a perfectly smooth liancy and lustre. Between the epithalial cells
are minnte nerve endings, endowing the cornea with exquisite sensibility. Bowman's membrane contains no nuclei. It has a smooth anterior surface, while posteriorly it merges
with the stroma, of which it is considered a with the strom
modified part.
modifice part.
The Stroma - sulbstantia propria-com The Stroma - sulbstantia propria-com-
prises about 90 per cent of the cornea. It is made up of connective tissuc lamellæ, running

in all directions. Between the lamellæ are the fixed corneal cells. Leucocytes wander into the cornea, and into the epithelial layers, and ars called wandering cen, in contradistinction to posterior surface by the homorencous, elastic membrane of Descemet. This is a true membrane having two sharply defined contours. It is of cuticular formation, being the product of the

underlying endothelium. It increases in thick ess with age. A single layer of endothelia cells lines not only Descemet's membrane but extends over the trabeculee at the angle of the anterior chamber onto the anterior surface o he iris.
Opposite the external scleral furrow, on the is another circular depression - sulcus sclere
internus. This is partly filled by a loose mesh work, triangular in shape, going over from the meshwork one finds an irregular lumen - the canal of Schlemm. (Fig. 1). This lies protected in the sclera on all sides, except its inner wall which comes in contact with the aqueous The aqueous finds its way into the canal by a
process of filtration. On the scleral side of Schlemm's canal tiny vessels go off, conveying the aqueous directly into the reighboring veins. The perichorioidal space is but a narrow cleft, traversed by delicate lamella extending sclera. The chorioidea - vascular layer of the eye - is a thin brownish membrane, divided into three layers, (1) vessel laycr, (2) capillary layer (choriocapillaris) and (3) lamina vitrea. (Fig. 7). The vessel layer comprises the greater part of the chorioid. In the connective tissue supporting the vessels are numerous lated appearance seen with the ophthalmoscope. Most characteristic of the chorioid is the capillary layer, forming a stratum of capillaries for the nourishment of the pigment ransparent lamina vitrea, like Descemet's membane, is of cuticular formation - the produc f the overlying pigment epithelium. The pigment epithelium is an expanse of one single layer of hexagonal cells, present everywhere fom the optic nerve to the pupillary margin sses which project inward among the rods and cones
The retina (Fig. 7), fourth of the principal ayers of the eyeball, is a soft transparent mem rane, extending from the optic nerve to its jagged anterior margins the ora serrata At the anterior and posterior margins the unio between the retina and adjoining structures is firm, but elscwhere the retina is held to the pig ment epithelium only hy the above mentione rocesses. Thercfore, the retia li very prone ide of the optic nerve and slightly below he horizontal meridan is the fovea centralis Anatomically this is a flattened funnel-like depression, caused by the absence of nearly all elements of the retina except the cones. (Fig.
1). The term macula lutea (yellow spot) refers to the orange color seen in anatomic tudy of this part of the retina.
The following layers compose the retina (Fig. 7), named from without inward; (1) layer of rods and cones; (2) membrana limitans externa; (3) outer nuclear layer; (4) (6) inner plexiform layer; (7) ganglion cel ayer; (8) nerve fibre layer; (9) membrana imitans interna. The layers are connected partly by extensions from the individual elements and partly ly a supporting framework
he fibres or Murer
The rods are cylindrical structures; the
Bos half and a thicker inner part. The rods contain the visual purple, which bleaches out readily in the cadaver hut regenerates in the dark when the relationship to the pigment found in all parts of the retina; in the fovea
there are no rods. The membrana limitans externa is a very delicate sicve-like membrane, and cone sends a prolongation to its own nucleus in the outer nuclear laycr. The outer plexiform layer is essentially a supporting layer, cones on the one side and of fine extensions from the inner nuclear layer of the other side. The inner nuclear layer contains the nuclei of Mueller's fibres and nerve cells. There are also larger cells in this layer provided with Niss's granules. The sixth layer, inner plexiform belongs to the supporting tissue. The ganglion cells of the next layer are multipolar and send off numerous dendritic processes into the underlying inner plexiform layer. The nerve-fibre layer, with its neuroglia cells, is composed of the optic nerve. In this layer the larger vessels of the retina are lodged. Finally, the very thin glass membrane - membrana limitans interna separates the nerve-fibre layer from the vitreous.
nervous units, named as follows in the sense of their conduction. The rods and cones, witl the outer nuclei, belong to the first neuron. This unit serves for the reception of the individual light impressions. The nerve cells among the inner nuclei form the second unit. These
cells come in contact with elements from the cells come in contact with elements from the
first and third neurons. The latter is represented by the ganglion cells, the axis cylinders of which reach through the optic nerve, the chiasm, and optic tract to the brain.

The rods and cones, outer nuclear layer and part of the outer plexiform layer are
nourished by the chorio-capillaris. All the other layers have a vessel system of their own in branches of the arteria centralis retinae and veins of the same name. The hlood vessels are the only elements in the retina of mesodermic
origin; all else is derived from the ectoderm. origin; all else is derivcd from the ectoderm.
In the peripheral portions of many eyes one In the peripheral portions of many eyes one
encounters peculiar cavities due to cystoid degeneration. These are the spaccs of Lessing or Ivanoff's retinal oedema.
The optic nerve (second cranial) unites the retina to the lrain. (Fig, 2). That portion of the nerve lying within the wall of the eye
is termed bulhar or intraocular. The orbital or retrobulbar portion lies between the eyeball and the canalis opticus. Another division is into a medullated and non-medullated portion. At the lamina cribrosa the medullary sheaths cease; in consequence the nerve-fibre layer of the
retina has no sheaths of Schwann, and is transparent. The cord is surrounded by three sheaths; outer, dura mater; middle arachnoid; and inner, pia mater - all continuous with the membranes of the brain. Between the dura and the pia is the intervaginal space. This is divided by the arachnoid inner, suharachnoid. Both communicate with spaces of the same name in the cranium. The pia mater closely invests the nerve sulbiance sending numerons trabeculae among the nerve-fibres and separating them into incomplete the eyeball the central artery and vein of the retina enter the nerve at right angles and continue in its axis to the retina.

They are surrounded by connective tissue carried in with them from the pia mater. The nervous element is composed of extremely merous fibres estimated at hall a minion or glial cells. The lamina cribrosa is the perforated space in the sclera for the entrance of the nerve fibres.
The circular area in the inner opening of the optic nerve canal, corresponding to the area of the lamina cribrosa, is called the disc or papilla.
This space, consisting of conducting fibres only, reccives no impressions, and is known as Mariotte's blind spot. The cupping or hollowing of the disc may be physiological, or pathological as in glaucoma. An arterial ring Circle of Zinn - surrounds the optic nerve en rance into the sclera
The ciliary body, with a breadth of 5 or 6 responding to the middle zone. It is divided into a flat, broader posterior part - orbiculus ciliaris - which is succeeded anteriorly by a Between the ciliary processes are the ciliary In the equatorial region, in the suprachorioidal lamillae smooth muscle fibres make thei appearance, developing anteriorly into the ciliary muscle -or muscle of accommodation. The dianal direction. This is replaced inwardly by a system of circular bundles - Mueller's muscle In myopia the meridianal bundles are mor developed; in hyperopia the circular bundles. A layer of blood vessels covers the inner tirnace of the muscle, being a direct continua the lamina vitrea of the chorioid and the pig ment epithelium spread out. The innner surface of the ciliary body is lined a single layer of epithelium - which represents the ery uncven due to tiny elevations and depres sions to which it clings - the whole arrange ment forming the reticulum of Heinrich Muelomes forward to clothe the ciliary epithelium, ust as it clothes the retina posteriorly. Th largely to do with the nourishment of the lens and vitreous.
The iris has its insertion on the anterior surface of the ciliary body. (Fig. 1). Severed rom connections it has the form of a circula plate- like the diaphragm in optical instruThe circular opening in the middle is the pupil. This latter is located slightly to the nasal side The anterior surface is divided ly a zig-za line 1.5 mm . from the pupilary margin, into an Trer, pupiliary zone, and an outcr chiary zonesels traverse the iris, converging toward the centre, like the spokes in a wheel. Depressions between the trabeculae are termed crypts. In the ciliary zone running circularly are the contraction furrows, corresponding to the creases in the palm of the hand. The lesser arterial line. It is formed by an anastomosis from the radiating vessels which enter the root of the ris. These radiatillg vessels are derived from
the greater arterial circle of the iris, which is
(Fig. 3) in the vascular layer of the ciliaty hody derived from an anastamosis of branches from the two long posterior ciliary arteries. When the stroma is delicate the sphincter muscle may
be seen as a whitish band, 1 mm . in width immediately adjoining the pupillary margin. The stroma bearing the blood vessels and comprising the bulk of the iris is a continuation of the chorioid, by way of the vascular layer of the ciliary body. The pigment epithelium remains the same; while the ciliary epithelium takes on pigment; so that the structures poste-
fior to the iris are protected from the light by two strata of highly pigmented cells. Th sphincter. and the dilitater muscles are o ectodermic origin formed by a differentiation of the pigment epithelium. Other muscles of the
body are of mesodermic origin. The posterior surface of the iris has a very delicate system of radiating and circular markings.

The iris varies greatly in individuals. When the stroma is loose and sparse and contains few chromatophores the result is the blue iris because the black pigment epithelium through the delicate veil anteriorly appears bluish
the blue eye. When the stroma is the chromatuphores numerous we have the brown iris,- here the chromatophores deter mining the color. Aside from the color, there is, therefore, an anatomical difference-the blue iris being the light thin one; the brown iris the heavy thick one.

Vitreus, corpus vitreum, is a transparent jelly-like substance consisting of an exceedingly
delicate meshwork, the interstices of which are filled out by fluid. It has the transparency of water-may be felt in a basin of water but not seen. It contains no blcod vessels, no nerves, and depends for its nourishment on adjoining structures, principally the ciliary body
A canal beginning at the front of the papilla extends to the lens - Cloquict's canal. The fibrillae making up the stroma of the vitreus have their origin just anterior to the ora serrata, on the orbicularis ciliaris. Diseases of The crystalline lens aies in ditrcus. tellaris - on the anterior surface of the vitreus (Fig. 1). It is a transparent body, having the shape of a biconvex lens. The centre of the anterior surface is designated the anterior pole a similar point on the posterior surface of the
posterior pole. The lens cansule is a typical glass membrane, like that of Descemet or the lamina vitrea of the chorioid. Lining the inne surface of the anterior capsule is a laycr of cuboid epithelial cells. At the equator of the ens these elongate to form the lens fibres Those layers of the lens substance next to the is a harder, denser mass, the nuclens. The lens grows larger throughout life to make room for the ever-increasing number of lens fibres within its body

Posteriorly the lens is held to the anterior border layer of the vitreus hy a firm union in the shape of a ring - Ligamentum hyaloideo
capsulare. The zonular fibres are the main support of the lens. They are structureles, nonport of the lens. They are structureless, nonfirmly attached to the ciliary hody on the one side and to the anterior and posterior surface
of the lens, near the equator, on the other side. (Fig. 1). eye pre cornea and lens are the media of the eye principally concerned in the transmission of images upon it. The rays of light striking the cornea are refracted to pass through the pupil. The lens now brings them to a focus on the retina, producing an inverted image. to focusing objects at different distances accommodation. When the ciliary muscle con-

racts the lens increases its convexity and hortens its focus, as in the act of reading. At about 45 years of age the lens, owing to the sclerosis of its fibres, begins to lose its elasticity. This is the condition of presbyopia old signt. In myopia retina, usually due to oo great length of the antero-posterior diamter of the globe. In hyperopia the eyeball is too short. Astigmatism is the condition in which the rays of light do not converge to a point on the retina. It is ordinarily due to By the field of vision we mean the space in which one can sec, while steadily gazing at point in the direct line of vision. The fiel does not extend regularly in all directions. It

reaches farthest toward the external side, where it extends over 90°. The field for colors grows smaller in the following order: blue, red and green. Defects in the visual field are termed
scotomata. he globe lies. Its walls are formed by scven bones of the face; namely, frontal, sphenoid, ethmoid, nasal, lacrimal, superior maxillary, and palate bones. These hony walls separate the orhit from the following cavities: the in-
antrum of Highmore. Diseases of the sinuses frequently involve the orbit. The anterior opening of the orbit is its base. Fere the tim margin of the orbit - to defend the eyeball against injury. At the upper margin of the of artery and nerve of the same name. At of artery and nerve of the same name. At
the lower margin is another notch for the infraorbital artery and nerve.

The globe is lodged in the orbit in a cushion of fat, and is held in place by conncetive tissue, the ocular muscles, and the cyelids. The
periosteum of the orbit extends over its margin periosteum of the orbit extends over its margin. Surrounding the posterior two-thirds of the cyeball, the connective tissue of the orbit becomes condensed into a capsule (Tenon's capsule above mentioned). (Fig. 2)
(1) Oosteriorly foramen for the optic apertures: (1) optic foramen for the optic nerve and
ophthalmic artery; (2) superior orbital fissure, opening into the middle fossa of the skull and transmitting nerves for the ocular muscles and the first branch of the trigeminus; (3) the inferior orbital fissure, connecting the orbit
with the temporal fossa and serving for the with the temporal fossa and serving for the second branch of the trigimal nerve. Near the apex of the orbit is the ciliary ganglion, for the supply of the ciliary muscle and iris. Abnormal protrusion of the cye is exophthalmus. Absence of the bulb is anophthalmus.

The ocular muscles are divided into extrinsic tator and the sphincter pupillac. There are six extrinsic muscles, four recti and two oblinues. The four recti muscles and the superior obliques have their origin around the margin of the
optic foramen (Fig. 5), and diverge as they optic foramen (Fig. 5), and diverge as they
come forward to form the muscular funnel. The four recti muscles are attached by short tendons, to the sclera, 7 to 9 mm . from the cornea (Fif. 4)
The oblique muscles have a more complicated course. The superior oblique runs along
the upper inner wall of the orbit to send its the upper inner wall of the orbit to send its
tendon through the trochlca and thence back ward to its insertion in the upper half of the eyeball behind the equator. The inferior oblique arises near the lower inner margin of the orbit anteriorly and goes backward to its horizontal meridian. (Fig. 4)
The muscles are innervated by three nerves The oculo-motor nerve supplies the internal superior and inferior recti, and the inferior oblique. Also the levator palpebrae superioris and the two interior muscles of the cye innervated by it. The external rectus has the abducens nerve; the superior oblique the trochicar. The nuclei for these various nerves lic upon the floor of the fourth ventricle
By the action of the extrinsic muscles we use both eyes synchronously and have binoc
ular vision. Disturbance of the muscular balance causes diplopia, because images are thrown on non-identical parts of each retina. Orthophoria is normal balance of the eye muscles Strabismus, squint, is the condition in which only one eye fixes an object at a time. Par alysis of the ocular muscles is opththalmoplegia
The syelids are in origin folds of skip
(Fig. 2), which have pushed their way over the bull, to protect it. The eyebrow, super-
cilium, limits the upper lid, while the lower lid passes without any sharp line of demarkation into the cheek. The palpebral fissure separates the two lids. Temporarily the lids join each inner canthus is of horse-shoe shape, embracing a small fleshy growth - the caruncle. The sur face of the lids next to the globe is lined by a mucous membrane - palpebral conjunctiva When the eyclids are shut the entire conjunctiva forms a closed sac. Each lid is supportc The upper lid is elevated by the levator palpebrae superioris, which has its origin at the apex of the orbit, and is inserted into the tarsus. The orbicularis palpebrarum closes the lids This is a flat, cutaneous muscle surrounding the palpebral fissure in the form of a cir
Drooping of the upper lid is called ptosis.

The lacrimal gland, organ secreting the tears, is situated in a depression in the upper, outer wall of the orbit, near the margin. Smalle accessory glands are located along the inner margin of the unpper tarsus. solids, principall sodium chloride (hence salty tears). Psychic weeping occurs only in man. After removal of the gland the cye is kept moist by the secre tion of the conjunctiva. Through the punct the tears pass into the canaliculi and thence below the nasal duct. emptying into the inferio meatus of the nose. Only when the secretion is much increased does any great quantity o tears discharge into the nosc. Inflammation o he tear sac is called dacryocystitis. At th ree margin of the lids there is a narrow strip and the skin merge. The anterior margin is ounded and has swinging from it the cillia. The postcrior margin is very sharp. Just in front of it is a row of orifices, mouths of the meibomian glands-sclaccous glands - emrevent the tears from runuing onto the checks. The modified sweat glands of Moll empty into the follicles of the lashes.

Comparative Anatomy.- In man the eve ttains its highest state of development. The he simpler the eye and the more restricted its
functions. In the lower orders there are eye which distinguish between light and darknes only. In the higher orders, as the vertebrata,
the cyes perceive more or less perfect images.

Corp vitr

FIG. 7
In many unicellular organizations-animals and plants, bacteria and protozoa - scnsitiveness to light is a property of the body as a whole. animals certain cells have the function of sponding to light, all others having lost it The simplest form of visual organ consists of an cpithelial cell connected with a nerve fibre The cell has the power of tansforming light into another form of energy that can be conorgan. The eye of man is essentially reducible to an enormous number of sensory epithelial cells united to form the retina and optic nerve. These latter are the necessary parts of the eye, with the formation of which the develonment of the eye begins. All other parts of the eye
develop later, and are designed for nulrition, protection or optical purposes. Thus the cornea and sclera protect the delicate retina while the chorioid nourishes it. The cornea and lens refract the light and the iris, by means of its pupil, regulates the amount of light Mwo and the higher animals are endowed with have two complete cyes with a number of single supernumeray ones. Some mollusks have as high as scveral hundred eyes which lie along thei mantle.

Diseases of the Eye.- The morbid changes of the eye and its appendages vary according to the site of the discase. The causes of diseases are in a general way physical, mevery tolerant to radiant heat, because the media if the eyc, which contain a large amount of water, absorb the heat rays, and do not permit them to reach the retina. Injury to man by ultra violet rays in sun light occurs only ness is due to the erythema of the lids caused by he ultra violet rays, with consequent conjunc ivitis and photophobia. Injuries to the eye ball are of two kinds - the direct and the in irect. In direct injury the damage done de pends upon the nature of the instrument-a in contact with the blade are harmed. But when he globe is struck by a baseball or stone, indirect injury, the harm done depends more on the anatomy of the organ. For instance, a severe blow on the cornea may cause detachment of the retina, rupture of the chorioid, or disthe globe are received with different degrees of olerance. Thus, organic substances, as cilia or particles of wood may become incapsulated ausing no subscquent trouble. But steel in he interior of the globe becomes oxise uve causes siderosis bulbi. Hence the importance f its speedy removal. Copper, of all foreign substances in the globe, is the least tolerated A small chip is sufficient to produce violent in flammation and loss of the eye. The traumatic uveitis in one eye callsed by a per liscase in the uninjured eye-sympathetic in Hammation.
The most frequent systemic diseases giving rise to ocular disturbances are syphilis, tubercu losis, rheumatism, nephritis, diabetes, artcriosclerosis, diseases of metabolism and chronic intoxications. Betwecn cornca often becomes the seat of a cellular infiltration with new-formed blood vessels - the salmon patch - interstitial keratitis. Those afflicted with the disease usil ally exhibit a peculiar formation of the face The frontal eminences are very prominent. The The froth are abnormally shaped (Hutchin son's teethi). Frequently there is accompanying hardness of hearing. Bad teeth are not infre quently the cause of ocular symptoms and disease-as chronic iritis,-which clears 11 when the mouth receives proper attention. located in the tonsils, accessory masal sinuses and intestinal tract. Acromegaly exhibits many ocular manifestations, as hypertrophy of the margins of the orbit and thickening of the skin of the lids. The accompanying discase of th pituitary body causes characteristic bitemporal hemianopsia. "Graves sisease that the lid exophthalmus, sometimes so great that eye tonger cover the eyes. Acquired syphilis can no longer cover the cyes. 25 per cent of all cases of iritis. Atrophy of the optic nerve is found above all in tabes. It usually develops in the initial stage of caties, at absent. Another
cye symptom which likewise makes its appear ance carly in this disease is the Argyll-Rober
son pupil, in which the pupil reacts to accommodation and convergence, but not to light. Many cases of impaired vision (amblyopia) and of blindness (amaurosis) are due to poisons introduced into the system which affect the optic nerve. Chief among these poisons. Other poisons causing amblyopia are lead, quisense may cause oedema of the lids and albuminuric retinitis. Diabetes produces cataract and hemorrhages in the retina

Bibliography.- Fuch's (Text Book of Ophthalmology (Diseases Eyc). Salzmann, (Aneek and Histology of the Human Eye-Ball' (Chicago 1912); May, 'Manual of the Diseases of the Eye) (New York 1914).

IBernard Samuels, M.D::
EYE STRAIN, the result of using the eyes under adverse conditions. It is occasioned frequently by a lack of balance of the ocular muscles, but may be due also to the use of improper glasses or to the need of glasses. Its cffects are serious; it is a great cause of waste of nerve force, causes headache, hysteria, proper glasses or by surgical operation.

EYEBRIGHT, a common name for the plants of the genus Euphrasia (q.v.).

EYEPIECE, the lens or system of lenses in any optical instrument which lies next the eyc and enables the image formed at the focus of the instrument to be observed. Its purpose is to form the image of a large field by pencils which, since they must enter the pupil of the eyc, are necessarily of small divergence. Eycpieces are usually made of two eye-lens, the other the field-lens. In the Ramsden eycpiece, eyc-lens and field lens are cqual and planoconvex, and have the convex sides turned toward one another. In the Huygens eyepiece
the field-lens has a larger focal length than the field-lens has a larger focal length than
the eyepiece, and the curved surface of both the eyepiece, and the curved surface these eyepieces are used both for microscopes and for telescopes and give inverted images. For erect images, as in opera glasses, a convergent eyepiece is used, or where a larger field or ordinar desired the inverting eyepiece image which is itself inverted by a convergent system of lenses between the objective and the eyepicce proper, or by a system of two right-a

EYERMAN, John, American geologist: 1 Easton, Pa., 15 Jan. 1867. He studied at La fayctte College, Harvard and Princeton, and was instructor in blow-piping at Lafayette lecturer on determinative mineralogy He has been an associate cditor of the American Geologist since 1890, and is a member o many English and American scientific societies He has published 'Notes on Geology and
Mineralogy' (1889) ; 'Mineralogy of Pennsylvania' (1891); 'Course in Determinativ Mineralogy' (1892); 'Bibliography of Nortl American Vertcbrate Palxontology' (188)-93)
'The Genus Temnceyon' (1895) ; 'A Study of Genealogy' (1898): 'General Index of the
Wills of Northampton County, 1752-1802' (1898) : 'The Old Grave Yards of Northampton' (1889-1901); 'Some Letters and Documents' (2 vols., 1900) ; 'Genealogical Studies' (1902)

EYESIGHT IN THE LOWER ANI

 MALS presents some curious differences rudimentary cyes of the lower invertebrates can hardly be of more service than to convey an impression of the difference between day and night; many such come out of the ground, or rise to the surface of the sea, at night to sink again into darkness when the sun rises. In are found that contain "many clear oval bodies imbedded in pigment, which." Huxley says, "appear to represent the crystalline cones of a compound eye." (See EYf.). Among mollusks the organs of vision range from none at all in complexity to the highly dhrough all degrees of squid. Bivalves that creep about near shore, daily exposed between tides and subject to capture, have many eye-spots on the cdge of the mantle, which are so sensitive that the shadow of a boat or of a man will cause instant closure scallops (Pecten), where a row of eyes glisten like jewels when the shell is open; and in the ark-shells (Arca), where a great number of cyclets are gathered in round groups forming compound cyes. In most univalve mollusks there are two eyes on the helers". usually at their tips. Fxperiments show that snails are very short-sighted and see better in a subdued than in a bright light; but some seem to perceive subjects well several inches away. The eye of an octopus or a squid is very large and perfect, and as useful as that of a predaAmong the trilohites and crustacea also the agile, prey-hunting species are provided with efficient compound eyes, usually set at the end of stalks that may be turned in any direction. These cyes are always compound, like those of aggregation of somewhat modified simple eyes (facets) backed by one retina. Through each facet, it is believed, falls an exceedingly fine pencil of light, revealing a very small part of the ficld of vision. These combined fragments are supposed to form a sort of mosaic picture field of view must depend on the number of facets and the approximation to the globular form of the whole external eyc. The nature and value of insect-vision has been much dis-cussed. Carpenter ('Insects and their Structure and (ife) 1899), reviewing the controversy, conand Life) 1899, , reviewing the controversy, con-
cludes that the compound eye is especially adapted for perceiving sensations of light and motion rather than of form. There is reason to believe that such eyes do not perceive objects
at a greater distance than six feet, while there is no doubt that they are able to appreciate color-sensations; in fact, the theory of the cross-fertilization of flowers hy insects largely
depends on this assumed ability. Dragon-flies, which have very large protruding eyes, of many
thousand faccts, often approach close to a person and hover there, cvidently studying the de tails of the moving object
Vision among fishe medium in which they live, and varies from total atrophy of the eyes in subterranean water and sea-abysses to eyes so large as to equal hal cyes in the head varies sizc and position of the dering degree, as fishes depend largely on eye sight for finding food and escaping enemies Those that creep along the bottom, or dwell a intermediate depths, for instance, have the eyes on top of the head, looking upward; but to long essay. In most of the families the eye are so situated in the side of the head that the vision is monocular - that is, only one eye can be used at a time for viewing an object. The species that chase fleeing prey, however, can to charge the focus rapidly, Such eyes need commodation to distance is not effected by an alteration of the convexity of the lens, as in birds and mammals, but by a muscular change in its position with regard to the retina. The structure of the nish-cye is substantially the important of the hruman in all deep-sea fishes only the rods that Eye) exist in the retina, the cones being ab sent; the conclusion is that these fishes do not perceive color, which seems to be the specia function of the cones. Furthermore, a differ ence in the retina of the deep-sea fishes and "day blind," that is, have eyes adapted to the loom in which they constantly live and ar blinded by the glare of a strong light. It ap pears, however, that there is no regular derease in size of the eye, from a small or nor mall form at the surface to the immense an weld-developed eye that characterizes many of pelagic fishes with largest, most efficient eye are those living at a depth of from one to 300 athoms and possessing light-organs, whil elow that stratum hoth light-organs and ocean is reached, when arain foor of mid occur. The only present explanation of the atter fact is that those abysses are lighted by the glow of innumerable phosphorescent inver lebrates, by whose light the fish seek their food Little nced be said of the vision of amphibians and reptiles, which is probably rather fishes, depend more on the sense of smell than on sight to guide their actions, and have, in ddition, good hearing
Vision of Birds. - The power of vision at ains its highest development among birds; and nowhere but in human faces is the eye so ex its service as an optical instrument Birds possess the keenest and most farsighted vision and also extraordinary power of swiftly altering the focus of the eye to changing distances accompanied by astounding acuteness in menta and dodging in the air is catching ins sweeping invisible to our eyes and excesinsects almos
hawk chasing a swift-winged and quick-turning sparrow or a leaping grasshopper must have eyes that can follow exactly evcry movement. vulture, which while soaring so high in the sky that it appears to us a mere speck sees and defines an object on the ground that we could hardly notice or recognize at a hundred yards, and darts down upon it with the speed of a bullet. Imagine the farsighted ke the apparatus act and then the perfection of the focus of the eye is changed in accord with the speed of the bird's descent, keeping the object always in clear view and stopping at precisely the right instant to escape collision. A hummingbird will dash past one's eyes like a gleam of light and halt at rest on a twig without fail. A woodcock or partridge
will rush at high speed through a tangled wood and never touch a twig. These feats are evidence of the perfection of birds' eycs, especially in the faculty of accommodation to quickly varying distances.
mportant than among birds or ceven to man important than among birds, or even to man-
kind, for their alert hearing and keen sense of mell give them much information. Vision among them varies with their manner of life and is restricted to their needs in cach case The most farsighted and useful vision, prob - deer, antelopes, giraffes, horses, etc., alhough they use but one eye at a time. The beasts of the chase, like owls among birds, have yes in front, so that they ouserve with both a once, and of these perhaps the wolves, foxes nd wild hunting dogs are best endowed uality of vision are in adaptation to the nabitual needs of each kind of animal, and are always correlated with the power of loco motion.

Ernest Ingersoll.
EYETEETH, CANINE or CUSPIDATE EEETH, two teeth in the upper jaw, the fangs which project in the direction of the eye See Teeth.
EYLAU, ílow, or PRUSSIAN EYLAU Germany, town on the Pasmar River and the lake of Arschen, 22 miles south of Königsherg t was the scene of a battle, fought $7-8 \mathrm{Feb}$ 807, between the French under Napoleon (q.v.) on the one side and si (Sec Ney) The French force numbered about 70,000 , of whom fully 18,000 were killed. The allied forces were about the same in numbers, with a loss of more than 18,000 . Pop. about 3,000

EYLAYET. See Vilayft.
EYMERICUS, Nicolas, Snanish theologian: b. Gerona, Catalonia, 1320; d. 1399 In 1334 he entered the Order of Preachers, later attaining the rank of Grand Inquititor.
He also was appointed chaplain to Pope GregHe also was appointed chaplain to Pope Greg-
ory XI and judge of heretics in 1356. He lived many years at Avignon during the reigns of Clement VI and Benedict XIII. He was the author of the severe 'Directorium Inquisitorum?' which was the standard code of procedure i
HYARD
EYNARD, ä’när, Jean Gabriel, Frenc
pation in the outbreak at Lyons against the Convention, Eynard became persona non grate erland and later in Genoa, where he amassed a fortune. In 1810 he removed to Geneva, and was Ambassador of the Geneva Republic at the Congress of Vienna in 1815. In the follow ing year he helped to organize the administra tion of Tuscany, which he represented at the
Congress of Aix-la-Chapelle in 1818 . He advocated the independence of Greece and for his services to this cause was made a Greek citizen. His personal contribution to the Greek revolutionaries amounted to Fcs. 700,000 ($\$ 140,000$). His recommendation of Otho of Bavaria for
the throne of Greece was adopted. He bequeathed his fortune of about $\$ 12,000,000$ to various charitable enterprises. He wrote 'Lettres et documents officicls relatifs aux divers évencments de Grèce' (1831) and 'Vic de la aronne Krüdener) (1849). Consult Rothpletz, Der Genter Jean
EYRE, ăr, Edward, American financier: b. Dublin, Ireland, 25 March 1851 . He was educated at the Jesuit school, Belvidere Place, Dr. Quinn's Preparatory School, and at Trinity College. He entered the employ of Grace Brothers and Company, becoming junior partner in 1876 and full partner four years Grace House, Chile, in 1882, and became successively manager, vicepresident and president of the W. R. Grace Company, New York, in 1903-06. Since 1906 he is a member of the board of managers of the London hranch of W. R. Grace Company.
Mr . Eyre took prominent part in bringing about a settlement of Peru's foreign debt after the war with Chile, and for some time was manager of the railroad systems handed over by Peru to its creditors. In 1892 he negotiated with Chile for the settlement of the claims against her made by the holders of the Peru-
vian bonds, due to the seizure by Chile of the guano deposits and other properties which formed part of the guarantee of the honds from Peru. In 1898 Mr. Eyre, on behalf of an American syndicate, obtained from Nicaragua a concession for the construction of an inter-
oceanic canal through that country, the project being subscquently held up by the government of the United States; the text of this concession was used later by the United States government in its treaty with Colombia and appears almost verbatim in the treaty actually concluded Panama Mr Eyre was a memher of the board of directors of 'The Catholic Encyclopadia) and the conncil of the Westminster Catholic Federation and is an ex-president of the Marquette League. He published a criticism of Viscomt Bryce's 'South America: Observations and Impressions.
EYRE, Edward John, Fnglish explorer and colonal governor: h. Yorkshe, Tavistock, Devonshire, 30 Nov. 1901. He went to Australia in 1833; in 1839 discovered Lake Torrens, and in 1840 explored its eastern shores and the adjacent Flinders Range. He then commenced his perilous journey along the shores of the Great Australian Bight, and iralia, a distance of 1,200 miles, accompanied by
a single native hoy, having left Adelaide more
than a year before. In 1845 he published (ExCentral Australia.' After filling several governorships he was appointed governor of Jamaica in 1862. In 1865 he was confronted with a ncgro rebcllion which he crushed with some severity, and was recalled. On his
return to England John Stuart Mill and others took measures to have him indicted for murder, but failed. In regard to this question Carlyle was one of his most strenuous defenders.
EYRE, Sir James, English jurist: b. Wells, Somersetshire, 1734; 1 July 199 . In 1747 he was appolnted scholar of Winchester and College. Oxford In 1753 he went to London took up the study of law, and in 1755 was called to the bar. He became counsel to the Corporation of London and recorder in 1763. In 1772 he was made Baron of the Exchequer and In 1793 he was made chief justice of the Court of Common Pleas. From June 1792 to Jan. 1793 he was chief commissioner of the Great Seal. Consult Foss, 'Lives of the Judges of
EyRE, Jane. See Jane Eyre.
EYRE, Jehu, colonel in the Continental army: b. 10 Jan. 1738; d. July 1781 . Eyre is the name of a family that for seven centurics founder having come over the sea with William the Conqueror. The legendary account states that when, at the battle of Scnlac, or Hastings, the Norman leader, early in the conflict, was knocked by a missile of his horse, steped forward and loosened his visor which gave him air. Thereupon William, reviving asked for his benefactor and knighted him on the spot, giving him the name of "eyrc"- one of the variants of a word that is oider than English spelling. In the feudal division of land, a leg in armor, couped and spurred, he having lost a leg in the battle - was given a fief in Nottingham, the manor house being at Rampton. The family is now extinct in the peerage. The first American ancestor, George Eyre, coming and married in a family of Friends. He had three sons who, in the Revolution, lecame "Free" or "Hickory" Quakers and were prominent in the service of the Continental Congress. Coming to Philadelphia to learn shipulding, two the sons aughters of their master.
naming after Pitt, Jehu Eyre trave and its re party of his mechanics to build boats for the ransportation of the King's forces down th Ohio. While there, he learned about cannon and artillery, visiting also Braddock's Field-
then piled with the bones of the slain. the Lexington news, he organized in Philadel phia a military company, which guarded Independence Hall. Besidcs providing hoats for the crossing of the Dclaware, he took part in the battle of Trenton and Princeton; in which latter, his younger brother, Colonel Benjamin
George, was aide to Washington. In 1777, Jehts was made colonel of an artillery regiment which served at Brandywine, wintered at Valley Forge,
and garrisoned the forts on the Delaware, while roctor, with his artillery, was away on SulliConsult Keyscr, 'P'einsylvania Magazine of History and Biography (1879).
Wilifam Elliot Griffis.

EYRE, Wilson, American architect: b Florence, Italy, 30 Oct. 1858 . He was educated in Italy until 1869, at Newport, R. I., from to 1874 , and at the Massachusctts Institute Technology, where he was graduated in 1876 From 1876 to 1881 he was with James P. Sims and from 1881 to 1912 was in independent practice. In the latter year he became senior many buildings in Philadelphia and New York also several buildings for Newcomb Memoria College, New Orleans, the Detroit Club Detroit, etc. He is a member of the American Institute of Architects, the National Academy
\qquad EYRE LAKE, a salt lake of South Australia, lying due north of Spencer Gulf, 3 fect below sea-level, in the driest part of the
continent, where the rainfall is only five inches per annum. Area 3,706 square miles. During Mesozoic times, a large gulf extended from the Gulf of Carpentaria to Lake Eyre. Its southern arm usually contains salt water; the remainder is a vast salty plain formed from alluvium
carried down by the large rivers of Central Australia which now enter it only at flood time

EYRIA (i^{\prime} ri-a) PENINSULA, on the south coast of South Australia, triangular in shape, its base being formed by the Gawler Range, while its sides are washed on the squththe Great Australian Bight It is a rich wheat growing country
EYTELWEIN, i'tel-vín, Johann Albert German enkincer: b. Frankfort-on-the-Main, 1764 ; d. 1848 . In 1799 he became director of
the Berlin Architectural School; afterward he the Berlin Architectural School; afterward he
was placed in charge of the hydraulic operations was placed in charge of the hydraulic operations for improving the navigation of the Niemen
Oder, Warthe and Weichsel. He also had charge of harbor improvements at Memel, Pil lat1 and Swinemünde. He established a system of weights and measures for the kingdom of Prussia. His works include 'Praktische Anweisung zur Bauart der Faschinenwerke an Fluis-
sen und Strömen) (2d ed., 1818). (Vergleichung in den proussischen Stater eincefïhten Masse und Gewichte) (2 d ed., 1910) ; 'Hand buch der Statistik fester Körper) (2d ed. 1832) : 'Handbuch der Hydrostatik' (1826) (Aufösung der höhern numerischen Gleichungen' (1837).

1) EYTH, Eduard, ěd'oo-ārd ît, German poet: Ulm 28 April 1884 ürtemberg, 2 July 1809; d. New of '(Poems' (1843): 'Pictures in Frames' (1856) ; and a version of the 'Odyssey.

EYTH, Max, German agriculturist: b Kirchheim-unter-Teck 1836; d. 1906 . He came to England in 1861, and entered Fowler's agricultural implement works at Leeds as engineer that same year. In 1863-66 he served in Egyp duced the steam plow into Epypt He puliished 'Das Agrikulturwesen in Aggypten'
(1867); 'Steam Cable Towing' (1868); 'Das (Wanderbuch eines Ingenicurs: In Briefen (1871-84); 'Lcbendige Krāfte) (1905)
EYTINGE, ẽt'tung, Rose, American actress: b. Philadelphia, 21 Nov. 1838; d. 1911. She N . Y., 1852, and the following year played N. Y., 1852 , and the stock company. From 1862 to 1869 she played in various theatres in sccond husband, Gcorge H. Butler, consu general to Egypt. On her return thence in 187 she took the role of Cleopatra at the Broadway Theatre, to the Antony of Frederick Ward Among her parts were (Nancy Sykes in 'Oliver
Twist'; Gervaise in 'Drink'; Ophelia to the Hamlet of the E. L. Davenport, and Desdemona with James W. Wallack as Othello and Davenport as Iago. She created many parts, including Rose Michel, Amande Chandoce in 'Le Astray,' and Felicia in the play of that name Shakespearcan roles, notably Cleopatra, Lady Macbeth and Hermione (in the 'Winter's Tale'). She wrote 'It Happened This Way, a novel; 'Golden Chains,' a play; and has dramatized Browning's 'Colombe's Birthday, and Dickens' 'Dombey and Son': 'David CopCities) She also published (Recollections,' and 'Memories' (1905). Consult Clapp an Edgett, 'Players of the Present' (New York
1899) : and Winter, 'The Wallet of Time' 899) ; and Winter, 'The Wallet of Time' 2 vols, ib., 1913)
EYUK, à-yook, Asia Minor, a village situated about 75 miles southwest of Amasia, and ruins are the remains of a colossal palace of the Hittites, whose capital Hatti (modern Boghaz Kōi) is only a short distance from Eyuk. Conult Garstang, 'The Land of the Hittites' (New York 1910) ; Ormstead, C:, and Wrench, 'Hittit nscriptions) (1911);
EYZAGUIRRE, à’ē-thā-gērā̃, Agustin Chilean statesman: b. 1766; d. 1837. He became a prominent figure in 1810 in the movewas a member of the first Junta. In October 1814 he was captured by the Spaniards at Ranagua and spent the three years following in 823 he was chosen president of the provisional unta and soon after vice-president of the Reublic. In 1826 he hecame acting President, on he resignation of Freire, but was deposed in
anuary 1827 by malcontents in the army.
EZEKIEL, one of the greater Hehrew
rophets. To him is attributed one of the prophets. larger prophetic books of the Old Testament beingly expressly attributed, in the work itself to Ezekiel. He was the son of Buzi, a priest to Ezekiel. He was the son of Buzi, a priest,
and was carricd captive, in the time of Jehoiachin, 597 B.C., about 11 years before the destruction of Jerusalem under Zedekiah. His prophecies are mostly in chronological order, cign extions. The central idea in the book is that Jerusalem because of its corruptions is doomed, and that the future of the chosen
pcople is with the exiles of Babylon. Ezekie marks the transition from the prophetic to the pricstly period. There is no direct quotation are a few in the Book of the Revelation, which in the concluding portion, distinctly looks back to the temple arrangements prophesied in the las and authentickiel. The substantial genuineness have not been Jewish or Christian Church, and nearly universal suffrage has been given in favor of their canonicity.

EZEKIEL, Book of. The third of the "major," or longer, prophetical books of the the priest-prophet who bore the name "God strengtheneth." The Hebrew form is "God sented more closely in the English of I Chronicles xxiv, 16 by the name Jehezkel, a pricst
ascribed to David's time. No one else in the ascribed to David's time. No one else in the Old Testament bears this name, although the "hamiliar Hezekiah, "Yah strengtheneth" or author, as one of priestly rank, was among the eight or ten thousand men of standing who with their families were taken to Babylonia in the first exile, 597 b.c. The company of which he was a member.formed a community, presided over by its own elders, on the banks of the river Chebar. American excavations in central
Babylonia have identified this with the canal Kabaru, "the Grand Canal," which ran near the ancient, famous seat of Babylonian worship, the city of Nippur. Here Ezekiel lived in his own house, where the elders and people resorted to him to inquire of Jehovah (viii, 1; xiv 1; xx, 1; xxxiii, 30-32). Here, too, in the
ninth year of the captivity, his wife died, and he restrained himself from the usual signs of mourning that he might impress upon the pcople a sense of the stupefying grief that was soon to fall upon them through the destruction of Terusalem. Ezekiel's familiarity with the worship of the temple leads to the inference captivity. It was not until the fifth year of the exile (592 b.c.) that he became conscious of his prophetic call through an impressive and
repeated vision which assured him that he had repeated vision which assured him that he had
the work of a prophet to perform as a spokesthe work of a prophct to perform as a spokes570 b.c. (xxix, 17). Fzekiel continued to interpret the Divine will and purpose to his fellow exiles, using every ingenious device of symbolic action and figurative speech to arouse their curiosity and interest and make his message penetrate the "hard forehead and stiff heart." The contents of the book of Ezekiel are arder and fall also into clearly marked topical divisions. Chapters I-24 contain oracles from the beginning of the prophetic ministry in 592 to the investment of Jerusalem by the Babylonian armies in January 587 b.C.; these deal with the approaching fall of the city. Chapters 25 32 pronounce judgment upon Israel's ancient
neighbors, Ammon, Moab, Edom, Philistia, Tyre and Egypt; they prepare the way for Israel's complete restoration to her land, freed from the old. troublesome neighbors. The
oracles of this second section of the book are dated within the period of one or two ycars except for a slight addition made by b.C prophet in the year 570 . Chapters 33 - 48 con ain the direct prophecies of restoration with which Ezekicl sought to encourage and guid his fellow exiles after the destruction of Jeru divi in the summer of 5 B6 B.C. The second 48) is dated as late as 572 . this contain Ezekiel's detailed plans for the restored tem ple and worship, and the systematic redistribuion of Palestine among the 12 tribes, th Prince, the priests and the Levites. Ezekiel early ministry was contemporary with the men were as different as possible in thei mode of thought and expression and in some of their conceptions, they were in full agrec ment in their central emphasis, at this time pon the certainty of Jerusalem's destruction and of a restoration after long ycars. Ezekiel ated the doctrine of the individual's relation o God, in contrast to the carlict prophetic mossage of the nation's relationship, and ro terated Jeremiah's teaching of a new spirit within guiding the life in the Divinely ap pointed ways. Ezekiel renews the charges o ocial corruption and hlood guiltiness enceless, th century prophcts had made acainst the people; but he gives equal or greater promi ence to the corrupt worship that had com looding into Jerusalem under Manasseh and gain under Jehoiakim. His rcferences to had mic crimes, which the earlier prophet and perfunctory, while his pictures of the idolatrous practices in the temple are most concrete and vivid (viii, 5-8). To him it is clear hat Jehovah must vincheatc upon his pcople his outraged honor and holiness. As in Deuteronomy, the priestly demand for purity of character are united; but in Ezckiel the ritual conception of holincss is much more prominent than the moral. This writer is in fact more fully the heir of pricstly idcals and the pre-
cursor of the age of ritual dominance than the cursor of the age of ritual dominance than the prophets of the great ethical and spiritual ing. In the development of Levitical organization Ezekiel's idcals stand between the simpler arrangements of Josiah's time and the completed hierarchy of post-exilic Judaism. His inftuence :tpon later gencrations in further ing the eclipse of the prophctic religion by
sacerdotalism was important. Attributable to him is the conception of a sacred nation isolated from all others, which played so large a part in rebuilding and preserving the Jewish community after the exile and which led also to
the exclusive, cercmonial ideas that culminated in Pharisaic Judaism. This prophet's influence
in Pexcenter was equally determinative in shaping the Messianic hopes of later centuries. In this Stream of influence issuing from his teachings we may distinguish elements which ultimately came to flow in very different channels. On
the one hand, he gave the beautiful picture of the good shepherd (34). In this he described
the manner in which the former rulers and strong ones had taken advantage of their posi tion to sccure the best water and pasture and wantonly to destroy and foul that which they
could not themselves consume. In contrast, he promised the era of justice and safety when God himself would defend the flock and his servant David should feed and shepherd them. Again Ezekiel promised from God a new heart of flesh instead of their old stony heart; Jehovah's Spirit within them causing them to walk in all his
ways (xxxvi, 22-27). On the other hand, he taught that God must re-cstablish and glorify his pcople in order to make his own name great among the nations which now despised him as a discredited deity unable to protect his own pcople from their cnemies. He feels the mere restoration of Isracl to the land inadeand foresces a time when Israel, gathered out of all lands, shall dwell securely; then hordes from the north shall sweep down over the land, as the Scythians had come a generation before. Suddenly God will smite down, upon the moun-
tains of Isarel, this awe-inspiring tains of Isarel, this awe-inspiring multitude of King Gog, there to te as prey of the ravenous
birds and beasts. Then Jehovali's holy name will be made known in the midst of Isracl and the nations will know that he is the Holy One in Israel (38-39). Here holiness is evidently understood in its primary Hebrew conception of separateness or unapproachableness prophets had given it. This particular great of Ezekiel seems to have been the original of that picture of the future which appeared in varied, fantastic forms in the Jewish apocalyptic writings of the two centuries before cra. cra. In acts and visions, characteristic of the Hymbolic prophets, are carried to anl extreme unknown in the earlier documents. Douhtless the claborate, composite, human-animal figures conspicuform of Ezekiel's visions. The heines scen in the opening vision, each with the face of man, a lion, an ox and an eagle, each with four wings, with human hands beneath the wings and feet like those of a calf, seem fairly to outdo the fantastic imaginings of the hought in the pictures of the varied hills and skics and mountain torrents of Palestine; Ezekiel, on the endless plain by the sluggish canal, thonght in pictures suggested by the most impressive work of the artists who had decorated the great temples for the ancient power. With the audacity of faith belonging to the true interpreters of the unseen God, the exile prophet appropriated the symbols of the an to the relgion to entorce his own lessons as to the power and purposes of the God of subject Israel. At times, the imagery of the or even beautiful. An cxample in point is the picture of the Divine shepherd and the shecp, but gencrally the figures, even at their best seem lahored. A few poems are introduced the dirge sung over Tyre (xxvii, 31-9a, 25b-36)
we have one of the most elaborate and appropriate of the many poetic descriptions of the ship of state. In the lament for Egypt (xxxil,
$19-32$), both the conception and the form of the poem, with its varied haunting, baffling Ezekiel lacks the poetic power and the rhetorical passion of the greatest of Israel's prophets. The hook shows the marks of deliberate literary composition far more even than that of Jeremiah, of whose repcated dictation to Baruch of The books of Hosea and Isaiah suggest in their arrangement scattered memorials gathered by loyal followers. In the case of Ezekiel it seems evident that he committed his own teachings to writing with deliberation and that he finally composed the entire book in essentially its present form. The internal evidence of the of date of composition. Although the text has suffered more than usual corruption through copyists' errors, the book as a whole is singularly free from later additions or expansions. Bibliography.- Bennett, W. H., 'The Religion of the Post-Exilic Prophets) (EdinEzekiel' (in Cambridge Bible, Cambridge 1892) Fowler, H. T., 'A History of the Literature of Ancient Israel'. (New York 1912) ; Kent, C. F., 'Sermons, Epistles, and Apocalyyses of the Prophets) (New York 1910) ; Redpath, H. A., 'The Book of the Prophet Ezekiel' (in 'Westner, J.; 'The Book of Ezekiel' (in 'Expositor's Bible,' New York 1901) ; Toy, C. H., 'The Book of Ezekiel' (in 'Sacred Books of the OId and New Testament,' New York 1899). Consult also Hastings, 'Encyclopedia Biblica' and the Old Testament Introductions by Creel

Henry Thatcher Fowler,
Professor of Biblical Literature and History,
EZEKIEL, Moses Jacob, American sculptor: b. Richmond, Va., 28 Oct. 1844; d. Italy, tute 1866, he served in the Confederate army during the last year of his course. He studied art in Richmond and Cincinnati $1866-70$, and Berlin, Germany, 1870-74, where he was the first foreigner to win the Michael Beer prize (1873). While there he studied under Prof. Albert Wolf, and was admitted to the Berlin
Society of Artists on the merits of his colossal hust of Washington, now in Cincinnati. Later he went to Rome, Italy, where he has chiefly resided save for frequent visits to America. He has exhibited in the chief American and European expositions. Large and small, including statues, portrait-busts, ideal groups,
and relievos. His works number several hundred of which the best known are 'Cain, or the Offering Rejected,' an early ideal bust that showed considerable dramatic talent; 'Apollo and Mercury,' Berlin (1870); 'Religious Liberty,' Fairmount Park, Philadelphia (1874-76); basrelief portraits of Farragut (1872), and Rohert
E. Lee $(1873): 12$ marble statues of artists for the Corcoran Art Muscum. Washington (188082) ; marble busts of Beethoven (1884), Longicllow, and of Cardinal Hohenlohe (1888);
bronze statue of Columbus in the Columbian Memorial building, Chicago, III.; statue of Mrs Andrew D. White for Cornell University; hus of Lord Sherbrooke for Westminster Abbey Neptune, Italy; Confederate Soldiers' MonuNeptune, Italy; Confederate Soldiers Monuetc. In June 1903 the sculptor presented a bronze monument, 'Virginia Mourning Her Dead,' to the Virginia Military Institute.

EZION-GEBER, èzǐ-ōn géber, a stopping point of the Israelites on their journev from Egypt (Deut. ii, 8). It is probably indentica
with the modern Ain-cl-Ghudyan. It is mentioned also as the station of Solomon's fiec (I Kings, $1 x, 26$; 11 Chron. vini, 17). Accord his day. Consult Musil, 'Arabia Petræa Edom' (Vienna 1908).

EZRA, the Babylonian Hebrew priest surnamed "The Scribe," after whom, with his contemporary Nehemiah, the 'Books of Ezr and Nehemiah' of the Hebrew canon ar
named. By permission of King Artaxerxes of Babylon, as leader of 1,754 of his country men he returned to Jerusalem 458 b.c. On the basis of a firman granted by the King, and by the appointment of the King's cup-beare Nehemiah as governor of Judea 445 b.c., he wa under sanction of the law, the Jewish religio in Jerusalem, where it had become deeply cor rupted. The drastic steps associated with the ceptable cverywhere and led to endless discussion, especially was this the case when a grea number of the Jews were compelled to divorc the forcign wives they had married. The mos famous of the early scribes, Ezra is referred to and of his statutes to Israel" (Ezra vii, 2) an as "a ready scribe in the law of Moscs which the Lord, the God of Isracl had given." He was the first of the Sopherim or scribes who handed on the charge to the "Men of the Grea which he founded and now represented by the rabhis. To Ezra is credited the introduction of Assyrian script, or the adoption of Aramaic handwriting in Judea in the 5 th century B.C In 444 b.c. Nehemiah describes Ezra as a scrib reading the 'Book of the Law' to the congregation of the children of Israel gathered on the priests reciting the 'Targums' or Aramaic paraphrases to enable the people to understand the laws. The reading occupied two days and wa productive of impressive results. The importan services rendered by Ezra to his countrymen on that occasion, and also in arranging and pract cially acknowledged hy the Hebrews, and he is even regarded by many as the second founder of the nation. Malachi, signifying "My Messenger," the name assigned to the last book of the Old Testament, is identified by some authoritie with Ezra. Some writers assert to Babylon and died there at the age of 120 years. Josephus states that he died in Terusalem and was buried there with grea pomp. On the Shatt el-Arah near Korna the tomb of Ezra is venerated as a shrine. Consul

Herford, 'Pharisaism' (New York 1912) ; Tor rey, 'Erra Studies' (Chicago 1910) original union of Ezra with Nchemiah and Chronicles and for the date of the complete work, see Chronicles.
537 The book of Ezra covers the history from 537 B.c. to 458 , although some would substitute another date for the latter one. Most of this sections of which nothing is said. it is the narrative of the events of the year 458 that is most extended, chapters vii-x.
Chapters i-vi are claimed to rest upon certain official documents which were partly in Hehrew and much more largely in Aramaic. there is difference of opinion; it is probable that it is in large measure true, but perhaps not altogether. The remainder of the book, chapters vii-x, is evidently based upon memoirs Ezra. These memoirs as they now appear are partly in the first person, having been
quoted by the writer verbatim or with slight changes, and partly in the third person, having been considerably rewritten. Ezra vii, 27ix, 15 are of the former kind; Ezra vii, 1-26; 10 , of the latter kind
The question of the historic city of Ezra and Nehemiah is one of much difficulty. The comcurate records for this period than for the carlier time covered in the books of Chronicles. Nevertheless, there are many unhistorical deails in these books, and many that are doubtul. Ezra iv, 7-24a is out of its chronological order. The question of the proper order is
one on which there is much difference of one on
The register of returning exiles in Ezra ii is substantially identical with that in Nehemiah vit, -73a, where it is put chronologically at a ater point. The connection in Nenemiah is rohably more
The so-called Septuagint translation of Ezra and Nchemiah, which some have considered to be actually the version of Theodotion, is called Esdras, Esdras being the equivalent of Ezra. 1 Esdras is a so-called apocryphal book, now Ezra, practically entire, with small portions of Chronicles and of Nehemiah. It is now generally accepted that the book of 1 Esdras is a variant recension of these portions, transated from a Hebrew and Aramaic original There is considerable chronological fearange s now considered to be on the whole superior Esdras iii, 1-y 6 is the only portion which has no parallel in these other books.
Bibliography.-Adeney, W. E., 'Ezra, Nehemiah and Fsther' (Expositor's Bible, ew York 1893); Batten, L. W., The Book (al Commentary, New York 1913): Davies,
T. W., 'Erra Nehemiah, and Esther) ('Century Bible,' Edinburgh no date) ; Ryle, H. E., 'Ezra 1897). Sce also the list under Chronicirs.
George R. Berry

Professor of Old Testanont Interpretation and Seminc Languages, Colgate University.
EZRA CHURCH (Atlanta), Battle of General Hood was defeated at Peach Tre Creek, and driven into the inner defenscs of Atlanta. On the 22 d Hood attacked the Arm of the Tennessec, and was again defeatcd, and General Sherman began the investment o Atlanta by moving upon his communications leading south from the city. The Army of the Tennessee was transferred from the extreme left of the investing line to the right, near Ezra Church, and Hood took measures to check it night of the 27th he marched out of An the with the greater part of his force and on thed 28th Gen. J. C. Brown's division was ordered to attack Logan's corps, then advancing on the right, and drive it back to and beyond Ezra hurch. Brown drove in Logan's skirmishers, dllowed them 500 to 600 yards, and struck was quickly repulsed with great slaughter. made a second attempt with no success and fell hack. He had lost 694 killed and wounded and 113 missing. During Brown's attack four regi ments from Dodge's and Blair's corps extended L.ogan's right, and took part in the action ut not until after Brown's Browns right by a misunderstanding his three brigades mad solated attacks upon Harrow's division, all of which were repulsed with great loss, some o位的iments losing 50 per cent. Walthall ha dere his division while Brown and Clayton been withdrawn he was prdered to thack ha the ground of Brown's fight. Walthall made several persistent efforts, but failed, although some parts of his force got within 50 yards of Logan's line. After more than an hour's sever officers and nearly 1,000 men, he fell back. A night Hood withdrew his troops to the work around Atlanta. The Federals in this battle numbered about $13,000 \mathrm{men}$; the Confederate about 18,000. The Union loss was 559 killed and wounded, 73 missing. The aggregate Con filled and wed and 200 missing mates of Generals Sherman, Howard and Logan that the Confederate loss was from 5,000 to 7,000 are excessive. Constlt 'Official Records,' (Vol. XXXVIII); Cox, 'Atlanta' Sherman, 'Personal Memoirs' (Vol. II) ; Th (Vol. IV).
inh chman.

Fthe sixth letter of the English and Latin alphabets and all alphabets
derived from the Latin. Its sound derived from the Latin. Its sound,
technically called a "labiodental voiceless spirant," is produced by bringthe upper teeth, the vocal cords being inactive. The character F, though it does not appear in the Greek alphabet of the classic period, had a place in the earlier Greek alphabet, and is believed to have there represented
the sound of v or of w. It is called by Greek the sound of v or of w. It is called by Greek tormed of two gammas (g hard, I^{\prime}) written one above the other (F). From the Greek it came into Latin and, finally, was used to ex press the sound which it has for us. That the sound of F in Latin was the same as in linglish, we know from what Quintilian says of (phi) represented in Latin and English by ph appears to have been very different in sound from the F of the Latins; and that in the pronunciation of F Greeks found great difficulty is known on the authority of Cicero; their diff culty was like that which people of other speech than ours find in pronouncing th in then, this, ciation of the F of Latin must have presented citself to the inhabitants of the Spanish Peninsula, if not in the time of the Roman domination, then after; else the initial F of words from the Latin would not have been so generally changed by them into a mere breathing, (bean), Span. haba; fabulari (to talk), hablar facere (to make), hacer. In other languages, whether derived from one another or springing independently from a common original stem, as German, Anglo-Saxon, Greek, Latin, Celtic, ctc. we see a different interchange as between F he Iatin pisc (piscis). to Fng fire the Gr pyr; to Eng. plow the Ger. pflug. In the local dialect of the English county of Somerset, F usually becomes V: fair becomes vair, friar vier, five vive. As the Latin alphabet had bu one character, V, to represent both the vowel U and the consonant V (or W) the Emperor tate documents this consonant V should be represented by the F inverted, A, and hence in monuments of that reign we find AMPLIA 9 IT TERMINAHIT, OCTAGIA, etc., for Ampliavit, Terminavit, Octavia, etc. The lett
F. F. V's (First Familics of Virginia), a jocular term applied in the North, before and during the war, to the Southern aristocracy in

FA, fã, the name given by Guido to the
fourth note of the natural diatonic scale of the that is, the subdominant. In the major scale of C this tone is F.

FABELL, Peter, the chief, character it The Merry Devil of Edmonton,' who sold his soul to Satan, and is said to have been derived from a real personage who died and was buried at Edmonton, Middlescx, in the reign of Henry

FABENS, Joseph Warren, American mis FABENS, Joseph Warren, American mis-
cellaneous writer: b. Salem, Mass., 23 July 1821; d. New York, 13 March 1875. Among his works are 'The Camel Hunt,' a narrative of personal adventure; 'Facts about Santo Domingo'; and 'The Last Cigar,' a book of poems.

FABER, fábèr, Frederick William, English theologian and hymn writer: b. Calverlcy 26 Sept 1863 June 1814 ; d. Brompton, London, (q.v.). He was educated at Balliol College Oxford, where he came under the influence of John Henry Newman (q.v.), whom in 1845 hc followed into the Roman Catholic Church. On becoming a Roman Catholic he founded a small community called Brothers of the Will of God
who three years later joined the oratory of who three years later joined the oratory of
Saint Philip Neri. He afterward established a branch of this oratory at Brompton, with which he was connected till his death. His prose writings are numerous, but it is by his beautiful hymns that he is best known. Of thesc (PriSea' are the most noted See 'Life and Letters,' edited by Bowden (1869).

FABER, fä'bèr, Frederik, Danislı zoölogist b. Odense, Fünen, 1795; d. 1828. He was graduated in law in 1818, but had also given great
attention to zoollogy and at 20 published 'Indattention to zoology and at 20 published (Ind Iedning til Dyrelxren til Brug ved den Natur historiske Undervisning.' He traveled in Icehis investigations in (Ueber das Lesen der hochnordischen Vögel Islands' (1826), a work still of value; 'Prodromus isländischer Ornithologie) (1822); 'Naturgeschichte der Fische Islands' (1829), and articles in Isis and in Tidsskrif for Naturvidenskaberne. Scveral zoo-

FABER, George Stanley, English theologian: b. Calverley, near Bradford, Yorkshire,
25 Oct. 1773; d. near Durham, 27 Jan. 1854. Having been Bampton lecturer in 1801, he shortly after puhlished his lectures under the title of 'Hore Mosaice.' From the first he adopted evangelical views, and soon began to trine of Regeneration in the Casc of Infant

Baptism.' He was vicar successively of Stock-
Baptism.' He was vicar successively of Stock-
ton-upon-Tees, Redmarshall and Longnewton holding the last appointment 21 years, when he resigned it to become master of Sherburn Hospital. His principal writings, in adaition to those already mentioned, are A Dissertation on the Prophecies,' the most popular of all his which a third edition appeared in 1853.
FABER, or FABRI, Jacques Lefèvre d'Estaples, French scholar: b. Estaples (Etaples), near Boulogne, about 1450; d. 1536. He was. educated at the University of Paris
and for a time taught in the College of Cardinal and for a time taught in the College of Cardinal
Lemoine. He visited Italy and in 1507 was given a home in the Benedictine Abbey of given a home in the Benedictine Abbey of William Briçonnct. Faber remained there for 13 years, becoming in 1520 director of the leper hospital of Meaux. Faher's writings displeased several high church officials but he was safe from persecution through the protection of in 1525 Faber was formally condemned. On Francis' return he was made royal librarian at Blois and tutor to the king's children. Princess Margaret, on becoming Queen of Navarre, took Faber to Nerac, where he spent his last days in peace. His works were numerous and Epistles (1512), of the New Testament (1523), of the Pentatcuch (1528) and the whole Bible in 1530. Consult the life by De Labatier Plantin (Montanban 1880) and that by Prossdij

(Leyden 1900)

FABER, Johann Lothar von, German manufacturer: b. Stein, near Nuremberg, 12 June 1817; d. 1896 . In 1860 he founded in with only 20 hands employed He made so many improvements in the manufacture that his factory gradually became the centre of that particular industry, and absorbed the trade of Gerd proftable Austria. Particularly successiul and prontable was the making of pencils of distributing his goods did much to promote their popularity. He opened branches in the great ennobled for his services to German industry ennobled for his services to German industry. cedar yard and mills at Cedar Keys, Fla.; and in his factory at Noisy-le-sec near Paris, over a thousand operatives, were employed.

FABER, Johannes. See Fabri, Joilannes,
FABIAN, fä'bi-an, belonging or relating to the famous Roman family, or clan, the Fabian
used especially in the military phrase Fabian tactics, to denote tactics the chief point of which is to weary and exhaust the enemy. By such measures Quintus Fabius Maximus, surnamed Cunctatus ("the delayer") greatly harassed Hannibal in the Second Punic War.
FABIAN SOCIETY, an English socialistic organization, founded in January 1884, haviated branches in most of the principal cities and towns of Great Britain and Ireland. The society includes in its ranks some very prominent writers on social economy, including George Bernard ${ }^{\bullet}$ Shaw and Sidney Webb, and publishes 'Fabian Essays) and (Fabian Tracts.)

In 1888 they began to hold public meetings.
Above 700 lectures have been given in one year by members of the society. The Fabians aim to bring about the "emancipation of land and industrial capital from individual and class ownership and the vesting of them in the comtion of rent"; and "1he benefisfer "the extincmunity of the administration of such industrial capital as can be conveniently managed socially." They also advocate female suffrage. The recently formed research department has added of the same name in the There is a society issues a periodical callod the 'American whin) Consult Shaw, G. B., 'The Fabian Society' (1892).

FABII, fä'bi-i, Arch of the, a commemorative arch in ancient Rome at the entrance of Romanum. Way (Via Sacra) to the Forum Quintus Fabius Maximus Allobrout 120 B.c. by bration of his victories over the Allobroges and Arverni. Its material was the calcareous Italsimple. Some few of the travertin blocks were excavated in 1882 not far from the site of the arch. Consult Platner, 'The Topography and onuments of Ancient Rome (1911).
FABIUS, fä'hi-us, the name of one of the oldest and most famous families of Rome, every nember of which was massacred at Cremera 478 b.C., except Quintus Fabius Vibulanus, who most noted of the family in later times are. Fabius Ambustus, dictator, 350 b.c.; Fabius Rullianus, to whose name Maximus was added, twice dictator, conqueror of the Samnites son of the Pictor, the first writer of Roman history, 3 d century b.c.; Fabius Maximus Verrucosus considered the grcatest of his family, surnamed "Cunctator," "the Delayer" (see Fabian), from his system of warfare, dicd 203 B.C.; FAbius Maximus Quintus, son and next in office to mus Æmilianus, distinguished in the war of Persia and in Spain, consul 147 b.c. F Fabius Maximus Servilianus, pro-consul fo: Spain, censor 126 b.c.; Fabius Maximus Allobrogicus, onsul 122 в.c.
FABIUS, The American. Name often given in the last century to George Washington, because of his habit of avoiding pitched battles ius Cunctator
FABLE (Lat. fabu!a, a narrative, especially a fictitious one), in literature, a term applied in modern use to short storics, or verse, which are meant to inculcate a moral esson in a pleasant garb. Imaginary person animals and inanimate objects are introduced as the actors and speakers. The fables consist properly of two parts - the symbolical repreintended to be deduced from it which latter is called the moral of the tale, and is indispensable to it.
Herder divides fables into (1) Theoretic, phenomenon of naturc, as illustrative of the
laws of the universe, is used to exercise the anderstanding. (2) Moral, which contain rules morality from the brutes, but view the great family of nature, and observe that she has connected the happiness of all living creatures with the unchangeable, eternal law of effort, and take example from the observance of this law by the lower orders of creation. (3) Fables evident how one thing follows as a necessary consequence from another; here then comes in play that connection of events which we call fate, or chance, and which shows that things follow, at least after, if not from one another, by an order from above. Thus the eagle carries
with her plunder a coal from the altar, which sets fire to her nest, and thus her unfledged brood becomes the prey of animals which she has already robbed of their young.
The oldest fables are supposed to be the Oriental; among these the Indian fables of
Pilpay or Bidpai, and the fables of the Arabian Pilpay or Bidpai, and the fables of the Arabian
Lokman, are celebrated. Esop is well known among the Greeks, and was imitated by Phædrus among the Latin writers. Bodmer has published German fables of the time of the Minnesingers. The first known German fabulist is Stricker, who belongs to the first half of the epic of 'Reinecke Fuchs' (see Reynari the Fox) has a much more remote origin. Boner, who lived at the close of the 14th century, shows in his 'Edelstein) the true spirit of fable. Burkard Waldis may be mentioned in the 16 th century. The most successful of German fable writers is undoubtedly Lessing. In the 17th taine among the French, were distinguished. The writer last named made fable the vehicle of wit, and carried it to its highest stage of perfection. Among the most interesting modern productions in this department of literature the tables of the Russian, Ivan Kriloff, de
special mention. See Allegory; Mytir.
FABLE OF THE BEES. A satire the statc of English society, first published in of 'The Grumbling Hive or Kinaves Turn'd Honcst.' It was republished anonymously in 1714 with 'Remarks' and an 'Enquiry into the Origin of Moral Virtue.' Another edition ap-
peared in 1723 with the addition of an 'Essay peared in 1723 with the addition of an 'Essay
on Charity and Charity Schools' and (A. Search into the Nature of Society.' This edition gave great offense and was indicted as a "public nuisance" by the grand jury of Middlesex, this action by the authorities giving it considerable notoriety. Satirizing the government and attacking the idealism of Shaftesbury, were not improved by the author's cynical assertion that he was writing for "the entertainment of people of knowledge and education." See Mandeville, Bernard de.
FABLE FOR CRITICS, A. Lowell's 'Fable for Critics,' though considered by the poct himself a mere jeu d'esprit, is the best-
known and the most successful literary satire in verse by an American. It was written at intervals between November 1847 and July 1848, and was puhlished in Oc1ober 1848 . Its 1,700 lines of galloping anapæstic tetrameter, an ad-
mirable vehicle for its purpose present a mix ure of rollicking fun, satire and panegyric. It literary criticism as often unfair and even foolish and over-dependent on British opinion. His fable presents Apollo, god of poets, delivering Olympian judgment, supposedly unbiased and
final, upon American writers; and this fable is addressed to prejudiced and and this fable ite ics and to the undiscerning public. Perhaps a score of the best-known writers of the day are passed upon, with scarcely a verdict so severe as not to be tempered with commendation, and scarccly any praise that is not edged with a ell's career, the poem shows his characteristic independence in literary judgment, his fearless ness and his common sense. His estimate of the works of Emerson, Longfellow, Whittier Holmes, Irving, Cooper and Poc, though antici pating the later and, in some cases, the bette has in the main been ratified by posterity Many of the terse lines stick in the memory Emerson "a Greek head on right Yankee shoulders"; Cooper, "who's written six volumes to
show he's as good as a lord"; Poe,
With his raven, like Barnaby Rudge,
Whree-fiths of him genius, but two-fifths sheer fudge;
Who has written some thins auite the evest of thelr kind,
But the heart somehow seems all squeezed out by the mind.
Though Lowell is unfair to Margaret Ful Judd, his perspicacity and fairness are in the main as remarkable as his satire and his fun The course of the fable is constantly interrupted by digressions; by a fling at literary bores; by satire on dependence upon Great Briain; by scathing but humorous denunciation of sla In its combination of supernatural machin ery, anapertic meter and puns, and its use of all these for the purpose of literary satire, 'A Fable for Critics' is not original. Its predecessors run back for hundreds of years; per 'Feast of the Pocts.' But its mixture of humor, satire and panegyric is as original as delightful. It is far too long; its fun grows wearisome; much of its flavor has of course been lost through time; but its youthful and effervescent hilarity carries it along in spite o its faults. It still lives through a few wise
and witty or noble and brilliant passages. Poe reviewed the poem in The Southern Literar Messenger (February 1849). For the text with explanatory notes, etc., consult Scudder 'Complete Poetical Works' : id., 'Russell Low ell, a Biography) (pp. 238-253)

Marion Tucker.
FABLES OF ASOP, the collection of old folklore or moralizing animal stories, attributed to have lived in the 5th and 6th centuries b.C. His reputation is based on these amusingly satirical "heast storics" with an apposite moral, adapted to contemporary events and incidents, which he narrated at lanquets and festiva gatherings, for the entertainment of guests and struction, affecting no graces of style, the story is the main thing, the moral heing always ubordinate and never permitted to interfer with the principal theme. Insolent sarcasm, how
ever, introduced into a fable, is said to have een the culmanal as arductions he did not commit his fables to writing bu they were perpetuated hy Xenophon, Aristotle, Plutarch, and other Greek writers. Aristophanes alludes to them as "merry tales" and in the 'Wasps' represents Philocleon as having (ions at banquets Plato in 'Phaedo' repre sents Socrates as whiling away his last days in prison by versifying some of "Esop's fable which he knew," and although he exclude poets, Plato introduces Fsop, as a moral
teacher in his model (Republic.) A collection cacher in his model Republic. A collection s recorded as made by Demetrius of Phalerium $345-283$ в.С., for the use of orators; no copy o he collection, however, is known to exist. A edition in elegiac verse is also mentioned by Suidas. The earliest known reliable version o who, as related by Crusius, was a Roman and tutor to the son of Alcxander Severus; he endered the fables into Greek choliambic verse in the early part of the sd centary A.D. Thi ersion was long known in fragments only, until in 1842 a complete manuscript, now in the
British Muscum, was discovered by Mr. Minas a monastery on Mount Athos. Phacdrus, a Thracian freedman, who lived in Rome in the time of Augustus, produced a version of the ables in Latin iambics, making, however, in erior paraphrases and aditions, which for ispelled by an epigraphical discovery at Apulum Dacia and critical re-examination of the manuscript. In the 9th century Ignatius Diaconus made a version of 53 of the fables in sources were added, notably from the Buddhist郎 to-day are derived from the 14th cen ury edition compiled by Maximus Planudes, monk of Constantinople. Through succeeding centurics, translations were made into almost every known language. Among the curiositie Babrian edition into Syriac by Syntipas 100 c. is mentioned, which Michael Andreopulo rendered back into Greek. One of the latest ranslations is that of Douglas (1901) into the eltic Manx dialect. The fables have also been prolific sources o have culminated in Tennicl' illustrations with their combination of rar rtistic power, humorous observation and knowledge of animal life. (See Fables): Consult Jacobs, J., 'The Fables of Æsop; i. The history of the Æsopic fablc ; ii. The Fables of Asop, as first printed by William Caxton, 1484
fables of pilpay. See Bimpat
FABLIAUX, fā-bli-ō (Fr. from the Lat fabula, a narrative, particularly a fictitious nar ative), in French literature, the short metrical alcs productions were intended merely for recitaion, not for singing, and reffected the life of he period. They originated with the hour coise, made no pretensions to literary merit
ires on clerical weaknesses and inconsistencies, conjugal mishaps and love episodes - and were generally conceived in a vein of ironical pleasgent. From the fabliaux the short story form is derived. Fabliaux in fact were "merry recitals" to excite laughter, in contradistinction to
the songs of chivalry, war and love of the period. They were usually based on a comic incident, real or probable, occurring in everyday human life. They were marked by considerable originality and diversity, and would appear to have been largely modelled on the Asopic fable and its Asiatic parallels. Several directly from fabliaux; and so are many of the stories of Boccaccio and of other Italian writers. Fabliaux were the forerunners of the 'Heptameron,' the 'Cent Nouvelles Nouvelles,' of productions, and ol Balzac's 'Cent Contes Droductions,', Fabliaux seldom ran to more than 400 lines; they related an event, the story being the mainspring of the recital, the deductions, inferences or lesson, to be drawn being subordinate or left to the imagination. The 'Poenitentiale" of Egbert in the 8th century condemned the "fabulas inanes" of the period but the earliest known is that of 'Richeut') which appeared in 1159, a virile picture of the coarse manners and customs of the time Among the better known writers of fabliaux were Rutebeuf, alithor of 'Le Sacristan,' Frere d'Andeli, and Jean de Condé. While the general run of fabliaux are condemned for vulgarity, coarseness and obscenity, they afford valuable pictures of contemporary life and development, and are rich in philological material.
The usual male scorn of female "fourberics" or wiles is marked in 'Chicheface et Bigorne,' 'Le Valet aux deux femmes' and 'Le I'echeur de Pont-sur-Seine' ; the medical profession is satirized in 'Le Vilain Mire'; the ecclesiastical, in the 'Pretre qui dit la Passion,' 'Les Perdrix' ard the 'Pretre aux Mures'; while marriage is
ridiculed in 'Court Mantel' and 'Le Dit de Berenger) Of pathetic intercst is (Housse Partie,' while of idealistic tendency is 'Le Chevalier de Barizel.' Consult Montaignon, Λ., and Raynaud, G., 'Recueil général et complet des fabliaux des XIIIeme et XIVeme siecles) (6 vols., Paris 1872-79) ; Bédier, J.,
'Tes Fabliaux)' (Paris 1893) ; Hart, W. M., 'The Fabliau and Popular Literature) (Baltimore 1908).

FABRE, Amant Joseph, à-mản zhō-zef fãbr, French author: b. Rodez, France, 10 Dec. 1842 (or 1843). A drama, 'Ioan of Arc'
(1890), made his name most widely known, his other works being largely represented by such books as 'A Course in Philosophy' (1870);
FABRE, Ferdinand, fär-dề-nïin, French 11 Feh is 189 . He deals, France, 1830 ; d. Paris, life in the Cévennes, his native district Designed for the priesthood, for which he found he had no vocation, his gallery of portraits of French priests was the fruit of a large and deep expericnec, and is most noteworthy

Leaves,' pocms (1853); then the novels, 'The Courbezons' (1862); 'Julienl Savignac' (1863);
My Uncle Célcstin) (1881): 'King Ramiro' (1884) ; and 'Mr. John' (1886). 'The remarkable novel, 'Abbe Tigrane' (1873), first won him great distinction; 'Lucifer' (i884), portraying the struggle among the clergy between Gallicanism and Ultramontanism, is doubtless his greatest work. Among his shorter stories
are 'The Abbe Riotelet' (1891) 'Norine' are 'The Abbe Riotelet' (1891) ' 'Norine'
(1890); 'Germany' (1891), etc. 'My Vocation' (1889) is a volume of leaves from his student diary. Consult Gosse, 'French Profiles) (1905).
FABRE, François Xavier Pascal, frānswä zāv-yã pas-cäl, French painter: b. Mont-
pellier, 1 April 1766 ; d there, 16 March 1837 pellier, 1 April 1766; d. there, 16 March $1837{ }^{\circ}$
He was a pupil of David and produced in 1787 a painting representing the 'Execution of the
Children of Zedekiah by order of Nebuchadnezzar,' for which he received the great prize of the Academy and was sent as a pensionary to Rome. He was believed to have been sewidow of the Young Pretender, who on her dcath in 1824 made him her sole heir and bequeathed to him valuable MSS. which had been left to her by Alfieri. Fabre gave them to the city of Florence. He was created a baron in 830.

FABRE, Hector, Canadian journalist: b. Montreal, 1834 ; d. 1910 . He was educated at de Montreal, studied law and in 1856 was admitted to practice. He soon abandoned this profession to enter journalism, becoming editor
of L'Ordre of Montreal. From 1863 to 1866 he edited $L e$ Canadien of Quebec and founded a member of the Dominion Senate and seven years later was apoointed Paris agent of the
Quebec and Dominion governments. In Paris he founded a French-Canadian journal. Le Paris-Canada. He was Fellow of the Royal ographie sur Chevalier de Lorimier' (1856); 'Ecrivains Canadiens' (1865); 'Confédération, Independence, Annexation' '(1871); 'Chroniques' (1877).
FABRE, Jean Henri, French entomologist: Saint-Lcons, Aveyron, 21 Dec. 1823; d. 1915. In early life he taught school and became professor of natural philosophy at the Avignon. He is corresponding member of the Institut de France and chevalier of the Legion of Honor. Many years ago he retired to Sérignan, Vaucluse, and in this retreat pro-
duced his greatest work. 'Souvenirs entomolduced his greatest work. 'Souvenirs entomol-
ogiques) (10 vols., 1879-1907). Among his ogiques' (10 vols., 1879-1907). Among his other numersus (1862): 'Histoire de la buche' (1866); 'Les ravageurs' (1870); (Premiers éléments de physique) (1875) ; 'La plante' (1875) ; 'Les inventeurs et leurs inventions) (1880): 'The Life and Love of the Insect' (1911); 'Social of the Fly' (1913) ; 'The Mason-Bces' (1914) ; 'Bumble Bees' (1915).

FABRE, Marie Joseph Victorin, French poet: b. Janjac, Ardiche, 1785; d. 1831. At the age of 20 he achieved a brilliant success with
'Eloge de Boileau,') which was crowned by the

Academy. His later works, however, did no bear out his early promise and he died in obles voyages' (1807); 'Eloge sur Pierre Corneille) (1808); 'La mort de Henri IV' (1808) Opuscules en vers et en prose) (1806) and 'Eloge de La Bruyere) (1810). His collected works were issued by his pupil, J. Sabbatie
(Paris 1845).
FABRE D'EGLANTINE, Philippe François Nazaire, fê-lèp frần-swà nä-zãr făbr dà-glơñ-tēn, Firench dramatic poct: b. Carcassonne,
28 Dec. 1755 ; d. Paris, 5 April 1794 Having gained the prize of the Eglantine in the Florea games at Toulouse, he assumed the name o crat flower as a surname. He now wrote sev cral theatrical pieces, of which however only
two, 'L'Intrigue épistolaire) and the 'Philinte de Molière,' were successful. The latter is still considered one of the best character-pieccs of the modern French stage. He engaged with ardor in the Revolution, in which he was asmoulins. As deputy from Paris and Camille Des Convention, he at first supported moderate principles, but afterward voted for the death of Louis XVI without appeal, and was chosen a member of the committce of public safety. He afterward became suspected by the Jacobins along with his collcague Danton (q.v.).
FABRE D'OLIVET, Antoine, French Pro vencal writer: b. Ganges (Hérault), 8 Dec 1767 ; d. Paris, April 1825 . He was one of the earliest leaders of the dialect and racial move-
ment in southern France, and a descendant of ment in southern France, and a descendant of Jean Fabre, "l'Honnete Criminel," the hero of
Fenouillot de Falbaire's famous drama of the same title. He was a mystic, a scientist and an erratic student whose literary food was of the most omnivorous nature. The wide range of his studies and sympathies is shown in the ollowing partial list of his works: 'Notions sur le sens de l'ouie en général' (1811-19)
'Les vers dorés de Pythagore, expliqués pour la première fois et traduits en vers cumolpiques francais' (1813); 'La langue hébraique' (1816) ; 'De l'etat social de l'homme' (182224); 'Le Quatorze Juillet' (drama 1790); 'Toulon sotumis' (historical opera in vers libres 'Lettres à Sophic sur l'histoire) (drama (1801) 'Le Troubadour' (1803); 'Caîn' (drama 1823) He also published considerable music. His influence in the re-establishment of the Languedioc as a literary tonguc was due principally to
his philological studies in Provençal.

FABRETTI, fä-brêt'tê, Ariodante, Italian antiquary: b. Perugia, 1816; d. 1894. In 1860 Turin and in 1868 became director of the Museum of Antiquities there. He published sevcral works on the antiquities of Perugia and be came senator of the kingdom in 1889. His most important work is (Corpus Inscriptionum (1867).

FABRETTI, Raffaele, Italian antiquarian: h. Urbino, 1619 ; d. Rome, 7 Jan. 1700. He was finally superintendent of the archives in the rastle of San Angelo, which office he held till his death. Among his writings may he men-
tioned ' De Aquæductibus veteris Romæ';
'De Columna Trajani'; and (Inscriptionum Antiquarum Explicatio,' in the last of which by himself in the Catacombs.

FABRI, fa'brē, Felix (German, Schmid) German monk: d. about 1502. He entered the Order of Preachers and became lector in the monastery of the or and made a pilgrimage to Jerusalem and three year burg to the Holy Land, returning via Cairo, Alexandria and Venice. At Ulm after his re turn he penned an account of this journey which remains one of the most important trave narratives of the late Midde Ages. The Lati ischen Vereins) (Stuttgart 1849). A Germa ersion appeared in Feyrabend s (Reyssbuch des heiligen Lands) (Frankfort 1584).

FABRI, Friedrich, German theologian . Schweinfurt, 1824 ; d. 1891 . He received hi education at the universities of Erlangen and
Berlin. He held several pastorates, and in 1857 became director of the Missionary Society a then retired to Godesberg-on-the-Rhine and became president of the Evangelical Society for the German Protestants in America. In
1889 he was appointed honorary professor at the University of Bonn. He wrote 'Bedar eutschland der Kolonien?) (3d ed., 1884) Briefe gegen den Materialismus' (1856) gabe der Heidenmission' (1859); 'Die politisch Lage und die Zukunft der evangelischen Kirch n Deutschland' (3d ed., 1874); 'Staat und Kirche' (3d ed., 1872); 'Fünf Jahre deutsche
olonialpolitik' (1889).
FABRI, Jacques L. D'Estaples. See aber.
FABRI, Johannes, Roman Catholic prelate: b. Leutkirch, near Lake Constance, 1478 of Heigerlin to Fabri or Faber, studied theology and canon law at the universities of Tubingen and Freiburg. He served as a member of the
secular clergy for several years and in 1518 ecular clergy for several years and in 151 became vicar-general of Constance. He was on Zwinglius and many thought that he agreed with their doctrines, but when the breach came he remained with the ancient Church. In 1522 he published a work against Luther, and there after his opposition to the Reformers was con (Lutheranam) (1524) earned for him the obriquct of "Hammer of Heretics." He was one of the ablest defenders of the old Church at Zürich in 1523, Speiers in 1529, and Augshurg in 1530 . In 1531 he was appointed archbishop of Vienna and thereafter his polemical strug-
gles werc with the Moslems. His homiletical works were issued at Cologne (3 vols., 1537 1) and the polemical in 'Opuscula Quxdam J. Fabri Viennensis' at Leipzig (1537). Con ult Horawitz, A., 'Johannes Heigerlin genannt Faber, Bischof von Wien, bis zum Regens lurger Convent' (Vienna 1884) ; and Janssen, English trans., London 1909).
FABRIANO, Gentile da, jen-tè $1 \grave{a}$ dả fã-

1370; d. Rome about 1450. His earliest work was perhaps the decoration of a chapel for Pandolfo Malatesta at Brescia. In 1423 he painted one of his best extant pictures, an
(Adoration of the Kings,') for the church of the 'Adoration of the Kings,' for the church of the Holy Trinity in Florence. To the same period belongs a Madonna with Saints (now in the
Berlin Museum). A picture of the naval engagement between the fleet of Venice and that of the Emperor Barbarossa, which Fabriano painted for the Venetian Senate, so pleased them that they conferred on him the dignity of a patrician and a pension of a ducat per diem was called thence by Pope Martin V, who cmployed him in adorning the church of Saint John Lateran with frescoes from the life of John the Baptist. Fabriano's pictures indicate a checrful and joyous nature. He had a childlike love of splendor and rich ornamentation, but his
tricious.

FABRIANO, Italy, episcopal city 20 miles northeast of Perugia. It is situated at an elevascenery and in a fruit-growing region. This is the native place of the artist Gentile da Fabriano (q.v.), a large number of whose paintings are preserved here in churches and in the city hall. Paper, parchment, gunpowder, glue and
felt-cloth are the chief manufactures. The paper and parchment factories were established in 1564. Pop. of the commune 23,752 .

FABRICE, fä-brẻs', Georg Friedrich Alfred von, German statesman: b. Quesnoy-surSaxon army in 1834 and rose to chief of the general staft and major-general in 1865. In the war between Prussia and Austria in 1866 he was commanded the Saxon troops on the Austrian side. After the war Fabrice was appointed Saxon Minister of War. In this capacity he reorganized the Saxon army after the Prussian model. He was one of the prominent commanders in the war of $1870-71$ with France,
conducted the peace preliminaries at Versailles conducted the peace preliminaries at $\begin{aligned} & \text { ersalles } \\ & \text { and commanded the German army of occupa- }\end{aligned}$ tion in France. He again became Minister of War of Saxony in 1871 and Prime Minister in 1876. He was made a baron in 1878 and count in 1884. Consult Dittrich, 'General von Fabrice (ircsden 1884)

FABRICIAN (fä-brish ãn) BRIDGE Rome, a stone bridge joining Resculapius Island with the left bank of the Tiber, built in 62 b.c. byidge that Fabricius. It is the only Roman bridge that has lasted to our day. It is known sult Platner (The Ponte dei Quattro Capi. Conof Ancient Rome) (2 d ed., New York 1911)
FABRICIUS, fä-brish'üs, Gaius Fabricius Luscinus, Roman general and statesman of the 4 th and in 278 he was consul. In 282 be B.C. and victory over the Iucanians and Bruttians and also led troops against Pyrrhus. He was noted for his incorruptibility. It is said that Pyrrhus once tried to secure favorable peace terms through bribery, but his offer was received by leased his Roman prisoners. On another occa-
sion an attendant of the king offered 10 poison his master for a consideration, but Fabricius inthe king again released all Romans held as prisoners by him. Fabricius was censor, to-
gether with Q. Amilius Papus. He was awarded a triumph for his military victories, but at his death his means were so slight that his daughter
FABRICIUS, fä-brè'tsẹ-ŭs, Georg, German scholar: b. Chemnitz, Saxony, 1516 ; d.
1571. In 1546 he was made rector of Meissen and in 1570 Maximilian II made him poet laureate. His poetry was written mostly in Latin.
In 1560 appeared his 'Poematum Sacrorum In 1560 appeared his 'Poematum Sacrorum Libri XV.' Other important works were his
(Antiquitatum Libri II) (1549); 'Itinerum Liber Unus' (1551); and 'Roma' (1551). Liber Unus' (1551); and 'Roma' (1551). Consult Baumgarten-
ricii Vita et Scriptis') (Meissen 1839),

FABRICIUS, Hieronymus, hi-cr-on'i-mus fă-brish'i-us (Italian Fabrizion, Girolamo), Italian physician: b. Aquapendente, 1537; d.
Padua, 21 May 1619. He studied at Padua under Padua, 21 May 1619 . He studied at Padua under
the celebrated Fallopius, whom he afterward the celcbrated Fallopius, whom he anatomical chair, and had succeeded the discoverer of the circulation of
Harvey, the the discovery of the valves in the veins made by his master put him on the way of his discovery. During the lifetime of Fabricius his merit was fully recognized by the public and the
state, an anatomical theatre being built for him state, an anatomical theatre being built for him
at Venice. His works were collected and published by Bohnius (1687)

FABRICIUS, Johann Albrecht, German scholar: b. Leipzig, 11 Nov. 1688 ; d. Hamburg,
30 April 1736 . He was versed in almost every 30 April 1736. He was versed in almost every
department of human knowledge, particularly in philology and ancient literature, and understood the art of using these stores of erudition
to the greatest advantage. He was professor of to the greatest advantage. He was professor of at Hamburg. He published a Bibliotheca Graca' (1705-28) ; 'Bibliotheca Latina' (1697) ; 'Bibliotheca Mcdix et Infimæ Ftatis' (1734); 'Bibliotheca Ec
quaria' (1713).

FABRICIUS, Johan Christian Danish entomologist: b. Tundern, in the duchy of Schleswig, ${ }^{\text {He pursued his studies at Leyden, Edinburgh }}$ He pursued his studies at Leyden, Edinburgh Upsal. His works upon entomology show the principles, the method and even the forms of expression peculiar to Linnæus applied to the development of a new, happy and fruitful train of ideas, From his intercourse with him he
derived his first notions of his system of arranging insects according to the organs of the mouth Fabricius obtained the professorship of natural history in the University of Kiel; and in 1775 appeared his 'Svstem of Entomology,' which gave to this science an entirely new form. Two years afterward he developed in a
second work the characters of the classes and orders, and demonstrated in the prolegomeng the advantages of his method. In 1778 he published his 'Philosophia Entomologica,' written upon the plan of the well-known 'Philosophia
Botanica.)

FABRIKOID, \qquad , a m
material consisting of a base of cotton cloth, coated with a tough, flexi rolls to produce the appearance and fecling of any desired natural leather grain. It is made in various grades, colors, widhs and grains for different purposes. It is used for the upholstery of automobiles, carriages, iurniture
for bookbinding, suitcases, purses, novelties, and in general for all classes of work where leather may be used, such as wall coverings, trunk linings, ctc. Fabrikoid is waterproof, washable and non-absorbent, and has the pleasing appearance of the best leather. It is manufactured in 54 inches in width
FABRIZI, fä-brēl'sē, Nicola, Italian soldier: b. Modena, 1804; d. 1885. In 1831 for his part in the Modena insurrection he was imprisoned. When released he went to Marseilles and with Mazzini organized the Savoy expedition He went to Spain and took part in the Carlist wars on the Liberal side, and afterward relution in conjunction with Crispi and again in
1860 . He joined his forces with Garibaldi at 1860. He joined his forces with Garibaldi at Palermo and by the latter was made Minister of War and governor of Messina. Under ${ }^{\text {a }}$
United Italy Fabrizi was elected to the ParliaUnited Italy Fabrizi was elected to the PariaFABRONI, or
FABRONI, or FABBRONI, fä-brö'né . Florence 13 Fcb. 1752 ; 1. Pisa, 17 Dec. 1822 He left behind him a considerable number of valuable memoirs and treatises on matters re lating to chemistry, agriculture, physiology, etc., of which the best known are 'Provvediment perity'; ; 'The Equilibrium of Commerce, and the Establishment of Custom-houses'; on the 'Effects of the Free Traffic in Raw Mate rial' ; on 'Rewards for the Encouragement o Trade'; : on the 'Chemical Action of Metals'
on the 'Value and Reciprocal Proportion of on the 'Value and Reciprocal Proportion of Chinese,' etc.
FÁBULAS OF TOMÁS DE IRIARTE. In spite of the pronounced fondness of the Spaniards for the moralizing and the aphoristic in both spoken and written expression, the fahle as a distinct genre did not come to its own in the Spanish language until the 18th century
In translations of both Oriental and Occidental material and sporadically in this or that literary work, in which it is used for literary purposes, the apologue material appears now and then from the Old Spanish period down; but as a form displaying any originality of treatment the verse fahles of Tomás de Iriarte (1750-01) and of Félix María Samaniego (1745-1801) While Samaniego draws in no slight degree upon the Æsopic stock and docs not hesitate to atilize also the Latin Phxdrus, the Frenchman La Fontaine, and the Englishman Gay, Iriarte show ardes, as the very tille of his work, 'Fâbulas literarias' (1782), suggests he has not Samaniego's purpose of edifying the world at large but rather the restricted circle of men of letters Literary criticism is, then, the compelling mo inculcate. He has the sct aim of correcting,
hrough the ridicule which he directs upon them, the various defects from which Spanish heed of giving frec rein to his imagination; on he contrary, he has only to give evidence of sound literary judgment expressed in an casy humorrect style and seasoned with a delicat in his fables, which, moreover, present a versification of a mature ever varied and cver har monious. Iriarte's abiding fame is associated with the 'Fabulas literarias,' but it is worthy of record that he was a skilful writer of comof the social life of his time
I. D. M. Eord

FABULOUS ANIMALS. Sce Fable; reraldiy; Unicorn. FABVIER, fà'vyä', Charles Nicolas, Baron, French general: b. Pont-a-Mousson, 1782 ; d. went to Constantinople to strengthen that city's ortifications in view of an inilpending attack ask he organized hatteries of artillery for the efense of Ispahan against the Russians. In 1811 he was with Marmont in Spain and two years later became a member of the general staff with the rank of colonel. After the estoration of the Bourbons his political activity soon made a sojourn in England more de-
sirable than to remain in France, and in 1823 he went to Grecee and was made commander in-chicf of infantry. Reverses at Chios and a Athens impaired his position among the Greeks, and he returned to his native land in 1829 . He was named Ambassador to Constantinople in
1848 . He published 'Journal des opérations dis VI, corps pendant la campagne de 1814 en
France) (1819). Consult Debidour (Le généra Falvier, sa vie et ses écrits) (Paris 1892) ; id 'Fabvier à l'Acropole' and (Les dernières années due Général Fabvier) (in 'Séances et travaux de Academie des sciences morales e 1904)

FABYAN, or FABIAN, Robert, English historian: d. 1513. He was a member of the Drapers' Company and served as an alderman of London. In 1516 was published his (Ncw Chronicles of England and France.' He began with the arrival of Brutus and continued the in 1485 . The work suffers much from the author's lack of scholarship. Fahyan is, however, valuable for his accounts of the London life of his day. Successive chroniclers continued the work down to 1558 . Consult the
edition by Sir Henry Ellis (London 1811)
FAÇADE, fásad" (Fr. "the front of a particularly its principal face or faces; generally used of a building of magnitude or importance. A back elevation is termed a rear façade; a side elevation a lateral façade. See Arcimitecture.
FACATATIVA, fá'kā̄-tä'tê-vā', Colombia, town in the department of Cundinamarca, 20 miles northeast of Bogotal. Its site is 8,500 fect
above sea-level. Facatativa was an Indian fortress before the advent of the Spaniards. The last chief of the Chibchas, Triquesupa, was
killed here in 1538 by one of Quesada's soldiers The town has considerable trade with Bogotá

FACCIOLATI, or FACCIOLATO, Jacopo, ya kō-pó fa-chō-là'tē or -tó, Italian philologist: h. Toregia, near Padua, 4 lan. 1682 ; d. Padua, 26 Aug. 1769 . He devoted the greatest atten : and accordingly undertoo ancient literaof a dictionary in seven languages, which was called the 'Calepin,' from the name of its author, the monk Ambrosius Calepinus. His pupil, Forcellini, assisted him and the work was completed between 1715 and 1719 . He now, in company with his industrious disciple, con-
ceived the idea of a Latin lexicon, in which every word, with all its significations, should be contained and illustrated by examples from the classical writers, after the manner of the dictionary of the Cruscan Academy. This immense undertaking occupied them both for
nearly 40 years. Facciolati directed the work, which is generally regarded as having been almost entirely executed by Forcellini. He left many Latin discourses which are characterized by Ciceronian elegance of style, but differ from their model by a precise brevity.

FACE. Sce Skull
Wheel and Crown Wheel, a also Contrate cogs projecting from the a wheel which has cogs projecting from the periphery at right
angles to the plane of motion; as, in watches the wheel situated nearest the crown and driving the balance.

FACETIÆ, fa-sè'shî-e (Lat. "witticisms"), a collection of humorous sayings or tales, witticisms and jests. Among the earliest such is that known as 'Asteia,' generally attributed
to Hierocles. Latin collections were in the later Middle Ages, the most notable being the 'Liber Facetiarum' (1470) of Poggio Bracciolini.
FACHAN, or FATSHAN, China, in the province of Kwang-Tung, on the Tu-Kiang, about 20 miles west hy south of Canton. Its iron and stecl products have earned for it the name of the "Birmingham of China"; it has manurattan articles, embroideries and porcelain. Its trade is in manufactured articles and the agricultural products of the surrounding country. Pop. 450,000 .
FACIAL ANGLE, an anatomical term for the angle contained between two imaginary
lines, one from the most prominent part of the forehead to the anterior extremity of the alveolar process of the upper jaw, opposite to the incisor teeth; the other from the external auditory foramen to the same point, scrving
to measure the elevation of the forehead. The to measure the elevation of the forehead. The angle is of great service in cthriology, but its
magnitude is not an infallible criterion of the magnitude is not an infallible criterion of the sometimes called Camper's angle, because the celebrated Dutch anatomist Camper was the first to draw attention to the importance of this method of skull measurement
FACIAL NERVE. The seventh cranial nerve in the cerebro-spinal axis forms the chief motor nerve of the face. It originates in a fourth ventricle in the medulla. The fibres
pass out through the temporal-bone lying by the side of the auditory nerve in the middle the chief muscles of the face. Affections of this nerve cause partial or total loss of power of the mus

FACIAL NERVE PARALYSIS, paralysis of the motor nerve which controls the muscles of the face. The paralysis may ex-
tend to one or both cheeks; but, in most cases, when the cause has been treated recovery follows.

FACIAL NEURALGIA, a painful affection involving the chief sensory nerve of the face; the trigeminal or fifth nerve. This neuralgia may involve any of the branches and,
because of their wide distribution over the shoulder, back of the neck, scalp and face may shoulder, back of the neck, scalp and face may
be felt in a number of locations. Very frequently the pain is in the jaw and is due to dis-
eased tceth, toothache being a form of neueased teeth, toothache being a form of neu-
ralgia of this nerve.
The pain may radiate from over the orbit,
The pain may radiate from over the orbit,
constituting supra-orbital neuralgia, or it may constituting supra-orbital neuralgia, or it may
be distributed over the back of the head, constituting occipital neuralgia. Occasionally neuralgia of the fifth nerve gives rise to typical attacks of sick-headache. A particular variety which is extremely severe and is supposably due
to disease of the sensory ganglia of the fifth to disease of the sensory ganglia of the fifth
nerve is known as tic-douloureux. Characteristic features of neuralgias of the face are the sudden shooting, darting pains, usually onesided, unaccompanied with other constitutional disturbances. The cause is most frequently exposure to cold. From riding on the tops of omnibuses, sitting by the open windows of rain-
road cars, or by any open window with a draft blowing through, persons are very frequently affected. At times anæmia, gout and infection from bad teeth occasion facial neuralgia.
Treatment will depend largely upon the exciting cause. Heat, gentle massage, simple diet
and free movements of the bowels are general measures to be carried out. Occasional surgical intervention is necessary to cure tic-douloureux. The medical treatment of neuralgias of the face is technical and involves the use of remed

FACIAL PARALYSIS, a partial or total loss of power in the muscles of the face. One Paralysis may result from any disease of or injury to the facial nerve, either inside of the skull proper, or in its external distribution. Paralysis of the face very frequently occurs in
apoplexics. Herc the discase results from a apoplexics. Here the disease results from a disturbance of the nerve in its intracranial portion. It also is occasioned by disease in the
middle ear, but is most frequent following exposure to cold, during which the external
branches are involved. This latter form is branches are involved. This latter form is
termed Bell's palsy (q.v.). The symptoms of termed Bell's palsy (q.v.). The symptoms of
facial paralysis may vary according to the numfacial paralysis may vary according to the number Incd. In a complete case the paralyzed side
volveres flat and expressionless, the mouth is drawn is flat and expressionless, the mouth is the the wawn look as though it were contorted and diseased. The patient is unable to whistle and may not be protruded toward the well side. There may be
nability to close the eyclids. Sensation is not involved. When the patient eats he may not be able to move the tongue on the paralyzed side
of the mouth and he cannot fill out his cheeks on the flat side. The electrical reactions of the muscles at first may not be affected, but later what is known as the reaction of degencration
sets in. Most cases of facial paralysis duc to ets in. Most cases of facial paralysis due cover of themselves; others, due to hemiplegia or to inflammation of the middle ear or to fracture of the skull, recover less frequently Treatment is by means of tonics - iron, strychnine, arsenic and electrictiy. In intract
able cases surgical anastomosis with other motor nerves may prove of service.
FACIAL SPASM. See Trcs.
FACINGS, Military. See Uniforms
FACSIMILE, fảk-sǐm'il-lê, an exact reproduction or likeness, as
books, manuscripts, etc

FACTOR (Lat. "a maker"). (1) An agent or substitute, especially a steward or agent of an estate, appointed by a landowner to manage the estate, collect rents, let lands, etc.; also an agent employed by merchants to a transact and sell, to negotiate bills of exchange, etc. He differs from a broker in that he is en trusted with the possession and disposal of the goods, property, etc., and may buy and scll in his own name. (See AgENT). (2) In arithmetic any one of the integers the product of which is a given number. A prime factor. is a facto any one of the quantities which, when multiany one of the quantitics which, when mu
plied, produce a given algebraic expression.

FACTOR ACTS. A term applicd to a number of American and English statutes validating sales, pledges and other business trans
actions of factors with bona-fide purchasers, actions of factors with bona-fide purchaser,
pledgees, etc. Among the English statutcs were pledgees, etc. Among the English statutes were
those enacted in 1823, 1842, 1877 and 1889 . The last-named statute in part extends the former statutes and in part re-enacts them. Many statutes having practically the same effect as those of England have been enacted in the United States. These acts were deemed necessary to relieve the extreme hardships oft law doctrine that the purchascr huys at his peril, the vendor giving no better title than he has himself. This frequently resulted in the perpetration of numerous frauds by unscrupulous persons on innocent purchasers, pledgee and the like. By the terms of these acts any agent having possession of goods or tading, warchouse keeper's certificate, o other document of title, with the consent, actual or apparent, of the real owner, should he deemed to be the owner of the goods for the purpose of validating any lien, pledge or the like, mad for payments and advances made on the security of the goods or cevidences of title thereto. It was further provided by some of these acts that such contracts were to be binding upon the real owner of the goods and all persons interested therein, ever1 if the purchaser, pledge
or the like was aware of the fact that the peror the like was aware of the fact that the per
son wilh whom he dealt was the agent and not the real owner. The tendency of recent legis
lation, both in England and in many jurisdic lons in the United States, is toward extending the scope of the law in the direction of an entire abrogation of the common-law doctrine on the subject of contracts made with agents or others having possession of personal property sion, real or apparent, of the owner. The prinipal by these statutes is compelled to use caution in the selection of persons who represent him in business transactions, as ordinarily third persons dealing bona-fide with such representever, persons dealing with agents, knowing them to be such, will not be protected. In a number of States factor acts restrict the doctrine to mercantile transactions and in other States the acts provide that the goods must have been entrusted to the agent for the purpose of sale thereto. Sce Agent; Caveat Emptor; Factor

Edward F. Donovan.
FACTOR OF SAFETY. See Strength Materials.
FACTORIES AND FACTORY INearly days of the American factory in the of the English factory. In the 18th century England was the centre of the world's mechanical progress. She manufactured not only for part of the rest of the civilized portions of the globe. Early emigrants to America were not allowed to bring tools and machines for manufacturing and the laws of the mother country also aimed to hold skilled workmen. The re-
sult was that the immigrant weaver sult was that the immigrant weaver who sought to follow his trade in the New World when
without a loom built one; the printer who wishout a lom built one; the printer who
wished to issuc a newspaper had to build his own press; the tanner had to make his own vats and the currier to fashion his own beaming knife and table.
Because of these conditions American mefoundation and thus they bccame inventors and designers of machinery and introduced many improvements that otherwise might not have scen the light. The textile industrics were the first to develop here; then came the iron mills, the flour and grist mills and the machine shops.
At the close of the Civil War in 1865 the United States was a land of small shops, with here and there a factory of modest proportions. The war had given a great stimulus to the
machine shops and when it was no longer necmachine shops and when it was no longer nce-
essary to turn out rifles and cannon, the maessary to turn out rifles and cannon, the ma-
chine men turned their attention to the mechanisms of peace. The reaper, the sewing-machine, the locomotive, the printing-press, the papermachine, the roller-mill for flour and a thou-
sand other mechanisms were developed and sand other mechanisms were developed and perfected and the shops grew into factories and gradually all New England, the Middle and factorics of all kinds, thousands of which have grown to enormons proportions. New York City alone has over 10,000 factories and the Tndustrial Directory of New York State) is
a hook of 787 pages. In 1916 there were 285 ,a hook of 787 pages. In 1916 there were $285,-$
000 factorics in the United States, of which 40,000 were in New York State. The factory has become the backbone of our Western civili-
zation. Here work is reduced to a scientific system and goods are manufactured at a fracpays of the cost of former times. If the public demand so much better than formerly. The culmination of success in factory production is sold to-day for less than $\$ 400$ than could be bought in 1906 for $\$ 1,500$
Factory methods have become so perfected in this country that construction engincers now make a specialty of factory buildings, usually confuning themselves to one or more lines of the very foundations according to the most approved practice. Starting with the principle that the cube gives the most working space for the least cost of enclosure, the factory engineers go on to figure what height of story and how business. They lay out buildings with a view to the handling of a certain class of work to best advantage, that the different departments may move the unfinished work in the least wastcful manner and have the best conditions for good and rapid production. The sanitation attention, as the principle is now well estal)lished that it pays the factory to keep the good will of its help.
The human element of the factory receives quite as much attention as the mechanical. from every angle and all large factorios that pretend to scientific management now give close attention to methods of inspiring the workers to get results. Experimental departments are maintained to improve the machinery and processes. Elaborate systems of cost-finding and scientific estimating are common. Specialists
are found everywhere in all kinds of factories improving and systematizing, and there appears to be no end of development of these huge working machines, built up of combinations of men and machines all working toward the tity of a given product of the largest quanthe least time.
English Factory Development.- By the middle of the 18th century the first English factory, in the present sense of the word, was
built by Lombe Brothers. It was a silk-mill and he first in whe Brothers. It was a silk-mill and the first in which the motive power was supwork heretofore supplied by human hands. The power used was a water wheel. Arkwright came to the front with his water-frame, So-called, because water was the motive power. machines, which were first applied to cotton, and in this industry we have the explanation how the carlier triumphs of the factory system were won. In the beginning of the 19 th century, the modern factory system became established and the child-labor question arose. As the mills were might he moved by water power it often hap pened that labor could not be had in the vicin ity. Application was made to the almshouse for children who were indentured or bound out at fixed rate and for a certain length of time. hours to work whether sick or well, often 16 but water porridge, these children were visited
with serious epidemics and the attention of the tory act for the "Preservation of the health and morals of apprentices in cotton mills" was introduced by Sir Edward Peel, one of the large manufacturers of that time. All mills employing three or more apprentices, or 20 other persons, werc subject to this act. The most important ing day and prohibited work altogether from 9 p.M. to 6 A.M.

First United States Cotton Factory.-In
the earlier years of the factory in the United the earlier years of the factory in the United States, each home had its spindles and loom to
fill the necds of its own members, the flax and fill the necds of its own members, the flax and
cotton being grown, spun and woven by the incotton being grown, spun and woven by the in-
dividual householder, or the slaves on the plantations. England frowned upon all manufactures in her colonies and would allow no machinery or parts of machinery to be brought to them. However it could not fetter the brain, nor forbid the inventive genius; and Slatter and latter part of 1700 , brought with them the knowledge which in 1803 built in Massachusetts
the first American cotton-mill. The first mill the first American cotton-mill. The first mill
to take cotton in its crude state and pass it to take cotton in its crude state and pass it The first erected foundry was built in Philadelphia in 1794 . The first glass-house was constructed in Pittsburgh in 1796. Other factories followed in rapid succession between 1796 and 1810
Inspection Began in England.-- The first factory inspection law was adopted in England about the beginning of the 19 th century, as a rechildren and women in factories, but it was not until 1819 that the law was made effective. The abuses became so great that the government was at last compelled to interfere in the interests of humanity. This hegan by asserting the right of the state to conere women and children were employed, but this necessarily involved the freedom of men in making contracts. The law was intended more particularly to meet the evils of the apprentice system, but it did not extend to factories, where children residing in the
neighborhood were employed. From time to time this act has been amended and the anthority of government extended, so as to make it gencrally effective for the protection of all labor. It was thus in England that the value of factory inspection was first determined by experience. Massachusetts was the first American State to adopt a law of that character.
To-day there are factory laws in the United States based on the Massachusetts laws, for the examination and approval of plans of factories and tenement-houses, also for proper fire-fightregulating the employment of labor of women and minors in manufacturing, mechanical and mercantile establishments and workshops; guarding of machinery; the construction of safety appliances of elevators; ventilation of factories and workshops; provision of toilet con-
veniences for the use of each sex employed in factories and workshops and various other sanitary regulations; uniform hours for meals for women and young persons; communication he-
tween the engineer's room and each room where
machinery is run by steam; proper safeguards at ishments; competent watchmen and red light in hotels; prohibiting during working hours the locking of any inside or outside door of any building where operatives are employed; weekly payment of wages; and sundry other matters
the granting of licenses to make, alter, repair finish coats, vests, trouscrs or wcaring appare of any description in a room or apartment in tenement or dwelling house; the examination o enginecrs and firemen and the inspection o beilers, granting of licenses and steam power to overwork by their employers and children ar excluded from factories until of proper age and Massachusetts has been from the first, and coninues to be, in the advance in factory inspec iion and under this system her industrial estab lishments have become models for all the othe
States. It is a marked illustration of what such a law accomplishes for a community.
The New York State Department of Labor has a Bureau of Factory Inspection and sends out a large force of inspectors to see that the laws for the protection of employees are en rced.
International Association of Factory In spection.-- The International Association of Factory Inspection was organized at Philadel-
phia in 1886 and includes Canada and the State of Massachusetts. New Canada and the States Pennsylvania, Rhode Island, Connecticut, Maine, Michigan, Ohio, Minnesota, Illinois Wisconsin, Missouri and Indiana. Each o of its inspectors, who meet to compare note of their work for the year and as their pro ceedings are made public, each State may know the advancement the other In 1876
rohibiting an act was passed in Massachusetts 10 years of age. In 1883 the limit children under by providing that no child under 12 years o age should be employed during the hours in 1898 the limit was raised to 14 ycars, providing that no child under 14 years of age can be employed at any time in a factory, workshop or mercantile establishment and no child under 16 years of age can be employed in a factory, workshop or mercantile establishment unless tificate and posts near the principal entrance a list of all such children employed. States that have adopted the factory inspection system have similar child lahor laws, differing as to their age, to the age limit when they can be employed of Massachusetts children under 18 years and women cannot be legally employed more than 58 hours in a week in a factory, workshop or mer cantile establishment and every employer must post in a conspicuous place the number of work ing hours each day of the week, the hours a lowed for meals, the hours when starting and
stopping work and it becomes a part of the in spector's lusiness to see that this is faithfully complied with. This has been the law of the State since 1894. Other States have enacted imilar legislation
In 1912 the United States Congress estab
lished a Commissions on Industrial Relations to look into conditions in the principal industrics lems growing out of the factory system. There is also a United States Burcau of Labor Statistics and, in 1916, 40 of the States maintained labor bureaus, many of which pattern their and Industries. Eight-hour laws now exist in and Industries. Elght-hour laws now exist in nearly all the States, providing for a limit of
eight hours in work for State and in some occupations, as mining.
Sanitary Provisions in Factories and Workshops. - The laws of most States now provide the most rigid sanitary regulations in the interest of comfort, decency and health.
These relate to factories, workshops, mercantile establishments, offices, schoolhouses and public buildings. It is required that these buildings shall be kept free from all effluvia arising from drains and that they shall have a proper number of water-closets provided for
persons of each sex. It is also provided that during working hours these buildings shall be ventilated, that the air may not become injurious to the health of the persons employed
therein. It also provides that all dust from the therein. It also provides that all dust from the grinding or polishing of metals be carried away

The Inspection of
Licenses.-The Massachusctts and Engineers' been copied in many States provides that "It shall be unlawful for any person to have charge of, or to operate a steam-boiler or engine, except boilers and engines of locomotive motorroad vehicles, boilers in private residences, in
apartment houses of less than five flats, boilers apartment houses of less than five flats, boilers
under the jurisdiction of the United States, boilers used for agricultural purposes exclusively, boilers of less than eight horsepower and boilers used for heating purposes, limiting the pressure to 15 pounds to the square inch, person in charge mulst hold a license granted after a thorough examination by the inspectors appointed for this duty, who are expert engincers."
The Sweatshop System.- With the introduction of the sweating system in the United States came a revolution in the clothing indus-
thas left in its wake destruction and poverty; for prior to the introduction of this system there was not, as a class, a better-paid people than those engaged in the ready-made clothing trade. Looking backward only a few years we have the recollecton of a movement in
sympathy with a people who were being driven from Russia and other European countries. The first duty upon arrival was to procure means to provide food and shelter for themsclves and families, and, being without funds, the task be-
came a very complicated one. The inducement to to learn a good trade was freely offered them, rant a sufficient return for the knowledge hestowed upon them. The custom in vogue was that the apprentice should give from one to three months at very small pay, giving from 12
to 16 hours as a day's work. The profit to contractors employing this class of help was, available enormots of this class, has been diverted to a new method of employment
which is called the task system, and
a which the term "sweating" system wa aptly applicd. The swcating system, if con-
ducted in workshops located in buildings devoted exclusively to manufacturing purposes, would never have obtained its present prominence in the public mind; but the competition between the employers of labor under this system resulted in a complete revision of conditities of work per day were imposed upon the employed, until finally the tenement of the contractor was made to answer the double purpose of home and shop. The crowded condition of these tenements, hardly sufficiently large for the the addition of the help to be was increased by traces of home privacy were obliterated sanitary conditions became unmentionable, filth and discase abounded and the health of the public ecame endangered. When these conditions were made plain to the people, fear overcam the prevention of this system of manufacture were made. These appeals led to the enactment of laws tending to restrict the manufac ure of clothing in tenement-houses. The first aw enacted, like most which tend to elevate the their living, emanated from the legislature of Massachusetts. This law provided that any house, room or place, used as a dwelling and also used for the purpose of manufacturing should, within the meaning of the law, be deemed a workshop. The law defines a work wherein manual labor is exercised by or place trade, or for purposes of gain but the exercis of such labor in a private house by the family if a majority of the persons therein employed are members of such family, shall not constiute a workshop. The law also contained a pro portation into the State of garments which been made under unhealthful conditions and this was enforced until similar laws were enacted in other States, particularly in the State of New York, from which the majority of thi lass of clothing was produced. The law also of making, repairing or finishing any coats vests, trousers or wearing apparel of any de scription, in any room or apartment, in any tenement or dwelling house, shall first procure a department Every the chief of the inspection any garments are made shall be subject to the inspection and examination of the inspectors, for the purpose of ascertaining whether the rooms or apartments are clean and frec from any contagious nature. If the inspector finds vidence of infectious discase present he shall Tort the
uilding which is designed to be used above no second story as a factory, or workshop, or mer cantile or other establishment and has accom modations for 10 or more above the second story, and no hrilding more than two stories in height, shall be erected until a copy of the plans Such buildings shall not be erected withouit sufficient egress or other means of escape from fire, properly located and constricted. Such inspector may require that proper appliances
shall be provided in the floors, walls and parof fire.
FACTORY ACTS. See Cifild-labor; Labor Legislation
FACTORY CONSTRUCTION. Sce FACTORY
FACTORY MANAGEMENT. There the meaning in any given case depending largely on the context, and the term "Factory management" similarly partakes of this usage. As commonly used the term "factory" is understood to mean a group of elements made up of
land and buildings, capital and credit, equipment and men, comprising what is known as the modern factory or establishment for the conversion of raw materials into goods for sale. Factory managcment in this sense is, therefore, the organizing and directing of men and materials for the production
The broader use of the term, lowever, includes any group of non-self-directing employees under the control of their employer, and it is so used particularly in refercnce to the series of problems arising wherever conditions of grouped labor obtain - in the railroad gang, the army, the construction crew familiar with as the modern factory. We may, therefore, encounter factory conditions and
factory problems in fighting forest fires, for instance, though in no sense would a group
of fire fighters be termed a factory. But it is just this broader use of the term which must not be overlooked, for it implies considerations of peculiarly far-reaching importance to the factory manager of to-day. For under present day factory conditions we encounter a of a few years ago, and in order that the amed of a few years ago, and in order that the aims,
and the ends, and the methods of modern industrial or factory management may be the more readily appreciated, it is necessary first to consider some of the fundamental prohlems which must be faced by those engaged in in-
dustry to-day. The massing of dustry to-day. The massing of workers, the
specialization of processes and the minute subspecialization of processes and the minute sub-
division of labor, the economic dependence of the employee on the employer, the aggregation of capital and plant, and the kcen competition in a world market - all conditions brought on directly by the industrial revolution and its succeeding developments - and finally with among the workers themselves the growing insistence that labor have an increased participation in the operation and fruits of industry the problems presented through these factors are all distinctly modern problems requiring
distinctly modern methods of attack and soludistinctly modern methods of attack and solu-
tion. Some of the hroader aspects of each of these factors will be briefly discussed.
The Massing of Workers.-Tle very act of bringing together a large number of employees brings with it entirely new problems.
With a group of half a dozen workers we enWith a group of half a dozen workers we en-
counter certain problems; multiply this number counter certain problems; multiply this number lems immeasurably increase not only in degree but also in kind. With any aggregation of
persons for any purpose we encounter the psy-
chology of the crowd - the something within us which arises when we become one of a throng and which may, upon provocation, develop into
the spirit of the mob. In the case of industry, however, to these psychological considerations howcver, to these psychological considerations character of the groups of workers, imposing as this does the oftentimes tremendous burden of the mere physical handling and direction of our force. Taken together, these factors
underlie many of the extremely delicate and far-reaching problems of organization and of management which the factory manager of today must face. What are to be the relations of the group as a whole to each individual, to each superior and to the firm as an individual? will best serve the true interests of each of these bodics-employer and employed? The simple organization of the small one-man business will no longer suffice. How, in the more complex organization, can there be maintained the desirable personal contact, freedom of action and play of individual initiaity necessary wherever men are grouped together for profitable production? These and scores of similar questions of organization and of management present themselves for solution
the moment we bring together large numbers the moment we bring togcther large num
The Specialization of Processes.- It i sometimes said that the minute subdivision of labor resulting from advanced specialization o processes is all wrong, and that we should eturn more nearly to handicraft work. To what extent is this claim well founded, and and of society at large and in the long run conflict in any solution which may be evolved? On the one hand, through the expertness which
results with specialization of labor, and results with specialization of labor, and hrough the increased use of machinery, goods are more cheaply produced. Sooner or be lowered, resulting in turn in an increased demand for the product. This increased demand must be supplied by additional labor, which reacts beneficially on the worker either through more constant employment at the sam wages or through the same amount of employ-
ment at higher wages. Society at large of ment at higher wages. Society at large of certain industries and for comparatively short periods of time the individual workers, upon the sudden introduction of labor-saving machinery, have suffered through being thrown out of employment and through being unable to
secure new work or work to which they could secure new work or work to which they could
adlapt themselves. Here society at large and in the long run benefits at the expernse of the individual. It may at least be fairly said that there are elements both of strength and of duction, and if so, how are we to preserve the strong points and at the same time eliminate the dangers of this method? Is it, or is it not, a fact that there is and of necessity must be monotony in industry? That there is in many cases seems indisputable, but how about the necessity of it-are not ways being found, and
may there not be other ways found to alleviate and in cases to eliminate monotony, secure the advantages of high specialization of labor, and
at the same time retain free scope for indi viduality and personal initiative? Such measthe establishment of definite and proper task of short duration and the payment of a bonus for accomplishment of each, allowing and ex pecting on the part of each operative a more in which knowledge of each step in the processe partnership and profit sharing plans, the suggestion box and welfare work- such measures and many others may play their part here. These considerations, together with the very recently widespread extension of fatigue studies, form industry. The Economic Dependence of the Em-ployce-Grave social problems arise through the economic dependence of the employee on
his employer. Previous to the industrial revohis employer. Previous to the industrial revo-
lution the apprentice or journcyman who had lution the apprentice or journcyman who had
saved up a few dollars or who, in absence of these, had attached to himself a few regular customers, could withdraw from his employer and set up in business for himself. With the introduction of machinery and its accompanying demands, however, all this was changed; he could then no longer work for himself at
his option because he lacked the necessary capital or the knowledge of the proper handling of capital, or the knowledge of all technical processes involved, with which to start his business, and he must perforce join the masses of hired workers dependent on the capitalistic enimplied obligations on the part of the employer, with corresponding obligations on the part of the employee. Foremost among the former was the social obligation of paying at least a living wage - unfortunately not always translated into action. Regularity of employhours comprised an pbligation notoriously overlooked until recently. The obligation of the worker as well as of the employer in regard to the determination of a proper day's work and a proper day's pay is constantly claiming how far beyond the providing of the Then necessities of life does the employer's duty extend? The attempt to answer this question plunges us at once almost hopelessly into the
realms of reasonable costs and justifiable profits, of relative abilities and commensurate reWards, of standards of living and opportunities living advancement. The paying oin atenance of proper working conditions, accident insurance and the prevention of accidents and the provision for open channels for advancement all these and many other duties which the gations upon the management rather than upon the men, due simply to the relative economic positions of the two. It is correspondingly inCumbent upon the employee to give his employer honest and whole-hearted co-operation and similarly to refrain from using unjustly to he may possess or obtain through collective The Aggregation of Capital and Plant. So much for some of the hroader aspects of some modern industrial problems viewed par-
ticularly from the standpoint of the employec. Nomployer. questions arise in the case of the and consequently in amount of capital involved, bring forth organization and managerial problems and policies only distinctly related to any questions of human relations. The mere act of keeping the wheels in motion smoothly re-
quires organization and system to a degree unquires organization and system to a degree unmethods of production. Add to this the keen, worldwide compctition, involving as this does the necessity of operating at a high efficiency in order to be able to survive in industry at all,
and it must necessarily follow that these complex modern requirements of production must be met by complex modern methods of management. Where shall my plant be erected and how shall it be laid out; what is the minimum amount of equipment and labor necessary; how shall my business be organized and admininnumerable plant activities shall I use? Am I producing more cheaply than my compctitors but losing money on the whole because my methods of buying or selling are archaic? What means of increasing production or deand equipment may I take, and what are the interacting effects of these methods unon the larger questions suggested; how shall I deal with my employees, both individually and collectively, in order to attain the industrial ends of economical production, sale at a profit with maximum prosperity for employer and employed? From among the scores of different ways in which each of these problems may be answered, how, for my particular case, am I to know and to utilize the one best way? It is upon this phase of the broader industrial
problems - the technique of production and distribution - that a large part of the more recent literature on the so-called "efficiency movement" has been written. It is significant that Frederick W. Taylor, the pioneer and father of scientific management, never allowed himple efficiency in production to become with work and in his writings on adherence to the fundamental principles embodying the cconomic welfare of all persons concerned
Democracy in Industry.-And finally, what is to be my attitude, be I manager or workman, distribution of the profits and losses arising through my participation? The maxim of a well-known railway magnate who, several years ago, gave expression to the sentiment The public be damned" has leen found to be no less an inadmissible working formula in inchagrin of several "captains of industry" who were wont to substitute "workman" in place of "public." Granted that we believe that a degree of democracy in industry is to be desired, there yet remains the delicate problem of balance as between the ideal and the exact particular conditions at any given time can particular conditions at any given time, can
justifiably affect. Many a concern has faced the bankruptcy court through a maladjustment, cither one way or the other, of this balance.
Such questions, together with those of the
division of profits, require for their proper solution the best informed and broadest minded
men of the age, but most of all they require he close ana active co-operation of both par ies - capital and labor. Such are some of th questions presented to the modern factory man ager. They are all more or less interrelated and o one of them can be properly viewed except in connection with the others. Collectively, all o the adequate solution of any one of them. Each one, furthermore, is a life study and in the present discussion it is manifestly out of he question to attempt to cover the ground in ny but a very broad survey. And in what management, a proper perspective must be maintained by kecping constantly in mind the road social questions which must form the rue background for a proper solution of these nore tangible factors which arse for consider ation in the every-day work of the executive. hat factory management as ordinarily considred deals, broadly, with land and buildings, capital and credit, equipment and men - that it is the organizing and directing of these element an establishment adapted to attain the end economical production, sale at a profit, and iminishing returns counterbalances the possible advantages of further expansion. The art of organizing and directing these elements of production, selling and finance, with all that this mplies, constitutes the field of modern factory anagement.

Organization at once becomes the keystone pon which must be reared the whole structure ies of the mold, guide and direct the activi e distinguished from the personnel which, at ny given time, is entrusted with the task of aking effective the policies and principles nder which we are to operate. Although per inutix enters into and distinctly affects th e permanently effective, be independent of the personality of any one man or group of men operate must be determined only after a careful analysis of first: the problems which we encounter; second: the conditions under which we must solve these problems; and to a less exent third: the character of the personnel available; and as the conditions vary, so must the olution (organization) vary. A study of the interesting ramifications, but also may furnish nvaluable instruction to one entrusted with the delicate task of molding the form of organi ation best adapted to any given enterprise The subject may profitably be viewed from two standpoints: organization in war, and organizaimes we find comparatively small hordes of savages making war upon the neighboring tribes. The conditions under which they operated were simple: small numbers of wariors, individual bodily encounter with primive weapons only, a comparatively smand hence an absence of the problems of engineering and ransportation, maintenance largely individual b pillage, little or no division of labor, few ad
ministrative or technical details, few problems of correlation, complete mobility. The probswift, absolute control in everything. The solution was correspondingly simple: one-man control by the best, often the physically strongest, warrior. As is true generally in warfare, delay in execution becomes oftent more fatal than mistakes in details due to unbalanced judg-
ment. We thus get a pure "line" form of orment. We thus get a pure "ine" form of ordown directly from the leader to his warriors, each of whom performed all functions pertaining to the work. Up until the extensive use of gunpowder in warfare the problems and the
conditions under which they had to be solved differed comparatively little from those therctofore encountered. We find the solution 10 minor changes to consist of minor extensions and developments of the previous form of organization - a delegation of supervisory powers to porting directly to the one superior, who is execution. With the development of modern warfare of course all this was changed. It was then no longer mentally or physically possible for the one strong man to maintain the personal details of the operations, although it was still necessary for him to keep final control and authority absolutely to himself. This in turn made necessary an angmented means of solution, and as a result we find the development of the staff - a cardinal principle of military expert officers under the chief of staff, reporting to the officer in command upon the innumerable specialized and technical questions encountered in modern warfare, the commander thereafter taking such action upon their recommendations. as he sees fit and pass-
ing his orders down through the now numerous officers of the line until they finally reach the man in the ranks.
In industry on the other hand, previous to the indlustrial revolution (if we except such works as the building of the pyramids and of
the cathedrals and similar construction projthe cathedrals and similar construction proj-
ects) we find no grouped labor. Passing through the successive stages of industrial development as described by Bucher, of housework, wage work, handicraft and commission work, and up until the development of the factory system, we find production carried on entirely
individuals or small groups of home-workers. The problems of control-as expressed in organization - therefore were extremely simple and in many cases non-existent, seldom necessitating more than a one-man organization and perhaps entirely naturally the organization of the army served as the model and was
literally copied by those engaged in industry. With the rise of the factory system of production, however, conditions were revolutionized. Then arose the intricate questions of human relations and material management ontlined in the opening paragraphs. The problems encountered were far different from those
warfare, not the least significant of which was the substitution in industry of duty and the good of the individual, for the idea of force and the good of the state which forms the

It is, however, perhaps not slrange that the traditional forms of organization of the army the activities of industry, where they remained firmly entrenched until comparatively recently. tury that these fundamental differences as between military and industrial aims and methods became consciously recognized and embodied in the various forms of industrial organization which are offered to-day as more nearly applicable to industrial nceds. In closing the discussion of organization, bare mention may ther details must be sought in the numerous writings on the subject. One of the carlier forms was the committee system. This exists in two forms - the committee with power to enforce its decisions and the committce with advisory dutics only. In the latter case the of the staff, with few compensating advantages. Both forms are found to a limited cxtent in industrv to-day. The departmental and the divisional forms differ somewhat in operation, principle of division of labor None of these principle of division of labor. None of these
forms of organization necessarily differs in principle or operation from the regular line form of the military. A fundamental departure from the military, however, is found in the modern functional organization devised by Mr . Taylor in connection with the development of scientific management. Here the staff ference: in the staff the individual expert perference: in the staff the individual expert per-
forms an advisory function only, while in the Taylor functional these same experts are given administrative authority to embody the results
of their knowledge in orders issued direct to men under them as regards their particular sphere of arganization is necessary and applicable, surprising results are secured
So much for the various forms of organization from which the factory manager must choose that best adapted to his particular cir cumstances. Of the other broad division of factory mamagent little need be said. Sufficient outline of the various factors to be considered has been sug gested to give an insight into the nature of the problems involved. The problems of finance, of division of duties, of delegation of authority and responsibility, of purchasing, of storage of materias, of plannag, control of all of these and the innumerable other necessary activities of the modern factory -all such questions arise in never-ending varicty in the management of the plant-problems nowise different intrinsically from those of organization previously discussed, and problems requiring for their proper solution the same caredamental principles of proved soundness and practicability. Sce Factory System; Labor Legislation; Scientific Management

Henry H. Farquhar,
Consultant in Industrial Managentent and
structor in the Harvard Business School.
voz. $10-45$

FACTORY SYSTEM, The. Definition The word factory seems to have been first used in its modern sense aboul 1392. Previou compound a factor had been an agent, and all with them the idea of agentship But with the new system of industry introduced by the Industrial Revolution (q.v.) the term scems to have been used as an abbreviation of manu actory, and in the first factory act in England designate cotton interchangeably with mills to To-day the term factory covers any establish ment, with its buildings and equipment, use for the manufacture of goods. The legal defini ion varies widely in different States, but is nsually based upon the number of workers hus an extreme definition of factory is "any in working for hire or reward in any hagd craft." As a description this is a poor definiion, for it leaves out of account the essentia characteristics of the system. Better is C. D Wright's definition, "a factory is an establishthe purpose of obtaining greater and cheaper conveniences for labor than they could pracur individually at their houses; for producing results by their combined efforts which the conld not accomplish separatcly; and for pre enting the loss occasioned by carrying article rom place to place during the scveral processe
Not to con
roadened but the scope of the factory sys em has widened also. Applied originally only to the textile industry, it has gradually been extended to other branches of manufacturing intil to-day it dominates the manufacture o agricultural implements, automobiles, boots and metallic roods of all sorts, musical instruments, rubber goods, slauchtering and me packing, wooden goods, watches, etc. Most o he people employed in the mechanical indus rics of this country to-day are working unde the factory system. Gystem in the concentration and division of labor, the use of non-human power and of labor-saving machinery, have also been applied to other fields of economic activity such as agriculture, fishing, forestry, mining ransportation, and even personal and profes fore as to the importance of so universal a system.
Domestic System.-We shall perhaps bet ter understand the factory system if we contrast it with the system under which industry was organized, at least in England, just betore its introduction. This was the domestic system. Accor truly "making by hand" (manus-facere)was carried on by small masters in their own houses, with the help perhaps of a journeyman and an apprentice or two. Such a master almost always owned the implements or tools of manufacture. In some cases the raw material was the properestic worker to work it up into finished goods, while he distributed the raw material to the homes of the workers and collected the completed product. The essential
feature of the system, however, to which it owed its name, was the fact that manufacturing was carried on in his own house by the of ground which he cultivated as a byindustry.

Factory System.-All this was entirely changed by the introduction of the factory system. The first series of changes that may be
noted was the transfer of the industry from the home to the factory, the change in ownership of the implements of production from the change in the power that drove the machines from the muscles of the workers to the force of falling water, and later of expanding steam. A second characteristic of the factory system was the enlargement of the business unit. The tcxtile industry was affected less than mining tion showed the greatest development along these lines. To-day, however, large-scale production is a common characteristic of almost all factory industries. As a result of these changes capital has become increasingly important in modern industry until our present a "capitalistic" system rather than a factory system. Evils. - It is obvious that no such farreaching change in industrial organization could be effected without serious disorganization and readjustment. The transitional period during
which the factory system was instituted witnesses many serious evils, some of which have not yet been altogether eradicated, and which are consequently assumed by some writers to
be inherent in the system itself. To a brief consideration of these we may turn. Five criticisms were noted by C. D. Wright in an account of the sy
sus, as follows:*
(a) The factory system necessitates the employment of women and children to an injurious extent, and consequently its tendency is to destroy family ties and domestic habits and ultimately the home
health.
(c) The factory system is productive of intemperance, unthrift and poverty.
(d) It feeds prostitution and swells the criminal lists.
(e) It tends to intellectual degeneracy. pointed out that the employment of women and especially of children has been regulated and greatly reduced by factory legislation. The employment of marricd women and of young children is, however, still unhappily too great. On the score of health the best equipped and
managed factories undoubtedly compare very managed factories undoubtedly compare very
favorably with the environment under which work was carried on in the home under the domestic system, but the number of dangerous and injurious trades has multiplied. The resulting evils should, however, be cared for by legislation. The next two counts may be dis-
missed as untrue; the factory system as such missed as untrue; the factory system as such in fact works directly against such a vice as *C. D. Wright. ' Report on the Factory System of the
United Siates, in Tenth Census, Vol. II, p. 552.
intemperance as inconsistent with efficiency. On the last point so eminent an authority as Prof modern factory is of the opinion that the upon the intellectual capacity of the worker than any system of industrial organization which has preceded it
Advantages.- On the other hand certain positive advantages of the factory system of vastly $\begin{aligned} & \text { may be noted. It makes possible }\end{aligned}$ equitably distributed is indeed a serious prob lem of social justice, but the incquity of our present system of distribution should not be duction which gives us more to divide. It has, moreover, greatly lessened the cost of produc of and hence lowered the price of thousand of articles, which have thus been brought within illustration to the myriads of articles produce under the factory system which can be found in the 5 and 10 cent stores. And finally wages, both nominal and real, have increased unde this system, so that the economic position o the average factory operalive is better than system. All in all, in spite of certain dar spots, the factory system may be regarded as
a long step forward in the march of industrial progress. Sec History, Modern.
Bibliography.-Babbage, Charles, 'The
Economy of Manufactures' (London 1835) Clarke, Allen, (The Effects of the Factory System) (London 1894); Cooke-Taylor, R. W (Introduction to a History of the Factory Sys-
tem'
(London 1886); Cooke-Taylor, R. W (em' (London 1886); Cooke-Taylor, R. W Hobson, Hobson, A. A., The Evolution of Modern 'The Philosophy of Manufactures' (London 1861) ; Wright, C. D., 'Report on the Factory
System of the United States' (Tenth Census, Systcm of the United States) (Tenth Census,
Volume Manufactures, Washington 1884). Professor of Economics, University of llinois
FACUI \mathbb{T} the FACULE, the brighter spots sometime are small at first and gradually assume large proportions. Sce Sun.

FACULTIES, Court of, an English ecclesi astical court, under the archbishop, which cre ates rights to pews, monuments and particula places and modes of burial. and has also vari-
ous powers in granting licenses of different descriptions, as a license to marry a faculty to erect an organ in a parish church or to remove bodies previously buricd.
FACULTY, in ecclesiastical law, a privileg or license granted to any person by favor, and not as a right to do any act which by law h may not do. In the Roman Catholic Church, permission granted by an ecclesiastical superio Such permission only extends to the distric over which the superior has jurisdiction. Thus faculties are granted by bishops to the priest in their dioceses, and by the heads of religiou gouses to such of their subjects as they judg nity. In the United States, the term faculty in dicates the body of persons who are entrusted with the government and instruction of a uni
versity or college as a whole, comprising the president, professors and tutors. It is also
used for the body of masters and professors of used for the body of masters and professors of in a university; as, the law faculty, etc.

FACULTY OF ADVOCATES, an incorporated socicty 400 Practice in the higher courts of the kingdom is confined to members of the Faculty, who for admission are obliged to pass a special exambership. Justices are pointed from the membership
FADEYEV, fä-dā’yĕf, Rostislav Andreievitch, Russian military writer: b. 1824 ; d
Odessa, 12 Jan. 1884 . He made more than one campaign in the Caucasus, achieving a reputation as a scientific soldier that commands respect for his 'Sixty Years of War in the Cau-
casus) (1860) : Russian Military Power' casus)
(1868) : (My Opinions of the Oriental Problem) (1868) : 'My Opinions of the Oriental Problem' (1881) ; and many similar writings.

FADIENSKOI, or THADDEUS IS LAND, a Russian island of the Arctic Ocean, in the province of Yakutsk. It is 100 miles
long by about 40 broad. The climate is very long by about 40 broad. The climate is very cold the greater
island is inhalited.

FIECES, the residuc of food, combined with the intestinal secretions, as it passes from the intestine it is then termed faces. During health feeces consist largely of the undigested por tions of the food taken into the body. They contain microscopically many epithclial cells from diffcrent parts of the intestinal canal
shred; of mucus, bits of meat-fibre, the char acter of which depends upon the ingested food and which can be determined by the microscope vegetable detritus consisting largely of parenchymatous and vascular tissues, plant-hairs, etc. at-globules; bacteria of many kinds; bile pig chemistry of the fæeces will vary widely according to the diet, charts of chemical compo sition are worthlcss. The consistency of the fæces also widely varies. Normally, fæces is urd be semi-solid; if too hard, constipation may be present, or some degree of colitis (q) Large quantitics of mucus indicate a colitis The color of the faces is of much importance in determining whether the normal functions of the intestine arc bcing carried on. In health the fæces should vary from a light to an umber bile-execretion or loss of fat-digestion. Very black faces often result from excessive bile climination, but such are more likely to be present when the drinking-water contains small amounts of mineral constituents, notably iron In children, green to greenish stools indicate either the presence of certain pigment-forming bacteria, or they mean that there is excessive fermentation or putrefaction of the intestinal contents, leading to excess of oxidation of the bile-pigments. In cither case castor oil is an excellent corrective. Tarry fæces, resembling presence of blood high up in the intestinal canal If bleeding occurs in the large intestine or rec tum, red is the prevailing tinge. Stmall quanti-
tics of hood color the fæces orange, like pap rika. Cocoa and huckleberrics cause a coloration of the faces that may be mistaken for
blood. Colorless or gray-colored stools usually blood. Colorless or gray-colored stools usually
indicate some form of biliary obstruction; or perhaps from fatty indigestion, an excess of fat passed either from lack of bile-emulsion action or from loss of fat-absorption. Children taking cod-liver oil often have light-colored determine if digestion of the oil is taking place Disturbance of the functions of the pancreas may also cause light-colored or fatty stools. The study of the color of the stools is of immense practical importance in medlicine, and careful observation of this matter by the pacian. In birds, fishes and reptiles, and in some mammals, urine is mixed with the fæces before they leave the body. See Intestines.
FAED, fād, John, Scottish artist: b. Burley Mill, Kirkcudbrightshire, 1820; d. Gatehouse-of-Flect, Scotland, 22 Oct. 1902. In 1841 he went to Edimburgh to study, soon won a conpainter, and was elected a member of the Royal Scottish Academy in 1852. In 1851 he exhibited a work entitled 'The Crut Sisters,' and this was followed by 'The Cotter's Saturday Night' (1854); 'The Philosopher' (1855) ; 'The Houschold Gods in Danger) (1856) ; 'Job and
his Friends' (1858) ; and (Boaz and Ruth) (1860). Going to London in 1862, he began to exhibit in the Royal Academy also, some of his pictures shown since that date being 'Catherine Scyton' (1804); '(Old Age' (1867); 'John Anclerson, my Jo' (1869) ; 'After the Victory'. (IBlenheim) (1875). (In Memoriam) (1876): 'The Old Basket-Maker' (1878) ; and 'The Poet's Dream' (1883). His work invariably displays careful drawing, but his coloring is somewhat hard.
FAED, Thomas, Scottish artist: b. Burley Mill, Kirkctudbrightshire, 8 June 1826; d. London, 17 Aug. 1900. He was a brother of John as a clever painter of rustic subjects. The subjects of his brush are for the most part domestic or pathetic, which he depicted with a tender dealism that appealed strongly to the public taste. He was elccted a member of the Royal Academy in 1864 . Among his principal works
are 'Sir Walter Scott and his Friends' (1849); 'The Mitherless Bairn' (1855); 'The First Break in the Family' (1857) ; 'His Only Pair' (1860); 'From Dawn to Sunset' (1861); 'The Last o' the Clan' (1865); (Pot Luck) (1866); 'Worn Out' (1868) ; 'Homeless) (1869) ; 'Thc Highland Mother) (1870); (Winter) (1872); Told her Love' (1876); 'Maggie and her Friends' (1878) ; and 'Rest by the Stile) (in the Metropolitan Muscum, New York).

FAENZA, fä-cr'zä (ancient Faventia), Italy, eniscopal city, in the province of Ravenna, on the river Lamone, 19 miles from the city of Ravenna. The cathedral of San Costanzo, hegurly Renaissance tomb of Saint Savinus. It is noted for its glazed earthenware, called Faience (q.v.), the manufacture of which was famous from the 15 th century and has been recently
evived. Others of its manufactures are majol ca, silk goods and refined sulphur. In the of considerable repule. Facnza is connected of considerable repute. Faciza is connected in 1782. It claims to be the birthplace of Torri celli. Its history extends into the times befor the Christian era, and many changes in government took place before 1509, when it was anexed by Julius II to the states of the Church n 1860 it became a part of the kingdom of
FAERIE (fa'er-è) QUEENE, The. An
ic poem by Edmund Spenser, published in epic poem by Edmund Spenser, published in VI) ; a fragment of another book, consisting of two cantos on "Mutability," was published in ook containing 12 cantos; Spenser com purpose, as set forth in his letter to Raleigh, was "to fashion a gentleman or to Raleigh, in virtuous and gentle discipline,"- thus lik Castiglione's 'The Courtier' and other influenial books of the time, the 'Faerie Quenc' was designed to be a guide to conduct for men who were entering the service of the state. tion in the cardinal virtues characteristic of he illustrious prince is to be gained best through the study of poetry, not history or moral phi osophy. (Besides the letter to Raleigh, consult also Sidney's 'Defense of Poctry'). Accordingly, epic poetry was held to be an allegory good governor" in his Agamemnon and "the virtuous man" in his Ulysses; Virgil com bincs the two in his Æncas, while Tasso's Rinaldo is the ideal "private man" and his Godfrey the ideal ruler. Based on this theory, the 'Faeric Qucene' was to deal with hath devised," in the person of Arthur before he became king; Spenser hints that he may
treat Arthur as king in a second epic
The plan was to be worked out by devoting each book to the exploits of a knight distinthe Red Cross Knight (Book Saint George, Holiness; Guyon (Book II) represents Tcmperance in the classical sense of self-restraint ; Britomart (III), a female knight, stands for Chastity; Cambell and Triamond (IV) for Friendship; Artegal (V) for Justice; and Calidorc (VI) for Courtesy. Prince Arthur, who
stands for Magnificence or Magnanimity, stands for Magnificence or Magnanimity, apGloriana, the Faerie Queene, and sccond, as an assistant to the hero of the book in a crisis. This does not indicate incoherence of design, as some critics maintain, but follows the familwhere Gawain or ever happens to be "the greatest knight in the world," is introduced at a crisis in the Cortune of the hero whose adventures are being narrated.
Spenser's use of the Arthurian romances is interesting and original. None of the great knights familiar in Malory and elsewhere ap-
pears; none of the great stories afterward used by Tennyson finds a place. The Holy Grail, for example, is barely mentioned. Yet
of the metrical romances of France and England. The Facric Qucene holds a feast lasting 12 days, on each of which an "adventure" takes place. On the first day a "clownish young
mann," who reminds us of Perceval or of Gareth, begs the boon of any "adventure" that may befall; he is sent with Una to free her parcnts from the thraldom of a dragon. On the second day a Palmer bearing a babe with bloody hands calls for a champion to slay Acrasia, the enchantress who wrought the woe, and Sir Guyon is assigned the task. On the third day Scud-
amore is sent to free Amoret from an enchanter but his adventure is completed by Britomart. But all this explanatory matter is set forth in the letter to Ralcigh; Spenser follows Virgil and other poets in beginning "in the midst," and the epic did not arrive at the point where Spenser follows the late medieval romances in giving to familiar romance situations allegorical or mystical significance. Thus, Galahad's delivery of the Caslle of Maidens, which in the Grail cycle had come to symbolize Christ Selivering mankind from the Seven Deadly pears in many forms. For the quest, also, apof Red Cross for the dragon reaches a climax in a three days' battle in which the monster stands for Satan, who has long held the human race, (Castle Mortal) in bondage; the three days' battle symbolizes Christ's victory over Death and Hell so often met in medixval reminiscences of the Arthurian romances; their influence on him is far more pervasive than the debt, largely exaggerated, to Ariosto and Tasso, from whom he derives, as from the classics, many matters of detail.
Spenser uses the technique of romance for a more carefnlly claborated moral allegory than Thus, Book I shows how Holiness (Red Cross), accompanied by Truth (Una), slays the dragon of Error. Again the adventures of Guyon (Book II) symbolize the course of temperance false joy, avoiding wrath and excessive passion alsc joy, avoiding wrath and excessive passion, ment. The allegory of the poem is complex there is the type found in medixval moral plays, representing the conflict of vices and virtues, here is the mystical interpretation of Christia idealism into allegorical story. To blend will a conception so complex as this the Renaisance deal of the perfect courtier (Spenser has in mind a man of affairs like Sidney, not a mcdizeval ascetic saint) rendered it impossible for the poct to use Malory's version of the ArYet the chief clue to his method is definite way not in his moral and religious allegory, which has been too much stressed in Spenser criticism, but in his purpose to shadow forth his conception of the greatness of Elizabethan England and of its destiny. To bring this out, he represents, in Prince Arthur, the English beth Tudor. Fundamentally the poem mean hat the return of the old Welsh (Fairy) line represented in the Tudors, to the government
of England is the source of England's presen greatness. He distinguishes carefully between fairy knights like Guyon and English knight the Fairics appears to Prince Arthur in a visio of a type familiar in Celtic folklore, and prom ises in due time to give herself to him; Eng and, personified in Arthur, seeks to realiz his vision, made complete when Elizabet the reigning house according to the rules of Renaissance epic.

But there is yet more. Artegal, knight of ustice, loves Britomart, the martial spirit o England. Justice united with British might points out a new destiny. Artegals quest is to of Spain). In this book also Prince Arthur rescucs Belgr (the Netherlands) from the Spanish monster, and Duessa (Mary of Scot and) is adjudged worthy of death. Thus cer ain crucial events in Elizabeth's reign are se rushing of the Irish rebellion fomented by Philip; it necessitated also the aid sent to the Netherlands, crushed by Philip's vast cruelty and the execution of Mary, the chief mean hrough which Philip plotted the destruction of ree England. In a later book, Spenser no oubt wo ion has a direct bearing on the foreign policy Elizabeth and is a defense of that school of politics that held it to be England's duty to merge from isolation, to take part in continen tal politics, to substitute for diplomatic intrigue ow Countries and in France against the sinister hadow of Philip's ambition for world power The poom is not merely a moral allegory o bstract virtues, not merely a glorification of he Queen, but a positive and almost defiant delly to a grearer hationalish er eventuand the imperial domain. Raleigh «the Shepherd of the Ocean," is recognized by Spenser a leader in this progressive movement, as he also recognized Leicester and Essex and op-
poscd the more conservative policy of Lord
Besides these allegories of moral and political ideas, which appealed to Elizabethan love of symbolism and shadowed forth the romantic idealism of the time, are many lovely fea-
tures that deepen the picture. Such are Calitures that deepen the picture. Such are Cali-
dore's wooing of the shepherdess Pastorella, as charming as the pastoral scenes in Shakespeare's 'Winter's Tale'; or the flight of Britomart with her nurse to Merlin's cave, there to learn of Artegal; or the stories of Florimel and of Amoret. These stories, and many other
strands in the complex web of Spenser's weavstrands in the complex web of Spenser's weav-
ing, are of the very essence of romance - the light that never was on sea or land that Wordsworth meditated upon, or the faery lands forlorn recalled to momentary life in the poetry of Keats. In this is one secret of Spenser's influence upon later English poctry, an influence
more pervasive than Chaucer's or Milton's or more pervasive than Chaucer's or Milton's or ter of narrative: one who desires merely a recreates the world of chivalry as Malory or Chrétien had seen it in earlier times. He
draws upon all sources; ancient and medixval, romance and allegory; his learning is cnor mous; one stanza may be compounded of through the magic of his imagination fused new unity that we feel rather than sec. His sources are a thousand romances, but he is romance incarnate
Partly this is due to his wonderful stanza. The foundation of it is not ottava rima, as is often said, but an elght-line stanza adapted by
Chaucer from the French and having the same rhymes: ababbcbe. To this Spenser added an alexandrine that repeats the third rhyme. Singularly adapted to the genius of one who has been called "the painter of the poets," Spenser gets from it an astonishing variety of effects stress, repetition, and epithet. The music of bird song and running water is in it, the opulence of taste and touch ("He seems to fecl with his eyes") - the pictures in language that the poets of the Renaissance sought 10 paint. These picwith his poem - an enchandess in associated Bliss, or some vividly wrought enic simile Colin's fairy hill, a stream of living vater at its base, guarded by fairies from every noisome thing; a little open place outside the stream, of matchless height that seemed picture, woods earth is one example of his pinting; anon the the scene of the hundred furnaces in the Underworld, surrounded by swarms of dwarfs engaged in stirring the molten ore with great ladles, with the sudden apparition of the fairy Knight, "glistering in armes and battailous array."
dramatic, this ing. He often refers to the theatres wantacting, and among his lost works we read of nine comedies. The masques of the "Faerie Qucenc" - the Temple of Venus, the Masque Deadly Sins, the others-form a constant element in his work The journey of Guyon through the Underworld is both masque and drama, as is also the ovcrIn comparison with the the masques intro duced by Shakespeare into his alays introand ineffectual. The tragi-comedy of Malbecco is excellent throughout, and reminds one, in its power of characterization and its edged humor, of Jonson or Massinger. Spenser's characters boundless virtue or ugly vice. Britomart of the spirit, the bravery, as well as the beauty of Beatrice, and like Beatrice she is adorably feminine. Una is as lovely and appealing as Hermione; Pastorelia is another Perdita. Guyon's carcer is no succession of tilts with abElizabethan tragedy, with victory for his an ward.
But these are mere details, their only service being to recall once more the infinite variety of the elements composing the pocm. The abiding impression which it leaves unon the mind is that of a succession of marvelous disand medixval worlds are blended with the eniclike life that England then was living. This
life Spenser views through Merlin's magic and all human experience is but the semblance of things not seen.
Kenan Professor of English in the University rolina
FAEROE ISLANDS. See Faroe Islands.
FAESULE. See Fiesole, Italy.
FAFNIR, fäf'nēr, in the mythology of the Nar cold which was paid in atonement for the death of Otr, and was slain by Siegfried.
FAGAN, James Bernard, Irish dramatist: b. 18 May 1873 . He was educatcd at Clongowes
Wood College and Trinity College, Oxford Wood College and Trinity College, Oxford Intended at first for the church, the bar or the
Indian Civil Service, he abandoned in turn all three and went on the stage. He was with F Sir Herbert Beerbohm Tree in 1897-99, retiring in the latter year. He produced 'The Rebels' (1899); 'The Prayer of the Sword' (1904);
(Hawthorne, U. S. A.) (1905) ' Under which King' (1905); 'A. Merry Devil)' (1909); 'The (1010). '(The 'Dressingroom)' (1910): 'Bella Donna, ; an adaptation (1911).
FAGEL, fä'mèl, Frans Nicolaas, Dutch solHe was a nephew of Gaspar Fagel (q.v.), en tered the military service in 1672 . He distinguished himself in the battle of Fleurus 1690 and the famous defense of Mons, 1691, was di rected by him. He also displayed great at the siege of Namur, at the capture of Bonn and in Portugal 1703, in Flanders 1711 and 1712 , at the battles of Ramillies (1706) and Malplaquet (1709)

FAGEL, Hendrik, BARON, Dutch states man: b. 1765 ; d. 1834. He received his education at the University of Leyden and in 178 became second secretary to the States-Gencral; Spiegel he was commissioned in 1794 to make a treaty of alliance with England and Prussia When the princes of Orange became exiles Fagel accompanied them. In 1813 he was named Ambassador to England and remained in that post until 1824. With Lord Castlereagh he igned the Lony of her colonies were restored Folland. In 1829 Fagel was appointed minister without portfolio.

FAGEL, Kaspar or Gaspar, Dutch statesman: b. The Hague 1629; d. 1688 . He was made pensionary of Haarlem in 1663 and seven years later became secretary to the States General. He succeeded De Witt as grand penSionary. He allied himself wart in having the Orange and took a large part in having him also is due no small part of the credit for the accession of William to the throne of England after the Revolution of 1688 . Fagel's incorruptibility and patriotism was demonstrated by his refusal of a bribe of $2,000,000$ franes from ouis XIV.
FAGERLIN, fä'ger-lễn, Ferdinand Julius:
his art studies and entered the Academy of Stockholm ; thence he passed to Dusseldorf and finally became a pupil of Couture at Paris. Ir rom Dusseldorf he started on a professional journey northward for the purpose of studying
sea and coast life in Holland. The pictures he then painted are true to nature, subtle in characterization and abound in wholesome humor.
FAGGING, in the schools of intermediate or secondary education in England, a term forms are by custom obliged to render to the boys of the upper forms. Usually a lower-form boy is assigned to an upper-form boy, whose
"fag" he is then said to be. For his master "fag" he is then said to be. For his master he performs various services, but never menial.
Consult Hughes, 'Tom Brown's School Days.'
FAGIN, fágin, a despicable Jew in Dickens' up children in crime in order to profit by their thievish practices and condemned to be hanged for recciving stolen goods.

FAGIUS, Paul (German, Büchlein), German reformer and Hebraist: b. Rheinzabern, in the Palatine, 1504; d. Cambridge, England, 1549. He studied at Heidelberg and Strassburg; at the latter place giving special attention Capeto. He was made pastor at Isny in 1537 and here he continued his Hebrew studies under Elias Levita. He set up a printing press from which he issucd several Hebrew works. In 1542 he became professor of Hebrew at Strasshurg and later held similar chairs at Constance
and Marburg. In 1546 he went to Heidelberg where he joined the Reform Yarty. He was deposed in 1549, and in the same year was invited by Cranmer to England. He died soon after his arrival. Queen Mary in 1557 caused his body to be exhumed and burned. Fagius left several commentaries on books of the Old Testament. His important in its day.

FAGNANI, făn-yä'nē, Joseph, Italian painter: h. Naples, Itadicd at Vienna and Paris, and came to the United States with Sir Henry Bulwer in 1849 here he painted 'The Nine Muses' (portraits
of New York women), now in the Metropolitan of New York women), now in the Metropolitan
Museum. He also painted many European Museum.
celebrities.

FAGNIEZ, fa'nyä', Gustave Charles French historian: b, Paris 1842 . He received his education at the Ecole des Chartes and th Ecole des Hautes-Etudes and secured a post in
the department of national archives. Subsequently he was member of the commission of diplomatic archives under the direction of the Minister of Foreign Affairs. He was one o the founders of the Historical Society o staff of the Rerue Historique. He has pubstaff of the Revue fistorique, me teveral works dealing mainly with coonomic history. These include 'Etudes sur l'industrie et la classe industrielle à Paris au XIIIe et au XIVe siecle) (1877); (La mission du père Josenh à Ratisbonne) (1885); 'Le père
Joseph et Richelieu') (1894); 'L'Economie Joseph et Richelieu' (1894); 'LV (1897);
sociale de la France sous Henri IV (Documents relatifs à l'histoire de l'industrie et du commerce) (2 vols., 1898-1900) ; 'Le duc
de Broglie' (1902) ; 'Corporations et syndicats 1905).

FAGOT, a bundle of sticks or smal branches of trees bound together. In times of
religious persecution the fagot was a badge cligious persccution the ragot was a badge such persons as had abjured heresy, being put on after the person had publicly carried a fago o some appointed place, by way of penance Among military men in England, fagots were persons hired by officers whose companies wer he company, and thus cheat the government.

FAGOT-VOTE, in Great Britain, was a化e manufactured for party purposes fransfer to persons not of of sufficient property to qualify them a lectors. Estates were divided up into wha was called 40 -shilling freeholds, to each of might attach : but under the Franchise Act 884 this qualification was abolished and fagototes can no longer be manufactured.
FAGOT-WORM, a caterpillar of a moth of he genus Eumeta, which in Ceylon is common on the coffce-trees. It forms a pupa case o silk covered with small sticks, so that it looks like a bundle of fagots; and local folk-lore souls of persons who in their lifetime wer hieves of firewood. These moths are related to the bag-worm moths (q.v.).
FAGOTTO, fa-got'tō, a brass wind instrumerit, blown with a reed, which can be taken in pieces and carried like a bundle of fagots, hence
name; a bassoon (q.v.).
FAGUET, fa'gã, Emile, French literatcur 17 Dec 1847 d. D. La Roche sur Yon Vendée, ducated at the Lycée Charlemagne, Paris, wa was graduated from l'Ecole Normale in 1867 He taught for some time at La Rochelle and ordeaux. Later he came to Paris, where he ecame professor of poetry in the university in He, works include (I tragedemy in 1900 iêcle) (1883): 'Le Théâtre contemporain' 1880-91), comprising his dramatic criticisms Dix-huitième siècle' (1890) ; 'Seizième siècle (1893) ; 'Drame ancien, drame moderne' (1898) Histoire de la litterature francaise' (1900); Sau, Vt Voltaire) (1002): '(Propos Littéraires) (1902) : 'La Pacifisme) (1908); 'Les Préjugés nécessaires' (1911); 'Monseigneur Dupanloup, un grand évéque', (1914). He rehabilitated especially the literature of the 17 th century, and
took an active interest in the criticism of the took an active interest in the criticism of th modern dr

FAGUS, the typical genus of the Beech family (Fagacea). The genus has five species, natives of the northern hemisphere, only one of which, the common hecch (F Americana), are trees with smooth gray bark and serrate leaves, the flowers and leaves appearing toreferring to the edible nuts. See Beech.

FAHAKA, an edible globe-fish (Tctraodon fahaka), sin

FA HIEN, fä hē-ěn', Chinese monk and explorer: he was born in Wu-Yang, province of Shan-Si, in the 4 th century, A.D. In the 15
years from 399 to 414 he traveled in India, years from 399 to 414 he traveled in India,
Khotan and Tibet in the company of other Chinese pilgrims to the great Buddhist festivals. He penetrated Kashmir, Kabul, Kandahar, the Punjab and central India. In all he spent 10 years in India in quest of information about complete texts of the 'Vinaya-pitaka,' He went to Ceylon and there copied other sacred texts. From Ceylon he journed to Java, whence he re-entered his native counitry. His 'Fo-kue-ki, written after his return, is a full account of his wanderings in the Buddhist counlation (Paris 1836) and in English by Beal (2d ed., London 1884), Giles (Shanghai 1877) and Legge (Oxford 1886). Consult Beazley, 'Dawn of Modern Geography' (3 vols., Oxford 1904-06); Giles, 'Hisiory of Chinese FAHLCRANTZ
FAHLCRANTZ, fal'krănts, Christian Erik,
Swedish divine and poct: b. Stora Tuna, Falun, Swedish divine and poct: b. Stora Tuna, Falun,
1790; d. 1866. From 1839 to 1852 , in conjunction with Almquist and Knös he issued the Ecclesiastical Journal. He wrote several polemical works and also several long poems. He was appointed bishop of Westeras in 1849 . His greatest work is the humorous satire 'Noach's
Ark' (1826). Consult 'C Samlade Skrifter' (7 vols., Oerebro 1866).

FAHLCRANZ, fäl'krānts, Karl Johann, Swedish landscape-painter: b. Dalecarlia, 29 Nov. 1774; d. Stockholm, 1 Jan. 1861. Studying nature diligently, he became a self-educated artist. He was acquainted only with fidelity and spirit. Hut has given it with great are in the possession of the King of Sweden. FAHLMANN fal'man Friedrich Russian philologist: b. Esthonia, 1800; d. 1850. At the University of Dorpat he studied medicine and philology and in 1842 was appointed lecturer on the Esthonian language at that seat of learning. He collected a vast amount of Kreutzwald, published it under the title (Kaleviade' or 'Kalevipoeg' (1857-61).

FAHNE, fa'nê, Anton, German historian: b. Münster, 1805 ; d. 1883 . At Bonn and Berlin universities he studied medicine, law and theology. He is remembered for his histories of episcopal sees, cities and noble houses of clude (Forschungen aus dem Gebiet der rheinischen und westfälischen Geschichte) (5 vols., 1864-75); 'Denkmale und Ahnentafeln in Rheinland und Westfalen' (6 vols., 1883) ; 'Lioland; Ein Beitrag zur Kirchen-und Sitten-
FAHRENHEIT, fä'ren-hīt, Gabriel Daniel. German physicist: b. Dantzic, 14 May 1686 ; d. Amsterdam, 16 Sept. 1736. He settled in Holland, where in 1720 he first conceived the idea of using quicksilver instead of alcohol in thermometers - a discovery by which the accuracy of the instrument was very much imcold, that which he had observed the greatest in the winter of 1709 . The space between the point to which the quicksilver fell at this tem-
perature, and that to which it rose in boilin water, he divided into 212 parts. About 172 e discovered the fluctuation of the boiling point of water, which he had made one of the hermometer owed its beginnings to the invention of a thermometer by Newton, described in the 'Philosophical Transactions' for 1701. Newton's instrument was a tube filled with linseed oil, and the starting-point of the scale was Newton called 12. Newton divided the space beween his datum and the freezing-point of water into 12 equal parts, and stated that the boilingpoint of water would be about 30 of these derees on the scale. Fahrenhicit, when he began nd the scale minute enough for his purposes. ind the scale minute enough for his purposes
He therefore first doubled the number of derees, making the scale number 24 instead of 12. Finding he could, by mixing ice and salt, btain a temperature below freezing, Fahrenheit next adopted this for his starting-point and ng-point 8 and calling boiling water 53. Late on he again divided his degrees into four. It will be seen that if the above figures are multiplied by four, the result is the thermometric cale called after him which is still in use. He 724 elect contributed five papers on physics to the 'Transactions' for that year.

FAIDHERBE, Louis Lêon César, loo-ê â-ôn sā̃-zär fâ-dãrb, French general and author: Entering the army in 1840, he became lieutenant in 1842. From 1854 till 1861, and again from 1863 till 1865, he was governor of Senegal, in which capacity he considerably extended the French possessions there. After the fall o
Napoleon III, ho was summoned by the gov ernment of National Defense to France and appointed commander of the army of the north and at Baupaume and Saint Quentin displayed military ability of a high order. In the latter part of his life he went on a mission to Egypt was called to the Senate in 1879, and wa Chancelior of the Legion of Honor. He wrote valuable monographs on Senegal, the Sudan and other parts of Africa, including (L Aveni 1 Sahara et du Suctan (1863), (Colition omplete des inscriptions Numidiques' (1870) Langues Sénégalaises' (1887) ; and 'Le Séné al: la France dans PAfrique Occidentale 1889). On the Franco-German War he pubished 'Campagne de l'Armée du Nord en 1870

FAIENCE, fä'áns', spelled also formcrly fayence and fayance. Originally this term wa given to designate the opaque tin-enameled mitating, first at Nevers (1600), the Italian majolica. (See Majolica). A long mooted point is whether the term is derived from the talian town Faenza or from Faience, in France. The term was later used to express ny tin-enameled ware, such as in imitation lsewherc. It has at last become the term for ny art pottery, hence takes in majolica, Persian listre pieces, Hispano-Moresque, and even the
lightly glazed "Henri Deux" (see Saint Porchaire ware, wedgwood (see Wedgfelspathic art-decorated "stone china," etc., have been termed faience fine or faience anglaise. Among connoisseurs the word faience is still, generally, considered to define a soft, porous bodied earthenware covered with opaque tinenamel and decorated in colors. This takes in the following factories

Of 16th century fabriques in France the lowed by Rouen (see Rouen), Palissy ware; Lyons, Beauvais, Rennes. Outside France, Hirschvogel was working in Nuremberg; Talavera (Spain) and Delft (see Delft FaiENCr.) were active centres of faience. In the (among others) were added. Paris (Claude Remeng others) were added: Paris (Claude Bordeaux, Clermont-Ferrand, Sceaux-Penthièvre (Chapclle), Sinceny, Strassburg and Haguenau (the Hannongs), Moustiers (see Moustiers), Marscilles (the Clerissys, Savy, (Cyffeet.), Sarreguimines Aprey (Ollivier) Cle (Boussemaert), Saint Denis, Apt, La Rochelle, Valenciennes, Bourg-la-Reine, Varages, Rubelles, Orleans, Saint Amand-les-Eaux, Desvres, Aire, Saint Omer, Chantilly, Crcil, Saint Paul, etc. French ceramists of note for decorative wares in modern times are Deck, Boulois, Parvillée, Haviland, etc
Faience Fine.- When Astbury or Heath (undecided which), in England, discovered (1720) the use of ground flint (silica) to give a white slip coating to the colored local clays, they were enahled to make a ware similar in and a glaze had to be added. The noted "cream-colored" body (see Pottery) soon developed and revolutionized pottery making the world over. "China clay" and "china stone" (felspar clays) added to the flint produced a pertectly white hard body, and the English had the faicnce fine or faience anglaise that wares. It is the "standard" body uscd universally to this day
Bibliography.-Azam, Dr., 'Les anciennes Faiencries de Bordeaux) (Bordeaux 1880); Aussant, M. J., 'Fabrique de poteries artistiques a Fontenay, pres de Rennes, att XVI et
XVII siècles) (Rennes 1900); Barber, E. A. 'T:n enamelled Pottery, Majolica, Delft and other stanniferous Faience) (Philadelphia 1906) ; Barbier, V., (Poterie de la Savoie) (Chambery 1875) ; Burton, W., 'A History and Description of the Old French Faience)
(New York preface 1903): Cavalucci and Molier, E., (Les Della Robbia) (Paris 1884): Cohendry, M., 'Céramique Arverne' (Cler-mont-Ferrand) ; Dangibeaud, C., 'Notices sur les potiers et les faienciers de la Saintonge' (Saintes 1884) ; Davillier, J. C., 'Histoires des Faiences de ; Marscilles et autres fabriques méridionales' (Paris 1863); Despierres, G.,
'Histoire de la Faience de Saint-Denis-surSarthon' (Alencon 1889) ; du Monceau, Duhamel, 'L'Art du potier de terre' (in 'I.a Grande Encyclopedie,' Paris 1773) ; Fieffe, (La Taience patronomique dans Ia

livitly glazed "Henri Deux") (see SAivt Porchanky ware, Wedgwood (see Weng
wood), Palissy (see Palissy); and the medert tcispathic art-decorated "stone china," ctc., hant Among connoisscurs the word faience is stil: generally, conside ed to define a sult, porous borlicd earthenware covered with opaņue tin enaracl and decorated in colors. This take in the following factories
estiest was Nevery fabriques in France the eafliest was Nevers (the Conrade) to be fol
lowed by Rouen (sece Rouen), Palles. ware; Lyons, Beauvais, Rennes. Outside France, Hirschyoge! was working in Noremberg;
Talavera (Spain) and Delft (sec Decf FalENCe) were active centres of faience. Ini the 17 th and 18 th centuris the following actorics (among others) were added: Paris (Gautic
Reverend), Saint Cloud (the Chicaneaus) Bordeanx, Clermont-Ferrand, Sceaux-Penthicvre (Chapelle), Sinceny, Strassburg and Hagucnm: (the Hannongs), Mousticrs (Moosnmen, Marselles (the Cleriseyt, Savy Viry, enc), Nideriller (Lemire), Iuncvilié L.ili" i Suscmacrt), Saint I) ges Rubelks, Orlcans, Suint Amand-lcs- aux T), otes, Saint Omer, Chantilly, Creil, dayative, cte. French ceramists of note for deorative wares in modern tines are Deck Bios, arville, Haviland, atc. (mindecited which), in England discovered (1.0) the use of eround thint silica) to give Th. core coating to the colored local clays, a veanace to Delft; but the slip did nal fure 7-d a slaze had to be added. The nated
 (i) f over. Chna clay and china stone" (ramerimy clays) aded to the flint produced a had the whate bor body, and the English had the futa jow faience anglaise that the "standard" body used univermally to this day.
Bibliography.,
zam, Fr, (Len ancientes Faiencerics de Bordeaux (Borderux 1880), Aussant, M. J., 'Fabrique de poteries artis-
tinue: a Fontenay, pics de Rennes, au XVI (i tinue: a montenay, pics de Rennes, au XVI (i) 'Tin enatselle Polter, Majoica, Delft and other stanmiforous Faience) (Philadelphia 1we) ; Barbicr V," (Poterie de la Savoie (innm!ery 135); Burton. W., 'A Histor (and Eorle preface 1003): Cavalucci and Niul (T, Ees Della Robiba' ¿Paris lo, Enent-Ferrand"; "Céraminue Aryernc: (Clerpotiers e les faiemciers de la Saintonge Haint:s 19:) Davillier: C., Histoirc ato
 Histoin: de la Faience de Saineranieas
 irando Jimyclopedie,' Paris 1773) : Fiete La Faience pationomique... dans

Céramique nivernaise) (Clamecy 1901); Fillon, B., 'L'Art de Terre chez les Poitcvins' bia' (Paris 1910); Forestic, E., 'Les anciennes faienceries de Montauban, Ardus, Negrepelisse, Auvillar, etc.' (Montauban 1876) ; Fraisse, du, de Vernines, 'Parallele des Ocuvrages de Poterie d'Auvergne, ancicns et modernes'
1874) ; Frantz, H., (French Pottery and Porcelain) ; (London 1906); Gasnault, P., and Garnier, E., 'French Pottery' (London 1884); Gerspach, 'Documents sur les anciennes faienceries françaises' (Paris 1891) ; Grange, G., 'Histoire de la manufacture de faience de
Clermont-Ferrand)' (Clermont-Ferrand 1882) ; Clermont-Ferrand) (Clermont-Ferrand
Grasset,
(Historique de la Faiencerie de La Charitè-sur-Loire) (Paris 1876); Houdry, J., 'Histoire de la ceramique lilloisc' (Paris 1869) ; Joly, A., 'Paul-Louis Cyffé' (Nancy 1864); Lambert, G., 'Traité pratique de la fabrication des faiences fincs) (Par.s 1865); L'Aulnoit, H. de, 'Essai de la Faience de
Douai, dites Gres Anglais' (Lille 1882); LeaderDouai, dites Gres Anglais'
Scott, 'Della Robbia and other Sculptors' (London 1883) ; Lejéal, A., (Recherches historiques sur les manufactures de faience et de porcelain de Valenciennes) (Valenciennes 1868); Le Men, R. F., La manufacture de Quimper' (Quimper 1875) ; Loche faience de Quimper' (Quimper 1875) ; Loche,
Comte de, 'Notice sur la fabrique de faience de la Forest') (Chambery 1880); Mareschal, A. A., 'La faience populaire du XVIII siècle' (Pari's 1872); Michel, E. (Essai sur l'histoire des faiences de Lyon' (Lyons 1876) ; Mussel,
G . (Les faiences rochelaises)
(La Rochelle 1888): Pier, G. C. 'Pottery of the Near East' (N88) ; Pier, G. C.', 'Pottcry of the Near East'
(New York 1909); Solon, L. M. E., (A History and Description of Old French Faience) (London 1903); Tainturicr, A., 'Recherches sur les anciennes manufactures de porcelain et de faience d'Alsace et de Lorraine) (Strassde faience et de porcclaine . . de Sceatux (Paris 1868) ; Vailliant, V. J., (Les céramistes boulonnais) (Boulogne i899) ; Wallis, H., 'Persian Lustre Vases' (London 1899), Warmont, 'Recherches historiques sur les faience
de Sinceny, Rouy et Ogncs' (Paris 1864). Sinceny, Rouy et Ogncs' (Paris 1864).
FAILLON, Michel Etienne, mē-shel ā-tē-en fā-yôń, French historical writer: b. Tarascon, France, 1799 ; d. Paris, 25 Oct. 1870 . He was a Sulpician and visited Canada in 1854 to investes of noted French-Canadian religionists such as Mme. d'Youville (1855) ; and Mle France (1854) ; a history of the Church in North of the French in Canada, three volumes of which appeared (1865-66) before his death which appeared ($1865-66$) before his dea
His 'Life) was published at Paris in 1877.
FAILLY, fa'yē', Pierre Louis Charles de, French soldier: b. Rozoy-sur-Serre, 1810; d. 1892. He received his military training a Saint-Cyr and after graduation joined the army in Algeria. At the outbreak of the Crimean was a division commander in Italy in 1859 and took part in the battles of Magenta and Sol ferino. In November 1867 he defeated Garitaldi at Mentana. At the beginning of the var with Prussia in 1870.the emperor appointed

Beaumont on 30 Aug. 1870 he commanded the right wing of McMahon's army, but was forced
to retreat, leaving McMahon's right unprotected and resulting in his retreat being cut off. The dircct result was the capitulation after was his removal his post. In 'Campagne de 1870: Operations et marche du Seme Corps jusqu'au 31 aout' (1871) he defended his conduct of operations.

FAILSWORTH, England, town in Lancashire, four miles north by east of Manchester, Cotton Lancashire and Yorkshirc Railway. The electric-lighting and tramway services are supplied from Manchester. Pop. 15,098.

Failure. See Bankrupt.
FAIN, fân', Agathon Jean François, Baron, French historian: b. Paris 1778; d.
1837. In 1806 he became secretary of the Imperial archives, three years later was created Napoleon I. He served the Emperor faith to until 1815 and drew up the papers of abdication. In 1830 Fain was appointed first secretary of the Cabinet and served three years as deputy from Montargis in 1834-37. He published several memoirs, including 'Manuscrit de 1814, contenant l'histoire des six derniers mois
du regne de Napoleon) (1823; 4th ed. 1906). du regne de Napoleon) (1823; 4 th ${ }^{\text {ed., }}$ 1906) ;
(Manuscrit de 1813' (2d ed., 1825) ; 'Manuscrit de 1812 ' (2 vols., 1827); '(Manuscrit de Y'an III) (1828). His 'Mémoires' were published in 1908.
FAINÉANTS, fâ-nā-ăñ, or DO-NOTHING KINGS, the name given in French history to some of the Merovingian sovercigns, who were the puppets of the mayors of the pal FAINT (sycope) , pul for den loss of consciousness. Impoverishment of the blood, lowered vitality from any cause, an overwrought nervous system and disease of the circulatory system predispose to such attacks. The immediate cause is an anæmia of the brain. This sudden cerebral anæmia is most smells, pains or fears. The attack may be ushercd in by a period of nausea, sighing respiration, or "faint fecling." Immediate lowering of the head below the rest of the body will frequently ward off further trouble. Most comcoming absolutely bloodless and having a deathlike calm; the pulse is weak or imperceptible, the breathing very shallow. In true syncope spasms are not present, neither is voiding of the urine or faces. Fatal termination is rare, consciousness ordinarily being restored in a few motient must be placed in a recumbent position with the head as low or lower than the rest of the body; constricting clothing should be loosened; and water may be slapped on exposed parts. Smelling-salts held to the nose are of value. Later nol condition: but may be tion of vertical position should be postponed as long as practicable.

FAIOUM, or FAYOUM. See Fayum. b. near Belfast, Ireland, 3 Dec. 1831 ; d. San

Francisco, 28 Dec. 1894. He emigrated to
America in 1843 and went to California in the famous ' 49 year. He amassed great wealth by mining in Nevada, to which he went in 1860 .
He served from $1881-85$ as a Democratic repesentative from Nevada to the United States Senate.
FAIR GOD, Mexican traditional hero and culture god. See Quetzalcoa
Mythology; Yucatan ; UxMal

FAIR GOD, The, a romance by Lew Wal lace 1873 . It is a story of the conquest o Mexico by the Spanards, its scene laid upon
Aztec soil, in the early part of the 16th century. The title is derived from Quetzalcoatl, "the fair god," the Aztec deity of the air.

FAIR HAVEN, Mass., Lown in Bristol County on Buzzard's Bay, at the mouth of the Acushnet River and on the New York, New
Haven and Hartford Railroad, 60 miles south Haven and Hartford Railroad, 60 miles south
of Boston and opposite New Bedford, with of Boston and opposite New Bedford, with
which it is connected by bridges. Here are the Sacred Heart, several banks, churches and ther public buildings. It has manufactories of glass castings, nails, loom cranks, whale boats, oil casks and tacks. Many buildings of architectural merit, which render Fair Haven one of the most attractive towns of the State, were
erected by Henry H. Rogers rials to members of his family. One architectural group, a fine example of Tudor architecure, consisting of a church and two other
hinildings, is considered a model of beauty. The town is a summer resort. The government is administered by town meetings. Fair Haven
was separated from New Bedford and incorporated as a town in 1812. On 7 Sept. 1778, the militia, commanded by Maj. Isracl Fearing, repulsed a British attack here. Pop. 7,291.
Consult Ricketson, 'The History of New BedConsult Ricketson, 'The Hi
ford' (New Bedford 1858).

FAIR HAVEN, Vt., town of Rutland County, 30 miles east of Rutland, on the Delaware and Hudson Railroad. It has a Carncgic town owns the waterworks and sewerage sys-
tem. It received its charter in 1783, at which tem. It reccived its charter in 1783, at wh
time it included West Haven. Pop. 3,095 .
 Limenes), an anchorage on the southern coast of Crete, five miles cast of Cape Litino. It is winds. The only mention of it by ancient writers is that by Paul (Acts xxvii, 8), whose well-known shipwreck occurred after departure from Fair Havens for Phenice or Phenix. It is probable that there was no town at that point, although, as stated in Acts, Lasca was

FAIR HEAD or BEN
FAIR HEAD, or BENMORE, a precinitous promontory of the north coast of county 636 feet above the sea and consists of carboniferous strata, overlaid by greenstone columins, 20 to 30 feet thick and 280 to 320 feet high.
FAIR ISLE, a solitary Shetland island lying midway between Shetland and Orkney, and 30 miles southwest of Lerwick. It is three miles long and two miles broad. The men em-
ploy themselves chiefly in fishing and the women
in knitting the well-known Shatland hosiery They are said to have acquircd this art from the Armada, was wrecked here in 1588 . Pop. 139.

FAIR MAID. Sce Scup.

FAIR MAID OF PERTH, The, a novel by Sir Walter Scott, published in 1828 . The FAIR OAKS AND
ROAD, Engagement AND DARBYTOWN Fatr Oaks). On 27 Oct. 1864, General Grant began a movement on the Peterslurg lines to seize the South-side Railroad, and as a support to the movement had ordered General River on Richmond. Parts of three divisions of the Tenth Corps under Gencral Terry, six Wrigades of the Eighteenth Corps under Gencral Weitzel and Gencral Kautz's cavalry division, were designated for the movenent. Tcrry was to make a demonstration along the Darbytown
Road, under cover of which Weitzel was to push through White Oak Swamp to reach the Williamshurg road and seriously threaten Richmond. The columns started from camps, near Chaffin's farm, very carly on 27 October. Terry reached the Darbytown Road, a part of his command crossed over to the Charles City Road 8 A.M. engaged the Confederates in their entrenchments from the New Market Road to the Charles City Road. Weitzel, after a march of 16 miles, crossing hoth the Darbytown Road and Charles City Road, at 1 P. m. reached the Williamsburg Road at Heintzelman's old works, on the battleficld of 31 May 1862 , and pushed at
once down the road onc and a half miles toward Richmond, and came upon the Confederate works which appeared to be feebly held by a small body of dismounted cavalry and three guns. Weitzel prepared to attack, first sending York River Railroad to troops across the Confederates' left near the New Bridge Road. The defenses north of the James were held by General Longstreet, with the divisions of Gencrals Hoke and Ficld, some "local defense" troops under General Ewell, and General Gary's cavalry brigade. These were posted with refsoon as Longstreet detected Weitzel's movement he ordered Field's division to move to the Ieft and it formed on cither side of the Williamsburg Road. It was $3.30 \mathrm{P} . \mathrm{M}$. when Weitzel, with two brigades and others in support, advanced ond either side of the road, over open ground musketry and artillery. His troops almost reached the works, but were repulsed with scvere loss in killed, wounded and missing. Soon after dark Weitzel withdrew after losing over $1,000 \mathrm{men}$. While weitzel was engaged, Terry, at 4 P . M., was ordered to press his
demonstration and carry the entrenchments. He made the attempt and was repulsed. On the next day the expedition returned to camp. The Union loss was 905 killed and wounded and 698 missing. The Confederate loss was comparativcly small; Ficld's division and Gray's ing. The entirc loss probably did not exceed
100. Consult Humphrey, 'The Virginia Campaign of 1864-65.)
E. A. Carman

FAIR OAKS (SEVEN PINES), Battle of. After the battle of Williamsburg (5 May 1862) the Army of the Potomac, under General McClellan, advanced cautiously up the Penin-
sula, established a base at White House and 20 sula, established a base at White House and at Bottom's Bridge, and the entire Fourth Corps under Gen. E. D. Keyes crosscd on the 23d, taking position 25 May at Seven Pines, on the main road to Richmond, about five miles distant. The Third Corps, under Gen. S. P Heintzelman, crossed 25 May. This left on the north bank the Second, Fifth and Sixth Corps, ner, Fitz John Porter and Wm. B. Franklin. McClellan began to rebuild destroyed bridges and to perfect communication between the two wings of his army astride the Chickahominy. The movemens acclellan north of the Chickahominy and information from his cavConfederate commander, that General McDowell with a strong corps was about to join McClellan from Fredericksburg, upon which 28 May, he ordered up General Huger's division from Petersburg and Drewry's Burd to General Lee that every available command should be concentrated at Richmond On 25 May General Casey's division of the Fourth Corps advanced from Seven Pines to Fair Oaks, about threc-fourths of a mile, and threw up works covering the road, and on 30 Corps, were advanced about a fourth of a mile in front of Savage Station to within supporting distance of Casey. General Couch's division, Fourth Corps, was at Seven Pines and
General Hooker's division, Third Corps, on the General Hooker's division, Third Corps, on the border of White Oak Swamp. Johnston, from watched McCIellan's cautious advance. A rcconnoissance 30 May developed the fact that Keyes had advanced his lines to Fair Oaks; Johnston saw his opportunity and issued orders for an attack next day. The Army of the Potomac, 98,008 were present for duty, and it had 280 guns. Johuston had abont 63,000 effectives and was not well sutpplied with artillery. John ston purposed to throw 23 of his 27 brigades against Keyes and Heintzelman and with four brigades along the line of the river from New Bridge to Meadow Bridge prevent the rest of McClellan's army from crossing the stream.
H Ie purposed to move the 23 brigades by the Charles City, Williamsburg and Nine Mile roads, crush Kcyes' corps and drive it back in disorder on Heintzeiman and capture or destroy those two corps before any assistance could reach them from the north bank of the stream. There was some misunderstanding of
orders on the morning of the 31 st and much consequent delay, hut at noon Gen. D. H. Hill's division of four brigades deployed in double line on either side of the Williamsturg Road advanced on Casey's division at Fair Oaks and after a severe fight of two hours drove it back upon Couch's division at Seven Pines. Hill and two brigades of Kearny's division came to
the assistance of Couch and Keyes, and the struggle was rencwed at Seven Pines, with the result that the cutire Union force was driven
back to a line of entrenchments about a mile in the rear which position was held. Three Union divisions had been engaged and suffered severely, and a part of Couch's division had Confederf. Gen. G. W. Smith, with sehckahominy, under orders to engage any troop that might cross the stream to assist Keyes and Heintzelman, or, if none came, he was to fall upon the right flanks of the Union lines enthat no Union troops would cross to the south bank of the stream, Smith put some of his troops in motion to make the flank attack, but it miscarried from the timely arrival of Sumner on the south bank of the Chickahominy. Suminer, who was nearest Keyes and Heintzelman, at once in the saddle and ordered his troops under arms. A little later orders came from McClellan that he should be prepared to march at a moment's notice. Without waiting another Chickathe marched his two divisions to the Chickahominy and paused upon the two bridges, the order came to cross. Richardson could get but one brigade of his division over the lower bridge and was obliged to move up and follow Sedgwick's division over the Grapevine Bridge, which swayed and tossed in the river. But the with a Chickahominy could not trifle, soon pressed and held it down among the stumps of the trees, which in turn prevented its lateral motion. Once across, Sumner pressed forward on the road, deep with mud, toward Fair Oaks, and came up tery had been cut from tegiments and a batholding ground about a half milc from Fair Oaks, with Smith approaching to make his flank attack. But four of Sumner's regiments had formed on Couch when Smith attacked, two more soon followed, and these six regiments, brigades to dislodge them and saved the day Fiair Oaks. Richardson's division came up at nightfall and formed on Sedgwick's left extending toward a brigade of Heintzciman's corps, while Hooker coming to the support of the defeated troops on the Williamsburg road filled
vacant spaces in the line. There were now three corps across the Chickahominy in continuous order, ready for action when day should dawn. Near the close of the day Gencral Johnston, the Confederate commander, was severcly wounded and relinquished command to Gen. G. W. Smith. On the morning of 1 June, the Union army awaited attack, which was delivered by the Confedcrates, and on some parts of the line the
fighting was scvere, but the advantage remained with the Union troops, who regained most of the ground lost the previous day. On 1 June Gen. R. E. Lee was placed in command of the Army of Northern Virginia, but did not take dircction of affairs on the field until the fighting wations around Richmond from to the fortifihad advanced 31 May. The Union forces engaged at Fair Oaks numbered about 36,000 ;
the Confederates ahout 32,000 . The Union loss was 4,384 killed and wounded and 647 missing
the Confederate loss was 5,729 killed and the Confederate loss was 5,729 killed and
wounded and 405 missing. Consult Alexander, wounded and 405 missing. Consult Alexander, 'Military Memoirs of a Confederate' (1907); Alian' ('Battles and Leaders of the Civil War) (Vol. II) ; McClellan, 'My Own Story'
Michie, 'Life of General McClellan'; 'Official Records' (Vol. XI); Walker, 'History of the Second Army Corps'; Webb, 'The Peninsula.'

FAIR ROSAMOND, the common appellation of the daughter of Lord Clifford, who says she was kept by the king in a bower a Woodstock, which was reached by a labyrinthine passage, known only to the king. The legend adds that in 1173 Queen Eleanor discovered and poisoned the fair Rosamond
FAIR SIDEA, The, a play of Jakob Ayrer Which by some is cons
Shakespeare's 'Tempest.'

FAIR TRADE, an expression used in Great Britain by those who, professing to be free
traders and objecting to the free trade fiscal policy of that country as a one-sided business, would tax goods imported from any country which refuses to give reciprocal concessions to British exports. Free traders consider this vie, as protectionist. They hold that if they can
import goods cheaper from a protectionist import goods cheaper from a protectionist
country than elsewhere, they should be free to reap that advantage even if they cannot export their own goods to that country free of duty. See Free-trade.

FAIRBAIRN, Andrew Martin, English theologian: b. near Edinburgh, 4 Nov. 1838; d. 9 Feb. 1912. After ministering in charges o
the Scottish Evangelical Union, he was apthe Scottish Evangelical Union, he was ap-
pointed in 1877 to the principalship of Airedale independent College, Bradford; and was the first principal of Mansfield (Congregational) College, Oxford, 1886-1909. His most important works are 'Studies in the Philosophy of Religion and History' (1876) : 'Studics in
the Life of Christ) (1881): 'The City of God' (1882): (Religion in History and in Modern (1882) ; (1884); 'Christ in the Centuries) (1892); 'The Place of Christ in Modern Theology' (1893); 'The Philosophy of the Christian
Religion) (1902). ligion' (1902).
FAIRBAIRN, Patrick, Scotch Preshyterian clergyman: b. Hallyburton, Berwickshire, 28 Jan. 1805; d. Glasgow, 6 All, 1874 . He re-
ceived his education at the University of Edinceived his education at the University of Edin-
burgh. In 1826 he was licensed to preach
and served as pastor in the Orkney and served as pastor in the Orkney
Islands, Bridgeton in Glasgow and Salton. Islands, Bridgeton in Glasgow and Salton.
In 1843 he became minister of the Free Church, remaining in Salton. He was professor of divinity in the Free College of
Aberdeen 1853-56, and from 1856 until his Aberdeen princinal of the Free Church College of Glasgow. He was moderator of the General Assembly in 1865 and a member of the Free
Church delegation which visited the United Church delegation which visited the United
States in 1867 . He translated several works States in 1867. He translated several works
from the German and edited 'The Imperial from the German and edited 'The
Bible Dictionary' (2 vols., 1866). He was the Typology of Scripture) (1845-47; new ed., New

York 1900); 'Ezekiel and the Book of His Prophecy' (1851); 'Prophecy viewed in its distinctive naturc, its special functions and its
proper interpretation)' (1856) ; 'Hermeneutical proper interpretation' (1856); 'Hermeneutical
Manual' (1858) ; 'Pastoral Theology,' with a Manual' (1858); 'Pastoral Theology,' with a
biographical sketch of the author by J. Dodds (1875).

FAIRBAIRN, Sir William, Scottish engineer: b. Kelso, Scotland, 19 Feb. 1789; d. 18 Aug. entered business in Manchester, England, in 1817. He constructed the first iron ship in Great Britain, for traffic on the Forth and Clyde Canal, and afterward his firm built nearly 1,000
vessels. He was a friend of George Stephenvessels. He was a friend of George Stephen-
son, made great improvements in cotton mill machinery, was the inventor of a rivetting machine which effected a revolution in the method of manufacturing boilers, and was associated with Robert Stephenson in designing and
Menai Strait. He was created a baronet in 1869. He was the author of 'Mills and Millwork'. (Iron, Its History and Manufacture); 'Appli-
cation of Iron to Building Purposes) ; (Iron cation of Iron to Building Purposes'; 'IronShipbuilding', 'Useful Information for Engi-
neers'; 'An Experimental Inquiry into the neers'; 'An Experimental Inquiry into the erties of Steel,' ctc. Consult his 'Life,' edited by Pole (London 1877).

FAIRBANK, Calvin, American clergyman : 12 Oct. 1898. He was an ardent abolitionist and during $1837-39$ aided 23 slaves to escape
across the Ohio River. In 1843 he raised $\$ 2,275$ to secure the liberty of a nearly white slave gir. who was to be sold at auction at Lexington, of the Hayden family, for which offense he suffered five years' imprisonment. Later he Was again detected in violation of the Fugitive Slave Law, and sentenced to 15 years imprisonment at Frankfort, where he was cruelly
treated, receiving about 35,000 reated, receiving about 35,000 lashes on his
naked body. In 1854 he was set at liberty spending more than 17 ycars in jail. He pub-
lished 'How the Way Was Prepard) (in which lished 'How the Way Was Prepared' (in which he told the story of his own life).

FAIRBANKS, Arthur, American teacher and author: b. Hanover, N. H., 1864. He was graduated at Dartmouth College in 1886, and received a doctorate from Freiburg, Germany:
Ic has taught at Dartmouth, Yale and Corncli, and from 1900 to 1906 professor of Greck literature in the State University of Iowa. In 1907 he was clected director of the Boston Museum of Fine Arts. Among his writings is an 'Intro duction to Sociology (1901), which has heen translated into Japanese; 'First Philosophers
of Greece) (1898): 'A Study of the Greek Pean' (1900); 'The Mythology of Greece and Rome' (1907) ' 'Handbook of Greck Reli-
gion' (1910): 'Athenian White Lekythoi' gion' (1910); ©Athenian
(Vol. I, 1907; Vol. II, 1914).
FAIRBANKS, Charles Warren, American lawyer and statesman: b. near Unionville Centre, Union County, Ohio, 11 May 1852; d Indianapolis, Ind., 7 Junc 1918. His father was
a Vermonter and was one of the early pioncers who settled in the West in the middle, 30 's and helped to hew out of the wilderness the great
Buckeye State. The son's earliest life was
spent in toil on the farm. He attended the pub-
lic school in the neighborhood until his 15 th lic school in the neighborhood until his 15th year, when he entered the senior preparatory
department of the Ohio Wesleyan University at Delaware, Ohio, where he was graduated in 1872. After leaving the university he went to Pittsburgh, Pa., as Associated Press agent, mean-
while studying law. He was later transferred while studying law. He was later transferred where Associated Press at Cleveland, Ohio, Cleveland Law School, until he was admitted to the Supreme Court of Ohio in 1874 , and in the same ycar removed to Indianapolis, Ind., where he began the practice of his profession.
He took an active interest in politics but sought He took an active interest in politics but sought no public oflice until he was elected to the United
States Senate in 1897 . He was chairman of the Indiana State conventions in 1892, 1898 and 1914. In 1895 he had the unanimous complimentary vote of his party, which was in the minority,
for the United States Senate He was clected for the United States Senate. He was clected
to the United States Senate 30 Jan. 1897 , and at to the United States Senate 30 Jan. 1897, and at resigned 4 March 1905 to qualify as Vice-President of the United States, to which office he was clected on the ticket with Theodore Roosevelt in 1904. He was a delegate-at-large to the Republican National Convention at Saint Louis in 1896 and was temporary chairman of the can National Convention at to the Republi 1900 and was chairman of the Committee on Resolutions; a delegate-at-large to the Republian National Convention at Chicago in 1904 and was chairman of the delegation; a delegate at Chicage in the Republican National Convention Committee on Resolutions. He was appointed by President McKinley a member of the United States and Brilish Joint Figh Commission which met in Quebec in 1898 for the adjustment the Alaskan, the Fur Seal and other quesada; he was chairman of the American commis sioners. By appointment of President Roose velt he represented the United States at the Tercentennary Cclebration at Quebec in 1908. He was a candidate for the Republican nomination for President in 1908. At the close of Mrs. Fairbanks he made a tour around the world. At the Republican National Convention at Chicago in Junc 1916 he was nominated for Vice-President of the United States on the the degree of with Eharles Hughes. He received sity, Ohio State University, Ohio Wesleyan University and Northwestern University. He was a member of the board of trustees of the Ohio Wesleyan, DePauw and American universities and president of the Mehodist Hosciation Indiana and the Indiana Forestry Asso Regents of the Smithsonian Institution.
FAIRBANKS, Henry, American inventor: 1918; son of Thad $\begin{gathered}\text { cus Fairbanks } \\ \text { a. } 7 \text { June }\end{gathered}$ graduated at Dartmouth College in 1853, and at Andover Theological Seminary in 1857. He was ordaincd in 1858; held nastorates in Burke any barnet, Vt., and in 1859 was professor of mhysics, and later of history, at Dartmouth
firm of E. and T. Fairbanks and Co., in 1868 ; and subsequently gave much of his time to mechanical experiments, and patented a scale for weighing grain and subsequently perfected and
patented 34 additional inventions of various kinds. He was president of Saint Johnsbury Academy and was prominent in the work of the Congregational Church in Vermont.

FAIRBANKS, Thaddeus, American in ventor: b. Brimfield, Mass., 17 Jan. 1796 ; d. Saint Johnsbury, Vt., 12 April 1886. He settled in Saint Johnsbury in 1815, and there worked with his father in a saw and grist mill, and also and his brother Erastus began the manufacture of stoves and plows. In June 1831 he patented the platform scales bearing his name. Afterward about 50 different improvements were all parts of the world ; his last patent being all parts of the world; his last patent being
taken out when he was 90 years old. His donations to Saint Johnsbury Academy totaled $\$ 200,000$.

FAIRBANKS, Alaska, city and capital of the fourth judicial district, on the Tanana River near the head of navigation, 160 miles of Valdez. It is the commercial stage north Fairbanks gold-mining region and is connected with Chena, 45 miles distant by the Tanana Valley Railroad. It is in all respects a modern city, with a centrally located steam-heating plant, schools, churches, electric light and power plants, etc. It is connected with Valdez boat communication with Dawson to the and to Saint Michael on the west. In the three years 1906-08, Fairbanks sent out \$27,000,000 in gold. Lode mining has in recent years displaced the earlier placers. The governa railroad to Fairbanks the cost of over $\$ 14,000,000$. Pop. 3,541 .
FAIRBURY, Ill, city of Livingston County, on the Wabash and the Toledo, Peoria and Western railroads, 60 miles east of Pcoria. Coal mining and farming are the leading in-
dustries. The city has grain clevators, flour dustries. The city has grain elevators, flour
mills, cement works and machine shops mills, cublic library. Pop. 2,532 .

FAIRBURY, Ncb., city and county-scat of Jefferson County, on the Little Blue River, the Saint Joseph and other branches of the Chicago, Rock Island and Pacific System, ahout 60 miles southwest of Lincoln. It is situated in a good agricultural region, and its chief manufactures are flour and dairy products. A large nursery a Carnegie library and fine post-office building It owns its waterworks and electric-light plant.

FAIRCHILD, Ashbel Green, American clergyman: b. Hanover, N. J., 1 May 1795; d Smithficld, Pa., 1864. He wrote many contriwork, 'The Great Supper,') was translated into German and had an immense sale. He also puhlished (Baptism') 'Faith and Works'; and 'Confession of Faith.'
FAIRCIIILD, Charles Stebbins, Amcrican financier: h. Cazenovia, N. Y., 30 April 1842 .
He was graduated at Harvard

1863; admitted to the bar in 1865 ; became deputy attorney-general of New York in 1874 and attorney-general in 1876 . After spending some time in Europe he settled in New York
city in 1880, where he practised law till 1885 He was assistant Secretary of the Treasury 1885-87, and Secretary 1887-89. He was a member of the monetary commission appointed by the Indianapolis Monetary Conference in 1897. From 1879 to 1905 he was president of the New York Security and Trust Company tions.
FAIRCHILD, David Grandison, American botanist: b. East Lansing, Mich., 7 April
1869 . He was rraduated at the Kansas State Agricultural College in 1888 and made postgraduate studies in botany at Naples, Italy, in 1893, at the University of Breslaut and Berlin in 1894, Munster and Bonn in 1895-96, and at Buitenzorg, Java, in 1896. Since 1889 he has ment of Agriculture, since 1898 has been agricultural explorer and since 1903 has been in charge of foreign explorations. In 1897 he organized the work of seed and plant introduction of the Department, now the office of Sced and Plant Introduction, of which he has had 1906 . He has made special recharge since 1900 . He has made special researches in botany since 1896 as assistant to of economic plants for introduction into the United States. He is a member of the American Association for the Advancement of Science
FAIRCHILD, George Thompson, American educator: b. Brownhelm, Ohio, 6 Oct. 1838; d. 1901. Hc was graduated from Oberlin College 1862 and from Oberlin Theological School Michigan Agricultural Collcge, 1879-97; and was vice-president of Berea College from 1898. He entered the Congregational ministry in 1871 and was the author of 'Rural Wealth and Welfare) (1900).
FAIRCHILD, Herman Le Roy, American educator: b. Montrose, Pa., 29 April 1850 . He was graduated at Cornell University in 1874 ; was secrctary of the New York Academy of Academy of Science 1889-1902; secretary of the Geological Society of America 1890-1907 and president in 1912. In 1911 he was president of the New York State Commission Government Association. He has heen professor of geology
at the University of Rochester from 1888, and at the University of Rochester from 1888, and glacial geology of New York State.

FAIRCHILD, James Harris, American educator: 1902 He was president of Oberlin College d. 1902 . He was president of Oberlin College
from $1866-89$ after a service of 26 years as tutor, professor of languages, professor of mathematics and professor of moral philosophy and theology. Besides editing the 'Memoirs of Charles G. Finney' (1876) and Finney's 'Sys'Moral Philosophy' (1869): 'Oberlin, the Colony and the College' (1883) ; 'Flements of Theology, Natural and Revealed) ; and 'Woman's Right to the Ballot' (1870).

FAIRCHILD, Lucius, American military Wfficer: b. Kent, Ohio, 27 Dec. 1831; d. Madison, Wis., 23 May 1896. At the beginning of the Civil War he enlisted as a private in the Federa tain in the regular army and major in the volunteer army. He took part in the battles of Bull Run and Antietam, and led the charge up Seminary Hill at Gettysburg, where he lost his eft arm. He was promoted brigadier-general state of Wisconsin and was governor 1866 or In $1886-87$ he was commander-in-chief of the Grand Army of the Republic

FAIRCLOUGH, Henry Rushton, Ameri5 philologist : b. near Barric, Ontario, Canada, 15 July 1862. He was graduated at Toronto University in 1883 and in 1896 reccived the de-
gree of D.Ph. at Johns Hopkins. From 1893 gree of D.Ph. at Johns Hopkins. From 1803 of classical literature at Leland Stanford University. In the latter ycar he was made professor of Latin. He also taught Latin in the summer sessions of the University of Wisconin 1906, Columbia 1908, Chicago 1910, Colorad can School of Classical Studies, Rome. He was delegate to the centennial celebration of the University of Berlin in 1910. He is the author of 'The Attitude of the Greck Tragedians Toward Nature' (1896) ; 'The Andria of Terence' (1901) : 'The Connection between Music an Anetry in Early Greek Litcrature (1902); Th (1003); 'Virgil's Æneid,' with S. L. Brow (1908) ; 'The Phormio of Terence,' with L. I Richardson (1908); 'The Trinummus of Plantus' (1909) ; also 'Monograph on the Text Philological Association 1900). He was editor hilological Association, 1900). He was editor Classics', and edited Virgil in the 'Loch Classics.)
FAIRFAX, Donald McNeill, American naval officer: b. Virginia, 10 Aug. 1822; d Hagerstown, Md., 10 Jan. 1894. During th Mexican War he participated in the capture of personal charge of the transfer of Messrs Mason and Slidell and their secretaries from thi Trent, a British mail ship, to the San Jacinto. He later took part in the chief naval operations in Charleston harbor; was promote
car-admiral in 1880 and retired in 1881
FAIRFAX, Edward, English poct: b Denton, England, alout 1580 ; d. near Otley, translation 'Godfrey of Boulogne' (1600), of Tasso's 'Jerusalem Delivered,') and dedicated it to Qucen Elizabeth; it was highly esteemed by James I, and is still valued; and on this rather than on his own "Eclogules" the fame of Fair fax as a poet rests. Fe is also author of a Dia count of the bewitching of his two daughters in 1621 .

FAIRFAX, Thomas, Lord, English general: b. Denton, Yorkshire, 17 Jan. 1612; d. Nun warmly espoused the cause of Parliament, an in April 1642 presented to Charles a petition of
the people imploring him to be reconciled to his
subjects. The same year he was appointed gencral of the horse, and in 1644 , together with
Essex, Waller and Manchester, he held a chief command in the English army sent to co-operate command in the English army sent to co-operate
with the Scots. The credit of the battle of Marston Moor has, by some authorities, been divided between Leslie and Cromwell, but, according to others, Fairfax is also entitled to share in it. On the Earl of Essex resigning the command of the parliamentary army in 1643, Fairfax insisted on the command of the horse being given to Cromwell. When he took Oxford the first thing he did was to set a guard upon the
Bodlcian Library, an act for which he deserves the gratitude of posterity. He subsequently, the gratitude of posterity. He subsequently, in putting down the levelers in the army, and in the following year captured Colchester, and caused Sir Charles Lucas and Sir George Lisle to be tried by court-martial and shot. He was one of the king's judges in 164, and erdered to to prevent his exccution. Being ordered positively declined the command and Cred him. He was inted (26 June 1650) to succeed him. missioners in 1654 and was a member of Cromwell's first Parliament. He assisted Monk against General Lambert, and co-operated in the committee charged to secure bis return
FAIRFAX, Thomas, 6th Baron of CamEron: b. Yorkshire, 1692; d. Greenway Court, educated at Oxford and was a contributor to Addison's Spectator. He came to America and settled on a vast landed estate in Virginia, inherited from his mother, a daughter of Lord Cul-
peper. This property, the "Northern Neck of peper. This property, the "Northern Neck of Virginia," cmbraced the region lying between the the Shenandoah Valley (about $6,000,000$ acres). William Fairfax, his cousin, acted as his agent, whose daughter. Anne became married to Lawrence Washington, the elder brother of George Washington. It was at Greenway with Gcorge Washington, and between them a warm friendship sprang up. Fairfax gave Washington employment on survey work on his domain, and did everything he could to advance his interest with the provincial government. During the War of the Revolution, Fairto live on his estate in perfect security. The surrender at Yorktown of Cornwallis, and the winning of American independence by the man he had "trained and moulded," was a great
mortification to Fairfax, and from this blow mortification to Fairfax, and from this blow
he never recovered. he never recovered.
The 12th Lord Fairfax and baron of Camlike his American predecessors, made no claim to the title.

FAIRFIELD, Sumner Lincoln, American author: b. Warwick, Mass., 25 June 1803; d. publication of the North American Magawine in 1833, and continued to edit and publish it for five years. His putblished volumes include 'Lays
of Melpomene)
(1824); 'Cities of the Plain'
(1828); 'Poems and Prose Writings' (1840) 'Select Poems' (1860).
FAIRFIELD, Conn., town, port of entry in Fairfield County, three miles southwest of Bridgeport, on the Long Island Sound, the
New York, New Haven and Hartford Railrad A popular summer resort, it has a beautiful situa tion and one of the finest beaches on the Sound The chief manufactures are paper, dog biscuit aluminum ware, wire goods, ladies' underwear rubber goods and machinery. It has good public buildings, two libraries and four buildfirst settlement was made in 1639 and the town was incorporated the same year. Its town hall, originally built in 1720, contains records dating back to 1648 . It was the scene of several Indian and Revolutionary battles, and in 1779 wa almost wholly burned by the Hessians and
Tories. Pop. 11,475. Consult Child (An New England Town' (New York 1895). Os good, 'Centennial Commemoration of the Burning of Fairfield' (ib. 1879).
FAIRFIELD, Ill., city, county-seat of Wayne County; 123 miles southeast of Springfield, on the Southern and the Baltimore and centre of a fruit-growing belt, especially is the for apples, and has a trade in srain live stock tolacco, etc. The manufactures are chiefly flour, lumber and dairy products. It is the site of the Hayward Collegiate Institute. Th hting plant is owned by the city. Pop. 2,754
FAIRFIELD, Iowa, city, county-seat of Jefferson County, 48 miles northwest of Burl\& Q . railroads. The principal manufactures ar brooms, tile, agricultural implements, machinery, furniture, carriages, flour and dairy products. The electric-light plant and the waterworks are owned by the city. The Parsons College, under the auspices of the Presbyterian
Church, was founded here in 1875 . The first church, was founded here in 1875. The firs
ettlement was made in 1839. Pop. (1920) 5948
FAIRHOLT, Frederick William, English artist and author: b. London, 1814; d. there, April 1866. He published 'Costume in Eng land: a History of Dress to the Close of the 18th Century' (1846) ; 'The Home of Shakespare Illustrated and Described' (1847); (Remarkable and Scientific Characters' (1849)
Dictionary of Terms in Art) (1854), etc.
FAIRLIE, John Archibald, American econ omist: b. Glasgow, Scotland, 30 Oct. 1872 . In 1895 he was graduated at Harvard University and in 1898 received the degree of Ph.D. at Columbia University. He served one year as secretary to the New York State Canal Comat the University of Michigan, and in 1909 be came associate professor, and in 1911 full professor of political science at the University of Illinois. In 1907-08 he served on the Michigan Constitutional Convention and in 1908-09 was special agent of the United States Bureau of Corporations. He was also associate editor of the National Mumincipal Review. He has pub (National Administration of the United States' (1905) : 'Local Government in Counties, Town and Villages' (1906); 'Essays in Municipal
Administration) (1908); 'Taxation and Reve-
nue System of Illinois' (1910); 'Commission Government in Illinois Cities' (1911); 'The President's Cabinet ' Government in Illinois') (1913); 'Revenue ty Government in Financial Administration in Illinois' (1915), and contributions to technical journals on economic, legal and political subjects.

FAIRMONT, Minn., city and county-seat of Martin County, 65 miles sonthwest of Man kato, on the Chicago and Northwestern and the Chicago, Milwauke and Saint Paul railroads. The city has a Carncgic ibrary, a cigar ing-houses, and brick and tile yards. The water and electric-lighting systems are owned and operated by the municipality. Fairmont was first settled in 1855 and is governed by a
and council of one chamber. Pop. 4,630
FAIRMONT, W. Va., county-seal of Mar-
on County, at the head waters of Monongahela River navigable to this point; the Baltimore and Ohio Railroad, the Pennsylvania and the New York Central lines enter the city; 78 miles from Whecling, 125 miles from Pittsburgh, 300 miles from Baltimore; the centre of one of the largest soft coal operations in the world; form of government; permanently improved roads in all directions from the city; mode public school system and a State Normal for training of teachers. The principal manufactures are glass, of which there are two of the largest plants in the world, mining machinery, has the largest trolley system in West Virginia reaching from Fairmont to Fairvicw, Manning ton, Clarksburg, Bridgeport and Weston; healthy climate; fine water supply; beautiful
homes and a splendid public spirit. Pop. 18,000 .
FAIRMOUNT, Ind., town in Grant County, 60 miles northeast of Indianapoins, on the and the Pittsburgh Cinciunati, Chicaro and and the Pittsburgh, Cincinuati, Chicago and and the Wesleyan Theological Institute arc 10 cated here. It has extensive farming interest and has manufactories of catchup, sauce, botles and tiles. The waterworks are the propert
the municipality. Pop. 2,500 .
FAIRMOUNT COLLEGE, cocducational
 established in 1892, with assistance from the Boston Education Society. A collegiate de partment was added in 1895, and in 1896 the name of the institution was changed to FairB.A. and the corresponding M.A. degrees. The abolishment of the preparatory school was begun in 1912-13, dropping one year at a time It has a sub-freshman department. In 1922 the college had an attendance of 456. In connec tion with the college there is a conservatory of music. The library num
FAIRMOUNT PARK. See PimladelHIA

FAIRPORT, N. Y., village of Monroe County, 10 miles east of Rochester, on the Ncw has extensive farming and fruit-growing interests. It has a manufactory of cans. Pop. 4,626

FAIRS AND SHOWS. A fair is a peri held meeting of merchants in an open marke the an a particular place and generally fo ness. The origin of fairs is olviously to be traced to the convenience of bringing together at stated times the buyers and sellers of the stock-produce of a district. Fairs are generally held in or near towns, but from their nature are specially adapted to the convenience of
country dealers and their customers. Two curious facts are to be noted in the history of fairs. In Europe the numerous festivals of the church afforded the most favorable opportunity for the establishment of these markets. This association is indicated in the German name of a fair,
which is identical with that used for the ceremony of the mass i fair gencrally brings concourse of people into the town in which it is held, and gives it something of a holiday appearance. Advantage has frequently been taken of this concourse, either by the persons assembled themselves or by the purveyors of various amuscments, to add entertainment to
business, and as the business of a particular fair declined it has often, instead of being rair declince it has often, instead of being
abandoned, been gradually converted into a periodical opportunity for a saturnalia of amusement. Thus religion, business and diversion have come to be associated in the idea of a fair

In the Middle Ages fairs were specially privileged and chartered by princes and magistrates, special temporary tribunals were cven eswhich in some places still remains, to make a public proclamation of the commencement and duration of the fair. The goods sold at fairs varicty, than at present, cmbracing fabrics of all kinds, as well as jewelry. In sone parts of the Contincnt the practice still prevails of purchasing clothing at fairs. Fairs existed in ancient as well as modern times, and are to be found in all parts of the world. In the East they are
of great magnitude and importance. At Mecca, during the annutal pilgrimages, and at Hardwar in Ajmir, a resort of pilgrims in Hindustan two of the greatest fairs of the East, we find again the association between commerce and religion. According to Prescott fairs were regularly hed in the principal cities of Mexico every fifth day, being the recognized substitute for
shops. A fair for the sale of slaves was held at Azcapozales, near the capital. At the principal fair, held at the City of Mexico, the number of visitors reached 40,000 to 50,000 . Here the same arrangement prevailed as in the European fairs of the Middle Ages. A court of 12 judges, clothed with absolute authority, main-

The Easter and Michaclmas fairs at Lecipzig the fairs of Frankfort-on-the-Main, of Lyons in France, and Nijnei-Novgorod in Russia, are among the most important fairs of the present day in Europe. The fairs of Great Britain now mostly consist of the weekly market-days of mectines, or trysts, as they are called in Scotland, chicfly for the sale of cattle and horses such as the Falkirk Tryst. There are also, especially in Scotland, a considerable number of the
hiring fairs. Among the most celebrated of the
fairs which have been turned into saturnalia are the celebrated Donnybrook fair in the county of London; and Glasgow fair.
In America the State and county fairs have developed into periodical expositions of agriculture, horticulture, stock-raising, manufacturng, domestic science, education, transportation, have thcir State fairs, supported partially by legislative appropriation, and often with permanent buildings. Many county fairs are regularly incorporated companies, composed of farmers and merchants who make a little money out of them. There is now an Amcrican Association of Fairs and Expositions, comprising in State, county and provincial fairs. The secretary is Charles Downing, of Indianapolis, I_{n}. The National Corn Association holds expositions nearly every year and has member
in 35 States. The 1913 cxposition was at in 35 States. The 1913 exposition was at CoThe slogan of the Association is "The Betterment of Acriculture." It has three classes o exhibits: (1) educational exhibits from agricultural colleges and experiment stations; (2) competitive exhibits between the States; (3) educational exhibits from the Federal Departawarded. Agricult frem trophies are awarded: Indiana 10 -car corn trophy; valuc
$\$ 1,000$; Colorado oat trophy, value $\$ 1,500$; Kellogg single ear trophy, value $\$ 1,000$; Farm and eside wheat trophy, $\$ 48,000$ in cash premiums.
Business" Shows. - The fair is a country proposition, adapted to the display of agriculthe cities for the display largely of manufactures and exploitation of new goods, the business show has developed. It seems to have been a growth from the poultry and horse shows. bien the bicycle was in its prime regular bicycle shows were held annually in the large pearance of the bicycle show the automobile show developed, and this is perhaps the largest attended show now held annually at Madison Square Garden, New York. Business shows arc also held for the display of business office conthe thousand and one appliances now found in counting-rooms and hookkecping departments. Printing shows are held for the display of the machinery and products of the graphic arts. Each of the more prominent industries at times has its shows, conducted either by assohouses or desire to exhibit See Expositions, Industrial
FAIRVILLE, Canada, village of Saint John County, New Brunswick, on the Canadian Pacific Railway. It has pulp and saw mills, box
factories, brickyards brewerics, woodenware works, etc., and a hospital for nervons discases. An electric railway connects the village cases. An electric railway connects the
with the city of Saint John. Pop. 3,500 .
FAIRWEATHER, Mount, in Alaska, in une Saint Elias range, 35 miles northeast of
Cape Fairweather. It is 15,292 feet high and its steep declivities are covered with great glacial shects.
FAIRY, an imaginary being or spirit of nutive size, supposed generally to assume a

OL. $10-46$
human form, but appearing also in others and represented as both beneficent and malevolent cattle were frequently attributed to their mischicvous operations; and cattle that died suddenly without any apparent cause were commonly said to be elf-shot. Among the Irish peasantry they are termed "the good people" by
way of placation. In Poole's 'Parnassus" are given the names of the fairy court: "Oberon, the emperor; Mah, the empress; Perriwiggin, Perriwinkle, Puck, Hobgoblin, Tomalin, Tom Thumb, courtiers; Hop Mop, Drop, Pip, Drip, Skip, Tit, Wap, Wim, Nit, the maids of honor; in his (Fairy Legends and Traditions of the south of Ireland," describes them as beings "a few inches high, airy and almost transparent in body; so delicate in their form that a dewdrop, when they chance to dance on it, trembles, inlive in a distinct domain known as Fairyland, and their character and habits as represented in literature may best be learnod from the Irish lore and such works as the "Marchen of the Grimms'; Spenser's 'Facrie Queene,' and The term is other beings of a similar nature, such as clf, fay, gnome, banshce, goblin, nymph, sprite, sylph, etc. Belicf in fairies has cxisted from carlicst times and formed part of the superstition of ncarly all peoples. A study of fairy storics is instructive in this connection. Studies of the folklore of many pcoples have been made
by scholars and have shown valuable results in this ficld. See Folk-Lore; Mythology. Paracelsus; also such titles as Elves, Kobold and the like.
Bibliography;-Aarne, 'Vergleichende Marchenforschungen) (Helsingfors 1908) ; Benz, Marchen-Dichtung der Romantiker, mit einer Tales of the Slav P'easants, and Herdsmen' (London 1896); Delattre, English Fairy Poetry) (ib. 1912), Grimm, 'Deutsche Mythologie' (Berlin 1879-98) ; Fricdrichs, 'Grundlage, Entstehning und genaue Einzeldcutung der bekantesten1, germanischen Marchen, Mythen,
und Sagen' (Leipzig 1909); Hartland, 'The Science of Fairy Tales' (London 1891) ; Jacobs, (English Fairy Tales) (3 d ed., ib. 1910) ; id., Cellic Fairy Tales) (New York 1910) ; id., Indian Fairy Tales' (London 1892) ; Kcightley, 'Fairy Mythology' (ib. 1850); Ludwig,
'Sibirische Marchen' (Glogau 1890) ; MacRitchie, 'Testimony of Tradition' (London 1891) ; Riklin, 'Wunscherfüllung und Symbolik im Marchen' (Vienna 1908); Weber, 'Italien-

FAIRY BLUEBIRD, one of the bulbul q.v.) of the East Indian family Pycnonotide and genus Irena, familiar in Indian gardens, and justly admired, ithe commonest species is under parts, and coral-red legs and beak They make a rather rough little nest in a bush and lay two or three speckled eggs.

FAIRY QUEEN. Sce Faerie Queene.
FAIRY RING, or CIRCLE, a ring occasurrounding vegetation by being either barer or
more luxuriant and attributed by the peasantry of western Europe to the dancing of the fairies growth of certain kinds of fungi, which the ceeding outward from a centre, render the soil for a time unfitted for the nourishment of grass, but later fertilize it by their decay.

FAIRY SHRIMP, a phyllopodous crusFAcean (Chirocephalus diaphanus), occasionally
found in fresh-water ponds in the British Isles It is about one inch in length and nearly transparent.

FAIRY-TALES, stories in which fairies play a part, or which contain other super-
natural or magical elements such as mark the natural or magical elements such as mark the
folk-tales of 'Puss, in Boots'); 'Beauty and the folk-tales of 'Puss in Boots' ; 'Beauty and the
Bcast'; 'Hop o' My Thumb'; 'Slecping Beauty' ; and others. Actual fairies seldom
appear in traditional fairy-tales, so called appear in traditional fairy-tales, so called
Grimm and his successors showed by the study of comparative nythology that these tales are not restricted to Europe alone, but are to be found, in varying forms, among almost all nations. The survival of popular tales is due to
their being unconscious growths, to the strict adherence to form shown by illiterate and savage people in recitals and to the laws of the age people in recitals and to the laws of the theories in regard to the origin of folk-tales. The oldest is the Oriental theory, which traces all back to a common origin in the Vedas. It is true that the germs of most tales are found the stories are lacking; the discovery of tales in Egypt which were written in the early empire are objections to its acceptance, and the idea of diffusion will not account for similar tales found in Australia, New Zealand and America. The Aryan theory, supported by Max
Muller, Grimm and others, gives as their origin the explanation of natural phenomena. These nature-myths must not be regarded as originally metaphors; they were primitive man's philosophy of nature in the days when every object was endowed with a personal life. The tales have cnough likeness to show that they come from the same source and enough difference to Muller says "Nursery tales are generally the last things to be adopted by one nation from another." Another theory, supported by Tylor and Lang, traces the origin of folk-lore to a far earlier source than the Aryan - the customs and practices of carly man: such as totemism, descent from an. ald or things, which were at bitions, which can be explained by similar savage customs of the present. But late authorities declare that it is useless to seek any common origin of folk-tales; since the incidents, which are few, and the persons, who are types, are based on ideas that
civilized races anywhere.

Our popular fairy-tales, or contes, have been,
Our ponular fairy-tales, or contes, have been, some of their elements or variants at least have come down through ancient Oriental literature. The 'Syntipas,' a Greek version, belongs to the 11th century. Then followed translations into several Eurppean languages. The carliest colparola, who published at Venice in 1550 his
'Notti Piacevola,' which was translated into French and was probably the origin of the 'Contes des Fèes.' The best early collection is
Basile's the 'Pentamerone,' published at Naples in 1637; reprinted at New York 1912. In 1696 there appeared in the Recueil, a magazine published by Moetjens at The Hague, the story 'La Belle au Bois Dormant' (our 'Sleeping Beauty'), by Charles Perrault; and in 1697 appeared seven others: 'Little Red Riding
Hood': (Bluebeard') (Puss in Boots) : 'The Fairy', 'Cinderella)' (Riquet of the 'Tuft'; Fand 'Hop o' My Thumb)' These were published in 1697 under the title 'Contes du Tcmps
Passé Avec des Moralités,' by P. Darmancour, Passé Avec des Moralités,' by P. Darmancour, Perrault's son, for whom he wrote them down
from a nurse's stories. Within this century from a nurse's stories. Within this century, and their successors in this field, have reduced to written form the tales of nearly all nations. We must include in the comparison of storics the Greek myths; as the Odyssey is now conceded to be a mass of popular tales. To these we must add the tales of ancient Egypt; those narrated by Herodotus and other travelers and
historians; the beatufiful story of 'Cupid and Psyche,' given by Apuleius in his 'MctamorPsyche,' given by Apuleius in his 'Mctamor-
phoses' of the 2 d century A.D., which also was taken from a popular myth. See Beauty and the Beast; Bluebeard; Elyes; Fairy; Farry Tales; Folk-lore, ctc. Consult bibliography subjoined to article Fairy
FAIRY TALES OF HANS CHRISTIAN ANDERSEN. These (Fairy Tales' have been read by thousands with delight, world's memory along with the traditional nursery tales of the race. The Ugly Duckling and The Constant Tin Soldier are remembered in company with Goody Two
Shoes or Little Red Riding Hood. The (Fhoes or Little Red Riding Hood. The 'Fairy Tales' are among the most original
works of the 19th century. Fairy tales are usually stories of legend and tradition; they grow up in the lives of simple peoples without anly one's knowing who originally thought of
them or told them. They are told and retold them or told them. They are told and retold by the old people to the children, and then
somebody comes and writes them down as, for somebody comes and writes them down as, for
instance, Mr. Harris wrote down the ncgro stories of Brer Rabbit and Brer Fox. Of this kind are the famous 'Marchen' of the Brothers Grimm and the 'Contes' of Perrault and many others. These are old stories which have charmed generations put into literary form.
Such also are some of the (Eventyr) or Such also are some of the 'Eventyr' or
Wonder-stories of Andersen. He was born and brought up at Odinse in the island of Funen, a place, which, as he says himself, was in those days a hundred years behind the times. The old women, who made something of a pet of him, used to tell him old stories which revealed to him "a world as rich as that of the
Thousand and One Nights," as he said himself afterward, not only in complete stories, but in ways of story-telling. "In the volume which I first published I had like Musseus but in my own manner related old storics which I had
heard as a child. The tone in which they still heard as a child. The tone in which they still sounded in my ears secmed a very natural one
to me." But much of his 'Tales,' and probably the most characteristic element, is something
sen was a man of a peculiarly childlike nature. He was not very fond of children but he was unlike them. In all that he wrote he was an idealist, as children are apt to be, without overmuch concern about the actualities of the real world. So when he told stories to children as he often did he spoke naturally in the lan-
guage and thought which they recognized as guage and thought which they recognized as
their own. "I had written my narrative down upon paper in exactly the language and with the expressions in which I had related them to the little ones." But he generally had in mind a larger audience and his tales were cagerly read by old as well as young. In fact a good many of them are not Fairy Tales at One cannot read them with anything of a critical spirit without imagining that in his best Stories he was always telling more or less
directly of himself. So many of them are stories of travel - The Ugly Duckling, The Thumbelina - and so many of them are full of veiled comment on life, that one is continually reminded of the author who was himself always traveling and always seeing the world. The children, he says, were pleased generally with were interested in the deeper meaning. The 'Tales' were extraordinarily popular; they were known all over Europe and Amcrica and translated into a dozen languages. Andersen, himself, made friends everywhere and told his stories everywhere. He was really a poet, a
novelist and a dramatist. he wrote much beside his 'Tales' and was, at first at least, inclined to value his deeper work more than his child's stories. But the world has found in his children's storics the peculiar thing it wanted and these slight matters as he originally thought mortal. There is nothing especially umon Andersen's 'Tales,' but a good deal about them will be found in his 'Story of My Life.'

FAIT ACCOMPLI, fảt-âk-kôn-plè' (Fr., an accomplished fact), in diplomatic language, denotes an event that has happened and must be accepted

FAITH, the state of mind which treats certain proposition as truc, independently of whether its truth is completely demonstrated Faith thus partakes of the nature of will. Its passage of Tertullian which ends, "Buried, He was raised from the dead; this is certain because it is impossible." While faith rarely goes to such extremes as this, it is of its very
nature that even if its object is proved it nature that even if its obje
totally disregards this proof.
Faith is not entirely confined to religious matters. It is inherent in the very nature of knowledge. The "general form of all descriptive knowledge is the analysis of a situation.
Thus the physicist analyzes his gross physical Thus the physicist analyzes his gross physical
processes in terms of atoms or clectrons, the psychologist reduces cverything to atomic menpsychologist reduces cverything to atomic men-
tal states, and so on throughout the sciences. Now, one of the most striking features of analysis is that up to the present, at any rate,
it has rarely if ever been exhaustive. In the
first place to record all the significant features of a situation is beyond the powers of the
human mind. The total condition of a physical experiment includes every single event in the universe in exactly the unique temporal and spatial relations which it bears toward the experiment in question. But furthermore, the ultimate terms of analysis are continually receding. The physicist of yesterday thought in
terms of atoms; the physicist of to-day thinks in terms of electrons; and what the terms of the physicist of to-morrow will be we cannot imagine. For these reasons an analysis is al most of necessity incomplete. From the standanalysis is a false analysis. However, the slightest application of a scientific law demands that we should act as if this analysis, which is probably falsc, and which at the best is not known to be true, were a demonstrated fact. At the very least, it demands that we should
trust in the negligible character of the errors of the law, although nothing but our trust in the continuity of nature guarantees that these are negligible. This trust in the continuity of nature conforms in every respect to the definition of faith.
Analysis is not confined to matters of physics and the other natural sciences. A moral
situation is susceptible to analysis, and indeed demands analysis before a reasonable course of action can ensue. In determining what to do when our motives lead us in. opposite directions, we analyze the many bearings and consequences of our conduct. This arralysis which precedes the appeal to conscience is imperfect
for exactly the same reasons as those which render our physical analysis imperfect: the complete bearing and consequences of our deeds are never at our disposal. Again it requires an act of faith to treat the results of our incomplete analysis as a basis for conduct and
to be confident that just those aspects of the deed which we have overlooked do not give it its dominant moral tone.
Faith is thus the necessary concomitant of analysis both in natural science and in conduct. Analysis makes the scope of faith recede further and further but the importance of failh remains just what it was in the begimning. To render this faith firm, especially in those matters that concern the moral conduct, has always ben the task of religion. By allegory, by the emotional appeal of rite, mythology and creed, religion who cannot put an independent trust in the continuity of nature and the moral order itself. Just as Descartes and the Occasionalist founded their physics on the honesty of a God guaranteed by faith as well as by demonstramade some Divine dictum or example their chief moral sanction. Thus Paley based his entire ethics on a system of divinely established rewards and punishments. It is interesting to note that these religious attempts to mediate between faith and analysis leave the need for emphasis placed on faith by all religious teachers. What religion accomplishes is the transference of the noed for faith to objects more casily grasped than abstractions by those of a mystical trend of mind. There are many
non-mystical natures, however, to which it is more natural and simple to have faith directly morals rather than in those things worshiped by the religious, and in these the most vigorous faith is consistent with the entire absence of anything that can be called a religion.
In theistic religions faith naturally acquires as its principal meaning belief in existence of The Jewish faith was primarily a faith in the moral order as personified in Jehovah. The Christian finds the embodiment of his moral order and accordingly the object of his faith in Christ the Redeemer as well as in the Jew-
ish God. The Catholic definition of faith has been paraphrased by Cardinal Newman as "belief in certain doctrines because God has revealed them." This faith is especially directed toward the Church and toward certain official
dicta of the Church. The various Protestant dicta of the Church. The various Protestant sects differ as to their definition of faith, but Consult Harnack, 'History of Dogma) (Boston 1894-99) ; Inge, 'Faith and its Psychology') (London 1009) ; James, 'The Will to Believe' New York 1911).

Norbert Wiener.
FAITH, Act of. See Auto da FE.
FAITH, Rule of, in the early Church, the summary of doctrines taught to catechumens, and to which they were required to give their the phrase has been adopted, not very aptly in modern theology to denote (1) the true source of our knowledge of Christian truth; and (2) the criterion or standard of Christian doctrine. Protestants find this rule in the
Scriptures alonc; the Greck and Roman churches, and some Anglicans, find it not only in Scripture, but also in the Church, as the auhorized interpreter of Scripture, whose inter pretations are embodied in tradition. The Raonalists make reason the final arbiter, and the Creeds; Infallibility.

FAITH HEALER, The. This play in hree acts, by William Vaughn Moody, was first produced in New York, at the Savoy Theatre,
on 24 Jan. 1910. Henry Miller and Laura Hope Crews were in the cast. It had been Mreviously March 1909 . The piece is not as definite in its arch 109. The piece is not as definite in it Divide.) But it was a sincere endeavor on the part of the dramatist to show the struggle that akes place between material and spiritua forces to the weakening of the latter. Moody, being a poct, here tricd to write something mystical, and cnly partly suggested why the Faith Healer, endowed with the power of relost that power through a lack of faith in himself. Being a dramatist, he was obliged to justify the human love of the Faith Healer for the heroine, and here he accomplished the one atisfactory stroke in the play - the establish ment of the belief that love does not weaken
\qquad
As an acting play, 'The Faith Healer) is misty, it is unconvincing. This may be due
whereas it is mystic; it takes for granted a The rarely proven in human experience the restoring of a sick baby and then the failure as the Faith Healer's power wanes, are difficult of externalizing: But Moody's art is sincere, and one feels his sincerity above his dramatic effectiveness. As in 'The Great Divide' he falls into the obvious, here contrasting the science of a doctor and the conventional traditions of a minister.

Montrose J. Moses.
FAITHFUL SHEPHERDESS, The, a pastoral drama by John Fletcher, published in 1609, and ranking with 'Comus,' which it of this Italian form of poetry extant in English literature.
FAITHFULL, Emily, English philanthropist: b. Headley, Surrey, 1835; d. 31 May 1895. Out of pure philanthropy, she founded the
Victoria Press, 1860 , in which women alone Victoria Press, 1860 , in which women alone
were employsd as operatives. Queen Victoria were employed as operatives. Queen Victoria
encouraged her by appointing her "printer-inencouraged her by appointing her "printer-in-
ordinary to the queen." She started the Vicordinary to the queen." She started the Vic,
toria Magazine as an advocate of women's right to lucrative employment, and in the United States lecturcd in 1872-73, and 1882 . She was the author of 'Change Upon Change,'
a novel (1868); 'Three Visits to America') a novel
(1884).

FAITHORNE, William, English engraver b. London, 1616 ; d. 1691 . He received most of taking the side of the Royalists in the civi struggle of 1640 he was banished to France In that country he studied under Nateuil and after his return to England in 1650 practised as an engraver and also marketed prints. He and engraved several portraits by Lely, Van
Dyke and other emincnt masters. Consult Dyke and other emincnt masters. Consult Fagan, 'A Descriptive Catalogue of the Works of William Faithorne) (London 1888).

FAIZABAD. See Fyzabad.
FAJARDO, fā-här'dō, Porto Rico, a seaport on the northeast coast, on the Fajardo River. Int has a good harbor and extensive sugar interests. Molasses, suga
shell are exported. Pop. $6,086$.

FAKHR-AD-DIN AR-RAZI fak'r-adTabaristan 1149; d. 1209. He was educated at Mery and Maragha, where among his masters was the celebrated scholar, Al Majd al Jili. He wrote a famous commentary on the Koran, the well-known 'Mafatih-al-haib' and gave much
time to all branches of learning He spent huge sums on experiments in alchemy, then a favorite delusion among the learned. He was also professor at Rai and Ghasni and finally became president of the University of Herat. His commentary was issued at Cairo in eight volumes in 1890.

FAKIR, fä'kêr', or DERVISH, the name of a class of religious devotecs of the Moharngenerally practising mendicancy. The Arabic word Faqir signifies "poor" used in a sense of "poor" in the sight of God. The Persian word Darwesh is derived from dar, i.e., those who
beg from door to door. The observance of strict forms of fasting and acts of piety give them a character of sanctity among the people. They live partly in monasteries, partly alone, and from their number the imams are gen-
crally chosen. Throughout Turkey they are crally chosen. Throughout Turkey they are of the highest rank at the tables of persons Asia, multitudes of these devotees, monastic and ascetic, not ony among the Mohammedans, but also among the followers of Brahma. They trace their ultimate origin to Abu or Ali supposed direct descendant of the the rule of a are 32 religious orders now existing in the Turkish Empire, many of which are scarcely known beyond its limits: but others, such as the
Nakshbendies and Mevlevies, are common in Nakshbendies and Mevlevies, are common in
Persia and India and Morocco. All these comPersia and India and Morocco. All these communities are properly stationary, though some collect alms. In fact, all religious faqirs are divided into two great classes, the ba shar
(within the law) or those who gover their (within the law) or those who govern their conduct according to the principles of Islam;
and the be shar (without the law), or those and the be shar (without the law), or those
who do not live their lives according to the principles of any religious creed. All these orders, except the Nakshbendies, are considered as living in seclusion from the world; but that order is entirely composed of persons who, without quitting the world, bind themselves to and meet once a week to ferform devotion, gether. Each order has its peculiar statutes, exercises and habits. Since the orders are secret, it is impossible to discover the exact nature of these.
divided numerous orders of dervishes are all the dancing and the howling dervishes. The former are the Mevlevies, and are held in much higher estimation than the other class. They are the wealthiest of all the religious bodies of the Turkish Empire. The dancing of these dervishes is conducted to sounds of music. The recome excited it grows in animation, until last the actors are exhausted, and are obliged to sit down. After a while they rise up again and resume heir dancing, which is repeated everan The he whole is concluded by a their dancing with loud vociferations of the name of Allah, and violent contortions of the body such as are seen in persons seized with pileptic fits. In former times these dervishes, fer working themselves up into a frenzy, used with apparent delight have the credit of possessing miraculous powers The interpretation of dreams, the cure o iseases and the removal of barrenness are the gifts for which the dervishes are most in repute Sce Surism.
main in of the fakirs are bound by oath to reto the world is also permitted them, but this privilege is rarely used. The head of the convent is called shaikh, and he is appointed by the general of the order. They reside usually founders of which contains the ashes of the to the Mufti of the capital who has jurisdic
tion over them. In Turkey the Shaikhu 'I Islam has the right of removing the generals of the various orders. The Mufti has also the righ by any of the generals of the orders. Consul Lane, 'Modern Egyptians' (3d ed., Now York 1908); Brown, J. P. 'The Dervishes or Oriental Spiritualism) (London 1868); H.
(Dictionary of Islam) (
(London 1885).

FAKUMEN, Manchuria, town in the south about 40 miles north of Mukden and about 20
miles west of Tie Pass. On 18 March 1005 Fakumen was occupied by the Japanese.

FALAISE, fa'lâz', France, town in the department of Calvados, 20 miles south of Caen, on the Ante. It is located on a cliff and has two fine Gothic churches, a college, public library, a hospital and an ancient castle, in
which was born. William the Conqueror. It ha also manufactories of cotton goods, hosicry, leather, dyes and chimes. Nearby at Guilbry since the 11 th century is held an annual fair in August. Consult Dodd, 'Falaise the Town o the Conquero

FALASHAS, a Hamitic tribe of Abyssinia supposed to be descended from Jewish immi grants of the time of Solomon. They claim
to have come from Jerusalem and to belons to the tribe of Levi. They exhibit many Se mitic traits, although their complexion is a red dish brown like that of the Allyssinians. They practise Israclitic worship although in a someof the Jews. of other lands they despise commerce and devote their energies more frecly to agriculture and practise minor trades. Their synagogucs are always surmounted by a red earthen pot. They have a monastic system and cducation is in the hands of the monks. Estimates of the number of these people vary from
100,000 to 250,000 . Consult Flad. The Falashas of Alyssinia' (London 1869) ; Fait lovitch, F., 'Notcs d'un voyage chez les Falashas) (Paris 1905).

FALB, falp, Rudolf, Austrian metcorologist: b. Obdach, Styria, 1838; d. 1903. He was educated at Gratz, where he studicd theology was converted to Prolestantism and in 1860-72 studied mathematics, physies and astronomy at the universitics of Prague and Vienna. In 1877-80 he traveled in North and South America, after which he settled in Berlin. His theories of carthquakes were unacceptable to the
scientists of this day and have never been seriously considered. He founded the astronomical periodical Sirius in 1868. His published works arc 'Von den Umwalzungen im Weltall' (3d d. 1892)': 'Kalender der kritischen Tage) cd., 1892)
(1892-).

FALCK, fälk, Niels Nikolaus, German jurist: b. Emmerlef, Schleswig, 1784 ; d. 1850 . Kiel and in 1814 was appointed to the chair of law therc. He was chosen president of the Schleswig-Holstein Assembly of the States in 1838, but his policy alienated the Liberal party. He published 'Handbuch des schleswig-hollumgen zur Privatsrechs (1825-48); 'Samm-
(1825) ; 'Juristische Encyklopädie) (5th ed., 1851). He was editor of the Staatsburger
liches Magazin from 1821 to 1831 , and continued it as the Neues Staatsbürgerliches Maga zin from 1833 to 1841 .
FALCKENSTEIN, Eduard Vogel von See Vogel von Falckenstein, Eduard.

FALCON, fạl-kŏn, Juan Crisóstomo, Venrelan statesman: b. on the Peninsula of Paraguana (now the state of Falcon), 1820; d. Martinique, 1870. He was a brilliant soldier in his youth and in 1858 was made leader of the President of Venczucla in 1863, and in that year entered Caracas. The Constitution of 1864 was sanctioned by him, but on the overthrow of his government in 1867, he retired to Europe Three years later a counter revolution brought en route at Martinique
FALCÖN, Venezucla, a maritime state and most northern, with an extensive coast line on the Caribbean Sea and the Gulf of Venezuela. Its adjoining states are Lara to the outh and Zulia to the west. It has a much broken surface, with low mountains inlans and sandy plains and swamps alo districts of the coast. The mountain valleys are very fertile, yielding crops of coffee, cacao cotton, corn, sugar, tobacco and fruits. Stock raising is on the increase. The state is saith ettled. 130110 Coro the capital is a population orest entre. A railway connects Coro with La Vela de Coro, the state's only scaport, about six miles east of the capital. Coro has a population f 9,452
FALCON, a term broadly given to any of many birds of the family Falconide (q.v.), hut family Falconinc, whence are derived most of the hawks used in falconry. The falcons proper, for strength, symmetry and powers of might, are the most perfectly developed of the feathered race. They are distinguished by having the beak hookca at the point, its cutting mandible The wings are long and powerful, the second feather rather the longest; legs short and strong. The largest falcons are the three great Arctic ones represented by the circumpolar jerfalcon (Hierofalco, gyrfalco), and congeners the Greenland, Iceland and however, is the noble peregrine (Falco peregrimus), to the fcmale of which the term "falcon" was alone given by falconers, and was most highly esteemed for the fiercencss, dash and perfection with whes she and $3 \mathrm{I} / 2$ feet in extent of wing; the male is 2 or 3 inches less. The head, neck, a patch under the eye and the whole upper surface are dusky, with gray and brownish shades; the throat and under parts whitish or cream-colored, with dusky hars and It chiefly inhabits wild districts, and preys on It chise, ducks, ptarmigans, pigeons, rabbits, seafowl, ctc., pouncing upon them from above with terrific swiftness and force, and always showing the greatest courage in its encounters
with rivals or in defense of its nest, which is
usually placed on a ledge of some lofty cliff. This species is to be found in nearly all quarters of the globe, for the North American duckhawk (variety anatum) and certain tropical forms are only sub-species.
Other American true falcons are the
pigeon-hawk, sparrow-hawk (qq.v.) and some pigeon-hawk, sparrow-hawk (qq.v.) and some Many of the Old World falcons are famous, and are elsewhere individually described, such as the European hobby, kestrel, merlin and lanner; the Asiatic shaheen, saker, luggur, farumti and ons. Anstralasian quail-hawk; and the large African genus Baza, which has the peculiarity of possessing two "tecth" on the edge of the beak. Another interesting genus is Microhierax, containing the finch-falcons (q.v.). Falcons attain to a great age. One is said collar of gold dated 1610, showing it to have belonged to James I of England.

FALCON, a small light cannon in general use in the late Middle Ages. We know from a decree of Henry $I I$ of France that it discharged a ball weighing one pound. Some guns of this type are said

FALCONBRIDGE, SIR Glenholme, $\mathrm{Ca}-$ nadian jurist: b. Drummondville, Ontaria, University, and was called to the bar in 1871. He was appointed a senator of Toronto University in 1881; in 1887 became a judge of Queen's Jench of the Supreme Court of Judicature of Ontario; and

FALCONE, fäl-kōnnā, Anielle, Italian painter: . Naples, 1600; d. there, 1665 . He
studied under de Ribera and through his numcrous battle pieces came to be called "L'oracolo delle battaglie." When the Neapoli tans rose against Spain, Falcone organized hi pupils into a gave quarter to a Spanarde to retire to Rome Iater he went to France, where he was gra ciously received by Louis XIV. Under the nowerful protection of Colbert he was enable to return to his native city, where he spent his last ycars. The Louvre has one of hatlo Madrid, two.

FALCONER, fa'k'nēr Edmund ("Edmund O'Rourke"), Irish playwright: b. Dublin, 1814 d. 29 Set 1870 He joined a provincial company in England, went to London and in 1850 became manager of the Lyceum Theatre. In $1862-66$ he was manager of Drury Lanc. 1867-69 he was engaged at the Olympic Theatre New York. He composed many plays and
adapted others. (Peep o'Day) (1861) was long very popular. Falconer excelled in his delineations of Irish peasant life.
FALCONER, Hugh, Scottish hotanist and palxontologist: b. Forres, Morayshire, 29 Feb 1808; d. London, 31 Jan. 1865. He was gradu ated in arts at Aberdeen University in 1826, an in medicine at Edinburgh in 1829 . He was ap lishment of the East India Company. Arriving

FALCONS

in India (1830) he examined and reported on a scientific standing in India. In 1832 he was made superintendent of the botanic garden at Saharanpur. He discovered and was the first to describe the assafretida plant of commerce; and he discovered the geological character of
the Sewalik Hills, and in order to study their ossiferous deposits he compared them with skeletons of extant species. For these re searches he received the Wollaston medal of the Geological Society of England. He was appointed (1847) superintendent of the botanic the Calcutta Medical College

FALCONER, Sir Robert Alexander, Canadian educator: b. Charlottetown, Prince Ed-
ward Island, 10 Feb. 1867 . He was educated at Queen's Royal College School, Trinidad, and at the universities of Edinburgh, Leipzig, Berlin and Marburg. From 1892 to 1907 he was lecturer and professor of New Testament Greek in Pine Hill College, Halifax, N. S., and also served as principal from 1904 to 1907 . In the University. He received the degrees of Litt.D and LL.D. from the University of Glasgow, from Princeton, U. S. A., Toronto and other Canadian universitics. He is Fellow of
the Royal Society of Canada and was knighted the Royal Society of Canada and was knighted
in 1917. He published 'The Truth Apostolic Gospel' (1904); 'The of the Tragedy and Its Meaning for Canada) (1915), also articles in professional journals, encyclopredias and dictionaries in Britain and America; articles on education and public questions, etc.
FALCONER, William, English poet: b .
Edinburgh, 11 Feb .1732 ; d. at sea off Mozam Edinburgh, 11 Feb. 1732 ; d. at sea off Mozam-
bique, 1769 . Having early shipped before the bique, 1769 . Having early shipped before the
mast, he became before 1750 second mate of a mast, he became before 1750 second mate of a
ship trading to the Levant. The experience of a shipwreck off Cape Colonna, Greece, furnished material for the poem of 'The Shipwreck'
(1762), by which he is best known. He was (1762), by which he is best known. He was
later appointed purser of the frigate Aurora, later appointed purser of the frigate Aurora,
bound for India. The Aurora touched at the bound for India. The Aurora touched at the
Cape of Good Hope in December 1769 and was shortly after lost with all hands. Falconer's 'Poetical Works,' with a biography by Gilfillan, appeared in 1854.

FALCONET, Etienne Maurice, ā-tề en mō-rēs fanl-cō-nä, French sculptor: b. Vevay, Switzerland, 1716; d. Paris, 4 Jan. 1791. Catharine II of Russia patronized him, and he statue of Peter the Great, erected at Saint Petersburg.
FALCONETTO, fạl'kō-nĕt'tỡ, Giovanni Maria, Veronese architect and painter: b. 1458, d. 1534 . He reccived his early irstruction from nis father, Jacopo Falconetto, an artist of note, under Melozzo da Forli. Falconetto executed trescoes in the chapel of San Biagio, the church of San Nazaro, the Duomo and the church of San Pietro, Martire, all in Verona. His 'Augustus and the Sibyl is in the Veronese Gallery, but is by no means his best work. His most Giustiniani (1524) ar Pa many of the Padua city gates.
 comprising the sub-families Gypaetina (lammergeiers), Polyborince (carrion-hawks and kites),
Accipitrine (hawks) Butoninc Aquilince (hawks), Buteonince (buzzards), They are all remarkable for strong and sharply hooked bills, with fleshy: and most of them have sharp and powerful talons, designed to seize, kill and tear to pieces the living prey upon which most of them subsist. In the cagles and falcons these characters are developed in the highest degree. The tarsus is usually more or less feathered, in some cases down to the very toes, which are arranged
three in front and one behind and are exceedingly strong and tenacious. There is a projection over the cyebrows except in the ospreys, which gives an appearance to the eyes of being very deeply set in the orbits. These birds range in. size from the mighty lammergeicr to the female is usually decidedly larger than the male and upon her falls the burden of the support of the young. The tribe is represented in all climates, even to the remote north, but is most numerous in the tropics, while some species are nearly cosmopolitan. Many migrate, but
few show any tendency toward flocking. color of the plumage frequently differs much in the young from that of the full-grown birds and as their first plumage is retained for some time, this has caused more species to be enumerated than really exist. Plam tints rule, but white few species present a considerable ved and a colors. Their voice is limited as a rule to screaming cries, but a few utter somewhat melodious notes. The nests of all are rude structures, placed in rees, on rock-clifts, on the ground or in some hole. The eggs are few in much earlier in the year than is the are with birds generally; and they and the young are well cared for and ably defended by the parents. The sport of falconry (q.v.) took its name from employing certain of these birds in the chase.
FALCONIO, fal-kṓnēō, Diomede, Roman Catholic prelate: b. Pescocostanzo, Italy, 20 Sept. 1842; d. Rome, 8 Feb. 1917. He entered completing his studies came to the united States as a missionary, reaching Allegany, N. Y December 1865 and being ordained priest by Bishop Timon of Buffalo, 4 Jan. 1866 . In 1868 he was named president of the College and Seminary of Saint Bonaventure, Allegany, N. Y., and on 29 Nov. 1871 was sent by his superiors to
Harbor-Grace, Newfoundland, at the request the bishop of that diocese, who appointed Father Falconio his secretary and chancellor and rector of the cathedral. In 1882 he came back to the United States, where he remained a year. Returning to Italy in 1883, he was
elected provincial of the Franciscans in the Abruzzi, and in 1889 he was chosen procurator general and later visitor-general in various provinces. He was preconized bishop of Lacedonia 11 July 1892, and on the 17th of that month was consecrated at Rome by Cardinal Falconio assumed was elevated to the United Archiepiscopal See
of Accerenza and Matera in Basilicata, 29 Nov. 1895, but was called thence by Leo XIII, 3 Aug. Canada, taking possession at Ottawa, 1 Oct. 1899. On 30 Sept. 1902 he was nominated apostolic delegate to the United States and assumed possession at Washington, D. C., 21 November
of the same year. He was elevated to the carof the same year. He was elevated to the carters' appeared in French in 1900

FALCONRY, or HAWKING, the employment of falcons in the chase. This sport is of East since before the days of any record - in China at least 2,000 years before Christ; and it was probably followed at that date all over Asia and down into the Nile Valley, for falconers with their hawks are depicted in some of the
oldest Egyptian mural paintings. The sport oldest Egyptian mural paintings. The sport spread over Europe with the Roman duminaEngland until the 9th century. Many laws and social customs regulated this pursuit in Great Britain and many terms and phrases remain in the language as an inheritance from the art and etiquette of this most elegant form of the chase.
Thus the square frame on which hawks were carried to the field was named a "cadge," and the servant who bore it a "cadger"; and a "cast" of hawks meant two taken on a chase together. To "man a hawk" was to tame it; and one so thoroughly trained as to be flown with young ones to show them how to work was called a when molting, and to "plume" when she pulls off feathers. A female of any species, but especially of the peregrine, is a "falcon"; a male a "tiercel"; one caught wild a "haggard" or
"passage hawk"; one reared from the nest an "passage hawk"; one reared from the nest an
"evas," and a young one is a "red hawk"; while "evas," and a young one is a "red hawk"; while hawk in its work are named. A hawk "stoops" when she descends upon the "quarry" (prey) with closed wings, to kill it by a stroke of the beak; she "binds" when she scizes large prey in the air and clings to it in its fall, or "trusses" when the prey is of small size. A hawk is satid
to "clutch" when (as do short-winged hawks) she seizes it in her fect; to "carry" when she tries to fly away with the prey; to "check" when she flies at a bird other than the one intended for her; to "foot well" when she kills successfully; to "make her point" when she rises and hovers over some quarry which "ras escaped to
cover, as in thick hedges; to "ring" when she rises spirally in the air; to "take the air" when she tries to get above the fleeing quarry; to "wait on" when she hovers above her master at a certain "pitch" (height), waiting for quarry a fine thread (no longer done) ; "imping," mending broken feathers; "mantling," stretching out the wings or one wing and a leg; and "jarak means keen, or in good condition for work.

The extensive agricultural changes which occurred in England during the 17th century, causing the enclosure and improvement of waste altered temper of the people preceding and during the Protectorate; and most of all the introduction of firearms, followed by the sports of shooting and the consequent preserving of game
both in England and on the Continent; and game-keepers and peasants began to shoot as "vermin" the grand and valuable birds upon which their forcfathers had doted. Neverthe-
less the sport is still followed by fanciers who keep alive its traditions.
The hawks ussed in falconry are all true falcons, and nearly or quite the whole list have at some time or pace been regularly trained.
except in the United States, although here the best of material exists, in our duck-hawk (the peregrine), pigeon, and sparrow-hawks, south western prairie-falcon and others. A fcw clubs here and there have flown their hawks, but the North America. It is more frequent in Central and South America. In North Africa and the Orient the sport flourishes as much as formerly; and there cagles are often employed and quarry as large as gazelles and bustards is struck down Falconers divide their birds into "long winged" or "dark-eyed" hawks, and "shed" or "yellow-cyed" hawks. The firs class contains the true falcons, of which the great jerfalcon (q.v) was in old times reserved for royalty, the peregrine for an earl and the others for the nohility; hence these were known as "noble", while the goshawk, kestrel, etc., on well as of their own powers, were styled "igwell as
Hawks are taken for training either as nest lings or when full-grown. They are trained by Ueing hooded, made to wear hands of leather ("jesses") ahout the legs, to which are at ached "varvels" (rings, sometimes carrying beld gradually are accustomed, at first in complete darkness, to being fed and handled, and later to feeding in the light and among spectators, and finally to take first live birds thrown toward it and finally wild quarry. During this process young birds are much at
said to be "flying at hack."
The sport was one in which women as well as men of all classes might indulge, going aficld on foot and alone, or in mounted cavalcades, and often during modieval times with royal pomp. The hawks, hooded, were carricd shoulders, but each sportsman was likely to hold favorite bird upon his gauntleted wrist - in Europe on the left wrist, in the Orient on the right. Dogs, especially small greyhounds and pointers, were likely to accompany the falconer and were put to use in flushing hirds, starting
hares and the like. When the hunting scne hares and the like. When the hunting scone and some were freed to "wait on" until quarry was sighted; but others, trained differently, were kept hooded until the falconer himself started or perceived the game, when they wore unhooded and sent after it. The sportsmen then
followed, watched the chase and recovered prey followed, watched the chase and recovered prey
and hawk as well as they could. Good falcons and hawk as well as they conld. Good a keen interest and great intelligence in
show a show a kect.
Many hooks describe hoth the sport and the falcons in great detail. One of the hest of the early works is 'The Booke of Faulconric or
Hawking,' by Turberville (1575). Recent BritHawking,' by Turherville (1575). Recent British authors of repute are Prodrick,
Freoman ('Practical Falconry,' 1869), and J. E.

Harting ('Hints on the Management of Hawks,' 1884). The latest general work is 'Coursing and Falconry,' by Cox and Lascelles, in the ticle "An Ancient Sport in the New World," in Outing for March 1914.
FALDSTOOL, or FOLDSTOOL, the name of various pieces of English church furniture, the principal being a portable folding seat, also called faldistory, similar to a campthan his own cathedral church; and a small desk at which the litany is read, the name dating from a period when folding lecterns were used.

FALEME, fa-lā'mè, a tributary of the Sencgal Kiver, in West Africa. It rises in Futa-Jallon and flows in a northerly

FALERII. Sce Falisc
FALERNIAN WINE, one of the favorite wines of the Romans, so called from Falernus Ager (the Faleriian Field), the district in
which it was grown, in Campania, Italy. It is which it was grown, in Campania, Italy. It is
described by Horace as, in his time, surpassing all other wines then in reputc. In the time Falernian wine had already, owing to a want of care in its cultivation, begun to decline in quality. See Wine.
FALERNUS AGER, a district of northern Campania, in ancient Italy, situated north of the river Volturnus. It was famed in cluasic days for its wine. In modern times the quality 'Italische Landeskunde) (Vol. II, Berlin 1902).
FALGUIERE, fä-gyăr, Jean Alexandre Joseph, zhöǹ ä-lex-zändr zhō-zy', French sculptor and figure painter: h . Toulouse, France, 7
Sept. 1831; d. Paris 1900 . In sculpture his work is of very notable excellence, and displays originality and in Paris contains his sculptures: 'Christian Martyr' (1858); and 'Victor in the Cock Fight' (1870). 'Progress Abasing Error) is in the Pantheon, (Poet Holding a I.yre) is in the Place de 1 Opera, and among other works are statues of Balzac and Lamartine and one of Lafayctte in Washingto
His paintings are inferior to his sculptures.
FAIIERI, Marino, mà-rè̉nờ fä-lē-ā́rề, Doge of Venice: b. 1278; d. Venice, 17 April the siege of Zara in Dalmatia. He there gained a brilliant vietory over the King of Hungary, and was afterward Ambassador to Genoa and Rome.
He was clected Doge of Venice on 11 Scnt. 1354, He was clected Doge of Venice on 11 Scpt. 1354, hut in the following, ycar dissatisfaction with
the light punishment imposed upon a noble who had insulted Falieri's young wife caused him to conspire with the lower orders to overthrow the republic and make himself sovereign of the statc. His plot was discovered on the night before it was to have been consummated, and
he was beheaded 17 April 1355 . The last he was beheaded 17 April 1355 . The last
scenes of his life are depicted in Byron's tragedy of 'Marino Falieri.) Plays have heen written on the same subject by Casimir Delavigne and Swinburne. Consult Brown. Horatius, 'Studies in Venctian History' (1907).

FALISCI, fà-lis'ī, a pcople of Etruria, said to have been originally a Macedonian colony. They occupicd Falerii, one of the 12 Etruscan gener. When they were besieged by the Roman general Camillus, a schoolmaster offered to betray his pupils into the hands of the enemy, oblige the place to surrender. Camillus heard the proposal with indignation, and ordered the man whipped back to the town by the very pupils whom his perfidy would have betrayed. This instance of magnanimity operated upon the people so po
the Romans.

FALK, falk, Johannes Daniel, German au thor and philanthropist: b. Dantzic, Prussia, 28 satire was considerable. Among his works are (A Pocket Book for Friends of Jest and Satire' (1797); 'Men and Heroes' (1796), a satire in verse, and 'Prometheus' (1804), a dramatic poem. He founded at Weimar in 1813 ann organization called the "Society of Fricnds in
Need," and established there an institution for the care of orphan and neglected children which later was taken over by the state, and which still bears his name.
FALK, falk, Max, Hungarian politician: b Pest, 1828; d. 1008 . He received his edlucation at P'est and at the Polytechnic Institute, Vienna Ln 1848 he was made a member of the Academic which he advocated a restoration of the Hungarian constitution. Soon afterward he was made private lecturer on Hungarian history and literature to the empress. He wielded a powerful influence as editor of the Pestcr garian Parliament and allied his fortunes with the party policies of Deák, Eötvös and Andrássy. He published 'Graf Stephan Szechenyi und scine Zeit) (1868, in German and HungaElian); (Ruckerinnerungen an die Kanigin Elition of Gallettis' 'Allgemeine Welthe 12th (1860).

FALK, Paul Ludwig Adaibert, powl lood'vir ádial-bért falk, Prussian statesman: b. Metschkau, Silesia, 10 Attg. 1827 ; d. 7 July 1900. and Education in 1872, and in this capacity was mainly instrumental in carrying the so-called May Jaws (because passcd in May 1873-74-75) aimed at the restriction of the Roman Catholic Church in Germany, by limiting the influence of he clergy in the schools, by reorganizing the seminaries for the training of teachers and by
defining in a stricter and moze comprehensive manner the relations generally of the clergy to the state. (See Kutiturkampr). When, how the cicrical came to bid for the sup his late internal policy, Falk was compelled to resign He was latterly president of the Supreme Cour at Hamm. His biogranhy by Fischer was pub-
lished at Hamm in 1900 .

FALKE, falke ${ }^{\prime}$, Gustav, German poet: h . Luheck, 1853 . He reccived his cclucation at the Lubeck Catharineum, engaged in business as a
bookseller until 1878, when he hegan the teaching of music at Hamburg. In 1903, on his 50th hirthday, the Hamburg Senate and Commonalty
bestowed on him an annual grant of 3,000 marks. Falke's works include the novels 'Au Stranden' (1895); and 'Der Mann im Nebel' (1899); and the volumes of verse 'Mynhec der Tod' (1892) ; 'Fanz und Andacht' (1893) 'Neule Fahrt' (1897): 'Mit dem Leben' (1899) ; 'Hohe Sommertage' (1902) ; 'Der
gesticfelte Kater) (1904); 'Frohe Fracht' (1907); 'Hamburg) (in 'Stadte und Landschaften Series,' 1908)

FALKENHAYN, falk'ēn-hīn, Erich G. A. S. von, German general: b. 11 Sept. 1861. spent three years as military instructor in China and scrved as major in the German brigade of occupation in castern Asia. He was on the staff of Count Waldersee during the Boxer Re-
bellion in 1900 . In 1912 he became Prussian Minister of War, in which capacity he supported Lieutenant von Forstner of Zabern fame. At the outbreak of the European War Gencral von Moltke was chief of the general staff; he was reported to have fallen his dutics. As a matter of fact, von Moltke was superseded on account of disagreement with the Kaiser. He held that the main strategic object should be to break the Allied line
at Verdun, while the Kaiser, unable to reach at Verdun, while the Kaiser, unable to reach Paris, desired to strike for the Channel coa
and attack England. Sce War, European.

FALKENSTEIN, falk'ên-stīn, Julius August Ferdinand, German explorer: b. Berlin, medicine and geology and in 1873-76 was a member of an exploring expedition to Loango sent out by the African Society of Germany. On this trip Falkenstein made important discoveries and extensive and valuable collections. He brought home the first gorilla ever taken
alive from Africa. About 1881 he founded the alive from Africa. About 1881 he founded the exerted great influence on the educational systems of foreign countrics. He wrote ©Die Loango-Kuiste in 72 Original-Photograp? ${ }^{\text {Lien }}$ (1876): 'Dic Loango Expedition' (1879) ' Afara Land' (1885): 'Aerztlicher Reisebegleiter und Hausfrcund) ' (10th ed., 1893).
FALKIRK, fal'kcirk, Scotland, a parliamentary and municipal burgh of Stirlingshire, 10 miles southeast of Stirling and 25 miles from
Edinburgli. Its port, Grangemouth, is three miles distant to the northeast and two canals pass close ly the town which is a station on
the North British railways. Falkirk includes the suburbs of Grahamston, Bainsford, Camelon and Laurieston. Notahle features are the burgh buildings, the town hall, a free library, the Camelon fever hospital and the church. In the churchyard lie sevcral persons once prominent in Scottish history. Falkirk is the princi-
pal seat of the iron-casting industry of Scotpal seat of the iron-casting industry of Scotsupplies of coal and iron ore. Other industrics are flour-milling, brewing, distilling, tanning, explosives and chemicals. Trysts, or cattle fairs, were long important but have been replaced by local auction sales, held weekly. llh century, being then known as Eaglais
breac ("church of speckled stone"), later transliterated as Egglesbreth. Near the town in the forces of Edward I and those of William Wallace, in which the Scots were worsted. In 1746 Prince Charles Edward with Highland forces defeated the
Hawley. Pop. 33,574.

FALKIRK, Battle of, (1) a contest in which Edward I of England gaincd a victory said to have contained 7,000 to 8,000 mounted men and 80,000 footmen. Wallace's force amounted to about a third of the English army His infantry was drawn up in circles, the men in the outcr ring knceling and holding their tre of the circles. The overwhelming superiority of the encmy's horse, however, decided the battle. Wallace retired with a small body to Stirling, but the bulk of his army was broken up and destroyed. (See Wallace, Sir WilLIAM). (2) A battle between the forces of
Prince Charles Edward (17 Jan. 1746) and the Prince Charles Edward (17 Jan. 1746) and the
government troops commanded by Genera Hawley, whose army was completely route and compelled to fall back on Edinburgh

FALKLAND, fák'lạnd, Lucius Cary, Vis CoUnt, English statcsman and soldier: b. probably at Burford, Oxfordshire, 1610; d. Newbury, 20 Scpt. 1643 . He was educated at Trinity College, Dublin, and Saint John's College, Ox ford, and in 1630 succeeded to the estates of ceeded his father in the peerage and for some years after chiefly resided at his seat of Bur ford, near Oxford, where he lived in close in tercourse with scholars from the neighhoring universities. Here it was that Chillingworth
composed his famous work against "Popery" and questions of morals, theology and literature were discussed in a congenial circle with the utmost freedom. In 1639 he took part in the ex pedition against the Scots. At first he warmly supported the Parliament party, but a strong attachment, however, to establish forms and
some doubts of the ultimate ohjects of parliamentary leaders, caused him to retract He became Secretary of State in January 1642, and took the Royalists' side in the civil war attending the king at the battle of Edgehill and the siege of Gloucester. So dissatisfied was the first battle of Newhury he made for a in a hedge from which bullets were raining and so fell. His 'Pocms,' edited by A. B. Grosart, were published in London in 1870 Consult Marriott, 'Life and Times of Luciu Cary, Viscount Falkland) (New York 1907).
FALKLAND, Scotland, a royal burgh in Fifeshire, 21 miles north of Edinburgh. It industries mare ancing and line The principa noteworthy structure is the ancient royal pa ace of the Stuarts, which after centuries of neglect has been restored by the Marquis of Bute since 1888. Pop. 2,356. Consult Wood, Historical
FALKLAND ISLANDS, two large islands, East Falkland (3,000 square miles) and West
islands surrounding them, having a total area o ,200 square miles, in the So 300 Ait of Magellan. The scenery bears a striking rescmblance to parts of the Western Highlands of Scotland the soil is light and but scanty crops are ob ained. The highest elevation is Mount Adam, 2,297 feet in height. The coast is deeply in dented and contains many safe anchorages cipal occupation, there being $2,325,000$ acres devoted to pasturage. The climate is strictly oceanic, characterized by strong winds, equabl emperature and moderate tainfall. The waters round the islands have within recent years bccome famous as a whate fin valued in 1914 at $\mathrm{E1}, 300,978$ (including South Georgia). Dependencies of the islands ar South Georgia, the South Shetlands, Sont Sandwich Group, South Orkneys and Graha Land. Revenue, $1914, \mathfrak{£} 42,923$; expenditure Vessels clearcd (1914), 139, of 263,905 tons Wircless telegraphy was installed in 1912 and cable communication established in 1915. Ther is monthly mail communication with Liverpoo (28 days sailing): The government is vested in a governor assisted by an cxecutive council The capital is Port Stanley on the east coast of East Falkland (pop. 905) Pop. 3,275 mainly Scottish, except for 980 Norse and Swedish. The islands were discovered by Davis in 1592. A settlement was founded by the French in 1764, but their rights were sold o Spain in 1765 , who in turn relinquished es tablished in 1765 was withdrawn in 1774, but Great Britain maintained her claim from the date of her occupancy, and since 1833 has held uninterrupted occupancy of them. On 8 Dec. 1914 a British squadron, under Sir Frederick Sturdec, attacked and defeated a German Scharnhorst, Gneisenaul, Leipzic and Nürnberg. Von Spee went down with his flagship, the Scharnhorst. Sec War, Eurorean.

FALKLAND ISLANDS, Battle of the. A tween a British squadron under Rear-Admiral Sir Frederick Sturdee (q.v.) and the German Pacific squadron under Admiral von Spec. Of the five German battleships four were sunk, but was sunk off Juan Fernandez on 14 March 1915. See War, European-Naval Operations.

FALKNER, fäk'nèr, Roland Post, American statistician: b. Bridgeport, Conn., 14 April Pennsylvania in 1885; studied economics at Berlin, Leipzig and Halle-on-Saale, Germany; was instructor in accounting and statistics in the University of Pennsylvania in 1888-91, and professor of statistics 1891-1900. He served Committee of Finance in 1891; as secretary of the United States delegation to the International Monetary Conference; and as secretary of the
conference in 1892 . He is author of numerous essays on criminology, sociology, etc.; and was cditor of anmols of the sociogy, ctc.; and was

Political and Social Science 1890-1900. From 1904 to 1907 he served as commissioner of education in Porto Rico; from 1908 to 1911 he was United States Immigration Commission, and in 1911-12 was assistant director of the census. He has contributed essays on professional topics to economic, statistical and other pablished a translation of August Meitzen's (History, Theory, and Technique of Statistics' (1893).

FALKNER, Thomas, English Jesuit mis sionary: 1. Manchester, 1707 ; d. 1784. Having studicd medicine, he engaged as surgeon on a slave-ship of the South Sea Company, in which he sailed to the coast of Guinea in 1731 . He next accompanied a cargo of slaves to Buenos
Aires, and while there was taken dangerously ill and was carefully tended by the Jesuits. He was so impressed by the work of the order that he became a Catholic and entered the Jesuit order. He became a priest in 1732 and from that time until 1767 labored as a mission ary in Paraguay and the Rio de la Plata region in 1767-68 caused him to return to England where he became a private chaplain. He wrote several works, including 'Botanical, Minera and Likc Observations on the Products o America' (1774); A Description of Patagonia and the Adjoining Parts of South America, of which an uncritical and faulty edition wa

FALKNER ISLAND, an island in Lon Island Sound, nearly opposite Guilford, Conn Its chief feature is a lighthouse, about 94 feet in height, with a white flash light.

FALKÖPING, fal'chẹ́pĭng, Sweden, town in Skaraborg. It is an important railroad junc tion and is important in Swedish history as the scene of the victory of Margaret of Denmark
and Norway over the king of Sweden in 1389 The immediate result was the junction o The immediate result was the junction 0
FALL, Albert Bacon, American legislator: b. Frankfort, Ky., 26 Nov. 1861. He was educated in the country schools, but was principally self-taught. From 1879 to 1881 he taught school and read law, and from 1889 to 1904 wa a practising lawyer. He worked on a farm, on a cattle ranch and as a miner. Herested in mines, lumber, lands and railroads, and for many years has been engarcd in farm ing, stock-raising and mining. He served in he legislature of New Mexico and also as asso ciate justice of the Supreme Court of New Mexico, and member of the Constitutional Con vention. On 27 March 1912 he was elected to piring 4 March 1913. He was re-elected in June 1912, and his credentials not being signed h was re-elected 23 Jan. 1913 and again in 1918 From March 1921 to March 1923 he was Secretar
fall. See Waterfall and Cataracts.
FALL. See Waterfall and Cataracts.
FALL ARMY WORM, the caterpilfar of a
regarious moth (Laphygma frugipcrda). See gregarious mot

FALL-FISH, or SILVER CHUB, a cy prinodont fish, or "minnow" (Semotilus cor
very common cast of the Alleghanies in clear swift streams and rocky pools, and has been
known to reach 18 inches in length. It is steel blue above, sides and belly silvery, but in the breeding season the fins and lower surface of the males are rosy. The fins are of moderate size and unspotted.
FALL OF THE HOUSE OF USHER The, one of the most famous of the prose talcs of Edgar Allan Poc, is to be grouped among the strange obsession which afflicts the chicf char acter may be described as the fear of fear The 'Fall of the House of Usher' conforms admirably to Poc's dictum that every word in a short story should tend toward a preconceived effect. The sense of gloom and depression proif anything depening sentence to the close. The scene is laid "Out of space - out of time," yet it gives a thrilling impression of reality. The story also illustrates the author's skill in preparing for the end, both by minor details which explain later happenings, and by more clusive
methods. Thus, the momentary repulsion which the visitor fecls on meeting the physician is connected with the decision regarding the temporary entombment of Madeline, narrated pages later; and the picture painted by Usher inevitably suggests, though in no very tangible way, the vault in which the coffin is placed. The
poem, 'The Haunted Palace,' recited by the phicf character, is an allegory of a ruined mind No story of Poe's shows leetter handling of at mosphere, and it is justly ranked as one of the most admirable of its class. It was first pubHished in Burton's Gentlenan's Magasine in Poe's tales issued in 1845 .

FALL LINE. The boundary between the Atlantic Coastal Plain and the Piedmont Belt (q.v.) to the west is marked by falls or rapids on most of the streams, due to the fact that the rivers can cut more rapidly on the soft
unconsolidated rocks of the coastal plain than on the harder crystalline rocks of the adjacent region. At an early date the falls marked the head of navigation for coastwise tradc. Power is also largely developed along the fall line, which has been responsible for the location of numerous cities, among which are Trenton, mond, Raleigh, Columbia, Macon and Montgomery.

FALL OF IMAN, a commonly received doctrine of Christianity, founded upon the historical narrative containcd in the third chapter of the book of Genesis, together with the allusions to the same matter in other parts of Genesis, The his the oflo fall, as given in God having placed Adam and Eve in the garden of Eden and forlidden them under pain of of Eath to eat of the fruit of the tree of the knowledge of good and evil, Eve, tempted hy the serpent, first ate of the fruit hersclf, and atterward gave of it to her husband, who followed
her example. Both were driven out of Eden. Punitive sentences were passed unon each of them, and upon the serpent, which is alluded to by Saint Paul as representing the devil. In the subsequent narrative the consequences of the
fall significantly appear. The first man born of the original pair is a murderer, and his descendants grow in wickedness until a flood is this most suggestive narrative has given rise to inexhaustible controversy. The opinions on the fall may be divided into three classes: those which reject the narrative altogether; those which accept it as a mythical or allegorical account of the origin of evil; those which regard of literary criticism, the uninterrupted flow of the narrative down to times and events evidently historical, together with the uniformity and sobriety of its style, leave little ground for the supposition that the writer himself supposed he
was dealing in allecory. The historical view was the fall, besides the theoretical controversies to which it gives rise as to its account of the origin of evil, encounters difficulties from two sources - the modern sciences of chronology and ethnology. In the meantime these remain
difficulties only as these sciences are by no difficultics only as these sciences are by no
means in a state of sufficient maturity to allow their conclusions to be absolutely applicd. It is remarkable that in most mythologies the serpent is worshiped as a bencficent being, though Tylor shows that Aji Dahaka of the Zarathustrians (Zoroastrians), which is a pcrsonification of evil, may have an historical connection with relation of man's fall to that of Adam, Saint Paul says "by one man's disobedience many were made sinners" (Rom. v, 19), and "as by one man sin entered into the world, and death by sin, and so death passed upon all men for possible to reconcile the constant appeals made in Scripture to the moral nature of man with the notion that that nature is inherently and radically gorrupt. It would also appear that the statements of Scripture with regard to the actual moral condition of man, strong as they counting for them. Without supposing any radical change of man's moral nature, or even any change of it whatsoever it is only necessary explain all that is se in his relation to God to supposed that man's moral nature consists of capabilities which are good or bad according as they are directed, and that God himself is the object of all its highest aspirations. The fall being supposed to consist in the alienation of man from God, it is easy to perceive that all objects, must apply themselves to improper ones, and become evil in their tendency; hence the sudden rise of pride, selfishness, ambition and all evil passions. In as far also as man's nature is affected hy the hereditary transmission of qualities it might become actually vitiated in its endencies and this, together with the accumula-
tion of evil habits, would produce those climaxes of violence or corruption which have from time to time convulsed or disintegrated society, which have called forth the denunciatons of prophets and by their very excesses have prodnced a reaction, which, however, has itself as ever and ready, after a period of repose, to progress toward another crisis. The fall, according to this view, consists in the moral
inadequacy of man's nature when left to itself,
and the actual evils flowing from this inade quacy. It is argued by theologians that in the original sentence pronounced on the transgressors there is contained the promise of scope of Scripture is directed to the whole ment of this promise and of the scheme providence associated with it. It is from the New Testament, however, and not from the Old, that the whole doctrine of the fall ha groundwork of Mis ton seized on this as the groundwork of his two great poems. (Se tian Theology in Outline) (New York 1906) Fisher, 'History of Christian Doctrine) (ib 1896); Clarke, 'Outline of Christian Theology' ib. 1899) ; Harnack, 'History of Dogma' (Bos(New York 1914).
FALL RIVER,

FALL RIVER, Mass., city, port of entry, in Bristol County, on Mount Hopc Bay at the mouth of the Taunton River; on the New York, south of Boston. It is connected with New York by the Fall River line of steamers, with freight line and with New England seaports by passenger and freicht lines of steamers. The area of the city is 41 square miles and it is 200 feet above sea-level. It has a good harbor, sufficiently commodious for the largest steamers and excellent water power, as the Fall River,
the outlet of Watuppa Lake, has a fall of 129 fect in less than half a mile. The water for city uses comes from Lake Watuppa and the waterworks plant is owned by the municipality The streets are well laid out; many of the buildings are constructed of the granite which and arish the vicinity. It has excellent public public high school and the Academy La Ste Union des Sacrés Cœurs; good circulating libraries, a State armory, over half a hundred churches and chapels, daily and weekly newspapers and electric strect railway comnections
with neighboring cities and towns. Amoug educational and charitable institutions are Notre Dame College, the free textile school, free civil Service school, the Conservatory of Music,
Boys' Club, Home for the Aged Five public Boys' Club, Home for the Aged. Five public parks have been laid out in various parts of the city, and there are beautiful drives to the
in the United States. According to the Fcderal census of 1910 the city had 288 manuf Fccturing establishments, employing $\$ 82.086,000$ capital and 37,139 persons; paying $\$ 16,853,000$ for ing a combined output valued at $\$ 64,146,000$. The cotton industry, 42 establishments with $\$ 46,000,000$ capital, and a combined output valued at $\$ 30,000,000$. Next in value of output was the dycing and finishing of textiles were foundry and machine-shop products were foundry and machine-shop products
$(\$ 1,000,000)$; bakery products $(\$ 600,000)$. There are also manufactories of calico prints, ginghams, woolen goods, men's hats, fur goods, pianos, knit goorls, yarn, thread, boots and shoes, spools and bobbins, carriages, rope and employs a considerable number of men. The city has a number of national banks, with a
capital of about $\$ 2,500,000$ and several savings and co-operative banks. The exchanges at the United States clearing-house during the year
ending 30 Sept. 1910 aggregated $\$ 61031300$ ending 30 Sept. 1910 aggregated $\$ 61,031,300$. for 1914 showed within the city limits 315 industrial establishments of factory grade, emearners, receiving persons; 36,834 being wage in wages. The capital invested aggregated $\$ 89,290,000$ and the year's output was valued at $\$ 64,663,000$: of this, $\$ 27,502,000$ was the value
added by manufacture
The government

The government, under a charter of 1002 is vested in a mayor, chosen annually, a board of aldermen, corsisting of 27 members, and subordinate administrative officials. Of these, the school committee of nine members is chosen cellent system of sewers, is lighted by gas and electricity. It was settled by grantees of the Plymouth Colony, along Mount Hope Bay upon land obtained by treaty with Massasoit, chief of the Wampanoags. Its inhabitants took a prominent part in the War of King Philip and
the territory long remained the hunting ground of the tribe. An Indian reservation is still maintained. The village was included within the limits of Freetown until 1803, when it was incorporated as a separate town under its present name. It was called Troy from 1804 1854 Fall River was chartered as a city ared. In 1862, on the readjustment of the Massachu-setts-Khode Island botindary, a part of the town of 'Tiverton, R. I., with a population of 3,590 , Consult several buildings and other property. River) (New York 1877). Pop 120485, in cluding over 50,000 persons of foreign birth and about 400 of negro descent. The ponulation
includes also a great number of Canadian includes

FALL TRANK, a drink once reputed to cure the effects of falls; a vulnerary made plants which grow chiefly on the Swiss Alps; honce the name Vulneraire Suisse, given to such dried plants cut into fragments. Within the 1Oth century, in England, a kind of vulnerary known as black beer was often prescribed i
FALL WEBWORM. Sec Webworms
FALLACY, in logic, an argument used as ecisive a parce. Fallacies are wariously fied by different logicians. A fallacy may either exist in the substance or in the for of the argument. If it exists in the substance it does not belong to logic, as commonly understood, to expose it; but logicians differ as tween form and substance. I. S. Mill in partic ular extends the sphere of logic in respect to the treatment of fallacies beyond what has been usually assigned to it.
FALLEN TIMBERS, Battle of, 20 Aug 1794, on the Maumee River, about 15 miles from Toledo, Ohio. The Indians had about English and rencgade Americans: they French, a line some two miles long at right angles to
the river, behind a forest blown down by a hurricane. Wayne had some $3,000 \mathrm{men} ; 2,000$ Kegulars and Kentucky, under Charles Scott, who were thrown to the left to turn the enemy's flank. The Indians began the attack and drove in the advance volunteers; then Wayne sent his regular cavalry to repel them, while his first line of close range and then charging with the bayonet. Both attacks were entirely successful. Less than 1,000 of the Americans werc engaged. They chased the Indians up to the British fort some miles away. Their total loss was 33 killed and 100 wounded, the Indians and British killed. Eight Wyandot chiefs were slain. This defeat, the greatest ever suffered by the northwestern Indians, led in the following year to the treaty of Greenville (q.v.).
FALLIERES, fa'ly'er, Clément Armand, Frendh politician and statesman: b. Mézin in the department of Lot-et-Garonne, 6 Nov. 1841. Nérac and from 1871-75 was mayor of that city. In 1876, 1877 and 1878 he was clected as a Republican to the Chamber of Deputies, in the latter year being appointed Minister of the 1882 and 1883 . From $1883-85$ and again from 1882 and 1883. From 1883-85 and againt from 1887 Minister of the Interior; and in 1887-88 and again from 1890-92 Minister of Justice. In 1890 he was elected senator, a pasition which he has held ever since. In 1899, when Loubet became President of the Republic, Fallieres succeeded him as president of the Senate, a post
to which he was elected in 1900 and on 11 Jan. to which he was elected in 1900 and on 11 Jan.
1906 . On 17 Jan. 1906 the National Asscmbly elected him President of the Republic to sucelect Loubet (q.v.).

FALLING BODIES. Sce Acceleration; Force; Force of Gravity; Gravitation Gravity. Mechanics, etc.

FALLING-SICKNESS. See Epilepsy
FALIING STARS. See Shooting Stars
FALLMERAYER, Jacob Philipp, yä'kōp félip fal mê-ri-er, German author: b. Tschötsch, Austrian Tyrol, 10 Dec. 1790 ; d. Munich, 26 April 1861. He fought in the War of Libera-
tion; in 1848 was appointed professor of histion; in 1848 was appointed professor of hisand as an explorer of the Orient his fame is international and his work authoritative. He published 'Fragments from the Orient' (1845) : 'History of the Peninsula of Morea in the Middle Ages) (1830), and other import-
ant writings.

FALLON, Michael Francis, Canadian Catholic prelate: b. Kingston, Ontario, 1867. He was educated at Ottawa College and at the to the priesthood in 1894 . He became a member of the Oblates on his return to Canada and was appointed professor of English literature at Ottawa University of which he was subseof Saint Joseph's Church, Ottawa and from 1901 to 1904 of Holy Angels, Buffalo. From 1904 to 1904 of Holy Angels, Buffalo. From
to 1909 he was provincial of the Oblates of Mary Immaculate and in the latter year was consecrated bishop of London, Ontario.

FALLOPIAN TUBES, two ducts or canals hout five inches long and one-third of an inch the uterus. Within they are lined by a mucous membrane continuous with that of the uterine cavity, but differing in having cilia. Outside of the mucous membrane there is a thin layer of
muscle-tissue. The outermost layer is from the muscle-tissue. The outermost layer is from the peritoneum, in large part a fold of the "broad
igament." At the free end the tube flares out into fimbrix, thus exposing a large surface to catch the ova given off from the surface of the adjacent ovary. Aided by the waving cilia, an ovum passes down this tube to the uterine cavity, there to undergo development or to be can pass up the Fallopian tubes and impregnate an ovum within the lumen. Development then becomes possible, giving rise to tubal pregnancy or ectopic gestation.
FALLOPIO, Gabriello, gä-brē-à̉lô fal-lop pê-o (usually known as Fallopius), Italian anatomist: h. Modena, 1523; d. 9 Oct. 1562. H studied at Ferrara and at Padua, at which las place he is said to have attended the lecturc whence, in 1548 he removed to Pisa. He continued there three years and was then made professor of surgery, anatomy and the materia medica at Padua, where he remained till his death. The principal work of Fallopius is hi Observationes Anatomicæe' ($1561,8 \mathrm{vo}$.), which, as well as his other writings, has been sev
eral times reprinted. He was the first anat omist who accurately described the vessels and bones of the foctus and his account of the Fallopian tubes in females has perpctuated his name.
FALLOUX, Frédéric Alfred Pierre, frâ-dâ-rik äl-fred pê-ar fä-loo, French writer b. Angers, France, 7 May 1811; d. there, 7 Jan 1886. Legitimist and clerical sympathies influ vivors of the Liberal Catholic School, was for a time Minister of Education under Napoleon III and passed an act very acceptable to the clericals. He was clected to the Academy in 1857. His efforts to reconcile the Orleanist and Bourbon factions in 1876 recoiled upon himself. His typical writings are of Louis XVI' (6th ed., 1881); and 'Political Speeches and Miscellany' (1882). His memoirs, edited by Veuillot, were issued in 1888.

FALLOW, land which, after being tilled, is left for a season or more without being planted or sown. The fallow and wheat atternately. Under the Romans Britain exported a great quantity of wheat, and for centuries afterward the same system was followed. The metho presupposed a moderately fertile soil, and turned out hest where clay was present. object of fallowing is to liberate firand destroy-
ments from the mold, admitting air and ing noxious plants and insects. Improvements in agricultural methods and the multiplication of fertilizing material has caused the abandonment of this resort to fallowing. which, howvantage. For summer fallow the land should
be ploughed at the end of May; for winter
fallow the land should be ploughed in autumn. Fallow crops is a term applied to green manuring crops which are of more advantage in moist than in dry climates, where injury is likely to be wrought by autumnal draughts.
Bastard fallowing is the Scotch practice of ploughing hay-stubble at the end of summer It is known in North America as short fallow and is very beneficial.
FALLOW DEER, a species (Cervus dama) of deer native in southern Europe, northern Africa and castward of Persia, representing a group of Cervidx in which the
antlers, borne only by the bucks, are round at the base, but are more or less flattened at the extremities. These deer were introduced into northern Europe many centuries ago and now are one of the common park deers of Great wild in their native regions. In size they are wild in their native regions. In size they are color vary from fawn to dark brown, the fine soft coat ornamented with large whitish spots, which in some varieties have almost disappcared except in the fawns. The under parts, and The antlers do not reach their full development until the fifth year. These deer assemble in large herds when free, and feed mainly on herbage, but are fond of certain other foods, especialy horse chestnuts, which the bucks
knock off the trees with their antlers. They knock off the trees with their antlers. They ness approaching confidently the persons with whom they are familiar and their flesh is regarded as the best of venison. Two or three fossil species are known, from remains in The most remarkable of these is the netimal The most remarkable of these is the animal scribed below
Giant Fallow Deer.- In the peat-bogs of Ireland, and in caves and superficial deposits in Britain and on the Continent, have been found many skeletons of a fallow deer which surpassed even the moose in stature, standing
six feet high at the shoulders, and carrying antlers that in some large specimens measure 11 feet from tip to tip. These antlers were broadly palmate, as in the moose, but their "points" curled upward. There is much to exist after the beginning of the human occupation of Europe, and probably owes its extinction to extermination by prehistoric man. A similar extinct species, Ruff's deer, is found

ossil in Germany.

FALLOWS, Samuel, American Reformed Episcopal bishop: b. Pendleton, Lancashire,
England, 13 Dec. 1835. He came to America in 1848, was graduated at the University of WisConsin in 1859, was minister in the Methodist Episcopal Church 1859-75 and later of the Reformed Episcopal Church. He served with distinction in the Civil War; was State superin-
tendent of public instruction in Wisconsin 1871$7+$ tendent of public instruction in Wisconsin 1871-$1866-74$, and president of Wesleyan University in 1874, 75 . He became rector of Saint Paul's and bishop in 1876 Church in Chicago in 1875 Educational Congress of the World's Colum-
bian Exposition 1893; president of the board o managers of the Illinois State Reformatory
1891-1912; chaplain-in-chief of the Grand Army of the Republic 1907-08, and its national patriotic instructor 1908-09; commander Military for Illinois 1907; department commander for Illinois of the Grand Army of the Republic 1914-15; president of the State Illinois Com mission for the International Celebration of the 50th Anniversary of Negro Freedom and Con duct of the Lincoln Jubilee 1913-16. He is the author of numerous works, including 'Hand 'Life of Samuel Adams'; 'Students' Biblical Dictionary'; 'Past Noon'; 'Splendid Deeds' Supplemental Dictionary of the English Lan guage'; 'Popular and Critical Biblical Ency clopedia' (1901); 'Health and Happiness' 1908)

FALLS CITY, Neb., city, county-seat o ton and Quincy and the Missouri Pacific rail roads, about 85 miles southeast of Lincoln. Its chief manufactures are flour, canned goods, cigars, foundry products, furniture, cement stock powder, cider, vinegar and beer. The trad articles. It has railroad shops grain elevator and a poultry-packing plant. The electric-light and waterworks plants are owned by the city It has a good public library. Pop. (1920) 4,930
FALMOUTH, fal'muth, England, municipal borough and seaport in the county of Corn-
wall, at the mouth of the Fal River, 11 miles from Truro, and is an important point of cal or steamer lines. It has a good harbor, th spacious roadstead. There are two castles on the coast, one of which, Pendennis, command the entrance of the harbor on the west, and the other, on the opposite side, is Saint Mawe Castle. Its trade consists chielly in engineerprovements have been made on the sca front and Falmouth has risen into favor, owing to its beautiful surroundings and mild and equable climate, as a wintering resort. The borough form part of the parliamentary borough of Penryn FALMOUTH, Ky., city and county- seat of
Pendleton County, 59 miles northcast of Lexington, on the Licking River and on the Louisville and Nashville Railroad. It is in an agricultural and dairying region, with a trade in
tobacco, grain, clover seed and live stock, and tobacco, grain, clover seed and live stock, and
has flour, lumber and woolen mills, tobacco has flour, lumber and woolen mills, tobacco warehouses, a crcamery, distillery and cannery 000 and the value of the taxable property is placed at $\$ 750,000$. The waterworks and electric-light plant are owned by the munici pality. The government is vested in a mayor dix councilmen. Pop 1,600
FALMOUTH, Mass., town in Barnstable County, on Buzzard's Bay, Vineyard Sound and Railroad, at the extreme west end of Cape Cod 50 miles northwest of Boston. It is the centre of an agricultural and cranberry rcgion. It is best known as containing the Wood's Hole
(q.v.) Station of the United States Fish Com-
mission. It has a public library and is a popular summer resort. Falmouth was settled in the waterworks. Pop. 3,500.
false acacia. Sce Locust Tree.
FALSE BAY, an inlet on the coast of Cape Colony, South Africa, circular in form, about 24 miles long, and so well protected from storms as to render it a good shelter harbor. Simonstown, a British naval base, is in the northwest angle.
FALSE CADENCE, a musical term. When the last chord of a phrase is other than the nant, the cadence is said to be interrupted, false or deceptive. See Cadence

FALSE CHiNCH-BUG. See Wheat Insect Pests.

FALSE DECRETALS. See Decretals,

 alse or Pseudo-IsidorianFALSE DEMETRIUS, The. See De trius.
FALSE IMPRISONMENT, the unlawful detention of a person, whether in a common prison or a private house, or even by forcibly aw punishes false imprisonment as a crime, besides giving reparation to the party injured rough an action in tort.
FALSE INDIGO, a common name for some American species of the genus Amorpha of the pea family. The most widely known plant called by this name is A. fruticosa, along streams in Ohio, Minnesota and Mani toba, south to Florida, Colorado and Mexico When found in the Middle States it is an escap from cultivation, its spike of purple flower making an exceedingly ornamental shrub.
FALSE PERSONATION, for the purpose of obtaining property of others, was formerly misdemean but is now made penal by special statute. The penalties for personation are fre quently heavy. Thus to personate the owne of any share, stock or annuity, etc., is felony, and liable to a term of imprisonment. The alse personation of voters at an election is
TAISE POINT a cape (with lichthou
FALSE POINT, a cape (with lighthouse) The roadway in which ships anchor is somewhat exposed and loading and unloading can only be carried on in comparatively fat weather. Large rice shipments are made. Th name was given because frequently this projec was mistaken for Point Palmyras
FALSE POSITION, Rule of. An ancient method of reckonning indirectly, now superseded method a number for the unknown quantity was assumed; next a trial was made to see if the assumed number filled the conditions; it was hen corrected by the method of simple propor
ion. For example, what number is that whose tion. For example, what number is that whose to be the number, we get $24>18=6$, which is too great. Now, by means of proportion we have $6: 5: 72: 60$. Hence 60 is the number whose third (20) exceeds its quarter (15) by 5 . FALSE PRETENSES, for the purpose of obtaining property, is a misdemeanor at com-
mon law, and punishable by fine or imprisonmon law, and punishable by fine or imprisonimprisonment not exceeding five years, the statutes, however, varying in different States.

FALSE SCORPION, or BOOK SCORPION, a diminutive spider-like creature of the order Pseudoscorpionida (see Aracinida), allied to the "harvestmen" and "false spiders." They occur in all the warmer parts of the
world, under bark, stones and rubbish, or hidden in deep moss; and one typical species, the "book scorpion" (Chelifer cancroides), infests museums, old libraries and dusty corners generally. Unlike the spiders thesc have no constricted "waist" separating the abdomen from the foreparts; and like the true scorpions the
pedipalps are developed into relatively enormous chelate arms. The book scorpion thus resembles a minute crab. They are slow in their motions, fecling their way along with their pincers; and several blind species inhabit caverns. They have spinning glands, situated in the cephalothorax, but use the silk only for making small protective
cells or cases into which they retreat when laycells or cases into which they retreat when lay-
ing eggs (afterward carried about by the female), or molting, or during hibernation.
FALSE SPIDER. See Scorpion Spider.
FALSE SWEARING. See Perjury.
FALSE WEIGHTS AND MEASURES. Sce Weights and Measures.
FALSEN, fal'sén, Christian Magnus, Norwegian historian and statesman: b. Olso, near
Christiania, 1782; d. 1830 . He entered the legal profession and in 1808 was appointed circuit judge at Follo. He became interested in politics about 1814 and helped draw up a constitution for Norway after the separation of the lattcr from Denmark. He divided honors with avtorney-general in 1822, but lost much of his support among the liberal element through his administration of this office. He was made bailiff for Bergen in 1825 and two years later became chief of the Supreme Court. He wrote 'Norges Historie' (1824). Consult the lives

FALSETTO (Ital.), in singing, a term applicd to the notes above the nateral or throat voice, in contradistinction to the chest voice, which is the natural one. The falsetto voice is produced by tightening the ligaments of the glottis. Its thin, constrained effect is most noticeable in men with deep-set voices the regan octave above the pure chest voice.

[^0]: Fig. 8 Diagram showing winding of two-pole two-phase
 rotating motor field. A, is the return wire of phase A,

